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Tractable Global Solutions to Bayesian Optimal Experiment Design

Diogo Rodrigues, Georgios Makrygiorgos, and Ali Mesbah

Abstract— Optimal experiment design (OED) aims to opti-
mize the information content of experimental observations for
various types of applications by designing the experimental con-
ditions. In Bayesian OED for parameter estimation, the design
selection is based on an expected utility metric that accounts for
the joint probability distribution of the uncertain parameters
and the observations. This work presents an approximation
of the Bayesian OED problem based on Kullback–Leibler
divergence that is amenable to global optimization. The experi-
ment design adopts a parsimonious input parametrization that
reduces the number of design variables. This leads to a tractable
polynomial optimization problem that can be solved to global
optimality via the concept of sum-of-squares polynomials.

I. INTRODUCTION

The optimal selection of conditions under which experi-

ments are conducted is crucial for maximizing the value of

data for inference and prediction, in particular when experi-

ments are time-consuming or resource-intensive to perform.

Optimal experiment design (OED) uses a system model to

systematically select experimental conditions (i.e., designs)

by maximizing the information content of observations for

parameter inference or model discrimination [1]–[6].

This paper focuses on OED for parameter estimation,

which has been extensively studied in the classical frequentist

framework. Classical OED formulations are based on scalar

metrics of the Fisher information matrix (FIM) such as the

alphabetic optimality criteria [7]–[9]. On the other hand, the

design criteria in Bayesian OED approaches are defined in

terms of expected utility, which is often expressed in terms of

prior and posterior distributions of the parameters [10], [11].

Bayesian OED is especially advantageous when the system

observations are noisy, incomplete, and indirect [12].

A common choice for the expected utility is the mutual

information between parameters and observations, defined

in terms of the Kullback–Leibler (KL) divergence from the

prior to the posterior parameter distributions [13], [14]. As no

closed-form expression exists for the expected utility for gen-

eral nonlinear systems [15], a key computational challenge

in Bayesian OED arises from numerical evaluation of the ex-

pected utility using Monte Carlo-based methods [16]. Due to

this sample-based evaluation of the expected utility, Bayesian

OED is naturally formulated as a stochastic optimization

problem, which can be prohibitively expensive to solve
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for OED problems with large design spaces. Alternatively,

gradient-based optimization approaches such as stochastic

approximation [17] and sample average approximation [18]

methods can be used to attain locally optimal designs. The

gradient-based optimization approaches generally require

fewer iterations and are potentially much less expensive than

stochastic optimization approaches to Bayesian OED. How-

ever, sample-based approximations of the expected utility

and its gradients can be prohibitively expensive. These chal-

lenges have been addressed by constructing surrogates for the

model outputs based on polynomial chaos expansions [12],

[19]. Despite these advances, gradient-based methods cannot

guarantee the global optimality of the selected designs.

Hence, this paper presents a novel tractable approach for

obtaining globally optimal solutions to Bayesian OED for

nonlinear systems with time-varying designs. We express the

expected utility in terms of the KL divergence from the prior

to the posterior parameter distributions, which is approxi-

mated as D-optimality of the FIM for the special case of

Gaussian prior distribution and Gaussian observation noise.

A sample-based approach is then utilized for the computation

of the expected utility for a given design via an optimal

stochastic collocation scheme for numerical integration over

the domain of uncertain parameters. The quadrature rule

is built upon the notion of orthogonal polynomials, which

has been extensively used in the approximation of functions

of random variables [20]. It is known that the complexity

of optimization problems in a nonconvex and global opti-

mization framework scales exponentially with the number of

decision variables. Thus, we look to formulate the problem

in terms of as few as possible decision variables to enable

tractable solutions. This is achieved by a parsimonious input

parametrization [21], [22], which can be especially useful

for OED problems since they are typically high-dimensional

in the design variables. Then, a generic polynomial mapping

of the design variables to the expected utility is established.

Based on this mapping, a reformulation of the OED problem

is performed, leading to a convex problem via the concept

of sum-of-squares polynomials and semidefinite relaxations

for which the solution can be attained with global optimality

certificates [23]. The proposed approach is demonstrated on

a benchmark Lotka-Volterra problem.

