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Abstract

Affymetrix’s SNP (single nucleotide polymorphism) genotyping chips have increased the

scope and decreased the cost of gene mapping studies. Because each SNP is queried by mul-

tiple DNA probes, the chips present interesting challenges in genotype calling. Traditional

clustering methods distinguish the three genotypes of a SNP fairly well given a large enough

sample of unrelated individuals or a training sample of known genotypes. The present pa-

per describes our attempt to improve genotype calling by constructing Gaussian penetrance

models with empirically derived priors. The priors stabilize parameter estimation and borrow

information collectively gathered on tens of thousands of SNPs. When data from related family

members are available, Gaussian penetrance models capture the correlations in signals between

relatives. With these advantages in mind, we apply the models to Affymetrix probe intensity

data on 10,000 SNPs gathered on 63 genotyped individuals spread over eight pedigrees. We

integrate the genotype calling model with pedigree analysis and examine a sequence of sym-

metry hypotheses involving the correlated probe signals. The symmetry hypotheses raise novel

mathematical issues of parameterization. Using the BIC criterion, we select the best combi-

nation of symmetry assumptions. Compared to the genotype calling results obtained from

Affymetrix’s software, we are able to reduce the number of no-calls substantially and quan-

tify the level of confidence in all calls. Once pedigree analysis software can accommodate

soft penetrances, we can expect to see more reliable association and linkage studies with less

wasted genotyping data.

1 Introduction

Technologies for high throughput genotyping have undergone rapid development in the last half

decade. These technologies hold great promise for association mapping of complex disease genes,

understanding of population stratification, study of chromosome-segment duplication and loss, and

mutation detection. One of the most promising new methods for SNP (single nucleotide polymor-
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phism) genotyping relies on DNA chips similar to gene expression arrays (Pastinen et al., 2000).

The genotyping chips produced commercially by Affymetrix (Liu et al., 2003) have recently ex-

perienced a huge surge in demand. Affymetrix’s expression arrays and SNP genotyping arrays

are constructed by the same photochemistry process. They both also involve DNA complemen-

tary hybridization. The great interest in these chips is demonstrated by the number of publications

comparing the success of genomewide scans conducted with microsatellites and with Affymetrix

chips (Hoqhe et al., 2003; Middleton et al., 2004) and by the number of statistical methods and

software the chips have inspired (Hao et al., 2004a; Hao et al., 2004b; Lin et al., 2004; Tebbut et

al., 2005; Leykin et al., 2005). Together with its arrays and hybridization protocols, Affymetrix

provides software for genotype calling. Details of their first calling algorithm appear in Liu et al.

(2003). Further algorithm research has been pursued within the company, but it has not yet been

publicly documented (personal communications and Di et al., 2003). Other researchers have also

proposed calling procedures for high throughput SNP genotyping applicable to the Affymetrix chip

(Fujisawa et al., 2004). Given the nature of the data, it is hardly surprising that all of the calling

algorithms proposed involve clustering. Within this broad setting there are many differences in

computational detail and training data.

The goal in the current paper is to present a genotype calling procedure based on Gaussian

mixture models. Our procedure is model based and adapts well to genotyping data gathered on

human pedigrees. The dependencies occurring between relatives are both a curse and a blessing.

On the one hand, they complicate statistical analysis and the identification of genotype clusters.

On the other hand, the genetic constraints of Mendelian inheritance inform and correct the calling

process. In other words, pedigree structure is a form of prior information capable of guiding geno-

type calls. Another form of prior information for a given SNP is the evidence from other SNPs.

The Affymetrix chips query tens of thousands of SNPs simultaneously. This collective evidence

furnishes the raw material for our empirical Bayesian analysis. Imposition of empirical priors

stabilizes maximum likelihood estimation and compensates for reduced information at less poly-
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morphic SNPs. Finally, model based analysis lends itself to probabilistic assignment of genotypes.

In practice, most calling procedures refrain from making the hardest calls near cluster boundaries.

The resulting missing data contribute nothing to linkage and association studies. Soft calls based

on posterior probabilities partially salvage this lost information.

In the long term, we hope to use the Gaussian mixture model to investigate the operating

characteristics of the Affymetrix chips. Our interest extends beyond simple genotyping. These

chips may well prove helpful in inferring loss and duplication of chromosome segments. Excessive

homozygosity is one indicator of segment loss; low hybridization levels are another. With segment

duplication the opposite patterns prevail. Unfortunately, the use of quantitative intensity values

is problematic unless one has a reference model for these values. Our study of chip operating

characteristics leads to such models. Finally, the statistical inferences possible with a good model

will surely find applications in the further development of the chips and the choice of appropriate

DNA probe sets.

The remainder of this paper is organized as follows. In section 2 we present a general model

for on-line clustering and genotype calling based on recorded hybridization signals. This model

is potentially applicable to a variety of genotyping schemes and is not restricted to the Affymetrix

chips. In section 3 we give a brief description of the technology underlying the Affymetrix 10k ar-

ray and present the results of an exploratory data analysis that motivate our model. We also present

a sequence of symmetry hypotheses that are biologically plausible and define interesting parameter

constraints. In section 4 we illustrate how the different symmetry models can be parameterized;

in section 5 we outline how to assign prior probabilities and how to obtain maximum a-posteriori

estimates. Section 6 describes the model selection procedure for individual SNPs and the results

of our analysis on a set of 63 genotyped individuals spred over eight pedigrees. We conclude with

a brief discussion of the virtues and limitations of Gaussian mixture models.
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2 Empirical Bayes Gaussian Models

In high throughput SNP genotyping, we seek to identify genotype clusters on the basis of quan-

titative measures of allelic abundance. Consider a biallelic marker with alleles a and b. For each

individual, we observe some measure ya of the presence of a in his/her tissue sample. We likewise

observe yb for allele b. More generally, ya and yb can be multivariate vectors. In our analysis of

the Affymetrix data, they are, in fact, multivariate, but for simplicity we now consider them as

univariate. Individuals with genotype a/a are expected to have high values of ya and low values

of yb. The opposite is true for individuals with genotype b/b. Individuals with genotype a/b are

intermediate. If sufficiently many individuals are typed, then three clusters should emerge from the

data and lead to proper assignment of y values to genotypes. Unfortunately, what constitutes a high

or low value of ya or yb is unknown a-priori. Due to differences in experimental conditions, there

is variability in average signal intensity across chips. This variability manifests itself as a spurious

correlation between ya and yb values and tends to mask genotypes. Thus, raw measurements need

to be transformed before clustering. These transformations are technology specific, so we leave

them unspecified for the moment and discuss them later when we analyze the Affymetrix data.

