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(April 3, 1987)

Abstract

NETtalk is a connectionist network model that learns to convert
English text into phonemes. While the network performs the task with
considerable accuracy and can generalize to novel texts, little has been
known about what regularities the network discovers about English
pronunciation. In this paper, the structure of the internal representa-
tion learned by NETtalk is analyzed using two varieties of multivariate
analysis, hierarchical clustering and factor analysis. These procedures
reveal a great deal of internal structure in the pattern of hidden unit
activations. The major distinction revealed by this analysis of hidden
units is vowel/consonant. A great deal of substructure is also apparent.
For vowels, the network appears to construct an articulatory model of
vowel height and place of articulation even though no articulatory fea-
tures were used in the encoding of the phonemes. This interpretation
is corroborated by an analysis of the errors or confusions produced by
the network; The network makes substitution errors that reflect these
posited vowel articulatory features. These observations subsequently
led to the discovery that articulatory features of place of articulation
and, to some extent, vowel height, are largely present in first-order cor-
respondences between vowel phonemes are their spellings. This work
demonstrates how the study of language may be profitably augmented
by models provided by connectionist networks.

Introduction

Speech synthesis is the translation of written text into an acoustic speech
signal. In most speech synthesis systems, two distinct knowledge sources are
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Revealing the Structure of NET'talk’s Internal Representations

used in the determination of the pronunciations of words: rules which encode
regularities, and a dictionary of exceptions to those rules which handle those
cases where the regularities break down. When a correspondence can be
predicted on the basis of regularities operating at some level, it can be
encoded more efficiently as a generative rule, such as the rule that when
the letter “c” occurs before a high, front vowel, typically spelled with the
letters “i”, “e”, or “y”, it is pronounced like an “s” as in “icy” or “center”
but like a “k” in other contexts. But even the best letter-to-sound rules
have exceptions, and so the rules must be augmented by a dictionary which
is checked before any rules are applied. This dictionary is generally used
with great frequency because the most frequent words in English are also
the most irregular.

NETtalk is a connectionist network model which learns the pronuncia-
tion of English text, represented as phonemes, or distinctive speech sounds
(Sejnowski & Rosenberg, 1986; 1987a; 1987b). No rules of pronunciation
were provided to NETtalk. Rather, the network reaches a reasonable level
of performance by being presented with a number of training examples and
being incrementally corrected using the back-propagation rule (Rumelhart,
Hinton & Williams, 1986).

Is NETtalk’s knowledge of pronunciations divided up in this way, be-
tween dictionary-like knowledge and rule-like knowledge? Since all knowl-
edge shares the same architectural/representational space in NETtalk, an
answer to that question is not immediately obvious. However, there is some
indication that both exceptions and regularities are learned. For example, it
learns correctly that “of” is pronounced /xv/ (see Appendix), even though
the letter “f” is not pronounced this way in any other case. On the other
hand, when trained on a 16,000 word selection from the entire 20,000 word
Webster’s Pocket dictionary, the network is able to generalize to the rest of
the corpus with an accuracy exceeding 90% correct phonemes. Moreover,
the confusions are usually between phonemes that are phonologically sim-
ilar. This ability to generalize to novel words indicates that the network
does much more than memorize specific input-output pairs as found in a
dictionary. But what exactly are the regularities that it discovers in English
pronunciation?

Many network models to date have been simple enough so that the func-
tionality of many of the hidden units could be discovered through direct
visual inspection of the unit activations and weight values. In larger net-
works, where one may have hundreds of hidden units and tens or hundreds
of thousands of weights, it becomes difficult or impossible to detect underly-
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Revealing the Structure of NET'talk’s Internal Representations

ing structures by such direct methods. We must turn to more sophisticated
techniques.

Analytical tools

Factor analysis

Factor analysis (eg. Harman, 1976; Rummel, 1967) is a well-known tech-
nique for attempting to account for the variance in a large number of vari-
ables in terms of a much smaller number of relatively independent underlying
factors. Factor analysis is based on the assumption of a linear model, mean-
ing that the observed variables must be predicted by a linear, weighted,
combination of underlying factors. Specifically, a factor is defined as

k
F = Z w,—X,',
1=1

where the w’s are the factor weights (to be estimated from the data) and
the X’s are the k original variables. The factor loadings are the correlations
between the final factors and the original variables.