II. PROBLEM STATEMENT

Consider the continuous-time dynamical system given by

dx
dt
(t;θθθ ) = f

(

x(t;θθθ ),θθθ ,d(t)
)

, x(t0;θθθ ) = x0 (θθθ) , (1)

where x(t;θθθ) is the nx-dimensional vector of states that

depend on the nθ -dimensional vector of uncertain parameters

θθθ ∈ Θ and the nd-dimensional vector of inputs d(t) ∈ D ,



and f(x,θθθ ,d) is an nx-dimensional smooth vector function.

The input set D may restrict d(t) to lie between a lower

bound d and an upper bound d. Noisy measurements y :=
(y(t1), . . . ,y(tT )) ∈ Y are collected at T instants t1, . . . , tT as

y(tk) = c
(

x(tk;θθθ )
)

+ e(tk), k = 1, . . . ,T, (2)

where e := (e(t1), . . . ,e(tT )) is additive measurement noise.

We aim to optimally design the inputs d(t) by maximizing

the information content of the observations y for estimation

of the unknown parameters θθθ . To this end, we adopt a

Bayesian perspective. Under a given design d and a real-

ization of the observations y, the change in the information

about θθθ between a prior probability density function (pdf)

p(θθθ) and a posterior pdf p(θθθ |y,d) is given by Bayes’ rule

p(θθθ |y,d) = p(y|θθθ,d)p(θθθ)
p(y|d) , (3)

where p(y|θθθ ,d) denotes a likelihood function, which results

in the evidence p(y|d) := ∫Θ p(y|θθθ ,d)p(θθθ )dθθθ .

In Bayesian OED, the optimal inputs d∗ ∈D are designed

by maximizing a so-called expected utility [11]

u(d) := ∫ΘU(θθθ ,d)p(θθθ )dθθθ , (4)

with the utility function defined as

U(θθθ ,d) := ∫Y G(θθθ ,y,d) p(y|θθθ ,d)dy, (5)

where G(θθθ ,y,d) denotes a gain function that expresses the

gain in reduction of uncertainty of the parameters θθθ based on

the observations y under the design d [10]. Since the goal

is to design d so as to maximize the mutual information

between θθθ and y, we define the gain function as

GKL (θθθ ,y,d) = log
(

p(θθθ |y,d)
p(θθθ)

)

= log
(

p(y|θθθ,d)
p(y|d)

)

, (6)

which implies that U(θθθ ,d) becomes the KL divergence from

the evidence to the likelihood function

UKL(θθθ ,d) = ∫Y log
(

p(y|θθθ,d)
p(y|d)

)

p(y|θθθ ,d)dy. (7)

Accordingly, we formulate the Bayesian OED problem as

d∗
KL := argmax

d∈D

uKL(d) = ∫ΘUKL(θθθ ,d)p(θθθ )dθθθ . (8)

Remark 1: One can also show that the design d∗
KL maxi-

mizes the expected utility in terms of the KL divergence from

the prior to the posterior distributions as well as the expected

gain in Shannon information between the distributions.

As noted in Remark 1, the Bayesian OED problem (8)

designs the inputs according to a relevant goal with respect to

information content. However, the OED problem (8) is com-

putationally intractable, as discussed in the next section. The

goal of this paper is to approximate (8) as an optimization

problem that can be efficiently solved to global optimality.

III. APPROXIMATION OF BAYESIAN OED

A main challenge in Bayesian OED is its high computa-

tional cost relative to classical OED approaches. This arises

from the numerical evaluation of the expected utility in (8).

In general, uKL(d) must be approximated using nested Monte

Carlo integration over the joint observation and parameter

space, which can become prohibitively expensive [19], [24].

To address this computational challenge, we approximate

the Bayesian OED problem (8). This approximation leads to

a tractable design criterion that involves the prior expectation

of a function of the FIM [25]. To this end, the following

assumptions related to normality of the likelihood function

and prior pdf are required.

Assumption 1: The noise realizations e(t1), . . . ,e(tT ) are

independent and identically distributed (i.i.d.) and drawn

from a normal distribution with zero mean and variance

σ2. Let hk(θθθ ,d) := c
(

x(tk;θθθ )
)

for k = 1, . . . ,T . Since y =
h(θθθ ,d)+ e, the likelihood function in (3) takes the form

p(y|θθθ ,d) = f (y|h(θθθ ,d),σ2IT ), (9)

where f (x|x̄,ΣΣΣx) is the pdf of a multivariate normal distri-

bution with mean x̄ and covariance ΣΣΣx.

