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Integrating Cloud Condensation Nuclei Predictions with Fast
Time Resolved Aerosol Instrumentation to Determine the
Hygroscopic Properties of Emissions Over Transient Drive
Cycles

D. Vu,1,2 D. Short,1,2 G. Karavalakis,1,2 T. D. Durbin,1,2 and A. Asa-Awuku1,2
1Department of Chemical and Environmental Engineering, Bourns College of Engineering, University

of California—Riverside, Riverside, California, USA
2Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT),

Riverside, California, USA

The physical and chemical properties of aerosols emitted from
vehicles can vary in composition under different driving
conditions. Thus, characterizing ephemeral changes in aerosol
cloud condensation nuclei (CCN) activity and apparent
hygroscopicity for vehicle-testing procedures conducted over
transient drive cycles can be challenging. To evaluate CCN
activity of these emitted aerosols, a closure method integrating
traditional CCN measurements with fast time resolved aerosol
instrumentation typically used to measure engine exhaust was
utilized. Calibration of the method predicted activation
diameters, Dd, within 10% and 15% of Dd derived from K€ohler
theory for two stable sources, aerosolized ammonium sulfate and
a-pinene secondary organic aerosol, respectively. It was then
applied to a transient source to estimate the effect of six different
ethanol and iso-butanol gasoline blends on the hygroscopic
properties of emissions downstream a gasoline direct injection
light duty passenger vehicle over transient drive cycles. To
describe the CCN activity, a single hygroscopicity parameter,
kappa, was used. Results indicate low CCN activity with kappa
ranging between ~0.002 and 0.06.

1. INTRODUCTION

Aerosols that activate to form cloud droplets when exposed

to a supersaturated environment greater than its characteristic

critical supersaturation (SS) are cloud condensation nuclei

(CCN). This SS is highly dependent on curvature (Kelvin

effect) and solute (Raoult effect) properties of the aerosol

(K€ohler 1936; Dusek et al. 2006). By acting as CCN, aerosols

can modify the microphysical properties of clouds by forming

droplets that either scatter solar radiation back into space or

allow energy to pass through and reach the surface of the earth,

thereby indirectly influencing the radiative balance of the envi-

ronment (Twomey 1974). Unfortunately, these aerosol-cloud

interactions and their relationship with climate are not well

defined and is currently a large contributor to the uncertainty

in radiative forcing estimates (Boucher et al. 2013).

Primary combustion aerosols (biomass burning, fossil fuels,

and biofuels) can contribute to the CCN budget by directly

increasing the particle number concentrations in the atmo-

sphere. If they contain a fraction of soluble material at a large

enough size, they may potentially be CCN active. In addition,

they can serve as seeds for more soluble material to condense

onto and become CCN active (Andreae and Rosenfeld 2008

and references therein). Carbonaceous combustion aerosols

are estimated to account for approximately 52–64% of the

global CCN budget, with a global mean aerosol indirect effect

of ¡0.34 W m¡2. Aerosols derived from fossil fuels and bio-

fuels are predicted to have the strongest cooling effect; they

make up only one third of the mass from all aerosols derived

from combustion fuels but account for ¡0.23 W m¡2 or two

thirds of the overall forcing (Spracklen et al. 2011). These car-

bonaceous aerosols may play an important role in the CCN

budget.

Vehicle emissions are a significant source of primary carbo-

naceous combustion aerosols in urban atmospheres (Rose

et al. 2006). Fresh vehicle emissions have been classified with

low CCN activity (Tritscher et al. 2011), which may be attrib-

uted to (i) insoluble materials present in the aerosols, (ii) an

externally mixed state where the condensation of soluble

material is less probable, or (iii) small sizes where a large frac-

tion of these aerosols are emitted in the nucleation mode

directly off the tailpipe (Andreae and Rosenfeld 2008 and

references therein; Karjalainen et al. 2014). Insoluble materi-

als in fresh vehicle emissions, predominately soot, have been
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characterized with low hygroscopic growth (Weingartner et al.

1997; Dua et al. 1999). Furthermore, freshly emitted soot is

typically in an externally mixed state, so the condensation of

soluble materials has not occurred and the soot maintains low

hygroscopicity (Hasegawa and Ohta 2002; Rose et al. 2011).