Given observations on multiple individuals, a genotype calling procedure involves two steps:

1) identification of clusters, and 2) assignment of genotyped individuals to clusters. In supervised

clustering, step 1) is carried out separately from step 2) using individuals of known genotype. This

is the case with the genotype calling software provided by Affymetrix (Liu et al., 2003). In step 2)

new genotypes are assigned to the nearest predefined cluster. Supervised clustering has the advan-

tage that genotype calls are computationally quick and anchored by known genotypes. However,

it has the disadvantage that it does not adapt to variation in laboratory procedures. Unsupervised

clustering performs both steps 1) and 2) on the same data without resorting to a training sample

(Fujisawa et al., 2004). It is the reasonable choice for an adaptive procedure since few laboratories

can bear the cost of sequencing sample individuals to ascertain their genotypes unambiguously.
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Unsupervised clustering is also more scientifically open. With canned software the rationale for

no calls is hidden from view, and attempts to improve the calling procedure are frustrated.

However, unsupervised clustering presents its own challenges. Some genotypes are absent in

small samples simply by chance. This confuses rigid clustering procedures. Genotyping related

family members diminishes the uncertainty of many genotypes, but the allelic abundance measures

are now correlated across individuals. Proponents of unsupervised clustering prefer parametric

methods based on mixtures of Gaussians (Fujisawa et al., 2004) since coupling these models with

complexity penalties performs well in selecting the number of clusters. Balanced against this ad-

vantage, classical clustering methods are somewhat more robust to departures from independence.

Because our clustering models respect pedigree structure, they overcome the sensitivity of the

Gaussian models to dependent observations. Furthermore, Gaussian models permit us to incorpo-

rate empirical priors that borrow information across SNPs. This helps in estimating the parameters

for all three clusters even when sample heterozygosity is low.

The Gaussian mixture model relies on the notion of penetrance, which is the likelihood of a

phenotype such as ya or yb given an underlying genotype. Let y be the vector of measurements for

one individual and one SNP. Marginally, y comes from a mixture of multivariate Gaussians,

y ∼ pa/aN (µa/a, Ωa/a) + pa/bN (µa/b, Ωb/b) + pb/bN (µb/b, Ωb/b). (1)

In other words, conditional on genotype g, the measurements y follow a Gaussian distribution with

genotype specific means µa/a, µa/b, and µb/b, and genotype specific variances Ωa/a, Ωa/b, and Ωb/b.

The genotype-specific means satisfy the natural constraints

µa/a
a ≥ µa/b

a ≥ µb/b
a , µ

a/a
b ≤ µ

a/b
b ≤ µ

b/b
b . (2)

Enforcing these inequalities stabilizes parameter estimation. When ya and yb are multivariate, the

inequality constraints hold component by component. Under Hardy-Weinberg equilibrium, the

genotype frequencies for a noninbred person satisfy pa/a = (pa)2, pa/b = 2papb, and pb/b = (pb)2,
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where pa and pb = 1− pa are the population frequencies of the two alleles a and b. For a pedigree

of r related individuals, the collective measurements y1, . . . , yr have joint likelihood

L(y1, . . . , yr) =
∑
g1

· · ·
∑
gr

Pr(g1, . . . gr)
∏

j

Pr(yj|gj)

=
∑
g1

· · ·
∑
gr

∏
i

Prior(gi)
∏
k,l,m

Tran(gm|gk, gl)
∏

j

Pen(yj|gj). (3)

Here the index i ranges over all pedigree founders, and the triple of indices (k, l, m) ranges over all

parent-offspring trios. The prior function in the likelihood incorporates the Hardy-Weinberg fre-

quencies, and the transmission function incorporates the usual Mendel transmission probabilities

of 0, 1
2
, and 1. The penetrance function is Gaussian in the current setting (Lange, 2002).

Our choice of the functional form of the Bayesian priors is dictated by considerations of parsi-

mony, flexibility, and computability. We assume independent priors on the allele frequency pa, the

genotype-specific mean vectors µ, and the genotype specific variance matrices Ω. We take a beta

prior on pa with hyperparameters (α, β), a Gaussian prior on each mean µl/k with hyperparameters

θl/k and Σl/k, and an inverse Wishart prior on each variance matrix Ωl/k with hyperparameters Λk/l

and νk/l. To select the hyperparameters of the prior distributions, we proceed in two steps. We first

estimate all ordinary parameters for a large subset of SNPs with high heterozygosities. Estima-

tion is done via our pedigree analysis program Mendel, which has embedded in it a quasi-Newton

optimization engine. Mendel is freely available on the UCLA Human Genetics website (Lange

et al., 2001). Treating the maximum likelihood estimates as realizations from the priors, we then

estimate the hyperparameters by the method of moments as described in the Appendix.

Once the hyperparameters have been estimated, we re-estimate the ordinary parameters for

each SNP, using the empirically derived priors to steer the maximization. With these maximum

a-posteriori estimates in hand, we are ready to evaluate the penetrances and posterior probabilities

of the three possible genotypes for each person i and each SNP. Penetrances are easy to compute

because they are the genotype-specific likelihoods as determined by the model. We distinguish two

kinds of posterior genotype probabilities, depending on the availability and use of pedigree infor-
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mation. A pedigree based posterior probability summarizes the information gathered on the entire

pedigree containing person i. To compute such a probability, one must evaluate three separate

likelihoods, fixing a different genotype for i in each case. The sum of these restricted likelihoods

is the pedigree likelihood (3), which serves as the normalizing constant in Bayes rule. If i is an

isolated individual, or if we decide to ignore pedigree information, then the posterior probability of

a SNP genotype is proportional to the product of the population genotype frequency and the pene-

trance for that genotype; the likelihood (1) is the normalizing constant. We refer to these posterior

probabilities as individual based. In our view, calling software should report penetrances and both

posterior probabilities. Penetrances are pertinent when a SNP plays a part in a more complicated

gene mapping computation. Posterior probabilities help in assessing the reliability of genotyping.

3 Affymetrix 10K Arrays

The first and second-generation Affymetrix 10k arrays genotype roughly 10,000 SNPs, providing

genome coverage with an average distance between SNPs of 0.3 centiMorgans (cM). The company

has recently increased chip density to the point where 100,000 SNPs can be assayed simultane-

ously. On these chips each SNP is assessed by 40 probes, each 25 bases long. Of the 40 probes, 20

are match probes that perfectly hybridize with one of the two alleles, and 20 are mismatch probes

intended to measure the level of cross-hybridization. Among the 20 match probes, 10 probes

are complementary to allele a, and 10 probes are complementary to allele b. Each set of 10 match

probes is further subdivided into two subsets of 5 probes; one subset is complementary to the sense

strand and the other subset to the antisense strand of the DNA molecule. This leads to four probe

subsets: sense (s) a, antisense (t) a, sense b, and antisense b. The five probes of each subset differ

in the position of the polymorphic base among the 25 bases. For some probes the polymorphic

position is central; for others it is shifted left or right by one to three bases. Each mismatch probe

is paired with one match probe and differs from it at the polymorphic base. Given this technical set
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up, it is natural to assume that the signals are more homogeneous within probe types than across

probe types. Hence, it is reasonable to consider y a four-dimensional vector by averaging within

probe type. This decision has the obvious advantage of reducing the dimensionality of our models.

