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THE CONCEPT OF E-MACHINE: ON BRAIN HARDWARE
AND THE ALGORITHMS OF THINKING

Victor Eliashberg

Varian Associates, Palo Alto

The goal of this paper is to call in question
the popular thesis that the problem of the algo-
rithms performed by the brain (algorithms of thin-
king) has but little to do with the problem of
brain hardware. The paper presents a simple exam-
ple of a "brain-like" universal associative pro-
cessor (referred to as E-machine) for which such a
thesis would be obviously inadequate. More sophis-
ticated examples of E-machines were studied in Eli-
ashberg (1979).

1. A SIMPLE EXAMPLE OF E-MACHINE

Consider the 'neural' network schematically

shown in Fig. 1. The big circles with incoming
and outgoing lines represent centers, elements
which are assigned certain discrete coordinates in
the network. The small circles denote couplings,
elements whose place in the network is determined
by a pair of coordinates of centers. A center may
be viewed as a neuron with its dendrites and axon
or a neural subsystem that may be treated as a
"reduced neuron". A coupling may be interpreted
as a synapse or a ''reduced synapse", the white

and the black circles corresponding to the exci-
tatory and inhibitory synapses respectively. Using
the terminology of Nauta and Feirtag (1979), the
network of Fig. 1 may be characterized as a three-
neuron nervous system (it has three neurons in a
path between its input and output). Some simple
animals have two- and even one-neuron nervous sys-
tems, so the network of Fig. 1 may be viewed as a
morphological model corresponding to a rather ad-
vanced stage of the evolution of the brain. Accor-
dingly, one may expect to get some interesting
information processing characteristics in a neuro-
biologically reasonable functional model of this
network. Therefore to reach the goal of this pa-
per it seems sufficient to show why the traditio-
nal brain-hardware-independent approach to the
problem of the algorithms of thinking would fail
to adequately describe the psychological proper-
ties of an animal with such a simple nervous sys-
tem. So much the more may this approach be in-
adequate in the case of human brain.

NOTATION.
Nj(i) is the i-th center from the set Nj'

Skj(i,i') is the (i,i')-th coupling from the set
Spase.

Vv is diggrete time (the number of cycle).

x(*,V) is the input vector of the model. (The dot
substituted for an index implies that the
whole set of components corresponding to
this index is assumed).

G¥(+,i) 1is the vector of gains of couplings
Sp1(i,*). This vector will be interpretea
as the symbol stored in the i-th location of
input long-term memory (ILTM) of the model.

E(i,Vv) is a variable describing a hypothetical
state of '"residual excitation" (L-state)
associated with center No(i). Such a sta-
te might be Interpreted as a certain phe-
nomenological counterpart of the concent-
ration of a chemical participating in a
slow reversible reaction. Accordingly, in
a more sophisticated model one may introdu-
ce several types of E-states. Such states

will be viewed as the states of distributed
""non-symbolic" short-term memory of the mo-
del.
?(i,v) is the (postsynaptic) potential of center
N (1).
Jo(i,V)"is the output signal of NQ(i).

U

GY(+,i) is the vector of gains of couplings
S 2(',i) interpreted as the symbol stored in
tge i-th location of output long-term memo-
ry (OLTM) of the model. For the sake of
simplicity we will assume that the state of
long-term memory (ILTM and OLTM) is formed
before the first moment of observation and
doesn't change later, i.e. we will avoid the
problem of learning.

y(+,v) is the output vector of the model.

In a rather general form a functional model
of the network of Fig. 1 with the above input, sta-
te, and output variables may be described as the
following machine.

y(',\)) £ Fy(x(',V),E(‘,\)), Gb(.,'))
E(:,v+l) « Fe(x(',v),E(',v), G'(+,+)), where

F, is the otput procedure, F, is the next E-state
procedure, G'=G¥,GY. As it was mentioned above
in this paper we are not concerned with the next
G-state procedure and treat the variable G'(*,")
as a parameter.

For the goal of this paper it is sufficient
to make rather simple assumptions about F_ and F,.
What is important for this goal is the prgsence of
E-states rather than the details of their interac-
tion with the input vector and the G-state and the
details of their dynamics. With that in mind let
us introduce the following ''quasi-neural' descrip-
tion of F,, and F,. (The reader with an appropri-
ate background will be able to find many other
descriptions of these procedures satisfying the re-
quirements of this paper).

