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ABSTRACT OF THE THESIS

Application of Deep Neural Network and 3D Data for Seismic Risk Mitigation

by

Peng-Yu Chen

Master of Science in Statistics

University of California, Los Angeles, 2021

Professor Ertugrul Taciroglu, Co-Chair

Professor Ying Nian Wu, Co-Chair

Seismically vulnerable, especially collapse-prone, buildings often represent the greatest life-

safety hazard worldwide. Identifying these buildings is the first step in seismic risk mitigation

efforts for a given urban region’s resilience. This thesis aims to devise a workflow for the

application of state-of-the-art deep neural networks (DNNs) for detecting and classifying

seismically vulnerable buildings using three-dimensional point clouds. A number of prior

studies have focused on using 2D image data in the field of structural health monitoring for

damage recognition. The performance of those approaches for building classification at re-

gional scales is highly dependent on well-controlled imagery data and may not be guaranteed

when applied to real-world data. The present study, therefore, differs from prior studies in

that it uses 3D point clouds, which implicitly contain depth information that can become

a highly useful feature for training DNNs. Here, a specific DNN, namely, PointNet, is used

for detecting soft-story buildings, which are ubiquitous in west-coast cities of the US. A

workflow is devised for binary classification of point clouds into soft-story and non-soft-story

points as well as the segmentation and association of classified point clouds with specific
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addresses. Over 10 billion point clouds obtained from the city of Santa Monica in California

are manually labeled and split into training, validation, and testing sets, and the sensitive

ranges of DNN hyperparameters are investigated to obtain the good performance.
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CHAPTER 1

Introduction

1.1 Background and Motivation

The vulnerability of soft-story buildings has been identified in past earthquakes including

the 1971 San Fernando, 1989 Loma Prieta, and 1994 Northridge earthquakes. A typical

weakness of soft-story buildings is the open-space configuration on lower story, which is

usually designated for parking or commercial space. A lower wall density is designed in

these spaces to improve accessibility, leading to inconsistent structural stiffness and hence

called a "soft-story" building (shown in Fig1.1). The existence of these seismically vulnerable

buildings may affects the losses (e.g., repair, replacement), post-earthquake occupancy rates,

economic recovery, and even the number of fatalities during an earthquake, all of which are

important for quantifing seismic resilience [3].

To enhance seismic resilience, many cities have established mandatory policies to retrofit

soft-story buildings to mitigate their seismic risk (San Francisco, 2013; Los Angeles, 2015;

Santa Monica, 2017). Burton et al.[4] evaluated the seismic performance of soft-story build-

ings in Los Angeles (LA) and compared the collapse capacity of existing buildings and

retrofitted buildings following the LA ordinance. The average collapse capacity of archetype

soft-story buildings was 50% after the retrofit. A follow-up study done by Kang et al.[17]

showed that the LA ordinance led to a 64% reduction in the time required to recover oc-

cupancy. These studies demonstrate the importance of identification and retrofitting of

seismically vulnerable buildings at a city scale.
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(a)

(b)

Figure 1.1. Typical soft-story buildings.

Although the nominal demand to identify soft-story buildings continues to increase, the

process remains laborious and time consuming. The first step is the screening process to

identify buildings of concern. Licensed professional engineers then conduct onsite inspections

and file a report to the government authorities. This process is cost- and time-intensive for

both the residents and the government. An automated process for the identification of

soft-story buildings is hence indispensable.

The open space at the lower floor is an obvious feature that can be used to rapidly identify

soft-story buildings. Because it is easy to get imagery data through public-access map ser-
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vices (i.e., Google street map), many studies hence tried to develop automatic methods that

use these street-view images to identify soft-story buildings and reduce the labor-intensive

site investigation. In recent years, automatic detection has been greatly implemented due

to the development of artificial intelligence (AI) and deep learning (DL) in computer vi-

sion technology. For example, recent studies have applied DL models to identify soft-story

buildings in street-view images (Wu et al.[40, 41]; Yu et al.[42]). These studies, in which

DL models were trained on Google Street View images from several cities, reported promis-

ing results if the target building was not occluded by objects such as trees and cars. The

detection confidence and accuracy decrease the more the buildings are blocked by objects,

as shown in Fig1.2. To overcome this limitation of street-view image-based methods, 3D

point-cloud data can be used to capture the soft-story features of buildings that are blocked

or do not face the street.