The data discussed in this paper come from a linkage study of diseases of the vestibular system

conducted by our UCLA colleagues Baloh, Jen, and Nelson. In the course of their investigations,

they genotyped 63 people from eight families using the first generation Affymetrix 10k array. Al-

though we do not have independent confirmation of the genotyping results, the same DNA samples

were genotyped using a standard set of 400 microsatellites in a separate genome scan. The no-call

rates and low prevalence of Mendelian errors in that scan convince us that the overall DNA quality

of the samples is acceptable. It is well known that intensity data from hybridization arrays needs

to be preprocessed in order to be meaningfully analyzed (Li and Wong, 2001; Yang et al., 2002;

Irizarry et al., 2002). Initial exploration of the data suggested to us that a background correction

and a transformation to normality would be adequate for further analysis purposes. In particular,

we subtracted from each perfect match value the corresponding mismatch value and then subjected

these background corrected intensities to the tail taming transformation f(x) = sign(x)[abs(x)]
1
4 .

To gain a feel for the hybridization signals, we made genotype assignments for 500 randomly

selected SNPs using the Affymetrix software. This allowed us to compute genotype specific means

and correlations for the 20 different match intensities. Figure 1 displays the average correlations

among the 20 measurements for each of the three genotypes. Inspection of the diagonal blocks

of the figure makes it clear that the signals within a four-probe subset are highly correlated when

the probes query a single allele present in the genotype. Two signals representing the same allele

but different strands or vice versa also tend to be more highly correlated than signals agreeing

in neither allele nor strand. Based on these observations, we concluded that intensities could be

modeled in a 4-dimensional space rather than in a 20-dimensional space. We considered using

both the median and the mean to summarize the five measurements within each probe subset and

finally opted for the mean.
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Figure 2 illustrates the mean values for a fairly typical SNP. Note that, in the present paper,

each SNP has a name starting with the letter “r” and followed by a number describing its genomic

position. The three clusters corresponding to the three genotypes are clearly identifiable. There

is also an obvious positive correlation between probes regardless of genotype, reflecting overall

luminosity differences between chips. In gene expression experiments, quantile-quantile match-

ing is used to correct for luminosity differences. Global normalization can also be achieved by

subtracting the average log intensity from the log intensity for each SNP measurement (Irizarry

et al., 2002). In genotyping assays, the Affymetrix genotype calling procedure operates on the

transformed variable y′a = ya/(ya + yb). Fujisawa et al. (2004) instead transform (ya, yb) to po-

lar coordinates and use only the polar angle for clustering-classification purposes. It seems to us

that quantile-quantile matching and ratio and angular transforms all risk losing too much infor-

mation, particularly when there are other goals beside genotype calling. Subtracting the overall

chip-intensity from each SNP measurement is preferable, but subtracting mismatch intensities par-

tially achieves the same end in a SNP-specific way. The remaining correlations are adequately

modeled by a judicious choice of the covariance matrices Ωk/l. Thus, we have chosen the conser-

vative course of averaging the original signals corrected for mismatches and transformed according

to the fourth root function mentioned earlier. This decision has the advantage of retaining the scale

of the SNP measurements in loss of heterozygosity studies.

In view of these exploratory conclusions, we decided to summarize the intensities of the

Affymetrix 10k array by four statistics that we label ysa, yta, ysb, and ytb. Each is the average

of five measurements from one allele and one strand, corrected for background luminosity and

transformed as previously described. The average of the 5 mismatch signals for a probe group

forms its background. Our general Gaussian model for these four statistics requires 12 mean pa-

rameters (4 for each genotype) and 30 variance parameters (10 for each genotype). These are large

numbers, and if our interest were only in genotype calling, we would be inclined to summarize the

data further. We have resisted this temptation because it compromises our chance to better compre-
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hend the operating characteristics of the Affymetrix chip. Instead, we prefer to investigate certain

biologically plausible symmetry hypotheses that lead to a reduction in the number of parameters.

These hypotheses involve genotype additivity, allelic symmetry, and strand symmetry.

The genotype additivity hypothesis requires that the heterozygous genotype to be intermediate

in the sense that

µa/b =
1

2

(
µa/a + µb/b

)
, Ωa/b =

1

2

(
Ωa/a + Ωb/b

)
. (4)

The allelic symmetry hypothesis says that allele labels do not matter; all that matters is the presence

or absence of an allele. For example, allelic symmetry dictates the constraint µa/a
as = µ

b/b
bs . Formally

we can express allelic symmetry via the permutation matrix

P =


0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 .

as the mean constraints

µb/b = Pµa/a, µa/b = Pµa/b, (5)

and variance constraints

Ωb/b = PΩa/aP, Ωa/b = PΩa/bP. (6)

The strand symmetry hypothesis says that measurements from sense and antisense probes for the

same allele have the same distribution. Formally, if Q is the permutation matrix

Q =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ,
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then we have mean constraints

µa/a = Qµa/a, µa/b = Qµa/b, µb/b = Qµb/b, (7)

and the variance constraints

Ωa/a = QΩa/aQ, Ωa/b = QΩa/bQ, Ωb/b = QΩb/bQ. (8)

In our subsequent analysis, we consider all 64 = 23 × 23 possible combinations of these

symmetry hypotheses on the mean and variance parameters. Table 1 summarizes the various com-

binations and the number of free parameters each entails. We also consider a variance model

(number 0) that postulates a shared variance across all three genotypes. This model has 10 vari-

ance parameters. In the next section we describe parameterizations of the various models that

permit straightforward maximum likelihood estimation under simple parameter constraints. We

also propose modifications of the priors consistent with the symmetry hypotheses and show how

to perform maximum a posteriori estimation. In later sections we discuss our strategy for model

selection and summarize our model fitting conclusions.

4 Parameterization and Constraint Simplification

To carry out maximum likelihood or maximum a posteriori estimation, it helps to choose parame-

ters with the simplest possible constraints. This desire motivates the common practice of estimating

the Cholesky decomposition (Golub and van Loan, 1989) of a variance matrix rather than the ma-

trix itself. With some of the structured variance matrices mandated by our symmetry models, naive

application of the Cholesky maneuver fails. We now discuss how to salvage the situation.

The additivity hypothesis poses no difficulty. In the case of allelic symmetry, the relation

between Ωb/b and Ωa/a can be stated in block matrix form as

Ωa/a =

(
C D

Dt E

)
, Ωb/b =

(
E Dt

D C

)
.
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If we parameterize Ωa/a by its Cholesky decomposition, then it is trivial to recover Ωb/b. The

symmetry constraint on Ωa/b is

Ωa/b =

(
C D

D C

)
(9)

for 2 × 2 symmetric matrices C and D. The evident structure in this matrix clashes with a full

Cholesky decomposition, so we must consider more a delicate parameterization.