Factors are determined in two stages. The initial factor extraction is
based on the method of principle-components analysis. The first principle-
component is that weighted combination of variables that accounts for the
greatest amount of the total variance in the data. The second principle-
component accounts for the greatest amount of variance not accounted for
by the first principle-component, and so on. The principle-components are
chosen so as to be mutually uncorrelated or statistically independent, but
are typically hard to interpret. Consequently, a second process is generally
performed where these initial factors are rotated.

Cluster analysis

A technique which makes fewer assumptions about the underlving form of
the data is cluster analysis (eg. Everitt, 1974). Here, items are progres-
sively grouped or clustered together based on relative similarity within a
cluster, and relative dissimilarity between clusters. The method is very sim-
ple: Given some matrix of similarities, cluster analysis iteratively merges
the two most similar clusters. Of course, there are many ways to determine
which groups are most similar. The three most common methods are “cen-
troid”, where the distance between two groups is defined as the average of
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Figure 1: The Architecture of NETtalk.

distances between all pairs of members in each group, “complete linkage” or
“farthest neighbor”, where the two groups are merged that have the nearest
most remote members, and “single linkage” or “nearest neighbor”, where
groups are merged on the basis of their nearest members. The resulting
clusters can be graphed as a dendogram, and cuts through the dendogram
yields the groups formed at that particular depth or distance.

A Brief Overview of NETtalk

NETtalk is composed of simple processing units arranged into layers. In
the experiments reported here, I used an architecture with three layers of
units and two layers of modifiable weights completely connecting successive
layers of units (see Fig. 1). The activation of a unit in the network can
take any value from zero to one. The connection strengths or “weights”
can have any value, positive or negative. Each unit computes a weighted
sum of unit activations times the weights from units in the layer below
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Revealing the Structure of NETtalk’s Internal Representations

and determines its output value according to a nonlinear function that is
zero for large negative inputs and monotonically approaches one for large
positive inputs. (Hopfield, 1984; Rumelhart et al., 1986). Thus, information
travels through the network, from the input layer to the intermediate layer
of “hidden” units and finally to the output layer. The input layer receives
information from an English text and the network produces a pattern of
activation at the output layer of units that is a representation of how the
input text should be pronounced. The representations on the input and
output layers are fixed, but those of the hidden units is constructed by the
learning procedure. The representations formed at this hidden layer are the
focus of the present work.

The pronunciation of a given letter is generally influenced by the sur-
rounding letters. Letter context was represented in the network by extending
the input layer out over seven letters, where each of the seven letter posi-
tions was represented by separate groups of input units (see Fig. 1). At
each sequential step, the network received input simultaneously from all the
letters that fell within the fixed-sized input window. Based on this informa-
tion, a guess was made as to the pronunciation of the middle letter of the
window in two steps: 1. the values of the output units were determined by
forward-propagating the activation of the input units through the network
to the output layer, then 2. the sum of the squares of the differences was
computed between the output units and each of the possible phoneme tar-
gets. The phoneme which minimized this distance was chosen as the guess
made by the network. !

Changes were computed for the weights following each forward-propagation
step, but these changes were actually incorporated into the weights only be-
tween words in order to reduce computation time. The output units were
compared, unit-by-unit, with the correct phoneme supplied to the network,
and the weight changes for internal connections were computed by recur-
sively applying back-propagation from the output layer to the input layer.
The seven-letter input window was then moved down one letter position in
the input text, and the process repeated. When the end of the corpus was
reached, the network continued at the beginning. (See Sejnowski & Rosen-
berg, 1986, 1987b for details on NETtalk and Rumelhart et. al, 1986 for
details on the error back-propagation algorithm.)

!This procedure for selecting the phoneme is slightly different from that previously
reported (Sejnowski & Rosenberg, 1986, 1987b).
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The Analyses

These multivariate techniques were applied to the analysis of the patterns of
hidden unit activities observed in NETtalk, where phonemes constituted the
variables of the analysis. For each phoneme, average hidden unit activations
were collected over all letter contexts. Since there were 80 hidden units in
this version of NETtalk, the representation of each phoneme at the hidden
layer was cast as an 80-dimensional vector. Pair-wise correlations between
these vectors were computed and this correlation matrix was submitted as
similarity data to cluster analysis and factor analysis. If phonemes were en-
coded as orthogonal dimensions in this space, then this correlation matrix
would have one’s along the diagonal (phonemes are correlated with them-
selves), but zero’s everywhere else. On the other hand, if there is structure
in the way the network represents phonemes, the phonemes might be found
to cluster together in some way.

