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Abstract For a class of voting rules, which includes Approval and Cumulative
Voting, it is shown how to find and analyze all possible outcomes that arise with a
specified profile, and, conversely, how to start with a potential region and determine
whether there exist supporting profiles. The geometry of these regions is determined
by the “Reversal symmetry” portion of a profile; i.e., components of the A � B �
C, C � B � A type.

1 Introduction

The surprising complexity of voting theory almost forces comparisons and analyses
of voting rules to emphasize how they fare only in special cases or with respect to
specific properties. Rather than being able to develop a desired general overview, the
complicated analysis may limit us, for instance, to focus only on which rules elect a
Condorcet or a majority winner when one exists, or satisfy specified assumptions, or
provide reasonable outcomes for a particular profile. While these results contribute
to our understanding of voting rules, the conclusions tend to be specific to the posed
properties and examples. As such, the literature assumes an ad hoc flavor where a
conclusion from one analyzed situation need not tell us much about what else can
happen, nor even how a conclusion relates to closely related settings. For instance,
knowing that a rule always elects a majority winner does not tell us whether it always
elects the weaker Condorcet winner.
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218 D. G. Saari

A way to help correct this problem is to create systematic approaches to analyze
classes of voting rules; e.g., find appropriate frameworks from which it is possible
to obtain answers for several issues and questions. This paper contributes toward
this development for the class of multiple rules; these are the voting rules where a
voter has two or more ways to tally his or her ballot. [While I emphasize Approval
(AV) and Cumulative Voting (CV), my approach applies to all such systems including
Range Voting (RV).] A reason these rules prove to be difficult to analyze is that, typi-
cally, a profile defines several different election rankings rather than just the normally
anticipated unique outcome. These differences in tallies and outcomes represent the
voters’ behavioral differences as reflected by how they choose to tally their ballots. But
behavioral aspects are based on information that typically is not included in a profile;
thus there is a need to develop analytic approaches with which we can systematically
analyze these systems.

To illustrate what I mean, during the 1993 US Senate confirmation proceedings
for Lani Guinier for a position in the US government, a controversy arose over her
support of CV as a voting method to help minorities elect more candidates. It is easy
to show that minorities can do better with CV if they vote in a specific manner and all
other voters vote in a different specified way. But what if other behavioral assumptions
apply; e.g., what happens if the other voters refuse to vote as postulated? Might CV
have unexpected and unintended surprises? How does CV compare with, say, AV in
achieving these goals?

To the best of my knowledge, there does not exist a systematic way to answer these
kinds of CV questions. In large part, this gap reflects the complexity of analyzing CV
and other multiple rules. So, to create a way to address these issues, in this paper,
I develop a geometric tool that will identify all possible AV and CV outcomes that
can occur with any combination of different voter behaviors for any specified pro-
file. Answers about the consequences of different behavioral assumptions for multiple
methods, such as CV, follow from the geometry.

As an example involving AV, we may wish to know for the profile

Number Ranking Number Ranking
10 A � B � C 4 C � B � A
7 A � C � B 16 B � C � A

11 C � A � B 0 B � A � C

(1)

all of the behavioral assumptions that support the AV outcome of B � A � C with a
(18, 29, 16) tally, or C � B � A with the (22, 23, 26) tally, or some other outcome.
With the approach developed here, answers are immediate.

1.1 Multiple voting rules

A “multiple voting rule” (Saari and Van Newenhizen 1988) is where a voter ranks
the candidates and then selects a positional rule to tally the ballot from two or
more choices. An n-candidate positional voting rule is defined by specified weights
(w1, w2, . . . , wn = 0) where not all weights agree and w j ≥ w j+1. In tallying a
ballot, w j points are assigned to the candidate who is positioned in the j th rank;
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Systematic analysis of multiple voting rules 219

each candidate’s societal ranking is determined by the sum of her assigned points.
The choices of (1, 0, 0), (2, 1, 0), and (1, 1, 0) represent, respectively, the plurality
vote, Borda Count, and vote-for-two rule. As the three candidate “vote-for-two” rule
is equivalent to voting against one candidate, it also is called the “antiplurality vote.”

Multiple rules are easy to find. Consider, for example, a (5, 2, 0) positional elec-
tion where, if a voter truncates his ballot by listing only his top-ranked candidate, she
receives five points and the other candidates receive zero. As the voter’s actions deter-
mine whether to use (5, 2, 0) or (5, 0, 0) to tally his ballot, this becomes a multiple
voting rule. (In Sect. 2.1.2, all possible outcomes permitted by this rule with a specified
profile are computed.)

All multiple rules can be analyzed as described in this article, but AV and CV
are emphasized to convey the ideas. These methods are selected because they have
received attention both in theory and in actual elections and because they illustrate
different features of my geometric constructions. For specificity, I use the following
definition of the main rules mentioned in this article:

Definition 1 “Approval Voting” (AV) is where a voter votes “yes” or “no” for each
candidate; in tallying the ballot, a candidate receiving a “yes” vote receives one point.

“Cumulative voting” (CV) is where each voter has a fixed integer number of points;
the voter assigns integer values to the candidates in any desired manner as long as the
sum does not exceed the specified value. With n candidates, assume that the total is
n − 1.

“Divide the points voting” (DPV) is where each voter is given a fixed number of
points. The voter assigns non-negative values to the candidates, whether integer valued
or not, in any desired manner as long as the sum equals the specified value.

“Range Voting” (RV) is where each voter assigns to each candidate a number of
points coming from a specified range, say, any integer between 0 and 100.

In all cases, each candidate is ranked according to the sum of assigned points.
So, after a voter ranks the three candidates, with AV he selects either the plurality

or antiplurality rule, with CV he selects the (2, 0, 0), the (1, 0, 0), or the (1, 1, 0) rule,
and with RV he selects one of the over five thousand different positional rules that are
defined by the w1 ≥ w2 ≥ 0 values in the specified range.

To appreciate the added complexity that the behavioral variable imposes on multiple
rules, notice that these rules do not satisfy even standard properties such as “anonym-
ity.” The choice theory definition of anonymity, of course, has nothing to do with the
secret ballot; it reflects the notion that an election outcome depends on voter pref-
erences rather than on which voter has what ranking. Thus, anonymity requires an
interchange of preferences among the voters to yield precisely the same outcome.
But, illustrating with AV, if Steve always votes for his top two candidates, while Sue
always votes for only one, then interchanging their preferences can violate anonymity
by changing the election tallies. The next section provides a way to determine what
standard properties are satisfied.

1.2 An analytic method

A tool to be developed here to systematically analyze multiple rules with three candi-
dates is based on a “profile decomposition” (Saari 1999, 2008). This decomposition,
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220 D. G. Saari

which defines a “profile coordinate system,” was created to explain all possible ways
in which all positional rules over all three candidates and majority votes over pairs can
agree or differ. One of the “profile directions,” for instance, has no effect on pairwise
rankings, but it is responsible for all possible differences among positional rules. This
“Reversal symmetry” involves a ranking and its reversal such as

{A � B � C, C � B � A}. (2)

A typical result is that if (in a linear algebra sense) a profile has no traces of Reversal
symmetry, then all positional election outcomes agree. Because multiple methods are
defined in terms of positional rules, this symmetry must be expected to play a major
role in analyzing and understanding their properties—it does.

A second profile direction, which I call the “Condorcet symmetry,” has no influence
on positional rankings, but it is responsible for all possible voting problems with pairs.
This profile direction is captured by Condorcet triplets such as

A � B � C, B � C � A, C � A � B. (3)

A typical result is that a profile with no traces of this Condorcet symmetry experiences
no pairwise inconsistencies; e.g., the Borda and Condorcet winners (and rankings)
agree. Conversely, all possible differences between Borda and pairwise rankings can
be completely explained in terms of this profile direction.

The remaining “orthogonal” profile directions, called Basic profiles, are stripped of
all Reversal and Condorcet symmetry effects. With these profile components, all posi-
tional and pairwise outcomes completely agree. (All of these coordinates are defined
in Sect. 3.)

Important for our development is the separability of the Eqs. 2 and 3 profile direc-
tions; each causes all possible election differences for one class of voting rules, but it
has absolutely no influence on the other. To indicate how to use this feature, recall my
earlier question about which of the rules that always elects a majority winner will also
always elect a Condorcet winner. As the Condorcet winner involves pairwise compar-
isons, such a rule must be sensitive to profile components in the Condorcet direction.
This condition, then, immediately eliminates all methods that are based strictly on
positional rules; e.g., while the plurality vote always elects a majority winner, it need
not elect a Condorcet winner.

A way to use this profile decomposition to analyze multiple rules is to partition the
voters into sets according to their choices of a positional voting rule. In our setting
of three candidates, AV, for instance, defines two partition sets: one consists of those
voters who use the plurality vote and the other of those who use the antiplurality vote.
Next, analyze each partition set with the profile decomposition, and then combine the
results from the different partitions in the obvious manner. (An actual “nail biting”
AV election was analyzed in this manner in Saari 2001b.)

By using this approach, it becomes clear how classical results, such as Arrow’s
Theorem, hold for multiple systems; just apply the result to each partition set of vot-
ers. To demonstrate, consider the standard issue of determining whether a voting rule
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Systematic analysis of multiple voting rules 221

always elects a Condorcet winner (a candidate who wins all majority vote pairwise
comparisons) when one exists. The following assertion, which contradicts statements
in the literature [e.g., recall the assertions in Brams and Fishburn (1978) about an
AV winner being a Condorcet winner; also see the exchange between Brams et al.
(1988) with Saari and Van Newenhizen (1988)], follows immediately by partitioning
of voters and using the profile decomposition.

Theorem 1 If any non-Borda positional method is a choice for a multiple rule, then
the rule’s ranking need not be related, in any way, with how the pairs of candidates
are ranked with the majority vote. As special cases for three candidates, each of AV,
CV, DPV, and RV could have the Condorcet winner bottom, middle, or top ranked;
each could elect the Condorcet loser.

