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Abstract of the Dissertation

High Efficiency Electron-Laser Interactions in

Tapered Helical Undulators

by

Joseph Patrick Duris

Doctor of Philosophy in Physics

University of California, Los Angeles, 2015

Professor Pietro Musumeci, Chair

Efficient coupling of relativistic electron beams with high power radiation lies

at the heart of advanced accelerator and light source research and development.

The inverse free electron laser is a stable accelerator capable of harnessing very

high intensity laser electric fields to efficiently transfer large powers from lasers to

electron beams.

In this dissertation, we first present the theoretical framework to describe the

interaction, and then apply our improved understanding of the IFEL to the design

and numerical study of meter-long, GeV IFELs for compact light sources. The

central experimental work of the dissertation is the UCLA BNL helical inverse

free electron laser experiment at the Accelerator Test Facility in Brookhaven Na-

tional Laboratory, which used a strongly tapered 54 cm long, helical, permanent

magnet undulator and a several hundred GW CO2 laser to accelerate electrons

from 52 to 106 MeV, setting new records for inverse free electron laser energy gain

(54 MeV) and average accelerating gradient (100 MeV/m). The undulator design

and fabrication as well as experimental diagnostics are presented. In order to

improve the stability and quality of the accelerated electron beam, we redesigned

the undulator for a slightly reduced output energy by modifying the magnet gap

throughout the undulator, and we used this modified undulator to demonstrated
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capture of >25% of the injected beam without prebunching.

In the study of heavily loaded GeV inverse free electron lasers, we show that a

majority of the power may be transferred from a laser to the accelerated electron

beam. Reversing the process to decelerate high power electron beams, a mech-

anism we refer to as tapering enhanced stimulated superradiant amplification,

offers a clear path to high power light sources. We present studies of radiation

production for a wide range of wavelengths (10 µm, 13 nm, and 0.3 nm) us-

ing this method and discuss the design for a deceleration experiment using the

same undulator used for acceleration in this experiment. By accounting for the

evolving radiation field in the design of the undulator tapering, a large fraction

of energy may be transferred between the electrons and laser, enabling compact,

high-current GeV accelerators and various wavelength light-sources of unprece-

dented peak powers.
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CHAPTER 1

Introduction

Particle accelerators have enabled a myriad of scientific discoveries and provided

tools for industry, medicine, and defense [1]. Scientific applications in particular

have driven the advancement of accelerators to produce higher energies and cur-

rents, leading to 104 measurements of the properties of particle interactions upon

which the standard model of physics was built according to the Particle Data

Group [2].

Modern particle colliders employ accelerators built using radio frequency (RF)

power sources [3, 4, 5, 6], however despite their successes, RF accelerators are cost

limited as their sizes scale rapidly with energy. For linacs, field emission limits

accelerating gradients to a fixed amount (typically around 50-100 MV/m) so that

both energy output and power input scale with length. Rings circumvent this

problem by periodically accelerating at modest gradients while bending the par-

ticles in a closed circle, yet the synchrotron radiation resulting from the particles’

centripetal acceleration increases as the fourth power of the particle’s Lorentz fac-

tor divided by the square of the ring’s radius. Consequently, ever larger rings are

required for increased particle energies to keep power requirements reasonable.

Although synchrotron radiation has hindered the synchrotron ring approach

to high energies, it has become a useful tool in its own right [7], leading to the

creation of third generation light sources based on undulators, periodic magnet

arrays specially designed to produce synchrotron radiation at specific wavelengths.

Later it was discovered that by allowing the radiation to modulate the electrons’
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energies, the electrons begin to bunch, creating a temporal coherence which stim-

ulates more radiation production in an unstable feedback loop [8]. This forms the

basis of the free electron laser (FEL) interaction [9, 10] which is among the most

efficient mechanisms of transferring energy from a relativistic electron beam to

a radiation pulse, and as such forms the physical basis of the revolutionary suc-

cesses of fourth generation coherent x-ray light sources [11, 12]. Coupling between

transverse electromagnetic waves and relativistic electron motion is made possi-

ble in the FEL by the presence of the undulator magnetic field which bends the

electron trajectories, enabling the energy exchange. Synchronous energy transfer

is achieved if the electrons’ oscillations fall behind laser wave fronts by an integer

number of wavelengths for each undulation period (resonant condition). In FELs,

the electrons on average lose energy to the electromagnetic wave as they propagate

through the undulator field, resulting in a growing radiation field amplitude.

1.1 Inverse free electron laser acceleration

The same mechanism can be employed in reverse to enable laser-driven acceler-

ation of particles by extracting energy from a high power laser to accelerate a

relativistic electron beam at high gradients [13]. In order to achieve large en-

ergy gains in this case, the IFEL/FEL resonant condition can be maintained over

meter-scale distances by appropriately tapering the undulator magnetic field and

period. Since the wavelengths of the drive lasers are much shorter than those of RF

power sources, electromagnetic energy may be focused to much smaller spot sizes

with vastly larger electric fields over long distances without requiring a waveguide.

Furthermore higher peak power can be achieved as laser pulse lengths can be in

the ps and fs regime; consequently, gradients available in an IFEL accelerator may

exceed GeV/m with current laser and undulator technologies.

The IFEL accelerator was initially considered for high energy physics colliders.
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At that time, it was calculated that synchrotron losses in an IFEL accelerator sig-

nificantly reduce accelerating gradients for energies approaching 100 GeV, limiting

practically obtainable energies to a couple hundred GeV in 1 km [14]. Despite

this limitation, IFEL remains a promising candidate for meter-scale, GeV-class

accelerators [15, 16, 17] which could reduce costs for advanced light sources such

as compact soft x-ray FELs and the production of γ-rays by inverse Compton

scattering [18]. In the first part of this dissertation, we discuss methods for cap-

turing and optimally accelerating an electron beam and then apply these to the

conceptual design of a meter-long GeV IFEL accelerator.

Compared to other advanced accelerator schemes, the IFEL enjoys unique ad-

vantages. It does not require any medium (plasma or dielectric) or boundaries

close to the interaction, allowing for efficient coupling as the energy from the laser

is directly transferred into electron kinetic energy rather than dissipating in a

medium. As a far-field vacuum acceleration scheme, nearly plane wave electro-

magnetic radiation can be used to accelerate particles, removing all issues related

to small transverse acceptance or strong focusing in optical frequency or plasma-

based accelerating structures. The transverse beam size can therefore be relatively

large (many laser wavelengths across) which, in addition to the absence of nearby

structures, strongly mitigates collective effects such as space charge or wake fields

[19].

Furthermore the IFEL has an advantage in terms of achievable gradient for a

given laser intensity. The rate of change in energy for an IFEL is proportional

to the product of the laser and undulator normalized vector potential amplitudes

defined as the momentum carried by each field divided by the product of the

particle’s mass and speed of light mc and given by Kl = eAl/mc = eEl/kmc
2

and K = eAw/mc = eBw/kwmc where El and Bw are the laser electric and

undulator magnetic field amplitudes, and k and kw are the laser and undulator

wavenumbers. In all of this thesis we will make the assumption that Kl � K
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which is typical for existing IFELs due to the large difference of the undulator and

laser wavenumbers. Since the undulator parameter K can be easily made larger

than unity using few-cm long periods and 0.5 T-level fields, impressive gradients

can be sustained even at non-relativistic laser intensities. To draw a comparison,

laser wake field accelerators (LWFA) present a characteristic dependence of the

accelerating wave amplitude as K2
l and have only demonstrated significant energy

gain with relativistic (i.e. Kl > 1) laser intensities [20].

One limit to using high power lasers to drive acceleration is that laser intensity

fluctuations cause output energy fluctuations. For example, LWFA’s characteristic

output energy of γf ∼ K2
l /n0 is modulated by both laser intensity I0 and plasma

density n0 fluctuations as δγf/γf =
√

(δI0/I0)2 + (δn0/n0)2. Consequentially,

typical shot to variations in output parameters for laser wake field accelerators

are 1-5% for energy, 1-10% for relative energy spread, and 5-50% for charge [21].

On the other hand since the IFEL’s phase space evolution is determined by a

static undulator field, its resonant energy output is constant. At worst if injected

slightly off resonance, the beam’s energy may vary within the IFEL’s relative

resonant energy bandwidth, which is proportional to
√
KlK and typically at most

a few percent (see Equation 2.35). As discussed, this quantity may even be made

much smaller by simultaneously reducing the coupling and resonant phase to zero

to adiabatically release the beam from the IFEL interaction. The IFEL may

be designed to accommodate laser parameter tolerances in order to accelerate

any desired fraction of input beam to a fixed final energy, producing beams with

relative energy spreads also scaling by the resonant energy bandwidth. With

controllable output characteristics and modest sensitivities to input parameter

fluctuations, the IFEL is the most stable laser accelerator capable of significant

energy gain for relativistic electron beams.

To give a historical context for the current work, we review previous high

energy IFEL experiments. The first experimental demonstration, the IFELA ex-
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periment at Columbia, staged an FEL producing 5 MW of 1.6 mm radiation and

a 37.5 cm bifiliar helical undulator with magnetic field of 400 G and period ta-

pered from 1.8 to 2.25 cm to accelerate electrons from 750 keV to ∼ 1 MeV with

an average gradient of 700 keV/m [22]. Interestingly in the same paper report-

ing the results of IFELA, the authors then proposed an experiment with similar

parameters to our current work. The BNL STELLA2 experiment [23] staged a

microbuncher and gap-tapered, planar undulator with a 45 MeV electron beam

and ∼2 TW/cm2 CO2 laser to produce narrow-energy electron beams with energy

gains up to 9 MeV and fraction captured up to 80%. This experiment took ad-

vantage of one of the characteristics of the IFEL output beam to be composed by

a sequence of microbunches phase-locked to the drive laser frequency. The UCLA

Neptune IFEL experiment [24] achieved 20 MeV energy gain and 70 MeV/m accel-

erating gradient with a period and magnetic field tapered undulator and strongly

focused 400 GW CO2 laser and 14.5 MeV input electron beam and demonstrated

for the first time higher harmonic IFEL interaction [25]. This was the first IFEL

designed to operate in the diffraction dominated regime whereby the laser field

strength changes significantly within the accelerator [26]. Our work in this dis-

sertation was designed with the same principles but in a helical geometry and at

a higher initial energy to demonstrate improved IFEL performance of 54 MeV

gain and 100 MeV/m average accelerating gradient. A more recent IFEL accel-

erator, the LLNL-UCLA IFEL at Lawrence Livermore National Lab, set a new

record of 150 MeV/m by utilizing a commercially available multi-TW Ti:Sa laser

and 70 MeV electron beam with the same undulator used in the Neptune IFEL

experiment [27].

IFEL accelerators typically have used planar undulators to couple electronic

motion to laser fields. In this geometry, the electron velocity component parallel

to the laser electric field is periodically reduced to zero, effectively halting the

energy transfer twice per period as illustrated in Figure 1.1. Employing a helical
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Trajectory

Perpendicular force

Longitudinal force

Figure 1.1: Diagrams show the transverse and longitudinal (scaled by a large

factor for representation purposes) net forces along a resonant electrons trajectory

for a planar (left) and helical (right) IFEL. The acceleration remains continuous

in a helical IFEL since the electron continues to move transversely whereas for

a planar IFEL, the acceleration is reduced to zero at the turning points of the

particle motion where the transverse velocity is zero.

undulator magnetic field induces a helical motion for the electrons which provides

continuous energy transfer with a circularly polarized laser of the same handed-

ness. To quantify, the IFEL coupling strength is proportional to the Bessel factor

JJ = J0(G) − J1(G) with G ≡ K2/4(1 + K2). For planar undulators, this term

approaches unity for small K and approximately 0.7 for large K, while for helical

undulators, JJ = 2, more than doubling the gradient.

The experimental work described in this dissertation, the UCLA-BNL IFEL

collaboration at ATF, was conceived to improve accelerating gradients through

the use of the first strongly period- and field-tapered helical undulator which

much of this work went into the design and construction of. The experiment

was executed in a series of subsequently improved runs. Performance initially

suffered when the experimental laser Rayleigh range had to be increased by 300%

from design due to some experimental constraints, causing the entire beam to

completely lose resonance before full acceleration; however, the undulator was

rebuilt to accommodate this, leading to full acceleration of nearly 30% of the

beam. A benefit of a longer Rayleigh range was a larger tolerance for spatial

overlap. In our experiment as in the Neptune and LLNL IFEL experiments, a
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sizable fraction of electrons detrapped near the laser waist. We analyze the effect

of e-beam sizes and trajectories which become comparable to the laser waist in

Chapter 3 and offer guidance for choosing a minimum laser waist. Construction of

a prebuncher more recently enabled full acceleration of over half the electron beam,

leading to plans for putting this accelerator to work driving a Compton scattering

source; however as this work is ongoing, it will only be partially discussed in this

thesis.

The principles and methods developed for the IFEL may be useful when ap-

plied to the task of decelerating an electron beam. In this case, energy is trans-

ferred from the electrons to radiation. Whereas an FEL may convert only a small

fraction ρ ∼ 0.001 of the electron energy into radiation, an IFEL decelerator may

transfer >50% of the energy if properly designed. In fact, reversing the same un-

dulator from our experiment should nearly halve the energy of a 400 A, 65 MeV

electron beam with a 100 GW seed laser this year, generating 12 GW in a single

54 cm pass. The final chapter of this dissertation presents our work analyzing

this mode of operation, which we call tapering enhanced stimulated superradiant

amplification or TESSA for short. By combining TESSA with a high rep-rate su-

perconducting linac, it would be possible to create high peak and average power

lasers for EUV lithography, single molecule imaging, or driving other advanced

accelerators.

1.2 Outline of this dissertation

The work in this tome is presented as follows. In the following chapter, the IFEL

particle dynamics are analyzed within a classical framework, and methods are

developed for designing undulators which maximize acceleration for any desired

fraction of an input beam. Chapter 3 first shows the results of numerical studies of

applying these design methods to the example of a meter long GeV IFEL acceler-
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ator and later presents an investigation into the effects of transverse dynamics on

the accelerator’s performance. The fourth and fifth chapters report the setup and

results, respectively, of the UCLA-BNL helical IFEL accelerator experiment at the

Accelerator Test Facility. In Chapter 6, the application of IFEL to deceleration

is explored, leading to a method of efficient radiation production called TESSA

or tapering enhanced stimulated superradiant amplification. Finally, conclusions

and an outlook for the future of IFEL acceleration is reported in Chapter 7.
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CHAPTER 2

IFEL theory

In this chapter, we describe the IFEL particle dynamics closely following the

classical framework utilized in [14] and [28]. We first examine the undulator

induced particle motion which dominates the transverse dynamics, calculating

the trajectory of the beam centroid as well as the evolution of the beam rms spot

size and emittance. The transverse motion is then combined with laser fields to

calculate the evolution of the longitudinal motion and produce the accelerator

equations. We assume here that the radiation power does not evolve—the so

called, frozen field regime—which is a good approximation so long as the intensity

absorbed by the beam is a negligible fraction of the laser intensity. The analysis of

the situation where this approximation no longer holds requires numerical methods

and is left to the following chapter of this dissertation.

In the second part of the chapter, we study the conditions for resonant in-

teraction starting from the accelerator equations and define the resonant particle

energy and phase. An analysis of the deviations from resonance leads to the

concept of the accelerating bucket and synchrotron oscillations of particles within

that bucket. We use the geometry of the bucket to estimate the accelerator accep-

tance and derive a prescription for varying the resonant phase to keep the bucket

area constant throughout the interaction. We then use the accelerator equations

to derive the undulator tapering equations, taking into account the evolution of

the Gaussian mode laser’s phase evolution. Finally we investigate how to choose

the laser focal parameters to maximize acceleration while maintaining full beam

9



capture.

The work in this dissertation focuses exclusively on the helical IFEL interaction

so we explicitly use a helical undulator vector potential in these derivations. The

results may be adapted for use with planar IFELs by replacing K and Kl with

their rms values for their planar counterparts and replacing each instance of KlK

with KlK(J0(G)− J1(G)), where G ≡ K2/4(1 +K2), to account for the reduced

coupling in the planar case. A good derivation of the planar IFEL dynamics in

the diffraction dominated regime including higher harmonic interactions may be

found in [26].

Note that here in this chapter, we only discuss the effects of a circularly polar-

ized Gaussian laser on the helical IFEL dynamics in anticipation of experimental

results to be shown in a later chapter. On the other hand, others have examined

interactions using higher-order Gaussian modes which have yielded some surpris-

ingly useful results. Using higher order Laguerre-Gaussian modes with nonzero

orbital angular momentum enables harmonic resonances as shown in [29]. [30]

analyzes an interesting case of coupling electrons with a plane polarized TEM10

in a planar undulator to create an optical deflector. While not strictly related to

IFEL acceleration, these techniques attest to the versatility of coupling electrons

to radiation in an undulator and may be of interest to the reader.

2.1 Transverse dynamics

Consider a free electron with energy γmc2 copropagating in an electromagnetic

field. The Hamiltonian for the system is given by the particle energy.

H =

√
(~p− q ~A)2c2 +m2c4 + qφ (2.1)

Here, the mass, charge, and canonical momentum of the electron is m, q, and ~p
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while φ and ~A denote the electromagnetic scalar and vector potentials. In an IFEL,

the vector potential is supplied by the undulator and laser while the externally

applied electrostatic potential is zero. Near the axis, the helical undulator vector

potential is approximately given by

~Au =
B

ku

(
x̂([1 +

k2
u

8
(3y2 + x2)] cosψu −

k2
u

4
xy sinψu)+

ŷ([1 +
k2
u

8
(3x2 + y2)] sinψu −

k2
u

4
xy cosψu)

) (2.2a)

ψu =
∫ z

0
kudz

′ (2.2b)

The terms second order in the transverse coordinates of the first equation are

responsible for transverse focusing. We will return to this subject shortly, but

in the meantime, we will drop terms higher than first order in the transverse

coordinates since they do not affect the beam trajectory as the deviations of

particles from the axis are small compared to the undulator period. Since the

wavenumber ku is a function of the longitudinal position z, the phase ψu is the

integral over the changing wavenumber as shown in Equation 2.2b. With the

definition of the normalized undulator vector potential amplitude K ≡ |q|B/mcku,

we have

~Au =
mcK

|q|
(x̂ cosψu + ŷ sinψu) (2.3)

The evolution of the canonical momentum is determined by the gradient of

the Hamiltonian taken with respect to the canonical coordinates; however, the ab-

sence of the transverse coordinates in the Hamiltonian implies that the transverse

canonical momentum is conserved. Before entering the undulator and before inter-

acting with the laser, the canonical momentum is equal to the initial mechanical

momenta ~p = γm~̇x0.

The temporal evolution of the particle coordinates can be found by taking the
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partial derivative of H with respect to the canonical momenta. For the spatial

coordinates, we have

d~x

dt
=
∂H

∂~p
=
~p− q ( ~Au + ~Al)

γm
(2.4)

As mentioned in the introduction where we discuss IFEL’s dependence on laser

intensity, the momentum qAl carried by the laser field is typically much less than

mc for IFELs. On the other hand, the momentum carried by the undulator field

qAu tends to be of order mc. In other words, Al � Au and, the laser does not

significantly affect the trajectory of the electrons and can be ignored in Equation

2.4. Thus to a good approximation, the velocity can be approximated by Equation

2.5.

ẋ = ẋ0 − sgn(q)
cK

γ
cosψu (2.5a)

ẏ = ẏ0 − sgn(q)
cK

γ
sinψu (2.5b)

Dots denote derivatives with respect to time. The integral of the velocity yields

the trajectory which may be kept on axis by finely tuning the magnetic field. As

a result, the beam travels along a helical trajectory with a tangential velocity of

ẋ⊥ = cK/γ, radius of r = K/γku, and a pitch of λu.

2.1.1 Betatron motion

As a second order approximation, we include the off-axis terms in Equation 2.2.

The variation of the momentum is determined by the variation of the Hamiltonian

with respect to the particle coordinates.

dpi
dt

= −∂H
∂xi

= q
~p− q ~A
γm

· ∂
~A

∂xi
= q

d~x

dt
· ∂

~A

∂xi
(2.6)
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The last step makes use of Equation 2.4. We use the index i for the two

transverse coordinates. In order to determine the particle coordinate evolution,

we take a time derivative of Equation 2.4 and substitute the above Equation 2.6

for ~̇p. The result is

d2xi
dt2

=
q

γm

(
d~x

dt
· ∂

~A

∂xi
−
(
d~x

dt
· ~∇
)
· Au,i

)
(2.7)

The convective derivative in the last term describes the potential sampled by

the particle as it moves in space and is simply equal to the total time derivative

since the field has no explicit time dependence.

We now look for a solution which is the sum of the first order motion and

a slow solution ~x = ~x1 + ~x2, where ~x1 is the solution to the on-axis fields given

in Equation 2.5. We will make two approximations here. First, we assume that

the relative change in γ on the velocity in Equation 2.7 is small. This is exact in

the case of no acceleration and a reasonable approximation over distances short

compared to γ/(dγ/dz). Second, we will assume that the initial transverse velocity

~̇x0 is small compared to the tangential velocity cK/γ of the undulator induced

helical motion. Inserting the ~x = ~x1 +~x2 into Equation 2.7 and averaging over the

relatively fast transverse oscillations induced by the undulator leads to two coupled

equations for the transverse motion describing the slower betatron oscillations of

the electron beam.

x′′2 − ku
(
K

γ

)2

y′2 +
1

2
k2
u

(
K

γ

)2

x2 = 0

y′′2 + ku

(
K

γ

)2

x′2 +
1

2
k2
u

(
K

γ

)2

y2 = 0

(2.8)

We use the approximation that dz ≈ cdt and use primes to denote derivatives

with respect to z. The effect is a restoring force on the electrons symmetric in x

and y and a solenoid force which couples the two transverse planes. We can solve
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this system of equations by multiplying the second by the imaginary unit i =
√
−1,

adding it to the first, and substituting ξ ≡ x2 + iy2. The resulting solutions are

elliptical oscillations with spatial frequencies kβ = ku
2

(
K
γ

)2

(1 ±
√

1 + 2γ2/K2).

Reference [31] studies this motion in detail and shows that the input transverse

emittance εx =
√
σ2
xσ

2
x′ − σ2

x,x′ is conserved after the beam exits the undulator

but while in the undulator the horizontal and vertical planes mix.

Typically the particle Lorentz factor is much greater than the undulator pa-

rameter K in IFEL accelerators so to a good approximation, the solenoid effect is

ignorable and the spatial frequency becomes simply kβ = kuK/
√

2γ. The result

are betatron oscillations with a wavelength given by λβ =
√

2λuγ/K—noticeably

longer than the undulator period. The undulator is said to be weakly focusing.

Electron beams naturally have a distribution of positions and angles causing them

to diverge. By properly focusing the beam to diverge at the same rate that the

undulator focuses, a constant spot size may be achieved (i.e. transverse matching).

The spot size evolution can be related to the external focusing force and the

normalized emittance by the envelope equation σ′′x = ε2x/σ
3
x−〈xx′′〉 /σx [32]. Mul-

tiplying Equation 2.8 (ignoring solenoid coupling terms) by the position and av-

eraging yields an expression for 〈xx′′〉 which can be substituted into the relation

for σ′′x to yield the rms envelope equation.

σ′′x +
1

2

(
kuK

γ

)2

σx =
ε2x
σ3
x

(2.9)

The equilibrium spot size can be found by setting σ′′x = 0 and solving for σx.

σx,equilib =

√
εxλβ
2π

=

√
εxλuγ√

2πK
=

√
εx,nλu√

2πK
(2.10)

Here, εx,n ≡ γεx is the normalized emittance. As we will see in the following

sections, acceleration requires changing the undulator parameters, so external

focusing may be required to maintain a small spot size. Often, the betatron length
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βx,equilib = λβ/2π = λu/
√

2πK is a more useful quantity to keep in mind during

the early stages of the design of an IFEL since it is independent of emittance.

If the injected beam’s transverse spot size is initially larger than the equilib-

rium spot size, the undulator focusing force in Equation 2.8 will outweigh the

emittance pressure leading to betatron oscillations in the spot size. Neverthe-

less since the restoring force from the undulator focusing is linear, the transverse

emittance is preserved.

2.1.2 Transverse emittance

We now examine the effect of acceleration on emittance evolution. While deriving

the Lorentz force relation for a static vector potential in Equation 2.7, we assumed

that γ was constant when taking the time derivative of the velocity in Equation 2.4.