However, recent work indicates the addition of oxygenated

biofuels could modify the hygroscopic properties of diesel

emissions (Happonen et al. 2013) and gasoline emissions

(Short et al. 2015); the latter of which exhibited potentially

high CCN activity. In addition, lower elemental carbon (EC)/

organic carbon (OC) fractions have been shown to correlate

with higher water soluble organic carbon (WSOC) fractions

for vehicles operating with biodiesel than when operating with

diesel (Cheung et al. 2009). The lower soot formation was

attributed to the higher oxygen content of the biofuels, which

increased oxidation and inhibited carbon chain formation. The

higher oxygen content present in the higher biofuel concentra-

tion blends may lead to an increase in the WSOC to OC ratios,

thereby modifying the hygroscopicty of the emissions.

One of the most widely used biofuels in the United States is

ethanol, which is commonly blended at 10% ethanol and 90%

gasoline (E10). However, with the Renewable Fuel Standard

(RFS2) requiring 36 billion gallons of renewable fuel to be

blended into transportation fuel by 2022 (USEPA 2007) there

is now interest in blending higher concentrations of ethanol

into gasoline. Another biofuel, iso-butanol, is also gaining

popularity due to its favorable properties when compared to

gasoline. Compared to ethanol, iso-butanol is less corrosive,

has a higher energy content, lower volatility, and higher toler-

ance to water contamination (Morela et al. 2012). The aerosol

composition, size, and mixing state, which can impact the

hygroscopicity of the aerosols, is dependent of the vehicle

technology, fuel source, and driving conditions. With biofuel

use expected to grow, it is important to understand the effect

of biofuels and increasing oxygenated fuel content on the

hygroscopic properties of vehicle emissions. However,

research related to the hygroscopicity of emissions derived

from the use of different ethanol and iso-butanol blends is lim-

ited, especially when utilized in vehicles with modern engine

technologies (Short et al. 2015).

For emissions sources, composition is highly dependent on

the combustion conditions, which means CCN activation can

vary substantially with time (Yao et al. 2006). Number con-

centrations can change on a second-by-second basis (e.g., but

not limited to, particle number concentration time traces avail-

able in Karavalakis et al. 2014). Consequently, scanning

mobility CCN analysis (SMCA) (Moore et al. 2010) requires

scan times to measure relevant particle distributions that may

be too long to capture the changes on a second-by-second

basis. Scanning electrical mobility measurements have scan

times longer than the time in which an instantaneous vehicle

acceleration occurs to obtain a full size distribution, and are

not ideal for transient testing. To bypass this limitation, CCN

predictions using traditional CCN measurements can be

integrated with fast (~1 Hz) time resolved aerosol sizing

instrumentation on a second-by-second basis. With improved

scanning speeds, size distributions can be measured at much

higher frequencies and used for closure studies (Asa-Awuku

et al. 2011). To estimate the CCN potential of aerosols derived

from a transient emission source, a method to capture the

changing hygroscopicity of emissions from vehicles operating

on transient drive cycles is implemented using an engine

exhaust particle sizer (EEPS).

An EEPS is commonly used for measuring emissions from

both transient and steady state driving cycles and roadside

measurements (Ayala and Herner 2005; Wang et al. 2006;

Yao et al. 2006; Karavalakis et al. 2015). Although the EEPS

has a lower size resolution than the SMPS, it provides a full

particle size distribution every second. The application of the

EEPS for diesel exhaust has been demonstrated and found to

agree with other sizing and particle number concentration

measurement instruments (e.g., but not limited to, Johnson

et al. 2004; Kittelson et al. 2006; Zervas and Dorlh�ene 2006).
Johnson et al. (2004) measured size distributions using both a

Scanning Mobility Particle Sizer (SMPS) and the EEPS for a

diesel generator operating on steady state conditions. The size

distributions obtained from the two instruments agreed well,

with a §20% deviation from the mean when comparing total

counts with a TSI 3022 condensation particle counter (CPC).