Proof To illustrate with AV, select any profile p1 where the majority votes over pairs
defines the A � B � C ranking (i.e., A is the Condorcet winner by beating both B
and C , and B beats C), but the plurality ranking is the reversed C � B � A; select
another profile p2 where the same outcomes hold for the antiplurality ranking. (The
profile decomposition (Saari 1999) shows how to construct all possible examples by
using Reversal and Condorcet symmetries.) The illustrating profile is p = p1 + p2
where the partitioning is as constructed. So C , the Condorcet loser, is the AV winner,
while A, the Condorcet winner, is the AV loser. The same argument holds for CV,
DPV, and RV. More generally, select a ranking for any non-Borda rule and another
one for the pairs; because, as shown in (Saari 1999), a supporting profile can be found,
this result extends to the indicated multiple rules. ��

To see why Arrow’s Theorem Arrow (1963) applies to all multiple voting rules,
first notice that no multiple rule is dictatorial, all voters can have transitive preferences
without restrictions, and, because the societal outcome is based on numeric scores, all
outcomes are transitive. The last of Arrow’s conditions to be checked for each rule is
whether there exist special situations whereby it violates the Pareto Condition and/or
Independence of Irrelevant Alternatives (IIA). But because plurality voting is a special
case of AV, RV, DPV, and CV, and because the plurality vote violates IIA, it follows
that such special situations exist for each multiple rule where it violates IIA. This is
what Arrow’s theorem asserts.

To show how to design illustrating examples, consider a three candidate RV elec-
tion. Suppose five voters with A � B � C preferences select their choices of weights
to assign to the top two candidates and zero to the third to obtain the A:B:C tallies of
52:48:0. Suppose the other five voters, with the B � A � C ranking, select points
to assign to their top two candidates yielding the A:B:C tally of 49:50:0. Thus, in the
societal ranking A beats B with the 101:98 tally. As IIA requires this {A, B} societal
ranking to remain fixed for any profile where each voter has the same {A, B} rank-
ing, modify the original profile so that the second five voters now have B � C � A
rankings. Although each voter’s {A, B} relative ranking is unchanged in both pro-
files, A is bottom ranked for the second five voters, so they do not assign her any
points. As such, the outcome has the reversed pairwise B � A ranking that violates
IIA.
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222 D. G. Saari

1.3 Geometry

By partitioning the voters into different groups and using the profile decomposition, it
is possible to find answers for several multiple voting rule issues. But as this approach
requires knowing how to partition the voters into different subsets, many other con-
cerns cannot be tackled in this manner; e.g., we cannot determine consequences that
are associated with all possible ways to divide the voters into different partition sets.
As such, there is a need to develop tactics with which we can analyze all possible ways
in which the “behavioral variable” affects election outcomes.

To accomplish this objective, in Sects. 2–5, I develop a geometric technique to
characterize all possible election rankings and tallies that are admitted by a particular
multiple rule for any specified profile. The ultimate objective is clear; because the
approach identifies everything that can happen, it can be used to determine what kinds
of voter divisions cause the different outcomes. Namely, this approach can serve as
a tool to analyze how different behavioral assumptions, including strategic voting,
affect multiple rule election outcomes.

Somewhat unexpected and as shown in Sect. 3, the results have a pleasing geo-
metric symmetry; e.g., it turns out that all AV outcomes defined by a profile are in a
rectangular box that is symmetrically centered about the Borda tally. This symmetric
centering property extends to other multiple rules; e.g., all possible CV outcomes
lie in a symmetrically shaped polyhedron that is centered about the outcome for
a second positional rule, and the box of outcomes associated with the above trun-
cated voting example is centered about a third rule. Moreover, the shape of each
box is determined by the profile’s Reversal symmetry components, and the boxes
for the four multiple rules emphasized here include the profile’s election ranking
for each possible positional rules. As such, any perceived virtue or fault that is
associated with any positional rule becomes a special case for each of the multiple
rules.

Because the geometric shape of a multiple rule’s box of voting outcomes is deter-
mined by a profile’s Reversal symmetries, this symmetry is used in Sects. 3 and 4
to create an easier way to determine the set of all possible outcomes and to ana-
lyze the behavioral aspects of each multiple rule. But my emphasis is to develop
this geometric tool, so only suggestions about how to use this approach to study
behavioral issues are offered here; i.e., much more remains to be done with these
techniques.

While this development requires a specified profile, the goal for other theoretical
problems is to determine whether certain rules can exhibit certain specified properties.
Can a profile be found, for instance, where DPV has election rankings that are directly
opposite one another? If so, what are the characteristics of the profile? In Sect. 6, I
create an approach to answer these kinds of questions.

While my conclusions extend to any number of candidates, I emphasize the three-
candidate setting primarily so that I can use simple geometry to describe the ideas
and expose hidden structures governing voting behavior. But the approaches devel-
oped here extend to any number of candidates in terms of the geometry of higher
dimensional spaces.
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2 Simple geometry

It is obvious that a single profile can generate several different multiple rule election
tallies and even rankings. After all, each choice of a positional rule that a voter can use
contributes a different value to the final tally. What is surprising is the huge number
of distinct tallies that can arise with even a modest number of voters. Indeed, there are
so many outcomes that, to characterize what can happen, different approaches need to
be created. The geometric technique introduced starting in Sect. 2.2 is first illustrated
with AV (where the ideas are easier to follow).

2.1 Computing outcomes

The following eighteen voter profile is used to compare the outcomes allowed by
various multiple rules. I start by finding all of its AV outcomes.

Number Ranking A B C
7 A � C � B 7 x
6 B � C � A 6 y
1 C � A � B z 1
4 C � B � A u 4

Total 7 + z 6 + u 5 + (x + y)

(4)

Each row indicates how many voters with the specified preferences select the anti-
plurality rule. Thus the x in the first row means that x of the seven voters vote approval
for two candidates. All possible AV tallies are obtained by using the different integer
values of 0 ≤ x ≤ 7, 0 ≤ y ≤ 6, 0 ≤ z ≤ 1, and 0 ≤ u ≤ 4. By experimenting with
x, y, z, u choices, it follows that each of the thirteen ways to rank three candidates is
an admissible AV outcome. To have an A ∼ B ∼ C complete tie, for instance, let
z = y = 0, u = 1, x = 2. To compute the number of AV voting options, notice that
there are eight x values, seven y values, two z values and five u values, so there are
8 × 7 × 2 × 5 = 560 different AV election scenarios. But as a x, y choice leads to
the same tally as a x − 1, y + 1 choice, the number of distinct tallies is smaller. The
following definition is used to compute this value.

Definition 2 For three candidates, the Second Place Tallies (SPT) is a vector spec-
ifying the difference between each candidate’s antiplurality (AP) and plurality (P)
tallies. For four candidates, SPT is the vector of differences between each candidate’s
“vote-for-two” and plurality tallies, while the Third Place Tallies (TPT) is the vector of
the differences between each candidate’s AP (here, “vote-for-three”) and
“vote-for-two” tallies. For more candidates, higher place tallies are similarly defined.

With Eq. 4, P = (7, 6, 5) and AP = (8, 10, 18) so SPT = (8, 10, 18)− (7, 6, 5) =
(1, 4, 13). Candidate A has the two possible tallies of 7 and 8; this value of two comes
from adding one (where nobody with A second ranked votes for her) to A’s S PT value
of one. To find the number of distinct AV tallies add one to each SPT component and
then multiply them together. Thus this example admits (1 + 1)×(4 + 1)×(13 + 1) =
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224 D. G. Saari

140 different AV tallies. By comparing this value with the number of scenarios, it fol-
lows that, on average, each of the 140 AV tallies can be attained in four different
ways.

2.1.1 RV

The RV and AV rules differ in that RV replaces the “either-or” AV choices with a
gradation. Because AV is a special RV case, it follows for Eq. 4 profile that any
of the thirteen ways to rank the three candidates is an admissible RV election out-
come. To reduce the number of different possible RV tallies (by a multiple of mil-
lions), assume that a voter always gives his top ranked candidate the largest allowable
number of points. This assumption permits the natural scaling where each RV voter
assigns 1 point to a top ranked candidate and any hundredths of points between 0
and 1 to a second ranked candidate; e.g., the x in Eq. 4 can be any of the hundredths
of points ranging between 0 and 7. Thus this eighteen voter example admits over
700 × 600 × 100 × 400 = 16, 800, 000, 000 different RV voting options. To compute
the number of distinct RV tallies (with the normalization assumption), multiply each
S PT component by 100, add one, and multiply the values together to discover that
this one profile admits 101×401×1301 = 52, 691, 801 different RV election tallies.
On average, then, each of the over 52 million different RV tallies can be attained in
about 318 different ways.

2.1.2 Truncated voting for strategic purposes

As described earlier, by admitting truncated ballots, a multiple system is created. To
illustrate how to analyze such a system, consider the earlier voting rule of (5, 2, 0),
where a truncated ballot means that the voter is using (5, 0, 0). In the following
table the x, y, z, and u values indicate the number of voters who cast a truncated
ballot.

Number Ranking A B C
7 A � C � B 7 × 5 2(7 − x)

6 B � C � A 6 × 5 2(6 − y)

1 C � A � B 2(1 − z) 5
4 C � B � A 2(4 − u) 4 × 5

Total 37 − 2z 38 − 4u 51 − 2(x + y)

(5)

“Even-odd” parity concerns make it impossible to have a A ∼ B or B ∼ C tie,
which means that it is impossible to have five outcomes such as A ∼ B � C or
A � B ∼ C . But the eight remaining rankings are admissible. If truncated voting is
strategically used to alter the sincere C � B � A outcome, only the B � C � A
voters have an incentive to truncate their ballots. Even if all six did so, the outcome
would remain the same.
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Systematic analysis of multiple voting rules 225

2.1.3 CV

The analysis differs for CV. Using x, y, z, and u integer values to designate the number
of voters who select (1, 1, 0) rather than (2, 0, 0), all possible tallies become

Number Ranking A B C
7 A � C � B 14 − x x
6 B � C � A 12 − y y
1 C � A � B z 2 − z
4 C � B � A u 8 − u

Total 14 − x + z 12 − y + u 10 − (z + u) + (x + y)

(6)

To prove that each of the thirteen ways to rank the candidates is an admissible CV
election outcome, notice that a complete tie occurs with x = 2, y = z = u = 0.
By varying the values from this choice, it follows that all other rankings can be cre-
ated. Computing the number of CV distinct tallies involves combinatorics, but, for
our purpose, notice that as A’s vote can range from 7 to 15, she can have 9 different
tallies. Thus, while this profile generates a large number of CV tallies, it is less than
9 × 11 × 18 = 1782.