Initial Training

A network with a single hidden layer of 80 units was trained on an eleven
thousand word selection from the full 20,000 word Websters Pocket Dic-
tionary. Phonemes and letters were both encoded using a local encoding,
where a single unit in each input and output group encoded a single letter or
phoneme. There were seven groups of 29 input units per group and a single
group of 55 output units with complete connectivity between layers. The
network made ten complete passes through this corpus, thus being trained
on a total of 160,000 words, of which 16,000 were different words. The order
of the words was randomized. Performance at this point in learning was
92% correct phonemes and 56% fully correct words on the training corpus.
From the remainder of the 20,000 word corpus, 1000 words were selected
at random. These words were not included in the training set. Learning
was turned off and the network was tested on this new corpus. 90% of the
phonemes and 49% of the words were completely correct.

Data Collection

With learning turned off, data was collected from this network as it went
through this 1000-word corpus of novel words. For each of 48 phonemes (the
three “special” symbols, /./, /-/, and /_/, and four other phonemes /!/, /K/,
/a/, and /|/ were dropped, the latter because they did not occur in the 1000
word corpus), hidden unit activations were averaged over all input windows
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that had that phoneme as it’s pronunciation. Trials where the network failed
to guess the phoneme correctly were not included in the means. Since the
network guessed 90% of the phonemes correctly, roughly ten percent of the
trials were thrown-out for this reason. ? Thus, an 80-dimensional vector
of mean activation values was constructed for each phoneme. The sample
correlation coefficient, r, then was computed for each pair of phonemes,
resulting in a 48 x 48 correlation matrix. Each cell in this matrix represented
the correlation of the pattern of hidden unit activity that resulted for the
ith and jth phoneme.

Results from Hierarchical Clustering

A hierarchical clustering of all the phonemes using the centroid clustering
method is shown in Fig. 2, where the dissimilarities, were defined as 1 —
r. This analysis revealed two major clusters, corresponding to vowels and
consonants. All phonemes on the left major branch are vowels, and nearly
all of the phonemes on the right-side are consonants, with the exceptions of
/*/ and /y/. Centroid clusterings are shown, though similar results were
obtained using complete linkage clustering.

Different organizational schemes are apparent within the two major
groups. Within the vowel group, the next major division is between the
“front” vowels, /i/, /1/, /E/, /e/, and /@/, where the sounds are produced
with the tongue towards the front of the mouth, and the “back” vowels, /u/,
/U/, /a/, /c/,and o/, produced more towards the rear of the mouth. Next,
the central vowels, /x/ and /~/ split off from the “back” group. Thus, the
major organizational principle within the vowel cluster appears to be place
of articulation. The next major division is based on the height of the tongue
when the sound is produced (“vowel height”), as the “high” phonemes, /i/
and /I/ split off from the “low” phonemes /e/ and /@/, with the mid-vowel,
/E/, falling between the two groups. The same phenomena occurs for the
back vowels, where the low /o/ and /a/ group are distinguished from the
high /U/ and /u/.

The consonant cluster appears to quickly divide into anywhere from five
to ten major groups. Unlike the vowels, the consonant clusters correspond to
place of articulation only weakly. Rather, they seem to cluster around typi-
cal input letters. For example, one major grouping consists of the phonemes
/T/, /ID/, /C/, /S/ and /t/: these are the phonemes that the letter “t”

?However, the pattern of results does not change significantly if this requirement is
relaxed.
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All Phonemes

12

Figure 2: Hierarchical clustering results for 48 phonemes.

typically corresponds to. Another grouping are the phonemes /#/ and /X/.
These are the phonemes for the letter “x”. With few exceptions, the same
pattern follows for the “m” group (/M/, /m/), the “s” group (/s/, /z/, /Z/),
the “n” group (/n/, /N/, /G/), the “p” group (/f/, /p/), and the “g” group
(/8/, 13])-

Results from Factor Analysis

A set of ten non-dipthong vowels were selected for factor analysis. Since
dipthongs, such as /A/ in the word “bite”, involve a change in the place of
articulation and height during the course of their pronunciation, it was not
desired to complicate matters by including these more ambiguous vowels in
the data set. A 10 x 10 correlation matrix was prepared and submitted to
a Varimax rotated orthogonal factor analysis. Three factors were extracted,
which together accounted for 68% of the total variance. The rotated factors
are presented in Table 1. Factor loadings less than 0.55 are generally con-
sidered unreliable (Comrey, cited in Kim & Mueller, 1978). Loadings less
than 0.25 were deleted in Table 1.