Lifting this assumption adds a term 1
γ
dγ
dt
dxi
dt

to the left side of Equation 2.7. Using

the same analysis of the betatron motion and again ignoring the solenoid terms

yields equations for two damped harmonic oscillators.

x′′2 +
1

γ

dγ

dz
x′2 + k2

βx2 = 0

y′′2 +
1

γ

dγ

dz
y′2 + k2

βy2 = 0

(2.11)

Solutions for both planes are damped by a term equal to the square root of

the ratio of initial and final energies e−
1
2

∫
dγ/γ =

√
γ0/γ. Both the positions and

their velocities are damped by this term so the moments of their distributions

each decrease by the same factor (e.g. σx = σx,0
√
γ0/γ). Substituting these into

the calculation of the emittance yields εx = γ0
γ

√
σ2
xσx′ − σ2

x,x′ = γ0
γ
εx,0. Multiply-

ing both sides by the final energy γ yields γεx = γ0εx,0. Thus, the normalized

emittance εx,n = γεx is conserved for each transverse plane.

It is interesting to examine situations that may violate emittance conservation.

To spoil emittance, we must introduce terms nonlinear in the coordinate or its
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velocity. The betatron wavenumber kβ only depends on the undulator parameters

and not on the particle coordinates. In small aperture undulators, the beam may

begin to sample the field curvature and these nonlinear forces may stretch the

phase space. Another possibility would be if the energy gradient dγ/dz was a

function of position. Although we have yet to describe the IFEL acceleration in

detail, the laser is what accelerates the electrons. If the electron beam is large

enough to sample significant variation in the laser field, different parts of the

beam will have different amounts of acceleration and be damped at different rates

which could lead to emittance growth. Consequentially, it is important to keep

the beam small enough so that particles see the same magnetic and electric fields

throughout the acceleration to preserve the normalized transverse emittance.

2.2 Accelerator equations

Achieving constant acceleration in an IFEL using a helical undulator necessitates

a circularly polarized laser to match the spiraling trajectory of the electrons. The

vector potential for a circularly polarized laser can be expressed in Cartesian

coordinates as

~Al =
E0√
2ck

u(~x) (x̂ cos Φ(~x, ζ)− ŷ sin Φ(~x, ζ)) (2.12)

Here, k = 2π/λ is phase advance per wavelength, E0 is the peak electric field,

u(~x) is a form factor modifying the peak electric field in space, and the phase of

the electric field is Φ(~x, ζ) with ζ = kz−ωt. For the case of a plane wave traveling

in vacuum, u(~x) = 1 and Φ(~x, ζ) = ζ. It is important to express parameters in

terms of measurable quantities to keep things grounded in reality and connect

them to experiments. The peak field is related to the intensity by the relation

E0 =
√

2Z0I0, where Z0 is the impedance of free space and I0 is the laser intensity.

With the definition of Kl ≡ |q|E0/kmc
2, the vector potential becomes
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~Al =
mcKl

|q|
u(~x) (x̂ cos Φ(~x, ζ)− ŷ sin Φ(~x, ζ)) (2.13)

The transverse motion is modified slightly by the action of the laser.

ẋ = ẋ0 − sgn(q)
cK

γ
cosψu − sgn(q)

cKl

γ
cos Φ(~x, ζ) (2.14a)

ẏ = ẏ0 − sgn(q)
cK

γ
sinψu + sgn(q)

cKl

γ
sin Φ(~x, ζ) (2.14b)

Assuming Kl is small compared to K, the action of the laser on the transverse

motion is a small quiver on top of the larger initial drift and undulator induced

oscillations.

2.2.1 Ponderomotive acceleration

Turning to the longitudinal dynamics, the energy evolution of an electron in the

combined undulator and laser fields is described by the scalar product of the

velocity and electric field, calculated by the time derivative of the vector potential.

The laser induced quiver velocity does not contribute significantly to the energy

evolution since we have assumed that Kl � 1.

dγ

dt
= − q

mc2
~̇x · ∂

~A

∂t

=
q

|q|
ω

c
Kl u(~x)

((
ẋ0 −

q

|q|
cK

γ
cosψu

)
sin Φ +

(
ẏ0 −

q

|q|
cK

γ
sinψu

)
cos Φ

)
(2.15)

The change in energy is the integral of the energy gradient. Terms proportional

to the initial velocity ~̇x0 have phases of Φ(~x, ζ) with phase velocities nearly equal

to the speed of light. Since massive particles cannot travel at the speed of light,

these terms quickly vary and therefore average to zero. Terms proportional to

K have the product of two sinusoidal components, leading to a beat-wave with
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phase given by Equation 2.17 which is simply the sum of the undulator and laser

phases.

dγ

dz
= −kKlK

γ
u(~x) sinψ

⇒ dγ2

dz
= −2kKlKu(~x) sinψ

(2.16)

ψ = ψu + Φ(~x, ζ) (2.17)

In Equation 2.16, we’ve made the standard approximation dz = cdt which is

appropriate for ultrarelativistic beams and collected factors of γ on one side to

show its evolution explicitly. For the case of a freely propagating plane wave laser

in vacuum where u = 1 and Φ = k(z − ct), these equations become

dγ2

dz
= −2kKlK sinψ (2.18)

ψ = (ku + k)z − ckt (2.19)

An interesting point is that the acceleration does not depend on the sign of

the charge of the particle. This allows electrons and positrons to be accelerated

with the same IFEL accelerator. The appearance of the sign of the charge in the

velocity (Equation 2.5) shows that the handedness of the trajectory is determined

by the charge of the particles. Space charge forces oppose synchrotron oscillations

responsible for microbunching within the undulator (this will become apparent

in the following section) so large current and low laser seed power may lead to

repulsion of electrons, breaking up the beam and halting the acceleration. One way

to overcome this limitation is to superimpose electrons and positrons to mitigate

space charge effects so long as the transverse sizes of the beams are larger than

the radius of oscillations.
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2.2.2 Ponderomotive phase evolution

We now turn our attention to the evolution of the ponderomotive phase. The

phase velocity is calculated by taking the time derivative of the ponderomotive

phase in Equation 2.17.

dψ

dt
= kuż

(
1 +

1

ku

dΦ

dz

)
+
∂Φ

∂t
(2.20)

The longitudinal velocity ż may be calculated from the energy and transverse

velocity in Equation 2.14.

ż2

c2
= 1− 1 +K2 +K2

l − 2KKl cosψ

γ2
− 1

c2
(ẋ2

0 + ẏ2
0) +

K

cγ
(ẋ0 sinψu + ẏ0 cosψu)

(2.21)

The undulator induced oscillations dominate the phase evolution, yet the laser

induced quiver should not be ignored here. For ultra relativistic beams where

ż ≈ c, the transverse velocities are nearly equal to an initial angular deviation:

x′0 = ẋ0/c and y′0 = ẏ0/c.

ż ≈ c− c

2γ2

(
1 +K2 +K2

l − 2KKl cosψ + γ2(x′ 20 + y′ 20 )
)

(2.22)

The angular terms should be made much smaller than K2 in order to allow the

undulator to dominate control over the beam’s longitudinal velocity: x′ 20 + y′ 20 �

K2/γ2. We have ignored the sinusoidal terms in Equation 2.21 as they average to

zero over an undulator period and their magnitudes are small with the requirement

we just imposed.

Inserting the longitudinal velocity from Equation 2.22 into the equation for

the phase velocity yields an expression for the phase evolution in terms of the

undulator and particle parameters.
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1

ku

dψ

dz
=

1

kuż

dψ

dt
= 1 +

1

ku

∂Φ

∂z

+
1

cku

∂Φ

∂t

(
1− 1 +K2 +K2

l − 2KKl cosψ + γ2(x′ 20 + y′ 20 )

2γ2

)−1 (2.23)

For the case of a freely propagating plane wave laser in vacuum where u = 1

and Φ = k(z − ct) and with the reasonable assumption that 1 + K2 � 2γ2, we

obtain the phase evolution relation

dψ

dz
= ku

(
1− k

2kuγ2

(
1 +K2 +K2

l − 2KKl cosψ + γ2(x′ 20 + y′ 20 )
))

(2.24)

The energy only appears quadratically in the equations of motion (Equa-

tions 2.16 and 2.23 due to the fact that the IFEL is a second order mechanism

which requires both undulator and laser fields to achieve acceleration. This is fur-

ther evident by the appearance of the product of K and Kl in the energy equation

of motion.

Only particles which do not slip significantly relative to the ponderomotive

wave may resonantly exchange energy with the radiation. Ignoring the small

effect of the laser quiver induced phase delay and requiring the phase velocity to

be zero in Equation 2.24 leads to the energy of a resonant particle for a plane

wave laser.

γ2
r =

1 +K2

2λ
λu
− (x′ 20 + y′ 20 )

(2.25)

It is interesting to note that other than the initial angle of the particle, which

may be made zero or very small, this resonant energy depends only on the un-

dulator parameters and wavelength of the driving radiation. Viewed in this way,

the undulator’s main function is to delay the electrons so that they stay at the

same laser phase front on average. Without this delay, the laser would wash over

20



the particles with little residual effect on their energy as the sinusoidal variation

in the field averages to zero.

While the freely propagating laser’s phase evolution is predetermined by choice

of focusing optics and the electromagnetic wave equation, the undulator may be

designed with variable parameters to control the evolution of the particle’s phases.

As the electrons’ energies change according to Equation 2.16, they begin to slip

relative to the ponderomotive wave. In order to continue to maintain resonance,

the undulator parameters may then be changed to account for the changing energy

of the beam.

2.2.3 Acceleration with a Gaussian laser

Often laser modes approximate that of a Gaussian laser so we recast the ac-

celerator equations with it using the following definitions: u = w0

w(z)
e−r

2/w2(z)

and Φ = kz − ωt − kr2/2R(z) + φg. Here, ζ = kz − ωt, the waist is w(z) =

w0

√
1 +M4(z − zw)2/z2

r , w0 is the beam’s minimum waist size, zw is the position

of the waist, and zr is the Rayleigh range of the mode. This set of parameters

is degenerate and connected by the relation zrλ = πw2
0. The factor M2 is con-

ventionally used to describe the approximate diffraction of a laser with multiple

higher order transverse modes and takes on values ≥ 1.

The exponential term in u describes the transverse amplitude of the Gaussian

mode as it propagates. The electron beam should be well within one waist w0

of the axis in order to experience a relatively homogeneous field strength during

acceleration. In fact, just straying off axis by w0/3 reduces the field by 10 %. This

should be considered when calculating the gradient of helical undulators since for

planar undulators, the electrons spend more time near the axis where they gain

the most momenta.

The first term in Φ describes the forward propagation of the radiation phase
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fronts. The second term describes the off-axis phase variation. R(z) = z2
r/(z −

zw) + z − zw is the radius of curvature of phase fronts along the direction of

propagation and tends to be large near the waist so that the phase fronts are

relatively flat. The final term is the Gouy phase shift φg = arctan (z − zw)/zr

which corrects for the fact that as the beam narrows to a waist, the longitudinal

wavenumber changes according to the dispersion relation kz =
√
k2 − k2

⊥ where

k⊥ is the transverse wave vector [32]. Putting this all together, we get:

~Al =
mcKl

q

w0

w(z)
e−r

2/w2(z)(x̂ cos(kζ− kr2

2R(z)
+φg)−ŷ sin(kζ− kr2

2R(z)
+φg)) (2.26)

Inserting this into the accelerator equations yields equations for the pondero-

motive gradient and phase.

dγ

dt
= −ckKlK

γ

w0

w(z)
e−r

2/w2(z) sinψ (2.27)

ψ = kz − ωt− kr2

2R
+ φg + ψu (2.28)

The appearance of the scaled radial coordinate r/w(z) in the ponderomotive

gradient confirms our assertion that nearly uniform acceleration requires the en-

tire beam to be well within the laser waist w(z) throughout the interaction. The

ponderomotive phase variation for a Gaussian beam is found by taking the deriva-

tive of the ponderomotive phase above and substituting the longitudinal velocity

(Equation 2.22).

dψ

dz
=ku −

kr2

2R(z)2

(
1− z2

r

(z − zw)2

)
+

w2
0

zrw(z)2

+
k

2γ2
(1 +K2 +K2

l − 2KKl cosψ + γ2(x′ 2 + y′ 2))

(2.29)
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Again, we made here the approximation that the Lorentz factor is much larger

than unity and that the initial angle is small. Requiring a stationary phase leads

to the resonant energy.

γ2
r =

1 +K2

2ku
k

+ r2

R(z)2

(
1− z2r

(z−zw)2

)
+

2w2
0

kzrw(z)2
− x′ 20 − y′ 20

(2.30)

Terms in the denominator may be made small with sufficiently relaxed focusing

so that the radius of curvature of the phase fronts does not change quickly. With

sufficiently relaxed focusing so that the phase fronts appear flat, Equations 2.28,

2.29, and 2.30 become approximately equal to their plane wave counterparts de-

scribed in Section 2.2.2.

2.3 Longitudinal dynamics

So far the analysis of the longitudinal motion has been limited to single particle

dynamics whereas a beam is a collection of a large number of particles. The

ponderomotive gradient (see Equation 2.16) is proportional to − sinψ, and the

phase of the resonant particle is constant. For acceleration (negative phases),

particles with phases lagging behind the stationary phase of the resonant particle

experience a larger accelerating gradient helping them to catch up. On the other

hand, particles leading the resonant particle are pushed less by the ponderomotive

wave so that they fall back towards the resonant particle. This restoring force leads

to oscillations about the phase of the resonant particle or resonant phase ψr, and

these periodic variations of the particles about their equilibrium phase and energy

are referred to as synchrotron oscillations.

It is advantageous to keep the beam near the peak of the ponderomotive wave

at phase ψ = −π/2 for increased acceleration. On the other hand, if particles

lagging behind the resonant particle pass too far behind the peak of the accelerat-
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ing wave, they may be pushed less than the resonant particle, never able to catch

up to the rest of the beam and lost from the near resonant interaction. A useful

accelerator must be able to accelerate a significant fraction of the electrons so the

longitudinal dynamics must be considered carefully.

We begin the analysis similarly to that of [28] and use the plane wave laser

approximation for the accelerator equations in order to simplify the discussion

of the dynamics in this section. The considerations in this section can then be

extended to the case of a Gaussian laser as done in the previous section. Since

we are interested in the behavior of particles whose energy approximately satisfies

the resonance condition, we first introduce a new variable describing the energy

deviation from the resonance to examine the deviations from resonance and use

these to write down a Hamiltonian describing the longitudinal phase space. We

will use this to describe particle trapping and then turn to examine synchrotron

oscillations about the resonant point. After discussing synchrotron oscillations

near resonance, we will show how to take advantage of these dynamics to ma-

nipulate the entire beam phase space and control the acceleration. Finally, we

discuss methods for preventing unnecessary phase space dilution in the accelera-

tor by properly preparing the beam’s phase space to fit within the accelerator’s

acceptance.

2.3.1 Regions of stability

To analyze the dynamics in longitudinal phase space, let us first approximate the

equations of motion for particles with small detuning or relative deviations from

the resonant energy η ≡ γ/γr−1. Relating this to the energy γ2 = γ2
r (1 +η)2 and

taking a derivative yields a relation for the energy detuning.

dη

dz
≈ 1

2γ2
r

(
dγ2

dz
− dγ2

r

dz

)
(2.31)
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Figure 2.1: The ponderomotive potential (H evaluated for η = 0) is shown on

the left for various resonant phases, while the bound regions (shaded) for each of

these resonant phases are depicted on the right. The units on the vertical axes

are arbitrarily scaled.

With this approximation, the equations of motion 2.18 and 2.24 are approxi-

mated by Equation 2.32 below.

dη

dz
≈ −kKlK

γ2
r

(sinψ − sinψr) (2.32a)

dψ

dz
≈ 2kuη (2.32b)

These approximate equations of motion are derivable from the following Hamil-

tonian.

H = cku

(
η2 − 2KlK

1 +K2
(cosψ + ψ sinψr)

)
(2.33)

Particles follow trajectories with constant value of the Hamiltonian. Most

of these trajectories are unbounded, lead to large phases, and could be viewed

as scattering states. On the other hand, there are regions of phase space near

resonance with bound, oscillatory trajectories.

For a given resonant phase ψr, these stable regions of longitudinal phase space

or ponderomotive buckets each contain a local minimum of the Hamiltonian. The

minima are the so called stable resonant points with energy γr (no detuning or
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η = 0) and phase ψr + 2πn where n is an integer. Particles within the stable

accelerating buckets rotate about the resonant points, and can remain trapped

during the acceleration as long as the approximation of constant Hamiltonian

motion is valid, that is as long as ponderomotive coupling strength KlK/(1 +K2)

and resonant phase ψr do not vary appreciably within a synchrotron oscillation.

Let’s turn our attention to the bucket and examine its properties. One edge

of the bucket has a saddle point which we can find by zeroing the simplified

equations of motion in Equation 2.32. Zeroing the phase velocity yields η = 0

whereas requiring dη/dt = 0 leads to the equation sinψ = sinψr. The trivial

solution ψ = ψr is the resonant point and a stable minimum of the potential.

Another solution, given in Equation 2.34, is the phase of the saddle point.

ψ2 = π sgnψr − ψr (2.34)

The boundary of the bucket has the same value of the Hamiltonian as the

saddle point. Requiring that the Hamiltonian be at most equal to its value at the

saddle point yields an expression for a contour defining this region of phase space.

η2
sep ≤

2KlK

1 +K2
(cosψ + cosψr + (ψ + ψr − π sgnψr) sinψr) (2.35)

The curve in longitudinal phase space bounding this region is a separatrix since

bound and scattering state particles may not cross it, causing bound particles to

remain trapped. It should be noted at this point that whereas particles cannot

cross a stationary separatrix, the separatrix may move since it is determined by the

external parameters K, Kl, and ψr. For example as we will see, bound particles

detrap if the parameters of the Hamiltonian change too fast.
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2.3.2 Capture estimates for a uniform current beam

The geometric parameters of the bucket are given by Equation 2.36 and illustrated

in Figure 2.2.

∆ψ = |ψ2 − ψ1| : cosψ1 + ψ1 sinψr = cosψ2 + ψ2 sinψr (2.36)

As a first approach to determining the optimal resonant phase for the interac-

tion, we can ask the question: what is the maximum power that we can transfer

to an electron beam which is initially uniformly distributed in phase? Usually,

the laser intensity used with a IFEL accelerator is sufficiently intense so that the

relative energy spread of the injected beam is negligible compared to the bucket

height ηsep. In this case, all particles between phases ψ1 and ψ2 are trapped within

the bucket so long as they are injected at the resonant energy. The fraction of

particles trapped is just the relative width of the bucket ∆ψ/2π as shown in Fig-

ure 2.2. The entire beam may be trapped with a resonant phase of zero, but of

course the net acceleration would be zero as well; on the other hand, the acceler-

ation gradient is maximized for ψr = −π/2 but no particles can be trapped there.

In order to maximize the power transfered, we could calculate the net accelera-

tion averaged over the bucket width: P ∝ − 1
∆ψ

∫ ψ2

ψ1
dψ sinψ. This convolution

of bucket width and gradient is proportional to the power delivered to the beam

and is shown by the yellow line in the middle plot of Figure 2.2. In this case, the

resonant phase which optimally balances the fraction captured with accelerating

gradient to maximize power transfer is ψr ≈ −0.69.

If the energy spread of the beam is larger than the bucket, then only particles

which land within the separatrix, defined by Equation 2.35, are captured. The area

of the bucket is given by the integral of the bucket height Jb = 2γr
∫ ψ2

ψ1
dψ ηsep =

2 fJγr
√

2KlK/(1 +K2) with the normalized area fJ given by Equation 2.37. This

area is the effective action of a particle trajectory along the separatrix and has
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Figure 2.2: Shown as functions of resonant phase are: left, the coordinates ψ1 and

ψ2 describing the extent of the bucket; middle, the relative bucket width ∆ψ/2π

and its convolution with the normalized gradient, − sinψ; and right, the relative

area of the bucket and convolution with normalized gradient.

units of action times the angular frequency of the ponderomotive wave and divided

by the particle’s rest energy.

fJ =
1√
2

∫ ψ2

ψ1

dψ
√

cosψ + cosψr + (ψ + ψr − π sgnψr) sinψr (2.37)

The relative power delivered to the beam in this case is the integral of the

gradient over the bucket area P ∝ − 1
J0
γr
∫ ψ2

ψ1
dψ ηsep sinψ. Here, J0 = 2π is

the phase space area occupied by the injected beam, assumed to be uniformly

distributed in phase and in energy between ±ηsep,max. In this case at ψr = 0,

the maximum fraction captured is 2/π. The bucket area and effective power are

shown in the right side of Figure 2.2. The resonant phase which maximizes power

delivered in this case is close to ψr ≈ −0.43. Comparing the results for small

energy spread to these results, the former yields about 2.5 times higher delivered

power for an optimum choice of resonant phase.

2.3.3 Synchrotron oscillations and bunching

The simplified equations of motion given by Equation 2.32 are the standard pen-

dulum equations. Near resonance, the Hamiltonian may be approximated by a
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simple harmonic oscillator. Expanding sinψ for small deviations from the reso-

nant phase δ ≡ ψ − ψr yields the approximation sinψ − sinψr ≈ δ cosψr, further

simplifying the phase evolution. We will assume that the external parameters are

static and that the rate of change in the resonant phase ψ̇r is small compared

to the phase slippage in a period ψ̇r � 2kuη and ignorable. The motion of a

particle near resonance is then determined by a harmonic oscillator equation in δ:

δ′′ + k2
sδ = 0. Solutions to this equation oscillate about equilibrium in δ and η by

this frequency.

ks = 2ku

√
KlK

1 +K2
cosψr (2.38)

When an electron beam with an initially resonant mean energy and uniform

phase distribution is injected into the bucket, particles close to resonance rotate

in longitudinal phase space at this frequency. After a quarter period of oscillation,

a large fraction of the particles within the bucket become bunched at the resonant

phase as shown in Figure 2.3. Perfect bunching cannot be achieved in this way

since not all particles in the bucket rotate at the same frequency due to the nonlin-

earities of the pendulum-like potential. Trajectories within the bucket but further

from resonance become anharmonic with larger periods of oscillation approach-

ing infinity at the separatrix where two stationary points reside. As a result,

maximum particle density is obtained after a propagation distance slightly longer

than one quarter synchrotron period in order to give the slower particles time to

catch up. At this point in the interaction, the beam is periodically bunched at

the laser wavelength with energy spread extending up to nearly the bucket height

ηsep,max. An important application of this prebunched beam is external injection

into a subsequent IFEL accelerator characterized by an accelerating bucket with

a narrower phase spread, allowing a majority of the beam to be accelerated at

large gradients.

Prebunching the electron beam in this way leads to an energy spread similar
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Figure 2.3: Particles bunch in phase as they rotate within the ponderomotive

bucket (left). Once bunched, the particles may be injected into an accelerating

bucket with narrower phase width (right).

to the ponderomotive bucket height at ψr = 0. The relative height of the bucket

decreases as the resonant phase is moved farther from zero so the coupling factor√
2KlK/(1 +K2) must be increased if one wants to inject this this prebunched

beam in an IFEL accelerator. One method to limit the energy spread growth

during bunching is to use the IFEL interaction just to modulate the beam and

then apply R56 compression. After a short energy modulation section, a drift or

chicane is used to continue slipping the detuned particles towards each other with-

out additional energy modulation. The resulting bunched beam has a relatively

small energy spread and can be more easily injected to a non-zero resonant phase

IFEL accelerator. Repeated application of undulators for energy modulation and

chicanes for compression enables bunching of nearly all injected particles with

ultra low energy spread growth [33].

Once captured, bound particles continue to rotate at different frequencies. If

the initial energy spread of the injected electron beam is small compared to the

ponderomotive bucket height, the initially concentrated phase space twists and

stretches throughout the bucket so that longitudinal emittance grows. The larger

emittance reduces the fraction of particles which can be fit inside subsequent

accelerating buckets. This effect is unavoidable in practice but can be largely

mitigated by properly matching the input longitudinal phase space and bucket
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Figure 2.4: Adiabatic capture of particles by ramping up the laser field exponen-

tially. The phase space and separatrix are shown at the entrance (left plot) and

exit (right) of the buncher.

geometry. If we adopt this precaution when injecting into the accelerator, a beam

may be captured adiabatically with a small resulting emittance growth.