Although this algebraic approach provides insights, it is not easy to use it to compare
the AV, RV, and CV outcomes. This problem is addressed next.

2.2 Convex hulls

The different sets of election tallies could be compared by plotting each tally from each
set in a three-dimensional space; a point’s (A, B, C) coordinates represent, respec-
tively, the election tally for A, B, and C . But as Eq. 4 example demonstrates, with even
a modest number of voters, the number of admissible election tallies quickly becomes
unmanageable; e.g., it is unrealistic to determine and plot all 52 million different RV
tallies that are associated with this one profile.

To handle this problem, the approach developed here is to describe the set of all
election tallies. Rather than computing each admissible tally, the idea is to deter-
mine the convex hull of all possible election tallies that are defined by a specified
profile p. To conveniently compare diagrams, replace each candidate’s election tally
with the fraction of her total vote; e.g., replace the (150, 300, 450) tally with ( 150

900 =
1
6 , 300

900 = 1
3 , 450

900 = 1
2 ) capturing, for instance, that C received half of the vote. This

choice replaces the complexity of comparing sets of election outcomes in a three-
dimensional space with a comparison of the structure of sets in the two dimensional
dimensional simplex

S = {(x, y, z) ∈ R
3 | x, y, z,≥ 0, x + y + z = 1},

which has the shape of an equilateral triangle. In this manner, for instance, the set of
140 different AV tallies with the Eq. 4 example can be characterized by plotting just
eight points!
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Definition 3 For a voting rule and a profile p, the voting rule’s “tally hull” is the
convex hull of all outcomes after each tally is normalized to represent the fraction of
the total vote assigned to each candidate. It is denoted by T Hvoting rule(p).

As an illustration of this definition, it is reasonable to wonder whether a profile’s
plurality outcome, or Borda outcome, or (6, 5, 0) outcome is an admissible CV out-
come. Does RV admit election rankings that cannot occur with AV? Partial answers
for these questions come from the following, which asserts, in part, that for any profile,
the sincere election ranking for any positional method is, indeed, an admissible CV,
or RV ranking:

Theorem 2 For any given profile p and n ≥ 3 candidates , the following inequality
holds:

T Hpositional rule(p) ⊂ T HAV(p) ⊂ T HCV(p) = T HDPV(p) ⊂ T HRV(p). (7)

For any profile p, then, each positional election ranking is an admissible AV ranking;
each admissible AV ranking is an admissible CV ranking, and so forth. Moreover, in
each comparison, profiles exist whereby the containment is strict. Thus, because Eq. 7
requires T HAV(p) ⊂ T HCV(p), there exist profiles where CV has election rankings
that are not admitted by AV. A surprise (for me) is that T HCV(p) = T HDPV(p);
although DPV has infinitely more tallies than CV, the hulls agree!

Part of the proof of Theorem 2 is to show how to construct these hulls, how to com-
pare the different hulls, and how to start with a desired tally hull and then determine
whether it has a supporting profile.

2.3 The procedure line

A complete discussion requires reviewing the procedure line (Saari 1995). The con-
struction involves the plurality and antiplurality tallies represented by P = (PA, PB ,

PC ) and AP = (AA, AB, AC ) as well as the earlier defined SPT.
For a specified positional method (w1, w2, 0), divide the components by w1 to find

the equivalent rule (w1
w1

, w2
w1

, 0) with the (1, s, 0) form for a specific value s ∈ [0, 1].
Thus s = 0, 1

2 , 1 represent, respectively, the plurality, Borda Count, and antiplurality
vote. Another result (Saari 1995) asserts that a profile’s normalized ws = (1, s, 0)

tally is given by

(1 − s)P + sAP = P + s(AP − P) = P + sS PT . (8)

Illustrating with Eq. 4 profile, the plurality and antiplurality outcomes are, respec-
tively, P = (7, 6, 5) and AP = (8, 10, 18), so the tally for any specific s is

(7, 6, 5) + s(8 − 7, 10 − 6, 18 − 5) = (7 + s, 6 + 4s, 5 + 13s);

e.g., the Borda tally (s = 1
2 ) is ( 15

2 , 16
2 , 23

2 ), which, when multiplied by two, returns
the standard (2, 1, 0) Borda tally of (15, 16, 23).
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a b c

Fig. 1 Computing tally hulls. a Procedure line; b AV hull; c AV box and distortion effect

As Eq. 8 is a linear equation, all of a profile’s positional outcomes are found by
connecting the plurality and antiplurality tallies with a straight line.1 To make this
construction easier to visualize, connect, instead, the normalized P

n and AP
2n tallies

with a straight line. Each point on this procedure line is the normalized election tally
for some positional outcome. However, the projection (the normalization) distorts the
position of the ws outcome from being sth of the way to 2s

1+s of the way from the

plurality endpoint;2 e.g., the Borda (s = 1
2 ) outcome is midway between the plurality

and antiplurality tallies in Eq. 8, but it is 2(1/2)
1+(1/2)

= 2
3 of the way from the normalized

plurality to antiplurality point on the procedure line. All of this is illustrated in Fig. 1a
with Eq. 4 data. The distortion effect, as depicted in Fig. 1c, is a two-dimensional
version of what happens in three-dimensions. (The slanted line x + y = 1 represents
Fig. 1a, x + y + z = 1 plane.) The normalized image of any bullet is where the
dashed line crosses the x + y = 1 line. This projection pushes the midpoint of the
line connecting P with AP closer to AP on the projection; this is the described 2s

1+s
distortion effect.

The triangle’s three reference lines connect an edge’s midpoint to a vertex, so each
represents a tied ranking for a particular pair; e.g., points on Fig. 1a vertical line have
an A ∼ B tied outcome. Thus the center point represents the complete tie A ∼ B ∼ C ,
while the six open regions represent strict rankings. Figure 1a region with P is closest
to the A vertex, next closest to B and farthest from C , so the plurality ranking is
A � B � C.

Figure 1a procedure line crosses seven regions, which means that by changing the
choice of the positional method used to tally the ballots, this profile admits seven
different election rankings; four of them are strict without ties. Notice how this line
passes near the center point; this geometry requires the tallies for certain positional
methods to come close to defining a complete tie. For examples how to use this proce-
dure line and its generalization of a procedure hull (for more candidates), see Nurmi
(2002), Saari (2001a,b), Tabarrok (2001), and Tabarrok and Spector (1999).

1 With four or more candidates, replace the procedure line with the procedure hull; its vertices are given by
the normalized vote-for-one, vote-for-two, vote-for-three, …election outcomes. See Saari (1992, 2001a).
2 A normalized tally divides a candidate’s tally by the total vote. Similarly, the normalized value of ws =
(1, s, 0) is ( 1

1+s , s
1+s , 0), so the distance from the plurality endpoint is a multiple of s

1+s . As s = 1 is the

AP endpoint with value ( 1
2 , 1

2 , 0), the distance of ws on the procedure line is 2 s
1+s .
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2.4 Computing the AV hull

The AV hull is completely determined by the P and AP values. To appreciate what
is involved, notice from Eq. 4 that the AV tallies for the candidates range from the
plurality outcome of P = (7, 6, 5), where nobody votes for his second ranked candi-
date, to the antiplurality outcome of AP = (8, 10, 18), where everyone votes for two
candidates. Thus each candidate’s admissible tallies vary in increments of 1 ranging
from her plurality to her antiplurality tally. The combinations of each candidate’s two
extreme tallies define eight extreme tallies that define the vertices of a box; call it the
AV box. The eight vertices for this example are

(7, 6, 5), (7, 6, 18), (7, 10, 5), (8, 6, 5),

(8, 10, 18), (8, 10, 5), (8, 6, 18), (7, 10, 18).
(9)

The normalized version of these tallies, where the sum of the components equals
unity, are plotted in Fig. 1b. These plotted points are

(
7
18 , 6

18 , 5
18

)
,

( 7
31 , 6

31 , 18
31

)
,

(
7

22 , 10
22 , 5

22

)
,

(
8
19 , 6

19 , 5
19

)
,

( 8
36 , 10

36 , 18
36

)
,

(
8
23 , 10

23 , 5
23

)
,

( 8
32 , 6

32 , 18
32

)
,

( 7
35 , 10

35 , 18
35

)
.

(10)

The AV convex hull is created by connecting the eight points with straight lines.
As the tallying process of Eq. 4 requires the 140 different AV tallies to differ from
a neighbor by one vote, the tallies are uniformly distributed in the AV box. Thus the
normalized tallies are “essentially” uniformly distributed (but not quite because of
the distortion associated with the normalization) within the AV hull. This association
between the AV box and the AV hull is depicted in Fig. 1c.

To construct the AV hull, first compute the plurality and antiplurality tallies for a
given profile. Next find the eight extreme points defined by the P = (PA, PB , PC )

and AP = (AA, AB , AC ) values. Plot the normalized values of these eight points; the
associated convex hull is the AV hull.

For a sample of the kinds of results that can be obtained from the geometry, notice
that the AV hull always includes the plurality and antiplurality tallies. Thus the proce-
dure line always is a subset of T HAV, which means that anything that can occur with
any positional voting rule can also occur with AV. This statement proves the first part
of Eq. 7 string of inclusions

T Hpositional rule(p) ⊂ T HAV(p).

The assertion that there are AV outcomes that cannot occur with any positional method
is illustrated by Fig. 1b: each of the thirteen possible ways to rank the candidates is an
admissible AV outcome, but only seven of these rankings can be positional outcomes.
With this profile, then, six AV election rankings cannot occur with any positional rule.
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a b c

Fig. 2 Explaining AV hulls. a P(X) points; b A(X) points; c AV hull

3 Using the hulls

A convenient way to examine AV behavioral consequences is to first label the vertices
of the AV hull. By doing so, a simple rule emerges that completely determines when
some candidate could beat others in an AV election. Finally, the structure of the AV
hull is completely described in terms of the profile decomposition. For instance, the
AV hull of Fig. 1b is quite narrow. Is this true in general? What parts of a profile
determine the shape and size of the hull?