This was attributed to the higher sampling efficiency off the

EEPS; as the higher sampling speed of the EEPs minimized

diffusional losses (EEPS 10 L/min vs. SMPS 1.5 L/min)

thereby measuring higher particle concentrations below

12 nm. Zervas and Dorlh�ene (2006) found that particle num-

bers measured by the EEPS were close to particle numbers

measured by a CPC and an electrical low pressure impactor

(ELPI) for a diesel vehicle operating at steady state speeds and

the New European Driving Cycle (NEDC). In addition, the

engine was equipped with multiple Diesel Particulate Filters

(DPF) to test the effect of concentration. Upstream of the

DPFs, the instruments measured particle numbers within an

order of magnitude of each other. Downstream the DPFs, the

EEPS reached its lower detection limit and there was less

agreement. However, its particle numbers were still within 1–

2 orders of magnitude of those measured by the CPC and

ELPI.

This is the first study to integrate fast time resolved aerosol

sizing instrumentation, commonly used for vehicle emissions

with traditional CCN measurements. It provides a comprehen-

sive evaluation of the method by applying it to three separate

aerosol sources; two stable sources and one transient source.

The first stable source is ammonium sulfate aerosolized by

atomization. However, atomization can result in charge effects

(Liu and Deshler 2003). Therefore, secondary organic aerosol

(SOA) formed from a-pinene ozonolysis is selected as the sec-

ond stable source. After the method is verified on the two well

characterized sources, it is then applied to relevant emissions

sources to determine the potential for fresh vehicular

1150 D. VU ET AL.



emissions to activate as CCN from a chassis dynamometer.

The vehicular emissions are generated from a spark ignition

direct injection (SIDI) vehicle operating on various alcohol

blends. The results of this study demonstrates the utility of the

method on multiple aerosol sources and provides information

in regards to how ethanol and iso-butanol blends impact the

CCN activity of particulate matter (PM) emissions from a

modern light-duty gasoline vehicle.

2. THEORY AND CLOSURE ANALYSIS

2.1. k-K€ohler Theory

K€ohler theory combines thermodynamic and physical prop-

erties to predict the activation diameter at which aerosol will

undergo spontaneous growth and activate to form a cloud

droplet in the atmosphere (K€ohler 1936). Critical activation

diameters (Dd) determine the supersaturations required for

cloud droplet activation for aerosols of known chemical com-

position (Seinfeld and Pandis 2006). K€ohler theory can be

defined as

lnSc D 4A3rwMs

27vrsMwD
3
d

� �1=2

; where AD 4ss=aMw

RTrw
[1]

where ss=a is the surface tension, Mw is the molecular weight

of water, R the universal gas constant, T is the sample tempera-

ture, rw is the density of water, Dd is the dry activation diame-

ter, and Sc is the critical saturation, rs is the density of solute,

and n is the dissociation factor of solute. It is important to note

that the critical saturation, Sc, is greater than 1, thus critical

supersaturation is defined by SS D Sc ¡ 1.

K€ohler theory requires solute information that is not always

readily available, especially for complex ambient aerosols of

unknown composition. To model the CCN activity of these

aerosols, a single hygroscopicity parameter, k, that represents

the compositional information can be integrated with K€ohler
theory to relate the aerosol dry diameter and supersaturation

(Petters and Kreidenweis 2007). k-K€ohler theory is defined by

kD 4A3

27D3
dln

2Sc
[2]

The surface tension of the solution is assumed to be that of

pure water. Aerosol with a k between 0.5 and 1.4 are highly

hygroscopic and exhibit significant CCN activity. Aerosol

with hygroscopicity between 0.01 and 0.5 are slightly to very

hygroscopic. Kappa values close to zero are considered nonhy-

groscopic but wettable.

K€ohler theory was originally used to describe the CCN

activity of simple inorganic salts. However, atmospheric

aerosols are typically highly complex mixtures that may

contain organic and inorganic components. Modifications

have been made to K€ohler theory to account for these com-

plex aerosols, and are used to help constrain aerosol cloud

interaction models by predicting CCN concentrations. How-

ever, solute information is not always readily available, and

in these cases, simplifications and chemical assumptions are

applied to predict CCN concentrations. Closure is one way

of describing the CCN activity of aerosols of unknown

chemical properties. By comparing measured CCN number

concentrations to CCN concentrations that were predicted

based on assumed compositional information, the accuracy

of predictions can be evaluated. Closure is achieved if pre-

dicted concentrations agree with measured concentrations.

