
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Faceted Information Flow

Permalink
https://escholarship.org/uc/item/4hs1t9nc

Author
Schmitz, Thomas James

Publication Date
2019

Supplemental Material
https://escholarship.org/uc/item/4hs1t9nc#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4hs1t9nc
https://escholarship.org/uc/item/4hs1t9nc#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

FACETED INFORMATION FLOW
A dissertation submitted in partial satisfaction of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Thomas Schmitz

June 2019

The Dissertation of Thomas Schmitz
is approved:

Cormac Flanagan, Chair

Luca de Alfaro

Owen Arden

Alejandro Russo

Lori Kletzer
Vice Provost and Dean of Graduate Studies

Copyright © by

Thomas Schmitz

2019

Table of Contents

List of Figures vi

List of Tables viii

Abstract ix

1 Introduction 1
1.1 Background . 2

1.1.1 Security lattices . 2
1.1.2 Dynamic information flow control 2
1.1.3 No Sensitive Upgrades . 3
1.1.4 Secure Multi Execution . 6
1.1.5 Faceted Values . 7
1.1.6 Richer lattices . 8

1.2 Structure of the dissertation . 9
1.2.1 Overview of Chapter 2: Faceted Dynamic Information Flow

via Control and Data Monads 9
1.2.2 Overview of Chapter 3: Faceted Secure Multi Execution . 10
1.2.3 Overview of Chapter 4: FacetBook 13

1.3 Future directions . 13

2 Faceted Dynamic Information Flow via Control and Data Mon-
ads 17
2.1 Introduction . 18
2.2 Review of Information Flow and Faceted Values 20
2.3 Library Overview . 25

2.3.1 Pure Faceted Values: Faceted a 26
2.3.2 Faceted Reference Cells: FIO a and FioRef a 28
2.3.3 Faceted I/O: FHandle . 31

2.4 Formal Semantics . 32
2.4.1 Termination-Insensitive Noninterference 39

iii

2.5 Application: A Bi-Monadic Interpreter 40
2.5.1 The Interpreted Language 41
2.5.2 Implementation . 41

2.6 Related Work . 44
2.7 Conclusion . 47

3 Faceted Secure Multi Execution 51
3.1 Introduction . 52
3.2 Background . 55
3.3 A Unifying Multi Execution Framework 58

3.3.1 Functional core . 58
3.3.2 Faceted values . 59
3.3.3 FIO computations . 60
3.3.4 Building side-effectful computations based on faceted values 61
3.3.5 Supported multi-executions approaches 63
3.3.6 Formal semantics . 66

3.4 Termination Insensitive Security Guarantees 70
3.5 Fair Scheduling . 75
3.6 Termination Sensitive Security Guarantees 77
3.7 Decentralized Labels . 79

3.7.1 Disjunction Category Labels 80
3.8 Implementation . 82

3.8.1 Basic structures . 82
3.8.2 Executor commonalities 83
3.8.3 MF executor . 84
3.8.4 Continuations and SME 85
3.8.5 FSME executor . 87

3.9 Evaluation . 88
3.10 ProtectedBox . 91

3.10.1 Labeling policy . 91
3.10.2 Performance . 92

3.11 Related work . 93
3.12 Conclusions . 96
Appendix 3.A Semantics and Proof Sketches 103
Appendix 3.B Implementation . 105
Appendix 3.C FSME (switching) executor 110

4 FacetBook 118
4.1 Research questions . 118
4.2 Design V1: FacetBook . 120

4.2.1 Overview . 120
4.2.2 User interface . 120

iv

4.2.3 Information security . 123
4.3 FIO library . 123
4.4 V1-FIO . 125

4.4.1 Tour of TCB . 125
4.4.2 Tour of UCB . 132

4.5 V1-NoFIO . 136
4.5.1 Removing undesirable dependence on FIO 136
4.5.2 Removing desirable dependence on FIO 136
4.5.3 Minimizing the TCB . 138

4.6 Design V2: Adding a widget . 140
4.7 V2-FIO . 140
4.8 V2-NoFIO . 141
4.9 V2-NoFIO-minTCB . 142
4.10 Conclusions . 143

4.10.1 Research question 1 . 143
4.10.2 Research question 2 . 144

4.11 Discussion . 145

v

List of Figures

2.1 A computation with implicit flows. 21
2.2 Interface for the pure fragment of the Faceted library. 26
2.3 Interface for FIO and FioRef. 29
2.4 Interface for FHandle. 31
2.5 Source syntax. 33
2.6 Runtime syntax. 33
2.7 Semantics (part 1). 34
2.8 Semantics (part 2). 35
2.9 Semantics (part 3). 36
2.10 Syntax for the bi-monadic interpreter. 41
2.11 The bi-monadic interpreter eval function. 42
2.12 A sample program for the interpreter. 43

3.1 Control flow diagrams. 62
3.2 Syntax and selected rules from the semantics. 67
3.3 Rules for references. 71
3.4 Selected rules of the standard semantics. 73
3.5 Projection functions. 74
3.6 Time and memory consumption for different micro-benchmarks . 88
3.7 Time for different executors in the Tarball benchmark. 93
3.8 Full syntax (part I). 112
3.9 Full syntax (part II). 113
3.10 Full semantics (part 1). 114

vi

3.11 Full semantics (part 2). 115
3.12 Typing rules. 116
3.13 Full standard semantics. 117

4.1 Screenshots of FacetBook. 121
4.2 The interface of the FIO library in all versions of FacetBook. . . . 124
4.3 The code for the Label datatype in all versions of FacetBook. . . 126
4.4 The code for the FList datatype and associated type definitions in

V1-FIO. 126
4.5 The code for the main function in V1-FIO. 127
4.6 The code for the policy function in V1-FIO. 128
4.7 The import statements for the UCB module in V1-FIO. 129
4.8 The import statements for the Shared module in V1-FIO. 130
4.9 The import statements for the TCB module in V1-FIO. 130
4.10 The code for the helper functions in V1-FIO. 131
4.11 The code for the handle_request function in V1-FIO. 132
4.12 The code for the parse_request function in V1-FIO. 134
4.13 The code for the main function in V1-NoFIO. 137
4.14 The code for the parse_request function in V1-NoFIO. 139
4.15 Excerpt of the code to display a Tic Tac Toe game in V1-FIO. . . 140
4.16 The new code to display a Tic Tac Toe game in V2-FIO. 141
4.17 Excerpt of the code to display a Tic Tac Toe game in V1-NoFIO. . 141
4.18 The new code to display a Tic Tac Toe game in V2-NoFIO. . . . 142
4.19 The code for the tictactoe_play function in V2-NoFIO-minTCB. 143

vii

List of Tables

4.1 Number of lines of code in each version of FacetBook. 119
4.2 Differences between each version of FacetBook. 120

viii

Abstract

Faceted Information Flow

by

Thomas Schmitz

This thesis aims to make progress on the problem of using dynamic information

flow control for computer security at the application level, specifically using Faceted

Values. This technique involves augmenting program data values so that each one

is a pair of two primitive values: one high-security version that is visible only to

high-security observers, and one low-security version that is visible to everyone

else. These augmented values are called faceted values, and the various versions

are called facets. This technique allows very precise tracking of information flow

through a program, allowing programmers to increase confidence in the security of

their systems.

This thesis helps to increase the maturity of research on the “Faceted Values”

technique, bringing it in line with research on the prior techniques “No Sensitive

Upgrades” and “Secure Multi Execution.” Specifically, we have formalized a

new semantics (called Multef) and proved that it satisfies a strong (“termination

sensitive”) security property, we have implemented the technique as a Haskell

library (called FIO) using two monads, and we have tested it in a prototype social

network application (called FacetBook).

ix

Chapter 1

Introduction

To motivate this thesis, we should look at all the buggy software out there with

unmet security requirements. Consider social media (blog, forum, Facebook, etc.),

banking software, search engines (issues with privacy), web mashups (webpages

with advertisements, and generally any software that combines functionality of

multiple services), and various kinds of shared database (Google Drive, confer-

ence management systems, etc.). Such software is often developed without any

systematic methodology for guaranteeing security. This application level security

contrasts with lower level system security (e.g. in operating systems and in hard-

ware) because it is practical to sacrifice some runtime performance for improved

confidence in security.

The word “security” means different things to different people. Here, we focus

specifically on information flow security. Information flow policies [10, 4, 7] specify

that a particular restricted class of data shall not flow to particular restricted

output channels. Many software security requirements can be phrased in this way,

and so we consider how such policies may be enforced.

1

1.1 Background

We begin with a brief review of some prior work on information flow control.

1.1.1 Security lattices

It is common to use lattices to specify information flow policies [4]. The security

lattice is a set of labels, and we denote the lattice’s partial order using the symbol

v. Each label in the lattice represents an information class. Information from one

class may flow to another as long as the direction of flow is upward through the

lattice; all other flows are prohibited.

1.1.2 Dynamic information flow control

After writing a policy (using a lattice), we would like to enforce the policy

when running code. Most enforcement mechanisms are classified either as static

or as dynamic. Static mechanisms (such as Jif [9]) analyze the program itself;

dynamic mechanisms (such as LIO [14]) analyze the execution of the program.

Because they perform the analysis at runtime, dynamic mechanisms expose

information flow violations later and exhibit worse runtime performance than static

mechanisms do. On the other hand, dynamic techniques can offer better precision

by exploiting observations about the program’s runtime behavior. We focus on

dynamic techniques for application level security, where the advantage of precision

outweighs the disadvantage of performance.

Compared to other dynamic analysis techniques, dynamic information flow

control is unusual because a single execution cannot constitute an information flow

violation; rather, to exhibit a violation, we must compare at least two executions

to one another. Therefore, dynamic techniques either enforce a conservative

2

approximation of the desired policy or execute (parts of) the program multiple

times.

1.1.3 No Sensitive Upgrades

No Sensitive Upgrades (NSU) [1, 14, 15] is a technique that involves labeling

data values during program execution. Every value is either labeled H for restricted

“high security” data or labeled L for unrestricted “low security” data. The labels

allow tracking which values contain information about the restricted data. (For

simplicity of exposition, we assume that the security lattice is {L,H} with L @ H.)

Dually, every output channel is either labeled L for restricted “low security” output

channels or labeled H for unrestricted “high security” output channels.

During computation, the mechanism propagates labels from input values to

output values. For example:

1 var x = 12345; // A secret number

2 var y = x % 2; // Get a bit of info about x

3 print(y); // A public output channel

Given that the output channel print is labeled L, the above code fails on line 3

because the label H propagates from x to y, and print cannot accept arguments

labeled H. This type of information propagation is an explicit flow.

Information can also propagate via the conditional presence or absence of side

effects, such as assigning to variables, throwing exceptions, or printing to the

console; we call these implicit flows. To track implicit flows, the NSU mechanism

keeps a global program counter label (PC), which indicates whether the restricted

data has influenced the current control flow path. For example:

1 var x = 12345; // A secret number

3

2 if(x % 2 == 1) { // PC label becomes H

3 print("I'm odd!"); // A public output channel

4 } // PC label becomes L

Program constants (such as the string "I’m odd!") acquire their labels from the

program counter, so in the above code, the label H propagates from x to the

program counter on line 2, and then from the program counter to the constant

string "I’m odd!" on line 3. Thus, the program fails on line 3, much like before.

Note that this program would not fail if the secret number were even instead of

odd; in the present discussion, we consider this behavior to be acceptably secure,

although Section 1.2.2 describes enforcement mechanisms where attackers cannot

infer information from mechanism failures.

Some implicit flows are harder to catch. We must analyze how information

may be deduced when a side effect is not executed. It is infeasible to consider

all skipped execution paths, but we can detect cases where the current execution

path leaks information to other paths; in particular, we detect when a side effect

upgrades the label of a value during a sensitive execution context (i.e., when the

current program counter label is H). This example (adapted from [6]) illustrates

the necessity of this check:

1 var x = 12345; // A secret number

2 var y = 0;

3 var z = 1;

4 if(x % 2 == 1) { // PC label becomes H

5 y = 1; // Sensitive upgrade occurs here

6 }

7 if(y == 0) {

8 z = 0;

4

9 }

10 print(z);

Without the NSU mechanism, the above program would (indirectly) write the

least significant bit of the secret number into the variable z and subsequently print

it. Explicitly, if the value of x were 0, then the program would print 0; if the value

of x were 1, then the program would print 1.

However, the NSU mechanism detects the sensitive upgrade on line 5, and the

program fails. Again, note that the program would not fail if the secret number

were even instead of odd.

There are multiple ways to implement the mechanism to fail after detecting a

sensitive upgrade. The classic choice is to diverge (i.e., to go into an infinite loop),

thus preventing any use of leaked information. Another option (proposed by [6])

is to suppress the side effect (i.e., updating the value of y) and continue execution,

though this may yield unexpected results.

This enforcement mechanism yields false positives: not all programs with

sensitive upgrades are actually insecure. For example:

1 var x = 12345; // A secret number

2 var y;

3 if(x % 2 == 1) { // PC label becomes H

4 y = "I'm odd!"; // Sensitive upgrade occurs here

5 } else {

6 y = "I'm even!";

7 }

The above program is secure because it prints nothing to the public output channel,

but the mechanism fails on line 4 due to the sensitive upgrade.

5

Due to such false positives, NSU lacks a desirable property called precision; we

say that an enforcement mechanism is precise if it does not alter the behavior of

any secure programs, which are programs that already satisfy the desired policy.

1.1.4 Secure Multi Execution

The Secure Multi Execution (SME) mechanism [5] runs the program twice:

• The high execution runs in a sandbox where it is legal to read the restricted

(H) data but illegal to write to the restricted (L) output channel.

• The low execution runs in a sandbox where it is illegal to read the restricted

(H) data but legal to write to the restricted (L) output channel.

This technique is clearly secure because it is explicitly impossible for the restricted

(H) data to flow to the restricted (L) output channel.

SME is also precise—it does not alter the behavior of any secure programs. In

particular, the low execution produces the correct output on the restricted channel;

the high execution produces correct output on all other output channels. This is

in contrast with NSU, which fails on some secure programs.

SME can easily support internal program effects (e.g., assigning to variables

and throwing exceptions) because the effects are local to one execution and do

not need to propagate to the second execution. On the other hand, externally

visible effects (e.g., printing to the console) are clearly duplicated. To cope with

this, we must partition outside observers into low security observers and high

security observers, and we must arrange the execution environment so that the

low security observers see only the effects of the first execution, while the high

security observers see only those of the second.

Another problem is that the performance overhead can be quite large. Executing

the program twice takes about twice as much time. When using SME to enforce

6

multiple information flow policies on a single program, the runtime overhead is

exponential in the number of policies. However, we expect that much of this

computation is redundant, which leads us to the next technique.

1.1.5 Faceted Values

The Faceted Values (FV) mechanism augments the program data values so

that each one is a pair of two primitive values: one high security version that is

visible only to high security observers, and one low security version that is visible

to everyone else. These augmented values are called faceted values, and the various

versions are called facets. If the two facets of a value are identical, then we can

optimize the representation by collapsing the pair to a single primitive value.

When a faceted value is used during program execution, then the execution

must bifurcate into two separate executions, one for each facet. When the sub-

executions complete, the mechanism combines their results into a new faceted

value and continues the remainder of the program as a single execution.

To properly handle side effects, we need a program counter data structure

(typically called pc), which tracks whether the execution has bifurcated, and if so,

which of the two sub-executions is currently running. By tracking this information,

the mechanism can correctly decide whether to perform the effect for low observers

or for high observers. If the execution has not bifurcated, then both effects occur.

FV includes special support for mutable reference cells. Rather than main-

taining two stores separately, the mechanism puts faceted values into the unique

global store. When updating a reference cell, the pc dictates which one (or both)

of the two facets should change.

Overall, this technique resembles SME because parts of the program execute

twice. However, the performance characteristics differ because some parts execute

7

only once.

FV also resembles NSU. If we use a special “undefined” token for the public facet

of every faceted value, then the two mechanisms behave analogously until a sensitive

upgrade occurs. At this point, FV continues execution by updating the public

facets as necessary (thus deviating from the public-facets-must-be-“undefined”

discipline), whereas NSU conservatively aborts the program.

1.1.6 Richer lattices

As described so far, each of the three techniques supports just a two-element

security lattice. It is easy to generalize NSU and SME to support an arbitrary

security lattice with n elements: for NSU, we can use n different labels instead of

just two; for SME, we can execute the program n times instead of just twice.

It is known [2] that FV generalizes easily to support power set lattices, simply

by orthogonally composing multiple copies of the two-element lattice mechanism.

We have shown [11] that the technique can also support arbitrary lattices. This

result is intuitive because FV has the same semantics as SME, which itself supports

arbitrary lattices.

When using FV with a two-element lattice, there are three legal values for the

pc:

• pc = HL, which means that the execution has not bifurcated and thus we

are currently simulating both views at the same time;

• pc = H, which means that we are currently simulating only the high security

view; and

• pc = L, which means that we are currently simulating only the low security

view.

8

The salient information contained in pc is the set of views currently being simulated.

There is one view for each lattice element, so the generalized pc data structure

should denote a set of views (lattice elements) containing the ones currently being

simulated.

Rather than representing a faceted value as a pair of primitive values (one for

each of the two views), we can instead represent a faceted value as a function that

maps lattice elements to primitive values (so again we have one for each view). In

the semantics (and in the Haskell prototype implementation), we represent these

functions as binary decision trees with lattice elements at the nodes and primitive

values at the leaves.

1.2 Structure of the dissertation

This thesis is organized into three self-contained chapters. Each chapter focuses

exclusively on one topic, and they can be read in any order.

1.2.1 Overview of Chapter 2: Faceted Dynamic Informa-

tion Flow via Control and Data Monads

We have implemented FV as a Haskell library called FIO [12]. The library design

includes two monads: one (called FIO) for encapsulating side effects (as is typical

in Haskell), and surprisingly a second one (called Faceted) for encapsulating the

faceted values. FIO resembles Haskell’s built-in IO monad, but offers only a subset

of the functionality—namely, mutable reference cells and file I/O, for which we

have designed suitably secure algorithms with proofs of noninterference [2]. Fac

forms a monad because faceted values support the three necessary operations:

• return :: a -> Faceted a creates a faceted value where all viewers see

9

the same facet;

• fmap :: (a -> b) -> Faceted a -> Faceted b changes the facets of a

faceted value by applying a function uniformly to each facet, preserving the

required property that information from one facet cannot influence another

facet; and

• join :: Faceted (Faceted a) -> Faceted a reinterprets a faceted value

with faceted values in its facets by aggregating all of the facets of the latter

faceted values into a single faceted value, preserving the labels protecting

each facet.

To enable interactions between the two monads, the library provides a prod [8]

function:

prod :: Faceted (FIO (Faceted a)) -> FIO (Faceted a)

This function enables the execution of computations that depend on faceted

information—in other words, faceted computations. The resulting execution

bifurcates if necessary when running those computations.

1.2.2 Overview of Chapter 3: Faceted Secure Multi Exe-

cution

Each mechanism mentioned so far satisfies a formal correctness criterion called

termination insensitive noninterference (TINI). This criterion states:

• If we execute a program with two different but indistinguishable inputs and

thusly obtain two outputs, then the two outputs should also be indistinguish-

able.

10

Here, we say that two values are indistinguishable when their censored versions are

equal. The censored version of a value is obtained just by replacing its restricted

data with non-informative default data.

The above criterion is called termination insensitive because divergent program

executions are exempted from consideration, as they do not produce outputs. Each

mechanism described so far [1, 5, 2] guarantees TINI.

Alternatively, if we rephrase the criterion so that divergence is considered a

possible program output, then the new criterion is called termination sensitive

noninterference (TSNI). Explicitly, TSNI specifies that if the program diverges on

one input, then it should also diverge on the other (indistinguishable) input:

• If we execute a program with two different but indistinguishable inputs,

then the two resulting behaviors (either convergence to a specific value or

divergence) should also be indistinguishable.

TSNI is strictly stronger than TINI, which means that fewer programs satisfy the

TSNI criterion.

Previous work [13, 5] on both NSU and SME has adapted them to offer TSNI.

This work aims to adapt FV likewise.

The extension of NSU guarantees TSNI, but at the cost of a new programming

model involving concurrency. Many existing programs do not work as written

because they are not written as concurrent programs.

SME can also guarantee TSNI, namely by running the multiple executions

concurrently.

To extend FV to offer TSNI, we developed a new technique called Faceted

Secure Multi Execution (FSME), which runs the two parts concurrently when the

mechanism bifurcates. However, it becomes tricky to join the subcomputations,

which means waiting for both subcomputations to complete before executing

11

their shared continuation. Joining may be unsafe because then the subsequent low

continuation would depend on the termination of the current high subcomputation.

We propose that when a subcomputation completes, it should wait at most

T seconds for the other subcomputation to complete, where T is a configurable

parameter of the system. If the other subcomputation completes before T seconds

have elapsed, then they join and the continuation will execute as normal; otherwise,

if the T seconds expire, then the two subcomputations will not join at all: instead,

each thread will execute the continuation when ready to do so. In the latter case,

the continuation will execute a total of two times instead of just one time.

When using T = 0, the mechanism is identical to SME (modulo lazy spawning)

because the system will eventually have spawned one thread for each lattice

element, and none of these threads will ever join together (we call this variation

demand-driven SME). On the other hand, when T =∞, the mechanism is identical

to (TINI) FV because every bifurcation will join before executing the continuation.

The resulting system (with positive finite T) satisfies the TSNI criterion and

enjoys most of the performance advantages of FV. We have produced a Haskell

library and a formal semantics with a proof of TSNI. To validate its usefulness, we

have developed ProtectedBox, a secure file hosting API that supports third party

plugins, which add functionality without compromising security. We developed

three plugins for ProtectedBox:

• The comments plugin allows users to add comments to the files in the cloud.

• The tarball plugin allows users to create archive files that aggregate the

contents of multiple other files.

• The checksum plugin computes a checksum for each file in the cloud.

In this experimental application using these plugins, we verified that FSME does

12

not noticeably degrade performance.

1.2.3 Overview of Chapter 4: FacetBook

To validate the usefulness of FV in general and of our Haskell library FIO in

particular, we have created a prototype social networking website called FacetBook.

Social networking websites inherently involve interactions among many people,

so the information flow security requirements are complex. Since FV can handle

complex requirements, a social networking application is a good choice to illustrate

its usefulness. Recent research (and recent events) point to the importance both of

social media itself [3] and of social media security particularly [16], so it interested

us to investigate how FV can improve the state of the art.

We created two implementations of FacetBook: one ordinary Haskell imple-

mentation and a second Haskell implementation using the FIO library. The first

implementation has fewer lines of code in total, but the second implementation

has fewer lines of code in the trusted computing base (TCB), which is the part of

the code that must be carefully examined in order to convince oneself that the

code meets the security requirements. Smaller TCBs are easier to audit, and so

by building an application with a reduced TCB, we illustrate that FV helps to

improve confidence in security.

1.3 Future directions

With the theoretical underpinnings lain out in this thesis, future work can focus

on the practical issues of implementing specific applications. In the worst case,

the number of bifurcations during faceted execution equals the size of the security

lattice (or is unbounded in the case of infinite lattices), so we anticipate optimization

13

techniques for limiting the necessary number of bifurcations. In other work [11], we

present some theoretical optimization ideas where at most one bifurcation occurs

at each conditional control structure. Additional engineering effort can reduce the

performance overhead of managing large numbers of bifurcations.

Debugging tools specific to faceted execution would help programmers under-

stand when and why their code bifurcates. This understanding will help auditors

in verifying the correctness of the security policy and will help programmers to

optimize their code by manually reducing bifurcations.

14

Bibliography

[1] Thomas H Austin and Cormac Flanagan. “Efficient purely-dynamic informa-
tion flow analysis”. In: Proc. ACM Workshop on Programming Languages
and Analysis for Security (PLAS) (2009).

[2] Thomas H Austin and Cormac Flanagan. “Multiple facets for dynamic
information flow”. In: Proc. ACM Symp. on Principles of Programming
Languages (POPL) (2012).

[3] Shelley Boulianne. “Social media use and participation: A meta-analysis of
current research”. In: Information, Communication & Society 18.5 (2015),
pp. 524–538.

[4] Dorothy E Denning. “A lattice model of secure information flow”. In: Com-
munications of the ACM 19.5 (1976), pp. 236–243.

[5] Dominique Devriese and Frank Piessens. “Noninterference through secure
multi-execution”. In: Security and Privacy (SP), 2010 IEEE Symposium on.
IEEE. 2010, pp. 109–124.

[6] Jeffrey Stewart Fenton. “Memoryless subsystems”. In: The Computer Journal
17.2 (1974), pp. 143–147.

[7] Daniel Hedin and Andrei Sabelfeld. A Perspective on Information-Flow
Control. 2012.

[8] Mark P Jones and Luc Duponcheel. Composing monads. Tech. rep. Technical
Report YALEU/DCS/RR-1004, Department of Computer Science. Yale
University, 1993.

[9] Andrew C Myers. “JFlow: Practical mostly-static information flow con-
trol”. In: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM. 1999, pp. 228–241.

[10] Andrew C Myers and Barbara Liskov. “Protecting privacy using the decen-
tralized label model”. In: ACM Transactions on Software Engineering and
Methodology (TOSEM) 9.4 (2000), pp. 410–442.

15

[11] Minh Ngo, Nataliia Bielova, Cormac Flanagan, Tamara Rezk, Alejandro
Russo, and Thomas Schmitz. “A Better Facet of Dynamic Information Flow
Control”. In: WWW’18 Companion: The 2018 Web Conference Companion.
2018, pp. 1–9.

[12] Thomas Schmitz, Dustin Rhodes, Thomas H Austin, Kenneth Knowles, and
Cormac Flanagan. “Faceted dynamic information flow via control and data
monads”. In: International Conference on Principles of Security and Trust.
Springer. 2016, pp. 3–23.

[13] Deian Stefan, Alejandro Russo, Pablo Buiras, Amit Levy, John C Mitchell,
and David Mazieres. “Addressing covert termination and timing channels
in concurrent information flow systems”. In: The 17th ACM SIGPLAN
International Conference on Functional Programming (ICFP). 2012.

[14] Deian Stefan, Alejandro Russo, John C Mitchell, and David Mazières. Flexible
dynamic information flow control in Haskell. Vol. 46. 12. ACM, 2011.

[15] Stephan Arthur Zdancewic. “Programming languages for information secu-
rity”. PhD thesis. Cornell University, 2002.

[16] Zhiyong Zhang and Brij B Gupta. “Social media security and trustworthiness:
overview and new direction”. In: Future Generation Computer Systems
(2016).

