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Abstract
Polyketides are a diverse group of natural products that form the basis of many
important drugs. The engineering of the polyketide synthase (PKS) enzymes
responsible for the formation of these compounds has long been considered to
have great potential for producing new bioactive molecules. Recent advances
in this field have contributed to the understanding of this powerful and complex
enzymatic machinery, particularly with regard to domain activity and
engineering, unique building block formation and incorporation, and
programming rules and limitations. New developments in tools for in vitro
biochemical analysis, full-length megasynthase structural studies, and in vivo
heterologous expression will continue to improve our fundamental
understanding of polyketide synthesis as well as our ability to engineer the
production of polyketides.
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Introduction
Polyketide compounds are a large family of natural products with 
great structural diversity and complexity. Many of these com-
pounds are valued for their potent biological activities, and par-
ticularly well-known examples include erythromycin, tetracycline, 
rifamycin, and lovastatin. Polyketides are formed by a family of 
enzymes known as polyketide synthases (PKSs), which often 
operate in an assembly line-like fashion to join together acyl coen-
zyme A (CoA) building blocks1. The core catalytic domains of 
type I and II PKSs include the ketosynthase (KS) domain, which 
is responsible for catalyzing decarboxylative Claisen condensa-
tions for chain extension; the acyltransferase (AT) domain, which 
is responsible for building block selection and loading; and the 
acyl carrier protein (ACP) domain, on which the polyketide chain 
is elongated (Figure 1A). Additional enzymes that may be either 
part of the PKS megasynthase or standalone can modify the nascent 
polyketide chain during or post assembly, and these enzymes further 

contribute to the diversity and complexity of polyketides that can be 
produced.

Because of the inherent modularity of many PKSs and their vast 
potential for producing pharmaceutically relevant compounds, 
there has been longstanding interest in engineering these enzymes 
to produce novel polyketides in a predictable manner. Decades 
of work ranging from the characterization of PKSs with unique 
attributes to the fundamental understanding of how these enzymes 
function to the manipulation of catalytic domains and modules to 
generate unnatural products have brought us closer to this goal 
(Figure 1B)2,3. In this short commentary, we discuss recent advances 
in these areas, focusing on both the new knowledge about PKSs that 
has been garnered and the tools that have been developed to facili-
tate efforts in PKS engineering. While the body of work on PKSs is 
vast, we have restricted our discussion here to a few selected themes 
found in PKS research from the past couple of years.

Figure 1. Novel polyketides generated by the incorporation of atypical building blocks. (A) Scheme showing crotonyl-CoA carboxylase/
reductase (CCR)-catalyzed biosynthesis of unusual extender units and their subsequent incorporation into polyketide scaffolds. Possible 
R’ groups include aliphatics, alkyl halides, and aromatics; R represents the donor polyketide intermediate. (B) Structures of novel polyketides 
with the modifications from atypical building blocks shown in red.
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Recent advances in understanding polyketide 
synthesis
As the “gatekeeping” domain, the AT domain has been a key target 
for polyketide engineering, and a number of recent studies continue 
to focus on understanding and engineering building block selection 
by this domain, particularly ATs that recognize atypical substrates, 
i.e. substrates other than malonyl-CoA or methylmalonyl-CoA. 
For example, an AT domain from the monensin PKS4 and the load-
ing AT from the avermectin PKS5, both with relaxed substrate 
specificities, were subjected to computational modeling and struc-
tural analysis, respectively, to enable the identification of residues 
responsible for substrate binding and specificity. Similarly, the 
AT domain of ZmaA, which specifically recognizes the precur-
sor hydroxymalonyl-ACP, was investigated through structural and 
biochemical analysis, and this study showed that the donor carrier 
protein itself biased extender unit selection6. Based on the promis-
cuity of the loading AT and a mutation in one of the extending ATs 
of 6-deoxyerythronolide B synthase (DEBS), short-chain alkynoic 
building blocks have also been incorporated into the backbone of 
erythromycin (Figure 1B)7,8. In addition, several other recent studies 
have centered on trans-ATs, which may be easier to engineer than 
ATs acting in cis. Through in vitro kinetic studies, it was shown that 
although trans-ATs can complement inactivated cis-ATs, which can 
be a useful approach for introducing alternative extender units into 
polyketides, the efficiency of trans-AT complementation is greatly 
affected by the identity of both the carboxyacyl-CoA and the ACP 
substrates9. Promisingly, several key electrostatic interactions that 
define the interaction epitope between a trans-AT promiscuous to 
carboxyacyl-CoA substrates and its cognate ACP were identified, 
and this knowledge was further leveraged to engineer a noncognate 
ACP into a detectable substrate for this trans-AT via the introduc-
tion of a single amino acid substitution10. In addition, a trans-AT 
has also been used to site-selectively incorporate fluorine into a 
polyketide backbone11.