Assumption 2: The prior distribution of the parameters θθθ
follows a normal distribution with pdf

p(θθθ) = f (θθθ |θ̄θθ ,ΣΣΣθθθ ), (10)

for some mean vector θ̄θθ and some covariance matrix ΣΣΣθθθ .

Under Assumptions 1 and 2, d∗
KL can be approximated as

the design that maximizes the scalar metric of the FIM for

Bayes D-optimality [10]

d∗
D := argmax

d∈D
uD(d) = ∫ΘUD(θθθ ,d)p(θθθ )dθθθ , (11)

which corresponds to the utility function

UD(θθθ ,d) = log
(

det
(

III (θθθ ,d)+ΣΣΣ−1
θθθ

))

, (12)

where III (θθθ ,d) is the FIM defined as

III (θθθ ,d) = ∫Y
∂ log p(y|θθθ ,d)

∂θθθ

T ∂ log p(y|θθθ,d)
∂θθθ p(y|θθθ ,d)dy

= ∂h
∂θθθ (θθθ ,d)

T
(

σ2IT

)−1 ∂h
∂θθθ (θθθ ,d), (13)

and the FIM depends on the sensitivities described by

d
dt

(

∂x
∂θθθ (t;θθθ )

)

= ∂ f
∂x

(

x(t;θθθ ),θθθ ,d(t)
)

∂x
∂θθθ (t;θθθ)

+ ∂ f
∂θθθ

(

x(t;θθθ ),θθθ ,d(t)
)

,
∂x
∂θθθ (t0;θθθ ) = ∂x0

∂θθθ (θθθ ) , (14)

since

∂hk

∂θθθ (θθθ ,d) = ∂c
∂x

(

x(tk;θθθ )
)

∂x
∂θθθ (tk;θθθ ), k = 1, . . . ,T. (15)

Then, the augmented dynamics of the system states and

their sensitivities are described by

dX
dt
(t;θθθ ) = F

(

X(t;θθθ ),θθθ ,d(t)
)

, X(t0;θθθ ) = X0 (θθθ) , (16)

with the nx (nθ + 1) augmented states and initial conditions

X(t;θθθ ) :=
[

x(t;θθθ) ∂x
∂θθθ (t;θθθ )

]

,

X0 (θθθ ) :=
[

x0 (θθθ )
∂x0

∂θθθ (θθθ )
]

. (17)



Remark 2: Bayesian OED problems related to different

Bayes alphabetic optimality criteria could be addressed by

replacing UD(θθθ ,d) by other functions of the FIM III (θθθ ,d).
In the remainder, we aim to determine the design that

maximizes the approximate expected utility uD(d) in (11).

A computational challenge that arises from (11) is the

multivariate integration over Θ, which is addressed next.

IV. TRACTABLE FORMULATION OF THE

APPROXIMATE BAYESIAN OED PROBLEM

The aim of this section is to convert Problem (11) to a

tractable formulation. To this end, it is first necessary to com-

pute the expected utility uD(d) via multivariate integration.

Then, we formulate a tractable optimal control problem.

A. Multivariate integration for computing the expected utility

For brevity, we use the shorthand notation u(d) := uD(d)
and U(θθθ ,d) :=UD(θθθ ,d). To compute u(d) in (11) for a given

d, one needs to compute an integral of U(θθθ ,d) in (12) over

Θ by sampling according to the pdf p(θθθ). However, this

integration typically requires computing U(θθθ ,d) for a very

large number of samples θθθ to achieve accurate uncertainty

propagation, which is computationally prohibitive when this

procedure is repeated for different values of d [19].

Thus, we compute u(d) by selecting mθ quadrature points

θθθ1, . . . ,θθθ mθ
, which allows expressing u(d) approximately as

û(d) = wTpU(d), (18)

with the vector w of mθ weight factors and

(pU (d))l =U(θθθ l ,d), l = 1, . . . ,mθ . (19)

We seek to construct an integration rule for the mul-

tivariate integral (11) based on as few quadrature points

as possible. It is known that, even in the univariate case,

methods based on Gaussian quadrature minimize the number

of points needed for exact integration of polynomials of

a given degree [26]. Here, we use an efficient approach

that corresponds to sparse stochastic collocation and is the

multivariate equivalent of Gaussian quadrature.