Previous studies have implemented closure study methods

to obtain CCN activity information with varying levels of

success in regions influenced by urban sources (e.g., but not

limited to, VanReken et al. 2003; Asa-Awuku et al. 2011;

Padr�o et al. 2012).

2.2. Closure Analysis

Traditionally, CCN concentrations are predicted by apply-

ing known or assumed chemical composition information and

number size distribution data to K€ohler theory (Equation (1))

to determine Dd for various supersaturations (“classical”

K€ohler theory). Using measured size distributions and the

assumption that all aerosols with a diameter above Dd activate,

the size bins can be integrated from Dd up to the largest diame-

ter in the size distribution to determine the predicted CCN con-

centration. If this predicted concentration agrees with

measured CCN concentrations, closure is achieved. However,

this classical method of closure, C-Closure, can be inefficient

for aerosol samples of unknown compositions that are highly

variable with time.

The apparent hygroscopicity can be determined on a sec-

ond-by second basis without the need for compositional

information by deriving critical activation diameters by forc-

ing closure. Using the measured size distributions, Dd is

determined by integrating the aerosol concentration from the

largest size bin in the distribution down to a Dd until the

number concentration, which is the calculated CCN concen-

tration, agrees with the measured CCN concentration at a

given SS (reverse fit closure, R-closure). This method to

determine hygroscopicity has been previously used in clo-

sure studies from field and aircraft measurements (e.g., but

not limited to Kammermann et al. 2010; Jur�anyi et al. 2011).
With SS and Dd, k is calculated (Equation (2)) to describe

the apparent hygroscopicity of the aerosol sample. Although,

exhaust emissions can be fractal and may effect the electrical

mobility diameter measurements (Nakao et al. 2011), the

particles are assumed to be spherical. Thus, the apparent

hygroscopicity of ephemeral and transient aerosol samples in

this study can be derived through R-Closure using number

size distribution data acquired through the use of particle siz-

ing instrumentation with higher time resolutions.

FAST TIME RESOLVED AEROSOL HYGROSCOPICITY MEASUREMENTS 1151



3. EXPERIMENTAL

3.1. Instrumentation

To compare a measured CCN concentration to an aerosol

concentration, a CCN counter was operated in parallel with a

TSI EEPS 3090. The EEPS spectrometer was used to obtain

real time second-by-second (10 Hz) particle size distributions

with 32 channels between 5.6 to 560 nm. The currents are

measured 10 times per second and averaged to give a full size

distribution every second. Particles are sampled at a flow rate

of 10 L/min to minimize diffusional losses. Particles are

charged with a unipolar corona charger and sized based on

electrical mobility. With the high charging efficiency of the

unipolar corona chargers, both sizing and concentrations are

determined through the use of multiple electrometers (22 total,

measuring the electrical current to determine the

concentration).

CCN activity is measured with a Droplet Measurement

Technologies, Inc. single growth column CCN Counter

(CCNC). The CCNC utilizes a continuous-flow thermal gradi-

ent diffusion column to create a supersaturated environment

where water vapor may condense onto CCN active aerosols to

form droplets (Roberts and Nenes 2005; Lance et al. 2006).

Aerosols that are exposed to a supersaturation greater than its

critical supersaturation activate and form droplets in the col-

umn. The droplets are sized and counted with an optical parti-

cle counter at the exit of the instrument. The CCNC is

operated at a sheath to aerosol flow rate of 10:1 at a total flow

rate of 0.5 L/min. To determine the supersaturations in the col-

umn, the CCNC is calibrated regularly using aerosolized dry

ammonium sulfate, (NH4)2SO4, size distributions from a TSI

SMPS and SMCA to determine Dd (Rose et al. 2008; Moore

et al. 2010). The SMPS utilizes a long differential mobility

analyzer (DMA 3081) and has a 135 second scan time. The

particles are passed through a bi-polar krypton-85 charger,

sized based on electrical mobility, and concentrations are

counted using a butanol-based CPC. SMCA setup requires the

CCNC to operate in parallel with a CPC after the DMA. This

allows the simultaneous measurements of the total aerosol and

CCN concentrations at a given supersaturation of the monodis-

persed aerosols. Operating the DMA in scanning voltage mode

provides CCN active aerosol fraction information over a full

size distribution. The SS in the column is held constant over

the course of the 135 second scan. Theoretical SS values are

derived from the measured Dd values.