Bunching without increasing the longitudinal emittance of a beam is known

as adiabatic bunching. The bunching method of repeated pairs of undulators and

chicanes approximately achieves this by periodically turning on the energy gain

of the particles. Returning to the standard bunching scheme discussed here first,

emittance dilution may also be avoided by first injecting the beam into a bucket

with height less than the beam’s energy spread so that the bucket is filled and

then ramping up the field slowly so that the relative change in bucket height in a

sychrotron period is small as in Equation 2.39 [32].

1

ηsep

dηsep

dz
� ks (2.39)

Ramping up the ponderomotive wave’s amplitude in this way as particles drift

towards the resonant phase allows particles further from the resonant phase to

be given progressively larger kicks in energy, helping them to catch up to parti-

cles closer to the resonant phase so that they arrive almost simultaneously. The

bucket envelopes more particles as its height expands so the initial separatrix

may be made small compared to the beam energy spread. The result is a bunched
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beam with negligible phase space dilution as shown in Figure 2.4. While this is

a great way to prepare a beam for injection into an accelerating bucket in princi-

ple, in practice it requires that the coupling be turned on over many synchrotron

periods making such a buncher possibly longer than the accelerator. Furthermore

controlling the coupling to turn on as slowly as needed for adiabatic capture to

work is not a trivial task as we will see in the following chapter.

2.4 Undulator tapering design

The major problem of IFEL design concerns in designing a tapering profile for

the undulator parameters that maximize the acceleration while preserving good

output beam quality. Various undulator tapering methods have been employed in

IFEL experiments to date. The IFELA experiment iteratively designed the undu-

lator taper by hand and checked its performance with simulation [22]. STELLA

used a planar undulator with a linear gap taper in order to increase the field [23].

The Neptune IFEL group developed the formalism of the diffraction dominated

IFEL to calculate the taper which matches the resonant energy gradient to the

ponderomotive gradient which they anticipated varying significantly with their

use of a strongly focused laser [26]. We use this latter approach to calculate the

variation in the undulator parameters in this section for a given resonant phase.

Equation 2.25 sets a relationship between the resonant energy and undulator

parameters, and the variation in these parameters yields a change in the resonant

energy.

dγ2
r

dz
=

k

2ku

(
− 1

ku

dku
dz

(1 +K2) +
dK2

dz

)
(2.40)

A first order approach is to simply vary the undulator parameters by equating

this resonant energy gradient to the ponderomotive gradient in Equation 2.16

describing the change in energy of the electrons during the interaction.
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− 1

ku

dku
dz

(1 +K2) +
dK2

dz
= −4kuKlK sinψr (2.41)

The resonant phase ψr here is defined by Equation 2.17 and its relation to

the longitudinal dynamics is described in the previous section. When ψr is set

to zero, the undulator parameters do not change and no net acceleration occurs.

Instead, a sinusoidal modulation is imprinted on the beam which can be used to

bunch the beam. The ponderomotive gradient increases along with the resonant

phase. While ψr = −π/2 maximizes acceleration, this happens to be an unstable

phase where no particles are able to maintain resonance. Choosing a middle

phase as described in the previous section offers a compromise between trapping

and acceleration. In general, it may be desirable to vary the resonant phase along

the undulator in order to accommodate the longitudinal particle dynamics. In

the next section we will give a prescription for determining the evolution of the

resonant phase along the IFEL.

For a fixed period undulator, the magnetic field amplitude must be changed

in order to maintain resonance. In this case, dku/dz in the above equation is zero,

and we obtain an equation relating the change in undulator strength to the laser

amplitude.

dK

dz
= −2kuKl sinψr (2.42)

In permanent magnet undulators, K may be changed by varying the gap be-

tween magnets to increase the peak field on axis; however, the magnet gap may

only be reduced so much before beam scraping or wakefields become an issue.

Changing the period as well as the field amplitude offers more flexibility by main-

taining a resonable sized gap between magnets. Solving for dλu/dz in the gradient

matching Equation 2.41, yields the following equation determining the variation

in the period.
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dλu
dz

= − 8πKlK sinψr
1 +K2 + λudK2/dλu

(2.43)

In practice, an undulator builder equation can be used to describe the relation

between the undulator period and on-axis magnetic field strength. One such

undulator builder equation for permanent magnet Halbach undulators such as

the one used in the design of the Rubicon undulator is given here [34]

K =
eλu

2πmc
1.8Bre

−πg/λu(1− e−
2πLm
λu ) (2.44)

Here g is the gap between opposing magnet pole faces. Either Equation 2.42

or Equation 2.43, with the latter requiring an undulator builder equation relating

K and λu such as Equation 2.44, determines the undulator tapering for a given

laser field profile Kl and resonant phase ψr.

2.5 Resonant phase variation for optimal tapering

The tapering equations match the ponderomotive and resonant energy gradients

for a given resonant phase, the selection of which we will now discuss. In Sec-

tion 2.3, we examined the capture estimates for a constant resonant phase and

discussed enhancing the fraction captured at non-zero ψr by prebunching and then

injecting into a bucket at a different resonant phase. This two stage approach is

practical and only limited by the longitudinal emittance growth induced during

the bunching, which may in principle be made small via adiabatic bunching.

The focus of this section will be to connect the capture and acceleration stages

in a continuous way. We first determine the resonant phase variation which pre-

serves the action throughout the acceleration. Next, we discuss the variation of

the synchrotron oscillations’ amplitudes and present a formula for the resonant

phase which accounts for this effect.
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2.5.1 Constant bucket size tapering

Once the beam phase space has been matched into the accelerating bucket, it is

important to keep the area of the bucket constant to avoid detrapping. If the

beam was properly matched into the bucket so that it fills it completely, keeping

the bucket area constant prevents longitudinal emittance growth. As the particles

accelerate, the bucket’s dimensions necessarily vary due to changes in the laser

and undulator parameters; however, we can shape the bucket with the resonant

phase in the tapering equations to maintain a constant phase space density. The

resonant phase which maintains constant a bucket area is given by 2.45 which was

calculated by equating the area of the bucket at two points.

ψr = sgn(ψr,0) f−1
J

(√
λu,0Kl,0K0

λuKlK
fJ(ψr,0)

)
(2.45)

Here, the quantities with subscripted zeros are the values at a point with the

desired phase space area to maintain constant; ideally, this point is right where

a prebunched e-beam is injected into the accelerating bucket. This strategy for

choosing the resonant phase reduces phase space dilution, but still requires prop-

erly preparing the input longitudinal phase space of the beam in order to maxi-

mize acceleration while minimizing longitudinal emittance growth. Prebunching

is therefore necessary to optimally utilize the IFEL.

One way to characterize the bunching might be to calculate the rms phase

width of the resulting phase density for one ponderomotive wavelength of beam.

However since the modulation is periodically imprinted on the e-beam, another

useful measure of the degree of bunching is the bunching factor defined as the

norm of the average phasor of all particles B =
∣∣〈eiψ〉∣∣. While not perfect, many

bunched beam phase distributions may be reasonably approximated by a normal

distribution with the mean and rms widths of the bunched beam in order to make

rough calculations of the fraction of particles fitting into a smaller bucket at a
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larger resonant phase. If the particle phase density can be approximated with a

normal distribution within a bucket with a rms width σψ we can relate the two

quantities by

B =

∫
dψ eiψ

1√
2πσψ

e
− ψ2

2σ2
ψ

⇒ σψ =
√
−2 lnB

(2.46)

Making the good assumption that the initial relative energy spread is less than

the bucket height ηsep,max, we could capture 95% of the beam by choosing ψr such

that ∆ψ = 4σψ. Alternatively, it may be more desirable to parametrize the design

by the desired fraction captured with respect to the initial bunching factor. In

this case, we observe that the fraction captured fc is related to the bucket width

and e-beam rms phase width by the error function fc = erf(∆ψ/2
√

2σψ). Since

∆ψ is a function of ψr (Equation 2.36), we can invert it to determine the initial

resonant phase needed to capture a fraction fc of the injected beam.

ψr,0 = ∆ψ−1
(

4
√
− lnB erf−1(fc)

)
(2.47)

Starting from this expression and using Equation 2.45 for calculating the res-

onant phase and the tapering equations (Equation 2.42 or Equations 2.43 and an

undulator builder equation such as Equation 2.44) determines an efficient tapering

design for an IFEL accelerator.

It is interesting to note that if an unbunched beam is injected into a bucket with

ψr = 0 and separatrix equal to the energy spread of the beam, use of Equation 2.45

eliminates the need for bunching altogether. Instead, the beam is simultaneously

accelerated and bunched while preserving emittance. These principles will be

investigated further when we apply them towards the design of an accelerator in

the following chapter.
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2.6 Diffractive effects

The focusing properties of the drive laser are critical to the design of the undu-

lator as they determine the ponderomotive gradient. Considering the diffraction

of a TEM00 Gaussian laser, a compromise between a high intensity over a short

interaction length and a low intensity interaction over a longer length should op-

timize the electro-optical energy exchange. Maximizing the energy conversion is

achieved by maximizing the change in the resonant energy which may be calcu-

lated by integrating the ponderomotive gradient along the undulator length.

∆γ2
r = −

∫ Lu

0

2kKlK sin(ψr)dz (2.48)

The normalized laser vector potential for a TEM00 Gaussian beam is Kl ∼

1/
√
zr(1 + (z − zw)2/z2

r ). By expanding the undulator field strength in a Tay-

lor series K =
∑

nKnz
n and assuming a nearly constant ψr, the efficiency is

maximized by requiring

d2

dzrdzw

∑
n

∫ Lu

0

Knz
ndz√

zr(1 + (z − zw)2/z2
r )

= 0 (2.49)

The integral in Equation 2.49 has more support near regions of large undulator

parameter K so maximal energy exchange is found by focusing the laser such that

Kl is maximal in regions of large K. A reasonable approximation for the tapering

is that K changes linearly. Figures 2.5a and b shows the energy change for a

constant K undulator and for one with a 600% increase in K along its length.

In the case that K does not vary along the interaction, the energy exchange is

maximized by placing the laser waist there with a Rayleigh range of zr ≈ 0.15Lu.

In general, this is a good starting point to begin the taper calculation. For the

linearly tapered undulator, the optimal laser focusing places the waist zw = 0.76Lu

closer to the undulator’s exit with a Rayleigh range of zr ≈ 0.10Lu, to take
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Figure 2.5: The accelerating gradient is maximized with respect to laser waist

position and Rayleigh range for the case of a) a constant K undulator and b) an

undulator with linearly increasing K by a factor of 6. c) and d) show how the

optimal waist position and Rayleigh range scale with an undulator with linearly

increasing K. Typically, acceleration requires values of Kf/K0 greater than unity

while deceleration require values less than one.
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advantage of the larger K near the undulator’s exit.

The optimal waist position and Rayleigh range for a general undulator with

linearly tapered K are shown in Figures 2.5c and d respectively. For a period

tapered undulator which increases K along with the resonant energy, a ratio of

final to initial undulator strengths Kf/K0 greater than unity means that the

electrons are accelerated. For strong acceleration (large Kf/K0), the optimal

waist position and Rayleigh range asymptotically approach zw = 0.80Lu and

zr = 0.087Lu. On the other hand for an IFEL decelerator, decreasing the resonant

energy decreases K so the gradient is maximized by focusing the laser near the

undulator’s entrance. As Kf approaches zero, the optimal focal parameters go to

zw = 0.20Lu and zr = 0.087Lu.
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CHAPTER 3

Numerical studies

Whereas the tapering equations discussed in the previous chapter are a good start-

ing point in the conception of an inverse free electron laser accelerator, numerical

studies of the particle dynamics are a necessary part of the design process in or-

der to assess the validity of the model used to design the accelerator as well as

incorporating physical constraints on input parameters. For example, undulator

parameters such as period, field strength, or magnetic gap are constrained by

limits in undulator technology or the laser waist, and laser parameters may be

constrained by beam line geometry.

In order to examine the validity of some of the design principles in the previous

chapter, we first introduce a conceptual design for a meter-long GeV IFEL accel-

erator. We next use the tapering equations to calculate the undulator parameters

and resonant energy for a realistic permanent magnet undulator and consider

some variations in the physical undulator parameters (e.g. magnetic gap). Next

we assess the performance of the system when designed to accelerate at a con-

stant resonant phase. Recalling the discussion of Section 2.5, we then consider

designs using a variable resonant phase. We show that by capturing the beam

with little growth in longitudinal emittance, the resonant phase can be increased

significantly, and we present a few practical methods by which to achieve this.

Another challenge of designing an IFEL accelerator where numerical methods

come handy is the case of heavy beam loading where the electron beam absorbs

a significant fraction of the input laser power. We calculate the laser intensity
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evolution along the undulator as a function of electron beam peak current and

use this to design an undulator taper which accounts for the decreasing laser

power.

3.1 Meter-long GeV accelerator

The IFEL was once considered as an accelerator for future high energy colliders,

but enthusiasm waned when synchrotron losses were calculated to limit the prac-

tical produced energies to tens of GeVs [14]. Nevertheless, a compact GeV scale

accelerator would be useful for driving modern x-ray light sources such as FELs or

Compton scattering light sources. Recalling the FEL resonant energy condition

from Equation 2.25, we note that the wavelength of FEL produced radiation is

inversely proportional to the square of the electron energy; consequently, there is a

clear need for high energy electron beams. Compton scattering similarly benefits

since the produced wavelengths have the same energy dependence (the process

is very similar to incoherent radiation from undulators with the exception that

the static undulator magnetic field is replaced with an oscillating electromagnetic

field). In this case, a significant advantage comes from the fact that the high

power laser system for the Compton source can be shared and used also to drive

the IFEL accelerator. For light source applications, the output beam quality is

very important. In particular, the preservation of the input emittance and the

control of the final energy spread are IFEL attractive attributes.

Using conventional RF technology, capable of ∼50 MeV/m average gradients,

would require roughly a 20 m long linac and a dozen klystrons to produce GeV

electron beams, and even state of the art higher frequency x-band RF sources

would still necessitate about 10 m. Applying IFEL acceleration to this task, it

is possible to reduce the total accelerator length to about 1 m by replacing all

but one of the linac accelerating sections with a meter-long inverse free electron
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accelerator.

Most IFEL experiments done to date simply utilized a freely propagating laser

wave in vacuum. Optical waveguides or refocusing schemes have been considered

as they offer the possibility of maintaining consistently high laser intensity along

the entire interaction length [35, 36]; yet while high power laser pulses have re-

cently been guided over meter-scale distances [37, 38, 39], IFEL demonstrations so

far have been limited to moderate intensities [40]. Further, waveguides or lenses

spoil one of the significant advantages of a far field accelerator: freedom from

damage threshold limitations. In terms of design feasibility, high power TiSa

laser systems providing multi-TW peak powers are commercially available [41],

which are large enough to reach GeV energies in a single IFEL stage, avoiding the

complications of cascading multiple accelerating modules or drive laser refocusing.

We start the accelerator design with a rough estimate of the performance for

a given set of parameters. Recall that the accelerator performance for nearly con-

stant K is optimized for zw ≈ Lu/2 and zr ≈ 3Lu/20. The parameters optimizing

the performance of a strongly tapered undulator differ slightly from these, but

using them is a good first approximation, yielding a conservative estimate of the

performance. Furthermore, the undulator parameter may be estimated as linearly

increasing from an initial value of K0 and having an average value of 〈K〉. Finally,

we define here an equivalent power Pe = m2c4/e2Z0 = 693 MW for ease of cal-

culation. Inserting these into Equation 2.16 for the ponderomotive gradient and

integrating over the length of the undulator Lu yields a conservative estimate for

the energy change.

∆γ2
r ≈ 5.95 〈K〉

√
P

Pe

Lu
λ

sinψr (3.1)

The laser wavelength is 800 nm, and we shall assume that the initial e-beam

energy is less than 100 MeV so that the initial undulator parameter is K0 ∼ 1.5.
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Accounting for acceleration, the undulator parameter at 1 GeV is about 10 so

the mean is roughly 5.8. Only the average undulator parameter factors in here

since the linear term is odd in the integrand and integrates to zero under our

resonable assumption of placing the waist towards the undulator’s midpoint. The

length of the undulator should be about a meter for compactness and to fit the

entire laser (about π times the laser waist) well within the undulator gap of

several millimeters at the entrance of the undulator. Finally, the resonant phase

maximizing the power delivered to an unbunched injected e-beam is ψr = 0.69.

With these parameter estimates, the laser power needed to accelerate electrons to

1 GeV is about 20 TW.

3.2 Taper design

The undulator tapering Equation 2.43 along with the undulator builder equation

2.44 and the design parameters listed in Table 3.2 largely determine the undulator

tapering. The final input requires the initial electron energy, undulator magnet

properties and gap, and resonant phase to determine the final energy and fraction

of electrons accelerated to full energy.

As discussed in the previous chapter, the resonant phase which maximizes

the power delivered to an unbunched electron beam is ψr = −0.69. At this

resonant phase, the gradient is still about 64% of the maximum and 43% of

injected electrons should be accelerated to full energy, assuming that the energy

spread is negligible. In order to enhance the gradient a bit more in the following

discussion, we will use ψr = −π/4. The slightly larger relative gradient of 71%

comes at the price of a low 38% trapping.

The undulator design parameters used here are similar to those used in suc-

cessful IFEL experiments. The residual magnetization of each magnet is taken

to be 1.22 T which is typical of NdFeB magnets with high intrinsic coercivities.
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Magnets with 1.4 T residual fields with slightly lower, yet still robust, coercivities

are commercially available for a similar price. Cryogenic praseodymium based un-

dulators with residual magnetization up to 1.7 T have been demonstrated [42, 43].

These could in principle be used to increase the on-axis K for larger gradients so

the designs discussed here are conservative. The length of each magnet Lm along

the radial direction away from the beam axis is reasonably taken to be 2.54 cm.

The requirement for the gap g is that the clear aperture between opposing

magnets is sufficiently large to allow full clearance for the electron beam and the

electromagnetic radiation transport. The latter usually results in a more strin-

gent requirement since the geometric electron beam emittance is usually smaller

than the equivalent laser beam emittance of λ/4π for visible or longer wavelength

radiation. This translates to a gap at least π times larger than the Gaussian laser

waist w(z). The optimal Rayleigh range is 15 cm for a 1 m long undulator, and

the waist at the entrance and exit of the undulator is 680 µm assuming a 800 nm

drive laser focused at the undulator’s center. The magnet gap should be made at

least π times this or 2.1 mm in order to keep the field on axis high while allowing

the laser to fully pass the entrance and exit without clipping.

It is instructive to look at the tapering solutions for various input energies to

find the injection energy which optimizes energy gain and average accelerating

gradient. Figure 3.1 shows the output energy and average accelerating gradient

as a function of input energy for the given design parameters. The average ac-

celerating gradient rises sharply near 15 MeV input energy where the resonant

undulator period becomes comparable to the magnetic gap of 2.1 mm. This is

because the e−πg/λu term in the undulator builder equation suppresses the on-axis

field as the period length approaches that of the gap.

Ultimately, the minimum particle energy that one can accelerate is determined

by the minimum undulator period length conceivable. Superconducting undula-

tors with periods as short as 2.42 mm with on-axis fields of ∼ 0.5 T have been
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E-beam

Input energy γ0 100 MeV

Energy spread σγ,0/γ0 0.2%

Transverse emittance εx,n 0.2 µm

Laser

Peak power P0 20 TW

Rayleigh range zr 15 cm

Waist position zw midpoint

Undulator

Length Lu 1 m

Residual magnetization Br 1.22 T

Magnet thickness (radial) Lm 25 mm

Magnet gap g 2.1 mm

Resonant phase ψr −π/4

Table 3.1: GeV IFEL design parameters

built [44], but superconducting equipment is expensive to construct and operate.

A more practical approach using permanent magnets has lead to 9 mm periods

while still producing K ∼ 1 [45]. Finally when considering the construction of a

permanent magnet undulator, the size of each magnet becomes an issue. Smaller

magnets are more likely to saturate and require higher intrinsic coercivities, but

higher grades of NdFeB with increasing coercivities are more brittle so a design

study is required to assess their feasibility.

For a conservative design study, we choose a starting energy of 100 MeV requir-

ing a 14 mm initial undulator period. The undulator properties for this solution

are shown in Figure 3.2. The final IFEL output energy in this case is 1.02 GeV

with a 0.92 GV/m average accelerating gradient. The resulting undulator de-

sign consists of 26 periods with lengths increasing from 14 mm to 60 mm and K

45



Figure 3.1: The average accelerating gradient and final energy of tapering solutions

for different initial energies are shown together.

increasing from 1.8 to 10.3.

It is possible to vary the gap along the undulator proportionally to the laser

waist profile instead of keeping it constant. The narrower gap near the minimum

laser waist increases the magnetic field amplitude right where the intensity of the

laser is largest so a slightly higher final output energy is achieved. In order to

account for the gap tapering in the tapering equations, we must modify them

slightly.

dλu
dz

= −
8πKlK sinψr + λu

∂K2

∂g
dg
dz

1 +K2 + λu
∂K2

∂λu

(3.2)

In Figure 3.2 we show the case of a constant 2.1 mm gap and the case where

we vary the gap from 2.1 mm at the undulator’s entrance and exit to 0.61 mm

in the middle of the undulator at the laser focus. In this case, the output energy

and average accelerating gradient increase to 1.04 GeV and 0.94 GeV/m.

Smaller gaps and periods enable lower injection threshold energies. By placing

the laser waist at the entrance of the undulator and gap-tapering, the smallest gap

coincides with the lowest resonant energy, pushing the threshold for acceleration

lower. We positioned the laser waist at the undulator entrance and varied the
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Figure 3.2: The tapering equations were solved for constant and variable gaps,

shown as solid and dashed lines. Shown on the left are undulator parameters for

the calculated tapers. Quantities associated with the dynamics for each undulator

taper are displayed on the right.

input energies to find reasonable injection energy thresholds, defined here as the

input energy which returns 90% of the maximum average gradient (for example,

the reasonable injection energy threshold for the gradient versus input energy

curve of Figure 3.1 is 15 MeV). The undulator length and Rayleigh range was

halved for each subsequent scan in order to reduce the gap at the entrance. The

results of the scan are summarized in Table 3.2. By reducing the Rayleigh range

to 1.7 cm and gap to 220 µm, the input energy may be reduced to 6 MeV. Novel

technologies are needed in order to realize this undulator however. The permanent

magnet residual field used in these calculations is 1.22 T, yet the undulator period

needed is so small (also 220 µm) that micro-fabrication techniques are needed

[46, 47]. Furthermore, the emittance needed to fit the beta-matched beam well

within the laser waist at the entrance is 20 nm; alternatively, strong focusing may

be used to match the beam size to the laser waist at the entrance.
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Input

Undulator length Lu (cm) 100 50 25 12.5

Rayleigh range zr (cm) 15 7.5 3.75 1.73

Magnet gap g (µm) 610 430 310 220

Threshold energy γ0mc
2 (MeV) 10 9 7.5 6

Output

Output energy γfmc
2 (MeV) 700 530 410 270

Average gradient 〈dγ/dz〉mc2 (GeV/m) 0.68 1.05 1.55 2.05

Table 3.2: Injection threholds for entrance positioned laser waist

3.3 1D simulations with constant resonant phase

The undulator taper calculation determines the evolution of the dynamical quan-

tities ψr and γr. and the properties of the ponderomotive bucket. In order to

investigate the longitudinal dynamics, we can solve the 1D equations of motion

(Equations 2.16 and 2.23) for an ensemble of particles with the constant gap un-

dulator taper and design parameters listed in Table 3.2. First let’s investigate the

case of an input e-beam uniformly distributed in phase and normally distributed

in energy with a relative energy spread of 0.1%. The resulting longitudinal phase

space of the simulated output beam is shown in Figure 3.3. The accelerated bunch

is clearly separated from the background and has a mean energy of 1,016 MeV with

a relative energy spread of 0.89%.

3.3.1 Capture estimates

Recall that for e-beams with energy spread small compared to the ponderomo-

tive bucket height, the fraction of injected particles trapped within the bucket is

expected to be equal to the fractional width of the bucket ∆ψ/2π given by Equa-

tion 2.36. For a resonant phase of −π/4, this yields a prediction of 38%. Solving
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the system numerically, we find that the fraction accelerated to full energy is

indeed 38%.

While usually not desirable, certain circumstances may require injecting a

beam with a large energy spread, comparable to the bucket height. Another

estimation made in the previous chapter was that the fraction accelerated of an

unbunched beam with energies uniformly distributed between the extremes of the

separatrix should be equal to |
∫ ψ2

ψ1
dψηsep(ψ)|/2πηsep,max where ηsep,max = ηsep(ψr).

