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ABSTRACT

Fluid flow in geothermal production and injection
wells can be strongly affected by heat transfer effects
with the formations surrounding the wellbore.
Various techniques and approximations to model
wellbore heat transmission have been presented in the
literature. The objective of the present work is to
develop a treatment of conductive heat transfer in the
formations surrounding a wellbore that is simple, yet
provides good accuracy for transient effects at early
time. This is accomplished by adapting the well-
known semi-analytical heat transfer method of
Vinsome and Westerveld (1980) to the problem of
heat transfer to and from a flowing well. The
Vinsome-Westerveld method treats heat exchange
between a reservoir and adjacent cap and base rocks
by means of a hybrid numerical-analytical method, in
which temperature distributions in the conductive
domain are approximated by simple trial functions,
whose parameters are obtained concurrently with the
numerical solution for the flow domain. This method
can give a very accurate representation of conductive
heat transfer even for non-monotonic temperature
variations over a broad range of time scales. The only
enhancement needed for applying the method to
wellbore heat transmission is taking account of the
cylindrical geometry around a flowing well, as
opposed to the linear flow geometry in cap and base
rocks. We describe the generalization of trial
functions needed for cylindrical geometry, and
present our implementation into the TOUGH?2
reservoir simulator. The accuracy of the method is

evaluated through application to non-isothermal flow
through a pipe.

INTRODUCTION

The components of a hot dry rock (HDR) geothermal
reservoir include injection and production wells, and
a network of fractures at a depth where sufficiently
high temperatures are encountered, nominally around
200 °C or more, to permit electricity generation from
the produced fluids at a "reasonable" level of thermo-

dynamic efficiency. The wells not only convey fluid
to and from the deep, hot fracture system, but due to
their large surface area form an important part of the
total heat exchange system. For an 8" well (r = 0.1
m), surface area is 628.3 m? per km depth, so that for
a 4 km deep production-injection system, total
surface area is more than 5,000 m2, a number that
approaches heat transfer areas of major fractures.

The migration of fluids through a permeable domain
coupled with heat transfer to or from adjacent rocks
of low permeability is a common problem in
reservoir engineering. In addition to heat
transmission between a wellbore and surrounding
formations (Ramey, 1962; Wu and Pruess, 1990),
examples include non-isothermal fluid injection into
a permeable layer sandwiched between impermeable
formations (Lauwerier, 1955), and non-isothermal
injection into fractured reservoirs (Pruess and
Bodvarsson, 1984; Pruess and Wu, 1993). In many
cases rock permeability may be negligibly small for
the time scales considered, and the problem can be
reduced to solving a heat conduction equation in the
low-permeability domain. This can be easily
accomplished by means of finite differences or other
space-discretized techniques, but at considerable
comput-ational expense. Analytical and semi-
analytical treatments have been presented in the
literature that use various simplifying assumptions.
The classical treatment of Ramey (1962) provides a
good approx-imation for the longer-term quasi-steady
heat exchange between wellbore fluids and
surrounding formations. Wu and Pruess (1990)
obtained an analytical solution in Laplace space that
accurately represents transient heat transfer effects in
layered formations. The goal of the work presented
here is to develop a simple treatment for the heat -
conduction problem around a pipe of cylindrical
cross section that can accurately represent transient
effects at early times.



THE METHOD OF VINSOME AND
WESTERVELD

Vinsome and Westerveld (1980) developed a semi-
analytical approach for the problem of non-
isothermal fluid injection into a permeable layer that
is sandwiched between impermeable base and cap
rock. Their method greatly simplifies the heat
conduction problem, while providing satisfactory
accuracy. Vinsome and Westerveld considered that
heat conduction perpendicular to the conductive
boundary will be more important than parallel to the
boundary. Noting that heat conduction will tend to
wipe out sharp temperature differences, they
suggested that the temperature profile in the
conductive domain may be approximated by means
of a simple trial function that contains a few
adjustable parameters. More specific-ally, they
proposed that the temperature profile in the cap or
base rock may be represented by a low-order
poiynomial with an exponential tail, as follows.

TinG.t)=T; = (Tf —-T; +px+ qxz) exp(—x/d) (1)

Here, Tjin(x, t) is the temperature at time t and
distance x from the conductive boundary, T; is the
initial temperature in the conductive domain
(assumed uniform in the direction perpendicular to
the boundary), Tt is the time-varying temperature at
the conductive boundary, p and q are time-varying fit
parameters, and d is the penetration depth for heat
conduction, given by

d = Bt/2 @)

where ® = A/pC is the thermal diffusivity, A the
thermal conductivity, p the density of the medium,
and C the specific heat.