The results from the factor analysis in general confirmed the analysis
based on clustering, that the vowels organized according to place of articu-
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SORTED ROTATED FACTOR LOADINGS

PHONEME FACTOR FACTOR FACTOR
1 2 3
c /cAUght/ 0.805
a /fAther/ 0.771 0.345
€ /bAt/ 0.746 -0.266 0.372
u /boot/ 0.909
U /bO0Ok/ 0.901
~ /bUn/ 0.469 0.516
i /bEAt/ 0.808
1 /bIt/ 0.788
X /womEn/ 0.411 0.278 0.676
E /bEt/ 0.499
Var explained 23.04% 22.42% 22.37%
Cumm var 23.04% 45.46% 67.83%

Table 1: Three factors and accompanying factor loadings extracted from a
Varimax rotated orthogonal factor analysis employing 10 vowels as variables.
Zero factor loading was 0.25.

lation and vowel height. The three vowels that loaded highest on the first
factor are the low vowels, /c/, /a/ and /@/, which suggests the interpreta-
tion of the first factor as a “lowness” factor. /u/ and /U/ both loaded high
on Factor 2, leading to the interpretation that this factor relates to “back-
ness”. /I/ and /i/ both load high on the third factor, suggesting that this
factor describes “frontness”. A bit of an anomaly is the high loading of the
schwa /x/ on this “frontness” dimension. Thus, Factor 1 was interpreted
as representing vowel height, but two factors, Factors 2 and 3, represented
place of articulation.

It was desired to collapse these three factors to two dimensions so that
they could be compared to known relationships between place and height.
Standard values for place of articulation and vowel height can be found
in any introductory linguistics textbook. The set of values used for the
purposes of this analysis are plotted in Fig. 3.

Using least-squares linear regression, weights were found to predict these
true values of place of articulation and vowel height based on the factor
loadings on the three factors for each vowel. Excellent fits were found in
both cases. For “place”, r = 0.96, F(3,6) = 25.37, p < 0.001, and for
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Target Vowels
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Figure 3: “Place of articulation” and “vowel height” attribute values for the
set of ten vowels used the analysis.

“height”, r = 0.96, F(3,6) = 23.41, p < 0.N05. These two dimensions were
not orthogonal, but were negatively correlated with each other, r = -.079.
The factor loadings were then substituted back into the regression equations
and the derived estimates for “place” and “height” are plotted in Fig. 4.
Thus, the pattern of results from the factor analysis largely agreed with
the results based on hierarchical clustering: the representation of vowels at
the hidden layer of NETtalk appears to be organized around two articulatory
features of vowels, place of articulation and vowel height. In addition, the
clustering of all of the phonemes suggests that the vowels and consonants
are represented by distinctly different patterns of hidden unit activation.

Results from Confusion Data

If the internal representations of vowels and consonants are structured in
the way suggested by the previous analysis of the hidden units, then these
patterns ought to be reflected in the overt behavior of the network. For ex-
ample, if vowels and consonants are as distinguishable as they appear to be,
then the network should rarely confuse them, by guessing a consonant when
the target was a vowel, and visa versa. We might also expect the structure of

546



Revealing the Structure of NET'talk’s Internal Representations

Vowels (Fitted) - Hidden Units
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Figure 4: Fits based on linear regression of the three factor solution on the
attribute dimensions “place of articulation” and “vowel height”, plotted in
Fig. 3. Data based on hidden unit activations. The groupings are based on
a centroid hierarchical cluster analysis of the original correlation matrix.

the internal representation of vowels to be reflected in the pattern of confu-
sions displayed, so that more confusions should be apparent between nearby
vowels in articulatory space, than between more distant vowels. Of course,
this would improve the intelligibility of NETtalk, since mistakes would be
limited to similar phonemes. The following experiment was designed to test
this prediction.

With learning turned off, the network went through the same 1000-word
corpus used in the previous experiment. For each of the 48 phonemes ex-
amined previously, the guesses made by the network were recorded. These
responses were cast as a 48 x 48 confusion matrix, where the rows were
the target phonemes and the columns were guesses or responses made by
the network to that target. The fraction of the time the network guessed
phoneme j in response to target : was recorded in the ith x jth cell of the
matrix. Correlations were computed between each of the target phonemes
(rows) of the confusion matrix, and the resulting correlation matrix was
clustered using the “centroid” or “average” clustering procedure. The re-
sults are shown in Fig. 5. Similar results were found using the complete
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Confusions: All Phonemes
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Figure 5: Hierarchical cluster analysis of ten vowels, based on the pattern
of confusions produced by NET'talk.

linkage clustering procedure.