16

Chapter 2

Faceted Dynamic Information

Flow via Control and Data

Monads

Abstract An application that fails to ensure information flow security may leak

sensitive data such as passwords, credit card numbers, or medical records. News

stories of such failures abound. Austin and Flanagan[2] introduce faceted values –

values that present different behavior according to the privilege of the observer – as

a dynamic approach to enforce information flow policies for an untyped, imperative

λ-calculus.

We implement faceted values as a Haskell library, elucidating their relationship

to types and monadic imperative programming. In contrast to previous work,

our approach does not require modification to the language runtime. In addition

to pure faceted values, our library supports faceted mutable reference cells and

secure facet-aware socket-like communication. This library guarantees information

flow security, independent of any vulnerabilities or bugs in application code. The

17

library uses a control monad in the traditional way for encapsulating effects, but it

also uniquely uses a second data monad to structure faceted values. To illustrate

a non-trivial use of the library, we present a bi-monadic interpreter for a small

language that illustrates the interplay of the control and data monads.

2.1 Introduction

When writing a program that manipulates sensitive data, the programmer

must prevent misuse of that data, intentional or accidental. For example, when

one enters a password on a web form, the password should be communicated to the

site, but not written to disk. Unfortunately, enforcing these kinds of information

flow policies is problematic. Developers primarily focus on correct functionality;

security properties are prioritized only after an attempted exploit.

Just as memory-safe languages relieve developers from reasoning about memory

management (and the host of bugs resulting from its mismanagement), information

flow analysis enforces security properties in a systemic fashion. Information

flow controls require a developer to mark sensitive information, but otherwise

automatically prevent any “leaks” of this data. Formally, we call this property

noninterference; that is, public outputs do not depend on private inputs1.

Secure multi-execution [9, 16, 23] is a relatively recent and popular information

flow enforcement technique. A program execution is split into two versions: the

“high” execution has access to sensitive information, but may only write to private

channels; the “low” execution may write to public channels, but cannot access any

sensitive information. This elegant approach ensures noninterference.
1We refer to sensitive values as “private” and non-sensitive values as “public”, as confidentiality

is generally given more attention in the literature on information flow analysis. However, the
same mechanism can also enforce integrity properties, such as that trusted outputs are not
influenced by untrusted inputs.

18

Faceted evaluation is a technique for simulating secure multi-execution with a

single process, using special faceted values that contain both a public view and

a private view of the data. With this approach, a single execution can provide

many of the same guarantees that secure multi-execution provides, while achieving

better performance.

This paper extends the ideas of faceted values from an untyped variant of the

λ-calculus [2] to Haskell and describes the implementation of faceted values as a

Haskell library. This approach provides a number of benefits and insights.

First, whereas prior work on faceted values required the development of a new

language semantics, we show how to incorporate faceted values within an existing

language via library support.

Second, faceted values fit surprisingly well (but with some subtleties) into

Haskell’s monadic structure. As might be expected, we use an IO-like monad called

FIO to support imperative updates and I/O operations. We also use a second type

constructor Faceted to describe faceted values; for example, the faceted value

〈k ? 3 : 4〉 has type Faceted Int. Somewhat surprisingly, Faceted turns out to

also be a monad, with natural definitions of the corresponding operations that

satisfy the monad axioms [33]. These two monads, FIO and Faceted, naturally

interoperate via an associated product function [17] that supports switching from

the FIO monad to the Faceted monad when necessary (as described in more detail

below).

This library guarantees the traditional information flow security property of

termination-insensitive noninterference, independent of any bugs, vulnerabilities,

or malicious code in the client application.

Finally we present an application of this library in the form of an interpreter for

the imperative λ-calculus with I/O. This interpreter validates the expressiveness

19

of the Faceted library; it also illustrates how the FIO and Faceted monads flow

along control paths and data paths respectively.

In summary, this paper contributes the following:

• We present the first formulation of faceted values and computations in a

typed context.

• We show how to integrate faceted values into a language as a library, rather

than by modifying the runtime environment.

• We clarify the relationship between explicit flows in pure calculations (via

the Faceted monad) and implicit flows in impure computations (via the FIO

monad).

• Finally, we present an interpreter for an imperative λ-calculus with dynamic

information flow. The security of the implementation is guaranteed by

our library. Notably, this interpreter uses the impure monad (FIO) in the

traditional way to structure computational effects, and uses the pure faceted

monad (Faceted) to structure values.

2.2 Review of Information Flow and Faceted Val-

ues

In traditional information flow systems, information is tagged with a label to

mark it as confidential to particular parties. For instance, if we need to restrict

pin to bank, we might write:

pin = 4321bank

20

x
=
〈k

?
Tr

ue
:⊥
〉

do
N
ai
ve

N
SU

Fe
nt
on

Fa
ce
te
d
Ev

al
ua

tio
n

y
<-

ne
wI

OR
ef

Tr
ue

y
=

Tr
ue

y
=

Tr
ue

y
=

Tr
ue

y
=

Tr
ue

z
<-

ne
wI

OR
ef

Tr
ue

z
=

Tr
ue

z
=

Tr
ue

z
=

Tr
ue

z
=

Tr
ue

vx
<-

re
ad

IO
Re

f
x

−
−

−
−

wh
en

vx
pc

=
{k
}

pc
=
{k
}

pc
=
{k
}

pc
=
{k
}

(w
ri

te
IO

Re
f
y

Fa
ls

e)
y

=
〈k

?
Fa

ls
e

:⊥
〉

st
uc
k

ig
no

re
d

y
=
〈k

?
Fa

ls
e

:T
ru

e〉
vy

<-
re

ad
IO

Re
f

y
−

−
−

wh
en

vy
−

−
pc

=
{k
}

(w
ri

te
IO

Re
f
z

Fa
ls

e)
−

−
z

=
〈k

?
Tr

ue
:F

al
se
〉

re
ad

IO
Re

f
z

−
−

−
R
es
ul
t:

Tr
ue

st
uc
k

Fa
ls

e
〈k

?
Tr

ue
:F

al
se
〉

F
ig
ur
e
2.
1:

A
co
m
pu

ta
tio

n
w
ith

im
pl
ic
it
flo

w
s.

21

To protect this value, we must prevent unauthorized viewers from observing it,

directly or indirectly. In particular, we must defend against explicit flows where a

confidential value is directly assigned to a public variable, and implicit flows where

an observer may deduce a confidential value by reasoning about the program’s

control flow. The following code shows an explicit flow from pin to the variable x.

pin = 4321bank

x = pin + 1

Taint tracking – in languages such as Perl and Ruby – suffices to track straight-

forward explicit flows; in contrast, implicit flows are more subtle. Continuing our

example, consider the following code, which uses a mutable IORef.

do above2K ← newIORef False

if (pin > 2000)

then writeIORef above2K True

else return ()

This code illustrates a simple implicit flow. After it runs, the value of above2K

will reflect information about pin, even though the code never directly assigns the

value of pin to above2K. There are several proposed strategies for handling these

types of flows:

1. Allow the update, but mark above2K as sensitive because it was changed in

a sensitive context. This strategy can help for auditing information flows

“in the wild” [15], but it fails to guarantee noninterference, as shown in the

Naive column of Figure 2.1 (note that the naive computation results in True

when x is True).

2. Disallow the update to above2K within the context of the sensitive conditional

pin. When enforced at runtime, this technique becomes the no-sensitive-

22

upgrade strategy [35, 1] illustrated in the NSU column of Figure 2.1. Note

that while this technique maintains noninterference, it also terminates the

program prematurely.

3. Ignore the update to above2K in a sensitive context, an approach first used

by Fenton [11]. This strategy guarantees noninterference by sacrificing

correctness (the program’s result may not be internally consistent). We show

this strategy in the Fenton column of Figure 2.1.

Faceted values introduce a third aspect to sensitive data. In addition to the

sensitive value and its label, the following faceted value includes a default public

view of ‘0000’.

pin = 〈bank ? 4321 : 0000〉

Then, when we run the previous program with this faceted pin, the value of

above2K is 〈bank ? True : False〉. The bank sees the sensitive value True, but

an unauthorized viewer instead sees the default value False, giving a consistent

picture to the unauthorized viewer while still protecting sensitive data.

Label-based information flow systems reason about multiple principals by

joining labels together (e.g. 3A+4B = 7AB). In a similar manner, faceted evaluation

nests faceted values to represent multiple principals, essentially constructing a

tree2 mapping permissions to values:

〈k1 ? 3 : 0〉+ 〈k2 ? 4 : 0〉 = 〈k1 ? 〈k2 ? 7 : 3〉 : 〈k2 ? 4 : 0〉〉

Figure 2.1, adapted from Austin and Flanagan [2], demonstrates a classic
2Alternatively, a faceted value can be interpreted as a function mapping sets of labels to

values, and the syntax above as merely a compact representation.

23

code snippet first introduced by Fenton [11]. The example uses two conditional

statements to evade some information flow controls. When this code runs, the

private value x leaks into the public variable z. We represent the input x, a

confidential boolean value, in faceted notation as 〈k ? False : ⊥〉 for false and

〈k ? True : ⊥〉 for true, where ⊥ means roughly ‘undefined’. Boolean reference

cells y and z are initialized to True; by default, they are public to maximize the

permissiveness of these values.

When the input x is 〈k ? False : ⊥〉, the value for y remains unchanged because

the first when statement is not run. Then in the second when statement, y is still

public, and thus z also remains public because it depends only on y. Since no

private information is involved in the update to z, all information flow strategies

return the public value False as their final result.

The case where the input x is 〈k ? True : ⊥〉 is more interesting, as illustrated

in Figure 2.1. Note that if the final value appears as True to public observers,

then the private value x has leaked. The strategies differ in the way they handle

the update to y in the first conditional statement. Since this update depends upon

the value of x, we must be careful to avoid the potential implicit flow from x to y.

We now compare how each approach handles this update.

In the Naive column of Figure 2.1, the strategy tracks the influence of x by

applying the label k to y. Regardless, y is false during the second conditional, so

z retains its public True value. Thus, under Naive information flow control, the

result of this code sample is a public copy of x, violating noninterference.

The No-Sensitive-Upgrade approach instead terminates execution on this up-

date, guaranteeing termination-insensitive noninterference, but at the cost of

potentially rejecting valid programs. Stefan et al. implement this strategy in the

elegant LIO library for Haskell [31]. Our work shares the motivations of LIO, but

24

extends beyond the No-Sensitive-Upgrade strategy to support faceted values, thus

enabling correct execution of more programs.

The Fenton strategy forbids the update to y, but allows execution to continue.

This approach avoids abnormal termination, but it may return inaccurate results,

as shown in Figure 2.1.

Faceted evaluation solves this dilemma by simulating different executions of

this program, allowing it to provide accurate results and avoid rejecting valid

programs. In the Faceted Evaluation column, we see that the update to y results in

the creation of a new faceted value 〈k ? False : True〉. Any viewer authorized to

see k-sensitive data3 can see the real value of y; unauthorized viewers instead see

True, thus hiding the value of x. In the second conditional assignment, the runtime

updates z in a similar manner and produces the final result 〈 k ? True : False 〉.

In contexts with the k security label, this value will behave as True; in other

contexts, it will behave as False. This code therefore provides noninterference,

avoids abnormal termination, and provides accurate results to authorized users.

2.3 Library Overview

We implement faceted computation in Haskell as a library that enforces in-

formation flow security dynamically, using abstract data types to prevent buggy

or malicious programs from circumventing dynamic protections. In contrast, the

original formulation [2] added faceted values pervasively to the semantics of a

dynamically-typed, imperative λ-calculus. Because of the encapsulation offered

by Haskell’s type system, we do not need to modify the language semantics. Our

library is available at https://github.com/haskell-facets/haskell-faceted.

Our library is conceptually divided into the following components:
3That is, authorized to see data marked as sensitive to principal k.

25

https://github.com/haskell-facets/haskell-faceted

type Label = String

data Faceted a

public :: a → Faceted a
faceted :: Label → Faceted a → Faceted a → Faceted a
bottom :: Faceted a

instance Monad Faceted

Figure 2.2: Interface for the pure fragment of the Faceted library.

• Pure faceted values of type a (represented by the type Faceted a).

• Imperative faceted computations (represented by the type FIO a), which can

operate on:

– faceted reference cells (represented by the type FioRef a), and

– facet-enabled file handles / sockets (represented by the type FHandle).

2.3.1 Pure Faceted Values: Faceted a

Figure 2.2 shows the public interface for the pure fragment of our library. This

fragment tracks explicit data flow information in pure computations.

Our implementation presumes that security labels are strings, though leaving

the type of labels abstract is straightforward.

A value of type Faceted a represents multiple values, or facets, of type a. To

maintain security, the facets should not be directly observable; therefore, the data

type is abstract.

The function public injects any type a into the type Faceted a. It accepts

a value v of type a and returns a faceted value that behaves just like v for any

observer.

26

The function faceted constructs a value of type Faceted a from a label k and

two other faceted values priv and pub, each of type Faceted a. To any viewer

authorized to see k, the result behaves as priv; to all other observers, the result

behaves as pub (and so on, recursively).

The value bottom (abbreviated ⊥) is a member of Faceted a for any a, and

represents a lack of a value. bottom is used when a default value is necessary, such

as in a public facet. Any computation based on bottom results in bottom.

From faceted, we can define various derived constructors for creating faceted

values with minimal effort. For example:

makePrivate :: Label → a → Faceted a

makePrivate k v = faceted k (public v) bottom

makeFacets :: Label → a → a → Faceted a

makeFacets k priv pub = faceted k (public priv) (public pub)

The Monad instance for Faceted conveniently propagates security labels as

appropriate. For example, the following code uses Haskell’s do syntax to multiply

two values of type Faceted Int.

do x ← makeFacets "k" 7 1 -- <"k" ? 7 : 1>

y ← makeFacets "l" 6 1 -- <"l" ? 6 : 1>

return (x ∗ y) -- <"k" ? <"l" ? 42 : 7> : <"l" ? 6 : 1 »

Here, x is an Int that is extracted from (faceted "k" 7 1), either 7 or 1. The

Faceted monad instance automatically executes the remainder of the do block

twice (once for each possible value of x) before collecting the various results into

a faceted value. The situation is similar for y, so the final faceted value is a tree

with four leaves.

27

2.3.2 Faceted Reference Cells: FIO a and FioRef a

For the pure language of Section 2.3.1, information flow analysis is straightfor-

ward because all dependencies between values are explicit; there are no implicit

flows. An implicit flow occurs when a value is computed based on side effects that

depend on private data, as in the following example, where x is an IORef with

initial value 0.

do if secret == 42 -- working in IO monad

then writeIORef x 1

else writeIORef x 2

readIORef x

The return value will be 1 if and only if secret == 42.

Suppose we opt to protect the confidentiality of secret by setting secret =

makePrivate k 42. The type of secret is now Faceted Int. Then our example

can be reformulated:

do n ← secret -- working in Faceted monad

return $ do if n == 42 -- working in IO monad

then writeIORef x 1

else writeIORef x 2

readIORef x

The outer do begins a computation in the Faceted monad, with the value 42

bound to n. This expression has type Faceted (IO Int), so it cannot be “run”

as part of a Haskell program. Thus, the pure fragment of our library described so

far prevents all implicit flows, even those that are safe.

Guided by the types, we seek a way to convert a value of type Faceted (IO a)

to a value of type IO (Faceted a). The latter could then be run to yield a value

of type Faceted a, where the facets account for any implicit flows.

28

data Branch = Private Label | Public Label
type PC = [Branch]

data FIO a

instance Monad FIO

runFIO :: FIO a → PC → IO a
prod :: Faceted (FIO (Faceted a)) → FIO (Faceted a)

data FioRef a
newFioRef :: Faceted a → FIO (FioRef (Faceted a))
readFioRef :: FioRef (Faceted a) → FIO (Faceted a)
writeFioRef :: FioRef (Faceted a) → Faceted a → FIO (Faceted ())

Figure 2.3: Interface for FIO and FioRef.

Faceted IO computations take place in the FIO monad (the name is short for

“Faceted I/O”). Figure 2.3 shows the public interface for this fragment of the library.

When faceted data influences control flow, the result of a computation implicitly

depends on the observed facets; the implementation of FIO transparently tracks

this information flow.

The Monad instance for FIO allows sequencing computations in the usual way,

so FIO acts as a (limited) drop-in replacement for IO. If fio1 and fio2 each have

type FIO Int, then the following expression also has type FIO Int.

do x ← fio1

y ← fio2

return (x ∗ y)

The function runFIO converts a value of type FIO a to a value of type IO a.

The side effects in this IO computation will respect the information flow policy.

runFIO takes one additional argument: an initial value for a data structure

called pc (for “program counter label”), which is used for tracking the branching

29

of the computation. To guarantee security, it may be necessary to execute parts of

the program multiple times – once for observers who may view k-sensitive data,

and again for observers who may not. During the former branch of computation,

the pc will contain the value Private k; during the latter branch, it will contain

Public k.

The pc argument to runFIO allows controlling the set of observers whose

viewpoints are considered during faceted computation. The empty pc, denoted [],

will force simulation of all possible viewpoints.

A value of type FioRef a (short for “facet-aware IORef”) is a mutable reference

cell where initialization, reading, and writing are all FIO computations that operate

on Faceted values and that account for implicit flows accordingly.

Figure 2.3 presents the public interface to FioRef a, which parallels that of

conventional reference cells of type IORef a.

To write side-effecting code that depends on a faceted value, the Faceted

and FIO monads must be used together. The library function prod enables this

interaction.

Using these library functions, our running example finally looks as follows.

do x ← newFioRef (public 0) -- working in FIO monad

prod $ do v ← secret -- working in Faceted monad

return $ if v == 42

then writeFioRef x (public 1)

else writeFioRef x (public 2)

readFioRef x

As hinted earlier, the inner do block has type Faceted (FIO (Faceted ()))

and so cannot compose with the other actions in the outer do block. To rectify

this, the function prod is enclosing the inner do block, converting it to type FIO

30

data FHandle

type View = [Label]

openFileFio :: View → FilePath → IOMode → FIO FHandle
closeFio :: FHandle → FIO ()

getCharFio :: FHandle → FIO (Faceted Char)
putCharFio :: FHandle → Char → FIO ()

Figure 2.4: Interface for FHandle.

(Faceted ()).

In this example, the value read from x will be faceted k 1 0, which correctly

accounts for the influence from secret. In section 2.4, we will explain the machinery

that implements this secure behavior.

2.3.3 Faceted I/O: FHandle

Faceted I/O differs from reference cells in that the network and file system,

which we collectively refer to as the environment, lie outside the purview of our

programming language. The environment has no knowledge of facets and cannot

be retrofitted. Additionally, there are other programs able to read from and write

to the file system. We assume that the environment appropriately restricts other

users of the file handles, and we provide facilities within Haskell to express and

enforce the relevant information flow policy.

Figure 2.4 shows the core of the public interface for facet-aware file handles,

type FHandle.

We support policies that associate with each file handle h a set of labels viewh

of type View. This view indicates the confidentiality for data read from and written

to h. Intuitively, if a view contains a label k, then that view is allowed to see data

31

that is confidential to k.

The function openFileFio accepts a view viewh along with a file path and

mode and returns a (computation that returns a) facet-aware handle h protected

by the policy viewh.

When writing to h via putCharFio, the view viewh describes the confidentiality

assured by the external environment for data written to h. In other words, we

trust that the external world will protect the data with those labels in viewh.

When reading from a handle h via getCharFio, we treat viewh as the confi-

dentiality expected by the external world for data read from h. In other words, we

certify that we protect the data received from h. For example, in the following

computation, the character read from h is observable only to views that include

labels "k" and "l".

do h ← openFileFio ["k", "l"] "/tmp/socket.0" ReadMode

getCharFio h

2.4 Formal Semantics

In this section, we formalize the behavior of the Haskell library as an operational

semantics and prove that it guarantees termination-insensitive noninterference.

Figures 2.5 and 2.6 show the formal syntax. The syntactic class t represents

Haskell programs, k is a label, and σ is a “store” mapping addresses a to values,

and mapping file handles h to strings of characters ch.

For ease of understanding, we separate the set of values into three syntactic

classes. FacetedValue contains values in the Faceted monad; FioAction contains

computations in the impure FIO monad; and Value contains both of these, as well

as ordinary values: closures, characters, labels, addresses, and handles.

32

ch ∈ Character
k ∈ Label
t ∈ Term ::= x

| λx.t
| t t
| ch Character
| F Faceted values
| faceted k t t
| returnFac t
| bindFac t t
| A FIO actions
| prod t
| () Unit value

F ∈ FacetedValue ::= public t | faceted k F F | bottom
A ∈ FioAction ::= returnFIO t | bindFIO t t | prod F

| newFioRef t | readFioRef t | writeFioRef t t
| getCharFio t | putCharFio t t

Figure 2.5: Source syntax.

a ∈ Address
h ∈ Handle
t ∈ Term ::= . . . | a | h
v ∈ Value ::= F | A | λx.t | ch | a | h | ()
E ∈ EvalContext ::= • t | bindFac • t | faceted k • t | faceted k F •

| prod •
σ ∈ Store = (Address → Term) ∪ (Handle → String)

Figure 2.6: Runtime syntax.

33

t ⇓ v Pure evaluation.

v ⇓ v [e-val]

t[x := t1] ⇓ v
(λx.t) t1 ⇓ v

[e-app]

t not a value
t ⇓ v1

E[v1] ⇓ v2

E[t] ⇓ v2
[e-ctxt]

returnFac t ⇓ public t
[e-ret]

t2 t1 ⇓ F
bindFac (public t1) t2 ⇓ F

[e-bind-p]

bindFac F1 t3 ⇓ F ′1
bindFac F2 t3 ⇓ F ′2

F = faceted k F ′1 F ′2
bindFac (faceted k F1 F2) t3 ⇓ F

[e-bind-f]

bindFac bottom t ⇓ bottom
[e-bind-b]

Figure 2.7: Semantics (part 1).

We define the operational semantics with two big-step evaluation judgments.

• t ⇓ v means that the pure Haskell expression t evaluates to the value v.

• σ,A ⇓FIO
pc σ′, v means that the Haskell program “main = runFIO A pc”

changes the store from σ to σ′ and yields the result v.

Figure 2.7 depicts the pure derivation rules. These rules describe a call-by-name

λ-calculus with opaque constants and two library functions: returnFac and bindFac.

These monad operators for Faceted are particularly simple because it is a free

34

σ
,A
⇓F

IO
p
c
σ
,t

Im
pu

re
fa
ce
te
d
co
m
pu

ta
ti
on

.

σ
,r

et
ur

nFI
O
t
⇓F

IO
p
c
σ
,t

[f
-r

et
]

t 1
⇓
A

1
σ

0,
A

1
⇓F

IO
p
c
σ

1,
t 3

t 2
t 3
⇓
A

2
σ

1,
A

2
⇓F

IO
p
c
σ

2,
t 4

σ
0,

bi
nd

FI
O
t 1
t 2
⇓F

IO
p
c
σ

2,
t 4

[f
-b

in
d]

t
⇓
A

σ
,A
⇓F

IO
p
c
σ
′ ,
t′

σ
,p

ro
d

(p
ub

li
c
t)
⇓F

IO
p
c
σ
′ ,
t′

[f
-p

ro
d-

p]

σ
,p

ro
d

bo
tt

om
⇓F

IO
p
c
σ
,b

ot
to

m
[f

-p
ro

d-
b]

k
∈
pc

σ
,p

ro
d
F

1
⇓F

IO
p
c
σ
′ ,
t′

σ
,p

ro
d

(f
ac

et
ed

k
F

1
F

2)
⇓F

IO
p
c
σ
′ ,
t′

[f
-p

ro
d-

f1
]

k
∈
pc

σ
,p

ro
d
F

2
⇓F

IO
p
c
σ
′ ,
t′ 2

σ
,p

ro
d

(f
ac

et
ed

k
F

1
F

2)
⇓F

IO
p
c
σ
′ ,
t′

[f
-p

ro
d-

f2
]

k
/∈
pc

k
/∈
pc

σ
0,

pr
od

F
1
⇓F

IO
p
c∪
{k
}
σ

1,
t 1

σ
1,

pr
od

F
2
⇓F

IO
p
c∪
{k
}
σ

2,
t 2

t′
=

fa
ce

te
d
k
t 1
t 2

σ
0,

pr
od

(f
ac

et
ed

k
F

1
F

2)
⇓F

IO
p
c
σ

2,
t′

[f
-p

ro
d-

f3
]

F
ig
ur
e
2.
8:

Se
m
an

tic
s
(p
ar
t
2)
.

35

t
⇓
F

a
/∈

do
m

(σ
)

F
′
=
〈〈
pc

?
F

:b
ot

to
m〉
〉

σ
,n

ew
Fi

oR
ef

t
⇓F

IO
p
c
σ

[a
:=

F
′],
a

[f
-n

ew
]

t
⇓
a

σ
,r

ea
dF

io
Re

f
t
⇓F

IO
p
c
σ
,σ

(a
)

[f
-r

ea
d]

t 1
⇓
a

σ
′
=
σ

[a
:=
〈〈
pc

?
t 2

:σ
(a

)〉
〉]

v
=

pu
bl

ic
()

σ
,w

ri
te

Fi
oR

ef
t 1
t 2
⇓F

IO
p
c
σ
′ ,
v

[f
-w

ri
te

]

t
⇓
h

pc
is

no
t
vi
sib

le
to

vi
ew

h

σ
,g

et
Ch

ar
Fi

o
t
⇓F

IO
p
c
σ
,b

ot
to

m
[f

-g
et

-2
]

t
⇓
h

L
=

vi
ew

h

pc
is

vi
sib

le
to
L

ch
1
..
.c

h n
=
σ

(h
)

σ
′
=
σ

[h
:=

ch
2
..
.c

h n
]

pc
′
=
L
∪
{k
|k

/∈
L
}

F
=
〈〈
pc
′

?
pu

bl
ic

ch
1

:b
ot

to
m〉
〉

σ
,g

et
Ch

ar
Fi

o
t
⇓F

IO
p
c
σ
′ ,
F

[f
-g

et
]

t 1
⇓
h

L
=

vi
ew

h

pc
is

vi
sib

le
to
L

t 2
⇓

ch
σ
′
=
σ

[h
:=

σ
(h

)c
h]

σ
,p

ut
Ch

ar
Fi

o
t 1
t 2
⇓F

IO
p
c
σ
′ ,

()
[f

-p
ut

]

t 1
⇓
h

L
=

vi
ew

h

pc
is

no
t
vi
sib

le
to
L

σ
,p

ut
Ch

ar
Fi

o
t 1
t 2
⇓F

IO
p
c
σ
,(

)
[f

-p
ut

-2
]

F
ig
ur
e
2.
9:

Se
m
an

tic
s
(p
ar
t
3)
.

36

monad: bindFac F v replaces the public “leaves” of the faceted value F with new

faceted values obtained by calling v.