One can express U(θθθ ,d) as

U(θθθ ,d) = ∑k∈ ¯K
nθ

n
(cU(d))k Ψ

(

∆θθθk
)

+RU(θθθ ,d)

= aθ (θθθ )
TcU(d)+RU(θθθ ,d), (20)

where cU(d) is the vector of polynomial coefficients of

U(θθθ ,d), Ψ
(

∆θθθk
)

denotes the first of the orthogonal polyno-

mials with respect to p(θθθ ) that contains the monomial ∆θθθk,

which are Hermite polynomials for a normal prior pdf, with

k the vector of monomial powers in the set ¯K
nθ

n ⊆ K
nθ

n :=
{(

k1, . . . ,knθ

)

∈ N
nθ
0 : 0 ≤ k1 + . . .+ knθ

≤ n
}

in the case of

a polynomial of degree n, ∆θθθ := θθθ − θ̄θθ the deviation of θθθ

around θ̄θθ , ∆θθθk :=
(

θ1 − θ̄1

)k1
. . .

(

θnθ
− θ̄nθ

)knθ , aθ (θθθ ) is a

vector with elements (aθ (θθθ ))k = Ψ
(

∆θθθk
)

, for all k ∈ ¯K
nθ

n ,

and RU(θθθ ,d) is the orthogonal part with respect to aθ (θθθ ).
We assume that ¯K

nθ
n is a subset of K

nθ
n given by a

maximum interaction or hyperbolic truncation scheme to

introduce sparsity since this reduces the number of points

needed for the integration rule when the dimension nθ is

large [27]. For example, in the case of a maximum interaction

scheme with up to pθ interaction terms, ¯K
nθ

n = K
nθ

n ∩
{(

k1, . . . ,knθ

)

∈ N
nθ
0 : limq→0 ∑

nθ
i=1 k

q
i ≤ pθ

}

. Then, since the

polynomials in aθ (θθθ) are orthogonal with respect to p(θθθ), it

holds that I
| ¯K

nθ
n |

= ∫Θaθ (θθθ )aθ (θθθ)
T p(θθθ )dθθθ , where | ¯K

nθ
n | ≤

|K
nθ

n |=
(

nθ+n
nθ

)

. This implies

[

1 0T

| ¯K
nθ

n |−1

]

= ∫Θaθ (θθθ )
T p(θθθ)dθθθ . (21)

For some mθ , one can choose a diagonal matrix W of

dimension mθ and points θθθ 1, . . . ,θθθ mθ
such that

1T
mθ

WAθ = ∫Θaθ (θθθ )
T p(θθθ)dθθθ , (22)

with (Aθ )l,k = (aθ (θθθ l))k for l = 1, . . . ,mθ and k ∈ ¯K
nθ

n .

Suppose that (nθ + 1)mθ ≥ | ¯K
nθ

n | and W and θθθ 1, . . . ,θθθ mθ

are chosen such that they satisfy (22). Then, since

u(d) = ∫Θaθ (θθθ )
TcU(d)p(θθθ )dθθθ + ∫ΘRU(θθθ ,d)p(θθθ )dθθθ

= 1T
mθ

WpU (d)− 1T
mθ

W(pU (d)−Aθ cU(d))

+ ∫ΘRU(θθθ ,d)p(θθθ )dθθθ , (23)

the integral u(d) can be approximated as û(d) in (18)

with wT = 1T
mθ

W and the approximation error û(d)− u(d)
vanishes when RU(θθθ ,d) = 0.

A method based on polynomial chaos expansions could

also be used [12], [19]. However, we propose the use of the

approach based on Gaussian quadrature since it needs fewer

quadrature points and does not require any regression.