OUTFUT PROCEDURE, Fy

The potential U,(i,v) is the following func-
tion of x(*,v),E(i,Vv) and G¥(-,i)

(1) Up(i,v)  8(i,v)-[1 + a-E(i,v)], where

(2) S(1,v) I G*(3,1)-x(3,v) , i=1,...n,
(1)

The layer of centers N, with lateral inhibi-
tory couplings Sy, performs” the random equally pro
bable choice of a center, N2(io), from the subset
of centers with the maximum potential (Eliashberg,
1969, 1979). It is assumed that there is some no-
ise.

1 if i=i
i = o
(3) J2(1’V) {O —_—— , where
(u) ige Mv)= {i/u,(i, )=max(i)U2(i,\)) >0}

We are using ALGOL-like notation,:€ yto
denote the operator of random equally
probable choice of an element from a

set.
The output vector is determined as follows
(5) y(-,v) I 6Y(,i)00(d,v)
(i)

NEXT E-STATE PROCEDURE , Fe

The dynamics of E-state is described by the
first order difference equation, the time cons-
tant, T(i), of this equation depending on whether
E(i,Vv) increases, t(i)=tt, or decreases, T(i)=1 "
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(6) T(i)+[E(i,Vv)-E(i,v)] = S(i,v)-E(i,Vv) ,

where
.y _ [Tt if S(i,v)>E(i,v)
(7) ﬂl)—{T-

In what follows the system described by Exps
(1) - (7) will be referred to as Model 1.

2. SOME GENERAL INFORMATION PROCESSING CHARACTE-
RISTICS OF MODEL 1

2.1. Universality with respect to the Class of
Combinatorial Machines

Let x(*,v),GX(",i)€ X, where X is a finite
set of positive normalized vectors. Let y(:,v),
GY(*,v)€Y, where Y is a finite set of positive
vectors. Let the number of locations of LTM be
as big as required (n,+), so any desired soft-
ware , G¥(+,+),6Y(+,*), may be put into the LTM
of Model 1 before the beginning of observation.
Let a= 0 (the mechanism of STM of Model 1 is "tur-
ned off'").

It can be shown that in this case Model 1
can be programmed to simulate an arbitrary pro-
babilistic combinatorial machine (with rational
probabilities) with the input alphabet X and the
output alphabet Y.

2.2. Universality with respect to the Class of
Finite-State Machines

Let us split the input and output vectors
of Model 1 each into two subvectors
x(+,v) = (% (,0) x50+ ,0)), y(-v)  (y(-,v),
y(+,v)), and let us introduce the delayed feedback
x(*,u+1)  yo(-,v).
Let x3(*,v)€ X, x5(*,v),yp(*,v)€ Q, yl(',v)é Y
where X and Q are finite sets of positive norma-
lized vectors, Y is a finite set of positive vec-
tors. Let as before a=0.

It can be verified that this modification of
Model 1 can be programmed to simulate any proba-
bilistic finite state machine (with rational pro-
babilities) with input alphabet X, state set Q,
and output alphabet Y.

2.3. E-States as the Mechahism of Mental Set

Let 0>0 (the mechanism of STM of Model 1 is
"turned on"). Let us assume at first that the ti-
me constants are very big (T+->m, T+ ) so the
E-state of Model 1 does not change considerably du-
ring the interval of observation. Let other con-
ditions be as in section 2.1.

Suppose the LTM of Model 1 contains all pos-
sible input/output pairs (associations) from XX Y,
i.e., for all (a,b)€ XX Y there exists i€ {1,..n5}
such that G*¥(-.,i)=a and GY(-:,i)=b . It can be
shown that for any (deterministic) combinatorial
machine with the input alphabet X and the output
alphabet Y there exists an initial E-state, E(-,0),
of Model 1 such that this model in this state si-
mulates the above machine.