3.1 Behavioral coordinates

The eight points defined by the plurality and antiplurality tallies of P = (17, 16, 15)

and AP = (28, 30, 38) are listed in Eq. 11 with titles. Here F(X) changes the plurality
tally in that everyone with candidate X second-ranked votes for her, but no other can-
didate receives second place votes. N (X) changes the antiplurality tally in that only
candidate X does not receive any second place votes; each of the other two candidates
receives all possible second place votes.

P = (17, 16, 15), F(C) = (17, 16, 38), F(B) = (17, 30, 15),

F(A) = (28, 16, 15), AP = (28, 30, 38), N (C) = (28, 30, 15),

N (B) = (28, 16, 38), N (A) = (17, 30, 38).

(11)

These eight points define the vertices of a rectangular AV box. The normalized P
and F(X) values are plotted in Fig. 2a, the normalized AP and N (X) values are in
Fig. 2b, the AV hull is in Fig. 2c. The plurality and antiplurality points are the endpoints
of the short procedure line hiding in the interior of the hull near the center point.

Each F(X) point is on the line from P toward the X vertex.3 As such, if each
S PT component is non-zero (meaning each candidate is second ranked by at least
one voter), then the plurality outcome is an interior point of the convex hull defined
by the F(X) points. Similar statements hold for the N (X) points except that N (X) is
located on the line through AP away from the X vertex.

Theorem 3 If each S PT component is non-zero, then P is in the interior of the hull
defined by the normalized F(X) points, AP is in the interior of the hull defined by

3 A proof of this assertion is immediate; as only X receives second place votes, this edge on the rectangular
box is parallel to the X -axis. The projection argument now follows.
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the normalized N (X) points, and the procedure line is strictly in the interior of the
AV hull.4 Consequently, with these assumptions, the procedure line is strictly in the
interior of the CV, DTP, and RV hulls.

The last part of this theorem follows from Theorem 2.
Notice the ordering of the F(X) and N (X) points in Fig. 2c AV hull. Starting with

F(A) and moving in a counter-clockwise direction, the points are F(A), N (C), F(B),

N (A), F(C), N (B), F(A). As I will explain in Sect. 3.3, this ordering always occurs.
Also notice that behavior favoring some candidate, say A, is represented by the portion
of a profile in the triangle with vertices F(A), N (B), N (C).

Strategic behavior and other choices. Earlier I asked for an interpretation of an AV
tally of (18, 29, 16) for the Eq. 1 profile. This profile’s AV hull is Fig. 2c, where the
particular tally is near the F(B) vertex. Thus, to have this AV outcome, it follows from
the geometry that B must be the only candidate to receive a large number of second
ranked votes. On the other hand, because the AV tally of (22, 23, 26) is near the center
of the hull, many different symmetrical combinations support this AV outcome.

In other words, a way to approach a behavioral analysis is to recognize that the F(X)

and N (X) terms identify which voters vote for one or two candidates. In Sect. 2, we
discovered, by comparing the number of scenarios with the number of different tallies,
that the points in this AV hull can be obtained in several different ways; namely, there
are different scenarios that describe why the same election outcome can arise.

To indicate how to use these coordinates, suppose an AV outcome is at Fig. 2c
arrow tip in the B � C � A ranking region; the procedure line is not in this region,
so this AV outcome differs from all possible positional rankings. The geometry indi-
cates what combinations of voter behaviors support this outcome. One Fig. 2a choice
involves a combination of F(B) and F(C) outcomes meaning that A is not picking
up many second place votes. A different scenario, coming from Fig. 2b, is where the
profile has a strong collection of N (A) voters, who do not give A second place votes,
but also N (C) voters, where, with this partition set, A receives second place votes but
C does not. Namely, labeling the vertices makes it easier to identify the different ways
in which voters can be divided—the different behavioral scenarios—to explain each
tally.

The geometry also shows that with a small number of strategic voters, opportuni-
ties for strategic action arise when a sincere election outcome is near an indifference
line. (An immediate corollary is that a longer indifference line in an AV hull provides
more strategic opportunities.) In Fig. 2c, if the sincere outcome is in the B � C � A
region near the B ∼ C indifference line, then opportunities exist to strategically
elect C rather than B. Voters who would benefit prefer C � B; i.e., voters with
A � C � B, C � A � B and C � B � A preferences.

According to Fig. 2c, if voters vote strategically by voting for one or for two candi-
dates (i.e., without misrepresenting preferences), the successful strategic actions are
those that move the outcome toward the N (B), F(C), and N (A) points. Thus, only

4 A similar result for any number of candidates asserts that the procedure hull is strictly in the interior of
the AV hull. The added conditions are the obvious ones; e.g., for four candidates, each component of the
third place tallies must be non-zero.
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those A � C � B voters who sincerely voted for one candidate have a strategy: vote
for two to move the outcome toward the F(C) point. For the other two types, only
the voters who would sincerely vote for two have a strategy: vote for one to move the
outcome toward the N (B) and N (A) points.

3.2 Who can beat whom?

Next, I use this geometry to create a simple way to determine all admissible AV election
rankings. For intuition, it is reasonable to expect that the AV bottom ranked candidate
is someone who is not highly ranked by most voters. The next definition pushes this
notion to an extreme by excluding only those candidates who are bottom ranked by
too many voters.

Definition 4 Candidate X is “in the mix” with candidate Y if the number of voters
who do not have X bottom ranked is more than the number of voters who have Y top
ranked.

Suppose A and B receive, respectively, 45 and 40% of the first-place rankings,
while C is bottom ranked by 51% of the voters. As 49% of the voters do not have C
bottom ranked, she is in the mix with A and B. As A is not bottom ranked by at least
45% of the voters and as C is top ranked by 15%, A is in the mix with everyone; as B
is not bottom ranked by at least 51% of the voters (who have C bottom ranked), she
too is in the mix.

The next theorem provides a quick way to find all possible admissible AV rankings.

Theorem 4 For a three-candidate profile, if X is in the mix with Y , there exists sincere
AV election outcomes where X beats Y . If each of the candidates is in the mix with
any other candidate, then all possible ways to rank the candidates is an admissible
AV election outcome. But if X is not in the mix with Y , then no AV outcome can rank
X above Y .

The proof follows from the construction of the AV hull. If X is in the mix with
Y , then at least one vertex for the convex hull has a larger X than a Y component,
so there is at least one ranking where X � Y . Conversely, if X is not in the mix
with Y , then, because all of the AV hull’s vertices have the X component bounded by
the Y component, the convex hull cannot enter a region where X beats Y . A slightly
modified condition holds for any number of candidates.

The example prior to Theorem 4 has everyone is in the mix, so any of the 13 tran-
sitive ways to rank three candidates is an admissible AV outcome. It follows from
Eq. 11 that for three candidates the F(X) tallies completely determine with whom X
is in the mix.

3.3 Using the profile decomposition

Figure 2c AV hull is broader than the one in Fig. 1b even though the P and AP tallies
(from Eqs. 4 to 11) differ only by adding 10 votes to each candidate. It is reasonable
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a b c

Fig. 3 A profile basis. a A-Reversal; RA; b A-Basic; BA; c Condorcet; C3

to wonder what causes differences in the shape and size of AV hulls. Answers come
from the profile decomposition, where a profile is divided into the components that
have different effects on election outcomes. Three of the six basis directions for this
decomposition are given in Fig. 3.

Each triangle ranking region lists the number of voters with that particular ranking.
In Fig. 3a, then, each of four rankings has a single voter while there are −2 voters
with the C � A � B and B � A � C preferences. The negative values, which
require the sum of the components in a profile component to equal zero, are needed to
ensure the orthogonality among the four different profile directions; this orthogonality
is what separates the portions of a profile into the parts that cause different kinds of
voting effects. For an intuitive, practical interpretation, treat the negative values as
describing how many voters changed preferences from the indicated ranking to one
with a positive component. So, treat Fig. 3a as describing that two voters changed
from each of the C � A � B and B � A � C preferences to adopt one of the four
other rankings.

Three of the six-dimensions of profile space are listed above. A fourth is the Kernel,
K, which assigns one voter to each of the six rankings. A fifth direction is the B-Basic,
BB , direction given by modifying Fig. 3b; i.e., assign a single voter to each ranking
where B is top-ranked and −1 voters for each ranking where B is bottom ranked.
(As BA + BB + BC = 0, any two Basic directions suffice. This expression allows
components with negative coefficients to be converted into one with non-negative
coefficients; e.g., 3BA − 2BB = 3BA + 2(BA + BC ).) The final profile direction is
B-Reversal, RB , which mimics the construction of RA by assigning a single voter for
each ranking where B is top or bottom ranked and −2 voters for each ranking where
B is middle ranked. Again, RA +RB +RC = 0, so any two reversal directions suffice.

All possible profiles can be expressed as a linear combination of these profile direc-
tions (Saari 1999). For instance, the Condorcet triplet

{B � A � C, A � C � B, C � B � A} = 1

2
[K − C3]. (12)

The 1
2 K term states that there are three voters; the Condorcet term rearranges prefer-

ences; e.g., a voter with an A � B � C ranking in K is moved to another ranking.
A matrix expression to convert a profile into its component parts is in Saari (1999,
2008).
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3.3.1 Interpreting profile directions

The importance of these directions is captured by the expressions posted by the verti-
ces and under each leg of the triangle. To compute the pairwise tallies for a pair, count
the number of points on each side of the appropriate indifference line. In Fig. 3a, for
instance, the A–B tally is the sum of points on each side of the vertical line: the 0–0
tally means that each of these two candidates receives zero votes. The values by the
vertices show the ws outcomes; they are obtained by adding the numbers in the two
regions that share the candidate’s vertex and adding s times the SPT values, which is
the sum of numbers in the two regions adjacent to the top-ranked regions.

These values show that all positional and majority vote outcomes completely agree
on the Basic components of a profile. Thus, all differences in positional methods are
due to Reversal components (which do not effect pairwise rankings), and all differ-
ences in pairwise rankings are caused by the Condorcet component (which has no
effect on positional rankings). For more information, see Saari (1999, 2008).