B. Reformulation of OED as an optimal control problem

The approximate expected utility û(d) in (18) is an explicit

function of the states X(t;θθθ 1), . . . ,X(t;θθθ mθ
) from (12), (13),

(15), (19). Thus, this approximation involves the dynamics

r
(

s(t),d(t)
)

:= vec





F(X(t;θθθ 1),θθθ 1,d(t))

...
F(X(t;θθθ mθ

),θθθ mθ
,d(t))



, (24)

for the nr := nx (nθ + 1)mθ states and initial conditions

s(t) := vec





X(t;θθθ 1)

...
X(t;θθθ mθ

)



, s0 := vec





X0(θθθ 1)

...
X0(θθθ mθ )



. (25)

Hence, we define

φ
(

s(t1), . . . ,s(tT )
)

:= 1T
mθ

WpU (d). (26)

Accordingly, the Bayesian OED problem (11) can be

approximated by the optimal control problem (OCP)

d̂∗ :=argmax
d∈D

û(d) = φ
(

s(t1), . . . ,s(tT )
)

, (27a)

s.t. ṡ(t) = r
(

s(t),d(t)
)

, s(t0) = s0, (27b)

(12), (13), (15), (19). (27c)

The inputs that represent the solution to the OCP (27)

are composed of several arcs. For each input d j, each arc

can be of type 1) input constraint-seeking, such that it

is determined by an equality d j = d j or d j = d j (types

1Lower or 1Upper, respectively), or 2) sensitivity-seeking,

such that it is determined by an equality that stems from the



dynamics given by r
(

s(t),d(t)
)

[22], [28]. Hence, there is

a finite number of arc types from which arc sequences can

be formed. If we consider as plausible arc sequences only

sequences with a number of arcs no larger than some upper

bound n̄a and without consecutive arcs of the same type, it

follows that the number of plausible sequences is also finite.

We aim to show how Bayesian OED problems reformu-

lated as (27) can be solved efficiently to global optimality.

The proposed approach for global optimality relies on de-

termining: (i) when and how the optimal switching between

arcs takes place for a given plausible arc sequence; and (ii)

which sequence provides the optimal solution. Once question

(i) is addressed for every plausible sequence, for example via

parallel computing, it is trivial to answer question (ii).

Parsimonious input parameterization is an effective ap-

proach for describing the optimal inputs using only a few

decision variables, in contrast to infinite-dimensional vari-

ables in the original OCP [21], [22]. For a given plausible

arc sequence composed of ns + 1 input constraint-seeking

and sensitivity-seeking arcs, the inputs d are defined by the

following decision variables: the switching times t̄1, . . . , t̄ns to

arcs of all types and the initial conditions of the sensitivity-

seeking arcs. The final time t̄ns+1 = t f is not a decision

variable in this paper. Then, addressing question (i) above

consists in computing the optimal values of the decision

variables for the given arc sequence. For this, we describe

the cost of the OCP as an explicit polynomial function, since

it converts the OCP into a set of polynomial optimization

problems (POPs), one for each arc sequence, as shown next.

V. REFORMULATION OF THE OCP AS

POLYNOMIAL OPTIMIZATION PROBLEMS

For a given arc sequence, we describe the input in the ith

time interval [t̄i−1, t̄i), for i = 1, . . . ,ns + 1, by defining the

nz,i states and initial conditions for this interval as zi(t) and

zi,0. One can then combine all the states into vectors with a

dimension nz := nr + nz,1+ . . .+ nz,ns+1

z(t) :=



s(t)T





z1(t)

...
zns+1(t)





T




T

, (28)

with corresponding initial conditions z0.

The arc type determines the dimension and meaning of the

elements of zi(t), zi,0 and their effect on the inputs d(t) given

by the control law c̃
(

z(t)
)

and on the dynamics of zi(t) given

by qi

(

s(t),zi(t)
)

. For input constraint-seeking arcs, zi(t), zi,0

are of dimension 0 and c̃ j

(

z(t)
)

= d j or c̃ j

(

z(t)
)

= d j for

the jth input. For sensitivity-seeking arcs, if we assume for

the sake of simplicity that the jth input is approximated

by a linear function, then zi(t) =
[

d̃ j,i(t)

p̃ j,i(t)

]

, zi,0 =
[

d0
j,i

p j,i

]

are

of dimension 2, where d0
j,i, p j,i are the initial value and

derivative of the input and d̃ j,i(t) is its value at time t, which

implies c̃ j

(

z(t)
)

= d̃ j,i(t), qi

(

s(t),zi(t)
)

=
[

p̃ j,i(t)
0

]

. The set
{

i : ith arc of d j is of type 2
}

is denoted as S j.