(a) (b) (c)

Figure 1.2. Soft-story detection with (a) non-blocked, (b) partially blocked, and (c) fully

blocked images. (adapted from [40, 41])

1.2 Prior Studies: Convolutional Neural Networks

Convolutional neural networks (CNNs) are at the core of recent DL development. Distin-

guished from traditional computer vision and machine learning (ML) techniques, CNNs have

the ability to capture millions of parameters learned from imagery data (pixel matrix) and
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to avoid selection of features. Many well-designed CNN architectures, such as VGGNet [34],

GoogLeNet [37], and ResNet [15] have demonstrated their dominance in image-recognition

tasks. VGGNet was the winner of ImageNet[9] in 2014. There are two versions, VGG16 and

VGG19, which consist of 16 and 19 hidden layers, respectively. The numbers of convolutional

blocks and fully connected layers are implemented within the hidden layers. The VGGNet

filters are all 3 × 3, and approximately 138 million parameters are trained in VGGNet.

Inception net was named after the movie "Inception", which includes the line "we need to

go deeper." While Inception has 27 layers, it only contains 6.4 million trainable parameters

due to its extensive use of 1 × 1 filters, which limits the number of input channels. Incep-

tion dominates the classification task in ImageNet after VGGNet. ResNet was developed

to address the vanishing gradient problem in back-propagation, which is triggered when

deep CNN architecture is used. With the introduction of residual blocks with implemented

identification functions, it is easier to find the derivative in the gradient descent method.

However, this again increases the computational cost. For example, 60.3 million parameters

are trainable in ResNet with 152 residual blocks.

In civil engineering, several studies have applied CNN-based models at detection and

localization of structural damage. For example, Zhang et al. [44, 43] developed a CNN-based

pixel-level crack detection model, CrackNet, which outperforms traditional ML methods for

detecting cracks on asphalt pavement. Alipour et al. [2] proposed a CNN-based model,

CrackPix, to detect crack damage based on patch-level images, which allowed random-size

input images. Cha et al. [5] designed a CNN architecture to detect crack damage in concrete

structures, and their model was less-sensitive to real-world situations (e.g., lighting, shadow

changes). In addition to the implementation in imagery data, Kumar et al. [21] proposed

a DL-based object-detection model for automated defect classification and localization in a

closed-circuit television video of sewers. Three object-detection models, SSD [24], YOLOv3

[30], and Faster R-CNN [31] were evaluated for accuracy and speed in defect detection. The

Faster R-CNN model demonstrated the highest accuracy in sewer inspection but required
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the most computational time.

While above-mentioned CNN models dominate many tasks in image classification, object

detection, and semantic segmentation, the training of them from scratch is time-consuming

and requires large amounts of data. To address this issue, transfer learning (TL) was de-

veloped to improve the training process and performance of CNN-based models (Pan et

al.,[26]). In TL, knowledge learned from well-trained models on a base data set is trans-

ferred to a new model for retraining or fine-tuning on a smaller data set and task. Gao

et al.[12] implemented TL for vision-based damage recognition at the pixel, component,

and structural levels. In their study, the VGGNet model was retrained and fine-tuned for

multi-label structural-damage classification tasks. [20] established a region-based fully con-

volutional network to detect construction equipment for site management, where the ResNet

model was implemented as the base model in TL. Kalfarisi et al.[16] developed two DL-based

approaches for crack detection and segmentation. The first approach integrated Faster R-

CNN with structured random forest edge detection[10], whereas the second approach applied

Mask R-CNN[14] with pretrained CNN models. Their results showed that Mask R-CNN with

Inception-ResNet-V2[36] network architecture obtained higher crack detection and segmenta-

tion performance. In addition to component damage recognition and detection, some studies

have implemented DL techniques for classification and detection at the regional scale. Kang

et al.[18] trained VGGNet, GoogLeNet, and ResNet based on street-view images to classify

building land use, and Srivastava et al.[35] used CNN models to classify land use based on

aerial and street-view images.