According to the above, adding multiples of C3 to a profile does not affect the
positional tallies. Illustrating with Eq. 1 profile, adding all possible −xC3 terms that
do not leave a negative component creates eleven different, but related, profiles (for
0 ≤ x ≤ 10) that have precisely the same tallies for each positional rule.

Number Ranking Number Ranking
10 − x A � B � C 4 + x C � B � A
7 + x A � C � B 16 − x B � C � A
11 − x C � A � B 0 + x B � A � C

(13)

By having the same positional tallies, all 11 of these profiles share Fig. 2c AV hull.
Thus, the same AV hull holds for any positive multiple of these profiles.

3.3.2 Profile components that affect the AV box

To determine which parts of a profile influence the shape of the AV box, compute F(X)

and N (X) for each profile component. As asserted previously, the F(X) and N (X)

are not affected by a profile’s Condorcet component, both vertices have precisely the
same value on a profile’s Basic component, and both have precisely opposite effects
on a profile’s Reversal and Kernel elements. Thus the four diagonal vertices of the
AV box are {P, AP}, and {F(X), N (X)} for X = A, B, C . It also follows that the
midpoint for each of these diagonals is the Borda score; namely the Borda outcome
is symmetrically located at the AV box’s center. In T HAV(p), the line connecting any
F(X) with N (X) crosses the procedure line precisely at the normalized Borda tally.

Theorem 5 a. The Borda tally is at the midpoint of the four diagonals of the AV box.
b. The F(X), N (X), plurality, and antiplurality tallies of C3 are zero.
c. The F(X), N (X), plurality, antiplurality, and any ws tally of any basic profile

component, aBBA + bBBB for any scalars aB, bB, completely agree.
d. The ws outcome of K assigns 2 + 2s points to each candidate, leading to a

complete tie. The F(X) outcome of K differs from the Borda tally of (3, 3, 3) by
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a b c

Fig. 4 Examples. a 1
2 [K − C3]; b 4K + [3BA + 2BB ]; c Plus RA + C3

adding 1 point to X and −1 points to each of the other two candidates. The N (X)

outcome differs from the Borda tally of (3, 3, 3) by adding −1 points to X and 1
points to each of the other two candidates. Thus the F(X) and N (X) values are
symmetrically located relative to the (3, 3, 3) Borda (s = 1

2 ) tally of K.
e. The F(X) tally for RX assigns −2 points to X and −1 to each of the two other

candidates; the N (X) tally is the reverse by assigning 2 points to X and 1 to each
of the two other candidates. The F(X) tally of RY , X 	= Y , assigns 1 point to X, 2
points to Y , and −1 points to the remaining candidate. The N (X) value is the
reverse by assigning −1 points to X,−2 points to Y , and 1 point to the remain-
ing candidate. Thus the F(X) and N (X) vertices on a Reversal component are
symmetric relative to the Borda tally.

For a proof, just compute the F(X) and N (X) values for the different Fig. 3 direc-
tions. Because the F(X) and N (X) terms have opposite values on Reversal terms, it
follows for any profile where the Reversal terms dominate the Basic terms that the AV
hull includes all 13 rankings. Conversely, if the AV hull does not include all thirteen
rankings, then the Basic terms dominate.

Stated in other words, the many different AV tallies are strictly due to the Reversal
and Kernel directions. The Kernel direction changes all F(X) and N (X) pairs in the
same way (Theorem 5d) creating a cube centered about the Borda tally. Therefore, the
crucial symmetries that characterize different AV outcomes are the Reversal compo-
nents; they distort the cube into a rectangular box centered about the Borda tally. All
of this is illustrated with the three profiles of Fig. 4.

With Fig. 4a Condorcet triplet 1
2 K − 1

2 C3 of Eq. 13, the Condorcet term does not
affect the ws, F(X), or N (X) terms (Theorem 5b), so all of the AV different tallies
are due to the kernel term. On 1

2 K, P = (1, 1, 1), AP = (2, 2, 2), and the Borda tally
is the midpoint of ( 3

2 , 3
2 , 3

2 ) (Theorem 5d). According to Theorem 5e, we have that
F(A) = 1

2 (1,−1,−1) + ( 3
2 , 3

2 , 3
2 ) = (2, 1, 1), N (A) = 1

2 (−1, 1, 1) + ( 3
2 , 3

2 , 3
2 ) =

(1, 2, 2) with a similar expression for the other terms. Thus the AV cube is centered
about the Borda tally.

To analyze Fig. 4b example of p1 = [3BA +2BB]+4K in Fig. 4b, all F(X), N (X),
and ws tallies agree on the bracketed terms (Theorem 5c), so all AV differences
reflect the 4K term. This requires the AV box to be a cube centered about the Borda
(s = 1

2 ) tally of (16, 13, 7). Thus (Theorem 5d), we have that F(A) = 4(1,−1,−1)+
(16, 13, 7) = (20, 9, 3) with similar terms for the other AV cube vertices.
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Figure 4c profile differs from Fig. 4b profile by a RA + C3 term. The sum of coor-
dinates in RA +C3 is zero, so Fig. 4b,c profiles have the same number of voters; some
just shifted preferences. Again (Theorem 5b), the C3 term plays no role in the AV
outcomes. Because the Borda Count is not affected by Reversal or Condorcet terms,
the Borda tally remains (16, 13, 7). The RA term, however, changes the shape of the
AV box from cubic to rectangular.

To see the shape change, starting with Fig. 4b vertex, which includes the 4K effects,
the new Fig. 4c vertex is F(A) = (20, 9, 3) + (−2,−1,−1) = (18, 8, 2) while
N (A) = (12, 17, 11) + (2, 1, 1) = (14, 18, 12). This change contracts A’s range of
AV tallies but expands the possible B and C AV tallies. For the next diagonal, F(B) =
(12, 17, 3) + (2, 1,−1) = (14, 18, 2) while N (B) = (20, 9, 11) + (−2,−1, 1) =
(18, 8, 12) providing slightly wider choices for B and C tallies with fewer A choices.
Finally, we have F(C) = (12, 9, 11) + (2,−1, 1) = (14, 8, 12) while N (C) =
(20, 17, 3) + (−2, 1,−1) = (18, 18, 2) giving slightly more flexibility for B’s AV
tallies with tighter regions for the other two candidates.

4 Computing the CV hull

The CV hull is slightly more complicated to compute, but certain relationships are
immediate. For instance, because the three choices offered by CV allow a voter to
select the two AV options of (1, 0, 0) or (1, 1, 0), it follows immediately that T HAV ⊂
T HCV.

The construction of the CV hull is based on the number of voters with the j th
preference, x j , that elect to use (1, 1, 0), rather than (2, 0, 0), to tally ballots. Label
the preferences as:

Label Ranking Label Ranking
1 A � B � C 4 C � B � A
2 A � C � B 5 B � C � A
3 C � A � B 6 B � A � C

(14)

With the profile p = (p1, . . . , p6), we have that 0 ≤ x j ≤ p j with the plurality and
antiplurality tallies of

PA = p1 + p2, PB = p5 + p6, PC = p3 + p4,

AA = PA + (p3 + p6), AB = PB + (p1 + p4), AC = PC + (p2 + p5).
(15)

The algebraic representation for all CV tallies for any specified profile is in Eq. 16.
The first row, for instance, identifies the choices made by those voters who have A
top-ranked. If all of these voters select (2, 0, 0) to tally the ballots, then A’s tally from
them is 2PA. The x1 means that x1 of the p1 voters (voters with the first kind of
preference ranking, or, from Eq. 14, A � B � C) decide to vote by using (1, 1, 0).
With these x1 voters, A loses x1 points from her tally, while B gains this amount. In
general, the tallies are
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A B C
A 2PA − (x1 + x2) x1 x2
B x6 2PB − (x5 + x6) x5
C x3 x4 2PC − (x3 + x4)

Total 2PA − (x1 + x2) + (x3 + x6) 2PB − (x5 + x6) + (x1 + x4) 2PC − (x3 + x4) + (x2 + x5)

(16)

4.1 Finding the CV polyhedron and hull

As with the AV hull and the procedure line, a way to determine the CV hull is to first
compute the CV polyhedron as determined by its extreme tallies. Candidate A’s small-
est tally occurs when x3 = x6 = 0 and x1 = p1, x2 = p2, yielding a 2PA − (p1 +
p2) = PA tally. As this value is independent of the x4, x5 values, the tallies are of the
(PA, 2PB + p1 + (x4 − x5), 2PC + p2 − (x4 − x5)) form. Because of the common
(x4 − x5) variable, these tallies define a line with the endpoints (PA, PB + AB, PC +
(n − AB)) and (PA, PB + (n − AC ), PC + AC ) where n is the number of voters. The
PB + (n − AC ) value occurs when x3 = x6 = x4 = 0, x1 = p1, x2 = p2, x5 = p5,
which leads to the B tally of 2PB − p5 + p1 = PB + p6 + p1 = PB + (n − AC ).

Similarly, A’s largest tally occurs with x1 = x2 = 0, x3 = p3, x6 = p6 with the
value 2PA+(p3+ p6) = PA+ AA. Again, the tallies accompanying this extreme value
define a line defined by the variable (x4 − x5); the endpoints of this line accompanying
this extreme A tally are (PA + AA, PB , PC + (n − AA)) and (PA + AA, PB + (n −
AA), PC ).

Associated with each candidate are four extreme points; with combinations, they
define 12 extreme points. The PX and PY + AY values, however, are in all extreme tal-
lies (where a maximum tally for one candidate is accompanied by a minimum one for
another candidate), so each extreme point appears twice. Thus, both the CV polyhe-
dron and T HCV are defined by six extreme points. For purposes of labeling a graph (to
facilitate an analysis of behavior possibilities), let L(X) = PX and H(X) = PX + AX

represent, respectively, candidate X ’s lowest possible and highest possible tally. Let
M(X) be the value of X associated with an extreme point when the other two coor-
dinates are low and high; notice, the definition of M(X) = PX + (n − AY ) depends
on which candidate (Y ) has the highest possible tally. The six vertices that determine
the CV polyhedron are (M(A), L(B), H(C)), (L(A), M(B), H(C)), (L(A), H(B),

M(C)), (M(A), H(B), L(C)), (H(A), M(B), L(C)), and (H(A), L(B), M(C)).
These points are listed in a clockwise ordering in Fig. 5 starting from the indicated
vertex.