Then, upon eliminating input dependencies and rewriting

the OCP (27) in terms of the extended states z, one obtains

φ̃
(

z(t1), . . . ,z(tT )
)

:= φ
(

s(t1), . . . ,s(tT )
)

and the dynamics

f̃
(

z(t)
)

:=



r
(

s(t), c̃
(

z(t)
))T





q1(s(t),z1(t))

...
qns+1(s(t),zns+1(t))





T




T

. (29)

Since the input parameters for the given arc sequence

are τττ := (t̄1, . . . , t̄ns ,z1,0, . . . ,zns+1,0), the OCP (27) can be

reformulated in terms of these new decision variables as

τττ∗ :=argmax
τττ

φ̂(τττ) := φ̃
(

z(t1), . . . ,z(tT )
)

, (30a)

s.t. t̄i−1 ≤ t̄i, i = 1, . . . ,ns + 1, (30b)

d j ≤ d0
j,s ≤ d j,

d j ≤ d0
j,s + p j,s (t̄s − t̄s−1)≤ d j, s ∈ S j, (30c)

ż(t) = f̃
(

z(t)
)

, z(t0) = z0, (30d)

(12), (13), (15), (19), (30e)

which is convenient for numerical optimization since there

are only N := ns + nz,1 + . . .+ nz,ns+1 decision variables.

We aim to reformulate the OCP for each arc sequence as

a POP that is amenable to global optimization. This entails

expressing the metric φ̂(τττ) as a polynomial function [29],

[30]. To this end, we compute φ̂ (τττ) and its first-order partial

derivatives with respect to τττ .

For this, it is essential to consider not only the extended

states z(t) and the extended adjoint variables

ζζζ (t) :=



λλλ (t)T





ζζζ 1(t)

...
ζζζ ns+1(t)





T




T

, (31)

but also the concept of modified Hamiltonian function

H̃
(

z(t),ζζζ (t)
)

= f̃
(

z(t)
)T

ζζζ (t). As shown in (30), the extended

states z(t) are described by the differential equations

dz
dt
(t) = ∂ H̃

∂ζζζ

(

z(t),ζζζ (t)
)T

= f̃
(

z(t)
)

, z(t0) = z0. (32)

Likewise, the extended adjoint variables ζζζ (t) are described

by the differential equations

dζζζ
dt
(t) =− ∂ H̃

∂z

(

z(t),ζζζ (t)
)T

=− ∂ f̃
∂z

(

z(t)
)T

ζζζ (t), ζζζ (tT ) = 0nz ,

ζζζ (t−k ) = ζζζ (tk)+
∂ φ̃

∂z(tk)

(

z(t1), . . . ,z(tT )
)T
, k = 1, . . . ,T. (33)

With these results, one can obtain the first-order partial

derivatives of φ̂ (τττ) with respect to τττ

∂ φ̂
∂ t̄i

(τττ) = H̃
(

z(t̄−i ),ζζζ (t̄−i )
)

− H̃
(

z(t̄i),ζζζ (t̄i)
)

=
(

f̃
(

z(t̄−i )
)

− f̃
(

z(t̄i)
))T

ζζζ (t̄i), i = 1, . . . ,ns, (34)

∂ φ̂
∂zi,0

(τττ) = ζζζ i(t0)
T
, i = 1, . . . ,ns + 1. (35)

An efficient approach to approximating φ̂ (τττ) as a polyno-

mial function consists in (i) computing the partial derivatives

of φ̂ (τττ) up to first order with respect to τττ and (ii) using

multivariate Hermite interpolation to obtain a polynomial of

degree n > 1 that matches the value φ̂ (τττ l) and the partial

derivatives
∂ φ̂
∂τττ (τττ l) at the sample points τττ l , for l = 1, . . . ,mτ

[31]. Note that this requires no more than computing the

extended states z(t) and adjoint variables ζζζ (t) for φ̂(τττ) that



correspond to each point τττ l , which amounts to solving two

systems of nz differential equations for each l = 1, . . . ,mτ .

The vector of polynomial coefficients is of dimension
(

N+n
N

)

, while the number of value vectors of dimension mτ

is N + 1. This means that the number mτ of sample points

must be at least
(N+n)!

n!(N+1)! , which is polynomial in N since

n is typically bounded to avoid an overfitting polynomial.