We first use the Cholesky decomposition F of the positive definite block C of Ωa/b and write(
C D

D C

)
=

(
FF t FGF t

FGF t FF t

)
for an unknown symmetric matrix G. Since the matrix Ωa/b is positive definite, we can sweep on

its upper left block FF t and conclude that the resulting lower right block

FF t − FGF t(FF t)−1FGF t = FF t − FGGF t = F (I −G2)F t

is positive definite (Lange, 1999). This is possible only if all eigenvalues of the symmetric matrix

G are strictly less than 1 in absolute value. Hence, we have reduced the problem of parameterizing

an arbitrary positive definite matrix of the form (9) to the problem of parameterizing an arbitrary

symmetric matrix G with eigenvalues on the interval (−1, 1). The further transformation H =

1
2
G + 1

2
I shows that it suffices to parameterize an arbitrary symmetric matrix H with eigenvalues

on the interval (0, 1). Such a matrix H can always be represented as the matrix exponential

eK =
∞∑

n=0

1

n!
Kn

of a negative definite matrix K. Indeed, one can easily check that eK is symmetric when K

is symmetric and that eλ ∈ (0, 1) is an eigenvalue of eK when λ < 0 is an eigenvalue of K.

Conversely, if H is positive definite with all eigenvalues in (0, 1), then the convergent series

K = ln H

= ln[I − (I −H)]

= −
∞∑

k=1

1

k
(I −H)k
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provides the unique K with eK = H . To parameterize K, we choose the Cholesky decomposition

L of −K. In summary, we can represent(
C D

D C

)
=

(
FF t F (2e−LLt − I)F t

F (2e−LLt − I)F t FF t

)
(10)

using arbitrary Cholesky decompositions F and L.

Turning now to strand symmetry and letting

Ωa/a =

(
C D

Dt E

)
,

we note that the 2× 2 blocks C, D, and E are all symmetric matrices of the form(
u v

v u

)
in analogy to the block decomposition (9). Similar representations hold for Ωa/b and Ωb/b. In

practice, we prefer to deal with representations of the form (9). To convert between the two types

of representations, we define the symmetric permutation matrix

R =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


and verify that PR = RQ. If we now set Σ = RΩa/aR, then

PΣP = PRΩa/aRP

= RQΩa/aQR

= RΩa/aR

= Σ.

This symmetry relation allows us to parameterize Σ as in equation (9). It is straightforward to

recover Ωa/a = RΣR based on the identities Σ = RΩa/aR and R2 = I . Similar considerations

apply to Ωa/b and Ωb/b.
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If an additive model has either allelic symmetry or strand symmetry, then corresponding sym-

metry constraints on the heterozygote mean are automatically satisfied. For example, in the case

of allelic symmetry, the identities

µa/b =
1

2

(
µa/a + µb/b

)
, µb/b = Pµa/a, P 2 = I

imply

Pµa/b =
1

2
P
(
µa/a + Pµa/a

)
=

1

2

(
Pµa/a + P 2µa/a

)
=

1

2

(
Pµa/a + µa/a

)
= µa/b.

The identities

Ωa/b =
1

2

(
Ωa/a + Ωb/b

)
, Ωb/b = PΩa/aP, P 2 = I

likewise imply the variance identity Ωa/b = PΩa/bP . Similar properties hold for strand symmetry.

The combination of allelic symmetry and strand symmetry for means is equivalent to the

parameterization

µa/a =


ν

ν

ω

ω

 , µa/b =


θ

θ

θ

θ

 , µb/b =


ω

ω

ν

ν

 .

Variances are more complicated. It suffices to parameterize Ωa/a and Ωa/b and express Ωb/b as

PΩa/aP . This assertion depends on Ωb/b satisfying the symmetry relation Ωb/b = QΩb/bQ. Given

that Ωa/a = QΩa/aQ, the easily checked identity PQ = QP implies

QΩb/bQ = QPΩa/aPQ
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= PQΩa/aQP

= PΩa/aP

= Ωb/b.

We have already dealt with Ωa/a subject to the symmetry constraint Ωa/a = QΩa/aQ. Turning to

the parameterization of Ωa/b subject to the two constraints Ωa/b = PΩa/bP and Ωa/b = QΩa/bQ,

we assert that

Ωa/b =


(

u v

v u

) (
w x

x w

)
(

w x

x w

) (
u v

v u

)
 .

This follows directly from our previous discussion. Fortunately, we can explicitly diagonalize a

matrix of this form using the columns of the orthogonal matrix

O =
1

2


1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1


as eigenvectors. In view of this fact, we represent Ωa/b as

Ωa/b = O


eλ1 0 0 0

0 eλ2 0 0

0 0 eλ3 0

0 0 0 eλ4

Ot

by exponentiating an arbitrary diagonal matrix with ith diagonal entry λi. Exponentiation takes a

real eigenvalue λi into a positive eigenvalue eλi . Since a symmetric matrix is positive definite if

and only if all of its eigenvalues are positive, our representation ranges over all positive definite

matrices fulfilling the symmetry constraints.
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5 Priors

Following the outline in Section 2, we now specify prior distributions on the parameters. Our

choices respect the symmetry constraints and exploit independent priors whenever reasonable. We

have already assumed independent priors across mean and variance parameters.

The mean parameter vector µ is partitioned into the components µa/a, µa/b, and µb/b pertinent

to each genotype. On each of these four-dimensional vectors, we assume a Gaussian prior with

mean vector θk/l and variance matrix Σk/l. Unless a symmetry constaint forces us to assume

otherwise, we take these priors to be independent. In reality the mean parameters are never fully

independent because of the inequality constraints (2). These constraints are embedded in our

maximization routine and, hence, implicitly in our priors. Table 2 summarizes the mean priors.

Column one gives the mean model number defined in Table 1, column two displays the relevant

Gaussian priors, and column three recalls how dependent parameters are related to free parameters.

Owing to the symmetry constraints, some of the means µk/l have just one or two free parameters.

The notation µ
k/l
[1] in the table indicates entry 1 of the vector µk/l, the only free parameter for

that vector when the subscript appears. Similarly, µ
k/l
[1,3] indicate entries 1 and 3 of µk/l, the only

free parameters for that vector when the subscript appears. Recall that the vector µk/l has four

entries, corresponding to the sense a, antisense a, sense b, antisense b statistics, respectively. The

hyperparameters θk/l and Σk/l apply only to the free parameters and are subscripted by [1], [1,2],

or [1,3] as needed.

We impose on the variance matrices Ωa/a, Ωa/b, and Ωb/b independent inverse Wishart (IW)

priors whenever possible (Anderson, 1984). If under a symmetry model one of these matrices

remains unconstrained, then we continue to impose an IW prior on it. This rule allows us to define

priors for model 0 (a single IW prior on the common variance matrix), model 1 (independent IW

priors on each of the three variance matrices), model 2 (independent IW priors on Ωa/a and Ωb/b),

and model 4 (a single IW prior on Ωa/a). Under the remaining models, the three variance matrices
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do not collapse to a smaller set of variance matrices. For example, under allelic symmetry in model

3, Ωb/b = PΩa/aP , but Ωa/b = PΩa/bP has internal symmetries that must be taken into account.