The sum of the tallies for each CV extreme point is 2n where PA + PB + PC = n is
the number of voters. This 2n value arises because each of the n voters has two points
to distribute;5 e.g., for the (L(A), H(B), M(C)) extreme point,

PA + (PB + AB) + (PC + (n − AB)) = PA + PB + PC + n = 2n. (17)

Thus the associated normalized tallies have the ( PA
2n , PB+AB

2n ,
PC +(n−AB )

2n ) form.

5 At this stage, I am ignoring the voter’s option of using (1, 0, 0).
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Fig. 5 CV hull. a Equation 4
profile; b More typical profile

a b

To find the CV hull, notice that each normalized extreme point has a L(X) = PX
2n

tally. So in the simplex, draw the three lines given by these tallies; they are represented
by the three solid lines in Fig. 5a, b. The horizontal solid line, for instance, represents
all normalized tallies where C receives PC

2n points—this is half of C’s normalized plu-

rality tally of PC
n points. All normalized extreme points include a H(X) = PX +AX

2n
tally, so plot these three lines; they are represented by the dashed lines in Fig. 5a.
Because PX +AX

2n ≥ AX
2n , this normalized value is larger than what the candidate would

receive with the normalized antiplurality vote.
The three dashed and solid lines intersect in six points (the two horizontal lines

in Fig. 5a do not meet the crossing diagonal lines, so this is where two other points
are located), these are the six extreme points that define the T HCV hull. The shaded
region in Fig. 5a is the hull for Eq. 4 profile; Fig. 5b depicts what happens with a more
typical profile.

4.2 Geometry

As described next, the CV polyhedron is symmetrically centered about the ( 3
2 , 1

2 , 0)

tally—the average of the (2, 0, 0) and (1, 1, 0) choices. (Rule ( 3
2 , 1

2 , 0) is the appropri-
ate multiple of the w 1

3
= (1, 1

3 , 0) where the sum of the n voters’ tallies equals 2n so the
outcome is in the polyhedron.) The opposing diagonals are of the (M(A), L(B), H(C)

and (M(A), H(B), L(C)) forms where two alternatives alternate in being high and
low. The midpoint of any diagonal connecting diagonally opposing vertices is the
1
2 (3, 1, 0) tally. Thus, to find the polyhedron, just compute the differences from the
central tally.

With n voters, the sum of ws tallies is n(1 + s). As 2n is the sum of tallies of any
point in the CV polyhedron, no ws tally, s < 1, is in this part of the CV polyhedron. But
with the CV hull, where tallies are projected to fractions of votes, the procedure line
lies in the interior of T HCV(p). Moreover, the lines connecting opposite vertices pass
through the procedure line at the (1, 1

3 , 0) normalized outcome, which is the midpoint

of the procedure line (because of the 2 1/3
1+(1/3)

= 1
2 distortion from the projection).

As with AV, the CV hull is not affected by C3 components; however, CV values
change with Basic components. The polyhedron has a regular shape for the kernel,
and the Reversal terms alter the symmetry. Thus, again, a profile’s Reversal symmetry
is of particular interest in understanding the CV (and all multiple rules). All of this is
captured in the following theorem; the proof is a simple computation.
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Theorem 6 For the three candidates X, Y, Z, the following are adjustments to the CV
polyhedron vertices relative to the the 1

2 (3, 1, 0) tally.

a. On any profile or profile component, the diagonal points for relative adjustments
differ by a multiple of −1; e.g., (L(A), M(B), H(C)) = −(H(A), M(B), L(C)).

b. The C3adjustments are H(X) = M(Y ) = L(Z) = 0.
c. The K adjustments are H(X) = 2, M(Y ) = 0, L(Z) = −2.
d. The BX adjustments are H(X) = 1, M(Y ) = −1.5, and L(Z) = 0.5 (so L(X) =

−1, M(Y ) = 1.5, and H(Z) = −0.5) and M(X) = 0, L(Y ) = 0.5, H(Z) =
−0.5.

e. The RX adjustments are H(X) = −1, L(Y ) = −0.5, M(Z) = 1.5 and M(X) =
0, L(Y ) = −0.5, H(Z) = 0.5.

To illustrate with Fig. 4 profiles, Fig. 4a outcome is a symmetric figure where the
six vertices of the CV polyhedron are the six permutations of (3, 2, 1).

The CV polyhedron for Fig. 4b is more complex. With the plurality and antiplu-
rality tallies of (12, 9, 3) and (20, 17, 11), the 1

2 (3, 1, 0) tally, which is the center
point for the CV polyhedron, is (22, 17 1

2 , 8 1
2 ). In computing the adjustments for

vertices in diametrically opposite pairs by using Theorem 6, the 4K adjustments
are immediate. For the 3BA term, use part d with X = A, and for the 2BB term,
let X = B. This leads to the computation (H(A), M(B), L(C)) = 4(2, 0,−2) +
3(1,−1.5, 0.5) + 2(−0.5, 0, 0.5) = (10,−4.5,−5.5), which means from part a
that (L(A), M(B), H(C)) = (−10, 4.5, 5.5). Each of these terms is added to the
(22, 17 1

2 , 8 1
2 ) center point to obtain two of the CV polyhedron vertices.

Using a similar computation,

(H(A), L(B), M(C)) = 4(2,−2, 0) + 3(1, 0.5,−1.5) + 2(−0.5,−1, 1.5)

= (10,−8.5,−1.5),

which means that the (L(A), H(B), M(C)) increment is (−10, 8.5, 1.5). The adjust-
ment for the remaining pair is

(M(A), H(B), L(C)) = 4(0, 2,−2) + 3(0,−0.5, 0.5) + 2(−1.5, 1, 0.5)

= (−3, 8.5,−5.5),

so the (M(A), L(B), H(C)) adjustment is (3,−8.5, 5.5). As this example demon-
strates, the significant difference between the AV box and CV polyhedron is caused
by the Basic terms.

With Fig. 4c profile, the C3 term does not effect the vertices. Thus, only the RA

term changes the CV polyhedron. The adjustments to Fig. 4b CV polyhedron follow:

(H(A), M(B), L(C)) = −(L(A), M(B), H(C) = (−1, 1.5,−0.5)

(H(A), L(B), M(C)) = −(L(A)H(B), M(C)) = (−1,−0.5, 1.5)

(M(A), H(B), L(C)) = −(M(A), L(B), H(C)) = (0, 0.5,−0.5)
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4.2.1 Who can beat whom?

Again, by use of the geometry, we can find a simple rule to determine who could beat
whom with a CV election. The rule involves the following condition, which is more
liberal than the one in Definition 4.

Definition 5 Candidate X is “weakly in the mix” with candidate Y if the number of
voters who do not have X bottom ranked plus the number who have her top-ranked is
more than the number of voters who have Y top-ranked.

Theorem 7 For a given three-candidate profile, if X is weakly in the mix with Y , then
there exists a sincere CV election outcome where X beats Y . However, if X is not
weakly in the mix with Y , then no CV outcome can have X ranked above Y .

The proof follows from the geometry: If X is weakly in the mix with Y , then
H(X) > L(Y ). Thus, there are outcomes in the CV hull where X beats Y . However, if
X is not weakly in the mix, then H(X) < L(Y ), so no CV outcome can rank X over Y .

The difference between X being in the mix with Y and “weakly in the mix” is that
X ’s first place rankings are double counted. This difference identifies the profiles with
CV outcomes that can never arise with the AV; these profiles have a candidate X who
is not in the mix with Y , but who is weakly in the mix with Y . As an example, consider
the 46 voter profile where

Candidate First place Second place
A 22 15
B 20 16
C 4 15

Only 19 voters have C ranked above the bottom. As 19 is smaller than the number
of first place votes for A or B, C is not in the mix with either candidate, so C is bottom
ranked in all AV rankings (Theorem 4). On the other hand, the number of voters who
do not have C bottom ranked, 19, plus the number who have her top ranked, 4, is
23, which exceeds the number of first place rankings for either other candidate. This
means that C is weakly in the mix with both A and B, so there are CV rankings where
C beats A, and other CV rankings where C beats B (Theorem 7).

A subtle geometric consequence of the CV polyhedron not being a rectangular box
with edges parallel to each candidate’s axis (as with AV) is that this profile does not
have a CV outcome where C is the winner. If, for instance, C beats A, then C has her
highest possible CV tally of 23 to beat A’s lowest tally of 22. As the sum of the tallies
is 2 × 46 = 92, it follows that B tally is 92 − [23 + 22] = 47; thus B is the over-
whelming first place CV winner. Similarly, if C beats B, A will be the overwhelming
CV winner.

The geometry identifies a condition to determine when C can be a CV winner; it
is that H(C) > L(A), M(B) or H(C) > M(A), L(B). Restated in words, if “twice
the number of voters who do not have X bottom ranked plus the number having her
top-ranked exceeds the total number of voters plus the number of first place votes for
either other candidate, then X is top ranked in some CV rankings.” (This statement
reflects the expression H(X) = PX + AX > PY + (n − AX ) = M(Y ) ≥ L(Y ).)
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4.2.2 Completing the CV polyhedron

The above describes all possible tallies that can occur should all voters select only
between (2, 0, 0) and (1, 1, 0). To complete the story, we should compute the portion
of the CV polyhedron coming from the (1, 0, 0) and the (1, 1, 0) options, which would
be the AV box centered about the Borda tally. When tallies are normalized, however,
this box adds nothing new to T HCV(p). The final option of selecting between (2, 0, 0)

and (1, 0, 0) creates a geometric object defined by six vertices symmetrically posi-
tioned about the 1

2 [(2, 0, 0) + (1, 0, 0)] = ( 3
2 , 0, 0) tally. Again, normalizing the

tallies adds nothing new. The full CV polyhedron is the convex hull of these three
geometric objects.