In addition, recall that N is typically small owing to the

parsimonious nature of the input parameterization.

Hence, when the metric φ̂(τττ) is expressed as a polynomial

pφ̂ (τττ) in the variables τττ for a given arc sequence, the OCP

for that arc sequence is reformulated as a POP. This problem

is solved efficiently to global optimality via reformulation

as a hierarchy of convex semidefinite programs (SDPs) of

increasing relaxation order using the concept of sum-of-

squares polynomials [23]. Although the method to solve such

problems to global optimality is out of the scope of the paper,

standard methods for this purpose are described in [29], [30].

VI. CASE STUDY

The proposed OED approach is demonstrated on a Lotka-

Volterra (LV) system represented by a set of nonlinear dif-

ferential equations that describes the interaction of predator

and prey populations. The LV system is widely used as a

benchmark problem for optimal control [32] and OED [33].

The nondimensional governing equations are given as

ẋ1(t) = x1(t)− (1+θ1)x1(t)x2(t)− 0.4x1(t)d(t), (36a)

ẋ2(t) =−x2(t)+ (1+θ2)x1(t)x2(t)− 0.2x2(t)d(t), (36b)

where t ∈ [0, t f ] is the integration time span, with t f = 12.

The differential states x1 and x2 describe the population of the

prey and the predator, respectively. The uncertain parameters,

which must be inferred from experimental observations, are

denoted by θ1 and θ2. The system (36) is integrated using the

initial conditions x0(θθθ) = [0.5,0.7]. We assume that we can

experimentally measure the predator population at the final

time step, i.e., y(t f ) = x2(t f ;θθθ) + e(t f ), where e(t f ) is the

measurement error. The variance of the error is assumed to

be constant and equal to σ2 = 0.12. The uncertain parameters

follow a bivariate normal prior pdf f (θθθ |θ̄θθ ,ΣΣΣθθθ ) with θ̄θθ =
02, ΣΣΣθθθ = 0.22I2, and the designed input is allowed to attain

values in a predefined interval, i.e., d(t) ∈ [0,1],∀t ∈ [0, t f ].

When linear functions are used to approximate sensitivity-

seeking arcs, a locally optimal solution consists of 3 arcs:

the first arc is sensitivity-seeking with d < d∗(t) < d, for

which a linear function is used; in the second arc, d∗(t) =
d; and in the third arc, d∗(t) = d. This results in an input

trajectory described by the 4 decision variables t̄1, t̄2, d0
1,1,

p1,1. The optimal switching times are t̄∗1 = 5.334, t̄∗2 = 9.477.

The optimal initial conditions for the first arc are the initial

value and the constant derivative of the linear function that

describes d∗(t) in this arc: d0∗
1,1 = 0.482, p∗1,1 =−0.090. The

optimal metric is φ̂ (τττ∗) = 11.6706. The local optimality is

indicated by the fact that the gradients (34), (35) are equal to

zero and the solution satisfies the necessary conditions given

by Pontryagin’s maximum principle [34].

Fig. 1. Optimal input trajectory (in blue) for the Bayesian OED problem
with the approximation of the sensitivity-seeking arc using a linear function.
The trajectories of the measured variable (in red) are juxtaposed for the mθ =
12 realizations θθθ 1, . . . ,θθθ mθ

used for multivariate integration. The relative
width of the lines corresponds to the weights w of these realizations.

We use mθ = 12 quadrature points to compute û(d) via

integration of U(θθθ ,d). This corresponds to exact integration

of Hermite polynomials up to degree 7 using the multivariate

equivalent of Gaussian quadrature, with weights w and points

θθθ1, . . . ,θθθ mθ
. The input d∗(t) and the measured variable

x∗2(t;θθθ ) for the realizations θθθ 1, . . . ,θθθ mθ
are shown in Fig. 1,

which indicates that x∗2(t f ;θθθ ) is sensitive to variations of

the parameters θθθ . The proposed approach for obtaining

global solutions to Bayesian OED problems is applied by

investigating all the 6 plausible arc sequences with a number

of arcs no larger than n̄a = 3. Table I reports the execution

time of the procedure on an Intel Core i5 1.8 GHz processor,

the optimal metric φ̂(τττ∗), and the optimal values of the

decision variables for these plausible arc sequences. The

execution time includes the evaluation of mτ = 2000 sample

points to obtain the polynomial representation pφ̂ (τττ) of

degree n = 8 and the local optimization of φ̂ (τττ) with initial

guess τττ∗p needed to compute τττ∗ for each arc sequence. For all

the arc sequences, it is possible to extract the unique solution

τττ∗p to the POP for pφ̂ (τττ) from the solution to the SDP for

the relaxation order 7 and certify the global optimality of τττ∗
p.