For a resonant phase of ψr = −π/4, this predicts that merely 27% of the injected

beam should be captured. Figure 3.3 shows the results of a simulation for our

standard taper but with an injected beam uniformly distributed in phase and

energy up to the bucket height ηsep(−π/4) = ±0.08. The average energy of

the accelerated beam is 1,017 MeV, and this time, the energy spread is 1.05%.

While only a quarter of the beam initially fits within the ponderomotive bucket,

the actual fraction of beam captured is 36%—nearly the same as the low energy

spread case.

The discrepancy can be explained by the fact that the bucket height rapidly

grows at the entrance of the undulator. Particles to the left of the bucket acceler-

ate and slip right while particles right of the bucket decelerate and slip back left

towards the bucket. The resonant phase remains constant so the bucket width

is fixed, but if the height of the bucket grows fast enough, particles which have

slipped towards the resonant phase become entrained within the bucket and re-

main trapped. Thus, the IFEL may be a reasonably robust accelerator for e-beam

sources with relatively large input energy spread or jitter less than ηsep(ψr). On

the other hand when the resonant phase is varied to keep the bucket area con-

stant (see the next section on constant action tapering), the bucket height remains

nearly constant, and the fraction captured becomes 26% which agrees well with

the 27% capture estimate for large energy spread.

In order to effectively improve the efficiency of the interaction, we must prop-
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Figure 3.3: The 1D equations of motion were solved for a few example input distri-

butions to assess the longitudinal dynamics of the constant gap solution from the

previous section. Columns from right to left differ as follows: left, input beam in

uniformly distributed in phase and normally distributed in energy with a relative

energy spread 0.001, much smaller than the bucket height; middle, energy distri-

bution is uniform and extends to the extrema of the bucket (∆η = ±0.081); and

right, the injected beam is prebunched with a bunching factor of 0.54 calculated

to fit ∼76% of the beam within the bucket and uniform energy distribution half

of the bucket height to represent energy spread from a prebunched beam. The

white curves show the separatrix bounding regions of stable acceleration.
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erly match the input phase space to the accelerator’s acceptance—that is, the

region of phase space where particles are captured and accelerated to full energy.

3.3.2 Prebunching to improve capture

In practice, the electron beam phase space can be shaped to match the accelerat-

ing bucket by prebunching. Typically, an initially uniform-phase electron beam is

injected into a ponderomotive bucket with a resonant phase of zero, acquiring a

sinsusoidal energy modulation. If left long enough to rotate a quarter synchrotron

oscillation, the particles become condensed at zero phase. Stopping the interac-

tion well before a quarter synchrotron oscillation and using the R56 of a magnetic

chicane to convert the energy modulation to a density modulation yields a simi-

larly bunched phase space, but with a small final energy spread. A measure of the

phase space density is the rms longitudinal emittance, or phase space area occu-

pied by the beam, and is εζ,rms ≈ λ
2π

√
σ2
ψσ

2
η − σ2

ψη [32]. Note that this is not the

full longitudinal emittance of the beam, but the ’slice’ emittance where the length

of a slice is equal to the laser period. All the slices will behave very similarly

assuming that the laser pulse and the beam are much longer than a single laser

cycle. Multiplying the emittance by the beam mean energy yields the normalized

emittance εζ,n = 〈γ〉 εζ . The rms emittance is a useful quantity to calculate, but

the area of phase space it represents holds about 15% of the particles. Assuming

an uncorrelated bivariate normal distribution, the area containing a fraction f of

particles is given by εζ,f = −2πεζ,rms ln (1− f); consequently, the effective area of

phase space occupied by 63% of the beam is about 2π times the rms emittance.

We will exclusively use this area, hereafter referred to as simply the normalize

longitudinal emittance εζ,n defined in Equation 3.3, since it is useful for direct

comparisons to the ponderomotive bucket area.

εζ,n ≡ 〈γ〉λ
√
σ2
ψσ

2
η − σ2

ψη (3.3)
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Returning to Figure 3.3, we examine the case of injecting a prebunched beam

into the accelerating bucket. Approximating the beam’s phase distribution as a

Gaussian, we may use the Equation 2.47 to estimate that a modest bunching factor

of 0.58 is needed to fit 3/4 of the particles within the bucket width ∆ψ(−π/4).

Realizing this bunching, we may first apply a small (1.5 MeV) amplitude sinusoidal

energy modulation with a short undulator section and then apply R56 to maximize

the fraction of beam which fits within the initial separatrix when centered on the

resonant phase ψr = −π/4. The resulting beam has a bunching factor of 0.54 and

76% of the beam is calculated to fit within the initial bucket. In this case, 78%

of the particles are accelerated to an average energy of 1015 MeV and 0.75% rms

energy spread.

The prebunched beam’s normalized longitudinal emittance of 0.91 µm is sig-

nificantly larger that of the unbunched low energy spread case of 0.11 µm, but

despite the lower phase space density, the bunched particles are well positioned

within the separatrix leading to significant capture. Another benefit of concen-

trating the input phase space towards the middle of the bucket is that since the

forces are more approximately linear there, the output emittance of the initially

prebunched beam (2.1 µm) is smaller than that of the unbunched beam (3.0 µm).

3.4 1D simulations with constant action tapering

We owe a certain amount of gratitude for the expanding bucket, yet the fact that

it grows as the beam’s longitudinal emittance shrinks implies a lot of unoccupied

phase space real estate. Instead, we could imagine injecting an unbunched beam

at zero resonant phase for full capture and changing the width of the bucket as its

height grows to keep its area constant. In this way, the entire unbunched beam

may be accelerated. This may be accomplished by varying the resonant phase

according to Equation 2.45 as discussed in the previous chapter. Figure 3.4 shows
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Figure 3.4: 1D simulations for constant 2.1 mm gap undulators conserving bucket

action throughout the interaction. Left: Nearly an entire unbunched beam is

accelerated to 799 MeV when injected into a bucket with initially zero resonant

phase. Middle: 77% of a beam with initial bunching factor 0.825 and energy

spread |η| < 0.04 is accelerated to 1.22 GeV. Right: The entirety of an unbunched

beam injected into a ψr,0 = 0 bucket with initial energy 22 MeV is accelerated to

1.11 GeV.
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the results of a simulation for an unbunched beam with 0.1% rms energy spread

injected into a bucket initially at ψr,0 = 0. Virtually the entire beam (>94%) is

captured and accelerated to 799 MeV with an output energy spread of 2.4% and

bunching factor of 0.82. The large energy spread is due to the fact that in order

to capture all of the unbunched beam, we used a large bucket area starting with

ψr = 0. Unfortunately, the nonlinear forces within the bucket twist and distort

the phase space, resulting in the relatively large energy spread and causing the

normalized longitudinal emittance to grow from 0.28 to 18 µm.

We can mitigate phase space dilution in two ways: match the input phase space

to the separatrix or the reverse. Returning to Figure 3.4, the middle column shows

the results of a simulation with a beam prepared to roughly match the bucket. The

input prebunched beam is the same as used in the earlier prebunched example:

mean energy of 100 MeV and phase locked to the bucket’s center (ψr,0 = −π/4)

with a bunching factor 0.54 estimated via Equation 2.46 to yield 72% capture.

Adapting ψr to keep the area of the bucket constant yields a 1,225 MeV beam

with 77% of the charge captured and rms energy spread of 0.56%. The initially

0.91 µm normalized emittance beam is only diluted to 2.4 µm. Comparing this

with the previous result of injecting the same prebunched beam into a bucket

with constant resonant phase −π/4, the normalized emittances of the accelerated

beams are almost the same.

Matching the beam’s longitudinal phase space into a bucket with a larger initial

|ψr,0| and then freezing the action offers larger gradients and output energies.

The right plot in Figure 3.5 shows the bucket area and output energy for an

initial resonant energy of 100 MeV and a range of initial resonant phases. Larger

(negative) initial resonant phases lead to smaller buckets which allow the resonant

phase to approach closer to −π/2 throughout the interaction. An ancillary benefit

is that larger accelerating gradients afforded by the tapers with larger |ψr,0| relax

the laser energy requirement for acceleration by reducing the number of undulator
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Figure 3.5: Constant bucket area undulator tapers vs input energy for initial

resonant phase ψr,0 = 0 (left) and vs different initial resonant phases for initial

resonant energy 100 MeV (right). The entire beam is captured for the former

while the fraction captured for the latter case with initial bunching factor B0 is

about erf(∆ψ(ψr,0)/4
√
− lnB0).

periods and slippage length. On the other hand, a small bucket area requires the

beam to be bunched without much dilution.

3.4.1 Adiabatic capture: low initial energy

Whereas prebunching the beam to fit well into a smaller accelerating bucket is

one way to mitigate some longitudinal emittance growth, in practice prebunching

with a simple undulator and chicane combination may leave some tails which

may not fit into the subsequent accelerating bucket. Adiabatic prebunching with

multiple undulator and chicane modules can overcome this problem at the expense

of a longer bunching section and more laser slippage. Another way to capture the

input electron beam is to initially reduce the bucket height to match an unbunched

beam’s energy spread and then adiabatically expand it. The height of the bucket

scales as ηsep ∝
√
KlK/(1 +K2) so either the undulator or laser field may be

manipulated to ramp up the coupling adiabatically.
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For small K, the height of the bucket scales as ηsep ∝
√
KlK. In order to

decrease the initial K and therefore the initial bucket height, one solution is to

inject at a low enough input resonant energy so that the initial bucket height is

only slightly larger than the input electron beam’s energy spread. The left plot in

Figure 3.5 shows final energies for a variety of tapering solutions with a range of

initial energies each holding the bucket area constant throughout the interaction.

For lower energies near 20 MeV, the bucket area and K both approach zero. As

a consequence of the small phase space area, the full beam is easily accelerated

at large resonant phases to high energies. An exemplary simulation is shown in

the right column of Figure 3.4 where a 22 MeV unbunched beam with 0.1% en-

ergy spread is injected into the accelerator. Virtually the entire beam (>97% is

accelerated to 1.11 GeV with 0.43% energy spread and 28 nm rms bunch length,

and the beam’s normalized emittance, initially 0.06 µm, is increased to 1.6 µm.

Again, achieving resonance with these low initial resonant energies requires novel

undulator technologies (∼3 mm period) or harmonic interactions. Another lim-

itation is that as the ponderomotive gradient is reduced for very small K, the

number of periods required to accelerate increases, increasing the slippage and

therefore laser energy; nevertheless, for the example presented, the laser energy

remains a finite (though certainly not cheap) 7 J. This laser energy was estimated

by assuming a Gaussian pulse in time with a peak power twice the design and full

width at half maximum duration set equal to the slippage.

3.4.2 Adiabatic capture: undulator field ramp

Injecting at low energies leads to small values of K and a small bucket height. One

way to achieve resonance at higher energy while keeping a small K is to increase the

period and maintain a small field on axis by enlarging the gap between magnets.

Due to restrictions on the applicability of the gap to period ratio, this may not

always be achievable (e.g. gaps large compared to the period). On the other hand,
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Figure 3.6: Plots showing the design of an accelerator with Br assisted mildly

diabatic capture. From left to right: normalized laser vector potential along the

laser pulse at the laser waist; undulator parameters for the solved taper; and the

energy evolution of 200 simulated particles along with quantities describing the

dynamics along the interaction.

the magnetization of the magnets may be tailored to decrease the on-axis field

independent of magnet gap. We will examine one such example in this subsection.

In order to factor in the effect of tapering the residual field Br, we must add

a term to the tapering equation as shown below.

dλu
dz

= −
8πKlK sinψr + λu

(
∂K2

∂g
dg
dz

+ ∂K2

∂Br
dBr
dz

)
1 +K2 + λu

∂K2

∂λu

(3.4)

Figure 3.6 shows the result of an undulator taper with residual magnetization

shown in yellow. The expression for the residual magnetization is a sigmoid with

an amplitude of 1.22 T and a characteristic length of 55 cm centered 220 cm

into the undulator. While not strictly adhering to the adiabatic condition (Equa-

tion 2.39), this functional form of the magnets’ residual field works reasonably

well in a relatively shorter space. In practice, the residual field may be changed in

sections along the undulator and the gap may be adjusted to compensate. For the

first half of the undulator where the fields are less than 1 kG, an electromagnetic

undulator may be cheaper and more practical to employ.

The gap of the undulator was chosen to be π times the laser waist g = πw(z)
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Figure 3.7: Phase space evolution for the residual magnetization tapering assisted

capture and acceleration. On the left, the beam is injected into a bucket 1 m (6.7

Rayleigh ranges) upstream of the waist where the bucket is small. Middle: The

bucket area is frozen after 45% of a synchrotron oscillation. Right: Nearly the

entire beam is accelerated with moderate energy spread.

in order to allow the laser to clear. A larger gap may certainly be used throughout

the undulator with the main consequence being a larger required residual mag-

netization. The solution for the undulator period, field, and K are also shown

in the figure. The period starts at 6.1 cm to achieve resonance at 100 MeV for

vanishingly small K. As the field increases near the 2 m point, the undulator pe-

riod decreases in order to maintain resonance; however, once the particles begin

to accelerate, both the period and K grow to increase the resonant energy.

We freeze the resonant phase at ψr = 0 for the first meter (about half a

synchrotron period) in order to allow for the beam to bunch with little energy

spread. A chicane may be used to shorten this bunching section and possibly

produce smaller energy spread beams. After the beam is bunched, the resonant

phase is varied via Equation 2.45 to keep the action of the bucket a constant

3.7 µm. The resulting final resonant energy is 1.22 GeV.

A 1D simulation with an initially unbunched e-beam with 0.1% rms energy

spread is shown in Figure 3.7. 97% of the injected beam is captured and accel-
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erated to the design energy with an rms energy spread of 0.17% and normalized

longitudinal emittance of 0.16 µm. The 53 total undulator periods necessitates at

least a 2.8 J of laser energy at 20 TW. In practice, a Gaussian pulse of at least

60 fs full width at half maximum duration (plus enough to account for the e-beam

and laser time of arrival jitter) and peak power of 40 TW yields a required laser

pulse energy of at least 6 J.

3.4.3 Adiabatic capture: laser field ramp

The other approach to capturing an unbunched beam is to control the bucket

height with the laser field. Since the height scales as ηsep ∝
√
Kl, one approach

to this problem is to inject the beam with a small laser intensity and then ramp

up the intensity over many synchrotron periods to slowly increase the bucket

height. The most straight forward way of accomplishing this would be to adjust

the focusing or add an additional undulator section before the main undulator.

Assuming constant power, this unfortunately leads to a significant increase in

the required laser pulse energy. As it turns out from the analysis below, taking

advantage of the slippage effect might reduce such requirements.

We add the effect of slippage between the particles and the laser pulse by

modeling the laser power as a Gaussian with peak power P0 and rms pulse duration

σt = Ul/
√

2πP0 where Ul in the pulse energy.

Pl = P0e
− 1

2

(
s(z)−sw
cσt

)2
(3.5)

The constant sw is a parameter ideally set to the slippage during the propaga-

tion from the entrance of the undulator to the laser waist sw = s(zw) to maximize

the power seen near the waist. Resonance demands that the particles fall behind

the laser by one ponderomotive wavelength every undulator period traversed. The

slippage evolution is given by Equation 3.6.
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ds

dz
= − λ

λu(z)
(3.6)

In order to calculate the tapering, the equation for the power is substituted

into the expression for the laser vector potential (Equation 2.13), and the tapering

Equation 2.43 and slippage evolution are calculated with the the undulator builder

Equation 2.44. The resulting solutions for λu(z) and s(z) determine the taper.

Again we turn to the problem of capturing an entire unbunched beam while

maintaining phase space density. The bucket should initially maintain a constant

resonant phase of zero until bunching is achieved. This distance can be calculated

by integrating the spatial synchrotron frequency ks (Equation 2.38) from the start

of the undulator until a point that yields about a half synchrotron period. The

bucket height at this point will set the scale of the energy spread of the beam.

Note that we could insert a magnetic chicane to shorten this distance while at the

same time obtaining a smaller energy spread. Finally, the bucket area is frozen

by varying the resonant phase with Equation 2.45, taking the parameters at this

point for the initial parameters in the equation.

As an example, we use our standard parameters from Table 3.2 with the ad-

dition of s0 = 125 fs and Ul = 1.5 J. For 20 TW peak power, we have σt = 30 fs.

50 cm have been added to the beginning of the undulator for the capture, and the

laser waist is located 1 m from the beginning of the capture section. The left plot

in Figure 3.8 shows Kl the instantaneous Kl felt by the particle throughout the

interaction.

In order to simulate the particles’ phase space trajectories, we again substi-

tute the expression for Pl for P0 in Kl and replace it in the equations of mo-

tion (Equations 2.16 and 2.23). In order to allow each ith particle to slip inde-

pendently, we add its ponderomotive phase to its respective slippage coordinate

si = s(z) + λψi/2π. The temporal envelope of the beam may then be calculated
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Figure 3.8: Plots showing the design of an accelerator with slippage assisted mildly

diabatic capture. From left to right: normalized laser vector potential along the

laser pulse at the laser waist; undulator parameters for the solved taper; and the

energy evolution of 200 simulated particles along with quantities describing the

dynamics along the interaction.

from the distribution of initial phases.

When a short, unbunched e-beam with 0.1% rms energy spread is injected

into the accelerator, nearly the entire beam (99%) is accelerated to a mean energy

of 1.1 GeV with an rms energy spread of 0.15%—slightly larger than the input

beam—as shown on the right side of Figure 3.8. On the other hand, the normalized

longitudinal emittance is preserved at 280 nm. Examining the phase space, we can

see the capture process. At z=0, the particles are injected into the small bucket.

After the designed 40% synchrotron rotation at z=21 cm, the bucket area is frozen

and the resonant phase begins to increase and is accelerated through the end. It

is important to note that these simulations assume that the input e-beam bunch

duration is small compared to that of the laser so that the laser field strength felt

by the bunch is uniform. This scheme may be improved by applying R56 during

the capture section in order to hasten the rotation and bunching with reduced

energy modulation. The reduced energy modulation would reduce the required

bucket area, enabling larger accelerating gradients throughout the interaction.
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Figure 3.9: Phase space evolution for the slippage assisted capture and accelera-

tion. On the left, the beam is injected into a bucket 1 m (6.7 Rayleigh ranges) up-

stream of the waist where the bucket is small. Middle: After 40% of a synchrotron

oscillation, the bucket area is frozen. Right: The entire beam is accelerated with

moderate energy spread.

3.5 Beam loading

In the description of the IFEL interaction, we have so far considered the elec-

tromagnetic radiation as an externally given function rather than as a dynamical

variable of the system. This greatly simplifies the modeling of IFEL’s and is a very

good approximation as long as the accelerated charge is maintained low enough so

that effects of beam loading or pump depletion can be neglected. In this section

we will analyze the situation when this assumption is no longer valid.

In order to assess the limit of validity of this assumption, it is instructive to

look at the the energy balance in the system. The energy required to accelerate

1 pC of beam charge to 1 GeV is 1 mJ. This amount of energy needs to be

transferred from the laser beam to the electrons. When the fraction of energy

absorbed by the beam is significant with respect to the total laser pulse energy,

the IFEL dynamics will be affected by the loading of the accelerating gradient

from the beam of the accelerating waves.

It is useful to consider a different point of view which gives insight on the
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mechanism of energy transfer in the undulator. A microbunched electron beam of

1 pC of charge would emit 1 mJ of coherent radiation at the resonant wavelength

when traveling through the IFEL undulator. This radiation is emitted at the

resonant wavelength of the undulator but at a phase opposite to the driver laser

so that the fields cancel and the radiation effectively loses energy.

To describe in a quantitative way the beam loading in an IFEL accelerator,

we need to solve the Maxwell equation for the electromagnetic field in presence of

a source term factoring in the beam current. The equations are exactly the same

as the FEL equations, and we can rely on an ample literature of algorithms and

codes which have been developed through the years and already well benchmarked

with experiments by the FEL community.

For full three dimensional simulations of the evolution of both the beam as

well as the radiation in an IFEL accelerator, we adapted one of the most used

and benchmarked FEL simulation code publicly available, Genesis [48]. The code

solves the period averaged equation of motion for the particles and the radiation

field equation in the slow-varying envelope approximation. The equation for the

longitudinal space charge force electric field can also be solved. Unfortunately

Genesis cannot be directly used to simulate IFEL accelerators since the undulator

period can not be arbitrarily changed throughout the simulation, and the only

undulator tapering implemented in the standard version of the code is a linear or

quadratic variation in the magnetic field amplitude.

On the other hand, tapered undulators are typically designed and built in

a piecewise fashion so each period has a fixed length. Using a simple script to

process the input and output files, we devised a new approach to simulate the

IFEL interaction. Therefore we can take advantage of Genesis options to exit and

restart from a dump of the full 6D phase space of the particles and the radiation

profiles at any given point (for example after every period).

The script we developed for self-consistent IFEL simulations requires as an
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Figure 3.10: Output e-beam and laser parameters versus input peak current for

an uncompensated undulator.

input file the tapered undulator data (period and amplitude vs. distance along the

undulator). When launched, the code runs Genesis for the first undulator period

asking for the full dumped beam and radiation record files. It then modifies the

undulator parameters (period and K) in the Genesis input file to take into account

the tapering before launching the simulation for the second period. In order to

properly follow the violent acceleration of the particles each period is simulated

using more than 100 simulation steps. At the end of the second period we can

reiterate this procedure and propagate the beam and the radiation through each

segment sequentially. The simulations can also be run in time dependent mode

to simulate the effect of the finite laser pulse width and the electron beam bunch

length. In this case, the code shifts the radiation slices over the beam slices to

take into account the slippage between each period.

With the development of this self-consistent simulation tool we can analyze

the effects of beam loading in the GeV IFEL design discussed earlier. We take

as a reference the undulator design with NdFeB magnets (Br = 1.22T), constant

resonant phase ψr = −π/4, and a fixed gap. The undulator design consists of

26 periods with lengths increasing from 14 mm to 60 mm and K increasing from

1.8 to 10.3. Variations of the accelerator output parameters (final energy and

fraction of trapped particles) as a function of input beam current for the case of a
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Figure 3.11: Output e-beam and laser parameters versus input peak current for

a changing laser power compensated undulator taper design.

uniform and prebunched beams are shown in Figure 3.10. The final output laser

and beam power is also shown.

For this example, the final energy of the IFEL does not vary much with beam

current since this quantity is determined by the choice of the undulator tapering

and not by the dynamics of the system. Significant decrease in the fraction of

accelerated particles only starts to happen for very large currents (>10 kA). A

reference point is obtained observing that the power required to accelerate 20 kA of

particles to 1 GeV would be 20 TW, or the full laser power. It is also important to

notice that the beam loading is dependent on the bunching factor of the injected

beam. If the beam is microbunched, the fraction of trapped particles is much

larger and the current where the effects of beam loading occur is lower.

For larger beam currents such as those greater than 18 kA in Figure 3.10, the

laser loses too much energy along the undulator and the ponderomotive acceler-

ating gradient decreases. The consequence is that the electrons are no longer able

to follow the design resonant tapering trajectory and particle detrapping from the

stable potential bucket occurs.

Using a simple 1D model, it is possible to optimize the IFEL tapering to take

into account the depletion of the IFEL driver and adjust the variation of period

and magnetic field amplitude to compensate for the losses in laser power and
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Figure 3.12: A dense electron beam erodes a hole in the laser intensity as it

transfers power.

minimize detrapping. We can estimate the laser power absorbed in the IFEL

when we inject in the accelerator an electron beam of current I since the energy

gain is set by the resonance condition

Pabs(z) = ηIm0c
2(γ(z)− γ0)

= ηIm0c
2(
√
λw(z)(1 +K(z)2)/2λ− γ0)

(3.7)

where η is the fraction of particles trapped in the ponderomotive bucket.

By scaling the laser electric field in Equation 2.43 as

Kl(z) = Kl(z)

√
P − Pabs(z)

P
(3.8)

where P is the input laser power, we can find the optimum tapering for a loaded

IFEL.