4. EXPERIMENTAL SET UP

4.1. Stable Source Aerosols: Ammonium Sulfate and
a-Pinene SOA

Before proceeding to a transient source, the method was

applied to two stable sources, atomized ammonium sulfate

(AS), (NH4)2SO4, and a-pinene secondary organic aerosol

(SOA) to test the validity of the method using both C-Closure

and R-Closure. The hygroscopic properties of ammonium sul-

fate (AS) aerosols (Rose et al. 2008) and a-pinene ozonolysis

(Engelhart et al. 2008) products have been well characterized,

and thus, were selected for the verification. The CCNC is oper-

ated in parallel with an EEPS to obtain simultaneous size dis-

tributions from both instruments. The experimental setup is

shown in Figure 1. The CCN closure using C-Closure and R-

closure for both the (NH4)2SO4 aerosols and the a-pinene

SOA are presented in Figure 2.

AS aerosols were atomized from an aqueous salt solution of

AS (Acros, 99.5%) and Millipore� DI water (18 mV, < 100

ppb), dried, and then passed over 210Po to neutralize the elec-

trostatic charge of the aerosols. To bypass possible charging

errors associated with atomization, the method was further

verified by oxidizing a-pinene with ozone in a dark 12.5 m3

2mil FEP environmental chamber available at the Center for

Environmental Research and Technology (CE-CERT) Atmo-

spheric Processes Laboratory (APL). A more detailed descrip-

tion of the chamber is available in Nakao et al. (2011). Prior

FIG. 1. Experimental Setup.
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to each experiment, the reactor was cleaned with pure air

(Aadco 737 series air purification system). Ozone was gener-

ated by passing clean air over a Pen-Ray ultraviolet lamp (Part

No. B131799, Ultra-Violet Products Inc.) and monitored with

a Teledyne 400E ozone monitor. After the ozone concentra-

tions stabilized, the a-pinene (Sigma Aldrich, 98%) was

injected by passing clean air over the compound in a glass

injection manifold. All experiments were completed using

approximately 25 ppb of a-pinene. Any slight changes in ini-

tial concentrations <40 ppb have been shown to not effect the

CCN activity of the SOA (Engelhart et al. 2008). The effective

density used for a-pinene SOA predictions was 1.3 g/cm3

(Alfarra et al. 2006), and the molecular weight was 180 g/mol

(Engelhart et al. 2008). Complete solubility was assumed with

no dissociation (n D 1).

4.2. Test Fuels

A total of six ethanol and iso-butanol biofuels were selected

for the fuel blends. The ethanol blends include E10 (10%

FIG. 2. Calibrations using an atomized aerosol and a complex organic aerosol. Ammonium sulfate (a) C-Closure, (b) R-Closure, (c) predicted Dd from R-Clo-

sure vs. predicted Dd from C-Closure; a-pinene SOA, (D) C-Closure, (e) R-Closure, and (f) predicted Dd from R-Closure vs. predicted Dd from C-Closure.
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ethanol and 90% gasoline), E15, E20. E10 was selected as the

baseline fuel. The iso-butanol blends include B16, B24, and

B32 and were selected as the oxygen equivalent of E10, E15,

and E20, respectively. All fuels were match-blended according

to Reid vapor pressure, and oxygen content to maintain the

fuel properties of the gasoline. A more detailed description

regarding fuel and blending properties are available in Karava-

lakis et al. 2014.

4.3. Emissions Testing and Test Cycles

Measurements were conducted in the University of Califor-

nia, Riverside (UCR) CE-CERT Vehicle Emissions Research

Laboratory (VERL). VERL is equipped with a Burke E. Porter

48-inch single roller chassis dynamometer, and a constant vol-

ume sampler (CVS) for certification quality measurements.