Figure 2.8 shows the impure derivation rules. The FIO monad operations

(defined by [f-ret] and [f-bind]) are typical of a state monad. The pc annotation

propagates unchanged through these trivial rules.

The next five rules define prod, whose type is:

Faceted (FIO (Faceted a)) -> FIO (Faceted a)

The input, a faceted action, is transformed into an action that returns a faceted

value. This process is straightforward for public and bottom; the public construc-

tor is simply stripped away to reveal the action underneath, while bottom is simply

transformed into a no-op. For faceted, the corresponding rule is [f-prod-f3],

where the process bifurcates into two subcomputations whose results are combined

into a faceted result value. However, there is no need to bifurcate repeatedly for

the same label k, so the bifurcation is remembered by adding k (or k) to the pc an-

notation on each subcomputation. Subsequently, the optimized rules [f-prod-f1]

and [f-prod-f2] will apply. Rather than bifurcating the computation, these rules

will execute only the one path of computation that is relevant to the current pc.

The remainder of Figure 2.8 shows the rules for creation and manipulation of

reference cells, and for input and output.

[f-new] describes the creation of a new faceted reference cell. To preserve

the noninterference property, the cell is initialized with a faceted value that hides

the true value from observers that should not know about the cell. The notation

37

〈〈• ? • : •〉〉 means:

〈〈∅ ? t1 : t2〉〉 = t1

〈〈{k} ∪ pc ? t1 : t2〉〉 = faceted k 〈〈pc ? t1 : t2〉〉 t2

〈〈{k} ∪ pc ? t1 : t2〉〉 = faceted k t2 〈〈pc ? t1 : t2〉〉

[f-read] and [f-write] read and write these reference cells. [f-read] is

simple because the values in the store σ will already be appropriately faceted. To

prevent implicit flows, [f-write] must incorporate the pc into the label of the

value stored.

The final rules handle input and output. Each must first confirm that the

file handle h is compatible with the current pc. The notation “pc is visible to L”

means

∀k ∈ pc, k ∈ L and ∀k ∈ pc, k /∈ L,

i.e. L is one of the views being simulated on the current branch of computation.

In [f-get], if pc is visible to L, then the first character ch1 is extracted from

the file. The result is a faceted value that behaves as ch1 for view L, but as

bottom for all other views. If pc is not visible to L, then [f-get-2] applies and

the operation is ignored; the result is simply bottom.

In [f-put], if pc is visible to L, then a character is appended to the end of the

file; otherwise, [f-put-2] applies and the operation is ignored.

38

2.4.1 Termination-Insensitive Noninterference

We first define the projection εL(t) of a term t according to a view L ∈ 2Label :

εL(faceted k t1 t2) = εL(t1) if k ∈ L

εL(faceted k t1 t2) = εL(t2) if k /∈ L

εL(•) is homomorphic otherwise.

Similarly, we define the projection εL(σ) of a store σ according to a view L:

εL(σ)(a) = εL(σ(a))

εL(σ)(h) =


σ(h) if L = viewh

ε otherwise

where ε denotes the empty string. In words, the projected store maps each address

to the projection of the stored value, and the projected store maps each handle

either to the real file contents (if the viewer is viewh) or to ε.

A state is a pair of a store and a term. We identify states that are equivalent

modulo alpha-renaming of addresses.

Theorem 1 (Termination-Insensitive Noninterference). Assume:

εL(σ1) = εL(σ2) εL(A1) = εL(A2)

σ1, A1 ⇓FIO
∅ σ′1, v1 σ2, A2 ⇓FIO

∅ σ′2, v2

Then:

εL(σ′1) = εL(σ′2) εL(v1) = εL(v2).

39

In other words, if we run two programs that are identical under the L projection,

then the results will be identical under the L projection.

The proof is available in the attached Coq script.

2.5 Application: A Bi-Monadic Interpreter

To demonstrate the expressiveness of the Faceted library, we present a monadic

interpreter for an imperative λ-calculus, whose dynamic information flow security

is guaranteed by the previous noninterference theorem.

The interesting aspect about this interpreter is that it uses two distinct monads.

• The FIO monad captures computations (called Actions in the code), and

is propagated along control flow paths in the traditional style of monadic

interpreters.

• The Faceted monad serves a somewhat different purpose, which is to encap-

sulate the many views of the underlying RawValue. Unlike FIO, this monad

is propagated along data flow paths rather than along control flow paths.

Even though the interpreter’s use of the Faceted monad is non-traditional, faceted

values need exactly this monad interface – particularly considering the necessity of

the monad-specific operation

join :: Faceted (Faceted a)→ Faceted a

which, for the Faceted monad, naturally combines two layers of security labels

into a single layer.

40

-- Abstract syntax tree data structure.
data Term =

Var String -- Lambdas
| Lam String Term
| App Term Term
| Const Value -- Constants

-- Runtime data structures.
data RawValue =

CharVal Char -- Characters
| RefVal (FioRef Value) -- Mutable references
| FnVal (Value → Action) -- Functions

type Value = Faceted RawValue
type Action = FIO Value
type Env = String → Value

Figure 2.10: Syntax for the bi-monadic interpreter.

2.5.1 The Interpreted Language

The source language is an imperative call-by-value λ-calculus whose abstract

syntax is defined in Figure 2.10. The language has variables, lambda abstractions,

applications, and primitive constants for manipulating reference cells, performing

I/O, and creating private values.

To ensure that private characters are not printed to the output stream, our

implementation opens the stream using the empty view.

2.5.2 Implementation

Figure 2.11 shows the core of the interpreter, the function eval. As usual, it

takes an environment and a term and returns an action, which has type Action

= FIO (Faceted RawValue). The RawValue type includes characters, mutable

references, and closures.

The most interesting code is the case for an application App t1 t2 (lines 15-19

41

1 -- Interpreter.
2 eval :: Env → Term → Action
3 eval e (Var x) = return $ e x
4 eval e (Lam x t) = return $ return $ FnVal $ λv →
5 eval (extend e x v) t
6 eval e (App t1 t2) = do v1 ← eval e t1 -- working in FIO monad
7 v2 ← eval e t2
8 prod $ do
9 FnVal f ← v1 -- working in Faceted monad

10 return $ f v2
11 eval e (Const v) = return v
12
13 -- Constants.
14 private :: RawValue
15 private = FnVal $ λv →
16 return $ faceted "H" v bottom
17 ref :: RawValue
18 ref = FnVal $ λv → do -- working in FIO monad
19 ref ← newFioRef v
20 return $ return $ RefVal ref
21 deref :: RawValue
22 deref = FnVal $ λv → prod $ do -- working in Faceted monad
23 RefVal ref ← v
24 return $ readFioRef ref
25 assign :: RawValue
26 assign = FnVal $ λv1 →
27 return $ return $ FnVal $ λv2 → prod $ do-- working in Faceted monad
28 RefVal ref ← v1
29 rv2 ← v2
30 return $ do -- working in FIO monad
31 writeFioRef ref v2
32 return v2
33 printChar :: RawValue
34 printChar = FnVal $ λv → prod $ do -- working in Faceted monad
35 CharVal c ← v
36 return $ do -- working in FIO monad
37 h ← openFileFio [] "output.txt" AppendMode
38 putCharFio h c
39 closeFio h
40 return v

Figure 2.11: The bi-monadic interpreter eval function.

42

let x = ref (private true) in
let y = ref true in
let z = ref true in
let vx = deref x in
if (vx) {

assign y false
}
let vy = deref y in
if (vy) {

assign z false
}
deref z

Figure 2.12: A sample program for the interpreter. For ease of reading, we
assume the availability of standard encodings for let and boolean operations.

in Figure 2.11). As usual, we use a do block (in the FIO monad) to compose the

sub-evaluations of t1 and t2 into faceted values v1 and v2. To extract each

underlying function (FnVal f) from the faceted value v1, we enter a second do

block (this time in the Faceted monad), and then apply f to v2 to yield a result

of type Action = FIO (Faceted RawValue), which the return (on line 19) then

injects into type Faceted (FIO (Faceted RawValue)), completing the Faceted

do block (lines 17-19). Finally, the prod function on line 17 coordinates the two

monads and simplifies the type to FIO (Faceted RawValue), which sequentially

composes with the previous sub-evaluations of t1 and t2.

The remaining language features are provided by the constants below the

interpreter itself: private, ref, deref, assign, and printChar. As for App, these

constants must use prod to perform their services securely.

Figure 2.12 expresses our running example from Figure 1 as a program p in the

interpreted language (with some additional syntactic sugar); running the program

runFIO (eval env p) [] yields the expected result:

43

faceted "H" (public true) (public false)

2.6 Related Work

Most information flow mechanisms fall into one of three categories: run-time

monitors that prevent a program execution from misbehaving; static analysis

techniques that analyze the whole program and reject programs that might leak

sensitive information; and finally secure multi-execution, which protects sensitive

information by evaluating the same program multiple times.

Dynamic techniques dominated much of the early literature, such as Fenton’s

memoryless subsystems [11]. However, these approaches tend to deal poorly with

implicit flows, where confidential information might leak via the control flow of

the program; purely dynamic controls either ignore updates to reference cells that

might result in implicit leaks of information [11] or terminate the program on these

updates [35, 1]; both approaches have obvious problems, but these techniques have

seen a resurgence of interest as a possible means of securing JavaScript code, where

static analysis seems to be an awkward fit [10, 15, 13, 18].

Denning’s work [6, 7] instead uses a static analysis; her work was also in-

strumental in bringing information flow analysis into the scope of programming

language research. Her approach has since been codified into different type systems,

such as that of Volpano et al. [32] and the SLam Calculus [14]. Jif [21] uses this

strategy for a Java-like language, and has become one of the more widespread

languages providing information flow guarantees. Sabelfeld and Myers [26] provide

an excellent history of information flow analysis research prior to 2003. Refer to

Russo [25] for a detailed comparison of static and dynamic techniques.

Secure multi-execution [9] executes the same program multiple times represent-

44

ing different “views” of the data. For a simple two-element lattice of high and low,

a program is executed twice: one execution can access confidential (high) data but

can only write to authorized channels, while the other replaces all high data with

default values and can write to public channels. This approach has since been

implemented in the Firefox web browser [5] and as a Haskell library [16].

Rafnsson and Sablefeld[23] show an approach to handle declassification and to

guarantee transparency with secure multi-execution.

Zanarini et al. [34] notes some challenges with secure multi-execution; specif-

ically, it alters the behavior of programs violating noninterference (potentially

introducing difficult to analyze bugs), and the multiple processes might produce

outputs to different channels in a different order than expected. They further

address these challenges through a multi-execution monitor. In essence, their

approach executes the original program without modification and compares its

results to the results of the SME processes; if output of secure multi-execution

differs from the original at any point, a warning can be raised to note that the

semantics have been altered.

Faceted evaluation [2] simulates secure multi-execution by the use of special

faceted values, which track different views for data based on the security principals

involved4. While faceted evaluation cannot be parallelized as easily, it avoids

many redundant calculations, thereby improving efficiency [2]. It also allows

declassification, where private data is released to public channels. Austin et al.

[3] exploit this benefit to incorporate policy-agnostic programming techniques,

allowing for the specification of more flexible policies than traditionally permitted

in information flow systems.

Li and Zdancewic [19] implement an information flow system in Haskell, em-
4Faceted values are closely related to the value pairs used by [22]; while intended as a proof

technique rather than a dynamic enforcement mechanism, the construct is essentially identical.

45

bedding a language for creating secure modules. Their enforcement mechanism

is dynamic but relies on static enforcement techniques, effectively guaranteeing

the security of the system by type checking the embedded code at runtime. Their

system supports declassification, a critical requirement for specifying many real

world security policies.

Russo et al. [24] provide a monadic library guaranteeing information flow

properties. Their approach includes special declassification combinators, which can

be used to restrict the release of data based on the what/when/who dimensions

proposed by Sabelfeld [28].

Deviese and Piessens [8] illustrate how to enforce information flow in monadic

libraries. A sequence operation e1 » e2 is distinguished from a bind operation e1

»= e2 in that there are no implicit flows with the » operator. They demonstrate

the generality of their approach by applying it to classic static [32], dynamic [27],

and hybrid [12] information flow systems.

Stefan et al. [30] use a labeled IO (LIO) monad to guarantee information flow

analysis. LIO tracks the current label of the execution, which serves as an upper

bound on the labels of all data in lexical scope. IO is permitted only if it would

not result in an implicit flow. It combines this notion with the concept of a current

clearance that limits the maximum privileges allowed for an execution, thereby

eliminating the termination channel. Buiras and Russo[4] show how lazy evaluation

may leak secrets with LIO through the use of the internal timing covert channel.

They propose a defense against this attack by duplicating shared thunks.

Wadler [33] describes the use of monads to structure interpreters for effectful

languages. There has been great effort to improve the modularity of this technique,

including the application of pseudomonads [29] and of monad transformers [20].

Both of these approaches make it possible to design an interpreter’s computation

46

monad by composing building blocks that each encapsulate one kind of effect. Our

bi-monadic interpreter achieves a different kind of modularity by using separate

monads for effects and values. The use of a prod function, which links the two

monads together, is originally described by Jones and Duponcheel [17].

2.7 Conclusion

We show how the faceted values technique can be implemented as a library

rather than as a language extension. Our implementation draws on the previous

work to provide a library consisting primarily of two monads, which track both

explicit and implicit information flows. This implementation demonstrates how

faceted values look in a typed context, as well as how they might be implemented

as a library rather than a language feature. It also illustrates some of the subtle

interactions between two monads. Our interpreter shows that this library can serve

as a basis for other faceted value languages or as a template for further Haskell

work.

Acknowledgments This research was supported by the National Science Foun-

dation under grants CCF-1337278 and CCF-1421016.

47

Bibliography

[1] Thomas H. Austin and Cormac Flanagan. “Efficient Purely-dynamic Infor-
mation Flow Analysis”. In: PLAS ’09. ACM Press, 2009.

[2] Thomas H. Austin and Cormac Flanagan. “Multiple Facets for Dynamic
Information Flow”. In: POPL ’12. New York, NY, USA: ACM Press, 2012,
165–178.

[3] Thomas H. Austin, Jean Yang, Cormac Flanagan, and Armando Solar-
Lezama. “Faceted Execution of Policy-agnostic Programs”. In: PLAS ’13.
New York, NY, USA: ACM Press, 2013, 15–26.

[4] Pablo Buiras and Alejandro Russo. “Lazy Programs Leak Secrets”. In: ed. by
Hanne Riis Nielson and Dieter Gollmann. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, Jan. 2013, pp. 116–122.

[5] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
“FlowFox: A Web Browser with Flexible and Precise Information Flow Con-
trol”. In: CCS ’12. New York, NY, USA: ACM Press, 2012.

[6] Dorothy E. Denning. “A Lattice Model of Secure Information Flow”. In:
Communications of the ACM 19.5 (May 1976), 236–243.

[7] Dorothy E. Denning and Peter J. Denning. “Certification of programs for
secure information flow”. In: Communications of the ACM 20.7 (1977),
504–513.

[8] Dominique Devriese and Frank Piessens. “Information Flow Enforcement in
Monadic Libraries”. In: TLDI ’11. New York, NY, USA: ACM Press, 2011,
59–72.

[9] Dominique Devriese and Frank Piessens. “Noninterference through Secure
Multi-execution”. In: Symposium on Security and Privacy. Los Alamitos,
CA, USA: IEEE, 2010.

[10] Mohan Dhawan and Vinod Ganapathy. “Analyzing Information Flow in
JavaScript-Based Browser Extensions”. In: ACSAC. IEEE, 2009.

[11] J. S. Fenton. “Memoryless Subsystems”. In: The Computer Journal 17.2
(1974), pp. 143–147.

48

[12] Gurvan Le Guernic, Anindya Banerjee, Thomas Jensen, and David A.
Schmidt. “Automata-based Confidentiality Monitoring”. In: In ASIAN’06:
the 11th Asian Computing Science Conference on Secure Software. 2006.

[13] Daniel Hedin and Andrei Sabelfeld. “Information-flow security for a core of
JavaScript”. In: CSF. IEEE, 2012.

[14] Nevin Heintze and Jon G. Riecke. “The SLam Calculus: Programming with
Secrecy and Integrity”. In: POPL. ACM, 1998.

[15] Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. “An em-
pirical study of privacy-violating information flows in JavaScript web appli-
cations”. In: ACM Conference on Computer and Communications Security.
2010.

[16] Mauro Jaskelioff and Alejandro Russo. “Secure Multi-execution in Haskell”.
In: PSI’11. Berlin, Heidelberg: Springer-Verlag, 2012, 170–178.

[17] Mark P. Jones and Luc Duponcheel. Composing Monads. Tech. rep. Research
Report YALEU/DCS/RR-1004. Yale University, 1993.

[18] Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and
Michael Franz. “Towards Precise and Efficient Information Flow Control in
Web Browsers”. In: Trust and Trustworthy Computing Conference. Springer,
2013.

[19] Peng Li and Steve Zdancewic. “Encoding Information Flow in Haskell”. In:
CSFW ’06. Washington, DC, USA: IEEE Computer Society, 2006, 16–.

[20] Sheng Liang, Paul Hudak, and Mark Jones. “Monad Transformers and Mod-
ular Interpreters”. In: Proceedings of 22nd ACM Symposium on Principles
of Programming Languages. New York: ACM Press, 1995.

[21] Andrew C. Myers. “JFlow: Practical Mostly-Static Information Flow Con-
trol”. In: Symposium on Principles of Programming Languages (POPL).
ACM, 1999.

[22] François Pottier and Vincent Simonet. “Information Flow Inference for ML”.
In: ACM Trans. Program. Lang. Syst. 25.1 (Jan. 2003), 117–158.

[23] W. Rafnsson and A. Sabelfeld. “Secure Multi-execution: Fine-Grained,
Declassification-Aware, and Transparent”. In: Computer Security Founda-
tions Symposium (CSF), 2013 IEEE 26th. June 2013.

[24] Alejandro Russo, Koen Claessen, and John Hughes. “A Library for Light-
weight Information-flow Security in Haskell”. In: Haskell ’08. New York, NY,
USA: ACM, 2008, 13–24.

[25] Alejandro Russo and Andrei Sabelfeld. “Dynamic vs. Static Flow-Sensitive
Security Analysis”. In: CSF ’10. Washington, DC, USA: IEEE Computer
Society, 2010, 186–199.

49

[26] Andrei Sabelfeld and Andrew C. Myers. “Language-based information-flow
security”. In: Journal on Selected Areas in Communications 21.1 (2003),
pp. 5–19.

[27] Andrei Sabelfeld and Alejandro Russo. “From Dynamic to Static and Back:
Riding the Roller Coaster of Information-flow Control Research”. In: PSI’09.
Berlin, Heidelberg: Springer-Verlag, 2010.

[28] Andrei Sabelfeld and David Sands. “Declassification: Dimensions and Princi-
ples”. In: Journal of Computer Security 17.5 (Oct. 2009), 517–548.

[29] Guy L. Steele Jr. “Building Interpreters by Composing Monads”. In: POPL
’94. Portland, Oregon, USA: ACM, 1994.

[30] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. “Flex-
ible Dynamic Information Flow Control in Haskell”. In: Haskell ’11. New
York, NY, USA: ACM, 2011, 95–106.

[31] Deian Stefan, Alejandro Russo, John C Mitchell, and David Mazières. Flexible
dynamic information flow control in Haskell. Vol. 46. 12. ACM, 2011.

[32] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. “A sound type system
for secure flow analysis”. In: Journal of Computer Security 4.2-3 (1996),
167–187.

[33] Philip Wadler. “The Essence of Functional Programming”. In: POPL ’92.
Albuquerque, New Mexico, USA: ACM, 1992.

[34] Dante Zanarini, Mauro Jaskelioff, and Alejandro Russo. Precise Enforcement
of Confidentiality for Reactive Systems. 2013.

[35] Stephan Arthur Zdancewic. “Programming languages for information secu-
rity”. PhD thesis. Cornell University, 2002.

50

Chapter 3

Faceted Secure Multi Execution

Abstract To enforce non-interference, both Secure Multi-Execution (SME) and

Multiple Facets (MF) rely on the introduction of multi-executions. The attrac-

tiveness of these techniques is that they are precise: secure programs running

under SME or MF do not change their behavior. Although MF was intended as an

optimization for SME, it does provide a weaker security guarantee for termination

leaks.

This paper presents Faceted Secure Multi Execution (FSME), a novel synthesis

of MF and SME that combines the stronger security guarantees of SME with the

optimizations of MF. The development of FSME required a unification of the ideas

underlying MF and SME into a new multi-execution framework (), which

can be parameterized to provide MF, SME, or our new approach FSME, thus

enabling an apples-to-apples comparison and benchmarking of all three approaches.

Unlike the original work on MF and SME, supports arbitrary (and possibly

infinite) lattices necessary for decentralized labeling models—a feature needed

in order to make possible the writing of applications where each principal can

impose confidentiality and integrity requirements on data. We provide some

micro-benchmarks for evaluating and write a file hosting service, called

51

ProtectedBox, whose functionality can be securely extended via third-party plugins.

3.1 Introduction

Information-flow control (IFC) is a promising technology for systematically

protecting confidentiality and integrity of data. In the last few years, there have

been a proliferation of IFC techniques applied to a wide range of areas such as

hardware [59], operating systems [36], programming languages [11], web browsers

[51] and distributed systems [33]. Many of these techniques guarantee that secrets

are not leaked by enforcing some notion of non-interference [23]. This security

policy can be enforced either statically (e.g. via type-systems), dynamically (e.g.

via runtime monitors), or by a combination of both [45]. Regardless of its dynamic

or static nature, traditional IFC approaches might become conservative, thus

rejecting secure programs due to imprecisions in the analysis of how information

flows.

To mitigate (or even remove entirely) false alarms [57, 43], researchers have

recently proposed IFC techniques based on multi-executions: many copies of a

given program (or parts of it) get executed while carefully adapting their semantics

to avoid information leakage. The price to pay is, however, a degradation in

performance due to repeated computations. Secure Multi-Execution [17] (SME)

and Multiple Facets [4] (MF) are two approaches based on this idea. On one hand,

SME considers programs as black boxes. It executes a copy of the program for

each security level while changing the input and output behavior to avoid leaks.

MF, on the other hand, inspects the code of the program in order to perform

multi-execution of instructions and multiplexing memory only when needed.

Although MF was intended as an optimization for SME, the mechanisms present

different security guarantees for termination leaks [7]—i.e., leaks occurring by

52

abnormal termination of programs. More specifically, MF guarantees termination-

insensitive non-interference (TINI), while SME can remove termination leaks under

the right scheduler [28]—thus ensuring termination-sensitive non-interference

(TSNI).

Ngo et al. [41] have recently shown how to combine MF and SME for a simple

while-language in order to ensure TSNI while enjoying some of the MF benefits in

terms of minimizing multi-executions. The idea is very simple: run programs under

a MF semantics until hitting a sensitive computation which seems to “take too

much time to terminate”; in that case the evaluation should restart under a SME

semantics, i.e., by spawning one thread for each security level. While a step in the

right direction, that work takes an all-or-nothing approach: either the program

enjoys the resource-usage-savings of MF or falls into the computations and memory

duplication of SME. Furthermore, their technique requires a priori knowledge

of all the points in the lattice, something which is not feasible for decentralized

lattices—lattices which are commonly used by practical IFC systems to allow

principals to independently express their confidentiality and integrity requirements

on data (e.g., [38, 48, 21, 29, 37, 22, 33, 51]).

From a foundational perspective, this work presents a novel (provably sound)

combination of MF and SME called Faceted Secure Multi Execution (FSME),

which provides a synthesis of both approaches. Our technique starts running

under a MF semantics and spawns only two multi-executions when the current

computation seems to diverge. However, such multi-executions start running under

a MF semantics; so, it might never be necessary to spawn more multi-executions if

computations “do not take much time to finish.” It may seem a small detail, but

it is precisely due to this choice that our approach enjoys the best of both worlds.

The idea of spawning multi-execution on-demand when combining MF and SME is

53

also novel. For that, we strongly rely on extending how MF and SME work when

not all the points in the lattice are known—another foundational contribution.

Lastly, our work provides , a unifying framework for multi-execution based

IFC systems. Regardless the desired multi-execution semantics (i.e., MF, SME, or

FSME), behaves exactly the same except for a single specific place.

This work also contributes to the implementation and evaluation of multi-

execution techniques. Despite many claims about MF being more performant

than SME, these approaches have not been evaluated against each other besides

qualitative informal [5] and theoretical results [7]. It is not clear how they compare

quantitatively in terms of performance and memory usage. We believe that one of

the main reasons for this is related to the considerable effort it takes to implement

such multi-execution based systems [14]. In this light, we build upon

abstractions found in the functional programming (FP) language Haskell. Firstly,

the use of a functional language helps to close the gap between our formal calculus

and the implementation—it makes easier to see the correspondence between the

semantics rules and their implementation. Secondly, and similar to other work

[32, 44, 49], the special treatment of side-effects in Haskell makes it possible to

provide as a mere library. In that manner, security developers are relieved

from building special IFC-aware languages from scratch or performing heavy

modifications to the runtime—a major task on its own. Despite IFC libraries

usually being small and elegant, it is possible to build non-trivial secure systems

[22]. We demonstrate the flexibility of our framework by building a prototype file

hosting service, called ProtectedBox, capable of enforcing robust privacy policies

on users’ files even while allowing untrusted apps to deliver extended features to

the system.

It is our intention to establish as a foundation for building multi-execution

54

based systems. In summary, the contributions of this work are as follows.

I FSME, a novel combination of MF and SME which lets us enjoy the best of

both worlds.

I An extension of SME to work on an “on-demand basis” together with extension

of MF to work with the infinite lattice induced by decentralized label models like

DC-labels [48].

I , a unifying framework capable of providing MF, SME, and FSME.

I Mechanized soundness proofs of ’s security guarantees in the proof assis-

tant Coq. The proof is parametric on the security lattice as well as the scheduler

responsible to run multi-executions. The proof makes appropriated assumptions

about these parameters—e.g., decidable label equality and fairness of the scheduler.

I An implementation of in Haskell.

I Micro-benchmarks evaluating ’s performance when executing under a

MF, SME, or FSME semantics.

I The implementation of a secure file hosting service called ProtectedBox.

The code, including Coq development and case study, for this paper is available

online1.

3.2 Background

In this work, we assume that programs can access input and output file handles,

which in practice may refer to files in a local or remote filesystem or to network

sockets. Each input and output file has an associated security label l, and these

labels are partially ordered by v and form a security lattice [15]. Concretely,

data read from an input file i with label li should only influence data written to
1https://github.com/MaximilianAlgehed/Multef

55

https://github.com/MaximilianAlgehed/Multef

output file o (with label lo) if li v lo; conversely, if li 6v lo then such influences or

information flows are not permitted and should be prevented by the enforcement

mechanism. To simplify our discussion, we initially assume a security lattice with

two labels low (L) and high (H), where H 6v L is the only disallowed flow.