In practice, this compensation is not perfect as it assumes that only the trapped

particles change energy, and it completely neglects important effects such as har-

monic emission, slippage and three dimensional effects. Nevertheless, by using the

compensated tapered undulator obtained with this procedure, we obtain an IFEL

design with >70% efficiency which is a respectable number for a laser accelerator,

quite comparable with the typical efficiency of RF accelerating structures. The

result of the simulation are shown in Figure 3.11. Again we see a nearly constant
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Figure 3.13: Output e-beam and laser parameters versus input e-beam rms spot

size, scaling the emittance to keep the divergence constant, for an standard, un-

compensated undulator taper design.

final energy for various beam currents; however this time, the relaxed tapering

towards the undulator’s exit allows for acceleration of a larger beam current.

One of the major limitations to the efficiency comes from the fact that the

electron beam has a much smaller transverse size than the laser beam in order

to experience a nearly constant accelerating gradient. Due to this mismatch, the

radiation is not absorbed homogeneously across its transverse cross section. The

laser acquires a higher order transverse mode as it propagates while an intense

electron beam basically burns a hole in the center (see Figure 3.12).

In order to achieve maximal power transfer one must strike a balance between

electron and laser beam sizes. Figure 3.13 shows the performance of the earlier

discussed accelerator with uncompensated tapering design as the electron beam

size is varied. In order to reduce the effects of increased divergence, the emittance

was scaled to maintain a constant spot size for each point in the scan. As the

beam is made small, the current density explodes, and the power absorbed quickly

depletes the on-axis laser intensity. The interaction is halted, despite the on-axis

intensity later being replenished by power in the tails, as the pondromotive gradi-

ent becomes insufficient to continue accelerating a significant fraction of particles.

Large e-beam sizes cause degradation due to the low intensity off axis there. A

67



compromise is found by balancing tradeoffs for an intermediate sized beam.

In recirculating laser schemes where in order to increase the efficiency the laser

power is replenished by a laser amplifier, it will be important to introduce optical

elements in the recirculating cavity to restore the transverse profile before reusing

the power for IFEL acceleration.
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CHAPTER 4

Experimental design and setup

The experiment detailed in this dissertation was designed to achieve energy gain

and accelerating gradient significantly larger than what is possible with conven-

tional RF accelerator technology to pave the way for applications such as portable

drivers for inverse Compton sources and FELs [49]. The experiment was conceived

to bring together the two major groups active in IFEL research, combining ATFs

electron beam and high power CO2 laser system with a strongly tapered heli-

cal permanent magnet undulator designed and built at UCLA to achieve high

gradient acceleration and significant energy gain. Previous IFEL experiments at

Brookhaven National Laboratory’s Accelerator Test Facility (ATF) [23] success-

fully demonstrated staging and narrow energy spread while the UCLA Neptune

IFEL experiment achieved high gradient acceleration in excess of 70 MeV/m [24].

This chapter presents an overview of the experimental design and setup. We

first discuss the design parameters. When designing a new experiment, it is often

tempting to push the designed performance to the limits of possibility. A hard

lesson learned was that pushing those limits also reduces the chance of success,

especially when designing an experiment for a remote facility where beam time

is scarce and must be used wisely. Unexpected deviations in some parameters

necessitated a second undulator tune optimized for high capture. Consequently,

two undulator configurations are presented for two subsequent experiments: the

first tune was designed for high energy acceleration while the second was designed

for high capture.
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After discussion of the undulator design, construction, and measurements, we

introduce the design of a prebuncher for a subsequent experimental run with the

aim of signficantly increasing the fraction captured. Finally, we introduce the

ATF linac and CO2 laser system, and discuss electron beam and laser transport

and diagnostics.

4.1 Design parameters

The stated experimental goal was to achieve significant acceleration within a

meter-scale IFEL by utilizing modest investment and available resources. The

Brookhaven ATF is perfectly suited for this experiment as it has a linac capable

of producing stable, high-quality beams and a CO2 laser capable of producing

terawatt peak powers. A summary of the initial undulator design parameters is

shown in Table 4.1.

Parameter

E-beam energy 50 MeV

Laser wavelength 10.6µm

Laser peak power 450 GW

Laser waist 0.25 m

Laser Rayleigh range 9.6 cm

Undulator length ∼ 50 cm

Magnetization 1.22 T

Resonant phase π/4

Table 4.1: Experimental design parameters

The linac at ATF produces stable beams with controlled emittance for energies

between 45 and 70 MeV. The input energy for the experiment was chosen to be

50 MeV, to allow for stable, low emittance operation and to allow for significant
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acceleration before hitting the radiation shielding limit of the ATF experimental

hall at 120 MeV. In order to account for a finite output energy spread of the

beam (which may be as large as the ponderomotive bucket height of several MeV),

the accelerator resonant energy output was chosen to be around 115 MeV. The

undulator length was chosen to be half of a meter for compactness and in order

to achieve ∼120 MeV/m accelerating gradients—competitive with state of the art

x-band RF accelerating cavities.

The peak power of the ATF’s CO2 laser system at the time of the experiment

was roughly 1 TW [50]. Since having a larger than design laser power relaxes

alignment and timing tolerances so the undulator tapering was designed assuming

a peak laser power of 450 GW in order to account for expected large variances

in laser power and ensure successful operation. Furthermore, the transverse laser

mode quality parameterM2 was assumed to be 1.5 to take into account the flatness

of the laser spatial profile coming out of the amplifier. In the previous chapter, we

saw that the average accelerating gradient using a TEM00 mode Gaussian laser

is maximized when the laser’s waist is placed near the center of the undulator

and the Rayleigh range is chosen to be about 1/5 of the undulator length. With

these considerations in mind, the experiment’s Rayleigh range was chosen to be

9.6 cm. Virtually all of the laser power is contained within three times the laser

waist which in this case is 4.5 mm at the undulator’s ends. This value set the

aperture of the vacuum chamber inside the undulator to >13 mm.

A final consideration is the peak current of the accelerating e-beam which is

typically 100 A without compression at the ATF. If the power transferred from the

drive laser to the accelerating e-beam is significant, the available laser power will

decrease along the interaction and may need to be compensated in the tapering

equations. For a conservative estimate, we may assume that the entire e-beam

is accelerated during the process. The power transferred from the laser to the

electrons is the product of the e-beam current and change in energy per elementary
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charge or about 6 GW. This estimated upper bound is about 1% of the expected

peak laser power and therefore negligible.

There are many creative possibilities for undulator design: permanent magnet

undulators, electrostatic undulators, electromagnet undulators, radio frequency

undulators, and laser undulators for some examples. Electrostatic undulators,

while attractive due to ease of construction and tuning, suffer from breakdown

limits limiting their peak field strength and coupling factor. Electromagnetic un-

dulators offer similar benefits as electrostatic undulators but without the break-

down, yet they require a multitude of power supplies to tune easily and care must

be made to avoid field saturation within each yoke. Radiofrequency undulators

may offer large fields and short periods but are current avenues of research, ex-

pensive, and may be hard to taper. Laser undulators are conceivable but require

expensive lasers, which nonetheless produce field strengths which jitter too much

for stable resonance, and wavelengths not suited for operation at 50 MeV.

The permanent magnet undulator [51] is a natural choice for IFEL design as

it is cost effective, has a stable field with strengths approaching 1 T on axis,

and gives fine control to the field and period tapering along the undulator. The

next question is then whether to taper the period, the field, or both. Recall

that the on-axis field strength is related to the period and gap by an undulator

builder equation. If the period is kept constant, the gap would have to decrease

along the undulator in order to increase the on-axis field and resonant energy.

This choice would limit the final resonant energy, change rapidly the focusing of

the undulator, and introduce problems with wakefields if the gap becomes too

small. A reasonable choice then is to keep the gap constant and take advantage

of the increase of field and undulator parameter K as the period grows to ease the

physical design and construction of the undulator.
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4.2 Tapered helical undulator

To design the undulator we follow the steps for the constant gap and resonant

phase outlined in the 1 GeV example in the previous chapter using the parameters

available for the experiment. A necessary modification to the design laser focusing

decreased the efficiency of the experiment with the original undulator tapering

design so for a second experimental run, we designed a second taper by varying

the magnetic gap to manipulate K throughout the undulator for increased beam

capture efficiency at the expense of some energy gain. Consequently throughout

this section, we will discuss magnetic and mechanical design, construction, and

measurement for the two undulator tapers, referring to the first as “high gradient”

and the second as “high capture”.

4.2.1 High gradient taper design

The undulator tapering Equation 2.43 along with the undulator builder equation

2.44 and the design parameters listed in Table 4.1 determine the undulator taper-

ing. The only free parameter in the design is the choice of the resonant phase to

determine the final energy and fraction of electrons accelerated to full energy. For

this experiment, we chose a resonant phase of −π/4 as a reasonable compromise

between the accelerating gradient and fraction captured since the resonant parti-

cle still accelerates at sinπ/4 ≈ 70% of the maximum possible gradient and the

phase width of the bucket is relatively large. The solution to the equations with

the design parameters is shown in Figure 4.1.

The 1D equations of motion (Equations 2.16 and 2.23) with the design pa-

rameters and undulator K and wavelength profiles shown in Figure 4.1 were then

solved with an ensemble of longitudinal particle coordinates ψ and γ to simulate

the output beam phase space. The input particle phases was uniformly distributed

over the interval 0 to 2π while their energies were normally distributed around
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Figure 4.1: The Rubicon design tapering is the solution of the tapering equations

and the design parameters listed in Table 4.1.

Parameter

Number of periods 11

Total length 54 cm

Wavelength λu 4.00 → 5.93 cm

Field 5.4 kG → 7.4 kG

Undulator K 2.0 → 4.2

Resonant energy 50 → 115 MeV

Table 4.2: High gradient run undulator parameters

the input resonant energy of 50 MeV with an rms width of 0.15%. The particle

coordinates at the end of the undulator revealed that as much as 50% of the beam

should be accelerated from 50 to 115 MeV with an rms energy spread of 1.4% and

a bunching factor of 0.9 for the accelerated fraction of the beam. As a first look,

this performance is promising, but the 1D model ignores transverse dynamics and

assumes a continuous change for the undulator parameters.

In anticipation of constructing the mechanical undulator, we discretized the

period. This was done by sampling the first period λw,0 = λw(0), and then

sampling subsequent periods as λw,n = λw(zn) with zn =
∑n−1

i=0 λw,i for zn < 0.5 m.

The net result is 11 periods spanning a total length of 54 cm. The effect of

the period discretization will be taken into account later in this section but will
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ultimately be shown to not significantly effect the performance.

4.2.2 High capture taper design

As we will discuss in the following chapter the best experimental result obtained

with the design tapering was the acceleration of 52 MeV electrons up to 106 MeV

[52]. Not only the highest energies observed fell short of expectation by at least

10 MeV, but also the accelerated spectra had such large energy spreads that it was

difficult to imagine the accelerator producing anything close to a monoenergetic

beam. Obviously, these results dampen the attraction of the IFEL as a candidate

for a future stable accelerator facility.

The dominant reason for the lackluster performance was a mismatch between

design and experimental laser focusing. The undulator was originally designed for

use with a 9.6 cm Rayleigh range CO2 laser. Unfortunately after construction, it

was discovered that beam line space constraints and a restricting dipole aperture

just upstream of the undulator necessitated a laser Rayleigh range closer to 30 cm.

While the increased Rayleigh range had the positive benefit of easing transverse

overlap tolerances by increasing the laser spot size, it reduced the on-axis intensity

threefold, thereby significantly limiting accelerating gradient where it was needed

most. Consequently, the resonant fraction of the beam decreased dramatically

near the center of the undulator.

In order to improve the efficiency of the interaction, either the laser focusing

had to be changed to match the undulator design or the undulator tapering needed

to be modified to match the laser. The former proved to be costly as the dipole

gap would have to be increased and impractical since due to the experimental hall

layout, the focusing optics would have to be placed in the middle of a walkway,

blocking access to vacuum equipment and interlock systems. The solution chosen

was to redesign and rebuild the undulator to accommodate the more relaxed laser
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focusing.

Of course with the undulator already manufactured, the variation of the pe-

riod along the undulator could not be altered. In order to relax the resonant

energy gradient, we decided to vary the gap between opposing magnets within

the undulator. This extra degree of freedom enabled us to change the undulator

strength K while maintaining the same period tapering.

Parameter Value

E-beam energy 50 MeV

Laser wavelength 10.3µm

Laser focal intensity 4 TW/cm2

Resonant phase π/4

Rayleigh range 25 cm

1/e2 spot size 0.91 mm

M2 1.07

Laser waist position undulator midpoint

Table 4.3: High capture run experimental design parameters

The undulator tapering is then determined by Equation 4.1 which is found by

equating the ponderomotive gradient with the gradient in the resonant energy.

When the undulator period and laser parameters are specified along with the

initial condition that K at the entrance be such that the resonant energy is equal

to the input beam’s 50 MeV, the differential equation yields K which in turn

determines the on-axis field strength along the undulator.

dK

dz
= −

8πKlK sinψr + dλu
dz

(1 +K2)

2λuK
(4.1)

The undulator builder equation can then be used to estimate the gap along

the undulator needed to create the designed on-axis field. In practice, 3D magne-
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Figure 4.2: The undulator parameters for the high capture taper design are shown

left while the dynamical quantities are shown right.

tostatic simulations were used determine the exact gaps required to achieve the

designed K. The measured laser and e-beam parameters used in the tapering

design are specified in Table 4.3. The design parameters were revised from ear-

lier estimates to reflect measurements from the previous experimental run. For

example the Rayleigh range was previously estimated to be 25 cm as measured

by a scan of the evolution of the laser’s transverse profile along the undulator.

Futhermore, we measured an M2 value of 1.07 which was also used in the design.

The taper design process involved repeatedly calculating a taper and then

assessing its performance using simulations with the expected parameters. The

design resonant phase and laser peak focal intensity dictating the accelerator’s

performance were set to be −π/4 at 4 TW/cm2 in order achieve full acceleration

by operating well within the capabilities of the laser and softening alignment

tolerances.

4.2.3 Mechanical design

The helical undulator used in the experiment is the first ever strongly period-

and field-strength tapered permanent magnet undulator with a helical geometry.

The mechanical design is based on the UCLA helical undulator design which was

successfully developed for twisting an electron beam so that it could be used
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for the generation of orbital angular momentum light [53, 54]. The undulator is

composed of the superposition of two orthogonally oriented permanent magnet

Halbach undulators each with four magnets per period and shifted by a quarter

of a period relative to each other [51]. Strong tapering varies the resonant energy

allowing for high gradient acceleration. The helical trajectory of the electrons

traveling through the undulator coupled with a circularly polarized laser offers

continuous acceleration as the electrons undulate in a helical motion about the

undulator’s axis resulting in more than twice the gradient of a planar undulator.

Whereas the transverse profile of all of the magnets are identical for ease of

manufacturing, the undulator magnets’ thicknesses are determined by the undula-

tor period, which in turn is determined by the IFEL tapering equations derived in

Chapter 2. Each magnet in a given period has identical dimensions and magneti-

zation, and rotating polarizations as prescribed by the Halbach design. The choice

of constant transverse dimensions (magnet shape and gap) along the undulator

ensures that the period alone determines the on-axis field. An undulator builder

equation gives an approximate relation between undulator period and normal-

ized vector potential, and the builder equation for the helical Halbach permanent

magnet undulator was reported by Equation 2.44.

The Rubicon undulator utilizes a thin pipe inserted into the gap between mag-

nets to maintain high vacuum. Aluminum was chosen for the pipe’s material for

its low magnetic susceptibility. On the other hand, flanges for beamline connec-

tions are typically made of steel since the material’s hardness preserves the shape

of the knife edge used for cutting into copper gaskets in order to seal the vacuum.

Since aluminum does not weld easily to steel, aluminum-steel blast formed flanges

were used. The pipe geometry was chosen to have an inner diameter of 13 mm

for reasonable vacuum conductance and a wall thickness of 0.5 mm in order to

keep the magnet gap as small as possible while maintaining reasonable structural

integrity. The magnet gap was chosen to be 15 mm, leaving 500 µm on each side

78



Figure 4.3: Engineering model of the partially assembled undulator body.

Figure 4.4: Engineering model of the undulator rails with magnets.
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Figure 4.5: Engineering model of the undulator magnet holders and tuning plates

assembly.
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Figure 4.6: Magnet model with dimensions in mm.

for magnet tuning.

To ease manufacturing costs and design, the undulator magnets are all the

same shape and vary only in their thickness. All are NdFeB magnets with a

residual magnetization of 1.22 T and EDM (electrical discharge machining) wire-

cut with 50 µm precision to 33 mm on the major axis and 25 mm on the minor axis

with the last 8 mm of the side nearest the beam linearly tapered from 25 to 12 mm

as shown in Figure 4.6. Additionally, entrance and exit periods were designed to

keep the axis of the helical motion of the electron beam centroid centered on the

laser [34]. The scheme uses blocks with thicknesses λu/8 and λu/16, each spaced

by λu/4 at the entrance and exit of the undulator. As a result, the thinnest

magnets used were 2.5 mm thick.

4.2.4 Construction

The magnets were ordered from a company specializing in producing permanent

magnets with high residual field strength and coercivity. Each magnet was wire

cut from a large cylinder of NdFeB with 1.22 T magnetization and ≥ 1990 kA/m

intrinsic coercivity into a uniform shape with thicknesses of a quarter undulator

period to within a precision of 50 µm. The pole faces on one side of each magnet
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were tapered to increase the magnetic flux density near the beam by allowing

the gap between nearby magnets to reduce without collisions. The magnetization

of each magnet was chosen to either point normal to the smallest (tapered end)

or largest faces. Magnets with magnetization normal to the smallest face and

pointing outward away from the magnet are referred to as up magnets while those

pointing inward are down magnets. Those polarized so that the magnetization is

normal to the largest face are referred to as in/out magnets. Each period is made

from 4 up magnets, 4 down magnets, and 8 in/out magnets whereas the entrance

and exit sections were each composed of 2 up and 2 down λu/8 magnets, 4 in/out

λu/16, and 1 up and 1 down λu/4 magnets. The number of magnets ordered was

twice the number needed to allow for spares in the event that some were damaged

during construction.

The 100% excess of magnets allowed us to perform additional selection cuts

to choose magnets with the least variance. First, each magnet was inspected for

visual defects. Occasionally, magnets had chips on their sharpest edges due to

the brittleness of NdFeB. The largest chips affecting >2 mm and were discarded.

Magnets with the deviation of the magnetic moment’s axis from the mechanical

axis greater than 2 degrees were also eliminated from the selection. The mean de-

viation was 1.36 degrees and standard deviation was 0.47 degrees. The requested

remnant field strength tolerance was better than 2% deviation from 1.22 T. Spe-

cially designed brackets were used to position an axial hall sensor at a region of

minimal field gradient transverse to the polarization, and the field of each mag-

net at that position was measured. The mean of the field measurements at these

positions for each set of identically designed magnets was then calculated, and

magnets with measurements closest to the mean for their group were selected.

For these measurements, all of the magnets were less than 2 standard deviations

from the means of their groups. The standard deviations for each group varied

from 0.3 to 1.1% of the mean but was typically 0.5%.
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The surfaces where the magnets and holders interface were first cleaned with

acetone to remove oil. Alternatively, isopropyl alcohol is a better choice since the

acetone removed some of the protective coating leading to a bit of localized rusting

on the surface of some of the magnets. The holder surfaces were then roughened

with coarse grit sandpaper and scored with a razor to increase the surface area

available for the epoxy to bond with. The magnets were epoxied in their holders

and placed in an oven for 2 hours between 50 and 60 ◦C and then allowed to cool

for at least 48 hours. The annealing procedure was recommended by the epoxy

manufacturer to increase the shear strength of the bond with etched aluminum

by 50% [55]. Furthermore, there is evidence that thermal treatment improves the

radiation resistance of NdFeB magnets [56]. The oven temperature throughout the

annealing process was kept well below the Curie point of NdFeB (about 300 ◦C),

and the magnetization of a test magnet was found to remain unchanged even

after an integrated total of more than a week of continuous baking. The magnets

polarized transverse to the beam have a large force pulling them in towards the

pipe. Caps were bolted into the holders of these magnets, pinning the magnets in

place to prevent catastrophic damage to the pipe or other magnets in the unlikely

event of an epoxy bond failure.

The undulator was entirely designed and built at UCLA. Drawings for the parts

were made using SolidWorks, computer aided design software. The undulator

body and magnet holders were all manufactured to within a 50 µm tolerance by

the UCLA machine shop. The main body of the undulator is composed of 4 rails

held in place by circular 3/4 inch plates at each end. Each rail has teeth creating

slots for each magnet and was pinned to the end plates to ensure that they were

parallel so that the magnet holders could be inserted in the slots between the

rails. Each period has 4 modules of 4 magnets attached to a plate by a standard

#4-40 bolt. These modules were installed into the slots between the rails, covered

by an additional plate sandwiching the bolt heads, and bolted to the rails. This
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assembly was attached to a frame made of two end plates connected to each other

by a base plate. In order to maintain good vacuum while transmitting the laser,

the electron beam is transported through a thin aluminum pipe which fits within

the 15 mm gap between undulator magnet poles. With the rails removed, the

four end plates were sandwiched together so that the pipe could be inserted and

welded to the flange.

4.2.5 Magnetic field modeling

The tapering solution describes the desired on-axis undulator field for efficient ac-

celeration given the design parameters. Realizing that field can only be achieved

after careful modeling of the fields generated by the physical undulator’s perma-

nent magnet array. The undulator builder equation is a good first step, yet it can

not capture the full complexity of the problem and ignores the tapered ends of

the designed magnet blocks. As a next step to modeling the field, we used Radia,

a 3D magnetostatic field solving code developed by the European Synchrotron

Radiation Facility to design insertion devices for synchrotron light sources [57].

Index Period (mm) Index Period (mm)

1 40.0 7 51.9

2 41.1 8 54.9

3 42.3 9 56.9

4 43.9 10 58.3

5 45.9 11 59.3

6 48.6

Table 4.4: Undulator period lengths

As described earlier, we discretized the undulator period profile by sampling

the design undulator wavelength every period. The resulting list of periods (see

Table 4.2.5) became the layout plan for a three dimensional model of the magnet
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Figure 4.7: Undulator geometry for the Radia model.

array. From the on axis field profile which is then obtained, one can calculate the

undulator parameter K and resonant energy along the undulator from the norm

of the on-axis magnetic field.

Once the on-axis field is sufficiently close to design, the fields must be ad-

justed slightly in order to keep the trajectory of the electron beam on-axis.

The velocity may be calculated from the first integral of the on-axis fields as

γmdxi/dt = (−1)iq
∫
dz′B3−i(z

′) whereas the trajectory may be approximated

assuming ultra relativistic electrons (dz/dt ≈ c) by the second integral as xi =

(−1)i q
mc

∫
dz 1

γ

∫
dz′B3−i(z

′), where i = 1, 2 correspond to the x and y coordinates.

The increase in field amplitude causes the integral over each period to be nonzero,

causing a deflection which grows for each period. If the field amplitude gradient

is strong enough, the resulting deflection may become roughly the size of the laser

waist causing the interaction to suffer from lower laser intensity off-axis.

In order to eliminate the trajectory walk-off, we modified the magnet gaps by

slightly decreasing the gaps of the first two magnets in each period and increasing

the gaps of the last two. This made the field within each period more uniform

by increasing the magnetic field at the beginning of each period and decreasing it

at the end of each to oppose the otherwise positive gradient in the magnetic field

and compensate the trajectory deflection.
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4.2.6 Geometrical measurements and initial tune

The mechanical design of the undulator offered the possibility of tuning individu-

ally each of the permanent magnet blocks. As a first step to tuning the undulator,

we initially positioned each magnet so that the gap between magnets matched the

design. For the high gradient configuration, the gap was made to be a constant

15 mm by backing the magnets out completely, measuring their initial heights

from the tuning plate, and then calculating the number of turns of the tuning

bolts for each magnet to achieve that gap. The heights of each magnet sitting

in their holders vary by hundreds of microns due to varying thicknesses of the

epoxy resin used to bond the magnets to their holders. Some pitfalls of this ap-

proach were later realized. First, the tuning bolts have about 1/8 of a turn play

before moving the magnets. Since we used #4-40 bolts, this introduced a system-

atic error of about 80 µm with some additional variance due to the possibility of

changing directions. Another source of error came from assuming that the rails

which the magnets sit in were perfectly straight. As a result, the gap of the initial

tune varied by hundreds of microns for each magnet, causing the field to deviate

from design and necessitating significant trajectory corrections.