The duration of the formulation of the SDP and the extraction

and certification of the global solution is much smaller than

the execution time of the SDP solver MOSEK 8.1. For the

design d∗
τ that corresponds to τττ∗ for each arc sequence such

that φ̂ (τττ∗) = û(d∗
τ ), accurate approximations of uD(d

∗
τ ) and

uKL(d
∗
τ ) are also computed. One can observe that û(d∗

τ )
overestimates uD(d

∗
τ) and uKL(d

∗
τ ) consistently. Moreover,

the execution time is below 1000 s for all arc sequences

and the sequence with the best optimal metrics is 2-1Upper-

1Lower, that is, the sequence of the locally optimal solution.

In addition, the globally optimal values t̄∗1 , t̄∗2 , d0∗
1,1, p∗1,1 of

the decision variables for that arc sequence also correspond

to the optimal values given by the locally optimal solution.

In summary, one can show that the locally optimal solution

to the Bayesian OED problem shown in Fig. 1 is also the

globally optimal solution with no more than n̄a = 3 arcs, and

this only requires solving 6 problems in parallel in less than



TABLE I

EXECUTION TIME, OPTIMAL METRICS φ̂(τττ∗) = û(d∗
τ ), uD(d

∗
τ ), 2uKL(d

∗
τ )+ log

(

det
(

ΣΣΣ−1
θθθ

))

, FINAL TIME t f , AND OPTIMAL VALUES t̄∗1 , t̄∗2 , d0∗
1,i , p∗1,i OF

THE DECISION VARIABLES FOR THE GLOBAL SOLUTION TO THE BAYESIAN OED PROBLEM FOR DIFFERENT PLAUSIBLE ARC SEQUENCES.

Arc sequence Execution time (s) φ̂(τττ∗) = û(d∗
τ ) uD(d

∗
τ ) 2uKL(d

∗
τ )+ log

(

det
(

ΣΣΣ−1
θθθ

))

t̄∗1 t̄∗2 t f d0∗
1,i p∗1,i

2-1Lower-1Upper 929 11.1308 11.0959 10.9337 2.320 12.000 12.000 1.000 0.000 (i = 1)
2-1Upper-1Lower 964 11.6706 11.6309 11.4050 5.334 9.477 12.000 0.482 -0.090 (i = 1)
1Lower-2-1Lower 966 11.5277 11.4599 11.1177 5.130 10.158 12.000 1.000 0.000 (i = 2)
1Lower-2-1Upper 864 10.6843 10.6181 10.4023 4.978 12.000 12.000 1.000 -0.129 (i = 2)
1Upper-2-1Lower 929 11.4730 11.4509 11.2201 1.794 9.260 12.000 0.000 0.134 (i = 2)
1Upper-2-1Upper 818 11.1308 11.0959 10.9337 2.320 12.000 12.000 0.000 0.000 (i = 2)

1000 s. Recall that, if we had only used local optimization

to compute a local solution to (27), we could have obtained

a local solution worse than τττ∗ and it would not have been

possible to provide any guarantee that the local solution is

in any way close to the globally optimal solution.

VII. CONCLUSIONS AND FUTURE WORK

A methodology for obtaining globally optimal solutions

to Bayesian OED problems for normally distributed likeli-

hood and prior was presented. Numerical tractability was

reinforced by an optimal stochastic collocation scheme that

required only a few points in the parameter space for

approximating the expected utility. Moreover, the execution

time of the optimization procedure for each arc sequence

indicates that a global solution can be obtained in a tractable

way via a convex SDP.

In future work, we aim to circumvent the approximation

of the expected utility for KL divergence as a Bayes D-

optimality criterion and the assumption of normal distribu-

tions for the likelihood and the prior. Further extensions

would also include design-dependent initial conditions and

more complex path constraints.
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