We begin with a review of prior technology for ensuring dynamic information

flow control via multi-execution. One prominent technology is SME [17], which we

illustrate via the Haskell code below. The when instruction is simply an if-then-else

where the else branch is just empty.
do input <- get highFile

when heavyExpr (put lowFile (input+1))

SME will execute this program twice. One execution is for the high security label

H, which can read from highFile (get highFile), but is prohibited from writing to

lowFile, i.e., put lowFile (input+1) is ignored. The second execution is for the low

label L and cannot read from highFile; instead some dummy value (e.g., 0) gets

bound to variable input, and subsequently input+1 (e.g., 1) is written to lowFile.

By running the two executions concurrently, SME provides termination-sensitive

non-inteference (TSNI). Moreover, SME is precise, i.e., it does not change the

behavior of non-interfering programs (modulo some technicalities about the relative

ordering of writes [57, 43]).

One of the main limitations of SME is performance. For the 2-point lattice,

the boolean expression heavyExpr gets evaluated twice, even if it does not depend

on the input. More generally, a system with n principals might have a powerset

security lattice with 2n labels, and so require 2n executions.

To address these performance concerns, MF semantics, or also called multi-

faceted execution, tries to avoid repeated redundant executions by running the

evaluation of heavyExpr in the code above just once. More concretely, variable input

is bound to the faceted value 〈H ? 42 : 0〉, which denotes that the high (secret) value

56

of input is 42 while its corresponding low (public/dummy) value is 0. As a result,

the evaluation of heavyExpr is triggered only once, not twice—after all, it does not

depend on secrets. The evaluation of input+1 yields the faceted value 〈H ? 43 : 1〉,

and put then writes the public facet, i.e., 1, to the low file, thus avoiding the

information leak.

MF provides both precision and non-interference guarantees. Unfortunately,

since MF “intertwines” the low and high executions, a low output could block

indefinitely on a divergent high computation, and so MF provides only termination-

insensitive non-interference (TINI)—rather than the stronger and more desirable

TSNI guarantee of SME.

To illustrate this limitation, consider the program below.
do secret <- get highFile

when (secret == 42) diverge

put lowFile 0

Here, secret is bound to 〈H ? 42 : 0〉, indicating that the value 42 read from highFile

is considered private, with a corresponding public dummy value of 0. Consequently,

the subsequent when instruction executes both the then branch (with side-effects

and I/O effects visible to high observers) and the (empty) else branch (if it were

not empty, like in a regular if-then-else, the side-effect and I/O actions would

be visible to the low observers); after both branches terminate, the remainder of

the program executes (with effects visible to both high and low observers). One

consequence of this faceted semantics is that the termination effect of the high

branch is now visible to low observers, which is why MF guarantees only TINI

rather than TSNI.

In summary, both MF and SME are precise (i.e., they do not change the

behavior of secure programs). On one hand, SME provides TSNI, but with some

(perhaps significant) overhead. In contrast, MF addresses this overhead, but at

57

the cost of a weaker security guarantee (TINI).

This work presents a new runtime monitor called FSME (Faceted Secure Multi

Execution) that combines the advantages of MF and SME. Note that our approach

improves over [41] in that it does not require to restart computations—instead, it

gracefully transitions from MF into SME as needed by mid-computations, which in

turn requires compatible representations of state and control in the two semantics.

Developing the appropriate semantic machinery to unify MF and SME into FSME

and to gracefully transition between them is a key contribution of this work.

3.3 A Unifying Multi Execution Framework

We formalize our ideas in terms of a unifying operational semantic framework,

called , that can express all of SME, MF, and FSME. Our formal development

targets an imperative language with mutable reference cells and reactive I/O.

However, for ease of exposition, we present here only the core calculus with facets

and mutable references; semantics for I/O is deferred to Appendix 3.A. Following

Haskell, we distinguish between pure and side-effecting computations.

3.3.1 Functional core

The functional core of is standard, including variables, functions, function

application, integers, addition, and conditionals. The language is typed. For

simplicity, the core types include just Int and function types T → T . We say t :: T

to mean that t has type T .

58

3.3.2 Faceted values

The language includes faceted values V :: Fac T , whose behavior can differ

according to the security label of an observer. The constructor raw is used to

encode concrete values within faceted ones, e.g., raw 42 should be thought of as

simply 42. For instance, the faceted value 〈H ? 42 : 0〉 from Section 3.2 gets encoded

as 〈H ? raw 42 : raw 0〉 in our semantics. For another example, (raw 0) :: Fac Int

should be thought of as a faceted value that behaves like 0 for all observers. In

contrast,

〈Alice ? raw 42 : raw 0〉 :: Fac Int

is another value of type Fac Int that behaves like 42 for Alice (a label in the security

lattice), but like 0 for observers who cannot see Alice’s private data. Faceted

values can be nested in a tree-like structure, so

〈Alice ? 〈Bob ? raw 42 : raw 1〉 : raw 0〉

behaves like 42 only for viewers who can see the secrets of both Alice and Bob.

To ensure security, programs are not allowed to directly manipulate the raw

leaves of a faceted value. Instead, we provide a primitive called bind responsible to

apply a computation to each of the leaves of the tree structure denoted by faceted

values. For example, to add 1 to the faceted value shown above, we would write

bind 〈Alice ? 〈Bob ? raw 42 : raw 1〉 : raw 0〉 (λx. raw (x+ 1))

which evaluates (in several steps) to

〈Alice ? 〈Bob ? raw 43 : raw 2〉 : raw 1〉.

59

Observe that the computation (λx. raw (x + 1)) is applied to each leave of the

faceted value to yield the result. Operationally, if V :: Fac T1 and f :: T1 → Fac T2,

then bind V f

I extracts each raw leaf of type T1 from the faceted tree V ,

I applies f to this T1 argument, producing a result of type Fac T2, and

I joins these various results from f into a single faceted value of type Fac T2,

which is returned from bind.

3.3.3 FIO computations

So far, we can express side-effect-free computations on faceted values. To

express programs that manipulate both faceted values and mutable reference

cells, we introduce the FIO monad—a monad (e.g., [56]) is just a special-purposed

data type designed to express computations with side-effects in pure functional

languages like Haskell. In this light, the type FIO T characterizes side-effectful

secure computations that yield a T value. Because of being a monad, computations

of type FIO T are built by two fundamental operations:

return :: T → FIO T

(>>=) :: FIO T1 → (T1 → FIO T2)→ FIO T2

The operation return x produces a computation that returns the value of x without

causing side-effects. The function (>>=)—called FIO-bind to distinguish it from

the analogous bind operation on faceted values—is used to sequence FIO computa-

tions and their associated side-effects. Specifically, fio>>= f executes fio, takes its

result and passes it to the function f , which then returns a second computation to

run. Some languages, like Haskell, provide syntactic sugar for monadic computa-

60

tions known as do-notation. For instance, the program fio>>=λx.return (x+ 1),

which adds 1 to the value produced by computation fio, can be written as

do x← fio

return (x+ 1)

which gives a more “imperative” feeling to programs.

3.3.4 Building side-effectful computations based on faceted

values

In most programs, side-effects may occur conditionally based on values in

the program. For example, the following code snippet performs two different

side-effects depending on whether x :: Int is positive. Let us imagine that, for

instance, code effect0 :: FIO () writes 0 to a reference, while effect1 :: FIO () writes

1 instead:

if (x > 0) effect0 effect1 :: FIO ()

If computations have side-effects which must depend on faceted values, then their

type will be of the form Fac (FIO T) for some type T , i.e., a faceted value whose

tree-like structure stores side-effectful computations at its leaves—thus expressing

that different FIO T computations should be visible to different security levels. In

this case, we rely on the special operator

run :: Fac (FIO T)→ FIO (Fac T)

61

ge
t
42

fr
om

hi
gh

fil
e

ge
t
du

m
m
y
va
lu
e
0

w
ri
te

42
to

hi
gh

fil
e

no
w
ri
te

to
hi
gh

fil
e

di
ve
rg
e

do
no

t
di
ve
rg
e

no
w
ri
te

to
lo
w

fil
e

w
ri
te

0
to

lo
w

fil
e

(a
)
SM

E.

ge
t
〈H

?r
aw

42
:r

aw
0〉

fr
om

hi
gh

fil
e

ru
n

(b
in

d
..

.)

w
ri
te

42
to

hi
gh

fil
e

no
w
ri
te

to
hi
gh

fil
e

ru
n

(b
in

d
..

.)
ru

n
(b

in
d

..
.)

di
ve
rg
e

do
no

t
di
ve
rg
e

no
w
ri
te

to
lo
w

fil
e

w
ri
te

0
to

lo
w

fil
e

(b
)
D
em

an
d-
dr
iv
en

SM
E.

ge
t
〈H

?r
aw

42
:r

aw
0〉

fr
om

hi
gh

fil
e

ru
n

(b
in

d
..

.)

w
ri
te

42
to

hi
gh

fil
e

no
w
ri
te

to
hi
gh

fil
e

ru
n

(b
in

d
..

.)

di
ve
rg
e

do
no

t
di
ve
rg
e

w
ri
te

0
to

lo
w

fil
e

(c
)
M
F.

ge
t
〈H

?r
aw

42
:r

aw
0〉

fr
om

hi
gh

fil
e

ru
n

(b
in

d
..

.)

w
ri
te

42
to

hi
gh

fil
e

no
w
ri
te

to
hi
gh

fil
e

ru
n

(b
in

d
..

.)

di
ve
rg
e

do
no

t
di
ve
rg
e

no
w
ri
te

to
lo
w

fil
e

w
ri
te

0
to

lo
w

fil
e

(d
)
FS

M
E.

F
ig
ur
e
3.
1:

Co
nt
ro
lfl

ow
di
ag

ra
m
s.

D
as
he

d
bo

xe
sd

en
ot
e
co
de

th
at

is
no

te
xe
cu

te
d
du

e
to

ea
rli
er

di
ve
rg
en

ce
.R

ed
m
ea
ns

pc
=
{H
}
(h
ig
h
vi
ew

),
bl
ue

m
ea
ns

pc
=
{H
}
(lo

w
vi
ew

),
an

d
w
hi
te

m
ea
ns

pc
=
{}

(i.
e.
,i
ns
tr
uc
tio

ns
co
m
m
on

to
bo

th
vi
ew

s)
.

62

to enable interaction2 between Fac and FIO. Intuitively, run takes all the side-

effectful actions inside the tree-like structure of the argument and somehow (e.g.,

by sequentialising) executes them and collects the results in another tree-like

faceted value. For instance, if we change the previous snippet so that the writes

should depend on fx :: Fac Int, then it becomes

p = bind fx (λx. raw (if (x > 0)

effect0

effect1)) :: Fac (FIO ())

The function (λx. . . .) :: Int → Fac (FIO ()) is run for each integer in fx, and so

(bind fx (λx. . . .) :: Fac (FIO ()) results in a faceted tree of FIO computations—we

use ellipses here to denote the corresponding code above. The primitive run in

run (p) :: FIO (Fac ())

then controls the sequential or concurrent execution of these various FIO com-

putations, and thus encapsulates the key design choices regarding the different

multi-execution approaches that we consider. In our framework, the semantics

of this operation is the one that determines if we consider MF, SME, or FSME

when launching multi-executions. We proceed now to add the operations related

to building and executing side-effectful computations.

3.3.5 Supported multi-executions approaches

Before we dive into the technicalities of our semantics, we provide some examples

to illustrate the different multi-executions semantics that considers. Let us
2This run operator enables interaction between the two monads FIO and Fac in the manner

proposed by Jones and Duponcheel [25] as the swap construction.

63

consider the following code fragment:

p = do fx ← get highFile

run (bind fx (λx. raw (put highFile (x+ 1))))

run (bind fx (λx. raw (divergeIf42 x)))

put lowFile 0

This program p :: FIO () works as follows. It reads a secret value from a sensitive

file—let us assume that the file has stored the number 42. Hence, primitive get

returns the faceted integer fx = 〈H ? raw 42 : raw 0〉, thus protecting the secret 42.

In the next line, run and bind are used to extract the raw x :: Int from the secret,

increment it, and write it into a high file. Similarly, the next line calls the function

divergeIf42 which loops when the value given as an argument is 42. Finally, the

last instruction writes 0 to a public file. We use this example to illustrate some of

the challenges in ensuring TSNI.

SME The original formulation of SME [17] would run two versions of the program,

as shown in Figure 3.1a. The left high execution can read and write high files, but

cannot write to low files. Conversely, the right low execution never sees any secret

data; it reads dummy values from high files, but it can write to low files. As the

figure shows, SME duplicates both memory and code. The divergence of the high

execution does not block the public write in the low execution, thus satisfying

TSNI.

Demand-driven SME Our demand-driven optimization of SME is shown in

Figure 3.1b, where the high and low executions are not forked until the first call to

run, which then forks two copies of the entire continuation, again satisfying TSNI.

As with the main thread, every forked multi-execution will not spawn others until

64

reaching another run.

MF Figure 3.1c illustrates how MF processes the example, where run forks two

(high and low) subcomputations, and then waits for them to terminate before

executing the continuation. This approach is potentially more efficient, but at

the cost of violating TSNI, since the divergent high computation now blocks the

subsequent public write.

FMSE Finally, Figure 3.1d illustrates our novel combination of MF and SME

to obtain the best of both worlds, i.e., TSNI security and MF efficiency. Here, run

forks two subcomputations, and if both subcomputations terminate within a given

time bound (as in the first call to run), then the continuation is run just once,

as in MF. However, if the time bound is exceeded (as in the second call of run),

then the continuation is executed twice, thus satisfying TSNI. The newly spawned

computations will not fork others until reaching run and the time bound has been

exceeded again—this is a novelty with respect to previous combination of MF and

SME [41] and it proves crucial to get good performance in our implementation (see

Sections 3.9 and 3.10). Furthermore, when it comes to non-termination, FSME

guarantees that the thread which hits divergence under a branch does not stop

others from making progress. Fully stopping progress in programs can only occur

when looping under an empty pc—which is secure since it denotes divergence based

on public information.

Note that the TSNI guarantee holds for any finite timeout. Larger timeouts may

lead to fewer forked continuations and so better performance. Various policies can

be used to set the timeout. One plausible option is to set the timeout for the private

subcomputation at (say) twice the time required for the public subcomputation.

supports all these variations in multi-execution semantics just by changing

65

the semantics of run, as we explain below.

3.3.6 Formal semantics

To illustrate the possible semantics for run, we formalize a evaluation

relation t −→pc t
′ that captures MF and SME, as well as other forking strategies

like FSME. Here, pc is the program counter label, which is a set of constraints

called branches, each of the form k or k. If k ∈ pc, then the computation can see

only the high-confidentiality facet VH of any faceted value 〈k ?VH :VL〉. Conversely,

if k ∈ pc, the computation should only see VL. If neither k nor k are in pc, then

the computation processes both facets VH and VL.

Conceptually, pc describes which security labels l ∈ Lattice are represented by

the current computation. We formalize this intuition by the following function

views, which maps a pc to the corresponding set of labels:

views(pc) = {l ∈ Lattice | (∀k ∈ pc. k v l) ∧ (∀k ∈ pc. k 6v l)}

For example, views({k1, k2, k3, k4}) only includes lattice elements in the upward

closure of k1 and k2 and not in the upward closure of k3 or k4. The most interesting

rules for t −→pc t
′ are summarized in Figure 3.2—see Appendix 3.A for the rest of

the semantic rules.

Forking on-demand The rules for run V form the core of our evaluation strategy,

and depend on the structure of the faceted computation tree V :: Fac (FIO T). If V

is a faceted value 〈k ? t1 : t2〉, then in general rule [f-run-facet-3] creates two new

threads, denoted by the syntax [〈〈k ? run t1 : run t2〉〉] , which will proceed to evaluate

t1 and t2, respectively. Subsequently, the rule [f-thread-1] permits evaluation

of t1, with k added to the pc, indicating that side-effects of the computation t1

66

sy
nt
ax

t
::=

x
|λ
x
.t
|t

t
|n
|t

+
t
|i
ft

t
t
|V
|r
et
ur
n
t
|t
>>

=
t

|
ru
n
t
|a
|n

ew
t
|r
ea
d
t
|w

rit
e
t
t
|g

et
i
|p

ut
o
t
|

[〈〈k
?t

:t
〉〉]

V
::=

ra
w
t
|〈
k

?V
H

:V
L
〉
|b

in
d
t
t

t
−→

p
c
t

ru
n
〈k

?t
1

:t
2〉

−→
p
c

    ru
n
t 1

ru
n
t 2

[〈〈k
?r
un

t 1
:r
un

t 2
〉〉]

if
vi
ew

s(
pc
∪
{k
})

=
∅

if
vi
ew

s(
pc
∪
{k
})

=
∅

ot
he
rw

ise
.

[f
-r

un
-f

ac
et

-1
]

[f
-r

un
-f

ac
et

-2
]

[f
-r

un
-f

ac
et

-3
]

[〈〈k
?t

1
:t

2〉〉]
−→

p
c

[〈〈k
?t
′ 1

:t
2〉〉]

if
k
/∈
pc

an
d
t 1
−→

p
c∪
{k
}
t′ 1

[f
-t

hr
ea

d-
1]

[〈〈k
?t

1
:t

2〉〉]
−→

p
c

[〈〈k
?t

1
:t
′ 2〉〉]

if
k
/∈
pc

an
d
t 2
−→

p
c∪
{k
}
t′ 2

[f
-t

hr
ea

d-
2]

[〈〈k
?r
et
ur
n
V

1
:r
et
ur
n
V

2〉〉]
−→

p
c
re
tu
rn
〈k

?V
1

:V
2〉

[f
-m

er
ge

]
E

[[〈〈
k

?t
1

:t
2〉〉]

]
−→

p
c

[〈〈k
?E

[t 1
]:
E

[t 2
]〉〉]

[f
-f

or
k-

co
nt

in
ua

ti
on

]

F
ig
ur
e
3.
2:

Sy
nt
ax

an
d
se
le
ct
ed

ru
le
s
fro

m
th
e

se
m
an

tic
s.

67

should only be visible at security levels in views(pc ∪ {k}). Conversely, the rule

[f-thread-2] permits evaluation of t2, with k added to pc. Both rules may be

applicable at the same time (our semantics is nondeterministic), which allows for

t1 and t2 to be evaluated in any order. A concrete scheduler can choose to use

either [f-thread-1] or [f-thread-2] first, and may interleave them to achieve

concurrency.

Observe that adding a new branch constraint to the pc may entail views(pc)

is empty, which means that the current computation is not visible to any ob-

server. Rules [f-run-facet-1] and [f-run-facet-2] are optimizations to avoid

unnecessary creation of such “invisible” threads.

MF semantics Once each FIO computation run ti for i ∈ {1, 2} terminates

to return Vi, rule [f-merge] joins the two threads back together into a single

terminated FIO computation return 〈k ?V1 :V2〉. The rules described so far perform

MF-like computation by blocking the continuation of run until both sub-threads

terminate.

SME semantics Alternatively, to permit SME-like computation, rule

[f-fork-continuation] allows the continuation (the enclosing evaluation context

E) to be copied into each sub-thread, yielding [〈〈k ?E[t1] :E[t2]〉〉] . Consequently,

the evaluation of the continuation E in the low thread E[t2] is not blocked by

a divergent high computation t1 in the high thread. This enables a stronger

termination-sensitive security guarantee, but at the cost of evaluating E twice.

FSME semantics Since supports both MF and SME, it is now possible

to express our novel approach, Faceted Secure Multi Execution (FSME), which

combines the benefits of both. Under most circumstances, FSME proceeds exactly

68

like MF. However, if say the low subcomputation t2 returns but t1 exceeds a policy-

specified timeout, then the rule [f-fork-continuation] is applied to fork the

enclosing continuation E, thus allowing the low view to proceed without blocking

on the high view.

Note that our semantics is non-deterministic, enabling different evaluation

strategies to provide MF, SME, and FSME-like behavior. Although we consider

a call-by-name semantics, we expect our results to extend to strict languages

by the introduction of explicit suspensions—a well-known technique to encode

call-by-name operations in call-by-value semantics.

Side Effects We extend the operational semantics to support both mutable

reference cells and I/O by extending the evaluation relation from terms t −→pc t
′

to states σ −→pc σ
′, where each state has the form (t,M, P, I, O). The memory

M maps reference addresses a to faceted values. Note that reference cells always

contain faceted data, as they may be updated by computations that should only

be visible at certain security levels. The output buffer O contains an integer

sequence O(o) for each output channel o, which is extended by put o n. The input

buffer I also contains an integer sequence I(i) for each input channel i, but these

input buffers are not modified during execution; instead, we maintain a buffer

pointer P (i) (pointing into I(i)) that is incremented as necessary during each get i

operation. Since computations at different security levels may advance at different

69

rates, the buffer pointer P (i) can be a faceted tree with integer leaves.

M ∈ Memory = Address → FacetedValue

p ∈ BufferPointer ::= n | 〈k ? p : p〉

P ∈ BufferPointers = InputHandle → BufferPointer

I ∈ InputBuffer = InputHandle → Z∗

O ∈ OutputBuffer = OutputHandle → Z∗

σ ∈ State ::= (t,M, P, I, O)

The previously described rules extend in a natural manner from terms to states.

Figure 3.3 shows the rules to allocate, read, and write reference cells, making sure

that values written to the memory M appropriately reflect the current program

counter label pc, using the following notation to construct a faceted value from a

pc:
〈〈• ? • : •〉〉 : PC → FacetedValue → FacetedValue

→ FacetedValue

〈〈{} ?V1 :V2〉〉 = V1

〈〈pc ∪ {k} ?V1 :V2〉〉 = 〈k ? 〈〈pc ?V1 :V2〉〉 :V2〉

〈〈pc ∪ {k} ?V1 :V2〉〉 = 〈k ?V2 : 〈〈pc ?V1 :V2〉〉〉

Appendix 3.A contains a full definition of our operational semantics, including

various rules (such as for I/O) that we do not have space to include here.

3.4 Termination Insensitive Security Guarantees

As a starting point for reasoning about the correctness properties of our faceted

framework, we first develop a corresponding “standard” semantics std−→ for

that does not perform any faceted evaluation. This semantics works over non-

70

σ
−→

p
c
σ

(n
ew

V
,M

,P
,I
,O

)
−→

p
c

(r
et
ur
n
a
,M

[a
:=
〈〈p
c

?V
:r
aw

0〉
〉],
P
,I
,O

)
if
a
/∈
do

m
(M

)
[f

-n
ew

]
(r
ea
d
a
,M

,P
,I
,O

)
−→

p
c

(r
et
ur
n
M

(a
),
M
,P
,I
,O

)
[f

-r
ea

d]
(w

rit
e
a
V
,M

,P
,I
,O

)
−→

p
c

(r
et
ur
n
V
,M

′ ,
P
,I
,O

)
if
M
′
=
M

[a
:=
〈〈p
c

?V
:M

(a
)〉〉

]
[f

-w
ri

te
]

F
ig
ur
e
3.
3:

Ru
le
s
fo
r
re
fe
re
nc
es
.

71

faceted states σ that do not include faceted values 〈k ?V :V 〉, faceted input buffer

pointers 〈k ? p : p〉, or concurrent faceted threads [〈〈k ? t : t〉〉] . Many of the rules are

identical to the corresponding −→pc rules; Figure 3.4 illustrates some modified

rules that avoid introducing facets for reference cells.

For any faceted state σ and label l, we can generate a corresponding non-

faceted state, denoted σ↓l, that is the view of σ seen by an observer at level l. This

projection operation σ↓l is defined in Figure 3.5. We say σ and σ′ are l-equivalent

(written σ ≈l σ
′) if their l-projections are identical (i.e., σ↓l = σ′↓l).

We now show that each faceted framework step σ −→pc σ
′ corresponds to either

zero or one standard evaluation steps of σ↓l, provided that l ∈ views(pc). For

example, σ −→pc σ
′ could evaluate a high thread t1 inside σ = ([〈〈H ? t1 : t2〉〉] , . . .),

resulting in σ↓H
std−→ σ′↓H and σ↓L = σ′↓L. Moreover, if σ −→pc is stuck, then the

projected state σ↓l
std−→ is also stuck, again provided that l ∈ views(pc). Finally,

a faceted step σ −→pc σ
′ does not change any of the state components M,P, I, O

seen by a viewer at any level l /∈ views(pc).

Theorem 1 (Projection).

1. If σ −→pc σ
′ and l ∈ views(pc), then either σ ≈l σ

′ or σ↓l
std−→ σ′↓l.

2. If σ 6−→pc and l ∈ views(pc), then σ↓l 6
std−→ .

3. If (t,M, P, I, O) −→pc (t′,M ′, P ′, I ′, O′) and l /∈ views(pc), then M ≈l M
′

and P ≈l P
′ and I ≈l I

′ and O ≈l O
′.

Based on this projection theorem, we show that our framework satisfies

termination-insensitive non-interference. Essentially, if σ1 and σ2 are l-equivalent

states, then running both states to termination will produce l-equivalent final

states, that is, evaluation does not leak information that should be kept hidden

from l. Here we use σ′i 6−→∅ to denote that state σ′i cannot be evaluated further,

72

σ
st
d
−→

σ

(n
ew

F
,M

,P
,I
,O

)
st
d
−→

(r
et
ur
n
a
,M

[a
:=
F

],
P
,I
,O

)
if
a
/∈
do

m
(M

)
[s

-n
ew

]
(w

rit
e
a
F
,M

,P
,I
,O

)
st
d
−→

(r
et
ur
n
F
,M

[a
:=
F

],
P
,I
,O

)
[s

-w
ri

te
]

F
ig
ur
e
3.
4:

Se
le
ct
ed

ru
le
s
of

th
e
st
an

da
rd

se
m
an

tic
s.

73

t↓l = t 〈k ?F1 :F2〉↓l =

F1↓l k v l

F2↓l otherwise

[〈〈k ? t1 : t2〉〉]↓l =

t1↓l k v l

t2↓l otherwise

(put o t)↓l =

put o (t↓l) lo = l

return (t↓l) otherwise
t↓l is homomorphic otherwise

M↓l = M M↓l = λa.M(a)↓l

p↓l = p n↓l = n

〈k ? p1 : p2〉↓l =

p1↓l k v l

p2↓l otherwise
P↓l = P P↓l = λi.P (i)↓l

I↓l = I I↓l = λi.

I(i) l i v l

ε otherwise

O↓l = O O↓l = λo.