Aside from these AT domain studies, there have also been studies 
focused on the biosynthetic aspect of unique PKS building blocks. 
In particular, promiscuous malonyl-CoA synthetase variants have 
been used to synthesize a broad range of malonyl-CoA extender 
units substituted at the C2 position12,13. In addition, a family of 
crotonyl-CoA carboxylase/reductase (CCR) enzymes that trans-
form α,β-unsaturated acyl-CoA substrates to the corresponding 
carboxyacyl-CoA extender units have also received great atten-
tion. CCR enzymes are typically quite flexible and have already 
been demonstrated to generate both aliphatic CoA- and aromatic 
CoA-linked extender units (Figure 1A)14–17. The recent structure-
based engineering of a CCR enzyme from antimycin biosynthesis 
afforded the production of several new polyketide extender units18. 
This work also demonstrated the first use of heterocyclic and substi-
tuted arene extender units by PKS machinery (Figure 1B), though 
it is notable that not all of the generated α-substituted malonyl-
CoAs could be accepted by the PKS. In addition to CoA building 
blocks, dedicated ACP-dependent pathways are often found to gen-
erate atypical building blocks for PKSs as well. One example is our 
recently elucidated ACP-dependent terminal alkyne biosynthetic 
machinery, which was further exploited for the in situ generation and 
incorporation of terminal alkynes into polyketide scaffolds as alky-
noic starter or extender units (Figure 1B)19. This work demonstrates 

the feasibility of de novo biosynthesis of terminal alkyne-tagged 
polyketides that can be subjected to in situ biorthogonal chemistry 
for further modification. Another recent example is the DH*-KR* 
(dehydratase-ketoreductase) bifunctional proteins that were char-
acterized to convert glyceryl-S-ACP into the unusual lactyl-S-ACP 
starter unit in FR901464 and lankacidin biosynthesis20.

Another area of focus in recent PKS understanding and engineer-
ing lies in iterative type I PKSs, which are typically found in fungi, 
though more examples are now emerging from bacteria. Although 
numerous bioactive polyketides are synthesized by iterative type I 
PKSs, unlike the well-known linear assembly line of multi- 
modular type I PKSs, these fungal PKSs have only one module 
that is used iteratively, and the related programming rules regard-
ing substrate selection, catalytic domain utilization in each elon-
gation cycle, regiospecific modification, polyketide chain length 
control, chain release and transfer, etc. are only just beginning to be 
understood21,22. For the relatively simple class of non-reducing itera-
tive type I PKSs (NR-PKSs) that are involved in aromatic polyketide 
synthesis, the starter unit ACP transacylase (SAT) domain has been 
the focus of several recent studies including domain swapping to 
generate new aromatic polyketides23 and structural analysis to iden-
tify the basis for acyl unit selection24, since unnatural starter units 
are often properly processed by the rest of the catalytic domains 
of NR-PKSs (Figure 1B)25. In addition, systematic in vitro domain 
swapping of NR-PKSs followed by examination of the resulting 
on-target and shunt products highlighted the important effects 
of chain length control by KS domains, editing by thioesterase 
(TE) domains, and inter-domain interactions on combinatorial 
biosynthesis26. While some additional work has also been done on 
highly and partially reducing PKSs27,28, particularly with regards 
to combinatorialization with NR-PKSs29 or nonribosomal peptide 
synthetases (NRPSs)30, the relative lack of understanding about the 
programming of these types of PKSs makes them more difficult to 
engineer effectively.