1.3 Prior Studies: CNN based on 3D data

Compared to studies using CNN for 2D data, limited researches have been done in civil

engineering for 3D data. For example, three-dimensional point-cloud data have been recently

studied to reconstruct infrastructural models for facility management [8, 6], and post-event
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damage evaluation [19, 45]. Unlike the dominance of 2D CNN models, deep CNNs based on

point clouds still have room to to be improved. One main limitation is the sparsity of point

cloud data. An unordered characteristic and a highly variable point density make it difficult

to be implemented.

Most often approaches to address this issue including:

• Transfer 3D point clouds into 2D images, and apply state-of-the-art CNN models

[33, 39]. However, this approach results in loosing 3D information of objects. For

example, the relative location of objects is highly depending on the perspective of

where images are taken.

• Convert point-cloud data to volumetric forms like voxel grids and generate images

[11, 25]. Nevertheless, the computational and memory costs will cubically grow with

the resolution of voxels.

• Another method to detect 3D objects is inferring 3D bounding boxes directly from 2D

images [7], yet the accuracy of 3D detection based on 2D images is unreliable.

To overcome these disadvantages, a 3D CNN structural that directly deals with point-cloud

data, PointNet [28], has recently been developed. With a simple architecture, PointNet can

process raw point clouds without transforming them into other forms, work in real-time, and

provide promising results for 3D object classification and semantic segmentation. It is hence

selected in this study to identify seismically vulnerable buildings.

1.4 Objectives

In this study, a workflow is proposed aiming to use PointNet to identify and segment soft-

story buildings at a city scale. Besides, the segmented point-cloud sets are converted into

geolocations so that real-world addressed can be obtained for further investigation. The

overall scheme of this study is illustrated in Fig 1.3. The contributions of this study are

6



improving the limitations of using 2D street-view images for identifying soft-story buildings,

and the first attempting of using point-cloud data for regional segmentation and classifica-

tion.

Figure 1.3. Scheme of the proposed workflow.
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CHAPTER 2

Proposed Workflow

In this chapter, a city-scale point-cloud data with ground-truth labeling is first elaborated

and followed by a detailed introduction of the 3D deep learning model, PointNet. The train-

ing, validation, and testing process are then described. Clustering methods used to predict

building point clouds are then discussed. The final ingredient of the proposed workflow,

namely, the geolocating address of soft-story building is explained at the end.

2.1 Data Preparation

The city of Santa Monica in southern California is selected as the target city in this study. It

has been studied by many researchers [40, 41, 42] because the city government has done many

works to identify seismically vulnerable buildings and retrofit them since 2017. A publicly

accessible geographic information system (GIS) database (https://gis-smgov.opendata.

arcgis.com/app/seismic-retrofit-map) that records all addresses is hence usually used

as the ground-truth location. In this study, the ground-truth address and the building

footprint (i.e., geometric boundary of the building property) are used to label point-cloud

data into two classes, namely soft-story and non-soft-story points.

The point-cloud data used in this study was generated through the photogrammetry due

to its affordability. In photogrammetry, evenly distributed points on images that depict

an object were used to estimate the camera position with known and georeferenced 3D

coordinates [38], and the output is a set of point clouds with coordinates and appearance
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textures (e.g., R, G, B). For Santa Monica, 1.1 billion point-cloud data points were generated,

covering 18.16 km2 at a density of 60 points/m2. An example of the generated point clods

is shown in Fig 2.1, and the statistical data is shown in Table 2.1

Figure 2.1. Scheme of the proposed workflow.

Table 2.1. Statistics of point clouds.

Soft-story points 51,377,865

Non-soft-story points 1,056,267,016

Total points 1,107,644,881

Number of soft-story buildings 1,453

As the statistical data shows, the number of soft-story points takes less than 5% of total

points. If these data is directly used to train a deep learning model, the overfitting will

occur and the prediction will be very unreliable. Hence, small sets of regions are selected to

narrow down the problem scale. As shown in Fig 2.2, 13 regions (covered by red polygons)

including 1048 soft-story buildings are selected, which has around 3.25 km2 and is later

split into training, validation, and testing sets for the PointNet. Meanwhile, to reduce the
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labor-intensive work of labeling, a heuristic algorithm is developed to collect and label all

soft-story points as shown in Fig 2.3.