O(o) lo = l

ε otherwise
σ↓l = σ (t,M, P, I, O)↓l = (t↓l,M↓l, P↓l, I↓l, O↓l)

Figure 3.5: Projection functions.

74

and run both computations with the empty pc = ∅, so the faceted framework

simulates standard evaluation for all views.

Theorem 2 (Termination-Insensitive Non-Interference).

If σ1 ≈l σ2 and σ1 −→∗∅ σ′1 6 −→∅ and σ2 −→∗∅ σ′2 6 −→∅ then

σ′1 ≈l σ
′
2.

3.5 Fair Scheduling

The semantics σ −→pc σ
′ is non-deterministic, and so requires a fair scheduler

in order to guarantee the desired termination-sensitive security properties. To

illustrate this requirement, consider the term t:

[〈〈k ? diverge : return (raw 2)〉〉] >>=λ_.t2

where t2 = put publicFile 3 and diverge is a computation that diverges based on the

value of some secret. A scheduler that prioritized evaluation of the divergent high

thread diverge via [f-thread-1] could forever block the low output on publicFile—

which produces a termination leak since the attacker would never see the output 3

performed by t2. Alternatively, the semantics does permit the low thread to make

progress, by using [f-fork-continuation] to lift the continuation (λ_.t2) inside

each forked thread, and subsequently executing the continuation twice, at both

security levels (in a manner reminiscent of SME) and finally executing the low

75

write t2 without blocking on diverge.

t = [〈〈k ? diverge : return (raw 2)〉〉] >>=λ_.t2

−→∅ [〈〈k ? diverge>>= (λ_.t2) : return (raw 2)>>=λ_.t2〉〉]

−→∅ [〈〈k ? diverge>>= (λ_.t2) : (λ_.t2) (raw 2)〉〉]

−→∅ [〈〈k ? diverge>>= (λ_.t2) : t2〉〉]

We introduce a fairness requirement to ensure that the implementation does

not indefinitely choose high executions when low executions are available—thus

avoiding possible termination leaks. A fair state Σ = (σ, s) consists of a state σ

plus additional scheduling information s.

Σ ∈ FairState ::= (σ, s)

s ∈ SchedulingInfo

We leave the scheduling information s abstract and assume only a fair evaluation

relation

(σ, s) fair−→ (σ′, s′)

satisfying the properties

• Validity: If (σ, s) fair−→ (σ′, s′) then σ −→∅ σ′.

• Blocking: If (σ, s) 6 fair−→ then σ 6−→∅ .

• Fairness: ∀σ, s, l.∃n ∈ N. if σ can l-step, then any n-step fair evaluation

sequence (σ, s) fair−→n (σ′, s′) includes an l-step.

The fairness condition says that, given a fair state (σ, s) and a label l, if the

projected state σ↓l seen by a viewer at level l can make progress, then there exists

76

some step limit n ∈ N such that any n-step fair evaluation (σ, s) fair−→n (σ′, s′) will

include progress seen by a viewer at level l. This is the essential requirement that

stops low outputs from being blocked indefinitely on high computations. The fair

evaluation relation will typically be deterministic.

3.6 Termination Sensitive Security Guarantees

We next prove a stronger termination-sensitive non-interference result, based

on the fair scheduling semantics. First, given any fair state (σ, s) where the l-

projection σ↓l can perform a standard step, then the fair semantics will eventually

perform a corresponding step. That is, no view l is ever blocked indefinitely by

the fair semantics.

Theorem 3 (Fair Projection).

If σ↓l
std−→ σ1 then ∃σ2, s2. (σ, s) fair−→∗ (σ2, s2) and σ2↓l = σ1.

The fair semantics satisfies TSNI: given two l-equivalent states σ1 ≈l σ2, if σ1

evaluates to σ′1 via the fair semantics, then σ2 must also evaluate to a corresponding

l-equivalent state σ′2 (and in particular σ2 cannot diverge before doing so).

Theorem 4 (Termination-Sensitive Non-Interference).

If σ1 ≈l σ2 and (σ1, s1) fair−→∗ (σ′1, s′1) then

∃σ′2, s′2. (σ2, s2) fair−→∗ (σ′2, s′2) and σ′1 ≈l σ
′
2.

Recently, Ngo, Piessens, and Rezk [39] call indirect termination sensitive non-

interference (ITSNI) to security conditions (like ours) where the termination

behavior of sensitive programs is not exposed via public inputs and outputs despite

their divergence. In this work, however, we refer to our security condition as TSNI

77

since it is a more widely accepted term.3

The fair semantics is also transparent, in that it does not perturb the behavior

of non-interfering programs. We consider a program to be any term t without

facets (i.e., without any secrets). We say a program t is non-interfering if running

t with two l-equivalent inputs I1 ≈l I2 gives l-equivalent behavior, i.e. if

(t, ∅, λi.0, I1, λo.ε) std−→∗ σ1

then there is some σ2 ≈l σ1 such that

(t, ∅, λi.0, I2, λo.ε) std−→∗ σ2

Here, (t, ∅, λi.0, I1, λo.ε) is the initial state for running t with the empty memory,

0-initialized buffer pointers, input I1, and empty output buffers.

For such programs that are non-interfering under the standard semantics, the

fair faceted semantics does not change behavior.

Theorem 5 (Transparency).

Consider any standard run σ = (t, ∅, λi.0, I, λo.ε) std−→∗ σ′ of a non-interfering

program t. For all l ∈ Lattice, the fair semantics generates a corresponding run

(σ, s) fair−→∗ (σ′′, s′′)

with σ′ ≈l σ
′′. In particular, all l-visible output buffers in σ′ and σ′′ are identical.

3More precisely, our security condition is progress-sensitive non-interference[35]: it ensures
that information is not leaked via termination even in the presence of outputs.

78

3.7 Decentralized Labels

In our framework, the semantic rule for run determines when multi-executions

are necessary. To recap briefly, this rule has the following side conditions (recall

Figure 3.2) for a given pc and label k.

views(pc ∪ {k}) = ∅

views(pc ∪ {k}) = ∅

Recall that the definition of views(pc) hinges on quantifying over all labels in

the lattice. The definition of views(pc) in Section 3.3 is:

views(pc) = {l ∈ Lattice | (∀k ∈ pc. k v l) ∧ (∀k ∈ pc. k 6v l)}

Where l ranges over labels in the lattice. The reader may be worried that this

definition means that our calculus is not applicable to infinite, decentralised,

lattices, a severe restriction to real-world applicability would it be the case. In

this section, we show that the condition views(pc) = ∅ is decidable given that the

lattice has a decidable ordering relation (v) and computable join (t)—a novelty

with respect to previous work (e.g., [41, 4]) that assume either finite lattices or

lattices with just a confidentiality component.

We introduce the notion of a candidate label for a given pc, defined as

lc(pc) =
⊔
{k | k ∈ pc}

which is the smallest label that must be in views(pc). To check if views(pc) is

non-empty, we simply check that for any negated label k ∈ pc, k does not flow

into this candidate label.

79

Theorem 6 (Emptiness Check).

∀pc. views(pc) 6= ∅ ⇔ ∀k ∈ pc. k 6v lc(pc)

This theorem gives us a decision procedure for finite PCs when the lattice has

decidable (v) and computable (t): it guarantees that we are not limited in our

choice of lattice when instantiating . One consequence of this result is that

can use practical decentralised label models like DC-labels [50] and DLM

[34].

3.7.1 Disjunction Category Labels

Disjunction Category (DC) Labels is a decentralized labeling scheme whereby

labels are represented as pairs of finite monotonic propositional logical formulas,

i.e., logical formulas without negation or implication. The atoms in the formulae

represent actors in the system. Each label consists of two such formulas, one

expressing a confidentiality and the other an integrity requirement.

A DC label, then, is a tuple 〈C, I〉, where C stands for confidentiality and I

for integrity. When it comes to confidentiality, conjunctions represent the multiple

interest of principals to protect the data, while disjunctions denote groups wherein

any member may learn the information. For instance, the formula Alice ∧ Bob

indicates that information is sensitive to both principals and requires their joint

consensus to observe it. In contrast, Alice∨Bob reflects that data can be observed

either by one of the principals. Dually, when it comes to integrity, conjunctions

of principals represent groups of principals where members are independently

responsible for the information. As a example, the formula Alice ∧ Bob means

that Alice is completely responsible for the data, and so is Bob. Conversely,

disjunctions of principals represent groups that collectively take responsibility for

80

the information, i.e., no single principal takes full responsibility. For example, the

formula Alice ∨ Bob means that Alice and Bob collectively are responsible for

the data—both may have contributed to or influenced it. This notion of labels is

general enough to encode the label models used in many IFC operating systems

(e.g., Asbestos [21], HiStar[58], and Flume [29]) as well as a subset of DLM [34].

DC Labels form a lattice where the definition of the ordering (can-flow-to)

relation v is as follows.
C1 ` C0 I0 ` I1

〈C0, I0〉 v 〈C1, I1〉

The sequent A ` B should be read "given the assumption A, we can prove B

using the rules of propositional logic." As an example, let us consider the DC label

L1 = 〈Bob,Bob ∨ Alice〉, where data is confidential to Bob but he does not assume

full responsibility for it, and label L2 = 〈Bob∧Alice,Bob〉 where data is confidential

to both principals but Bob assumes responsibility for it. Can data label with L1

flow into entities label with L2, i.e., L1 v L2? When it comes to confidentiality, it

holds that Alice ∧ Bob ` Bob. However, Alice ∨ Bob 0 Bob; otherwise Bob would

assume full responsibility for information that he has not completely vouched for,

wherefore L1 6v L2. Note that for any pair of labels ` and `′ the statement ` v `′

is decidable using standard techniques like SAT solvers or BDDs [20, 1].

The join (t) of two labels is also easily constructed by taking the conjunction

of the confidentiality components and the disjuction of the integrity components.

〈C0, I0〉 t 〈C1, I1〉 = 〈C0 ∧ C1, I0 ∨ I1〉

With computable join (t) and decidable ordering (v) we obtain a full decision

procedure for emptyness of view of finite PCs under DC-labels, thus can

naturally support expressive DC-labels.

81

3.8 Implementation

In this section, we give an overview of the implementation of . Particularly,

we describe some technical problems to overcome in order to deliver as a

Haskell library. Our implementation supports references and I/O, and is easily

extended with any effects that can be accommodated by our formal results.

can be used as a basis to implement IFC-secure plugins and applications.

3.8.1 Basic structures

We begin by representing labels and program counters as data types in Haskell.
data Label -- Kept abstract for this presentation

data Branch = Private Label | Public Label

type PC = [Branch]

We use the syntax [a] for denoting the type of lists of elements of type a and

x:xs to denote the insertion x at the head of the list xs. The decision procedure

described in Section 3.7.1 for deciding if a view is empty is named but kept abstract

in the interest of brevity.
isEmptyViews :: PC -> Bool

Faceted values are implemented as the following data type [26].
data Fac a where

Raw :: a -> Fac a

Bind :: Fac a -> (a -> Fac b) -> Fac b

Q :: Label -> Fac a -> Fac a -> Fac a

The constructors Raw, Bind, and Q (for question mark) correspond to the construc-

tors raw, bind, and 〈• ? • : •〉 in our calculus, respectively. With faceted values in

place, we proceed to provide the FIO operations in our calculus.

82

data FIO a where

Return :: a -> FIO a

(:>>=:) :: FIO a -> (a -> FIO b) -> FIO b

Run :: Fac (FIO a) -> FIO (Fac a)

-- Primitives for references and I/O

...

Similarly to Fac, the constructors of FIO denote different operations used to build

terms of type FIO—a standard approach taken when representing domain-specific

languages (DSLs) in Haskell [52]. For brevity, we focus only on constructors

representing return, :>>=:, and run, and we refer the interested reader to Appendix

3.B for further details.

3.8.2 Executor commonalities

Our goal is to implement three executors for programs of type FIO a so that,

by changing the executor, we can execute programs under MF, MF-par, SME,

or FSME. Ideally, we want our executors to have the same type and to “factor

out” their common behavior as much as possible. With this in mind, we propose

the following type for the executors: FIO a -> PC -> IO (a, PC), i.e., it takes a

FIO-program and an initial pc (PC), and returns a (possibly) side-effectful program

which produces a result of type a and a final pc (IO (a,PC)). In Haskell, the special

data type IO r denotes programs that might perform side-effects (e.g., writing to a

file) and return values of type r.

We start by defining the executor execute as a base implementation of all the

commonalities across the multi-executions techniques.

83

execute :: FIO a -> PC -> IO (a, PC)

-- Def. monadic FIO primitives

execute (Return a) = return (a, pc)

execute (fio :>>=: rest) = do

(a, pc) <- execute fio pc

execute (rest a) pc

-- Def. for references and I/O

...

The code skeleton above shows how to execute the monadic FIO -primitives in

a manner that is common to all the multi-execution techniques—we omit those

for references and I/O for brevity and simplicity. More precisely, Return simply

maps to the return in IO (i.e., return (a,pc)). The bind operator (:>>=:) is defined

as expected: it reduces the given fio computation and passes its result of type

a to rest and executes the resulting FIO computation (i.e., execute (rest a) pc).

According to Figure 3.2, the behavior of many FIO -operations are common to

all the multi-executions techniques supported by our calculus. It is easy to show

that the cases in the definition of execute corresponds to the semantic rules in

Appendix 3.A, Figure 3.13. For instance, execute (Return t :>>=: rest) is equiva-

lent to execute (rest t)—thus matching the rule [f-bind-fio] in Figure 3.10. The

interesting part of implementing execute arises from evaluating Run, the constructor

responsible of introducing multi-executions. For Run, it is not possible (as expected)

to have a common code for all the different multi-execution techniques.

3.8.3 MF executor

We show here the behavior of Run in the MF executor.

84

execute (Run (Q k priv publ)) pc

| isEmptyViews (Public k : pc) -> execute (Run priv) pc

| isEmptyViews (Private k : pc) -> execute (Run publ) pc

| otherwise -> do

(priv', _) <- execute (Run priv) (Private k : pc)

(publ', _) <- execute (Run publ) (Public k : pc)

return (Q k priv' publ', pc)

As in our formal calculus, the definition consists of three cases divided by the

symbol |. The first cases are triggered when pc can observe only the private (see

rule [f-run-facet-1]) or public facet (see rule [f-run-facet-2]), respectively.

When it comes to the otherwise case, the MF executor sequentially evaluates

the private and public facets, respectively—observe the recursive calls with the

pcs Private k : pc and Public k : pc, respectively. The resulting faceted value,

Q k priv' publ' (aka 〈k ? priv' : publ'〉), is constructed with the result of these evalu-

ations. This implementation corresponds to the applications of rules [f-thread-1],

then [f-thread-2], and finally [f-merge] in our calculus.

MF-par executor We also implement a slight variation of the MF executor

above called the MF-par executor. This executor essentially runs the private

and public sub-computations in parallel, which then gives different performance

characteristics. Observe that this variation is supported by our formal framework

in Section 3.3.

3.8.4 Continuations and SME

We now turn to trying to implement our SME executor for the same represen-

tation of programs used above. However, we run into a problem, it is impossible

to make the executor correspond to the calculus. The key observation is that

when spawning the new thread, we not only want to execute the instruction

85

Run priv under the pc Private k : pc but also the rest of the program! Imagine

we wish to execute the program Run (Q k priv pub) :>>=: rest. If we just execute

fork (execute (Run priv) (Private k : pc)) under the otherwise guard, we will end

up not running rest for the private view. The problem lies in the interaction

between :>>=: and Run. More precisely, when evaluating Run, the executor has no

access to the “rest of the program.” Note that evaluation contexts denote the rest

of the program, so this problem does not exist in our formal semantics and only

materialises in practise.

There are two possible solutions to the problem outlined above, the first is to

change the type of the executors to reflect the need for keeping track of the “rest

of the program” via continuations. Unfortunately, the new type quickly becomes

cluttered.

Instead, we choose a simpler approach: to remove the troublesome (:>>=:)

construct without loosing any expressive power in our language. For that, we apply

a known technique for domain-specific languages (DSL) [12] for deriving alternate

implementations of APIs. In a nutshell, what we will do is to replace the constructor

Run with a new one called RunBind such that its semantics is determined by the

equation RunBind fac rest ≡ (Run fac) :>>=: rest. We change our implementation

of FIO as follows.
data FIO a where

Return :: a -> FIO a

RunBind :: Fac (FIO a) -> (Fac a -> FIO b) -> FIO b

-- Primitives for references and I/O

...

The type form of RunBind arises from its semantics definition. We can now soundly

derive an implementation of a bind function

(>>=) :: FIO a -> (a -> FIO b) -> FIO b by simply applying RunBind’s semantics.

In other words, whatever FIO-program was built before using the constructor

86

:>>=:, it can be obtained with function (>>=) without changing its semantics—see

Appendix 3.B for details.

With this new representation, we can write the behavior of RunBind for SME.
execute (RunBind (Q k priv pub) rest) pc

...

| otherwise -> do

fork (execute (RunBind priv rest) (Private k : pc))

execute (RunBind pub rest) (Public k : pc)

Observe that rest contains “the rest of the program”, which then gets evaluated

twice as expected, i.e., once for each view. The MF executor is also easily adjusted

to accomodate this new representation—see Appendix 3.B for the details.

3.8.5 FSME executor

Implementing the FSME executor requires careful thought. It involves setting

a timeout that, when triggered, causes the execution to be split into two separate

executions. The splitting, however, needs to be done in a safe manner, e.g., not

in the middle of an output. To achieve that, when hitting the otherwise guard,

our executor spawns a thread to compute the private facet, send the result to a

pre-determined location, and wait for what to do next. In contrast, the thread for

the public facet sets a timeout to check if the result of the private facet arrived on

time. If that is the case, then the thread for the public facet indicates to the private

one to terminate; otherwise, it sends a signal to compute the "rest of the program"

in the separate thread. The notion of the continuation in the constructor RunBind

turns out to be essential to implementing this approach. Unfortunately, explaining

the implementation of this executor requires explaining some synchronisation and

concurrency primitives in Haskell. For the sake of brevity, we refer to the interested

reader to Appendix 3.C for the details.

87

101 102 103

N

0

10

20

30

40
W

al
lC

lo
ck

Ti
m

e
in

se
co

nd
s

Wall Clock Time

MF
MF-par
SME
FSME

101 102 103

N

0e+00

2e+01

4e+01

6e+01

8e+01

M
em

or
y

in
K

B

Memory

MF
MF-par
SME
FSME

(a) 105 rounds of
SHA256 for a faceted
value with N leaves

101 102 103

N

0

20

40

60

80

W
al

lC
lo

ck
Ti

m
e

in
se

co
nd

s

Wall Clock Time

101 102 103

N

0e+00

1e+06

2e+06

3e+06

M
em

or
y

in
K

B

Memory

(b) 105 rounds of
SHA256 for a faceted
value with N leaves us-
ing different timeouts in
FSME. Red is a shorter
timeout and blue is a
longer timeout.

101 102 103

N

0

2

4

6

8

10

W
al

lC
lo

ck
Ti

m
e

in
se

co
nd

s

Wall Clock Time

MF
MF-par
SME
FSME

101 102 103

N

0e+00

2e+01

4e+01

6e+01

M
em

or
y

in
K

B

Memory

MF
MF-par
SME
FSME

(c) 105 rounds of
SHA256 after branching
on a faceted value with
N leaves (FSME coin-
cides with MF)

Figure 3.6: Time and memory consumption for different micro-benchmarks

3.9 Evaluation

We next evaluate the performance of our four executors (MF, MF-par, SME, and

FSME) on several micro-benchmarks. Suppose we have n principals/actors, which

we formalize as n incomparable labels l1, . . . , ln ∈ Lattice. Let si = 〈li ? . . . : . . .〉

be a string secret to label li. Then the concatenation of these n strings generates a

faceted tree s with height n and 2n leaves. Computations over s thus may generate

N = 2n subcomputations over the leaves, and so we use s as a suitable faceted

value to stress the implementation of RunBind’s otherwise guard.

We now define an expensive function on faceted values.

88

benchmark1 :: Int -> Fac String -> FIO (Fac String)

benchmark1 n fac =

RunBind (Bind fac

(\s -> Raw (Return (hashes n s))))

Return

This function takes a faceted value and computes nested hashes on all its leaves.

Function hashes n s computes n nested SHA256 hashes of the string s.

Figure 3.6a shows the performance characteristics for our executors when

executing (benchmark1 100000 s). The measurements were taken on a 2.8GHz 4

core Intel Core i7-7700HQ processor. Note that the MF-par, SME, and FSME

executors run roughly 4 times faster than MF, due to parallelism. Interestingly,

the memory consumption, measured in peak resident set size, is significantly larger

for MF-par and SME than for MF. This is a result of SME spawning additional

threads which need to be represented in the Haskell runtime, whereas the MF

executor only keeps the current task in memory.

The performance of FSME sits between MF and SME, obtaining the best of

both worlds. Figure 3.6a shows that FSME gains speedup while keeping memory

consumption close to MF most of the time. What we observe is that the timeout

mechanism implemented by FSME is triggered early enough to obtain only a few

threads. From that point on, the program is run in parallel; however, within the

threads, the execution continues mainly under a MF semantics, i.e., the timeout

mechanisms subsequently does not get triggered frequently. These results were

obtained with a timeout of 1.5 seconds.

We also ran the same benchmark described above for timeouts varying from

0 to 20 seconds, going from full SME closer to MF. Figure 3.6b shows the result

of this experiment. The graphs go from red, indicating a low timeout (SME-like

semantics), to blue indicating a large timeout (MF-like semantics). Interestingly,

89

imposing any non-zero timeout, 1 second in the example, drastically reduces

memory consumption. This is also the case for even smaller timeouts, like 0.25

and 0.1 seconds.

It is worth noting that while variations in timeout impact performance, the

security implications of the timeout are not as severe. Regardless of the length of

the timeout, non-terminating computations will always encounter it. However, if

we take terminating computations, and we take a sufficiently long timeout, we can

run everything just as MF.

The performance of SME versus MF seen so far may give the impression that

SME is always faster than MF at the cost of an increased memory footprint.

However, Figure 3.6c shows evidence of the contrary. For this benchmark, instead

of taking the hash of the faceted value, we take the hash of a constant value after

branching on a faceted one.
benchmark2 :: Int -> Fac () -> FIO (String)

benchmark2 n fac =

RunBind (Bind fac

(\() -> Raw (Return ()))

(\f -> Return (hashes n "hello"))

In this benchmark, SME is exponentially slower than MF. The reason for

this is that every time that benchmark2 branches on a faceted value, it duplicates

the continuation (\f -> Return (hashes n "hello")). As a result, the expensive

computation (hashes n "hello") executes many times even though it does not

depend on the faceted value. MF, MF-par, and FSME, on the other hand, run all

the inexpensive computation first (i.e., Raw (Return ())), i.e., once for every leaf in

the faceted value, and subsequently executes the hashing function only once.

90

3.10 ProtectedBox

In order to demonstrate the viability of our framework for building practical

IFC systems, we have implemented a prototype service called ProtectedBox.

ProtectedBox is a essentially an API for the cloud storage solution Dropbox [18]

that makes possible to securely write and execute (mutually distrust) third-party

plugins on users’ files. Plugins are written in extended with I/O primitives

specific to the Dropbox API [19].

3.10.1 Labeling policy

File owners specifies how information can be shared with different plugins.

Initially, every file in User’s folders are labeled as {〈User, User〉}, thus indicating

that the files are confidential to the principal (or source of authority) User and

that User is responsible for its content. We consider plugins as another source of

authority. In this light, a given plugin named Plugin is considered a principal

whose initial PC corresponds to {〈⊥, Plugin〉}—so the plugin does not have any

confidentiality requirements a priori. Below, we describe three plugins that we

implemented for ProtectedBox as well as the labeling discipline that they follow.

I Comments: this plugin allows the user to add comments to a file. The comments

are stored in a different file with label 〈User,User ∨ Comments〉. This indicates

that the content of the comments is confidential to the user, but might have been

affected by either the user or the plugin.

I Tarball: this plugin creates a tarball of several files. The tarball is labeled

with the least upper bound of all the files in the tarball joined with 〈⊥,Tarball〉

to indicate that the plugin may have influenced the contents of the files, i.e., the

tarball gets the label (⊔
lf) t 〈⊥,Tarball〉.

91

I Checksum: This plugin computes the SHA256 hash of a file and saves it to

another file. The file created by the plugin is labeled as lf t 〈⊥,Checksum〉. This

means that the checksum is as confidential as the file it comes from but that

Checksum might have influenced its content.

Plugins are restricted from arbitrarily querying information about folders (e.g., list

of files) and files (e.g., update time, etc.) in order to avoid leaks of information

via many different covert channels [30]. Instead, they have access to the following

file-specific API and, of course, the primitives of our framework.
-- Interact with user files

createFile :: Label -> String -> String -> FIO ()

writeFile :: String -> String -> FIO ()

readFile :: String -> FIO (Faceted (Maybe String))

A read operation on a file with label l returns the faceted value 〈l ? contents :⊥〉.

Similarly, writes to a file with label l only happens if l ∈ views(pc), similarly to

the semantics of put. The same goes for creating files, a file can only be created if

its label is in the view of the PC.

3.10.2 Performance

We have evaluated the performance overheads associated with our executors in

ProtectedBox. We have five different FIO executors, MF, MF-par, SME, FSME,

and STD. The latter is analogous to std−→ in that it never introduces faceted

values, only deals with raw values, and provides no security guarantees.

Figure 3.7 shows the performance characteristics when running the Tarball

plugin on up to 30 files. As can be seen from the figure, our secure executors (MF,

MF-par, SME, FSME) do not introduce extraneous overheads over the unsecure

STD executor. All executors had the same memory footprint in this experiment.

92

0 5 10 15 20 25 30
N

5

10

15

20

25

30

35

W
al

lC
lo

ck
Ti

m
e

in
se

co
nd

s

Wall Clock Time

MF
MF-par
SME
FSME
STD

0 5 10 15 20 25 30
N

0.5

1.0

1.5

2.0

U
se

rT
im

e
in

se
co

nd
s

User Time

MF
MF-par
SME
FSME
STD

Figure 3.7: Time for different executors in the Tarball benchmark, where N is
the number of files.

The total memory overhead was small, measured in a few hundred KB at most.

This benchmark provides evidence that, in the case of non-malicious plug-ins, the

performance is similar for the different multi-execution approaches. Malicious code,

however, may stress the system in ways like what is shown in Section 3.9.

The performance is dominated by network overheads. For this reason it is

important that the safe executors do not introduce large numbers of sequential

requests. The code under test in Figure 3.7 does not display such weakness. It is

possible to construct programs similar to the first benchmark in Section 3.9 which

introduce an exponential number of network requests, these programs degrade

performance differently under MF, MF-par, SME and FSME in a way similar to

the results in Section 3.9. However, due to throttling from the Dropbox API we

have been unable to thoroughly evaluate scenarios of this kind in ProtectedBox,

but tentative experiments suggest that the effect exist.