The results of the first experiment left room for improvement and motivated

a subsequent experiment using the same undulator but with a different tune as

mentioned earlier and will be discussed in detail in the following chapter. Having a

chance to retune the undulator enabled us to improve upon the initial geometrical

magnet tune by learning from previous mistakes. For this second high capture

undulator tune, we increased the precision of the geometric tune by increasing the

number of measurements of the physical geometry.

The undulator magnets are held in place by bolts which provide fine tuning

of the gap over a range of a couple mm; however since the half gap needed to

be increased by about 2.2 mm towards the undulator’s exit, three 0.8 mm thick
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aluminum shims were introduced to increase it by 2.4 mm. Measurements of the

local shim thicknesses, height of each magnet from pole face to tuning plate (which

varied due to random epoxy interface thicknesses), average rail widths for each

period (which bowed under the pressure of the inserted magnets), facilitated a

calculation of the overall initial half-gap, or distance of each magnet’s pole face

from the geometric axis when retracted fully. The results of these measurements

and each magnet’s calculated initial half-gap are shown in Figure 4.8 along with

the design half-gap.

As mentioned in the previous section, changing the gaps of the first and last two

magnets of each period slightly from design helps to keep the e-beam trajectory

oscillating about the geometric axis. Since thread tolerances cause up to 80 µm

play as each bolt was turned, we placed a hall sensor on axis near each magnet

before moving to detect movement as its corresponding bolt was turned before

recording the degrees turned. Furthermore, care was taken to only drive the

magnets in one direction to reduce this lag error during tuning.

4.2.7 1D field measurement setup

After the initial magnet placement, we measured the on-axis fields to assist tuning

the undulator and to estimate the accelerator’s performance. A motorized hall

probe system shown in Figure 4.9 was developed to automate scans of the on-axis

transverse magnetic field profile. The hall probe was attached to a threaded brass

rod via a Teflon carriage and driven by a stepper motor through a brass pipe

which was held in place by irises attached to either end of the undulator. This

allowed for reproducible measurement step sizes of as large as 1.5 mm, or about

30 measurements per period, which was chosen as an upper limit to measure the

peak field to better than 0.1%. The stepper motor was calibrated by measuring

the number of steps required to move the brass rod 70 cm.
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Figure 4.8: Various geometric measurements of the undulator and magnets are

shown above. Vertical and horizontal magnets are color coded as shown in the

bottom right figure.
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Figure 4.9: Undulator field scan setup.
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A fixed current source supplied the hall effect sensor with stable current of

50 µA while a digital multimeter measured voltage to a precision of about 0.004%.

The hall sensor magnetic field response was determined to be 109.6 G/mV when

calibrated with a reference magnet. Deviation from linearity in the range of

0.8 kG to 9.6 kG for positive and negative polarity was measured with two strong

magnets arranged in a Helmholtz geometry and corrected for in the resulting scans.

Measurements were automated with LabVIEW, a system design software, which

was instructed to pause between motor drives to allow vibrations to damp. The

software was configured to measure the field several times and then calculate the

mean and standard deviation to evaluate the uncertainties in the measurement.

4.2.8 Undulator tuning

The field scans guided the tuning. Each magnet holder was connected to plates by

a single #4-40 bolt as shown in Figure 4.10. Adjusting the bolt allows the magnet

to travel in a slot between the undulator rails, thereby modifying the magnet gap.

Each magnet was first tuned into place geometrically as described earlier. The

gaps between magnets were then tuned simultaneously to achieve a less than 0.1%

rms deviation with the Radia simulated field profile. The measured fields for the

transverse directions are shown in Figure 4.11.

Integrals of the measured fields were calculated in order to estimate the mean

velocity and position of the electron beam as it traverses the undulator and are

shown in Figure 4.11. It is desirable to keep the electrons from deviating too far

from the axis and out of the center of the laser radiation. The largest predicted

electron beam undulation radius was estimated to be about half the expected

minimum laser waist of ∼1 mm near the undulator’s exit. A further goal of

minimizing the deflection was met, and the exit angle was estimated to be less

than 1 mrad.

89



#4-40 tuning 
bolts 

Hole in tuning
plate allows

access to bolts

Bolts secure
tuning plates

Magnet rail

Tuning 
plates

Figure 4.10: A cross sectional view of the undulator showing gap adjustment. The

magnet sits in a slot in the rails and attaches to the tuning plate by a single bolt

which can be adjusted to move the magnet in the slot.

Figure 4.11: Measured transverse magnetic fields and calculated transverse tra-

jectories (assuming a constant 50 MeV energy) for the high gradient undulator

tune. The trajectories are superimposed on top of the design laser waist for scale.
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Figure 4.12: Transverse scan of the vertical component of the magnetic field

measured at a peak within the undulator.

For the high-capture configuration, the fields were measured to be initially

systematically low by a couple percent. Magnets were then tuned slightly in

pairs, again moving the first two and last two pairs of magnets as groups, to

increase the field to that of the Radia simulations. Finally, the fields were finely

tuned to reduce the transverse kick and offset estimated by the first and second

integrals of the field for a 50 MeV e-beam. The final measured fields were found

to agree to within 0.5% rms of the Radia simulations.

4.2.9 3D magnetic field scans

To further investigate the undulator magnetic field, we performed scans of the

transverse fields in three dimensions with a 3-axis stepper motor assembly at

ATF using a LakeShore calibrated hall probe. The setup consisted of a Newport

stepper motor driven linear stage with 600 mm of travel and two transverse stages

with 1 or 2 cm of travel distance. The hall probe was inserted snugly into the

end of a hollow copper tube with approximate outer diameter of 4 mm. The tube

was attached to the stage and aligned so that the hall probe was centered on the

undulator’s axis to within a couple millimeters at the entrance and midpoint of

the undulator. Care was taken to keep the hall sensor surface’s normal less than
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Figure 4.13: The left plot shows the design and measured peak values of the final

tuned field while the right plot shows the positions of the saddle points measured

with the 3D field scan.

5 degrees from the desired undulator axis so that the measured field was at least

99.6% of the actual field, and a digital multimeter measured the resistance between

the copper tube and the undulator to detect collisions. The system was controlled

with custom ATF software built on top of a National Instruments framework via

Mathematica.

Scans were performed stepping forward longitudinally from the undulator’s

entrance, raster scanning transversely, and then repeating. For each point, the

field was sampled several times, and the median value was recorded. At each

longitudinal position, the field was measured on a grid bound by a circle with

fixed radius to avoid collisions with the beam pipe. The points were sampled in

a spiral with points near the circle’s center measured first to reduce scan times.

The result of each scan is a cylindrical lattice of field measurements which may

be interpolated.

There are 25 field peaks on-axis—22 corresponding to the 11 periods and 3

corresponding to the entrance and exit periods. Each peak is at a maximum with

respect to the longitudinal coordinate and at a saddle point with respect to the

transverse coordinates. Figure 4.12 shows a transverse slice of a 3D field map of

the magnetic field’s vertical component taken at the longitudinal position of one
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Figure 4.14: Measured and Radia field maps for the first 5 peaks.

of the 25 field peaks along the undulator. The saddle point is clearly visible near

the center of the plot and the field increases for transverse offsets towards the

similarly polarized magnets and decreases for excursions transverse to the pole

faces of these magnets as the distance to the magnetic moment increases. For

this peak, the field drops off twice as fast for horizontal offsets in x as it does for

vertical offsets in y.

The saddle points of the peaks offer position markers of the magnetic axis of the

undulator. Ideally, the electron beam should be centered on this axis for proper

focusing and for reducing higher harmonics sampled by the electron. Figure 4.13

shows the amplitudes and positions of the peaks for the first 6.5 periods—as far

as the stage could move the probe through the undulator. From the positions of

the peaks, it is clear that the probe trajectory was not aligned to the undulator

axis; however, the magnetic axis varied only 100 µm from a straight line in the

vertical plane and as much as 300 µ horizontally. The saddle point measurements

of the final tuned fields agree well with Radia, fluctuating about the Radia model

by typically less than a percent, whereas the 1D scan method with the hall probe

was systematically higher than the Radia model. Transverse field maps for the

first five peaks are shown in Figure 4.14 and the shapes of the measured field maps

very closely match their modeled counterparts.

Unfortunately, the lack of a long stage precluded our ability to scan the undu-

lator fully. On the other hand, the positions of the saddle points were relatively
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straight. If the probe’s trajectory could be manipulated with mechanical stages so

that it went straight through entrance and exit irises positioned coaxial with the

undulator’s geometric axis, these saddle points may be seen to lie on a straight

line. With that modification, this method could be part of a systematic scan

procedure for future helical undulators.

4.3 Expected performance

In order to estimate the accelerator’s expected performance, we used the measured

fields of the tuned physical undulator with the FEL simulation code Genesis 1.3

[48, 58]. The code simulates the particle motion in three dimensions and addition-

ally solves the radiation evolution on a transverse grid. The longitudinal motion

is solved with the FEL period averaged equations of motion [59]. Despite this

approximation, Genesis is well suited for modeling the FEL interaction and has

been used to guide the design of successful FEL experiments such as the LCLS

[60, 61]. Since it does not allow for arbitrary period tapering, we chained to-

gether Genesis simulations for each undulator period using the measured period

and K parameter from measurements [62]. Further, we verified that the results

of our IFEL simulations agreed well with Tredi [63], a code successfully used in

the design of the Neptune IFEL experiment [24].

Shortly before the experiment, certain parameters were changed out of ne-

cessity. First, the wavelength of the CO2 laser pulse was changed from 10.6 to

10.3 µm in order to mitigate temporal pulse splitting. Periodic rotational lines

in the gain spectrum applied during amplification produce a train of pulses, re-

ducing the peak power of the leading pulse. The gain spectrum was smoothed

out by adding an isotope of CO2 with slightly shifted energy levels and changing

the seed wavelength from the 10P branch of the spectrum (10.6 µm) to the 10R

branch (10.3 µm), which is more densely populated by rotational lines [50]. Since

94



the resonant energy varies inversely proportional to the square root of the laser

wavelength, the resonant energy along the undulator was uniformly increased by

1.4% as a result of this shift.

A second, more consequential change was due to the late realization that a

beam pipe aperture limited the spot size of the CO2 laser to about 27 mm at

a position 2 m upstream of the undulator. In order to transmit the entire laser

pulse energy without clipping on the restricting aperture, the Rayleigh range of

the laser was relaxed from 9.6 cm to about 25 cm. An unfortunate consequence

of this change was that the ponderomotive gradient was no long matched to the

resonant energy gradient set by the undulator tapering, leading to a decrease in

the expected fraction of particles accelerated to full power. On the other hand,

relaxing the focusing by a factor of three causes the waist to enlarge by a factor

of
√

3 making the alignment tolerances more forgiving.

Parameter

Initial energy 50 MeV

Initial energy spread 0.15%

Current 100 A

Normalized emittance 2µm

E-beam size at entrance 200µm

Laser peak power 500 GW

Laser wavelength 10.3µm

Rayleigh range 25 cm

Laser waist 910µm

Table 4.5: High gradient run simulation parameters

The parameters used in the simulations are summarized in Table 4.5. The sim-

ulated input beam was uniformly distributed in phase and normally distributed in

energy with a mean energy of 50 MeV and an rms width of 0.15%. The normalized
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Figure 4.15: IFEL output phase space and electron spectrum for 500 GW peak

laser power.

transverse emittance of the ATF e-beam was taken to be on the conservative side

of the nominal range of 1 to 2 mm-mrad. The focused electron beam spot size

at the entrance of the undulator was set to 200 µm which beamline simulations

performed using the Elegant accelerator code showed was just within the reach

of the quadrupole doublet. While the matched beta function at the undulator’s

entrance is half of the 1 m value used here, simulations showed that using a longer

beta function would not affect the accelerator performance significantly. Genesis

used the 100 A beam current and macroparticle distribution and calculate lon-

gitudinal space charge fields using a Fourier series approximation as well as to

calculate the reduction in laser field strength along the undulator due to the small

level of optical-to-electrical power transfer.

The resulting longitudinal phase space of the simulated output beam is shown

in Figure 4.15. The accelerated bunch is clearly separated from the background

and has a mean energy of 117 MeV with a relative energy spread of 2.5%. One

quarter of the particles remain trapped throughout the interaction, and the lengths

of the resulting microbunches were less than 1 fs rms. Simulations for various peak

laser powers were also performed in anticipation of laser power fluctuations. The

result of these simulations showed that the fraction of fully accelerated particles

increased with laser power from the capture threshold close to 300 GW to 26% at
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500 GW. For powers greater than 500 GW, fraction trapped saturates at about 1/3

of the beam accelerated. The energy spread increases with laser power as expected

since increasing laser power increases the ponderomotive bucket height, enabling

it to accommodate more particles throughout the interaction. It is important to

note that these simulations assume that the input e-beam bunch duration is small

compared to that of the laser so that the laser field strength felt by the bunch is

uniform.

Power 400 GW 500 GW 600 GW

Fraction accelerated 13% 26% 31%

Mean final energy 117 MeV 117 MeV 115 MeV

Energy spread (rms) 2.0% 2.5% 3.8%

Table 4.6: High gradient run simulation results

Time dependence was included by dividing the beam longitudinally by slices

each one laser wavelength long and separated by an constant integer number of

wavelengths. We used this method to simulate the temporal effects of the IFEL

process for the parameters in Table 4.5. Both beam current and laser power

temporal profiles were modeled as Gaussian with pulse lengths of 5 ps and 4 ps

respectively and coincident at the undulator’s entrance. The accelerated fraction

was 10% with a mean energy of 117 MeV and a fwhm energy spread of 1.7%.

When taking into account the finite pulse widths of the laser and e-beam, the

accelerated pulse had a reduced rms pulse length of 1.7 ps owing to the fact that

only the center part of the laser had a strong enough electric field to maintain

resonance. This result shows that it is important to keep the e-beam duration as

short as possible in order to maximize the observed fraction of fully accelerated

electrons. The shortest beam with reasonably stable relative charge fluctuations

produced at the ATF is about 1 ps fwhm with 100 pC charge. On the other hand,

the linac jitter at the ATF is estimated to be roughly 1 ps rms.
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4.3.1 High gradient taper design tolerances

The final energy of the accelerated electrons is insensitive to most input parame-

ters since the resonant energy is determined by the undulator tapering. Small de-

viations from the optimal parameters may cause fewer particles to remain trapped

and accelerate so the best figure of merit describing the accelerator performance

is the fraction of particles accelerated. A study of the tolerances in the input

parameters was performed by systematically varying the parameters in the simu-

lation from their optimal values. The simulations here are time independent so the

predicted values only hold for short electron bunches, yet the resulting parameter

ranges are useful regardless of bunch duration. The results of these parameter

scans are listed in Table 4.7.

Parameter 20% capture 10% capture

Input energy 49.8 − 53.7 MeV 49.1 − 54.9 MeV

Laser power > 440 GW > 370 GW

Transverse beam offset < 260µm < 480µm

Rayleigh range < 30 cm < 37 cm

Focal position (rel. to center) -11.8 − 1.2 cm -16.8 − 7.7 cm

Table 4.7: High gradient run parameter tolerances

Restrictions on the input energy are limited by the ponderomotive bucket

which is centered on the resonant energy. Particles injected significantly lower

than 1 MeV below the design input energy of 50 MeV never accelerate to full

energy. On the other hand, particles injected above the resonant energy find

themselves in resonance further along the undulator, and 10% of the particles are

still accelerated when injected 5 MeV above resonance.

Transverse beam offsets were introduced into the simulations in order to es-

timate acceptable alignment tolerances. Failure to fully cancel dispersion along

bends in the ATF beam line may introduce positioning jitter as the output energy
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of the linac varies due to phase jitter in the rf power supply. We usually observed

transverse pointing jitter of <50 µm and occasionally as high as 150 µm near the

undulator’s entrance. Furthermore, the undulator, laser, and e-beam are difficult

to coalign to better than a couple hundred microns. The simulations show that

these offsets should not be expected to significantly affect the fraction captured

and that it would take offsets of at least 0.5 mm to completely extinguish the in-

teraction. Of course these results hold for 500 GW, while lower laser powers will

shrink the tolerable range of transverse offsets. The combination of alignment

errors and pointing jitter make the larger laser spot size of ∼1 mm especially

attractive. In a demonstration experiment where time and resources are rather

limited, it is very desirable to keep the laser waist close to a millimeter in order to

ensure the expedient success of the experiment. On the other hand if designing a

dedicated IFEL accelerator facility, one could envision that it may be more prac-

tical to take the time to finely control these variances for larger gradients from

the more tightly focused laser and more stable operation.

Since the experimental laser Rayleigh range is not equal to the design value,

the ponderomotive gradient evolution will not match the resonant energy gra-

dient set by the undulator. As a consequence of the gradient mismatch, the

effective resonant phase of the accelerating beam changes according to ψr,eff =

sin−1(K−1
l Kl,design sinψr,design). One consequence of the resulting rapid change in

resonant phase is that the particles no longer symmetrically rotate about a fixed

point, but begin to slosh around in the extremes of the bucket at the synchrotron

frequency. Near the laser waist where Kl is significantly less than Kl,design, the

bucket shrinks and particles in this region begin to detrap. In order to reduce

the number of particles lost in this region, it is helpful to place the waist near a

phase of the synchrotron oscillation where the energy spread is maximal in order

to make the height of the bucket more accommodating.

Since the synchrotron period over the first half of the undulator is about 25 cm,
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Figure 4.16: Fraction of accelerated particles vs position of waist relative to the

undulator’s midpoint. The optimal laser waist position is about 7.5 cm upstream

of the undulator’s midpoint.

the electrons have maximal energy spread about 19 cm into the undulator (3/4 of

a complete synchrotron rotation) or 8 cm upstream of the undulator’s midpoint.

Figure 4.16 shows the fraction captured as the position of the waist is scanned

relative to the undulator’s midpoint. The fraction captured is maximized when the

waist is placed 8 cm upstream as expected. In the next section of this chapter,

a revised version of this experiment with matched gradients is devised, largely

eliminating the benefit in this shift of laser waist positioning.

Accelerated electrons steal energy from the laser and reduce the electric field

available for acceleration, and too much laser depletion may lead to detrapping

late in the interaction. The electron beam produced at the ATF has a current

of 100 A largely independent of beam charge. By energy conservation, the power

lost by the laser is equal to the power gained by the electrons, and assuming that

half of the 100 A beam is accelerated to 50 MeV, merely 5 GW of power or ∼1%

of the laser power is absorbed.
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Figure 4.17: High capture simulation with 18 TW/cm2 focal intensity laser.

4.3.2 Performance estimates for high capture taper

Simulations were performed with the 3D IFEL code TREDI and are shown in

Figure 4.18 for a 50 MeV input e-beam, laser focusing parameters listed in Ta-

ble 4.3, and 18 TW/cm2 laser focal intensity corresponding to 250 GW power

and 1 mm minimum waist. TREDI solves the Lorentz force equations rather

than averaging the motion of the electrons over an undulator period [63] and was

previously bench-marked against IFEL experimental results in planar undulators

[24]. The simulation includes time dependent effects, and the 1 ps long e-beam

and 4.5 ps laser pulse are synchronized at the entrance to the undulator. The

simulations show that for the expected experimental parameters, as much as 43%

of the beam is captured and accelerated to energies greater than 90 MeV. The

accelerated beam has a mean energy of 94 MeV, rms energy spread of 2.3%, and

is microbunched at 10.3 µm.

One of the benefits of the relaxed tapering is the relatively modest requirements

on the laser performance. Figure 4.18 shows how the maximum particle energy

varies as the input laser focal intensity is increased with the same focusing. For

sufficient intensity to fully accelerate electrons, the maximum energy can be seen

to increase with the square root of the intensity as the bucket height scales with the

laser field amplitude. While the laser focal intensity was previously seen to usually
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Figure 4.18: Maximum particle energy (solid) and fraction of beam with energy

greater than 90 MeV (dashed) as a function of input laser focal intensity.

exceed 15 TW/m2, the threshold for acceleration to 90 MeV for the measured

undulator is merely 5 TW/cm2. This suggests that full energy acceleration should

be obtained for most shots. Furthermore, a quarter of the electrons are accelerated

to energies greater than 90 MeV when the intensity is doubled to 10 TW/cm2.

These modest requirements on laser intensity for full acceleration opens the door

to studies of the accelerated beam’s properties.

This design approach led to the development of the first strongly period-,

field-, and gap-tapered helical undulator and resulted in the first demonstration

of output energy tuning in an IFEL accelerator as described in the next chapter.

The design achieves efficient acceleration without prebunching by matching the

ponderomotive and resonant energy gradients along the length of the interaction

for the measured laser parameters.

4.4 Prebuncher design for better trapping

The next step toward improving the efficiency of the Rubicon IFEL accelerator is

to prebunch the input electron beam in order to increase the trapping efficiency.

The fraction of injected charge which is accelerated to high energy is limited for
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an electron beam with a uniform temporal distribution. Since different parts of

the beam initially experience different phases of the ponderomotive wave, parts of

the beam are accelerated while other parts are decelerated. If the resonant energy

changes violently—that is, fast compared to the synchrotron period—particles

with low energies may be lost. In order to increase the efficiency of the accel-

eration, it is necessary to prebunch and match the e-beam into the accelerating

bucket. All optical accelerators benefit from this approach and prebunchers have

been used in previous IFEL experiments to enhance their performances [23, 64, 65].

Generally, prebunching is accomplished by first imprinting a periodic energy

modulation onto the electron beam and then applying R56 to convert the energy

modulation to a density modulation. The simplest approach is to simultaneously

apply energy modulation and R56 by using a low intensity seed with an undulator

long enough for a quarter synchrotron oscillation so that the electrons are nearly

maximally bunched. The low intensity seed ensures that the energy spread of

the resulting bunch is small compared to the accelerator’s acceptance so that the

particles may be concentrated near the center of the bucket. A drawback to this

approach is that the longitudinal emittance is greatly diluted as the rotated phase

space occupies more phase space. Shortening the energy modulator section and

using a chicane enables compression with reduced energy spread while simultane-

ously providing control of the particle’s phases. The reduced energy spread and

phase control enables injection into a ponderomotive bucket at a larger accelerat-

ing phase. Other more elaborate and effective bunching strategies are mentioned

in Section 2.3.3.

We used the scheme of an energy modulator followed by a magnetic chicane

for the Rubicon IFEL prebuncher, shown in Figure 4.4. The energy modulator

consists of a single 50 mm period planar Halbach permanent magnet undulator

[51] with NdFeB magnet blocks of 1.22 T magnetization and gap between opposing

magnets chosen to be 17.5 mm in order to set the on-axis field strength such that
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a) b) 

Figure 4.19: The figure above shows two views of the prebuncher module. a)

A view of the partially assembled prebuncher shows the tuning plates and end

iris for the aligning the hall-probe to the undulators axis for field scans. b) The

prebuncher is shown with magnets inserted. On the left hand side of each pic-

ture is the energy modulating undulator while the right side of each shows the

phase modulating chicane with motor assembly for adjusting the gap during the

experiment.
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the resonant energy coincides with that of the electron beam. The amplitude of the

energy modulation is smaller than the height of the bucket for the IFEL accelerator

so that particles fit within the resonant energy bandwidth of the accelerator.

Additionally, the total length of the buncher was kept short in order to keep

the separation distance between the undulator and dipole just upstream to a

minimum. A planar undulator offers the desired weaker electro-optical coupling

than a helical one and has the additional benefit of ease of installation and removal

since a planar undulator can be simply slid over a pipe on the beamline without

breaking vacuum. Entrance and exit magnet sections zeroing the second integral

of the on-axis magnetic fields keep the particles oscillatory trajectories centered

on the beamline axis.

The chicane is placed just downstream of the energy modulator in order to

provide R56 for density modulation as well as to delay the particles relative to

the laser wave fronts. In order to simplify construction, the same magnet dimen-

sions used in the energy modulator are also used for the chicane; however, the

gap between opposing chicane magnet pole faces can be varied by a system of

gears, as shown in Figure 4.4, attached to a stepper motor in order to control the

chicane field during the experiment. By finely varying the chicane field during

the experiment, we can finely delay the electrons relative to the laser phase fronts

in order to inject the bunched beam into the accelerating buckets by maximizing

the fraction accelerated. Without a chicane, the energy modulator would have to

be placed at specific positions upstream of the undulator to achieve the correct

slippage for phase locking and would have to be placed far enough away to allow

the small energy modulation to be converted to a density modulation during the

drift.