The instruments sampled directly off of the CVS tunnel. The

experimental setup is shown in Figure 1.

A 2012 Mercedes Benz E350 (MBE350) with a spray-

guided SIDI (SG-SIDI) engine was tested over the Federal

Test Procedure (FTP) and California Unified Cycle (UC). The

FTP is representative of city driving conditions for light duty

vehicles and consists of three phases: cold start/cold three-way

catalyst (TWC) converter (Phase 1), transient/stabilize (Phase

2), and hot start/warm TWC converter (Phase 3). Phase 2 is

the stabilized phase. The car is turned off during the hot soak

(between phases 2 and 3). The driving pattern in Phase 3 is

identical to Phase 1 with the exception that the TWC is now

warm. The UC is similar to the FTP, but has higher average

speeds with a higher maximum speed, less idling periods, and

a greater maximum rate of acceleration. Additional informa-

tion in regards to the test procedures and driving cycles are

available in Karavalakis et al. (2013) and the online supple-

mentalary information.

5. RESULTS

5.1. Ammonium Sulfate and a-Pinene SOA: Closure
Assessment

C-closure and R-closure for AS aerosols is shown in

Figures 2a and b. Figure 2a shows a slight over prediction

when using C-closure for the higher supersaturations of 0.93%

and 1.16%; this can be attributed to vapor depletion effects.

The higher aerosol number leads to water vapor depletion in

the CCN counter column, thus CCN active aerosols that would

normally activate do not have enough water available to grow

to a detectable size (Lathem and Nenes 2003). However, when

applying R-closure, the calculated concentrations are lower

(Figure 2b), which minimizes the effects seen by water deple-

tion for this reverse fit method. C-closure and R-closure for

a-pinene SOA is shown in Figures 2d–e. Similar to

(NH4)2SO4 aerosols, over prediction is observed for the

a-pinene SOA C-Closure.

The critical diameter (in Figures 2c and f) is predicted and

derived from the forced closure data set in Figures 2b and 2e.

The critical diameters are compared to literature values

(K€ohler Theory) used in Figures 2a and d. The Dd derived

from both closure methods for AS and a-pinene secondary

organic aerosols fell within 10% and 15%, respectively. This

slight deviation for the a-pinene SOA may be due to the pres-

ence of organics which have been shown to make CCN closure

more difficult to achieve (e.g., but not limited to Cantrell et al.

2001; Medina et al. 2007; Martin et al. 2011). There is strong

agreement between Dd derived from C-closure and R-closure

for both the AS and a-pinene SOA which shows that size dis-

tributions measured by an EEPS can be used to predict CCN

concentrations using R-closure.

5.2. Selecting an Appropriate SS

A 2012 Kia Optima with a SIDI engine, operating on E20

was the first vehicle available for the study. Thus, preliminary

data collected from this vehicle and fuel determined an appro-

priate SS to best achieve closure. R-closure was applied to

three separate FTP cycles, where the CCNC was operated at a

constant SS for the duration of each cycle (0.19%, 0.58%, and

0.85%). The range of SS were selected to represent the differ-

ent supersaturations characterized for the different cloud types

in the atmosphere (Seinfeld and Pandis 2006).

For the two lowest supersaturations, FTP1 (SS 0.18%) and

FTP2 (SS 0.58%), the measured CCN concentrations do not

change significantly; the CCN concentrations are <<100

#/cm¡3 with a large fraction of the values below 50 #/cm¡3

throughout the cycle (Figures 3a–c). In addition, there is

greater variability in predicted CCN concentrations for these

lower supersaturations. This lack of closure and variability

may be due to a) the lower SS, where the small temperature

gradient is difficult to maintain, fluctuations in the instrument

SS can result, and the signal to noise ratio may increase,

thereby resulting in poorer CCN measurements (Roberts and

Nenes 2005); and b) the large vertical spread, which results

from the calculated CCN from R-Closure from the EEPS data

set. With low SS, and thus, low CCN concentrations, only the

most hygroscopic of the sample aerosol (the upper end of the

size distribution) are captured. The EEPS approximates a log-

normal fit (Johnson et al. 2004; Xue et al. 2015); the CCN

concentrations are derived from few size bins, resulting in

fewer approximated counts. Previous work has shown the

EEPS reporting lower particle concentrations than those

reported by the SMPS in the high accumulation mode range

due to more fractal like particles (Zimmerman et al. 2014;

Xue et al. 2015).