3.11 Related work

SME The idea of utilizing multi-executions to secure programs has been inde-

pendently proposed by many researchers. Capizzi et al. [10] propose running two

copies of the same program, so called shadow executions: one for public and other

for handling private data, respectively. Cristiá and Mata independently formalize

a similar system at the operating system level [13]. Devriese and Piessens [17]

93

coin the term SME and are the first to formalise the soundness and precision

guarantees of the approach. Different from our approach, the original formulation

of SME is black-box, i.e, language independent, which makes it possible to deploy

it for complex languages like JavaScript. Jaskelioff and Russo [24] present an

implementation of SME in Haskell in less than 150 lines of code. Barthe et al. [6]

propose a program that inlines SME into JavaScript-like programs—so that it is

not necessary to modify the runtime system to obtain multi-executions. We believe

that our contributions could be used to extend the approaches above to work on

decentralized labels as well as obtaining multi-executions “on-demand.” When it

comes to applications, the web has been the chosen domain to test SME ideas [8]

and their implementations, e.g., FlowFox [14]. The implementation accompanying

[8] handles SME for a specific infinite lattice with levels L (public or bottom), H

(secret or top), andM(d) for every incomparable web domain d. When receiving an

event from an unseen domain, the enforcement creates a copy of the browser’s state

which gets initialized with the L-state—which is only suitable under the considered

lattice. Instead, our work allows for more general infinite lattices and initialization

of multi-executions’ states without loosing soundness or transparency guarantees.

SME has also been successfully applied to the map-reduce programming model

[40]. When it comes to security guarantees, secure programs interpreted under

SME produce the same outputs as if they were run under a standard semantics

modulo the relative ordering of observable events from different security levels. The

work in [28] explores how different scheduling policies affect the security guarantees

provided by SME, i.e., TINI or TSNI. In [57, 43], the authors combine scheduling

techniques with monitoring approaches to guarantee that interleaving of events

gets preserved for secure programs. The authors of [43, 53] provide means for

declassification. While our framework does not present means for declassification,

94

we state as future work adapting such techniques for a functional language.

MF Austin and Flanagan introduce MF semantics [5], where authors refer to it

as an optimization for SME. Schmitz et al. [46] show an implementation of MF

in Haskell—part of that design inspired ours. Bielova and Rezk [7] later show

that SME and MF are actually different: they differ on the provided security

guarantees (i.e., TINI vs. TSNI) and the treatment of default values. They

propose an all-or-nothing combination of MF and SME using a non-decidable

semantics—which takes decisions based on the termination behavior of commands.

Their enforcement run programs under a MF semantics but switches to SME (with

a low priority scheduler) when commands inside a branch do not terminate. In

the same all-or-nothing spirit, Ngo et al. [41] combine MF and SME techniques for

a simple while-language, where timeouts are set to determine when to switch to

SME. These works and ours share similar goals, but the underlying mechanisms are

entirely different. One obvious difference is that we use a monad-based operational

semantics vs. a while-like language. From the enforcement perspective, our

technique uses a decidable semantics (unlike [7]) and spawns multi-executions

on-demand while [41] does not, thus duplicating memory and execution of code.

Furthermore, their switching mechanism between MF and SME requires knowledge

of all points in the lattice, something which is not feasible in decentralized lattices

like DC-labels (or DLM). Different from that work, supports decentralized

labeling models and it does not spawn as many threads as security labels when

providing termination-sensitive guarantees. Schoepe et al. [47] investigate how to

apply MF semantics to encode taint analysis.

IFC libraries Many IFC security libraries exists for Haskell. They can enforce

non-interference statically [31, 44, 54, 2], dynamically [49], or as a combination

95

of both [16, 9]. Many of these libraries utilize the concept of monads to control

the side-effects that programs are allowed to perform. Differently from them, our

work (library) uses monads to adapt programs semantics to MF, SME, or FSME.

3.12 Conclusions

MF and SME are two promising approaches to dynamic IFC that provide

complementary benefits—MF provides better performance, whereas SME provides

stronger termination-sensitive security guarantees. This paper provides the unifying

framework , a synthesis of both prior approaches in the form of both a unifying

formal semantics and a corresponding Haskell IFC library. Using , we have

developed Faceted Secure Multi Execution, which combines the performance

benefits and termination-sensitive guarantees of MF and SME, respectively. In

addition, our work supports decentralized labels, necessary in many realistic

settings.

We believe the our mechanically-verified semantics and IFC library provide

a solid foundation for the future development of extensions as well as realistic

applications with strong IFC-based security guarantees. We envision as future work

to extend to support exceptions and timing-sensitive guarantees. Specifically,

we expect to need some mechanism for propagating exceptions across threads for

MF- and FSME-based multi-executions. On the other hand, when it comes to

timing guarantees, we believe it is possible to leverage some existing results to

make FSME robust against timing leaks—perhaps by assuming a specific scheduler

[28], or perhaps by padding the sensitive computations by the chosen timeout [3].

Acknowledgments We would like to thank Tamara Rezk and Nataliia Bielova

for initial discussions on this work as well as the anonymous reviewers for their

96

helpful comments. This work was funded by the Swedish Foundation for Strategic

Research (SSF) under the project Octopi (Ref. RIT17-0023) and WebSec (Ref.

RIT17-0011), the Swedish research agency Vetenskapsrådet, and NSF Grants

1337278 and 1421016.

97

Bibliography

[1] Sheldon B. Akers. “Binary decision diagrams”. In: IEEE Transactions on
computers 6 (1978), pp. 509–516.

[2] Maximilian Algehed and Alejandro Russo. “Encoding DCC in Haskell”. In:
Proc. of the 2017 Workshop on Programming Languages and Analysis for
Security. PLAS ’17. ACM, 2017.

[3] Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. “Predictive black-box
mitigation of timing channels”. In: Proc. of the 17th ACM conference on
Computer and Communications Security. ACM, 2010.

[4] Thomas H. Austin and Cormac Flanagan. “Multiple facets for dynamic
information flow”. In: Proc. of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2012. 2012, pp. 165–178.

[5] Thomas H. Austin and Cormac Flanagan. “Multiple facets for dynamic
information flow”. In: Proceedings of the 39th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. POPL ’12.
ACM, 2012.

[6] Gilles Barthe, Juan Manuel Crespo, Dominique Devriese, Frank Piessens,
and Exequiel Rivas. “Secure multi-execution through static program transfor-
mation”. In: Formal Techniques for Distributed Systems (FMOODS/FORTE
2012). 2012.

[7] Nataliia Bielova and Tamara Rezk. “Spot the Difference: Secure Multi-
execution and Multiple Facets”. In: European Symposium on Research in
Computer Security. 2016, pp. 501–519.

[8] Nataliia Bielova, Dominique Devriese, Fabio Massacci, and Frank Piessens.
“Reactive non-interference for a browser model”. In: Proceedings of the 5th
International Conference on Network and System Security (NSS 2011), Sept.
2011.

[9] P. Buiras, D. Vytiniotis, and A. Russo. “HLIO: Mixing Static and Dynamic
Typing for Information-Flow Control in Haskell”. In: Proc. of the ACM
SIGPLAN International Conference on Functional Programming (ICFP ’15).
ACM, 2015.

98

[10] Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and A. Prasad
Sistla. “Preventing Information Leaks through Shadow Executions”. In: Proc.
of the Annual Computer Security Applications Conference. ACSAC ’08. IEEE
Computer Society, 2008.

[11] Ethan Cecchetti, Andrew C. Myers, and Owen Arden. “Nonmalleable Infor-
mation Flow Control”. In: Proc. of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017. 2017, pp. 1875–1891.

[12] Koen Claessen. “Parallel Parsing Processes”. In: Journal of Funcitonal
Programming 14.6 (2004), pp. 741–757.

[13] Maximiliano Cristiá and Pablo Mata. “Runtime Enforcement of Noninter-
ference by Duplicating Processes and their Memories”. In: Workshop de
Seguridad Informática WSEGI 2009, Argentina. 38 JAIIO. 2009.

[14] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
“FlowFox: a web browser with flexible and precise information flow control”. In:
Proceedings of the 2012 ACM conference on Computer and communications
security. CCS ’12. New York, NY, USA: ACM, 2012.

[15] Dorothy E. Denning and Peter J. Denning. “Certification of Programs for
Secure Information Flow”. In: Commun. ACM 20.7 (July 1977), pp. 504–513.

[16] D. Devriese and F. Piessens. “Information flow enforcement in monadic
libraries”. In: Proc. of the ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI ’11). ACM, 2011.

[17] D. Devriese and F. Piessens. “Noninterference through Secure Multi-execution”.
In: Proc. of the 2010 IEEE Symposium on Security and Privacy. SP ’10.
IEEE Computer Society, 2010.

[18] Dropbox. Dropbox. https://www.dropbox.com.
[19] Dropbox. Dropbox HTTP API. https://www.dropbox.com/developers/

documentation/http/overview.
[20] Niklas Eén and Niklas Sörensson. “An extensible SAT-solver”. In: Interna-

tional conference on theory and applications of satisfiability testing. Springer.
2003, pp. 502–518.

[21] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris.
“Labels and event processes in the Asbestos operating system”. In: Proc. of
the twentieth ACM symp. on Operating systems principles. SOSP ’05. ACM,
2005.

[22] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières,
John C. Mitchell, and Alejandro Russo. “Hails: Protecting Data Privacy in
Untrusted Web Applications”. In: 10th USENIX Symposium on Operating
Systems Design and Implementation, OSDI. 2012.

99

https://www.dropbox.com
https://www.dropbox.com/developers/documentation/http/overview
https://www.dropbox.com/developers/documentation/http/overview

[23] J.A. Goguen and J. Meseguer. “Security policies and security models”. In:
Proc of IEEE Symposium on Security and Privacy. IEEE Computer Society,
1982.

[24] M. Jaskelioff and A. Russo. “Secure multi-execution in Haskell”. In: Proc. An-
drei Ershov International Conference on Perspectives of System Informatics.
LNCS. Springer-Verlag, June 2011.

[25] Mark P Jones and Luc Duponcheel. Composing monads. Tech. rep. Technical
Report YALEU/DCS/RR-1004, Department of Computer Science. Yale
University, 1993.

[26] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. “Simple unification-based type inference for GADTs”. In: Proc. of
the ACM SIGPLAN International Conf. on Functional Programming, ICFP.
2006.

[27] Simon Peyton Jones, ed. Haskell 98 Language and Libraries – The Revised
Report. Cambridge, England: Cambridge University Press, 2003.

[28] V. Kashyap, B. Wiedermann, and B. Hardekopf. “Timing- and Termination-
Sensitive Secure Information Flow: Exploring a New Approach”. In: Proc.
of IEEE Symposium on Sec. and Privacy. IEEE, 2011.

[29] Maxwell N. Krohn, Alexander Yip, Micah Z. Brodsky, Natan Cliffer, M.
Frans Kaashoek, Eddie Kohler, and Robert Tappan Morris. “Information flow
control for standard OS abstractions”. In: Proc. of the 21st ACM Symposium
on Operating Systems Principles. 2007, pp. 321–334.

[30] B. W. Lampson. “A Note on the Confinement Problem”. In: Communications
of the ACM 16.10 (Oct. 1973).

[31] P. Li and S. Zdancewic. “Arrows for secure information flow”. In: Theoretical
Computer Science 411.19 (2010), pp. 1974–1994.

[32] P. Li and S. Zdancewic. “Encoding Information Flow in Haskell”. In: Proc. of
the IEEE Workshop on Computer Security Foundations (CSFW ’06). IEEE
Computer Society, 2006.

[33] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew
C. Myers. “Fabric: A Platform for Secure Distributed Computation and
Storage”. In: Proc. of the ACM SIGOPS Symposium on Operating Systems
Principles. ACM, 2009.

[34] B. Montagu, B.C. Pierce, and R. Pollack. “A Theory of Information-Flow
Labels”. In: Computer Security Foundations Symposium (CSF), 2013 IEEE
26th. 2013.

[35] Scott Moore, Aslan Askarov, and Stephen Chong. “Precise enforcement
of progress-sensitive security”. In: the ACM Conference on Computer and
Communications Security, CCS’12. 2012.

100

[36] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, Timothy
Bourke, Sean Seefried, Corey Lewis, Xin Gao, and Gerwin Klein. “seL4:
From General Purpose to a Proof of Information Flow Enforcement”. In:
2012 IEEE Symposium on Security and Privacy 0 (2013).

[37] Andrew C Myers. “JFlow: Practical mostly-static information flow con-
trol”. In: Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM. 1999, pp. 228–241.

[38] Andrew C Myers and Barbara Liskov. “Protecting privacy using the decen-
tralized label model”. In: ACM Transactions on Software Engineering and
Methodology (TOSEM) 9.4 (2000), pp. 410–442.

[39] M. Ngo, F. Piessens, and T. Rezk. “Impossibility of Precise and Sound
Termination-Sensitive Security Enforcements”. In: IEEE Symposium on
Security and Privacy (SP). 2018.

[40] Minh Ngo, Fabio Massacci, and Olga Gadyatskaya. “MAP-REDUCE Run-
time Enforcement of Information Flow Policies”. In: CoRR (2013).

[41] Minh Ngo, Nataliia Bielova, Cormac Flanagan, Tamara Rezk, Alejandro
Russo, and Thomas Schmitz. “A better facet of dynamic information flow
control”. In: The Web Conference. Research track: Security and privacy of
the Web. (WWW’18). 2018.

[42] S. Peyton Jones, A. Gordon, and S. Finne. “Concurrent Haskell”. In: Proc.
of the ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL ’96). ACM, 1996.

[43] Willard Rafnsson and Andrei Sabelfeld. “Secure multi-execution: fine-grained,
declassification-aware, and transparent”. Submitted. Feb. 2013.

[44] A. Russo, K. Claessen, and J. Hughes. “A library for light-weight information-
flow security in Haskell”. In: Proc. ACM SIGPLAN symposium on Haskell
(HASKELL ’08). ACM, Sept. 2008.

[45] Alejandro Russo and Andrei Sabelfeld. “Dynamic vs. Static Flow-Sensitive
Security Analysis”. In: Proc. of the 2010 23rd IEEE Computer Security
Foundations Symp. CSF ’10. IEEE Computer Society, 2010, pp. 186–199.

[46] Thomas Schmitz, Dustin Rhodes, Thomas H. Austin, Kenneth Knowles,
and Cormac Flanagan. “Faceted Dynamic Information Flow via Control
and Data Monads”. In: Principles of Security and Trust - 5th International
Conference, POST 2016, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings. 2016.

101

[47] Daniel Schoepe, Musard Balliu, Frank Piessens, and Andrei Sabelfeld. “Let’s
Face It: Faceted Values for Taint Tracking”. In: Computer Security - ES-
ORICS 2016 - 21st European Symposium on Research in Computer Security,
Heraklion, Greece, September 26-30, 2016, Proceedings, Part I. 2016.

[48] D. Stefan, A. Russo, D. Mazières, and J. C. Mitchell. “Disjunction Cate-
gory Labels”. In: Proc. of the Nordic Conference on Information Security
Technology for Applications (NORDSEC ’11). Springer-Verlag, 2011.

[49] D. Stefan, A. Russo, J. C. Mitchell, and D. Mazières. “Flexible Dynamic
Information Flow Control in Haskell”. In: Proc. of the ACM SIGPLAN
Haskell symposium (HASKELL ’11). 2011.

[50] Deian Stefan, Alejandro Russo, David Mazières, and John C Mitchell.
“Disjunction category labels”. In: Nordic conference on secure IT systems.
Springer. 2011.

[51] Deian Stefan, Edward Z. Yang, Petr Marchenko, Alejandro Russo, Dave
Herman, Brad Karp, and David Mazières. “Protecting Users by Confining
JavaScript with COWL”. In: 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). USENIX Association, Oct. 2014.

[52] Wouter Swierstra and Thorsten Altenkirch. “Beauty in the Beast: A Func-
tional Semantics of the Awkward Squad”. In: Haskell ’07: Proceedings of the
ACM SIGPLAN Workshop on Haskell. Freiburg, Germany, 2007, pp. 25–36.

[53] Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens, and
Tamara Rezk. “Stateful declassification policies for event-driven programs”.
In: Proc. IEEE Computer Sec. Foundations Symposium. IEEE, July 2014.

[54] Marco Vassena, Alejandro Russo, Pablo Buiras, and Lucas Waye. “MAC A
Verified Static Information-Flow Control Library”. In: Journal of Logical
and Algebraic Methods in Programming (2017).

[55] Philip Wadler. “Monads for functional programming”. In: Program design
calculi. Springer, 1993, pp. 233–264.

[56] Philip Wadler. “Monads for functional programming”. In: International
School on Advanced Functional Programming. Springer. 1995, pp. 24–52.

[57] Dante Zanarini, Mauro Jaskelioff, and Alejandro Russo. “Precise Enforcement
of Confidentiality for Reactive Systems.” In: Proc. IEEE Computer Sec.
Foundations Symposium. IEEE, 2013, pp. 18–32.

[58] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
“Making information flow explicit in HiStar”. In: Proc. of the 7th USENIX
Symp. on Operating Systems Design and Implementation. USENIX, 2006.

102

[59] Danfeng Zhang, Yao Wang, G. Edward Suh, and Andrew C. Myers. “A Hard-
ware Design Language for Timing-Sensitive Information-Flow Security”. In:
Proc. of International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’15. 2015, pp. 503–516.

Appendix 3.A Semantics and Proof Sketches

This appendix presents the full syntax, type system, and semantics of our

language as well as our security guarantee results and proof sketches. The full

syntax can be found in Figures 3.8 and 3.9 along with the semantics in Figures 3.10

and 3.11 and the type system in Figure 3.12. Figure 3.13 shows the full standard

semantics. Next we go through our security guarantees as well as their respective

proof sketches.

Theorem 2 (Termination-Insensitive Non-Interference).

If σ1 ≈l σ2 and σ1 −→∗∅ σ′1 6−→∅ and σ2 −→∗∅ σ′2 6−→∅ then σ′1 ≈l σ
′
2.

Proof sketch

By repeated application of Projection 1, and by using Projection 2, we have

σ1↓l
std−→∗ σ′1↓l 6

std−→ and σ2↓l
std−→∗ σ′2↓l 6

std−→ . Since std−→ is deterministic and

σ1 ≈l σ2, therefore σ′1 ≈l σ
′
2, as desired. �

Theorem 3 (Fair Projection).

If σ↓l
std−→ σ1 then ∃σ2, s2. (σ, s) fair−→∗ (σ2, s2) and σ2↓l = σ1.

Proof sketch

By strong induction on measure(l, σ), which is roughly defined as the sum of 2depth

of each occurence of 〈• ? • : •〉 or [〈〈• ? • : •〉〉] in the program, ignoring subterms that

are not visible to l and ignoring the right hand subterms of any occurrences of bind.

This number represents an upper bound on the number of invisible (to l) steps

103

that σ can take. Also, do induction on the number n mentioned in the definition

of Fairness. �

Theorem 4 (Termination-Sensitive Non-Interference).

If σ1 ≈l σ2 and (σ1, s1) fair−→∗ (σ′1, s′1) then ∃σ′2, s′2. (σ2, s2) fair−→∗ (σ′2, s′2) and σ′1 ≈l

σ′2.

Proof sketch

By Scheduler Validity, we have σ1 −→∗∅ σ′1. By Projection 1, we have σ1↓l
std−→∗ σ′1↓l.

Now because σ1 ≈l σ2, we have σ2↓l
std−→∗ σ′1↓l. By Fair Projection, we have

∃σ′2, s′2.(σ2, s2) fair−→∗ (σ′2, s′2) and σ′2 ≈l σ
′
1, as desired. �

Definition 1 (Non-interfering). We say that a program (i.e., a non-faceted term) t

is non-interfering when the following is the case. For all l, I1, I2, σ1, if I1 ≈l I2 and

(t, ∅, λi.0, I1, λo.ε) std−→∗ σ1 then there exists σ2 such that (t, ∅, λi.0, I2, λo.ε) std−→∗ σ2

and σ2 ≈l σ1. �

Theorem 5 (Transparency).

If t is non-interfering and σ = (t, ∅, λi.0, I, λo.ε) std−→∗ σ′ then there exists σ′′, s′′

such that (σ, s) fair−→∗ (σ′′, s′′) and σ′ ≈l σ
′′.

Proof sketch

Since t = t↓l is non-interfering, we have σ′′′ such that σ↓l
std−→∗ σ′′′ and σ′ ≈l

σ′′′. By repeated application of Fair Projection, we have σ′′ and s′′ such that

(σ, s) fair−→∗ (σ′′, s′′) and σ′′↓l = σ′′′. Finally, σ′↓l = σ′′′↓l = σ′′↓l↓l = σ′′↓l, as

desired. �

Theorem 6 (Emptiness check).

∀pc. views(pc) 6= ∅ ⇔ ∀k ∈ pc. k 6v lc(pc)

104

Proof Sketch Right-to-left holds trivially by the definition of the candidate label.

In the other direction we have that for any l ∈ views(pc), it is the case that

lc(pc) v l by simple properties of the join, i.e., as lc(pc) computes the least upper

bound of the positive labels in pc, and ∀k ∈ pc. k 6v l by (6). We will prove

the theorem by contradiction. Assume that ¬(∀k ∈ pc. k 6v lc(pc)), we then

have ∃k ∈ pc. k v lc(pc). Let us take k0 to be the witness of this existential

quantification. We obtain, by transitivity of (v), k0 v lc(pc) v l, but l ∈ views(pc)

which implies that k0 6v l, contradiction. �

Appendix 3.B Implementation

DC labels, see section 3.7.1, are represented as a Haskell data type:
data Form = T | F | And Form Form | Or Form Form | Atomic String

data Label = Label Form Form

Where Label (Atomic "a" `Or` Atomic "b") (Atomic "b") denotes a DC label

〈a∨ b, b〉. Similarly, faceted values are represented as a Generalised Algebraic Data

Type:
data Fac a where

Raw :: a -> Fac a

Bind :: Fac a -> (a -> Fac b) -> Fac b

Q :: Label -> Fac a -> Fac a -> Fac a

Where Q l priv pub represents the faceted value 〈l ? priv : pub〉. We represent FIO

references using Haskell’s mutable IORef references.
data Ref a = Ref (IORef (Fac a))

Channels are represented using file handles and mutable references:

105

data Ch = Ch { label :: Label, iH :: Handle

, iPtr :: IORef (Fac Int), oH :: Handle }

FIO computations are represented as a deep embedding in a continuation-passing

style. Representing the computation as a concrete data type allows us to implement

multiple different executors for the same syntax.
data FIO a where

RunBind :: Fac (FIO a) -> (Fac a -> FIO b) -> FIO b

New :: Fac a -> (Ref a -> FIO b) -> FIO b

Read :: Ref a -> (Fac a -> FIO b) -> FIO b

Write :: Ref a -> Fac a -> (() -> FIO b) -> FIO b

Get :: Ch -> (Fac Char -> FIO b) -> FIO b

Put :: Ch -> Char -> (() -> FIO a) -> FIO a

Return :: a -> FIO a

We proceed to implement the interface for side-effectful operations based on FIO

constructors as follows:
newFIORef :: Fac a -> FIO (Ref a)

newFIORef f = New f Return

readFIORef :: Ref a -> FIO (Fac a)

readFIORef r = Read r Return

The other operations are implemented analogously.

Note that the primitives Read, New and Write support continuations, as motivated

in Section 3.8.4. Based on these continuation-based primitives, we implement

non-continuation-based wrappers that have the expected type matching Figure

3.12.

The return and (>>=) constructs are implemented as derived operations (they

are usually provided as parts of the standard Monad interface) [55, 27].

106

(>>=) :: FIO a -> (a -> FIO b) -> FIO b

Return a >>= k = k a

RunBind f c >>= k = RunBind f (\a -> c a >>= k)

New f c >>= k = New f (\a -> c a >>= k)

Read r c >>= k = Read r (\a -> c a >>= k)

...

The program counter (PC) is implemented as a list of branches.
data Branch = Private Label | Public Label

type PC = [Branch]

The decision procedure from section 3.7 is implemented as pure Haskell function

making use a library for BDDs:
isEmptyViews :: PC -> Bool

isEmptyViews pc =

let lc = foldr lub (Label T F) [k | Private k <- pc]

in not (and [canFlowTo k lc | Public k <- pc])

We have implemented two different executors for FIO, mf, sme. All the ex-

ecutors have the same type, FIO a -> PC -> IO (a, PC), a function from an FIO

computation and a program counter to a result and a new program counter in the

IO monad. The definition of mf is straight forward:

107

mf :: FIO a -> PC -> IO (a,PC)

mf (Return a) pc = return (a, pc)

mf (New fac k) pc = do ref <- newIORef fac

mf (k (Ref ref)) pc

mf (Read (Ref ref) k) pc = do fac <- readIORef ref

mf (k fac) pc

mf (Write (Ref ref) fac k) pc = do

atomicModifyIORef' ref $

\old_fac -> (pcF pc fac old_fac, ())

mf (k ()) pc

mf (Get i k) pc = do ptr <- readIORef (iPtr i)

(val, ptr') <- fac_get pc (iH i) ptr

writeIORef (iPtr i) ptr'

mf (k val) pc

mf (Put o v k) pc

| label o `inViews` pc = do hPutChar (oH o) v

mf k pc

| otherwise = mf k pc

mf (RunBind (Raw fio) k) pc = do (a, pc') <- mf fio pc

mf (k (Raw a)) pc

mf (RunBind (Bind (Raw fio) c) k) pc = mf (RunBind (c fio) k) pc

mf (RunBind (Bind (Bind t0 c0) c1) k) pc =

mf (RunBind (Bind t0 (\x -> Bind (c0 x) c1)) k) pc

mf (RunBind (Q l priv pub) k) pc

| isEmptyViews (Public l : pc) = mf (RunBind priv k) pc

| isEmptyViews (Private l : pc) = mf (RunBind pub k) pc

| otherwise = do

(a1,_) <- mf (RunBind priv return) (Private l : pc)

(a2,_) <- mf (RunBind pub return) (Public l : pc)

mf (k (Q l a1 a2)) pc

108

The function pcF used in the case for Write implements the notation 〈〈pc ? priv : pub〉〉

from Section 3.3.