Simulations of the prebuncher and IFEL accelerator guided the prebuncher

design. The modeled energy modulator, chicane, and IFEL helical undulator

magnetic fields were then used with 3D simulations of the IFEL interaction using
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a) b) 

Figure 4.20: 3D simulations of a) the average magnetic field felt by the particles

and b) the transverse position of the beam as it traverses through the buncher and

helical undulator without laser. In the figures, the helical undulator is positioned

at the origin while the energy modulator is positioned 40 cm upstream and the

chicane 28 cm upstream of the IFEL undulator.

the General Particle Tracer (GPT) code [66]. Figure 4.20 shows the modeled fields

along the beamline axis as well as the trajectory in the plane transverse to the

on-axis prebuncher magnetic fields.

Simulations for a 235 GW laser show that with a chicane gap of 18.75 mm, 79%

of the inject beam is accelerated to full energy as shown in Figures 4.21. Figure

4.21a shows the longitudinal phasespace of the electron beam just before entering

the helical undulator. The electron density is concentrated in spikes along the

beam and the red particles show the region of phase space which is accelerated

to final energy. Figure 4.21b shows the final longitudinal phase space of the

accelerated beam while Figure 4.21c shows the entire beam. Two GPT space

charge routines were tried separately to investigate the effects of space charge

on the accelerated beam. Neither meshed space charge fields nor pair-wise space

charge calculations were found to significantly affect the properties of the output

beam, suggesting that space charge should not play a significant role up to the

energy spectrometer during the experiment.

The input laser power was varied in order to investigate the performance stabil-
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a) b) c) 

Figure 4.21: Simulations show the longitudinal phase space of a section of the

e-beam initially one picosecond long a) just before and b) & c) just after the

undulator which is positioned at the origin of the simulation coordinate system.

The laser power used in the simulation is 235 GW, and the injected e-beam energy

is 54 MeV. Position ticks in a) and b) are separated by one laser wavelength while

ticks in c) are separated by 20 times the laser wavelength for scale.

a ) b) c) 

Figure 4.22: Laser peak power sensitivity scans show a) the fraction of injected

electrons accelerated to full power, b) the mean energy of the accelerated fraction

of electrons, and c) the rms energy spread.

ity of the prebuncher and accelerator combination. Figure 4.22a shows that once

phase locked, at least half of the beam should be accelerated for laser power ex-

ceeding 150 GW. Furthermore, the average energy of the accelerated beam should

remain a constant 96 MeV above this threshold (see Figure 4.22b). Finally, the

rms energy spread of the accelerated beam, shown in Figure 4.22c, remains stable

at around 2% for all laser powers. The simulations show that the prebuncher de-

sign should lead to relatively stable operation for various laser power fluctuations

above 150 GW and may enable the capture of up to 85% of the beam for powers

exceeding 300 GW.

107



The addition of a prebuncher to the Rubicon IFEL project should enable

stable acceleration for the majority of the electron beam. The improved efficiency

enables experiments requiring a significant amount of charge such as an IFEL

driven inverse Compton scattering (ICS) experiment. The ATF has a long running

ICS program, and recently the 3rd order harmonic was observed there [67]. Since

the energy of photons scale as the energy of the electrons squared, doubling the

e-beam energy increases the energy of produced gamma photons by a factor of 4.

Furthermore, a prebuncher is a first step towards the demonstration of a planned

compact high-efficiency electro-optical energy conversion experiment which will

be studied later in Section 6.2.

4.5 ATF Linac and electron beam tune

The ATF linac uses a 1.6 cell s-band gun and two SLAC linac sections to produce

electron beams with energies from 45 to 70 MeV with transverse normalized emit-

tances of about a micrometer for 100 pC and somewhat larger at 1 nC [68]. The

output beam can be sent to one of three experimental beam lines, and various

diagnostics such as strip-lines, pneumatic beam position monitors, and a Faraday

cup are available for monitoring the beam. We installed the undulator for the

IFEL experiment on beam line 2, also known as the I-line, where the LACARA

experiment previously demonstrated acceleration of up to 2 MeV in a 5 T super-

conducting solenoid with the ATF’s CO2 laser system [69]. As such, the beam

line already had optics for CO2 laser transport.

The experimental setup is shown in Figure 4.23. The electron is kicked onto

the experimental beam line by a dipole magnet with a restricting aperture of

2.65 cm in the vertical plane. The laser is focused by a lens prior entering the

vacuum system thru a high damage threshold NaCl window. In order to keep

the laser intensity as high as possible, we placed the undulator as close to the
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Figure 4.23: 3D model of the beam line with quadrupoles and undulator installed.

dipole as possible. To this end, we used a quadrupole doublet instead of a triplet

and the bare minimum number of diagnostic crosses needed for the experiment: 2

beam position monitors, 1 vacuum pump and ion gauge. The undulator, another

beam position monitor, final focusing quadrupoles, and spectrometer composed of

a dipole and scintillator screen within an 8 inch 4-way cross complete the layout.

We modeled the electron beam transport using Elegant, an accelerator code

that does 6-D tracking with matrices and/or canonical integrators, and supports

a variety of time-dependent elements [70]. The left side of Figure 4.24 shows the

designed beam focusing up to the undulator’s entrance. The lattice was designed

by varying the quadrupole doublet to achieve a beta function of 0.45 m at a waist

(alpha of zero) in both planes in order to match into the undulator. Unfortunately,

the shortest beta function that the doublet could achieve was 0.9 m. Simulations

showed that this would not affect the acceleration but would likely lead to an

increase in the normalized transverse emittance of the accelerated beam. During

the experiment, we approximately achieved this beam tune as shown on the right

side of the figure, yet the beta function achieved right before the undulator was

estimated to be closer to 2 m. Again, simulations showed that this shouldn’t

significantly affect the acceleration of the electron beam.
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Figure 4.24: Twiss parameters for the experiment (left) and estimated beta func-

tions at various beam position monitors along the beam line (right).

4.6 Energy spectrometer

The large variation in electron energies (40 to 120 MeV) expected after acceler-

ation necessitated a wide range spectrometer. A large dipole magnet introduced

dispersion into the beam which then scintillated on a phosphor screen and was

imaged with a CCD camera. The energy was then calculated from the position of

the electron beam on the screen.

The dipole magnet is an circular electromagnet with 14 inch diameter pole

faces separated by a gap of 1.5 inches. A current-field scan revealed a linear field

response of 420 G/A for currents up to 6.5 A. Energy resolution was optimized by

typically operating at or near 6 A (2.52 kG) for most of the experiment to maxi-

mize dispersion. For the decelerated portion of the electron beam extending to 40

MeV, this results in a 15 degree bend. A wedge shaped vacuum chamber (shown

in Figure 4.6) was built to accommodate these energies while still transmitting

the laser on axis.

We calibrated the spectrometer by varying the dipole field to scan the beam

across the scintillator screen. As the electrons bend in the magnetic field, they

traverse a circular arc with radius of curvature given by r = p/qB. Scanning a
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Figure 4.25: Spectrometer layout and optics.

fixed energy beam across the scintillator by varying the magnetic field yields the

radius of curvature which can be used to infer the energy of the accelerated beam

for a fixed dipole magnetic field. The deflection of a particle through the dipole

is approximately given by ∆x = 2∆sR/r = 2∆s qBR/p where R is the dipole

magnet radius. Since the dipole is circular, the path length ∆s through the dipole

is independent of energy to a reasonable approximation, and change in position

on the screen should be linear in B and inversely proportional in the momentum

p. We see in Figure 4.6 that the position of the beam on the screen does indeed

vary linearly with respect to dipole current, and a linear fit was used to calculate

the calibration curve: pc = 63600MeV/(1503− x).

When examining charge density as a function of energy, it is necessary to cal-

culate the Jacobian between pixel and energy as so dN
dp

= dN
dx

dx
dp

= dN
dx
/ dp
dx

. In

order to calibrate the charge, we placed the entirety of the beam on a section of

the screen taking care to avoid camera saturation. We then integrated the back-

ground subtracted ADC pixel counts for several shots to estimate the response

of the screen and compared this to the average of multiple Faraday cup charge

measurements. Assuming a linear charge to signal dependence and relative in-

sensitivity of the screen photon yield to the energy of the incoming beam, this

analysis yields a number of electrons per ADC count.

We also measured fiducial marks on the screen in order to calibrate for beam
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Figure 4.26: Shown above are the magnet field calibration and spectrometer en-

ergy calibration.

dispersion and vertical spot size in order to enable an energy dependent trans-

verse emittance measurement. In order to improve the energy resolution of the

spectrometer, we inserted a quadrupole between the undulator and spectrome-

ter dipole to minimize the beam size in the dispersive plane at the spectrometer

screen. Elegant and GPT simulations showed that the spot size of the acceler-

ated beam should be approximately 560 µm in the horizontal, dispersive plane.

Simulations showed that with this final quadrupole inserted, the spot size should

be halved to 230 µm, thereby improving the energy resolution by a factor of two.

With a dispersion of about 1.8 MeV/mm at 90 MeV, this allows the spectrometer

to image spectra details with about 0.4 MeV wide.

The high gradient experimental run utilized a single DRZ phosphor scintillator

screen. In order to avoid damage of the screen from the electron beam for the high

capture experiment, we decided to use a YaG crystal to image the lower energy

section of the beam and DRZ with the side covered in a thinner layer of plastic

now facing the camera for the accelerated portion of the beam (see right side of

Figure 4.6), taking care not to hold the beam on the DRZ. A downside to this

approach was that much of the light produced in the YaG was channeled to the

edges and illuminated the boundary near the DRZ. In hindsight, it would have

been good to use a small mask to keep the YaG signal from polluting the DRZ. In

more recent experiments, we removed the YaG and used the DRZ exclusively. We

calibrated the DRZ and YaG separately, and found that the signal from the DRZ
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was an order of magnitude larger than the YaG. The response of the 12-bit camera

spanned 3 orders of magnitude, and we attenuated the spectrometer images with

ND filters to maximize signal without saturating the camera.

4.7 CO2 laser

4.7.1 Laser transport

The CO2 laser produced from the exit of the main amplifier NaCl window has

a waist size of about 1.5 cm and propagates roughly 23 m with a half-angle

divergence of order 1 mrad to about to a waist size of about 4 cm on the NaCl

window at the entrance to the beam line. The transport line consists of about

a dozen polished copper mirrors each of 3 inch diameter or larger. Each mirror

is adjusted to align the CO2 laser through a series of irises which in turn are

aligned to the centers of the mirrors with the use of a HeNe laser. The final

mirror is motorized with two Newport Picomotor Piezo Linear Actuators in order

to finely control the angle of the mirror with respect to two orthogonal axes for

final alignment down the beamline.

Diagnostic laser pick-out points included a kinematic mount insertable in air

just before the thick NaCl vacuum window sealing the beam line and a pop-in

copper mirror in vacuum 15 cm upstream of the undulator. The first was right

before the final focusing optics and accommodated a 3 inch silicon mirror for

imaging the laser with a pyroelectric camera or a 3 inch NaCl window for picking

off a reflection to be used as a reference signal during germanium timing. The

vacuum popin mirror near the undulator was used to extract the laser through a

zinc sulfide Cleartran window, transmissive to 10 µm, to a Spiricon Pyrocam III

pyroelectric camera which could slide along a rail next to the undulator to monitor

the evolution of the spot size close to the focal region.
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Figure 4.27: Diagnostics near the experiment for monitoring the pulse energy and

transverse profile.
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Figure 4.28: Laser pulse energy calibration and transverse profile monitoring.

The beam line is defined by an iris positioned 3 m upstream and another

positioned 5 m downstream of the undulator, and a HeNe laser is aligned to these

reference points in order to align components to the beamline. On the other

hand, the final CO2 alignment iris and lens are located 4.5 m upstream of the

undulator. In order to align the CO2 laser to the beam line within the undulator,

irises on the rail in the focal region are aligned to the beam line HeNe, and the

CO2 (imaged with the Pyrocam) is coaligned to these irises using the Picomotor

controlled mirror near the final focusing lens.

Additionally during the experiment designed for high capture, we setup online

diagnostics to monitor the laser within the experimental hall. Several meters up-

stream of the lens, we focused the reflection from a NaCl window onto a calibrated

joulemeter in order to measure the pulse energy. During laser operation, shock

waves within the amplifier may move mirrors, disturbing beam alignment, and the

mode quality may degrade if the beam clips on one or more the mirror apertures

as it propagates to the experimental hall. We placed another NaCl window in the

path of the aforementioned reflection to produce a secondary reflection which we

then attenuated with filters and placed on a Pyrocam. This allowed us to monitor

the laser mode quality within the experimental hall during the experiment and

helped to diagnose alignment problems as they developed.
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Figure 4.29: The clear apertures (diameter) of various beam line elements are

shown left along with the diameters of a circular laser cross sections containing

95% and 99% power transmission for 25 cm Rayleigh range (solid lines) and for

9.6 cm Rayleigh range (dashing). The peak fluences for various laser pulse energies

are shown right, and the gray vertical lines on the left represent the transport line’s

last mirror as well as the NaCl vacuum window.

4.7.2 Laser focusing

Upon arriving at the ATF, we surveyed the laser optical path up to the undulator

installation point in order to ensure clear transmission to the undulator. The pipe

and dipole apertures measured during the survey are shown plotted relative to the

undulator midpoint in Figure 4.29. The survey revealed that the dipole used to

kick the beam onto the beam line had a vertical limiting aperture of 2.67 cm. Since

beam position monitors, quadrupole magnets, and vacuum components needed to

be placed between the dipole and undulator, their entrance-to-entrance distance

needed to be made larger than 2 m. This placed an upper limit of about 13 mrad on

the full beam divergence, necessitating a longer Rayleigh range of about 25 cm. In

the figure, beam diameters containing 95% and 99% of the laser power are shown

plotted for this 25 cm Rayleigh range with solid lines and for 9.6 cm Rayleigh

range with dashed lines. We chose a relatively large buffer to permit passage of

mixed laser modes with M2 up to 1.5.
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Figure 4.30: Plot showing the lens to waist focal distance vs thin lens designed

focal length. The solid lines are for a fundamental Gaussian mode while the

dashed lines show M2 = 1.5.

The amplified laser pulse is transported with a large spot size of two inches

in order to avoid damage to beam line elements by keeping peak fluences low.

The final lens was positioned after the last copper mirror and the NaCl vacuum

window. This position keeps laser fluences far below the damage thresholds for Cu

mirrors (4.5 J/cm2) and NaCl elements (1.5 J/cm2). The right plot of Figure 4.29

shows the peak fluence for a 25 cm Rayleigh range and various laser pulse energies.

Placing the lens 4.9 m upstream of the waist position keeps the optical elements

safe from damage for laser pulse energies up to at least 6 J and gives a positioning

error cushion of about 17 cm up and downstream.

After choosing the lens position, we used Gaussian beam propagation matri-

ces to determine the lens focal length needed to place the waist position 4.9 m

downstream of the lens [71]. Figure 4.30 shows the result of this calculation for

the laser estimated by ATF to be about 2 inches diameter with a divergence of

1 to 2 mrad at this position. The horizontal band shows the region between the

mirror and vacuum window where the beam can be easily placed without beam

line modification. We chose a 3.5 m focal length in order to keep the actual lens

position as close to the designed position as possible. The lens design was a 3 inch

diameter biconvex NaCl lens with high power anti-reflective coating. The lens was
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Figure 4.31: Waist scan showing the 1/e spot size evolution with the undulator

midpoint at the origin.

translated along a rail in order to focus the laser to a waist at various positions

along the undulator.

Once the lens was installed, we performed a laser waist scan by picking out the

laser near the undulator and imaging the laser’s transverse profile with a Spiricon

Pyrocam III. The results of the scan are shown in Figure 4.31 and a summary of

the fit parameters is given in Table 4.7.2. The waist position for both transverse

planes was found initially several centimeters upstream of the undulator midpoint,

giving ample room for positioning the lens. A slight astigmatism in the focused

beam led to slightly different focal properties for the two transverse planes. We

also calculated the average deviation of the 1/e2 intensity contour from the beam’s

centroid in order to estimate the radial waist which more accurately represents the

on-axis intensity. The result is a beam with Rayleigh range 30 cm and minimum

waist approximately 0.99 mm with otherwise good mode quality. The imaged

mode was produced by sending the output of the CO2 oscillator to the beamline

via the main CO2 amplifier and should approximate that of the amplified pulse.

We later verified these results using the output of the regenerative amplifier.

During amplification, higher order modes may be excited within the main

amplifier and nonlinear focusing due to intensity sensitive effects may distort the
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x y r

w0 (mm) 0.92 1.04 0.99

z0 (mm) -37 -122 -71

zr (mm) 257 327 299

M2 1.04 1.06 1.04

Table 4.8: Laser waist scan results

beam by focusing various parts differently. In order to estimate the effect that

this may have on the laser during the experiment, we measured the amplified

laser pulse spot size by propagating a reflection from the focused laser in air to

a waist at the pyroelectric camera with sufficient attenuation to prevent damage

and saturation to the sensor. The measured spot size for the amplified pulse was

in good agreement with the low power measurements (within 6%); however, the

power in the tails (estimated by fitting a Gaussian to the core of the beam) near

the minimum waist position grew to 12% (at 2.8 J) to 17% (at 4.7 J) of the total

power in the beam.

4.7.3 Temporal laser pulse diagnostics

The laser peak power is an important parameter affecting the performance of the

IFEL so in addition to energy, it is useful to study the temporal structure f the

laser pulse. ATF employed two methods to this task [50]: the first was to study

the spectrum of the amplified pulse, while the second method investigated pulse

splitting by imaging the temporal profile using a streak-camera.

A small fraction of the laser energy was taken via a reflection of the am-

plified pulse from a NaCl window and was sent to a spectrometer composed of

a diffraction grating and a pyroelectric camera. The pulse duration may be in-

ferred from the spectral bandwidth by assuming that the time-bandwidth product

of the amplified pulse is limited by the uncertainty principle for Gaussian pulses
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Figure 4.32: Measured spectra for two amplified shots at different laser energies.

∆f∆t ≥ ln(4)/π ≈ 0.44, where the quantities ∆f and ∆t are the full width at half

maximum values of the frequency bandwidth and pulse length respectively [71].

Additionally, we may use the relation ∆f ≈ c∆λ/λ2 for wavelength bandwidth

∆λ small relative to the central wavelength λ.

Two such shots are shown in Figure 4.32. The higher energy shot (right)

has twice the energy of the lower energy shot (left), yet spans a much larger

bandwidth covering more lines from the CO2 rotational spectrum. The larger

bandwidth implies a shorter pulse length and overall much larger peak power.

We imaged a series of shots over two consecutive days, recording final amplifier

high voltage and output power as well as the power of the pulse from the regener-

ative amplifier seeding the main amplifier for each shot. The fit fwhm bandwidth

for the shots are shown in Figure 4.33, with the point at zero output energy corre-

sponding to the unamplified output of the regenerative amplifier. The bandwidth

grows due to saturation or power broadening during amplification and appears

to grow quadratically with output pulse energy as ∆λ ≈ 23.5 + 4.3U2 where the

energy U is measured in J and bandwidth is measured in nm. Assuming that

the output pulse is bandwidth limited yields a relation between pulse duration

(in ps) and laser energy of ∆t ≈ 6.6/(1 + (U/2.4)2). Alternatively, the spectral

broadening may also be explained by self-phase modulation, resulting in a chirped
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Figure 4.33: Fit bandwidth is plotted versus output pulse energy.

rather than Fourier transform limited pulse. As will be shown in Section 5.1, mea-

surements of the IFEL interaction suggest that the power grows approximately

linearly with respect to output laser energy.

We used a Hamamatsu C1587 streak camera to further investigate the pulse

structure [50]. A reflection of the amplified pulse from a NaCl window was sent to

the streak camera where it was mixed with 900 nm light from a CW diode laser

in a AgGaS2 to upconvert to a frequency high enough to extract electrons from

a photocathode. The extracted electrons were then accelerated and imaged on a

scintillator. The streak camera is operated near the signal threshold to avoid space

charge effects. The resulting signal granularity yields a temporal resolution of

about 2 or 3 ps; nevertheless, this is fine enough to detect the expected picosecond

structure.

Figure 4.34 shows the streak camera data for two shots revealing a pulse train

temporal structure referred to as pulse splitting. Since the IFEL only uses one of

these peaks, it is important to estimate the energy of the leading pulse which tends

to be the largest. The peaks are separated by 25 ps corresponding to the frequency

separation of rotational lines in the 10R branch of the CO2 gain spectrum. The

left, lower power shot appears to only have two such pulses, with the leading

pulse containing up to 80% of the energy. This number is a reasonable estimate

but suffers from some uncertainty due to the streak camera setup’s relatively
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Figure 4.34: Streak camera images for two different shots.

low sensitivity and may be a slight overestimate since it is possible that some

prepulsing from spontaneous amplification arriving before the seed contains some

energy. The right plot shows a high energy output with about 3 or 4 times larger

total energy, yet the leading pulse peak power may be about twice that of the

first as much of the energy is in two trailing pulses. In this case, the leading pulse

contains no more than about 60% of the laser energy.

4.7.4 Laser energy measurements

Since the IFEL performance is very sensitive to the input laser pulse energy, we

recorded this parameter for every shot during the experiment. The measured pulse

energies for shots during the the two IFEL runs are shown in Figure 4.35. The

first, high capture, run used a pulse energy measurement in the laser room only a

few optical elements after the main amplifier. Some of this energy may have been

lost on many apertures (all mirrors used had at least 3 inch diameters, but due to

the 45 degree orientation for 90 degree reflection, have only a 2.1ëffective aperture)

as the laser was propagated to the experimental hall where the undulator resided.

As a result, the energy delivered to the experiment was reduced relative to this

measurement.
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Figure 4.35: Measured laser energy from the high gradient run measured near the

main amplifier (left) and from the high capture run measured in the experimental

hall (right).

Figure 4.36: Localized damage to the final focusing lens (left) and NaCl vacuum

window (right) acquired during the first, high capture run.
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For the subsequent high capture experiment, we installed a joulemeter in the

experimental hall to measure the laser pulse energy and calibrated it by dumping

the entire pulse energy, which would otherwise be sent into the beamline vacuum,

into another, calibrated joulemeter. Since the calibration joulemeter was placed

just upstream of the NaCl vacuum window, this calibration accounts for all aper-

ture cuts and reflections from the final focusing NaCl lens. On the other hand,

it ignores reflections from the vacuum window which may amount to a reduc-

tion of up to 4% per surface (∼8% total) of the measured energy. This estimate

may be conservative since the window sustained damage during the first run as

shown in Figure 4.36, creating imperfections within the NaCl which may reduce

transmission locally.
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CHAPTER 5

Experimental results

In this chapter, we present some of the results of the UCLA-BNL IFEL exper-

imental campaign. In the first two sections of this chapter, we examine efforts

to establish acceleration and optimize the accelerator’s performance by varying

the input parameters such as synchronization between electron and laser pulses

and laser polarization. Next, we examine the spectrum of the IFEL accelerated

electrons for the high gradient undulator configuration and compare these spectra

to simulations to gain insight into the dynamics. Since the laser focal parameters

did not match the design, the accelerator’s performance suffered, necessitating a

redesign of the undulator tapering and a second experiment. In the final two sec-

tions, we discuss the results of the high capture experiment utilizing this second,

more relaxed undulator tune as well as a measurement of the accelerated beam’s

transverse emittance.

5.1 Synchronization

Temporal synchronization between electrons and laser was crucial to the success

of the experiment as it placed the electrons in the region of the laser pulse with

maximum electric field. We accomplished synchronization by first measuring the

electrons by a strip-line just upstream of the dipole and measuring the laser pulse

using a fast photodiode positioned near the undulator’s midpoint. The laser is

redirected to the photodiode through a ClearTran vacuum window via a 1 cm

diameter Cu mirror inserted in the beam path. The output of the regenerative
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Stripline

Transmission
photodiode

Reference
photodiode

Figure 5.1: Oscilloscope showing signals from the strip line and photo diode (la-

beled transmission). A signal from a photo diode upstream of the Ge plate was

used as a reference to measure the suppression of the laser through the Ge plate.

amplifier was transported through the main amplifier without amplification so

that the path length of the laser is the same as that for the amplified pulse. The

cables were chosen to have equal lengths so that the signals’ relative delay would

not be altered. We measured the distance between the strip line and photo diode

and calculated the time that light (and ultrarelativistic particles) would take to

traverse this distance. We then changed the laser delay (by changing the timing

of the YaG slicing for large steps and then via a long delay stage for fine steps)

until the measured time of arrival difference between the electrons and laser was

equal to the time-of-flight distance between the two detectors. In this way, the

two beams were synchronized to within about 1 ns.