In this particluar case, we impose a constrained IW distribution on Ωa/b with density proportional

to

f(Ω) ∝ 1{Ω=PΩP}|Ω|−
νa/b+d+1

2 exp{−tr(Λa/bΩ−1)/2},

where νa/b denotes the IW degrees of freedom, Λa/b the IW scale matrix, and d = 4 the dimension

of the matrix argument Ω. In principle, we could approximate the normalizing constant by an

MCMC method on the slice Ω = PΩP in question, but there is no need to do so in maximum

likelihood and maximum a posteriori estimation. Model selection is another matter, and we will

take that up later. Table 3 summarizes the constrained and unconstrained IW priors. Column one

gives the variance model number defined in Table 1, column two displays the relevant independent

IW priors, column three lists the constraints on the constrained IW densities, and column four

recalls how dependent parameters are related to free parameters.

As an alternative to employing IW priors on the variance matrices, we now discuss imposing

priors on the parameters actually used in maximization. At first glance, these priors seem less

natural than priors on the variance matrices, but they avoid the problem of unknown normalizing

constants and are more convenient to implement in practice. For technical reasons that will soon

be clear, we discuss putting Wishart priors on the variance matrices. (If IW priors are preferred,

then Wishart priors can be specified on the inverse of the variance-covariance matrices.) To begin,

recall how allelic and strand symmetry lead to the consideration of the positive definite matrices

displayed in equation (10). Whenever such a parameterization is needed, we assume that FF t and

LLt follow independent Wishart priors. It is known (Anderson, theorem 7.2.1, 1984) that when a

d× d matrix FF t follows a Wishart distribution with scale matrix Λ and degrees of freedom ν, its

Cholesky decomposition F = (fij) has density

f(F ) =

∏d
i=1 f ν−i

ii exp{−tr(Λ−1FF t)/2}
|Λ|ν/22d(ν−2)/2πd(d−1)/4

∏d
i=1 Γ(ν+1−i

2
)

. (11)
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Here each each fii > 0, and in our case d = 2. Table 4 provides a detailed list of the various

Wishart priors. To parameterize a model with strand symmetry, a variance matrix Ωk/l is mapped

to another matrix Σk/l = RΩk/lR admitting the parameterization (10). To make this transformation

clear, we use V k/l and W k/l rather than F k/l and Lk/l to indicate the Cholesky factorizations of

Σk/l. Model 7 represents an exception discussed in detail earlier. In this case, we put independent

gamma priors on the eλi , consistent with the marginal distributions on the diagonal entries in the

density (11).

6 Analysis of the Affymetrix Data

We now turn to the analysis of the intensity data from our sample of 63 individuals. Our initial goal

is to select the best of the 72 = 8× 9 possible symmetry models. Our strategy is motivated by two

considerations. On the one hand, we prefer that the same model should hold for all SNPs. After all,

each SNP is assayed with the same technology and presumably involves the same symmetries. On

the other hand, we are committed to a Bayesian analysis with model selection using the Bayesian

information criterion (BIC) described by Schwarz (1978). This allows us to carry out model se-

lection using maximum likelihood with no prior specified. Given the computation demands of

pedigree analysis, the number of models, and the sheer number of SNPs, we limit model selection

to 500 randomly chosen SNPs having at least five Affymetrix identified representatives for each

genotype. This minimum representation rule avoids model selection biases caused by poor fitting

of mean and variance components, a problem exacerbated by low sample heterozygosity.

Figure 3 graphically illustrates the BIC

BIC(M) = max
µ,Ω,p

ln[L(y1, . . . , y63|M, µ, Ω, p)]− ln(63)|M|
2

.

for each of the 72 models. Here L denotes a likelihood and M a particular model having |M|

parameters. A glance at the right half of the figure (mean models 5-8) shows the implausibility of
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the strand symmetry hypothesis for mean parameters. The same hypothesis on variance parame-

ters is credible; evidently, the decrease in maximum likelihood is compensated by the substantial

reduction in the number of parameters. The other hypothesis immediately ruled out is additivity

for the variances (even-numbered variance models). The maximum average BIC occurs for the

combination of mean model 1 and variance model 3. This model has 12 free mean parameters and,

owing to the hypothesis of allelic symmetry on the variance matrices, 16 variance parameters. The

second best BIC adds strand symmetry to allelic symmetry on the variance matrices, for a total of

10 variance parameters. The mean inequality constraints (2) were enforced during maximization

for all 72 models. When we repeat the same analysis using globally normalized luminosity values,

we come to the same qualitative conclusions.

We also checked the adequacy of the “one model for all SNPs” hypothesis. This check is

achieved by recording the BICs for each SNP and clustering SNPs on the basis of theirl BIC

vectors over the 72 models. We use the agglomerative hierachical clustering procedure hclust

implemented in R, with distances between SNPs defined by correlation. The results are shown in

Figure 4, where each SNP corresponds to a row in the image, and each model to a column. Here the

SNPs are ordered so that the branches of the invisible cluster tree do not cross. Models are ordered

by their average BIC values across all SNPs. While it is possible to identify some subgroups in the

data, these do not lend much support to models other than 1-3 or 1-7, in corroboration of our “one

model for all SNPs” hypothesis.

Comparison of our genotype calls with those of Affymetrix provide another helpful check in

model selection. In making comparisons, we do not mean to imply that the Affymetrix procedure is

the gold standard. But with a published error rate of 0.1% in ideal circumstances (Hao et al., 2004),

it does offer a benchmark for improvement and discrimination of models. One natural statistic for

comparison is the average number of discordant calls model by model across all 500 SNPs. This

statistic, as presented in Figure 5, favors the combination of mean model 1 and variance model 7

(allelic and stand symmetry). Adopting variance model 3 (allelic symmetry alone) increases the
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discordance rate from 1.5% to 2%. Let us stress that these comparisons involve posterior genotype

probabilities based on individuals and evaluated at the maximum likelihood estimates.

A more detailed comparison of the clusters defined by the methods is also revealing. The data

in Figure 6 on SNP r1014 recapitulates Figure 2, but now with a focus on models 1-1, 1-3, and 1-7.

We have already remarked on the well differentiated clusters. What is surprising is the number of

no calls by Affymetrix. In some cases, SNP intensities fall very near the center of a cluster and

still are not called by Affymetrix. In cases where chip luminosity values are exceptionally high and

signals occur far from cluster centers, the reluctance of the Affymetrix software to make a call is

more understandable. Certainly a no call is preferable to a bad call. In our genotype calls, we make

no attempt to screen outliers. All genotypes are called, and depending on the model, may be called

differently. In practice, outliers should be eliminated at the quality control stage. Furthermore,

we do not actually advocate using called genotypes or posterior genotype probabilities in pedigree

analysis. Genotype-by-genotype penetrances are more pertinent because genotype frequencies are

incorporated in pedigree computations when founders are visited.