In the case for Return we just return the value and the current PC. For New

we create a new IORef and run the continuation k with that IORef wrapped in a

Ref constructor. Similarly for Read, read the value of the reference and run the

continuation. The case for Write is more interesting, when we are a value to a

reference we need to update the current faceted value to reflect that the update

is done with the current PC. Writes are executed atomically; while this is not

important for the defintion of mf (which is sequential), it matters in concurrent

executors like sme below. The two cases for Run depend on the faceted value being

branched over. If the value is a leaf (Raw fio), we execute the FIO computation at

the leaf and continue with the continutation. If the value is a branch (Q l priv pub),

we check the branching conditions described in Section 3.3 and execute one of three

cases. The first two cases simply pick the private or public branches depending on

if the specific branching condition is satisfied. The third case is more interesting,

we run both the public and the private branches with different PCs, each containing

either Private l or Public l. Note that this is a literal translation of the

The definition of sme is identical except for the clause for Get, where we use a

lock to ensure that the file pointers are not concurrently updated, and the final

clause of the definition for Run:
sme (RunBind (Q l priv pub) k) pc

...

| otherwise = do

forkIO . void $ sme (RunBind priv k) (Private l : pc)

sme (RunBind pub k) (Public l : pc)

109

Instead of first running the private branch and then the public, we fork the

private branch to run in parallel and continue with the public branch. Note that

the use of forkIO . void is a technicality, the type of forkIO requires a computation

of type IO () as argumentand void as type IO a -> IO ().

Appendix 3.C FSME (switching) executor

The rule [f-fork-continuation] in the semantics models switching from

a single thread of execution to multiple threads. In this appendix we show

how the rule can be implemented in a switching executor. The only difference

between the executor we develop here and the sme and mf variants are in the

implementation of the case for RunBind which needs to run both the private and the

public computations. The idea of this executor is to run the private computation

assuming it is going to terminate. If the private computation does not terminate

we start running the public computation in parallel with the private and continue

by doing SME. The way this is achieved by our executor, which can be seen

below, is by executing the the private computation in a separate, lightweight,

thread. The thread running the private computation communicates the result of

the computation to the main thread when finished. It then waits for the main

thread to tell it to either terminate or continue running the continuation. The

main thread waits for the result of the private computation for a bounded amount

of time. If the main thread receives the result of the computation on time, then it

continues running in the fashion of MF. If the main thread does not receive the

result on time, then it signals the thread running the private computation to run

its continuation, and the execution continues in the fashion of SME.

The necessary communication is achieved using the MVar data structure. A value

110

of type MVar a [42] is a concurrent datastructure which is either empty or contains

a term of type a. An empty MVar is created using newEmptyMVar :: IO (MVar a).

The function readMVar empties a full MVar and returns its content or blocks other-

wise. The function putMVar :: a -> MVar a -> IO () fills an empty MVar or blocks

otherwise.
fsme (RunBind (Q k priv pub) f) pc =

...

| otherwise = do

privResult <- newEmptyMVar

privCont <- newEmptyMVar

fork $ do -- Private facet behavior

(priv', pc') <- fsme (RunBind priv Return) (Private k : pc)

putMVar privResult priv'

-- Wait for what to do next

switchSME <- readMVar privCont

when switchSME $ void (fsme (k priv') pc')

-- Public facet behavior

onTime <- timeout waitTime (readMVar privResult)

case onTime of

Just priv' -> do -- No need to switch to SME

putMVar switchSME False

fsme (RunBind publ (\publ' -> f (Q p priv' publ')))

(Public p : pc)

Nothing -> do -- Switching to SME

putMVar switchSME True

fsme (RunBind publ f) (Public p : pc)

111

n ∈ Z
k, l ∈ Lattice
b ∈ Branch ::= k | k
pc ∈ PC = 2Branch

V ∈ FacetedValue ::= raw t
| 〈k ?V :V 〉
| bind t t

x ∈ Var
t ∈ Term ::= x

| λx.t | t t
| a
| n | t+ t
| if t t t
| V
| return t | t>>= t
| new t | read t | write t t
| get i | put o t
| run t
| [〈〈k ? t : t〉〉]

T ∈ Type ::= Int
| T → T
| Fac T
| FIO T
| FIORef T

Γ ∈ VarTypes = Var → Type

Figure 3.8: Full syntax (part I).

112

a ∈ Address
i ∈ InputHandle
o ∈ OutputHandle
l i ∈ Lattice is the label of the channel i
lo ∈ Lattice is the label of the channel o
v ∈ Value ::= V

| λx.t
| n
| a
| return v

E ∈ Context ::= • t
| bind • t
| •+ t | v + •
| if • t t
| •>>= t
| run • | run (bind • t)
| new • | read • | write • t | write a •
| put o •
| return •

M ∈ Memory = Address → FacetedValue
p ∈ BufferPointer ::= n | 〈k ? p : p〉
P ∈ BufferPointers = InputHandle → BufferPointer
ns ∈ Sequence = Z∗
I ∈ InputBuffer = InputHandle → Sequence
O ∈ OutputBuffer = OutputHandle → Sequence
σ ∈ State ::= (t,M, P, I, O)
∆ ∈ MemoryTypes = Address → Type

Figure 3.9: Full syntax (part II).

113

σ
−→

p
c
σ

(E
[t]
,M

,P
,I
,O

)
−→

p
c

(E
[t′

],
M
′ ,
P
′ ,
I
′ ,
O
′)

if
(t
,M

,P
,I
,O

)
−→

p
c

(t
′ ,
M
′ ,
P
′ ,
I
′ ,
O
′)

[f
-c

on
te

xt
]

((
λ
x
.t

1)
t 2
,M

,P
,I
,O

)
−→

p
c

(t
1[x

:=
t 2

],
M
,P
,I
,O

)
[f

-a
pp

]
(n

1
+
n

2,
M
,P
,I
,O

)
−→

p
c

(n
,M

,P
,I
,O

)
if
n

=
n

1
+
n

2
[f

-p
lu

s]
(if

n
t 1
t 2
,M

,P
,I
,O

)
−→

p
c

(t
1,
M
,P
,I
,O

)
if
n
6=

0
[f

-if
-1

]
(if

n
t 1
t 2
,M

,P
,I
,O

)
−→

p
c

(t
2,
M
,P
,I
,O

)
if
n

=
0

[f
-if

-2
]

((
re
tu
rn
t 1

)>
>

=
t 2
,M

,P
,I
,O

)
−→

p
c

(t
2
t 1
,M

,P
,I
,O

)
[f

-b
in

d-
fi

o]
(r
un

(r
aw

t)
,M

,P
,I
,O

)
−→

p
c

(t
>>

=
λ
x
.re

tu
rn

(r
aw

x
),
M
,P
,I
,O

)
[f

-r
un

-r
aw

]

(r
un
〈k

?t
1

:t
2〉
,M

,P
,I
,O

)
−→

p
c

    (r
un

t 1
,M

,P
,I
,O

)
if
vi
ew

s(
pc
∪
{k
})

=
∅

(r
un

t 2
,M

,P
,I
,O

)
if
vi
ew

s(
pc
∪
{k
})

=
∅

([〈〈
k

?r
un

t 1
:r
un

t 2
〉〉],
M
,P
,I
,O

)
ot
he
rw

ise
.

[f
-r

un
-f

ac
et

-1
]

[f
-r

un
-f

ac
et

-2
]

[f
-r

un
-f

ac
et

-3
]

(r
un

(b
in
d

(r
aw

t 1
)
t 2

),
M
,P
,I
,O

)
−→

p
c

(r
un

(t
2
t 1

),
M
,P
,I
,O

)
[f

-b
in

d-
fa

c-
1]

(r
un

(b
in
d
〈k

?V
1

:V
2〉
t)
,M

,P
,I
,O

)
−→

p
c

(r
un
〈k

?b
in
d
V

1
t
:b
in
d
V

2
t〉
,M

,P
,I
,O

)
[f

-b
in

d-
fa

c-
2]

(r
un

(b
in
d

(b
in
d
t 1
t 2

)
t 3

),
M
,P
,I
,O

)
−→

p
c

(r
un

(b
in
d
t 1

(λ
x
.b
in
d

(t
2
x

),
M
,P
,I
,O

)
t 3

))
[f

-b
in

d-
fa

c-
3]

(E
[[〈〈
k

?t
1

:t
2〉〉]

],
M
,P
,I
,O

)
−→

p
c

([〈〈
k

?E
[t 1

]:
E

[t 2
]〉〉]
,M

,P
,I
,O

)
[f

-f
or

k-
co

nt
in

ua
ti

on
]

([〈〈
k

?r
et
ur
n
V

1
:r
et
ur
n
V

2〉〉]
,M

,P
,I
,O

)
−→

p
c

(r
et
ur
n
〈k

?V
1

:V
2〉
,M

,P
,I
,O

)
[f

-m
er

ge
]

([〈〈
k

?t
1

:t
2〉〉]
,M

,P
,I
,O

)
−→

p
c

([〈〈
k

?t
′ 1

:t
2〉〉]
,M

,P
,I
,O

)
if
k
/∈
pc

an
d
t 1
−→

p
c∪
{k
}
t′ 1

[f
-t

hr
ea

d-
1]

([〈〈
k

?t
1

:t
2〉〉]
,M

,P
,I
,O

)
−→

p
c

([〈〈
k

?t
1

:t
′ 2〉〉]
,M

,P
,I
,O

)
if
k
/∈
pc

an
d
t 2
−→

p
c∪
{k
}
t′ 2

[f
-t

hr
ea

d-
2]

F
ig
ur
e
3.
10
:

Fu
ll
se
m
an

tic
s
(p
ar
t
1)
.

114

(n
ew

V
,M

,P
,I
,O

)
−→

p
c

(r
et
ur
n
a
,M

[a
:=
〈〈p
c

?V
:r
aw

0〉
〉],
P
,I
,O

)
if
a
/∈
do

m
(M

)
[f

-n
ew

]
(r
ea
d
a
,M

,P
,I
,O

)
−→

p
c

(r
et
ur
n
M

(a
),
M
,P
,I
,O

)
[f

-r
ea

d]
(w

rit
e
a
V
,M

,P
,I
,O

)
−→

p
c

(r
et
ur
n
V
,M

′ ,
P
,I
,O

)
if
M
′
=
M

[a
:=
〈〈p
c

?V
:M

(a
)〉〉

]
[f

-w
ri

te
]

(g
et
i,
M
,P
,I
,O

)
−→

p
c

(r
et
ur
n
〈l

i
?V

:r
aw

0〉
,M

,P
[i

:=
p′

],
I
,O

)
if

(V
,p
′)

=
fa
c_

ge
t(
pc
,P

(i
),
I
(i

))
[f

-g
et

]

(p
ut
o
n
,M

,P
,I
,O

)
−→

p
c

{ (r
et
ur
n
n
,M

,P
,I
,O

[o
:=
O

(o
)+

+
n

])
(r
et
ur
n
n
,M

,P
,I
,O

)
if
l o
∈
vi
ew

s(
pc

)
if
l o
/∈
vi
ew

s(
pc

)
[f

-p
ut

-1
]

[f
-p

ut
-2

]

(V
,p

)=
fa
c_

ge
t(
pc
,p
,n
s)

(V
1,
p′ 1)

=
fa
c_

ge
t(
pc
\
{k
,k
},
p 1
,n
s)

(V
2,
p′ 2)

=
fa
c_

ge
t(
pc
\
{k
,k
},
p 2
,n
s)

k
∈
pc

(〈
k

?V
1

:V
2〉
,〈
k

?p
′ 1

:p
2〉

)=
fa
c_

ge
t(
pc
,〈
k

?p
1

:p
2〉
,n
s)

[r
-f

ac
et

-1
]

(V
1,
p′ 1)

=
fa
c_

ge
t(
pc
\
{k
,k
},
p 1
,n
s)

(V
2,
p′ 2)

=
fa
c_

ge
t(
pc
\
{k
,k
},
p 2
,n
s)

k
∈
pc

(〈
k

?V
1

:V
2〉
,〈
k

?p
1

:p
′ 2〉

)=
fa
c_

ge
t(
pc
,〈
k

?p
1

:p
2〉
,n
s)

[r
-f

ac
et

-2
]

(V
1,
p′ 1)

=
fa
c_

ge
t(
pc
\
{k
,k
},
p 1
,n
s)

(V
2,
p′ 2)

=
fa
c_

ge
t(
pc
\
{k
,k
},
p 2
,n
s)

k
,k

/∈
pc

(〈
k

?V
1

:V
2〉
,〈
k

?p
′ 1

:p
′ 2〉

)=
fa
c_

ge
t(
pc
,〈
k

?p
1

:p
2〉
,n
s)

[r
-f

ac
et

-3
]

n
s n

1
=
n

2

(r
aw

n
2,
〈〈p
c

?n
1

+
1:
n

1〉〉
)=

fa
c_

ge
t(
pc
,n

1,
n
s)

[r
-r

aw
]

n
≥

le
ng

th
(I

(i
))

(r
aw

(−
1)
,〈〈
pc

?n
+

1:
n
〉〉)

=
fa
c_

ge
t(
pc
,n
,n
s)

[r
-r

aw
-e

of
]

F
ig
ur
e
3.
11
:

Fu
ll
se
m
an

tic
s
(p
ar
t
2)
.

115

[t-var]
Γ,∆ ` x :: Γ(x)

[t-lam]
Γ[x :=T1],∆ ` t2 :: T2

Γ,∆ ` λx.t2 :: T1 → T2
[t-app]
Γ,∆ ` t0 :: T1 → T2 Γ,∆ ` t1 :: T1

Γ,∆ ` t0 t1 :: T2

[t-addr]

Γ,∆ ` a :: ∆(a)

[t-int]

Γ,∆ ` n :: Int
[t-plus]
Γ,∆ ` t1 :: Int Γ,∆ ` t2 :: Int

Γ,∆ ` t1 + t2 :: Int
[t-if]
Γ,∆ ` t0 :: Int Γ,∆ ` t1 :: T Γ,∆ ` t2 :: T

Γ,∆ ` if t0 t1 t2 :: T

[t-raw]
Γ,∆ ` t :: T

Γ,∆ ` raw t :: Fac T
[t-facet]
Γ,∆ ` V1 :: Fac T Γ,∆ ` V2 :: Fac T

Γ,∆ ` 〈k ?V1 :V2〉 :: Fac T
[t-bind-fac]
Γ,∆ ` t1 :: Fac T1 Γ,∆ ` t2 :: T1 → Fac T2

Γ,∆ ` bind t1 t2 :: Fac T2

[t-return]
Γ,∆ ` t :: T

Γ,∆ ` return t :: FIO T
[t-bind-fio]
Γ,∆ ` t1 :: FIO T1 Γ,∆ ` t2 :: T1 → FIO T2

Γ,∆ ` t1 >>= t2 :: FIO T2
[t-new]

Γ,∆ ` t :: Fac T
Γ,∆ ` new t :: FIO (FIORef T)

[t-read]
Γ,∆ ` t :: FIORef T

Γ,∆ ` read t :: FIO (Fac T)
[t-write]
Γ,∆ ` t1 :: FIORef T Γ,∆ ` t2 :: Fac T

Γ,∆ ` write t1 t2 :: FIO (Fac T)

[t-get]

Γ,∆ ` get i :: FIO (Fac Int)
[t-put]

Γ,∆ ` t :: Int
Γ,∆ ` put o t :: FIO Int

[t-run]
Γ,∆ ` t :: Fac (FIO T)

Γ,∆ ` run t :: FIO (Fac T)
[t-threads]
Γ,∆ ` t1 :: FIO T Γ,∆ ` t2 :: FIO T

Γ,∆ ` [〈〈k ? t1 : t2〉〉] :: FIO T

Figure 3.12: Typing rules Γ,∆ ` t :: T

116

σ
st
d
−→

σ
Sa

m
e
ru
le
s:

[f
-c

on
te

xt
],

[f
-a

pp
],

[f
-p

lu
s]
,

[f
-if

-1
],

[f
-if

-2
],

[f
-b

in
d-

fi
o]
,

[f
-r

un
-r

aw
],

[f
-b

in
d-

fa
c-

1]
,[

f-
bi

nd
-f

ac
-2

],
[f

-r
ea

d]
(n
ew

F
,M

,P
,I
,O

)
st
d
−→

(r
et
ur
n
a
,M

[a
:=
F

],
P
,I
,O

)
if
a
/∈
do

m
(M

)
[s

-n
ew

]
(w

rit
e
a
F
,M

,P
,I
,O

)
st
d
−→

(r
et
ur
n
F
,M

[a
:=
F

],
P
,I
,O

)
[s

-w
ri

te
]

(g
et
i,
M
,P
,I
,O

)
st
d
−→

(r
et
ur
n

(r
aw

n
),
M
,P

[i
:=
P

(i
)+

1]
,I
,O

)
if
n

=
I
(i

) P
(i

)
[s

-g
et

]
(g
et
i,
M
,P
,I
,O

)
st
d
−→

(r
et
ur
n

(r
aw

(−
1)

),
M
,P
,I
,O

)
if
P

(i
)≥

le
ng

th
(I

(i
))

[s
-g

et
-e

of
]

(p
ut
o
n
,M

,P
,I
,O

)
st
d
−→

(r
et
ur
n
n
,M

,P
,I
,O

[o
:=
O

(o
)+

+
n

])
[s

-p
ut

]
F
ig
ur
e
3.
13
:

Fu
ll
st
an

da
rd

se
m
an

tic
s.

117

Chapter 4

FacetBook

4.1 Research questions

An important goal for achieving security is to minimize the size of the trusted

computing base (TCB), which is the portion of code that must be carefully audited

for security [6]. (We refer to the remaining code as the untrusted computing base

(UCB).)

Our hypothesis is that faceted execution (as implemented by the FIO library)

makes it easier to minimize the size of the TCB in realistic applications. In

particular, we have two research questions:

1. Does FIO help minimize TCB size when coding a secure application?

2. Does FIO help minimize TCB size when changing an existing application to

meet new requirements?

Our experimental design to investigate these questions is as follows:

• Create Design V1 for a prototype application called FacetBook.

• Create Implementation V1-FIO using FIO, minimizing the TCB.

118

Lines of code
Version FIO TCB UCB Total application-specific code
V1-FIO 108 99 352 451
V2-FIO 108 99 360 459
V1-NoFIO 0 118 295 413
V2-NoFIO 0 419 0 419
V2-NoFIO-minTCB 0 128 298 426

Table 4.1: The number of lines of code in each version of FacetBook. The
emphasized entries are useful for quantifying security.

• Create Implementation V1-NoFIO without FIO, minimizing the TCB.

• Measure TCB size of the two implementations.

• Create Design V2 by making a small change to Design V1.

• Create Implementation V2-FIO by modifying V1-FIO.

• Create Implementation V2-NoFIO by modifying V1-NoFIO.

• Create Implementation V2-NoFIO-minTCB from V2-NoFIO by minimizing

the TCB.

• Quantify the effect on security by comparing the increase in TCB size when

going from V1 to V2.

• Quantify the ease of achieving security by comparing the number of lines of

code changed when minimizing the TCB size in V2.

Table 4.1 shows the number of lines of code for each version. Table 4.2 shows the

number of edit actions required to change each version to the next. The full

source code is available at https://github.com/tommy-schmitz/facetbook. In

the sections below, we discuss these results.

119

https://github.com/tommy-schmitz/facetbook

Changes (measured in lines of code)
Version Modified Moved Inserted Deleted
V1-FIO
V2-FIO 1 0 8 0
V1-NoFIO
V2-NoFIO 2 3 6 0
V2-NoFIO-minTCB 4 6 7 0

Table 4.2: The differences between each version of FacetBook. Each row in the
table lists the differences from the version in the row above it. The emphasized
entries are useful for quantifying ease of achieving security.

4.2 Design V1: FacetBook

4.2.1 Overview

FacetBook is a prototype social networking website. Users can submit posts

(pieces of text that are visible to a subset of other users of the website) and can

play Tic Tac Toe with other users, which is a simple and well-known game that

children commonly play using pencil and paper. (In this case, the game is played

using two computers equipped with web browsers and mouse pointer devices.)

For the purposes of our experiment, the “posts” feature exists so that FacetBook

has a rich TCB (because the information flow requirements are complex), while the

“Tic Tac Toe” feature exists so that it has a rich UCB (because the information

flow requirements are simple, but the other computations are relatively complex).

4.2.2 User interface

Figure 4.1 illustrates the structure of FacetBook’s webpages.

The login page allows typing a username and clicking the “Submit” button to

go to the dashboard page. For simplicity, authentication always succeeds with no

password required—sophisticated authentication machinery would remain constant

120

F
ig
ur
e
4.
1:

Sc
re
en
sh
ot
s
of

Fa
ce
tB

oo
k.

121

throughout all six versions of FacetBook, and so would simply add a constant

number of lines of code to the TCB. Unlike other work [3], we make no attempt

here to remove authentication code (i.e. password-checking code) from the TCB.

The dashboard page shows a list of 20 recent posts created by users of

FacetBook. The list comes from the server’s database of all posts, but con-

tains only those that the currently authenticated user is permitted to view. The

page also has two links: one going to the post page and one to the tictactoe

page.

The post page allows users to compose posts, and so has a form with two fields:

the permissions field expects a space-delimited list of usernames indicating who

is allowed to see the post, and the content field expects any string. Upon clicking

“Submit,” the form is submitted via HTTP POST protocol to the /post endpoint,

and the server saves the submitted data in a database.

The tictactoe page initially shows a form with a single field partner expecting

the username of the person with whom to play Tic Tac Toe. Upon clicking “Submit,”

the Tic Tac Toe board and its controls appear on the page. If this pair of users

(the currently authenticated user and the specified partner) has never played Tic

Tac Toe together before, then the server begins by adding a fresh game to the list

of ongoing games in the database. Then the server retrieves the game (whether

freshly-created or pre-existing) from the database and renders it into HTML when

serving the page. Thereafter, if the user clicks on the controls of the game, then

the web browser sends a request (using Javascript) specifying what action to take,

and the server updates the game in the database as appropriate. Then the server

replies with updated HTML, which replaces (using Javascript) the display in the

browser.

122

4.2.3 Information security

In FacetBook, restricted information arrives via HTTP POST protocol at the

/post endpoint. This endpoint is how users express their information flow desires,

namely that only the users specified in the permissions field can know about this

post and its content (in the content field).

The restricted output channel is the server’s response to any incoming HTTP

request—unless that request contains credentials of an appropriate user. In

FacetBook, requests specify credentials in the HTTP GET parameter username

(rather than in a cookie).

These information security specifications implicitly define a specific attacker

model that considers some potential attacks and ignores others. Notably, our

model ignores the correctness of the user interface, which is important because

we intend to place the client code in the UCB. If an attacker controls the UCB,

then the attacker could interfere with the creation of the POST request by, for

instance, adding an extra entry to the permissions field before submitting the

POST request. In the design of FacetBook, we explicitly ignore such an attack

and choose instead to assume that the POST parameters received at the server

correctly reflect the user’s intentions.

4.3 FIO library

Figure 4.2 shows the interface of the FIO library. The main difference from

Chapter 2 is that this code now supports using an arbitrary security lattice [5],

rather than specifically a power set security lattice over the set of Strings. As

a result, the type constructors Fac, FIORef, FIO, and PC now take an additional

type parameter for specifying the security lattice. The corresponding Lattice

123

1 class Lattice a where
2 leq :: a -> a -> Bool
3 lub :: a -> a -> a
4 bot :: a
5

6 data Fac l a where
7 Undefined :: Fac l a
8 Raw :: a -> Fac l a
9 Fac :: l -> Fac l a -> Fac l a -> Fac l a

10 BindFac :: Fac l a -> (a -> Fac l b) -> Fac l b
11

12 data FIORef l a = FIORef (IORef (Fac l a))
13

14 data FIO l a where
15 Return :: a -> FIO l a
16 BindFIO :: FIO l a -> (a -> FIO l b) -> FIO l b
17 Swap :: Fac l (FIO l a) -> FIO l (Fac l a)
18 IO :: l -> IO a -> FIO l a
19 New :: a -> FIO l (FIORef l a)
20 Read :: FIORef l a -> FIO l (Fac l a)
21 Write :: FIORef l a -> Fac l a -> FIO l ()
22

23 data PC l = PC [l] [l]
24

25 runFIO :: Lattice l => PC l -> FIO l a -> IO a

Figure 4.2: The interface of the FIO library in all versions of FacetBook.

124

type class (lines 1 through 4) specifies the methods (leq, lub, and bot) that the

security lattice must implement.

In addition to the extra type parameter, we change slightly the representation

of the PC datatype, so now PC ks1 ks2 denotes the set of lattice elements k such

that

• k′ v k for all k′ ∈ ks1, and

• k′ 6v k for all k′ ∈ ks2.

The main library function is runFIO, which runs an FIO computation safely,

namely by respecting the information flow requirements specified by any faceted

values used in the computation. The computation bifurcates if necessary.

The FIO library contains 108 lines of code. (Only the interface is shown in

Figure 4.2.)

4.4 V1-FIO

FacetBook V1-FIO is the initial version of the code, which implements Design

V1, uses the FIO library, and is organized so as to minimize the size of the TCB.

4.4.1 Tour of TCB

Security lattice

The lattice of security labels is defined in Figure 4.3. The label Bot is for

public data; the label Whitelist users is for data visible only to the users listed

in the list users. The datatype Label forms a lattice, as evidenced by the type

class instance Lattice Label and its three methods leq, lub, and bot.

125

26 data Label = Whitelist [User]
27 | Bot
28 instance Lattice Label where
29 leq Bot _ = True
30 leq _ Bot = False
31 leq (Whitelist us1) (Whitelist us2) =
32 let subset xs ys = all (\x -> x `elem` ys) xs in
33 us2 `subset` us1
34 lub Bot k = k
35 lub k Bot = k
36 lub (Whitelist us1) (Whitelist us2) =
37 Whitelist (List.intersect us1 us2)
38 bot = Bot

Figure 4.3: The code for the Label datatype in all versions of FacetBook.

39 type Post = String
40 data FList a = Nil
41 | Cons a (Fac Label (FList a))
42 type PostList = FList Post
43 type Database = (FIORef Label PostList, FIORef Label [TicTacToe])

Figure 4.4: The code for the FList datatype and associated type definitions in
V1-FIO.

Database format

The database format is defined in Figure 4.4. For simplicity, we keep the

database in memory rather than on disk (unlike other work on using faceted values

with databases [7, 2]). The Database type is a pair of two mutable references

(FIORefs), one for holding the current list of posts and a second for holding the

current list of ongoing Tic Tac Toe games. The PostList type makes use of a

custom datatype FList, which is a singly-linked list datatype whose “next” pointer

is always faceted. The Post type is simply an alias for Haskell’s built-in String

126

44 main :: IO ()
45 main = do --IO
46 database <- runFIO (Constraints [] []) $ do --FIO
47 r1 <- New Nil
48 r2 <- New []
49 return (r1, r2)
50 let port = 3000
51 Warp.run port $ \request respond -> do --IO
52 let (k1, k2) = policy request
53 let fio_respond = \x -> IO k2 $ do --IO
54 respond x
55 return ()
56 let faceted_request = Fac k1 (Raw request) Undefined
57 runFIO (Constraints [] []) $
58 UCB.handle_request faceted_request database fio_respond
59 return ResponseReceived

Figure 4.5: The code for the main function in V1-FIO.

type.