In the heuristic algorithm, all points in a selected regions are first classified into either

building or non-building class. The training set for this classifier is different from the target

region of the City of Santa Monica. It comes from a large scale out-door point-cloud data

set, namely, Semasntic3D.Net (http://semantic3d.net/)[13], which consists of over four

billion manually labelled points. The objective of Semantic3D was to build a large-scale data

set similar to ImageNet[9] and specifically for point-cloud data.

In their study, CNN-based model used voxel grids to classify point cloud into 8 categories

including: (1) man-made terrain: mostly pavement; (2) natural terrain: mostly grass; (3)

high vegetation: trees and large bushes; (4) low vegetation: flowers or small bushes which

are smaller than 2m; (5) buildings; (6) remaining hard scape: a clutter class with for in-

stance garden walls, fountains, banks; (7) scanning artifacts: artifacts caused by dynamically

moving objects during the recording of the static scan; (8) cars and trucks. An example of

Semantic3D.Net is shown in Fig 2.4(a). Their model was trained for a binary classification

task, namely, building or not. The heuristic algorithm goes through each selected region and

collect points that belong to buildings as shown in Fig 2.4(b).

Once all building points are collected, the algorithm then checks whether the building

points locate in soft-story polygon or not. The ground-truth polygons obtained from Santa

Monica GIS database contain geolocations (i.e., latitude, longitude) of building boundaries

which can be used to check if those building points are within boundaries. If the point is

within a polygon, it will be segmented and labeled as soft-story point (as shown in Fig 2.5).

An example of a segmented soft-story building is shown in Fig 2.6. The total number of

soft-story points is 7,835,315, and the number of non-soft-story is 13,512,918. This data will

be further discussed in the next section for training the 3D deep learning model.

10
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Figure 2.2. Selection of target regions.
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Figure 2.3. Heuristic labeling flowchart.
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(a)

(b)

Figure 2.4. Semantic3D segmentation: (a) example[13], and (b) segmented result in se-

lected region.
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Figure 2.5. Segmentation using building polygons.

Figure 2.6. An example of soft-story building points.

2.2 3D Deep Learning: PointNet

This section introduces the 3D deep learning model PointNet that used for detecting and

identifying soft-story point clouds. As shown in Fig 2.7 (a), PointNet consists of several

multilayer perceptrons (MLPs) and fully connected networks (FCs). The input data is raw

14



point clouds with 3 coordinates (i.e., x, y, z), and it is followed by a mapping to high

dimensions (e.g., 64 and 1024) through shared MLPs. An invariant function is used to

capture the global features for classification, namely, the maximal pooling. The reason of

using invariant function is because point clouds do not like image data where the order

of pixels is correlated with the features learned by the model. These global features are

then followed by FCs and transformed into k categorical scores. For the segmentation, the

local features of point clouds (i.e., relative location of objects) are considered through the

concatenation with the global features (i.e., 64 local + 1044 global).

In MLP network, layers of artificial neurons are connected by weighted edges and are

denoted as nij for the j − th neuron in the i− th layer. The input to a neuron nij as known

as the "net" denoted vij, is the weighted sum of all incoming edges plus an optional bias. Its

output fi(vij) = oij is computed by applying the i− th layer’s activation function fi to vij.

By arranging the weights of each layer into a matrices, the output of the i − th layer of a

MLP can be computed as Eq. 2.1

oi = fi(vi) = fi(W T
i oi−1 + bi) (2.1)

During the learning process, back-propagation is often used with gradient descent to

minimize the network error expressed in Eq.2.2 where ŷ(l) is the l − th prediction made by

the network.

m∑
l=1

E(l) =
m∑

l=1

1
2 ||y

(l) − ŷ(l)||2 (2.2)

To update the weights and biases of the network, the chain rule is implemented to prop-

agate the error from the output layer to the j − th neuron in the i− th layer. As shown in

Eq. 2.3, v(l)
ik is the k − th neuron’s net in the i− th layer, and o(l)

(i−1)j is the j − th neuron’s

15



output in layer i− 1. γ is the learning rate.