5 The hulls and polyhedra for other methods

I found the T HCV(p) = T HDPV(p) expression to be surprising because the extra
options DPV offers each voter make it reasonable to suspect that, in general, T HCV(p)

is a proper subset of T HDPV(p). To see why T HCV(p) ⊂ T HDPV(p), notice that if
each voter is given q points, then the admissible positional rules are (q − s, s, 0) for
any 0 ≤ s ≤ q

2 . But the extremes of (q, 0, 0) and (
q
2 ,

q
2 , 0) are equivalent to the CV’s

(2, 0, 0) and (1, 1, 0), so it follows that T HCV(p) ⊂ T HDPV(p). With the scaling
equivalence, we can assume that q = 2 and 0 ≤ s ≤ 1.

5.1 The DPV and RV hulls

To indicate why the T HDPV(p) hull (but not the tallies) agrees with T HCV(p), con-
sider Eq. 6 profile. The seven CV voters with A � C � B preferences permit tallies of
14 − x to A and x to C . With DPV, the i th voter gives 2 − si points to A and si points

to C . The total number of points assigned to A and C is, respectively, 14 − ∑7
j=1 s j

and
∑7

j=1 s j , where 0 ≤ ∑7
j=1 s j ≤ 7. Thus, the only difference in Eq. 6 is that the

x, y, z, u variables range over the continuum of values in their specified range rather
than just the integer choices. As the same analysis holds for Eq. 16, we have that
T HCV(p) = T HDPV(p), which completes the proof.

One might expect a similar argument to show that T HRV(p) = T HAV(p), but
this is not the case. For a simple proof, notice that an admissible RV option is
where all voters use CV. Thus T HCV(p) ⊂ T HRV(p). But, in general T HAV(p)

is a proper T HCV(p) subset, so T HRV(p) includes and, in general, is larger than
T HAV(p).

To find T HRV(p) use the same approach: T HRV(p) is the convex hull of its extreme
points. The almost unrestrained array of options provided the voters means that the
extreme points include tallies where all voters with a certain preference vote only
for their top ranked candidate giving her the highest number of points and all other
voters give zero to all candidates, or all voters with a certain preference give the
highest points to their top two candidates and all other voters give zero to their candi-
dates. [As true with all hulls, the extreme situations need not occur in actual elections.
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Nevertheless, because so many options are provided to each voter, in general this
computed T HRV(p) is closely packed with RV tallies.]

As a result, if each candidate is top-ranked by at least one voter, then T HRV(p)

is the total simplex; anything and any normalized tally can happen! More generally,
T HRV(p) is the convex region connecting all vertices where some voter has that can-
didate top-ranked, and all midpoints on the edge connecting vertices where some voter
has the two candidates in the top two ranks.

To extend this assertion to any number of candidates, include vertices to account for
when a candidate is not first or second ranked; e.g., all center points of a triangle where
some voter has all three candidates in the top three places, etc. In general, T HRV(p)

includes everything, including T HDPV(p) as a proper subset. else. The associated RV
condition for admissible rankings is extremely liberal; if a candidate is top-ranked by
just one voter, she can be the RV winner.

5.2 In general

The hulls and polyhedra for other multiple methods are similarly constructed: deter-
mine the convex hull by the rule’s extreme points. For multiple rules where one-way
of voting subtracts points from the voter’s top choice, such as where a voter chooses
between, say (5, 1, 0) and (4, 3, 0), guidance comes from the CV construction. For
rules where voting for a lower ranked candidate does not influence the number of
points assigned to a top-ranked candidate, the geometry mimics the AV analysis;
e.g, this is true for truncated voting or if a voter is to select between (1, 0, 0) and
(1, 1

3 , 0).
As multiple rules rely on positional rules, the C3 profile component does not affect

them. In general, then, no relationship exists between the multiple rule’s ranking and
the majority vote’s ranking over pairs. (An exception is if the Borda Count is used.)
For all multiple rules, the differing shapes of its hull and polyhedron are determined
by the Reversal components of a profile. Each face, which is determined by two
different positional rules, is symmetrically situated about the “averaged” positional
rule’s tally. Thus, a simpler way to compute vertices for the polyhedron is to find
how the Reversal, Basic, and Kernel components create adjustments to the central
positional rule’s tally. As illustrated by the above theorems, these adjustment terms
are found by computing the behavior of the diagonal vertices on Fig. 3 type compo-
nents.

6 Designer’s choice

Because the hulls for AV, CV, DPV, and several other multiple rules are completely
determined by the plurality and antiplurality tallies, it is possible to start with a rough
polyhedral design of the hull and then determine whether the hull is supported by
some profile. To develop the approach, first notice that a candidate’s AP tally includes
her plurality tally, so PX ≤ AX . But as each voter has twice as many AP votes to
distribute, the normalized values satisfy 1

2
PX
n ≤ AX

2n . Finally, a candidate can receive,

123



242 D. G. Saari

at most, half of the AP votes, so her normalized AP tally is bounded above by 1
2 . In

summary,

1

2

PX

n
≤ AX

2n
≤ 1

2
. (18)

6.1 Finding a profile

Surprisingly, as the next theorem (proof in the Appendix) asserts, Eq. 18 characterizes
whether P and AP tallies can be supported by a profile. The assertion in Theorem 8
about the role of Condorcet symmetries is illustrated in Eq. 13.

Theorem 8 Let P j = (p j
A, p j

B, p j
C ), j = 1, 2, be any two points in the simplex where

each component is a fraction. Suppose for each X that

1

2
p1

X ≤ p2
X ≤ 1

2
. (19)

There exist profiles so that P1 and P2 are, respectively, their normalized P and AP
outcomes. These profiles differ only in that any profile can be multiplied by a positive
integer and that scalar versions may differ by multiples of C3.

Profiles exist, but how are they found? To illustrate, let P1 = P2 = ( 1
2 , 1

6 , 1
3 ). (As

the points agree, the associated procedure line collapses to this common point.) To
find a profile, multiply P1 by the common denominator of 6 to obtain the P integer
values of (3, 1, 2). To find AP integer choices, from P2, use the fact that the sum of
AP tallies is twice that of the P tallies. So, multiply P2 by twice this value, or 12, to
obtain (6, 2, 4). Thus, STP = (6, 2, 4) − (3, 1, 2) = (3, 1, 2). The P and STP values
identify, respectively, how many first and second place votes each candidate receives.
Armed with this information, finding a profile involves only simple algebra. In this
case, a supporting profile has one voter preferring A � B � C , one B � A � C , two
C � A � B and two A � C � B.

As Theorem 8 asserts, this profile defines a class of profiles. Namely, any positive
integer m multiple of this profile defines a related profile with the same normalized A
and AP tallies:

Number Ranking Number Ranking
m A � B � C 2m C � A � B

2m A � C � B m B � A � C
(20)

These profiles cannot differ by C3; the reason is that adding any C3 multiple to Eq. 20
results in negative components.

For an example where C3 does play a role, let P1 = ( 4
13 , 3

13 , 6
13 ) and P2 =

( 8
26 , 8

26 , 5
13 ). As P1, P2 satisfy Eq. 19, it follows from Theorem 8 that supporting

profiles exist. To find them, multiply P1 by 13 and P2 by 26 to obtain that P = (4, 3, 6)

123



Systematic analysis of multiple voting rules 243

and S PT = (8, 8, 10) − (4, 3, 6) = (4, 5, 4). There are four differing 13-voter
profiles:

Number Ranking Number Ranking
x A � B � C 5 − x C � B � A

4 − x A � C � B x B � C � A
1 + x C � A � B 3 − x B � A � C

where the 0 ≤ x ≤ 3 admissible x values define the different C3 multiples. A property
associated with these C3 multiples is that at least one supporting profile has no voters
with a certain ranking; this always happens. So, to find a supporting profile, start by
assigning zero voters to some ranking; e.g., as B has only 3 first place votes in this
example, I assigned zero voters to B � C � A and three to B � A � C . The rest of
the base profile (with x = 0) followed immediately.

6.2 Finding polyhedra

After selecting any two points P1 and P2 that satisfy Eq. 19, the next task is to find a
multiple rule’s outcomes for the associated profiles. To illustrate with Eq. 20 profile,
notice that A is never bottom ranked and C is not bottom ranked by 4m, or two-thirds
of them; thus A and C are “in the mix” with all other candidates; i.e., each is top
ranked with certain AV outcomes. On the other hand, B is not bottom ranked by 2m of
the 6m voters, so she is not in the mix with either A or C ; the best she can do is to AV
tie with C for bottom place. B, however, is weakly in the mix with C (but not A), so
certain behavioral assumptions allow B to be CV second ranked. As each candidate is
top ranked by some voter, expect anything to happen with RV; e.g., even sincere RV
outcomes can have B top ranked.

This analysis requires finding a supporting profile for the selected P1 and P2. For-
tunately, as developed below, it is not necessary to construct a profile to discover these
different multiple rule behaviors; answers follow directly from the P1 and P2 com-
ponents. So, after selecting any two points in the simplex that satisfy Eq. 19, we can
immediately determine the kinds of outcomes and properties associated with each of
the different multiple rules.

6.2.1 Procedure line

The straight line connecting any choice of P1 and P2 that satisfies Eq. 19 is the proce-
dure line for a class of profiles. Consequently, to find all possible positional election
behaviors, just experiment with how a straight line can be positioned in the simplex!
Among sample results, because a straight line crosses at most seven ranking regions,
it follows that a profile can generate, at most, seven different positional outcomes.
As another result, if the outcome for some positional method is a complete tie (which
means that the procedure line crosses the simplex’s midpoint), then (a) all outcomes are
ties, (b) the outcome is the P or AP outcome and all other rankings agree, or (c) all other
positional outcomes come from two other election rankings that reverse each other.
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6.2.2 AV hull

For any choice of P1 and P2 that satisfy Eq. 19 points, if the points also satisfy
2p2

X > p1
Y (so “X is in the mix with Y ”), then the resulting AV hull has outcomes

where X beats Y . To illustrate, if twice the value each P2 component is larger than any
of the P1 components, then all 13 rankings are admissible AV rankings. With the earlier
P1 = ( 4

13 , 3
13 , 6

13 ) and P2 = ( 8
26 , 8

26 , 5
13 ), as each component of 2P2 = ( 8

13 , 8
13 , 10

13 )

is larger than any component of P1, all 13 rankings are admissible AV outcomes. With
P1 = P2 = ( 1

2 , 1
6 , 1

3 ), as 2P2 = (1, 1
3 , 2

3 ), it follows by a comparison of these com-
ponents that the AV rankings include any {A, C} ranking where A � B and C 
 B.