The faceted values in an FList potentially allow the “list” to be structured

actually as a tree with branching factor 2. However, in practice, when appending to

the list, each facet shares a suffix with the opposing facet, so in fact the structure

in memory forms a directed acyclic graph whose size is linear in the total number

of posts.

Main function

Figure 4.5 shows the main function. Its purpose is to start the web server and

set up appropriate security sandboxes before handling each request.

Line 47 initializes the database with an empty list of posts, and line 48 initializes

it with an empty list of Tic Tac Toe games. Line 51 creates a socket (using the

Haskell library function Warp.run) for listening for incoming HTTP requests, which

127

60 policy :: WAI.Request -> (Label, Label)
61 policy request =
62 if WAI.pathInfo request == ["login"] then
63 (Bot, Bot)
64 else case check_credentials request of
65 Nothing ->
66 (Bot, Bot)
67 Just username -> case WAI.pathInfo request of
68 ["post"] ->
69 let permissions = get_parameter request "permissions" in
70 let users = words permissions in
71 if all valid_username users then
72 (Whitelist (username : users), Whitelist [username])
73 else
74 (Whitelist [username], Whitelist [username])
75 _ ->
76 (Bot, Whitelist [username])

Figure 4.6: The code for the policy function in V1-FIO.

are handled by the code on lines 52 through 59. Line 58 calls UCB.handle_request,

which is outside the TCB; however, its inputs (database, faceted_request, and

fio_respond) are all faceted appropriately, and its side effects are sandboxed

appropriately by runFIO (Constraints [] []) on line 57.

Policy function

The function policy (called on line 52) computes the appropriate labels to

use in FacetBook. Its code is shown in Figure 4.6. We parse the request to

determine its meaning, and then we return two labels: one for the confidentiality

of the request, and one for the label of the output channel for returning an HTTP

response to the user.

Specifically, this policy assigns Bot for both labels (lines 63 and 66) when the

128

77 {-# LANGUAGE OverloadedStrings #-}
78 module UCB where
79 import qualified Data.List as List
80 import Data.Monoid((<>))
81 import Data.String(fromString)
82 import qualified Data.ByteString.Lazy.Char8 as ByteString(intercalate)
83 import Network.HTTP.Types.Status(status200, status404)
84 import qualified Network.Wai as WAI(Request, pathInfo, ResponseLBS)
85 import Shared
86 import FIO(FIO(Read, Write, Swap), Fac(), FIORef)

Figure 4.7: The import statements for the UCB module in V1-FIO.

user is not logged in, which is the case when requesting the login page (line 62)

or when lacking credentials on any other page (line 65). When the user has valid

credentials, the HTTP response label is Whitelist [username] (lines 72, 74, and

76), indicating that the response can contain private information belonging to the

authenticated user. For most pages, the confidentiality label on the request is

Bot (line 76), which means that the request itself carries no sensitive information;

however, on the "post" page, the label Whitelist (username : users) (line 72)

indicates that the request is visible only to the users named in the permissions

parameter of the request (and the currently authenticated user too). This label

ensures that when the submitted post is written to the database, it will be faceted

appropriately. The label Whitelist [username] on line 74 is used in case a client

sends a malformed request where the permissions parameter contains invalid

entries.

Import statements

The TCB includes the import statements at the top of each file. Primarily, we

must verify that the UCB module imports (Figure 4.7) do not include FIO(runFIO,

129

87 {-# LANGUAGE OverloadedStrings #-}
88 module Shared where
89 import Data.String(fromString)
90 import Data.ByteString.Char8(unpack)
91 import qualified Network.Wai as WAI(Request, queryString)
92 import qualified Data.List as List(intersect)
93 import FIO

Figure 4.8: The import statements for the Shared module in V1-FIO.

94 {-# LANGUAGE OverloadedStrings #-}
95 module TCB where
96 import qualified Network.Wai.Handler.Warp as Warp(run)
97 import qualified Network.Wai as WAI(Request, pathInfo)
98 import Network.Wai.Internal(ResponseReceived(ResponseReceived))
99 import Shared

100 import FIO
101 import qualified UCB as UCB(handle_request)

Figure 4.9: The import statements for the TCB module in V1-FIO.

130

102 check_credentials :: WAI.Request -> Maybe User
103 check_credentials request =
104 let username = get_parameter request "username" in
105 if valid_username username then Just username
106 else Nothing
107

108 get_parameter :: WAI.Request -> String -> String
109 get_parameter request key =
110 case lookup (fromString key) (WAI.queryString request) of
111 Just (Just value) -> unpack value
112 _ -> ""
113

114 valid_username :: String -> Bool
115 valid_username s =
116 s /= "" &&
117 all (\c -> (c>='0' && c<='9') ||
118 (c>='a' && c<='z') ||
119 (c>='A' && c<='Z') ||
120 c=='_') s

Figure 4.10: The code for the helper functions in V1-FIO.

FIO(IO), Fac(Raw, Fac, Undefined, BindFac)). As a result, these import

statements are actually part of the TCB.

The import statements in the TCB and Shared modules are also in the TCB,

naturally, and help auditors determine which standard libraries must be trusted.

Helper functions

For completeness, we include the TCB’s helper functions, which are shown in

Figure 4.10. check_credentials is the password-checking function. It gets the

username from the HTTP GET parameters. For simplicity, it always succeeds

without any password. When no username is supplied, it returns Nothing, indicat-

ing invalid credentials. get_parameter extracts an HTTP GET parameter from

131

121 type Handler = Database -> (WAI.Response -> FIO ()) -> FIO ()
122 handle_request :: Fac Label WAI.Request -> Handler
123 handle_request faceted_request database respond = do --FIO
124 Swap $ do --Fac
125 request <- faceted_request
126 return $ do --FIO
127 let handler = parse_request request
128 handler database respond
129 return ()

Figure 4.11: The code for the handle_request function in V1-FIO.

a request. valid_username checks that a string is non-empty and contains only

letters, numbers, and underscores.

Summary

In summary, the TCB of FacetBook V1-FIO contains 99 lines: 41 in TCB.hs,

48 in Shared.hs, and 10 import statements in UCB.hs.

4.4.2 Tour of UCB

Handle-request function

The entry point to the UCB is handle_request, called on line 58 in main.

Figure 4.11 shows its code. Its purpose is to “unfacet” the request (i.e. bifur-

cate if necessary, using Swap to do so), and then defer to the helper function

parse_request and its return value handler to do the actual processing. At the

call site (line 58 in main), the faceted request always has a specific shape, namely

with Undefined in the low-security facet. As a result, the bifurcation at line 124

executes the high-security path like normal (with a changed PC), and then the

low-security path is a no-op.

132

This code illustrates a typical interaction between the two monads Fac and

FIO. Line 124 uses Swap to change the current monad from FIO to Fac to allow

extracting request from faceted_request on line 125. Then line 126 uses return

to change the current monad back from Fac to FIO to allow executing the action

on line 128. By using two monads, we can delimit the scope of the bifurcation to

be lines 125 to 128. The computations join back together at line 129.

Parse-request function

The parse_request function translates an incoming web request (of type

WAI.Request, imported from Haskell’s WAI library for web servers) into an appro-

priate action (of type Handler) to take in response to that request. Figure 4.12

shows its code. It duplicates some functionality (checking whether the request is

for the “login” page, checking credentials, etc.) from the policy function in the

TCB, so it would be reasonable to refactor the code to reduce redundancy. We

decided against doing so because the function names policy and parse_request

document their purposes well, whereas it is nontrivial to choose a good name for

the newly created functions and intermediate datatypes in the refactored version;

in any case, the amount of duplicated code is small.

Handler functions

The parse_request function delegates functionality to eight other functions

called Handlers, namely:

• login: sends to the client a login page.

• authentication_failed: sends a page to redirect back to the login page.

• do_create_post username content users: inserts a new post into the

database and redirects to the dashboard page.

133

130 parse_request :: WAI.Request -> Handler
131 parse_request request =
132 if WAI.pathInfo request == ["login"] then
133 login
134 else case check_credentials request of
135 Nothing ->
136 authentication_failed
137 Just username -> case WAI.pathInfo request of
138 ["post"] ->
139 let content = get_parameter request "content" in
140 let permissions = get_parameter request "permissions" in
141 let users = words permissions in
142 if content /= "" && all valid_username users then
143 do_create_post username content users
144 else
145 compose_post username
146 ["dashboard"] ->
147 dashboard username
148 ["tictactoe"] ->
149 let partner = get_parameter request "partner" in
150 if valid_username partner then
151 let action = get_parameter request "action" in
152 tictactoe_play username partner action
153 else
154 tictactoe_select_partner username
155 _ ->
156 not_found

Figure 4.12: The code for the parse_request function in V1-FIO.

134

• compose_post username: sends to the client a page displaying a form in

which the user can compose a new post.

• dashboard username: sends a page displaying a few links to other pages, as

well as a list of recent posts.

• tictactoe_play username partner action: updates a Tic Tac Toe game in

the database (if necessary) and sends to the client a page displaying the

current state of the game.

• tictactoe_select_partner username: sends to the client a page prompting

the user to type the name of another user.

• not_found: sends a page with “404 bad request” on it.

The Handler type is defined on line 121

type Handler = Database -> (WAI.Response -> FIO ()) -> FIO ()

and its definition means that it takes as input the database reference cells (type

Database defined on line 43) and a callback function (of type WAI.Response ->

FIO ()) whose behavior when called is to send an HTTP response to the user’s

web browser. Thanks to the code in main, the database contents are secure (inside

FIORefs) and the response callback function will not work if the current control

flow has been influenced by information that the user should not know (in that

case, the callback would behave as a no-op).

Summary

The UCB of FacetBook V1-FIO contains 352 lines: 362 in UCB.hs minus the

10 import statements at the top of the file, which are actually part of the TCB.

135

4.5 V1-NoFIO

FacetBook V1-NoFIO is the next version of the code, which implements Design

V1, does not use the FIO library, and is organized so as to minimize the size of the

TCB. In this section, we highlight the differences between V1-FIO and V1-NoFIO.

4.5.1 Removing undesirable dependence on FIO

The FIO library is unnecessary in this version of FacetBook, so we can simplify

the code by removing dependence on FIO.

First, and most obviously, we remove the file FIO.hs from the codebase. As

a result, we remove all calls to Swap, which is now unnecessary due to the lack

of faceted values. Similarly, we replace uses of New, Read, and Write with uses

of newIORef, readIORef, and writeIORef, respectively. Continuing likewise, we

remove the FList datatype (which uses faceted values) and update the PostList

type definition:

157 type PostList = [(Label, Post)]

These simple changes affect the line count very little (aside from removing the

108-line FIO library).

4.5.2 Removing desirable dependence on FIO

Next, we completely remove the policy function and the lines in main that

depend on it. Figure 4.13 shows the new main function. At this point, the

functionality of FacetBook is intact, but its security guarantees have disappeared—

in particular, all posts are now visible to all users, regardless of any permission

settings on any posts. To reimplement this security feature, we define a new

136

158 main :: IO ()
159 main = do --IO
160 r1 <- newIORef []
161 r2 <- newIORef []
162 let database = (r1, r2)
163 let port = 3000
164 Warp.run port $ \request respond -> do --IO
165 let unit_respond = \x -> do --IO
166 respond x
167 return ()
168 handle_request request database unit_respond
169 return ResponseReceived

Figure 4.13: The code for the main function in V1-NoFIO.

function filter_posts:

170 filter_posts :: Label -> PostList -> PostList
171 filter_posts k = filter (\(k',p) -> leq k' k)

and we call it inside the dashboard function just after reading the posts from the

database:

172 labeled_posts <- readIORef (fst database)
173 let posts = filter_posts (Whitelist [username]) labeled_posts

We must also add a line to the do_create_post function to label posts just before

they are written into the database (line 175):

174 d <- readIORef (fst database)
175 let labeled_data = (Whitelist (username : users) ,
176 username ++ ": " ++ content)
177 writeIORef (fst database) (labeled_data : d)

137

4.5.3 Minimizing the TCB

With only the changes mentioned so far, the file UCB.hs is poorly named

because it now contains code that belongs in the TCB. To rectify this situation, we

begin by moving four functions from UCB.hs to TCB.hs, namely handle_request,

parse_request, do_create_post, and dashboard. Finally, to keep the TCB as

small as possible, we must rewrite parse_request so that it uses sandboxing for

the other six types of request (besides do_create_post and dashboard). The

new code is in Figure 4.14. Line 179 defines the sandbox function, which simply

arranges for the posts to be censored from the database before calling a given

handler h. By calling it on lines 182, 185, 194, 201, 203, and 205, we avoid the

need to move any more functions from UCB.hs to TCB.hs.

Summary

In V1-NoFIO, the TCB contains 118 lines of code: 63 in TCB.hs, 45 in

Shared.hs, and 10 import statements in UCB.hs. The UCB contains 295 lines of

code: 305 in UCB.hs minus the 10 import statements at the top of the file.

Qualitatively comparing V1-FIO to V1-NoFIO is largely subjective. The

application-specific TCB is smaller in V1-FIO; on the other hand, since FIO is

part of the TCB, the total TCB size is less in V1-NoFIO.

Furthermore, the TCB code is qualitatively different in the two implementations.

In V1-FIO, the structure of the TCB (especially the policy function) relieves

auditors from digging through the codebase to find and verify security-critical

operations, such as filtering the list of posts before displaying it, and correctly

labeling new posts before inserting them into the database. On the other hand,

one can argue that the policy function complicates the control flow. The control

flow in V1-NoFIO is more straightforward, since there is no need to parse the

138

178 parse_request request =
179 let sandbox h = \database respond ->
180 let censored = (undefined, snd database) in
181 h censored respond in
182 if WAI.pathInfo request == ["login"] then
183 sandbox $ UCB.login
184 else case check_credentials request of
185 Nothing ->
186 sandbox $ UCB.authentication_failed
187 Just username -> case WAI.pathInfo request of
188 ["post"] ->
189 let content = get_parameter request "content" in
190 let permissions = get_parameter request "permissions" in
191 let users = words permissions in
192 if content /= "" && all valid_username users then
193 do_create_post username content users
194 else
195 sandbox $ UCB.compose_post username
196 ["dashboard"] ->
197 dashboard username
198 ["tictactoe"] ->
199 let partner = get_parameter request "partner" in
200 if valid_username partner then
201 let action = get_parameter request "action" in
202 sandbox $ UCB.tictactoe_play username partner action
203 else
204 sandbox $ UCB.tictactoe_select_partner username
205 _ ->
206 sandbox $ UCB.not_found

Figure 4.14: The code for the parse_request function in V1-NoFIO.

139

207 respond $ WAI.responseLBS status200 headers $
208 render_tictactoe new_game username partner

Figure 4.15: Excerpt of the code to display a Tic Tac Toe game in V1-FIO.

request twice.

4.6 Design V2: Adding a widget

Design V2 is the same as Design V1 except that the tictactoe page should

now also display recent posts below the Tic Tac Toe game board. Figure 4.1

highlights the design change in the screenshot of the tictactoe page.

This design change affects the information flow of FacetBook because the

tictactoe page now includes information from both portions of the database: the

posts and the games.

4.7 V2-FIO

FacetBook V2-FIO implements Design V2, uses the FIO library, and is organized

so that the change from V1 to V2 is as convenient as possible.

Figures 4.15 and 4.16 show the differences between V1-FIO and V2-FIO. Only

these lines must change to implement the new widget.

In V2-FIO, the TCB is the same as in V1-FIO. The UCB contains 8 more lines

of code.

Since the TCB is the same in V1-FIO and V2-FIO, no further changes are

needed to minimize the TCB, which suggests that the information security is no

worse than it was before. Furthermore, no special effort is required to maintain

140

209 d <- Read (fst database)
210 Swap $ do --Fac
211 all_posts <- flatten d
212 return $ do --FIO
213 respond $ WAI.responseLBS status200 headers $
214 render_tictactoe new_game username partner <>
215 "

Recent posts:<hr />" <>
216 ByteString.intercalate "<hr />" (map escape (take 20 all_posts))
217 return ()

Figure 4.16: The new code to display a Tic Tac Toe game in V2-FIO.

218 respond $ WAI.responseLBS status200 headers $
219 render_tictactoe new_game username partner

Figure 4.17: Excerpt of the code to display a Tic Tac Toe game in V1-NoFIO.

confidence in security when making the change from Design V1 to Design V2.

4.8 V2-NoFIO

FacetBook V2-NoFIO implements Design V2 without using the FIO library,

and is organized so that the change from V1 to V2 is as convenient as possible.

Figures 4.17 and 4.18 show the differences between V1-NoFIO and V2-NoFIO.

Aside from these changes, we must also remove the call to sandbox on line 202,

which ruins the carefully audited boundary between the TCB and UCB. As a

result, in V2-NoFIO, the file UCB.hs is poorly named because its contents must

now be audited for information leaks. The TCB includes the whole codebase: 429

lines of code.

Note that V2-NoFIO is still secure (thanks to the call to filter_posts on line

141

220 labeled_posts <- readIORef (fst database)
221 let d = filter_posts (Whitelist [username]) labeled_posts
222 let posts = flatten d
223 respond $ WAI.responseLBS status200 headers $
224 render_tictactoe new_game username partner <>
225 "

Recent posts:<hr />" <>
226 ByteString.intercalate "<hr />" (map escape (take 20 posts))

Figure 4.18: The new code to display a Tic Tac Toe game in V2-NoFIO.

221), just like all the other versions of FacetBook; however, the auditing effort to

confirm its information security increased significantly when we removed the call

to sandbox on line 202.

4.9 V2-NoFIO-minTCB

FacetBook V2-NoFIO-minTCB implements Design V2 without using the FIO

library, and is organized so as to minimize the size of the TCB. In this section, we

highlight the differences from V2-NoFIO.

To minimize the TCB, we must move the tictactoe_play function from

UCB.hs to TCB.hs. To keep the TCB as small as possible, we also refactor it to call

three new functions: UCB.tictactoe_error_response, UCB.update_game, and

UCB.tictactoe_play_response.

Figure 4.19 shows the new code for tictactoe_play. Lines 231 and 234 set

up appropriate sandboxes for calling the UCB functions on lines 232 and 236,

which relieves auditors from reading the code in UCB.hs (aside from its import

statements).

Compared to V1-NoFIO, the TCB is 10 lines larger, which suggests that the

change has reduced confidence in the security of the system. Compared to V2-

142

227 tictactoe_play username partner action database respond =
228 if partner == username then
229 respond $ UCB.tictactoe_error_response
230 else do --IO
231 let censored_database = (undefined, snd database)
232 new_game <- UCB.update_game username partner action censored_database
233 labeled_posts <- readIORef (fst database)
234 let d = filter_posts (Whitelist [username]) labeled_posts
235 let posts = flatten d
236 respond $ UCB.tictactoe_play_response new_game username partner posts

Figure 4.19: The code for the tictactoe_play function in V2-NoFIO-minTCB.

NoFIO, we modified 4 lines, moved 6 lines, and inserted 7 new lines; these changes

were necessary to minimize the size of the TCB, suggesting that some nontrivial

effort is required to maintain confidence in security. When FIO is unavailable, the

next best sandboxing techniques lead to an inflexible architecture that becomes

outdated when requirements change.

4.10 Conclusions

To quantitatively answer the question of whether FIO makes it easier to achieve

information security, we constructed the prototype social network application

FacetBook, and measured the code changes required to add a widget for displaying

recent posts alongside the Tic Tac Toe game.

4.10.1 Research question 1

Does FIO help minimize TCB size when coding a secure application?

The FIO library has 108 lines of code, and the application-specific TCB in

V1-FIO has 99 lines of code. The application-specific TCB in V1-NoFIO has 118

143

lines of code.

In terms of total size, the TCB is smaller in V1-NoFIO. On the other hand,

the code in FIO is not application-specific, and so the burden of auditing it

for correctness can be amortized over many applications. So our results our

inconclusive on this question, as FIO could be considered helpful or not, depending

on one’s point of view.

4.10.2 Research question 2

Does FIO help minimize TCB size when changing an existing application to

meet new requirements?

In the FIO version of FacetBook, the feature extension requires no significant

refactoring:

• We merely add code for getting the posts and displaying them in a widget.

The extension adds 0 lines of code to the TCB, and no special refactoring is

required.

On the other hand, in the non-FIO codebase, we have two unappealing options:

• We could simply remove the sandboxing and implement the extension without

refactoring any module boundaries. By taking this approach, we greatly

increase the size of the TCB, which now includes all of the code pertaining

to Tic Tac Toe, including all helper functions: 419 lines of code altogether.

• We could carefully refactor the modules so that we only add to the TCB the

code related to displaying the new widget; the other helper functions can

remain outside of the TCB. The net result is still a larger TCB (10 more

lines) and extra developer effort (17 changes) spent on refactoring.

144

From this experiment, we conclude that the FIO library makes it possible in some

situations to extend the functionality of applications at no extra cost (in terms

of TCB lines and refactoring effort). In comparison, without FIO, this feature

extension either significantly decreases security (via a larger TCB) or requires

additional refactoring effort to mitigate such a decrease.

4.11 Discussion

One design decision is the richness of the security policy. For instance, we

could include all of the rules of the Tic Tac Toe game in the policy, thus enforcing

fair and correct playing of the game. However, since the security policy lies within

the TCB, a larger policy means greater difficulty auditing the policy itself for

correctness. Therefore, since correct functionality of the Tic Tac Toe game is less

important than enforcing post visibility settings, we choose to include in the policy

only the code pertaining to the latter criterion.

Another design choice is whether to make the policy a “transparent” wrapper

around the functioning system (analogous to higher-order contracts being projec-

tions [4] that do not modify the behavior of correct programs) or to integrate the

policy into the functioning system itself. For instance, in FacetBook, the policy

code must inspect the request parameters to determine the request’s meaning;

should this part of the code be duplicated in the functioning system, which also

needs to determine each request’s meaning? We have chosen to duplicate this

code, so there are some similarities in the control flow of functions policy and

parse_request (Figures 4.6 and 4.12).

For the database, we use the FIORef type from our FIO library to keep

persistent state in memory. For the list of ongoing Tic Tac Toe games, the FIORef

will never become faceted because that data is public for everyone to see; however,

145

for the faceted list of posts, the situation is more complicated. Specifically, since

faceted execution works by refusing to update the facets that are forbidden from

seeing the effects of the currently executing code, the data structure must operate in

an append-only manner, lest we degrade performance by creating an exponentially

large faceted structure. Some work by Algehed, Russo, and Flanagan [1] will

address this performance-related limitation of faceted execution. For now, in

FacetBook, we simply use two separate FIORefs: one for the list of Tic Tac Toe

games (a non-faceted, non-append-only data structure), and one for the list of

posts (a faceted, append-only data structure).

146

Bibliography

[1] Maximilian Algehed, Alejandro Russo, and Cormac Flanagan. “Optimiz-
ing Faceted Secure Multi-Execution”. In: Computer Security Foundations
Symposium (CSF’19). IEEE. 2019.

[2] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly
Sagiv, Thomas Schmitz, and Keith Winstein. “Secure serverless computing
using dynamic information flow control”. In: Proceedings of the ACM on
Programming Languages 2.OOPSLA (2018), p. 118.

[3] Ethan Cecchetti, Andrew C Myers, and Owen Arden. “Nonmalleable infor-
mation flow control”. In: Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM. 2017, pp. 1875–1891.

[4] Robert Bruce Findler and Matthias Blume. “Contracts as pairs of projec-
tions”. In: International Symposium on Functional and Logic Programming.
Springer. 2006, pp. 226–241.

[5] Minh Ngo, Nataliia Bielova, Cormac Flanagan, Tamara Rezk, Alejandro
Russo, and Thomas Schmitz. “A Better Facet of Dynamic Information Flow
Control”. In: WWW’18 Companion: The 2018 Web Conference Companion.
2018, pp. 1–9.

[6] Michael D Schroeder. “Engineering a security kernel for multics”. In: ACM
SIGOPS Operating Systems Review. Vol. 9. 5. ACM. 1975, pp. 25–32.

[7] Jean Yang, Travis Hance, Thomas H Austin, Armando Solar-Lezama, Cor-
mac Flanagan, and Stephen Chong. “Precise, dynamic information flow
for database-backed applications”. In: Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI).
2016.

147

	List of Figures
	List of Tables
	Abstract
	Introduction
	Background
	Security lattices
	Dynamic information flow control
	No Sensitive Upgrades
	Secure Multi Execution
	Faceted Values
	Richer lattices

	Structure of the dissertation
	Overview of Chapter 2: Faceted Dynamic Information Flow via Control and Data Monads
	Overview of Chapter 3: Faceted Secure Multi Execution
	Overview of Chapter 4: FacetBook

	Future directions

	Faceted Dynamic Information Flow via Control and Data Monads
	Introduction
	Review of Information Flow and Faceted Values
	Library Overview
	Pure Faceted Values: Faceted a
	Faceted Reference Cells: FIO a and FioRef a
	Faceted I/O: FHandle

	Formal Semantics
	Termination-Insensitive Noninterference

	Application: A Bi-Monadic Interpreter
	The Interpreted Language
	Implementation

	Related Work
	Conclusion

	Faceted Secure Multi Execution
	Introduction
	Background
	A Unifying Multi Execution Framework
	Functional core
	Faceted values
	FIO computations
	Building side-effectful computations based on faceted values
	Supported multi-executions approaches
	Formal semantics

	Termination Insensitive Security Guarantees
	Fair Scheduling
	Termination Sensitive Security Guarantees
	Decentralized Labels
	Disjunction Category Labels

	Implementation
	Basic structures
	Executor commonalities
	MF executor
	Continuations and SME
	FSME executor

	Evaluation
	ProtectedBox
	Labeling policy
	Performance

	Related work
	Conclusions
	Appendix Semantics and Proof Sketches
	Appendix Implementation
	Appendix FSME (switching) executor

	FacetBook
	Research questions
	Design V1: FacetBook
	Overview
	User interface
	Information security

	FIO library
	V1-FIO
	Tour of TCB
	Tour of UCB

	V1-NoFIO
	Removing undesirable dependence on FIO
	Removing desirable dependence on FIO
	Minimizing the TCB

	Design V2: Adding a widget
	V2-FIO
	V2-NoFIO
	V2-NoFIO-minTCB
	Conclusions
	Research question 1
	Research question 2

	Discussion