Significant differences were not observed between the

phases as the Dd were consistently high (Figure 3d). The lower

SS only captures the most hygroscopic aerosols and is not a

good reflection of the changing CCN activity. For the high SS,

FTP3 (SS 0.85%), instrument counting statistics improved
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with the higher CCN concentrations and the strongest closure

was achieved. With higher CCN concentrations, a stronger sig-

nal was obtained, which allowed for stronger closure. Phase 2

(Figure 3b) and Phase 3 (Figure 3c) produce more hygro-

scopic particles than those emitted in Phase 1 (Figure 3a).

Data are shown from the highest measured SS for the duration

of the emissions testing because the high SS had the strongest

closure and allowed differences in Dd to be observed

(Figure 3d).

5.3. Iso-Butanol and Ethanol Gasoline Blends for a
Gasoline Direct Injection Vehicle

The effect of ethanol and iso-butanol gasoline blends on the

CCN activity of fresh emissions was investigated. CCN con-

centrations and size distribution measurements were collected

for the MBE350 using the six different ethanol and iso-butanol

blends described in Section 4.2. The CCNC was operated at SS

between 0.83% and 1.16% over the course of the transient

aerosol tests. R-Closure (Figure 4) was applied to estimate Dd.

Overall, the apparent hygroscopicity is consistently low for

both biofuels. Iso-butanol blends were observed to produce

aerosols that were slightly more hygroscopic than that pro-

duced by the ethanol blends. Single hygroscopicity parameter,

k, values ranged from 0.0021 to 0.062 for iso-butanol blends

and 0.0019 to 0.022 for ethanol blends (Figure 5). The error

bars are the average standard deviation derived from the repe-

tition of experiments. The errors associated with the final

kappa values, when available, are small and indicate repeat-

ability between measurements. Although this is not a signifi-

cant difference between the different ethanol and iso-butanol

blends, it is consistent with results from Short et al. (2015),

who observed lower water insoluble mass fractions for the iso-

butanol blends. The effect of alcohol concentrations was also

observed; the lower alcohol blends exhibited higher k values.

Karavalakis et al. (2015) reported lower number concentra-

tions of accumulation mode particles for E20 and B32 and in

some cases, smaller geometric mean diameters were observed

as well when they tested a SG-SIDI vehicle over the FTP and

UC cycles. The low hygroscopicity may also be attributed to

non-hygroscopic composition such as soot found in the smaller

size range. Karavalakis et al. (2015) reported high soot emis-

sions for B24 relative to other iso-butanol blends which is con-

sistent with the low k value for this fuel. In addition, E15 had

FIG. 3. CCN R-Closure (a) Phase 1, (b) Phase 2, (c) Phase 3. Solid lines 1:1 line, dashed is §10%. (s) Averaged Dd for each phase of driving cycle.
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low soot emissions relative to the other ethanol blends which is

consistent with the high k values for this fuel. This is consis-

tent with fresh emissions not being very hygroscopic, which

may require very large diameters or water soluble compounds

for the CCN to activate.

Effects among the cycles were observed for the driving pat-

terns; k ranged from 0.0021 to 0.017 for the FTP and 0.0019 to

0.062 for the UC cycle. More hygroscopic particles were

observed for the UC cycle, which exhibits higher speeds. The

higher hygroscopicity agrees with Short et al. (2015), who

observed greater k values for high steady state speeds than that

of lower steady state speeds for a SIDI vehicle operating on

ethanol and iso-butanol blends. In addition, the cold-start influ-

ence was particularly strong, where for most fuels the cold-

start phase emitted the least hygroscopic particles with kappa

ranging from 0.0021 to 0.014. Soot emissions are highest dur-

ing phase 1 operating on the same biofuel blends as a result of

the TWC being below its light-off temperature and thus,

resulting in lower catalytic efficiency (Karavalakis et al.