Secure in the knowledge that models 1-3 and 1-7 describe the data well, we estimated the

hyperparameters of the priors from the maximum likelihood estimates using the method of mo-

ments estimators described in the Appendix. Armed with the hyperparameters, we then performed

maximum a posteriori estimation on the entire SNP data set. Comparison of Figures 7 and 6

shows that the differences between maximum likelihood and maximum a posteriori estimates are

not substantial for the typical SNP r1014. This holds for both Wishart and inverse Wishart priors

on the variance matrices under model 1-7. Figure 8 depicts SNP r1015 under model 1-3. Here

the presence of three distinct clusters appears dubious, and the use of a hierarchical Bayes method

substantially improves results. All possible combinations of model 1-3 and 1-7 and Wishart and

inverse Wishart priors perform similarly. In the sequel, unless otherwise stated, we report results

for model 1-7 with a Wishart prior.

We now turn to a more systematic comparison of the differences in genotype calls. Figure 9
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gives a breakdown by SNP and person of Affymetrix’s no calls in our data. Some SNPs and some

individuals clearly account for a disproportionate fraction of the 13.6% of no calls. Presumably

this reflects the low efficiency of some probes and the poor DNA quality of some samples. It

is interesting to see how the uncertainty perceived by Affymetrix is reflected in our procedure.

Since our posterior genotype probabilities πa/a, πa/b, and πb/b are soft and distributed over all three

genotypes, it is useful to quantify their spread. One measure is the Gini purity index (Bhargave

and Uppuluri, 1977)

πpurity = π2
a/a + π2

a/b + π2
b/b,

which ranges from a maximum of 1 to a minimum of 1
3
. Figure 10 shows that the purity of

Affymetrix’s no calls is lower than overall purity. However, the purity of some no calls is quite

high. There are three reasons for this: (1) our model is able to make definitive calls on many

Affymetrix no calls, (2) the purity index is inflated because uncertainty is almost always spread

over at most two neighboring genotypes and hence has minimum of 1
2

rather than 1
3
, and (3) we do

not exclude outliers, which may be far from all genotype centers but are still confidently assigned.

A hard genotype call should take into account not only the most probable genotype but also the

posterior probability attached to that genotype. In particular, it is wise to refrain from calling a

genotype when the posterior probability of error is above a certain threshold. If we elect not to

call genotypes whose maximum posterior probability falls below 99%, then our no-call rate is

11% for individual calls and 7% for pedigree calls. Not surprisingly, pedigree information makes

it possible to resolve some uncertain cases. These values rise to 25% and 15%, respectively,

among Affymetrix no calls. Figure 11 depicts these results as well as our most probable genotype

assignments for Affymetrix’s no calls. The no calls show a noticeable increase in the frequency of

heterozygotes.

In the intersection of the Affymetrix called genotypes and our confidently called genotypes

(posterior probability > 0.99) the discordance rate is 1.8%. Notice that this is close to our nominal
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error rate of 1%. A detailed breakdown appears in the top half of Table 5. If we use the information

in an entire pedigree in making a call, then this difference increases to 2%. These calls are referred

to as pedigree calls in the table. The bottom half of the table reports the same comparisons for all

of the Affymetric called genotypes. Not surprisingly, the vast majority of disagreements occur as

a heterozygote-homozygote difference.

Seven samples from one of the pedigrees in the study resulted in a particularly high Affymetrix

no-call rate (30%). Our collegues decided to re-genotype these samples. The re-genotyping was

carried out using the second generation Affymetrix 10K chip, which for purposes of comparison

shares about 900 SNPs with the first generation chip. The Affymetrix no-call rate for this new

experiment was much lower (4%), suggesting better experimental results. Affymetrix’s own dis-

cordance rate for the called genotypes common to both experiments was 1.3%. The discordance

rate between our own calls on the first experiments with Affymetrix calls on the second experi-

ment is 5%. This higher discordance rate is explained by our willingness to call more genotypes.

Indeed, our discordance rate rises from 1.8% among the original Affymetrix called genotypes to

15% among the original no calls. This experience suggests that we screen calls that have low

penetrances for all genotypes and eliminate the corresponding outliers that conform poorly to the

overall model.

7 Discussion

The methods described here extract more information from Affymetrix SNP arrays than the com-

pany software does. Although the Affymetrix calling algorithm is accurate with high quality DNA

(Hao et al., 2004a), accuracy degrades and the fraction of no calls increases in less ideal circum-

stances. Figure 9 emphasizes this point. In our experience, good modeling and close inspection of

each data set mitigate the worse declines in performance.

Our analysis is based on the assumption of normality. While normality appears to be a reason-
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able approximation for suitably transformed intensity values, it clearly breaks down in the presence

of extreme outliers. One remedy is to eliminate outliers prior to genetic analysis using quality con-

trol techniques. Such techniques are currently under investigation. Another remedy is to replace

the multivariate normal distribution in analysis with the multivariate t distribution (Lange et al.,

1989). Despite the fact that we have ignored outliers in the current data, our genotype calls agree

well with the Affymetrix calls. In addition we are able to reduce the number of no calls signifi-

cantly.

One of our interests in modeling probe measurements is their potential in loss of heterozygos-

ity studies. Qualitatively oriented genotype calling confuses low intensities with SNP homozygos-

ity. The symmetry relations we have introduced are biologically plausible and effectively reduce

the dimension of parameter space. Investigating these relations has forced us to revisit the question

of how best to parameterize variance matrices with block structure. We hope that our representa-

tions will find other statistical applications.

Our algorithms output penetrance probabilities as well as genotype calls. To our knowledge,

no linkage analysis software is equipped to handle penetrances. But this situation is about to

change as geneticists see the virtues of soft calls versus no calls. Current software for association

mapping does handle quantitative data in case-control studies; it does not in association studies

with pedigrees. We tend to be philosophic because hardware almost always leads software. No

field of science or technology can be judged mature until both function at the highest level. We

certainly take this lag as a spur to bring more sophisticated statistical methods and software to bear

on genetic epidemiology.
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Appendix: Estimation of Hyperparameters

To estimate the hyperparameters of the beta prior for the SNP population frequency pa, we use the

method of moments. It is well known that the mean and variance of the beta density are

m =
α

α + β

v =
αβ

(α + β)2(α + β + 1)
.

These equations can be solved for α and β in the form

α =
m(m−m2 − v)

v

β =
(1−m)(m−m2 − v)

v
.

If we compute the sample mean and variance

m̂ =
1

n

n∑
i=1

p̂a
i, v̂ =

1

n

g∑
i=1

n(p̂a
i − m̂)2,

then substituting m̂ for m and v̂ for v yields the method of moment estimators α̂ and β̂ of α

and β. If a reliable estimate of pa is available from more extensive data on a particular SNP, it

probably is better to fix the value of pa at that estimate during maximum a posterior estimation of

the penetrance parameters and omit the corresponding beta prior on the SNP.