Thus being observed as a black box, Model 1
with a fixed state of its LTM may appear to an
experimenter as any of ml deterministic combinato-
rial machines (1=|X|, m=[Y) depending on the "state
of mind" ("mental state'"), E(*,Y), of this model.
This result can be naturally extended to the class
of (deterministic) finite-state machines in the
case of the Model 1 with the feedback of section
2,14

Let us remove the condition of infinite time
constants but still assume that these constants
are rather big. In this case the E-state of Mo-
del 1 will change slowly ("adiabatically") so this
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model will gradually change into different combi-
natorial machines. Thus the 'non-symbolic" expres-
sions (6),(7),determined at a hardware level, con-
troll the "personality' of Model 1 as a symbolic
machine.

2.4, Why Model 1 Jeopardizes a Brain-Hardware-In-
dependent Approach to the Problem of the Algo-
rithms of Thinking

Imagine a researcher trying to develop a the-
ory of the behavior of Model 1 per se (Model 1 tre-
ated as a black box) without being concerned with
the hardware phenomena in this model. Let us as-
sume that the researcher is used to work with a
hardware-independent higher level language, say
LISP, and deal with traditional symbol manipulati-
on concepts. It is very likely that Model 1 would
fool such a researcher by pretending to behave as
a "classical" symbolic machine. The researcher
with the above mentioned methodological mental set
and the knowledge base associated with the “clas-
sical" symbolic information processing paradigm
would have little chance to think about the "non-
symbolic" E-states of Model 1, much less to find
the hardware expressions (6),(7) describing the
transformations of these states. It is not diffi-
cult to imagine how a sophisticated chemistry of
the brain (see, e.g., Iversen, 1979, Kandel, 1979)
may lead to non-symbolic brain hardware expressi-
ons much more complex than Exps (6),(7). Thus the
above mentioned researcher would hardly have a
better chance to come up with an adequate theory
of human mental states than he (she) does in the
case of Model 1.

3. METHODOLOGICAL REMARKS

3.1. On the Whole Brain and the Parts of its
Behavior

Let (A,sg) be a hypothetical machine corres-
ponding to the human brain, A, in its initial (ro-
ughly newborn) state, so. After several years of
learning (A,sg) is changed into an intelligent sys-
tem (A,s;). Model 1 and the more sophisticated
examples of E-machines studied in the Eliashberg
(1979) manuscript give reasons to believe in
the following methodological thesis.

There may exist a relatively simple descrip-
tion of (A,sy) in terms of a machine with the sta-
te set similar to that of the brain. There may be
a good possibility to find this description by
trying to answer in a single context a large
enough set of specially selected basic neurobiolo-
gical and psychological questions. At the same
time it may be hopeless a strategy to try to find
adequate descriptions of some nontrivial "parts'
of the behavior of (A,sp) without looking for a
description of the "whole" system (A,sg).

3.2. On the General Relation between the Theory
of the Brain and the Information Processing
Psychology

To clearly understand the implied methodologi-
calmeaning of the above mentioned thesis it is use-
ful to compare the general relation between (A,sq)
and the information processing psychelogy with the
general relation between the basic equations of a
traditional physical theory and this theory. As
an example of the latter relation let us take the
Maxwell equations and the classical electrodyna-
mics. (Don't take this metaphor too literally!).

The relatively simple Maxwell equations allow
one to describe all variety of arbitrary complex
classical electromagnetic phenomena as a result of
interaction of these equations with the correspon-



ding variety of "external worlds" represented in
the form of various boundary conditions, media,
and sources. To find the Maxwell equations did
not mean to solve all the problems of classical
electrodynamics, the latter having developed (and
continuing to do so) a number of specific prohblem-
oriented models and concepts. It would hardly be
possible, however, to adequately formulate all these
specific problems, let alone solve them, without
the Maxwell equations.

3.3. On Skipping "Simple" Problems in order to
Solve Complex Ones Faster

For the goal of this paper it is especially
important to emphasize that the Maxwell equations
were found in an attempt to adequately formalize
and extrapolate some 'simple" basic knowledge
about electromagnetic phenomena (Faradey law,etc.).
This formalization and extrapolation created a po-
werful mathematical tool allowing to adequately
approach complex problems of classical electrody-
namics. )

Imagine a physicist trying to develop a com-
puter program for simulating the behavior of elec-
tromagnetic field in a complex microwave device
without being concerned with the equations desc-
ribing the fundamental properties of this field.

A researcher trying to skip "simple'" basic neuro-
biological and psychological questions, in order
to solve complex problems of human information
processing faster, may well be in a situation
similar to that of such a physicist.
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