∆w(l)
ijk = −γ ∂E

(l)
k

∂v
(l)
ik

ol
(i−1)j (2.3)

Take the k−th component as an example, the o(l)
(i−1)j can be expressed as Eq.2.4. The update

rule for the output neuron is then changed to Eq.2.5.

o
(l)
(i−1)j = ∂v

(l)
ik

wijk

= ∂

∂wijk

(wi1ko
(l)
(i−1)1 + · · ·+ wijko

(l)
(i−1)j + · · ·+ wiNko

(l)
(i−1)N) (2.4)

∆w(l)
njk = −γ(y(l)

k − ŷ
(l)
k )f ′

i (v
(l)
nk)o(l)

(n−1)j (2.5)

As for hidden layer, the update is shown in Eq.2.6. To update the bias weights, o(l)
i−1 needs

to be replaced with 1.

∆w(l)
ijk = −γ

Ni∑
c=1

∂E(l)
c

∂o
(l)
ik

f
′

i (v
(l)
ik )o(l)

(i−1)j = −γ
Ni∑

c=1

∂E(l)
c

∂v
(l)
(i+1)c

∂v
(l)
(i+1)c

∂o
(l)
ik

f
′

i (v
(l)
ik )o(l)

(i−1)j (2.6)

In addition to the invariance of input order, another important consideration that Point-

Net makes is the transformation invariance, which is addressed through a transformation

network (T-Net). As shown in Fig 2.7 (b), T-Net also uses MLPs and FCs to learn a set of

variables for the location transformation. The output variables can be adopted as a matrix

multiplier (e.g., 3x3, 64x64) to the input raw points. Through these architectures, point

clouds can be directly use as input data without any formation transformation. In this

study, the task of PointNet is a binary classification, where the output is labeling the point

clouds with either 0 (non-soft-story) or 1 (soft-story). The implementation of PointNet in

this study is conducted on a TensorFlow [1] platform using a self-assembled computer with a

single GPU (CPU:Intel(R) Core i7-8700 @ 3.20 GHz, RAN:16.0 GB, and GPU:Nvidia RTX

2080).

A real-world implementation of PointNet done by Qi et al.[7] is shown in Fig 2.8, where

indoor objects are identified into multiple categories. In their implementation, raw point

16



clouds are scanned by a unit block with size 1m by 1m and a 1m stride. The idea behind this

is similar to the kernel filter (e.g., 3x3, 5x5) that widely used in the 2D image classification

task. The block size, stride, and the number of points in each block are further investigated

in this study as hyper-parameters. It will be discussed in the next chapter. An example of

the identification of soft-story points is shown in Fig 2.9

(a)

(b)

Figure 2.7. PointNet Architecture: (a) full structure; (b) T-Net (adapted from [28]).
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Figure 2.8. Implementation of PointNet structure.

Figure 2.9. PointNet prediction: soft-story points.

2.3 Locations Identification: Clustering Methods

As shown in Fig 2.9, sparse green dots (i.e., classified as soft-story points) can be observed.

These points should not belong to building groups (i.e., obvious green clusters), and hence

need to be removed before the real-world addresses are generated from the prediction. Specif-

ically, two widely used clustering methods (i.e., K-means [23], Gaussian mixture model [32])

are implemented to conclude the real building points (i.e., clusters), and the centers of
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the clusters are further mapped into the real-world addresses through Google Map API

(https://pypi.org/project/googlemaps/1.0.2/). This postprocessing is implemented

with the programming language Python and well-developed machine learning package scikit-

learn[27].

For the Gaussian mixture model (GMM), k independent Gaussian distributions are used

to model k separate clusters with mean µk and covariance matrix Σk. The model has the

form expressed in Eq.2.7, and the goal is to maximize the posterior probability that point i

belongs to cluster k as shown in Eq.2.8

p(xi|θ) =
K∑

k=1
πN (xi|µk,Σk) (2.7)

p(yi = k|xi, θ) = p(yi = k|θ)p(xi|yi = k, θ)∑K
k′=1 p(yi = k′|θ)p(xi|zi = k′, θ)

(2.8)

The algorithm starts with the initialization of µ, Σ, and the probability of point i belongs

to cluster k (p(yi = k) = πk). Through maximizing the posterior, each point can be labeled

and new µ, Σ, and π can be obtained. The posterior can be further computed and used to

update variables like the above mentioned. The time to reach the convergence depends on

the size of data and the number of clusters.