In the context of a finite-difference simulation of
nonisothermal flow, each grid block at the conductive
boundary will have an associated temperature profile
in the adjacent impermeable rock given by Equation
(1). The parameters p and q are different for different
grid blocks and are determined concurrently with the
flow simulation from the following physical
constraints: (1) temperatures throughout the conduct-
ive domain must satisfy a heat conduction (diffusion)
equation, and (2) cumulative heat flow across the
boundary must equal the change of thermal energy in
the conductive domain. Numerous test calculations
have shown the Vinsome-Westerveld technique to
provide excellent accuracy for conductive heat
exchange, even under conditions of non-monotonic
temperature variations in the fluid flow domain
(Vinsome and Westerveld, 1980; Pruess and Wu,
1993).

EXTENSION TO HEAT CONDUCTION
ARCUND A WELL

Here we propose to adapt the Vinsome-Westerveld
method for the problem of conductive heat transfer in
the region surrounding a wellbore. The general
concept involves representing the wellbore itself as a
1-D feature that is discretized into grid blocks in the
direction of flow, while heat transfer perpendicular to
the wellbore is treated by a semi-analytical technique.
Depending on depth and prevailing geothermal
gradients, each wellbore grid block would have a
different initial temperature Tj associated with it. The
main difference in comparison to the system
investigated by Vinsome and Westerveld is in the
geometry for heat transfer, which is linear for their
base and cap Tock problem, while it is cylindrical in
the region surrounding the wellbore. Total rate of
heat flow at distance x from the conductive boundary
is given by

G(x) = —AEAVT 3

where the cross-sectional area for heat transfer is
A(X) = Ag = const. for the linear case, while it is A(X)
= 27irh in the case of a wellbore segment of length h.
Here, r = rg +x is the radial distance from the center
of the wellbore and rg is the wellbore radius. For
small x, the leading term in the temperature gradient
derived from Eq. (1) involves an exponential tail
multiplied by a constant. This will provide a leading
term for conductive heat flow, Eq. (3), that in the
linear case also involves an exponential tail with a
constant coefficient. In the cylindrical case, however,
the leading term will involve an exponential tail
multiplied by radial distance r, which means that total
heat flow would increase with distance from the

" boundary, which is unphysical. To better account for

heat transfer in the radial flow geometry around a
wellbore, we therefore propose to use a modified

temperature trial function Tpaq that is defined as
follows,

Ta(ot) = Ti = LTyt -T;) @
»

where x = r - 19 measures the distance from the
conductive boundary. This form maintains proper
limiting behavior Tyag ==> T for r ==> 19 and Tyyq
==> Tj for r ==> o, and will provide a leading term
proportional to 1/r in VT, which will cancel the r-
coefficient in the cross-sectional area. For modeling
conductive heat exchange around a cylindrical pipe,
we have incorporated Eq. (4) in our TOUGH2 code
(Pruess et al., 1999). The coefficients p and q in Eq.
(4) are determined concurrently with the flow
simulation as in the linear case by requiring that (a)
temperatures at the conductive boundary satisfy a
heat conduction equation,
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and (b) the rate of change of thermal energy in the

conductive domain is equal to the rate of conductive
heat loss at the boundary,

(6)
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EXAMPLE

As a demonstration and test of the method, we
consider non-isothermal flow along a 1 km long pipe
of r = 0.1 m radius. To better focus on the heat
transfer problem, we leave out initial temperature and
pressure gradients, i.e., we assume that the pipe is
horizontal. The impermeable medium surrounding
the pipe is assumed at a uniform initial temperature
of T = 200 °C, and the following typical values are
chosen for thermal parameters: conductivity A = 2.1
W/m °C, density p = 2650 kg/m3, and specific heat C
= 1000 J/kg °C. These parameters result in a thermal
diffusivity of @ = A/pC = 0.80 x 10° m?/s. The pipe
is discretized into 50 segments of 20 m length. Fluid
at a temperature of 30 °C is injected at one end at a
constant rate of 5 kg/s; at the other end of the pipe
pressures are maintained constant at the initial value
of 100 bar. For comparison, the same problem is run
with a fully numerical approach, using a radial grid
of 48 blocks around each of the pipe segments, for a
total of 2,450 blocks. Radial discretization is very
fine near the pipe, starting with Ar = 4 mm, becomes
coarser at increasing radial distance, and extends to a
large outer radius of r = 100 m so the system will be
infinite-acting for the time periods considered. The
numerical solution is considered highly accurate and
serves as a benchmark against which the accuracy of
the semi-analytical method can be ascertained. All
simulations were done with the TOUGH2 code
(Pruess et al., 1999). Results are presented in Figs. 1
and 2 as temperature profiles along the pipe at
different times and as time-varying temperatures at
specific locations.

The semi-analytical temperature profiles are seen to
be very accurate at earlier times, but accuracy is
deteriorating over time. Temperatures at late time are
systematically underpredicted by the semi-analytical
solution. The same pattern is evident in the
temperature breakthrough curves. Near the pipe inlet,
where breakthrough is rapid, the semi-analytical and
numerical solutions virtually coincide at all times.
Near the center and towards the outlet of the pipe,
temperatures agree closely to 107 s. Subsequently the
semi-analytical temperatures trend lower than the
numerical solution. From these comparisons it
appears that at later time the semi-analytical solution

underestimates the conductive heat supply to the
cooling pipe.
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Figure 1. Temperature profiles along the pipe at
different times.
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Figure 2. Thermal breakthrough curves at different
distance from the pipe inlet.