2015). Phase 2 and 3 produced more hygroscopic materials

and kappa values ranged from 0.0019 to 0.027 and 0.0048 to

0.062, respectively. Closure improves with the more hygro-

scopic aerosols in Phase 3 (Figures 4 and 5). Improvements in

closure can also be attributed to the calculated concentrations

staying above the lower detection limit of the EEPs.

6. SUMMARY

This is the first closure study to combine fast resolution

CCN activation information from both a continuous CCN

counter and an EEPS to study CCN activity for fresh vehicle

emissions operating on ethanol and iso-butanol blends. The

instrumentation and analytical methods presented are able to

characterize the rapidly changing particle composition gener-

ated by vehicle accelerations. Six ethanol and iso-butanol

blends were tested on a single light-duty SIDI vehicle driving

on UC and FTP cycles. The fuels were selected at random for

vehicle testing and initial CCN evaluation began with E20

fuel. The greatest hygroscopicity differences in fresh emis-

sions were observed at higher supersaturations. The results

suggest that the method is aptly used at higher supersatura-

tions. At higher SS, small changes in aerosol composition

affect droplet activation changes and derived critical diameters

are more readily discerned. Although the EEPS may lack time

resolution in size information, the rapid changes in hygrosoco-

picity of the transient aerosol system with this system can be

observed. With the use of fast-time resolved CCN analysis,

such as the method presented here, sources with rapidly chang-

ing aerosol composition (e.g., combustion studies, aircraft-

based atmospheric measurements) can be observed.

The shifts in kappa reflect the sensitivity of aerosol compo-

sition to the transient nature of the cycles and different fuels.

The least hygroscopic particles occurred during Phase 1 when

the catalyst was below its light-off temperature and the engine

FIG. 4. Effects of Phases 1, 2, and 3 on closure.
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was cold. These results are consistent with the production of

soot, from inefficient combustion. The most hygroscopic par-

ticles occurred during phases 2 and 3 after the catalyst was

warm. Thus particles emitted during warm-start driving condi-

tions will most likely uptake water. The composition of emis-

sions, particularly aerosol, can significantly change during

transient drive cycles. Driving patterns inevitably change, and

thus the extent to which each vehicle spends in each phase

will modify particle hygroscopicity.

Overall, these fresh emissions exhibit relatively low kappa

values (k < 0.1). Fresh vehicle emissions initially have hydro-

phobic properties, which will inhibit the uptake of water and

limit the ability to activate as cloud droplets. As a result, local-

ized aerosols near urban sources can exhibit high variability in

CCN activity. However, at regional scales where the aerosols

have undergone atmospheric aging, the hygroscopicity can be

modified under atmospheric conditions, such as oxidation and

the condensation of soluble materials (Wittbom et al. 2014)

and can exhibit higher CCN activity (Asa-Awuku et al. 2011).

Small amounts of soluble material can have large effects on

the water uptake properties of insoluble compounds (Bilde and

Svenningsson 2004). This information collectively suggests

that the aging of vehicle emission aerosols could exhibit dif-

ferent physical and chemical properties than the fresh aerosols

emitted in this study.

To be able to account for atmospheric interactions such as

transport, coagulation, and transformations, modeling atmo-

spheric interactions is highly dependent on source emissions

data. Fresh emissions may not directly play a large role in

regional indirect effects. However, aerosol emissions from

vehicles may be subject to rapid physical and chemical

changes. With vehicle technologies changing and new fuel for-

mulations penetrating the market, the impact of aerosol hygro-

scopicity for regional visibility and cloud droplet formation

must be assessed. Information in regards to the amount and

how CCN active these primary emissions are important as it

provides a measure of their direct contribution into the atmo-

sphere and can aid in predicting its atmospheric aging behav-

ior in the presence of other aerosol or gas phase species.

Additional work is required to understand the evolution of

fresh emissions downwind from the initial source; the proc-

essed aerosols are more likely to impact regional visibility and

modify clouds. The modification of hygroscopic properties

due to atmospheric aging must be explored next and compared

to the results presented here.
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