Besides four pairs of consonants that were consistently confused, /D/
and /T/,/J/ and /Z/, /n/ and /N/, and /X/ and /#/, nearly all of the dis-
similarities are quite high - the network simply did not confuse very many of
the phonemes. This lack of structure makes any analysis difficult. However,
more confusions were made on the vowels than the consonants, and some
structure is apparent. Three main clusters form, conforming fairly closely
to “front” (/i/, /E/, /1/), “back” (/u/, /U/), and “not-high” (/x/, /@/,
/a/, /c/, /o/). The dipthongs, /W/, /e/, /Y/, /|A/ and /O/, are more dif-
ficult to interpret for reasons given previously. The “not-high” group then
appears to split further into what might be called a “back, not-high” group
(/a/./c/, [o/) and a “not-back, not-high” group (/@/, /x/).

A factor analysis extracted a set of four factors which are very similar to
the groups observed in the cluster analysis. As before, least-squares linear
regression analysis was used to predict vowel height and place of articulation
from the factor loadings. The fitted dimensions are plotted in Fig. 6. Fits
to the attributes were not quite as good as in the hidden unit analysis. The
correlation, r, between the fitted dimension for “place” and the attribute
vector was 0.87, F(4,5) = 3.92. For “height”, r = 0.85, F(4,5) = 3.35. Both
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Figure 6: Fits of “place of articulation” and “vowel height”, based on linear
regression of the four factor solution on the attribute dimensions plotted
in Fig. 3. Data was based on confusions. The groupings are based on a
centroid hierarchical cluster analysis of the original correlation matrix.

F-tests narrowly failed to reach significant levels.

The overall pattern of results from the confusion data is similar to that
found previously based on hidden unit activations: 1. vowels tend to be
confused with vowels, and consonants with consonants, and 2. vowels that
were similar to each other in terms of place of articulation and height were
more likely to be confused.

Letter-to-Phoneme Correspondences

Why should vowels organize around these articulatory dimensions? Appar-
ently, there is a “map” of articulatory features hidden in letter-to-phoneme
correspondences for vowels, a map which does not exist (at least not to the
same extent) for consonants. Upon closer inspection of first-order letter-to-
phoneme correspondences, this was found to be true.

First-order correspondences between vowel letters and their pronuncia-
tions in the Websters corpus were investigated in much the same way as
the hidden activations and confusions were analyzed previously. The full
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a e i o] u y other
a 32.5 0.6 0.2 66.7 0.0 0.0 0.0
c 42 .4 0.0 0.0 57.6 0.0 0.0 0.0
i 0.0 35.4 25.4 0.0 0.0 39.1 0.0
u 0.0 3 0.0 45.7 50.5 0.0 0.0
X 24.8 15.0 20.6 25.7 13.5 0.5 0.0
E 6.2 93.6 0.0 0.0 0.1 0.0 0.1
I 2.1 17.9 176.9 0.1 0.1 3.0 0.0
u 0.0 0.0 0.0 50.0 50.0 0.0 0.0
e 99.9 0.0 0.1 0.0 0.0 0.0 0.0
» 0.0 0.0 0.0 6.3 93.8 0.0 0.0

Table 2: Frequency with which the ten vowel phonemes are spelled by the

(T DR T | R T 5.5 S T, | B T | |

letters “a”, “e”, “i’, “0”, “u”, and “y”.

Websters corpus of 20,000 words was searched for the percentage of times
each of the ten vowel phonemes was spelled with each letter. The result
was cast as a 10 x 7 matrix, where the rows correspond to the phonemes
and the columns to their spelling. These percentages are presented in Table
2. As can be seen by inspection, there are obvious correlations between
the phonemes in their spelling, and that these correlations agree, to some
extent, with the articulatory dimensions of place and height. For example,
the high-front vowels /I/ and /i/ both frequently correspond to the letters
“e” and “i”. The low-back vowels, /u/ and /U/ both frequently correspond
to “o” and “u”. Performing a factor analysis on this data, again using
Varimax orthogonal rotation, four factors were found to account for 89%
of the variance. As before, linear least-squares regression was performed
in order to predict the attribute dimensions of “place of articulation” and
“vowel height”. “Place” was predicted well, the correlation between the
attribute values and the predicted values being 0.95, F(4,5) = 12.98, p <
0.001. “Height” was predicted less well, » = 0.79, F(4.5) = 2.06, p < 0.25.
Estimates for “height” and “place” based on the regression of the factor
loadings on the attribute dimensions are plotted in Fig. 7.