In order to better pinpoint the limitations in the semi-
analytical solution, we examine the temperature
profiles in the conductive domain. Fig. 3 shows
temperature profiles in the conductive domain
attached to the first pipe segment (inlet). The
numerical solutions are shown as data points at the
radial distances corresponding to the nodal points in
the finite difference solution; the semi-analytical
profiles were calculated from Eqs. (4) and (1), using
the values for the parameters p, q, and d obtained in
the simulation.

From Fig. 3 it can be seen that the semi-analytical
solution tends to underpredict temperatures near the
pipe while overpredicting them at greater distance,
with discrepancies increasing as time goes on. The
semi-analytical solution systematically underpredicts
temperature gradients, hence conductive heat supply,
near the pipe, which explains why the semi-analytical
temperatures trended too low in Figs. 1 and 2. In
effect, the semi-analytical solution is taking too much



heat out of the region near the pipe, and not enough
from larger distance. We conclude that the trial
function proposed in Eqs. (4, 1) is adequate for early
times, but for larger time scales does not allow the
temperature perturbation at the conductive boundary
to adequately penetrate into the interior of the
conductive domain, and does not permit an adequate
heat supply from larger distances.
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Figure 3. Simulated temperature profiles in the
conductive domain surrounding the pipe
inlet.

A BETTER TRIAL FUNCTION

How can the trial function be improved to deliver a
more accurate description of the conductive profile
for longer time? The analysis presented above
suggests that a larger depth of penetration (parameter
d in Eq. 1) may help to better tap into heat reserves at
greater radial distance. However, calculations with a
larger penetration depth, such as d =+/@t, yielded
even lower temperatures at small radial distance,
while shifting the region of overpredicted
temperatures to larger distance.

Fig. 4 shows numerically simulated conductive
profiles at the pipe inlet at different times. It is seen
that temperatures near the conductive boundary fall
on a straight line in a semi-log plot, suggesting that
the conduction solution for "small" r should have the
form (Wu and Pruess, 2000)

Trad = Tf‘l‘C'lH(l‘/l‘O) @)

In other words, the polynomial in Eq. (1) should not
be written in terms of x = (r - rg), but in terms of (Inr
- Inrg). The physical interpretation is straightforward:
differentiating Eq. (7) with respect to r delivers a
temperature gradient and heat flux proportional to
1/r, which in turn produces a constant rate of heat
flow when multiplied by the flow area A = 2mrh.
Heat flow rate would be expected to be essentially
constant in the quasi-steady heat transfer regime at

"small" r, out to a distance of approximately /@t
beyond the boundary (pipe surface at rg = 0.10 m).
For the four times shown in Fig. 4, this amounts to
distances of r = 0.17, 0.41, 1.36, and 4.10 m
(measured from the center of the pipe at r = 0).
Comparison with Fig. 4 shows that the conductive
profiles at the different times indeed match straight
line behavior out to those distances.
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Figure 4. Numerically simulated conductive temper-
ature profiles at different times. The
straight lines are drawn to guide the eye.

Implementation of a trial function with a logarithmic
expansion in terms of (Inr - Inrg) is currently
underway. One difficulty is that for a logarithmic
temperature profile it is no longer possible to
evaluate the integral in the energy balance, Eq. 6, in
closed analytical form.

CONCLUDING REMARKS

This paper has presented an adaptation of the semi-
analytical technique of Vinsome and Westerveld
(1980) to the problem of conductive heat transfer
around a cylindrical pipe, such as an injection or
production well. A slight generalization of the
temperature trial function to account for the radial
geometry, as opposed to the linear geometry
considered by Vinsome and Westerveld, is sufficient
to obtain an accurate treatment of conductive heat
transfer for time periods of order one week. At later
time the accuracy of the method deteriorates, which
could be traced to the inability of the trial function to
represent the quasi-steady heat transfer regime
around the well that over time extends to increasing
distance. Our analysis provided guidance for
selecting a better trial function, computational
implementation of which is currently underway.

A semi-analytical approximation for conductive heat
transfer around a cylindrical pipe can find
applications not only for wellbore flow, but also for
non-isothermal flow in fractured media. Indeed, it is
well established experimentally and theoretically that



flow in heterogeneous fractures is not an-area-filling
phenomenon, but instead tends to proceed primarily
along localized preferential pathways, or "channels"
(Tsang and Tsang, 1987; Tsang and Neretnieks,
1998). The model of a cylindrical pipe may provide a
better representation of heat transfer to these
pathways than the idealization of sheet flow in a
homogeneous fracture.
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