To estimate the hyperparameters θk/l and Σk/l of the Gaussian prior N (θk/l, Σk/l) on µk/l,

we use the sample mean and the sample covariance matrix of the maximum likelihood estimates

µ̂
k/l
i , i = 1, . . . , n. We also use maximum likelihood estimates to select the hyperparameters of the
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unconstrained IW prior on each d× d variance matrix Ωk/l. It is well known that the IW density

fΛ,k(Ω) =
|Λ| ν2 |Ω|− ν+d+1

2 exp{−tr(ΛΩ−1)/2}
2νd/2π

d(d−1)
4

∏d
i=1 Γ(ν+1−i

2
)

has mean matrix E(Ω) = (ν − d− 1)−1Λ for ν > d + 1. Hence, the method of moments estimator

of Λ is

Λ̂ =
ν − d− 1

n

n∑
i=1

Ω̂i. (12)

This estimate correctly centers Λ̂ but leaves estimation of ν unresolved. To avoid an overly strong

prior, we prefer setting ν to its smallest admissible integer value. Of course, there are alternatives

to this naive estimate. One is to substitute the method of moments estimate (12) into the likelihood

for the sample Ω̂1, . . . , Ω̂n and maximize the resulting function of ν. Alternatively, one can exploit

the identity

E(Ω−1) = νΛ−1 =
ν

ν − d− 1
E(Ω)−1

and write

1

n

n∑
i=1

Ω̂−1
i ≈ nν

ν − d− 1

(
n∑

i=1

Ω̂i

)−1

.

We then choose the value of ν that minimizes the absolute difference between the traces of these

two matrices or the sum of squared differences of their entries. These two criteria yielded virtually

identical results in the cases we explored.

To estimate the parameters of the CW distributions from the sample estimates F̂1, . . . , F̂n, we

generate the corresponding products F̂1F̂
t
1, . . . , F̂nF̂

t
n, treat these as independent Wishart observa-

tions, and extract the method of moments estimates as just described.
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Model Additive Allelic Strand # Mean # Variance

Number Symmetry Symmetry Symmetry Parameters Parameters

1 no no no 12 30

2 yes no no 8 20

3 no yes no 6 16

4 yes yes no 4 10

5 no no yes 6 18

6 yes no yes 4 12

7 no yes yes 3 10

8 yes yes yes 2 6

Table 1: Models Defined by Combinations of Symmetry Hypotheses
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M Priors for Free Mean Parameters Constraints on Mean Parameters

1 µk/l ∼ N (θk/l, Σk/l) k, l = {a, b} None

2 µk/k ∼ N (θk/k, Σk/k) k = {a, b}; µa/b = (µa/a + µb/b)/2

3 µa/a ∼ N (θa/a, Σa/a) µ
a/b
[1,2] ∼ N (θ

a/b
[1,2], Σ

a/b
[1,2]) µb/b = Pµa/a µ

a/b
[3,4] = µ

a/b
[1,2]

4 µa/a ∼ N (θa/a, Σa/a) µb/b = Pµa/a µa/b = (µa/a + µb/b)/2

5 µ
k/l
[1,3] ∼ N (θ

k/l
[1,3], Σ

k/l
[1,3]) k, l = {a, b} µ

k/l
[2,4] = µ

k/l
[1,3]

6 µ
k/k
[1,3] ∼ N (θ

k/k
[1,3], Σ

k/k
[1,3]) k = {a, b} µ

k/k
[2,4] = µ

k/k
[1,3] µa/b = (µa/a + µb/b)/2

7 µ
k/l
[1] ∼ N (θ

k/l
[1] , Σ

k/l
[1] ) k, l = {a, b} µ

k/k
[3] = µ

l/l
[1] µ

a/b
[3] = µ

a/b
[1] µ

k/l
[2,4] = µ

k/l
[1,3]

8 µ
k/k
[1] ∼ N (θ

k/k
[1] , Σ

k/k
[1] ) k = {a, b} µ

k/k
[3] = µ

l/l
[1] µ

k/l
[2,4] = µ

k/l
[1,3] µa/b = (µa/a + µb/b)/2

Table 2: Priors for the Mean Parameters. The entire prior density on the mean parameters is

specified by taking the product of the prior densities in the second column. Column one identifies

the model, and column three recalls how the remaining parameters are determined by the free

parameters.
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M Inverse Wishart Priors for Variance Parameters Dependent Matrices

Unconditional Distributions Conditioning Events

0 Ωa/a ∼ IW (Λa/a, νa/a) None Ωb/b = Ωa/b = Ωa/a

1 Ωk/l ∼ IW (Λk/l, νk/l) k, l = {a, b} None None

2 Ωk/k ∼ IW (Λk/k, νk/k) k = {a, b} None Ωa/b = (Ωa/a + Ωb/b)/2

3 Ωa/a ∼ IW (Λa/a, νa/a) Ωb/b = PΩa/aP

Ωa/b ∼ IW (Λa/b, νa/b) Ωa/b = PΩa/bP

4 Ωa/a ∼ IW (Λa/a, νa/a) None Ωb/b = PΩa/aP

Ωa/b = (Ωa/a + Ωb/b)/2

5 Ωk/l ∼ IW (Λk/l, νk/l) k, l = {a, b} Ωa/a = QΩa/aQ None

Ωa/b = QΩa/bQ, Ωb/b = QΩb/bQ

6 Ωk/k ∼ IW (Λk/k, νk/k) k = {a, b} Ωa/a = QΩa/aQ, Ωb/b = QΩb/bQ Ωa/b = (Ωa/a + Ωb/b)/2

7 Ωa/a ∼ IW (Λa/a, νa/a) Ωa/a = QΩa/aQ, Ωb/b = PΩa/aP

Ωa/b ∼ IW (Λa/b, νa/b) Ωa/b = PΩa/bP, Ωa/b = QΩa/bQ

8 Ωa/a ∼ IW (Λa/a, νa/a) Ωa/a = QΩa/aQ Ωb/b = PΩa/aP

Ωa/b = (Ωa/a + Ωb/b)/2

Table 3: Constrained IW Priors for the Variance Parameters. Column one identifies the model.

Column two lists the free variance matrices and the unconditional IW priors assumed for them;

different free variance matrices Ωk/l and Ωj/i are independent. Column three lists the constraints

on which the prior distribution has to be conditioned. Column four recalls how the remaining

parameters are determined by the free parameters.
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M Wishart Priors for Free Variance Parameters

0 Ωa/a ∼ W (Λa/a, νa/a)

1 Ωk/l ∼ W (Λk/l, νk/l) k, l = {a, b}

2 Ωk/k ∼ W (Λk/k, νk/k) k = {a, b}

3 Ωa/a ∼ W (Λa/a, νa/a) F ∼ CW (ΛF , νF ) L ∼ CW (ΛL, νL)

4 Ωa/a ∼ W (Λa/a, νa/a)

5 V k/l ∼ CW (Λ
k/l
V , ν

k/l
V ) W k/l ∼ CW (Λ

k/l
W , ν

k/l
W ); k, l = {a, b}

6 V k/k ∼ CW (Λ
k/k
V , ν

k/k
V ) W k/k ∼ CW (Λ

k/k
W , ν

k/k
W ); k = {a, b}

7 Ωa/a ∼ W (Λa/a, νa/a) eλ
i ∼ Gamma(ai, bi) ind.