While GMM provides a probability description of clusters, K-means is a non-probabilistic

clustering algorithm. In K-means, Σk =σ21, and πk = 1/K. Only the cluster centers µk have

to be estimated. The most probable cluster for xi can be computed by finding the nearest

prototype expressed in Eq.2.9.

y∗i = argmink||xi − µk||22 (2.9)

The algorithm starts with the initialization of the cluster center µk and the assigning each

point i to the closest cluster center k. Once all points have been assigned, new central points

can be recalculated and used for the new assignment. These two methods are implemented

through the scikit-learn package in this study and their performance will be discussed in the

next chapter.
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2.4 Chapter Summary

In this chapter, components in the proposed workflow are introduced. It starts with the

data preparation where the photogrammetry is implemented to generate city-scale point

clouds at Santa Monica. A heuristic algorithm is then introduced to help label data. The

algorithm uses a pretrained classifier using Semantic3D out-door data set to identify building

points. Ground-truth polygons are utilized to further label soft-story-building points and

non-soft-story-building points.

A DNN model that is able to train on raw point clouds is implemented in the workflow,

namely, PointNet. In PointNet, multi-layer perceptrons and invariant functions are the main

components that are able to address the sparsity and the unordered characteristic of point

clouds. Finally, two classic clustering methods (i.e., K-means method, Gaussian mixture

method) are included into the workflow for concluding the center of each building-point set,

which is further transformed into the geographic location and real-world address.
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CHAPTER 3

Results Analysis and Discussion

In this chapter, the performance of PointNet with multiple hyperparameters will be discussed

first. The purpose is to identify the optimal hyperparameters for the proposed workflow.

Meanwhile, the performance of clustering methods are also evaluated through the comparison

with the ground-truth addresses.

3.1 Performance of PointNet and Hyperparameter Tuning

The labeled points shown in Table 2.1 are randomly split into training (80%), validation

(10%), and test (10%) sets. 10-fold cross-validation is implemented to train PointNet and

investigate the optimal hyperparameters (i.e., block size, stride, number of point in a block).

The ranges of hyperparameters are limited due to the computational resource used in this

study. The block size includes [30m x 30m, 50m x 50m, 80m x 80m], the stride includes

[10m, 20m, 30m, 50m], and the number of points in a block includes [4096, 5120, 6144]. If

too small block, too short stride, or too many points in a block is used, the memory will

be crashed. It must be noted that, the recommended hyperparameters are only useful for

the specific region studied here. Further investigation may be necessary when applied this

workflow to another region or point clouds collected through different methodologies.

Fig 3.1 shows the variation of performance with different hyperparameters. The per-

formance metrics used are expressed in Eq.3.1 and Eq.3.2, all of which follow the metrics

defined in PointNet paper[28]. The results indicate that a 30m by 30m block with 10m stride
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and 4096 points in it has the optimal performance. With these hyperparameters, all training

and validation sets are combined to train the final model, and the performance on the test

set is shown in Table.3.1

(a)

(b)

(c)

Figure 3.1. Variation in performance with (a) block size, (b) stride, and (c) number of

points in a block.

True Positive Rate (TPR) = TruePositive

PredictedPositive
(3.1)
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Intersection over Union (IoU)

= TruePositive

GroundTruth+ PredictedPositive− TruePositive

(3.2)

Table 3.1. Performance of PointNet on test set.

Testing Non-Soft-Story Soft-story

TPR 0.997 0.899

IoU 0.989 0.896

3.2 Evaluation of Clustering Methods

The predicted soft-story points shown in Fig 2.9 are filtered through K-means and GMM

to remove points that do not belong to a building and compute the center of a building to

obtain the real-world address. The procedure described in section 2.3 is followed to train both

algorithms. The optimal number of clusters k (i.e.,the number of buildings) are obtained

through cross-validation implemented in scikit-learn package.