These regularities inherent in these first-order letter-to-phoneme cor-
respondences go far in explaining the previous hidden unit and confusion
results: Similar phonemes, where similarity is based on place of articulation
and vowel height, overlap in the letters with which they are typically spelled.
This “map” of articulatory features is hidden within letter-to-phoneme cor-
respondences for vowels. However, “height” was not as well represented in
this first-order data as it was in the previous analyses using NETtalk. This
suggests that that vowel height, unlike place of articulation, may require
information from several letters to be adequately predicted. If true, then
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Figure 7: Fits of “place of articulation” and “vowel height”, based on linear
regression of the four factor solution on the attribute dimensions plotted in
Fig. 3. Data was based on correspondences between phonemes and letters.
The groupings are based on a centroid hierarchical cluster analysis of the
original correlation matrix.

networks with only a single input group and output group ought to exhibit
a similar disadvantage in the acquisition of vowel height.

Conclusions and Directions for Future Research

Summing up, vowels and consonants are encoded at the hidden layer of
NETtalk as distinctly different patterns of activation. Within these two cat-
egories, vowels organize according to place of articulation and vowel height,
whereas the consonants seem to organize around input letter. The pattern
of confusions or errors produced by the network are similar to those observed
at the hidden layer.

These observations led me to go directly to the training corpus, the Web-
ster’'s Pocket dictionary, to investigate letter-to-phoneme correspondences
for similar regularities. Surprisingly, articulatory features were found to be
largely present in first-order correspondences between phonemes and letters;
It is possible to reconstruct a fairly accurate map of vowel height and place
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of articulation using distances derived from the dissimilarities between the
vowels in terms of their spellings. In short, similar vowel phonemes are
spelled in similar ways. To my knowledge, this regularity has not been de-
scribed previously but can be seen as a useful property of language since
it makes it possible to make a good guess about the spelling of a word by
“sounding it out” phonetically.

All of the hidden unit analyses reported here were based on averaging
activity levels over all inputs for a given phoneme. A similar analysis has
been performed for letter-to-phoneme correspondences (Sejnowksi & Rosen-
berg, 1987b), and even more could be learned by examining graphemes and
other letter combinations at the hidden layer. For example, we have clus-
tered hidden unit activation patterns in contexts in which the letter “c” is
at the center, and have found regularities and subregularities in the coding
scheme even for irregular cases (Sejnowski & Rosenberg, 1987a).

There is a great deal that could be learned about language and about
representation from analyzing larger connectionist networks, once analyti-
cal tools have been appropriately adapted for this purpose. Judging from
previous studies of small networks for problems such as XOR and the en-
coder problem, it is possible that NETtalk solves certain problems in letter-
to-phoneme translation in elegant and perhaps novel ways. It also seems
possible that similar kinds of techniques to those found useful in analyz-
ing model systems such as NETtalk, may eventually be applicable to the
understanding of how knowledge is organized in real neural systems.
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Appendix
Table of Phonemes

Phoneme | Sound Phoneme | Sound
/a/ father /c/ chin
/v/ bet /n/ this
/c/ bought /E/ bet
/d/ deb /6/ sing
/e/ bake /1/ bit
/£/ fin /3/ gn
/g/ guess /X/ sexual
/n/ head /L/ bottle
/i/ Pete 14" absym
/x/ Ken /u/ button
/1/ let /0/ boy
/n/ met v quest
/n/ net /R bird
/o/ boat /s/ shin
/p/ pet /T/ thin
/o/ uh-oh /v/ book
/x/ red /N/ bout
/8/ sit /x/ excess
/t/ test /Y/ cute
/n/ lute /z/ leisure
/v/ vest /¢/ bat
/e/ wet /Y7 Nazi
/x/ about /%/ examine
/y/ yet /+/ one
/z/ zoo /\/ logic
/N bite /°/ but

Output representations for phonemes and punctuations. The symbols
for phonemes in the first column are a superset of ARPAbet and are associ-
ated with the sound of the italicized part of the adjacent word. Compound
phonemes were introduced when a single letter was associated with more
than one primary phoneme. The continuation symbol, /-/, not shown here,
was used when a letter was silent.
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