8 V a/a ∼ CW (Λ
a/a
V , ν

a/a
V ) W a/a ∼ CW (Λ

a/a
W , ν

a/a
W )

Table 4: Wishart Prior Distributions on the Free Variance Parameters. Column one identifies

the model. Column two specifies the independent priors. See the text and Table 3 for a description

of how the entire set of parameters can be reconstructed from the free ones.
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Genotypes Called with Posterior Probabilities of Miscalling Less than 0.01

Pedigree

a/a a/b b/b

In
di

vi
du

al a/a 0.330 0.000 0.000

a/b 0.000 0.345 0.000

b/b 0.000 0.000 0.323

Individual

a/a a/b b/b

A
ff

ym
et

ri
x a/a 0.340 0.005 0.000

a/b 0.003 0.308 0.003

b/b 0.000 0.006 0.334

Pedigree

a/a a/b b/b

A
ff

ym
et

ri
x a/a 0.340 0.005 0.000

a/b 0.004 0.304 0.004

b/b 0.000 0.006 0.335

All Genoytpes Called

Pedigree

a/a a/b b/b

In
di

vi
du

al a/a 0.318 0.003 0.001

a/b 0.004 0.355 0.004

b/b 0.001 0.003 0.312

Individual

a/a a/b b/b

A
ff

ym
et

ri
x a/a 0.330 0.013 0.000

a/b 0.007 0.303 0.006

b/b 0.001 0.013 0.326

Pedigree

a/a a/b b/b

A
ff

ym
et

ri
x a/a 0.333 0.011 0.000

a/b 0.006 0.304 0.006

b/b 0.001 0.011 0.328

Table 5: Comparison of Genotype Calls. The genotypes called by the Affymetrix software are

contrasted with the individual and pedigree-based calls obtained by our hierarchical Bayes proce-

dure under a Wishart prior and model 1-7. The top half of the table considers only calls with high

posterior probabilities.
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sa ta sb tb

tb
sb

ta
sa

a/a

sa ta sb tb

tb
sb

ta
sa

a/b

sa ta sb tb

tb
sb

ta
sa

b/b

Figure 1: Heat-Map Image of the Average Correlations between SNP Signals. The map in-

volves 20 signals per SNP and averages over 500 SNPs. From left to right the genotypes are a/a,

a/b, and b/b. Lighter colors correspond to higher correlations. The signals occur in the following

order: five probes for a allele, sense; five probes for a allele, antisense; five probes for b allele,

sense; and five probes for b allele, antisense.
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Figure 2: Scatter Plot of the Four Statistics for SNP r1014. From left to right we plot the

average of ysa and yta versus the average of ysb and ytb, ysa versus ysb, and yta versus ytb. The

clusters corresponding to the three genotypes can be easily identified. Samples that are called by

the Affymetrix software are indicated with filled circles, blue for a/a, green for a/b, and red for

b/b. The substantial positive correlation between a allele and b allele probes is obvious.
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Figure 3: Heat-map Image of the BIC Values for the 72 Models. Each column corresponds to a

different mean model (from left to right, models 1 through 8) and each row to a different variance

model (from top to bottom, models 0 through 8).
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Models (in order of average BIC value)

SN
P

Figure 4: Heat-Map Image of the Maximum Likelihood for Each Combination of SNP (ver-

tical axis) and Model (horizontal axis). The maximum likelihood values for a given SNP are

standardized by subtracting the average maximum likelihood across models for that snp.
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Figure 5: Heat-Map Image of the Fraction of Discordant Calls. Each column corresponds to a

different mean model (from left to right, models 1 through 8) and each row to a different variance

model (from top to bottom, models 0 through 8). Red corresponds to low values and yellow to

high values.
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Figure 6: Maximum Likelihood Estimates and Genotype Calls for SNP r1014. The top row

depicts model 1-1, corresponding to unrestricted means and variance parameters; the center row

depicts model 1-3, corresponding to allelic symmetry in the variance parameters; and the bottom

row depicts model 1-7, corresponding to allelic and strand symmetry in the variance parameters.

From left to right occur plots of the average of ysa and yta versus the average of ysb and ytb, ysa

versus ysb, and yta versus ytb. Samples called by the Affymetrix software are indicated with filled

circles, blue for a/a, green for a/b, and red for b/b. Samples called by our procedure are indicated

by unfilled larger circles and the same color code. A colored ellipse surrounds each estimated

mean with scale determined by the estimated variance matrix.40
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Figure 7: Comparison of Maximum Likelihood and Maximum a Posteriori Estimates for

SNP r1014. The top row shows the maximum likelihood estimates, the center row the maximum

a posteriori estimates with inverse Wishart priors, and the bottom row the maximum a posteriori

estimates with Wishart priors. Model 1-7 is assumed throughout. From left to right occur plots

of the average of ysa and yta versus the average of ysb and ytb, ysa versus ysb, and yta versus ytb.

Samples called by the Affymetrix software are indicated with filled circles, blue for a/a, green for

a/b, and red for b/b. Samples called by our procedure are indicated by unfilled larger circles and

the same color code. A colored ellipse surrounds each estimated mean with scale determined by

the estimated variance matrix. 41
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Figure 8: Comparison of Maximum Likelihood and Maximum a Posteriori Estimates for SNP

r1015. The same conventions hold as in Figure 7. Note the poor definition of the genotype clusters

for this SNP.
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Figure 9: Histograms of the Proportions of Affymetrix No Calls. The left hand side shows the

proportions within a SNP, and the right hand side the proportions within an individual.
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Figure 10: Histograms of the Purity Index. On the top our empirical Bayes procedure is applied

to the entire sample; on the bottom it is applied to the subset of people classified as no calls by the

Affymetrix software.

44



Pe
di

gr
ee

In
di

vi
du

al

a/a a/b b/b No Call

Inv. Wish. Genotypes

0.
0

0.
2

0.
4

a/a a/b b/b No Call

Inv. Wish. Genotypes − No Call

0.
0

0.
2

0.
4

a/a a/b b/b No Call

Wish. Genotypes

0.
0

0.
2

0.
4

a/a a/b b/b No Call

Wish. Genotypes − No Call

0.
0

0.
2

0.
4

a/a a/b b/b No Call

Inv. Wish. Genotypes

0.
0

0.
2

0.
4

a/a a/b b/b No Call

Inv. Wish. Genotypes − No Call

0.
0

0.
2

0.
4

a/a a/b b/b No Call

Wish. Genotypes

0.
0

0.
2

0.
4

a/a a/b b/b No Call

Wish. Genotypes − No Call

0.
0

0.
2

0.
4

Figure 11: Comparison of the Posterior Distributions of Assigned Genotypes. On the left

our empirical Bayes procedure is applied to the entire sample; on the right it is applied to the

subset of people classified as no calls by the Affymetrix software. Model 1-7 is used with both

inverse Wishart and Wishart priors on the variance matrices; calls based on individual and pedigree

information are both reported.
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