Figure 3.2. Clustering points to buildings.
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Once the predicted centers are obtained, their longitudes and latitudes are converted

to real-world addresses through Google map API. A spatial query is then implemented to

evaluate the number of addresses that are located within the ground-true building polygons.

The results are shown in Fig 3.3 and Table 3.2, and GMM is recommended with much stable

prediction.

Figure 3.3. Evaluation of the predicted addresses.

Table 3.2. Performance of clustering on test set.

Testing K-means GMM

TPR 0.905 0.883

IoU 0.796 0.82
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3.3 Chapter Summary

In this chapter, PointNet classifier is evaluated and fine-tuned through numerical experi-

ments. Hyperparameters in PointNet including the block size, stride, and number of points

in each block. The results show that the model trained with 30m blocks, 10m stride, and 4096

points in each block dominates the performance of classification accuracy and intersection-

over-union. Meanwhile, Gaussian mixture method provides a stable prediction of centers of

building clusters, which hence leads to more reliable real-world addresses.
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CHAPTER 4

Conclusions and Suggestions of Future Work

4.1 Conclusions

This study developed a workflow that directly uses 3D point clouds to identify soft-story

buildings at a city scale. The proposed workflow greatly improve the limitation of prior

studies where 2D deep learning models are used to identify seismically vulnerable buildings

in street-view images. Buildings in street-view images may some time be blocked and hence

result in a false prediction. On the contrary, point clouds storing the position data of objects

can elaborate the relative distance between objects so that buildings can be segmented.

In order to directly use the advantage of point clouds, a recently developed 3D deep

learning model, namely, PointNet, is implemented. PointNet is developed to train a classifier

with raw point clouds, which is invariant to the input order and direction transformation.

The city of Santa Monica in California is selected as the target region in this study because it

has a well-investigated database where ground-true soft-story buildings are available. Around

1.1 billions of points are obtained through the photogrametry method and labeled into non-

soft-story and soft-story points by a proposed heuristic algorithm.

Point-cloud data is split into training, validation, and testing sets for conducting cross-

validation. The block size, stride, and number of points in a block are the hyperparameters

in PointNet. The optimal values of them are identified in this study for this specific region

(i.e., Santa Monica). A 30m by 30m block with 10m stride and 4096 points in the block

has the highest TPR and IoU. However, it must be noted that the optimal values may be
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different when applying the proposed workflow to other regions or if point clouds are collected

through different methods.

To make the proposed much benefit to the engineering committee, a postprocessing that

converts the point clouds to real-world addresses is also developed. K-means and Gaussian

mixture models are selected to filter points that belong to buildings. The centers of predicted

clusters (i.e., building clusters) are then transformed into addresses using Google map API

and their geolocations (i.e., latitude, longitude). The evaluation shows that GMM is more

reliable with much stable TPR and IoU.

4.2 Potential Impacts

This study tries to use advanced types of data and mining techniques to provide a poten-

tial solution for a labor-intensive civil engineering issue. Computer-aided technologies are

actively being studied and implemented in the life-cycle of an infrastructure. For exam-

ple, building information modeling, which stores different tiers of information of building

components including structures and electrical equipment. This study can be used to iden-

tify/classify these components for detailed modeling in the preliminary design, construction,

or maintenance stage.

4.3 Suggestions of Future Work

Because of the investigation done by prior studies, many soft-story buildings have been

retrofitted with reinforcing structures (e.g., a garage of a single-story residential house).

These buildings should not be labeled as soft stories anymore. In other words, using the

proposed method for retrofitted buildings could result in a false prediction. To address this

issue, advanced methods (e.g., LiDAR scanning) can be used to obtain much refined point-

cloud data, which ideally can reflect the existence of components designed for reinforcement
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and improve the identification accuracy.

Due to the computational costs, PointNet is selected herein. However, it is not state-

of-the-art 3D deep learning models that can deal with point clouds. PointNet++[29], and

PointCNN[22] are more advanced models that can also use the texture and intensity infor-

mation stored in point-cloud data to provide a better prediction. The application of these

models can be the future work of this study.
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