Recent developments in tools for understanding and 
engineering PKSs
As polyketide engineering continues to progress, the development 
of tools and strategies to understand the underlying PKS program-
ming rules and exploit them for the diversification and overproduc-
tion of new polyketide compounds is of paramount importance. 
In this vein, in vitro biochemical analysis using purified enzymes 
continues to serve as the most important method for studying PKS 
enzymology, particularly in understanding the precise function 
and substrate specificity of catalytic domains, reaction mecha-
nisms, and the internal kinetics of the catalytic program. Despite 
recent significant improvements in the sensitivity and accuracy 
of mass spectrometry31, it remains challenging to directly detect 
and quantify the majority of ACP-bound biosynthetic intermedi-
ates of polyketides. Alternatively, total enzymatic reconstitution 
of polyketide synthesis in vitro serves as one of the most common 
assay methods for biochemical analysis16,32,33. Additionally, several 
unique quantitative and facile assay strategies have been developed 
recently; of notable interest are those coupling PKS-catalyzed reac-
tions and fluorescent click chemistry10,34. In addition to biochemical 
assays, structural analysis continues to play a vital role in study-
ing PKSs, paving the way for a more detailed understanding of the 
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mechanism and dynamics of PKSs, particularly with the advent of 
structural knowledge of full-length megasynthases. New strategies 
have recently been developed to address the technical challenges in 
obtaining structural information for large PKS protein complexes. 
For example, small-angle X-ray scattering (SAXS) analyses of 
megasynthases combined with the rigid-body refinement of the 
high-resolution domain structures have been used to model modular 
structures of DEBS, leading to the proposal of a disc-shaped mod-
ule that can cage the ACP at the center of a ring formed by the other 
PKS domains35. This method can be used to probe the solution state 
and obtain structural information for catalytically active megasyn-
thases, and it is a powerful approach for modeling large, dynamic 
macromolecular complexes. In parallel, electron cryo-microscropy 
has also recently been used to determine the reconstruction of a 
full-length PKS module and showed that a single reaction cham-
ber provides the intramodular ACP with access to all of the cata-
lytic sites while the ACP from the upstream module uses a separate 
entrance to deliver the polyketide intermediate36. An accompany-
ing study further examined this PKS in different catalytic states, 
providing new insight into the structural rearrangements involved 
in chain elongation37. Thus, electron cryo-microscopy is emerging 
as a powerful tool for studying complex PKSs by enabling high-
resolution information about the overall structure, organization, and 
dynamics of complete PKS modules to be obtained directly.

In addition to in vitro analysis, in vivo study of PKSs, particularly 
heterologous expression of PKSs and their auxiliary enzymes, has 
proven to be invaluable for the understanding and production of 
polyketides, as reflected by the recent developments in new heter-
ologous expression tools and the successes in polyketide produc-
tion by a wide range of heterologous hosts. While phage-mediated 
homologous recombination such as λ Red/ET recombineering has 
long been used for the direct capture of gene clusters from bacte-
rial artificial chromosomes and genomic DNA38, transformation- 
associated recombination (TAR)-based techniques that typically 
rely on homologous recombination in yeast and allow for the 
capture of much larger clusters are quickly gaining traction3,39–42. 
The development of a Saccharomyces cerevisiae−Escherichia coli 
shuttle−actinobacterial chromosome integrative capture vector for 
use with TAR further demonstrates the relative ease and speed 
with which gene clusters can now be heterologously expressed43. 
The selection of the heterologous host also remains an important 
consideration for polyketide production, and popular choices of 

hosts currently include E. coli, S. cerevisiae, Streptomyces, and 
Aspergillus, which are all continually being engineered to promote 
higher compound titers3,39,44. In general, it is best to use a host simi-
lar to the native one, as differences in regulation, codon usage, and 
biosynthetic precursors may result in difficulties with heterologous 
expression. Nonetheless, the complete refactoring of gene clusters 
may be used to achieve heterologous expression in hosts that differ 
significantly from the native producers, and efforts to refactor gene 
clusters by adding promoters or deleting regulatory elements as well 
as to engineer the metabolism of heterologous hosts for increased 
product titers are now easier than ever with tools like CRISPR/Cas, 
TAR, and λ Red/ET recombineering3,39,43,45–48.

Concluding remarks
Looking to the future, an improved understanding of the intrigu-
ing PKS machinery remains critical for the successful engineering 
of polyketide synthesis, and biochemical, in particular quantita-
tive and mechanistic, analyses as well as structural studies of these 
megasynthases will continue to play important roles in revealing 
the underlying PKS programming rules. Meanwhile, this research 
field will continue to benefit from advances in research toolkits, 
especially new bioinformatics, synthetic biology, and analytical 
tools, all of which can help lead to the production of new polyketide 
compounds for drug discovery and development.
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