Other results can be obtained by using algebra with Eq. 19. For instance, it now is
easy to determine which P1, P2 points, hence which profiles, have a specified number
of strict AV outcomes. For instance, finding all profiles where the AV rankings have
a single strict AV ranking, say A � B � C , is equivalent to finding all P1, P2 that
satisfy p1

A ≥ 2p2
B ≥ p1

B ≥ 2p2
C ≥ p1

C , which identifies a region near the A vertex.
Finally, to construct the associated AV box and hull for the class of profiles that are
defined by the selected P1, P2, just use the eight extreme points created by P1 and 2P2.

6.2.3 CV hull

Finding potential CV hulls is immediate. Select any P1, P2 that satisfy Eq. 19. Deter-
mining the associated CV hull mimics the construction in Fig. 5b. Namely, first draw
three solid line where each is parallel to an edge; as these lines represent the L(X)

tallies, for X , designate the value as X L . As 2(AL , BL , CL) = P1, we have that
AL = 1

2 p1
A, BL = 1

2 p1
B, CL = 1

2 p1
C . Next draw three dashed lines parallel to the

edges and “above” (i.e., closer to the vertex) the solid lines; as these values represent
H(X) values, for X , denote it as X H . As P2 = (AH − AL , BH − BL , CH − CL), we
have that AH = p2

A + 1
2 p1

A, BH = p2
B + 1

2 p1
B, CH = p2

C + 1
2 p1

C . The P1, P2 points
satisfy Eq. 19 inequalities, so the resulting hull is supported by a class of profiles.
(Equation 19 inequalities assume the X L ≤ X H − X L ≤ 1

2 , or 2X L ≤ X H ≤ 1
2 + X L

forms.)
For selected points P1, P2 that satisfy Eq. 19 and 2p2

X + p1
X > p1

Y , the resulting
CV hull has outcomes where X beats Y . Again algebra can be used to identify which
profiles allow how many and what kinds of CV rankings. To CV hull is constructed
by using the P1, P2 values.

7 Consequences

What makes it difficult to systematically analyze the behavioral assumptions asso-
ciated with each multiple rule is that, in general (Sect. 2), an election tally may be
supported by many different election scenarios. As no single explanation suffices,
all should be explored. To identify all possibilities, label the extreme points in the
appropriate hull; e.g., for the CV hull, the vertices are of the (L(A), H(B), M(C))

form. These labels make it possible to “eyeball” the relative locations of the labeled
points with respect to a specified outcome and determine all possible supporting voter
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behaviors. With Fig. 2c, for instance, because the Borda tally is at the center of the AV
hull, there are several different symmetry scenarios where an AV tally will agree with
the Borda outcome. Similarly, several symmetric scenarios have the CV tally agreeing
with the (1, 1

3 , 0) tally.
Recall the question raised in the introduction as to whether there exist profiles that

admit opposite DPV rankings; if so, can they be characterized? By using the profile
decomposition to construct these hulls, we now know that for any of the four multiple
rules, any profile with a large Reversal component, relative to the Basic component,
has this property.

To illustrate the geometry of the hulls with respect to the motivating Guinier CV
example, in practical settings polls can be used to estimate the election’s P1, P2 val-
ues; from these values, a CV hull can be constructed. Whatever strategy a minority
adopts to try to elect candidate C , it provides an estimate for C’s lowest possible tally.
To determine everything else that can possibly happen, draw a horizontal line in the
simplex with the ensured C tally; all other possible outcomes, with their associated
behaviors, are in the part of the CV hull above this line. For a theoretical analysis,
use the Sect. 6 material to construct all possible CV hulls and explore the different
behavioral themes.

The size and number of tallies in these hulls must make one skeptical of any asser-
tion claiming that a specified mutiple rule will have a particular kind of outcome.
In the preceding paragraphs, for instance, I showed that by assuming a highly sym-
metrical behavior over all types of voters, the AV outcome tends to agree with the
Borda outcome. The mathematical assertion is correct, but the behavioral assumption
is highly questionable. What we need is more information about actual behavior, such
as Regenwetter et al. (2007) statistical results showing that when using AV, many
voters tend to vote for only one candidate. If this result holds in general, the associated
lack of symmetry would seriously question any assertion that the AV outcome tends
to agree with, say, the Borda outcome.

An attraction of multiple rules, which often is used to promote them, is how they
offer a voter several ways to reflect personal views of the candidates. But, as true
in all societal considerations, a balance must be found between individual flexibility
and the societal good; e.g., while I personally enjoy driving my car at high speeds,
societal realities require me to respect restraining traffic laws. Similarly, the geometric
approach developed here helps us to better determine the hidden societal costs that
are associated with using different multiple rules. Such changes include targeted cam-
paigning, strategic voting, and even the ability of those with harmful intent to disrupt
the outcome.

Indeed, discussions about multiple rules tend to emphasize what can happen with
positive behavioral assumptions, but negative behavior is a contemporary reality that
must be recognized and explored. Here, the size and shape of the hull identifies what
can happen; e.g., rules with larger hulls, such as RV, are more suspectible to such traits,
whether positive, negative, or accidental. For instance, if voters can successfully alter
outcomes (without changing the profile) through strategic voting, then the indifference
lines, or lines reflecting tied outcomes, must pass through the rule’s hull. Thus, a crude
measure of this ability to alter the societal sincere outcome is the relative lengths of
these indifference lines within the hulls. A first, crude measure of the relative suscep-
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tibility of the multiple rules to strategic and negative behavior, then, is given by the
Theorem 2 inclusions.

This measure indicates that RV is, by far, the most susceptible to strategic voting and
other kinds of negative activities. But with the ease of being strongly strategic with
RV, such a comment must be expected. Historical support for this assertion comes
from the fact that RV includes, as a special case, those earlier versions of the scoring
rules used for figure skating that were discredited because of the persistent and serious
levels of manipulation.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

8 Appendix

Prof of Theorem 8 Suppose P1, P2 satisfy Eq. 19 and have rational components. We
need to show that the class of supporting profiles is non-empty and that if p1 and p2 are
two different such profiles with the same number of voters, then p2 − p1 is a multiple
of C3, or if p1 and p2 do not have the same number of voters, then there exist positive
integers d j so that d2p2 − d1p1 is a multiple of C3. As the scalar assertion is clear,
only the C3 claim needs to be verified.

Using Eq. 14 labeling of preferences, we have p1
A = p1 + p2 = PA, p1

B= p5 + p6 = PB, p1
C = p3 + p4 = PC ; AA = 2p2

A = PA + p3 + p6, AB =
2p2

A = PB + p1 + p4, AC = 2p2
C = PC + p2 + p5. The associated matrix represen-

tation is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0

0 0 0 0 1 1

0 0 1 1 0 0

1 1 1 0 0 1

1 0 0 1 1 1

0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1

p2

p3

p4

p5

p6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1
A

p1
B

p1
C

2p2
A

2p2
B

2p2
C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

For a given P1, P2, all supporting profiles are obtained from this matrix represen-
tation. But the matrix has rank 5, so it has a kernel. As C3 = (1,−1, 1,−1, 1,−1)

is orthogonal to each row, the kernel is the linear space spanned by C3. Thus, as
asserted, all solutions (i.e., all supporting profiles) with a fixed number of voters differ
by multiples of C3.

The matrix expression shows that if Eq. 19 is not satisfied, then some p j terms
must be negative; e.g., if 2p2

C < p1
C , then from the third and sixth row, or 2p2

C =
p1

C + p2 + p5, we have that p2 + p5 < 0. Somewhat of a surprise, Eq. 19 con-
straints affect only the number of voters in a profile by imposing a lower bound
on the admissible K multiples. To illustrate by finding the profile decomposition
p = kK + aBBA + bBBB + aRRA + bRRB for P = (6, 5, 4) and AP = (6, 9, 15),
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as the sum of P coordinates is 15, there are 15 voters and k = 15/6. To remove the
K influence from the tallies, subtract 5 and 10, respectively, from each P and AP
component to obtain the reduced values of (1, 0,−1) and (−4,−1, 5).

The reduced Borda outcome—the Borda tally minus the K effect – is the average,
or (− 3

2 ,− 1
2 , 2). This reduced Borda outcome is determined exclusively by the Basic

terms, so, according to the BX form (e.g., Fig. 3), the aB, bB coefficients are given by

2aB − bB = −3

2
, 2bB − aB = −1

2
, −aB − bB = 2. (22)

The aR, bR values are determined by the difference between the reduced P and
Borda tallies, or (1, 0,−1) − (− 3

2 ,− 1
2 , 2) = ( 5

2 , 1
2 ,−3). Using the RX representa-

tions with s = 0, the equations are

2aR − bR = 5

2
, 2bR − aR = 1

2
, −aR − bR = −3. (23)

As the sums of coefficients for a reduced Borda tally and for the differences between
the reduced plurality and Borda tallies always equal zero, whatever the values, the
respective form of Eqs. 22 and 23 (but with the new values on the right-hand side)
always have an unique solution. Thus the Eq. 19 effect is manifested only through the
kK term.

To see how this happens, keep the above P = (6, 5, 4) but now use AP =
(4, 11, 15), which is a 15 voter example that violates Eq. 19. The reduced P and AP
values are (1, 0,−1) and (−6, 1, 5), from which corresponding aB, bB , aR, bR values
can be computed. However, working backwards, the appropriate k coefficient for kK
must correspond to P and AP values of (2k+1, 2k, 2k−1) and (4k−6, 4k+1, 4k+5).
The requirement that PX ≤ AX means that 2k + 1 ≤ 4k − 6, or that 6k, the number
of voters, must be at least 21, rather than 15. ��
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