Since the pulses are each on the order of a picosecond long, the nanosecond syn-

chronization is insufficient to overlap the pulses longitudinally and achieve IFEL

interaction. Finer timing was accomplished by measuring the electron-beam mod-

ulated transmission of the laser through a thin germanium plate inserted into the
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Figure 5.2: Plot showing the Ge transmission and IFEL acceleration data versus

laser delay.

beam line [72, 73]. The plate itself is placed about half a meter upstream of the

undulator and masked by an aluminum plate with a 2 mm diameter hole aligned

to the beamline HeNe. Figure 5.2 shows the results of the Ge facilitated synchro-

nization for the high gradient IFEL run. When the 10.3 µm laser is incident on

the Ge plate, a fraction of the light is transmitted downstream to the fast photo

diode as shown on the right side of the figure. A reflection of the laser upstream

of the NaCl vacuum window focused onto another fast photo diode served as a

reference to monitor the laser energy incident on the Ge and is used to normalize

the unattenuated transmitted signal.

We then varied the laser delay until the transmitted laser signal was extin-

guished. At this point, the electrons arrive earlier than the laser, creating an

electron-hole solid state plasma in the Ge which modifies the optical properties of

the semiconductor increasing the absorption and reflection. The plasma is formed

on a time scale faster than 100 fs and persists for nanoseconds so is perfect for

picosecond precision synchronization. Synchronization is then achieved by vary-

ing the laser delay to find the threshold where the laser transmission is barely

suppressed. The resulting curve can be considered a temporal cross-correlation

of the electron and laser pulses. An error function fit and its derivative are both
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Figure 5.3: Plots IFEL acceleration metrics (max and min energy changes) versus

laser delay as well as corresponding acceleration vs laser energy correlation plots.

shown in the figure and yield an rms length of the interaction region of 4.7 ps.

Since the estimated electron beam time of arrival jitter is on the order of 1 ps,

this value is an upper bound on the laser pulse length.

Upon achieving synchronization, we removed the Ge plate and switched to

high power laser operation. The Ge has has an index of refraction of 4.0 at

10.3 µm [74] so the plate’s couple hundred micron thickness may possibly delay

the laser on a picosecond time scale, necessitating another temporal delay scan

during initial IFEL operation. As a byproduct of this scan, we may learn more

about the laser temporal pulse structure via the interaction. The results of a scan

of IFEL acceleration versus laser delay are shown in Figure 5.3.

The peak laser power used in this measurement was below the threshold for

full acceleration so that the IFEL operates in a regime where the induced energy
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gain of the electrons depends on the peak laser power. The accelerating gradient

is proportional to the laser field amplitude, and indeed independently from the

laser delay, we see a square root dependence of the maximum energy gain on laser

energy in the bottom right of Figure 5.3 with maximum energy gains of merely a

third of the accelerator’s design. Normalizing each shot by the square root of the

laser energy removes this correlation, reducing variance due to shot-to-shot laser

energy fluctuations, and results in normalized energy gain versus laser delay. On

the other hand, the temporal pulse shape is determined by the laser power which

is proportional to the square of the accelerating gradient and energy gain. The

bottom left plot in the figure shows the square of the normalized energy gain as a

proxy for the laser power versus laser delay. A Gaussian fit yields an rms width of

3.1 ps. The width of the curve is the convolution of the pulse widths of the laser

and electron beams as well as their relative time jitter. Since the electron beam’s

time of arrival jitter is on the order of 1 ps, the fit result may be considered an

upper bound on the average rms laser pulse length.

In order to verify the results of this measurement, we examine the maximum

decelerated energies. As particles begin to undergo synchrotron rotations within

the ponderomotive bucket, some electrons are decelerated to nearly the energy

of the bucket’s separatrix, and these particles may detrap within one or two un-

dulator periods as the resonant energy increases. As a result, this measurement

should depend only on the laser power and be independent of the change in the

resonant energy gradient near the undulator’s midpoint. The separatrix height

increases with the square root of the laser field strength as shown in Equation 2.35

so the maximum electron deceleration should approximately scale as the fourth

root of the laser energy assuming that the laser power is simply proportional to

the laser energy. The top right plot of Figure 5.3 shows that this is indeed a

reasonable assumption. Normalizing the maximum energy loss by the fourth root

of the laser energy removes the laser energy dependence. The fourth power of this

129



scaled energy then is a measure of the laser power and is shown in the bottom

right of the figure. A Gaussian fit to this yields an estimated rms pulse width of

2.8 ps, slightly smaller than, yet similar to the previous estimate.

5.2 Polarization

The helical IFEL interaction as presented in Chapter 2 requires a circularly po-

larized laser with a particular handedness. To realize this polarization in the

experiment, we used a zeroth order quarter wave plate to convert the polarization

of the output of the regenerative amplifier from linear to circular. When the input

linear polarization of the laser is aligned with the wave plate’s fast or slow axis,

the output is polarization remains linear, whereas when the polarization makes a

45◦ angle with the axes, the output polarization is circular. For all other angles,

the output polarization is elliptical. In this section, we will first discuss the IFEL

interaction with the helical undulator and an elliptically polarized laser, and then

show the effect of the laser polarization on the measured spectra.

5.2.1 Elliptical IFEL acceleration

The linearly polarized laser vector potential is the real part of the complex phasor

~Al =

√
2mcKl,rms

|q|
u(~x)eiΦ(~x,ζ)x̂ (5.1)

where Kl,rms ≡ |q|Erms/mc
2k, ζ = kz−ωt, u(~x) is a pulse form factor, and Φ(~x, ζ)

is a phase factor.

A quarter waveplate is a thin piece of birefringent material with differing in-

dices of refraction for two orthogonal axes in the material. The two axes are called

fast and slow as the field component polarized along the slow axis is delayed in

phase by π/2 relative to the component along the fast axis. To make circularly po-

larized light, the quarter waveplate is rotated so that the linearly polarized light’s
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electric field is oriented 45 ◦ relative to either axis. Here, the incident light’s po-

larization is rotated by an angle α relative to the x-axis which is taken to be the

slow axis.

~Al =

√
2mcKl,rms

|q|
u(~x)eiΦ(~x,ζ)(x̂ cosα + ŷ eiπ/2 sinα) (5.2)

Inserting the field (the real part of Equation 5.2) into Equation 2.15 yields the

energy evolution of an electron in the combined undulator and laser fields.

dγ

dt
= − q

mc2
~̇x · ∂

~A

∂t

= −
√

2ckKl,rmsK

γ
u(~x) (cosψu cosα sin Φ + sinψu sinα cos Φ)

(5.3)

Here, we’ve ignored the initial velocity which may be made small. The product

of harmonic factors with phases ψu =
∫ z

0
kudz and Φ produce two beat-waves with

phases given by Equation 5.5.

dγ

dt
= −ckKl,rmsK

γ
(cos(α− π/4) sinψ+ + cos(α + π/4) sinψ−) (5.4)

ψ± = kz ±
∫ z

0

kudz − ωt (5.5)

The result is a summation of two ponderomotive waves from the combined

action of the undulator magnetic field and laser electric field on the electrons.

The first wave has a superluminal phase velocity and is therefore only resonant

with tachyons. The second wave has a phase velocity with which known physical

particles can match. Consequently, the subluminal wave may accelerate properly

matched particles while the superluminal wave averages to zero and is ignorable.

As a result, we will define the ponderomotive phase as ψ ≡ ψ+. The energy

gradient and ponderomotive phase may then be written as the following.
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Figure 5.4: Polarization scan showing charge accelerated above 70 MeV versus

quarter waveplate orientation.

dγ2

dz
= −2kKl,rmsK cos(α + π/4) sinψ (5.6)

ψ = kz +

∫ z

0

kudz − ωt (5.7)

The acceleration is fully suppressed when the angle of the incident polarization

is α = 45◦ relative to the quarter waveplate’s slow axis, while for α = −45◦, the

wave is maximized. For α = 0 the light is linearly polarized, and the accelerating

gradient is suppressed by a factor of 1/
√

2 in this case.

5.2.2 Polarization scan

We now turn to measurements of the elliptical IFEL accelerated spectra. We

first determined the quarter waveplate orientation which produced circularly po-

larized laser by extinguishing the laser with a polarizer and then inserting the

quarter wave plate upstream and rotating it to maximize transmission. Rotating

a further 90◦ from this position in either direction changes the handedness of the

circular polarization, yet since the light’s phase is difficult to measure, we chose

to determine this empirically via the IFEL interaction.
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Figure 5.4 shows the effect of polarization on a measure of the IFEL interaction.

The polarization is determined by the quarter waveplate orientation with the

origin defined as the first axis we tried. Since these shots were operated below

the full capture intensity threshold, the charge accelerated to high energies is very

sensitive to laser polarization and we increased camera gain to be sensitive to this

charge. As a result, the camera saturated for charges less than 70 MeV and we

chose to examine the charge accelerated above 70 MeV as a measure of the IFEL

interaction. Fluctuations in parameters such as laser power and spatiotemporal

overlap introduce variance in the data. In order to reduce the dependence of the

data on laser power variations, we normalized the charge by the square root of

the laser energy as it was done for the delay scans since the field depends on the

square root of the laser power.

The quarter waveplate scan shows that the interaction was maximized for one

orientation of the quarter waveplate corresponding to circular polarization and

was completely extinguished for the opposite handed circular polarization (90◦

rotation) in agreement with Equation 5.6. Near 65◦ quarter waveplate angle, the

interaction is suppressed sufficiently that no charge is accelerated above 70 MeV,

and at 90◦ no acceleration was observed. The fit shown in the figure is proportional

to Q ∝ cos θ − cos 65◦.

We also replaced the quarter waveplate with a half waveplate and use it to

rotate the linear polarization. Rotating the linear polarization by 90◦ did not

affect the accelerated electron spectrum, showing that the helical motion of the

electrons within the undulator had no preferred direction—that is, the motion

was circular rather than elliptical.
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5.3 High gradient acceleration

Once temporal overlap was achieved and the laser polarization was matched to the

electron helix, we focused on increasing the laser energy in an effort to maximize

the IFEL acceleration. The electron beam was focused to about 300 µm with

800 pC (about 8 ps duration) initially to relax spatiotemporal alignment, and

then reduced to 200 µm with 100 pC (about 1 ps duration) of charge for more

careful studies. Whereas the resonant energy of the undulator was designed to be

50 MeV, we chose to run initially at 52 MeV in order to ensure that the beam

would be captured by the growing bucket.

Unfortunately whereas the undulator was designed for a 9.6 cm Rayleigh range,

the physical beamline dimensions restricted this to >25 cm and the focused laser

was measured to have an effective Rayleigh range closer to 30 cm. This discrepancy

between design and experimental Rayleigh ranges caused a mismatch between the

ponderomotive gradient driven by the laser and the gradient in the resonant energy

set by the undulator tapering as mentioned earlier. For a given laser power, the

factor of 3 increase in the Rayleigh range implies a
√

3 reduction in peak on-

axis electric field near the undulator midpoint where the resonant energy tapering

is steepest. This mismatch challenged our obtaining the full design acceleration

performances in this experimental run by significantly increasing laser peak power

requirements and motivated a redesign of the undulator taper for a subsequent

run with improved capture.

Control of the longitudinal and transverse positioning of the laser focus allowed

optimization during the experiment. The 3 inch diameter NaCl lens was trans-

lated along a rail in order to focus the laser to a waist at various positions along

the undulator. The lens was positioned to place the laser waist 7 cm upstream

of the undulator midpoint to maximize the accelerator performances as initially

suggested by simulation-based optimization and then confirmed experimentally.
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Transverse overlap was investigated by investigating how varying the laser

transverse position at the entrance to the undulator affected the IFEL interaction.

First a mirror was inserted just upstream of the copper mirror upstream of the

final focusing lens to inject a HeNe laser onto the CO2 beam path. The HeNe

position was monitored on a beam position monitor (BPM) positioned about

10 inches upstream of the undulator, and a picomotor attached to the copper

mirror provided fine control of the laser transverse position. We were not able

to reproducibly position the HeNe upon each insertion due to instability in the

mirror mount and actuator; so we repeatedly inserted the mirror until the HeNe

was on the BPM and then recorded relative movements. Since each laser shot

took a couple minutes and each laser position move took a few minutes, taking

a few shots at one laser position required about 10 minutes, limiting the study

to several positions. Figure 5.5 shows the results of the scan of the transverse

laser position. The laser’s measured transverse intensity profile at the undulator’s

entrance was fit to the maximum relative beam intensity estimator I ∼ ∆E4
min/Ul

for each position. For each of these shots, the beam charge was 100 pC and spot

size was about 200 µm. We chose the position with the best performance, and

the fit suggests that this position was indeed near the beam axis.

Losses during transport reduced the laser power delivered to the undulator.

Energy losses from reflections and apertures were estimated at the time of the

experiment to be 27%; however, comparing the energy measurements in the laser

room from the high gradient run with the laser energy in the experimental hall

from the subsequent high capture run suggests that these losses may have been

a factor of two larger. Images of the amplified pulse near the focus suggest that

as much as 17% of the energy ended up in the tails of the transverse intensity

profile due to higher order transverse modes. Furthermore, the laser has been

observed to occasionally drift due to misalignment in the amplifier caused when

shock waves move mirrors slightly during discharge. A study of the laser focus
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Figure 5.5: Transverse scan showing the maximum normalized laser intensity

estimator for the laser at different transverse positions and a binormal fit with the

measured laser waist at the undulator’s entrance.

positioning revealed that the interaction changed by as much as 20% when the

laser was displaced by 500 µm transversely. The maximum laser pulse energy

measured upstream of transport was 8 J. Assuming 4.5 ps rms and a 1 mm spot

size, the peak intensity used in the experiment exceeded 20 TW/cm2.

The maximum accelerated electron energy was measured for different shots

with various estimated peak laser intensities from the measured laser energy as

shown in Figure 5.6. The data are in rough agreement with simulations for the

measured input parameters generated with the 3D IFEL code TREDI also shown

in the figure. TREDI solves the Lorentz force equations rather than averaging

the motion of the electrons over an undulator period [63] and was previously

bench-marked against IFEL experimental results in planar undulators [24]. The

simulations suggest that the laser intensity was just shy of that needed for full

acceleration.

Raw images were acquired with a high resolution 12-bit camera with a dynamic

range wide enough to capture the entire image without saturation. Background

noise was subtracted, and energy was calibrated relative to a dipole current scan
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Figure 5.6: Maximum measured (dots) and simulated (line) output energy versus

peak focal intensity.

with input beam of fixed energy. Spectra for the highest energy laser pulse is

shown in Figure 5.7 along with spectra from a beam without laser and the results

of simulation for the input parameters. The spectra shows that a small fraction

of the beam was accelerated to energies as high as 106 MeV. Since the interaction

region of the undulator is 54 cm long, this implies an average accelerating gradient

of 100 MeV/m—a new record for average accelerating gradient at the time. This

was one of the first few shots and had a charge of 800 pC, spot size of 300 µm,

and measured laser energy of 7.5 J.

In both measured and simulated spectra, part of the beam was decelerated by

as much as 8 to 10 MeV as particles out of phase saw opposite electric field from

resonant particles. Looking at the particle dynamics in longitudinal phase space,

the decelerated fraction can be viewed as the part of the beam that falls out of the

bottom of the bucket as the resonant energy is violently increased by the undulator

tapering. Peaks in the spectra above 60 MeV appear in both the experimental and

simulated spectra and can be explained as electrons dephasing at various positions

in the undulator where laser intensity was insufficient to maintain a large enough

ponderomotive bucket height for the local energy gradient.
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Figure 5.7: Raw spectrometer images (a) and calibrated spectrum with simulation

(b) for a shot without laser and one with the highest energy.

Since the electron bunch and laser pulse lengths are comparable, time depen-

dent effects can not be neglected and are included in the simulation. Similar

electron and laser pulse lengths cause different slices of the electron beam to see

different laser intensities and therefore detrap at different energies, smearing out

the spectra. The dip at 52 MeV in the measured spectrum is due to a dark fidu-

cial mark on the spectrometer screen caused by damage to the phosphor screen

from an integrated exposure of >100 nC/mm2 to 52 MeV electrons from the input

beam for shots without laser. Since the charge density of the accelerated beam

was significantly less due to large dispersion and the unaccelerated beam illumi-

nated the same position for the majority of shots, the rest of the screen remained

undamaged.

We also attempted a study of the effect of the input electron beam energy

on the IFEL performance, the results of which are displayed in Figure 5.8. The

initial electron energy was varied by changing the linac phase slightly and then
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Figure 5.8: IFEL performance versus input electron energy.

scaling the magnetic focusing fields to account for the energy change. Because the

beam’s velocity and trajectory changed slightly, each energy change necessitated

a few shots to resynchronize on a picosecond time scale. The results of this study

show that the energy acceptance of the accelerator is at least 8% or 4 MeV.

This high gradient run achieved unprecedented energy gains of up to 54 MeV.

The average energy gradient over the 54 cm long undulator is larger than 100

MeV/m and competitive with state-of-the-art conventional RF-based accelerators

suggesting the IFEL as a promising candidate for a medium-to-high energy range

compact accelerator. Despite these successes, the accelerator failed to achieve the

designed output energy due to a mismatch between the design and experimental

laser focusing, and the highest energy shot was neither reproducible nor of a useful

amount of charge. In fact, all of the accelerated beams during the high gradient

run had huge energy spread and were very unstable, motivating a redesign of

the undulator and a subsequent run to improve the quality and reliability of the

accelerated beams.

5.4 High capture acceleration

In order to improve the quality of the IFEL output beam, we redesigned the

undulator tapering to account for the measured focused laser intensity and focal

properties. To ensure that the majority of shots would be accelerated to full
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Figure 5.9: Plot showing the spectra of all IFEL shots for one day during the high

capture run.

energy, we designed the threshold intensity to be 5 TW/cm2 which was about a

fifth of the high gradient configuration’s 25 TW/cm2 full acceleration threshold

intensity and well within the sample of estimated intensities from the previous

run. As a result for this “high capture” undulator tapering configuration, we

obtained much improved beam spectra with slightly lower final energy. For this

run, we ran with an electron beam size of about 170 µm rms and charge of 100 pC

corresponding roughly a 1 ps duration at 100 A.

A summary plot of all shots for one day is shown in Figure 5.9. All shots

with measured laser energy greater than 1.95 J show acceleration to the design

energy of 93 MeV whereas the few shots with laser energy less than 1.95 J showed

maximum electron energies monotonically increasing with laser energy, yet falling

short of the design energy. The energy of the accelerated beams was remarkably

stable. Of the 46 shots with laser power above the capture threshold (>180 GW),

37 had reasonable timing and charge. The energy distribution of the peak charge

density for these shots is shown in Figure 5.10. The energies of the peak charge

density of the accelerated beams were normally distributed and with a fit mean of

93.7 MeV and rms width of 1.2 MeV (<1.3% relative jitter) which is remarkable

considering that laser power variation for these shots was 27% rms. The raw data
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Figure 5.10: Histogram of the energy of the peak charge density of the accelerated

beam.

has a median energy of 93.5 MeV with a standard deviation of 2.0 MeV (2.1%)

with the difference in these rms widths due to the low energy tail consisting of a

few shots with low charge, and increasing the charge cut slightly removes these

shots so beams with greater charge are better described by the Gaussian fit. On

the other hand, applying a

In this second undulator tuning configuration, final energy fluctuations are

negligible, reflecting an important advantage of IFEL over other laser-based ac-

celeration schemes in terms of output stability. If the laser provides a sufficient

ponderomotive gradient, the IFEL output energy is only set by the tapering of the

undulator resonant condition with laser fluctuations at first order only affecting

the accelerator capture efficiency. This demonstration also shows that the IFEL

output energy could be tuned by controlling the undulator magnetic field. For

example, in next generation IFELs, computer control of the magnet gaps or addi-

tional small electromagnets throughout the undulator could be used to tune the

output energy of the accelerator on demand.

Three shots are displayed in Figure 5.11. Up to 30% of the injected beam is

accelerated to 93 MeV final energy. A clear monoenergetic bunch of electrons is

present with a final output rms energy spread of 1.8%. The fraction of charge

accelerated is large considering that the injected electron bunch was uniformly
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Figure 5.11: Raw electron spectrometer images for various shots (a) and calibrated

electron spectra for the first two shots (b) for the high capture IFEL configuration.

distributed over many laser periods, and simulations with a prebuncher designed

for a subsequent run show that the fraction captured may be increased to as

much as 80% of the injected charge [75]. Furthermore this low energy spread result

compares very favorably with the best laser wakefield acceleration demonstrations

and could be reduced in future IFELs by better matching the input electron beam’s

phase space to the accelerator as discussed in Chapter 3.

The data is compared with three-dimensional particle tracking simulations in

the combined laser and undulator fields using all the measured input parameters

and field maps (i.e. no free parameters). The simulation code [66] solves the

Lorentz force equations rather than averaging the motion of the electrons over an

undulator period and compares well with the bench-marked IFEL codes TREDI

[63] and Genesis [48]. A larger than expected amount of charge is lost around

the intermediate energies 65 to 75 MeV corresponding to just upstream of undu-

lator’s midpoint where the accelerating gradients are largest. In this region, the

laser waist begins to narrow slightly, and the tails of the electron beam are bathed

in lower laser intensity. As this happens, the effective resonant phase increases,

shrinking the ponderomotive bucket, and causing particles near the bucket’s sep-

aratrix to detrap. On the other hand, the large laser waist allowed much more of
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the electrons to make it through this highest gradient region than the previous,

high gradient experiment, showing that a large waist compared to the electron

beam is important for high efficiency IFEL acceleration.

5.5 Emittance measurement

The electron beams produced during the high capture experimental run were

shown to have relatively low energy spread growth in line with that expected

by simulation. Initial simulations also suggested that the normalized transverse

emittance of the accelerated electron beam should be conserved. In order to inves-

tigate the acceleration’s effect on the transverse emittanc, we used the quadrupole

located after the undulator a measurement of the vertical emittance of the laser-

accelerated beam. Due to the rotational symmetry of the helical IFEL interaction

and as supported by the simulation, it is reasonable to assume that the value

obtained also applies to the horizontal plane.

We first measured the emittance just downstream of the linac using a section

of beamline with a 6 m drift separating two quadrupole triplets. Figure 5.12

shows two sets of electron beam size measurements for each of the 6 beam po-

sition monitors (BPMs). The first and last two pairs of BPMs each straddle a

quadrupole triplet while the BPMs located near the middle of the plot are in the

middle of the drift. The emittance and twiss parameters were calculated by simul-

taneously fitting all permutations of these beam position measurements using the

beamline geometry and magnetic elements with currents read out at the time of

the measurement. The fit normalized emittances were 1.3 µm for the horizontal

plane and 1.5 µm for the vertical. The lines in the figure represent the beam

size evolution for each transverse plane calculated by propagating the fit twiss

parameters through matrices for each of the beamline elements and scaling by the

fit emittance.
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Figure 5.12: Fits to electron beam rms widths for a section of beamline with a

6 m drift between two quadrupole triplets.

As a next step to measuring the emittance of the beam, we varied the current

in the quadrupole between the undulator and spectrometer while imaging the

spot size on the spectrometer. Figure 5.13a shows the results of the best fits

to quadrupole scans[76] for the unaccelerated and accelerated electron beams.

The normalized vertical emittance of the unaccelerated beam was measured to

be 1.3 mm-mrad in good agreement with the measurements taken upstream of

the experimental setup. For accelerated electrons between 92 and 94 MeV taken

during the high capture experimental run, the best fit for normalized vertical

emittance yields an estimate of 3 mm-mrad. This is in relatively good agreement

with the value of 3.3 mm-mrad from the simulations as shown dashed in the figure.

The observed emittance growth is affected by fluctuations in spatial overlap

between the electrons, laser and undulator. Space constraints on the beamline

limited the electron focusing optics just upstream of the undulator to a doublet

instead of a triplet, reducing our ability to reduce the betatron function of the elec-

tron beam to match the natural focusing of the undulator. The unmatched beam

causes betatron oscillations within the undulator which cause emittance growth

oscillations within the helical undulator to not average out to zero. Simulations

shown on the right side of the figure show that the growth could be eliminated
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Figure 5.13: Quadrupole scans showing measured emittance (a) and simulated

emittance evolution for a matched and unmatched beam (b).

by reducing the e-beam rms spot size to 80 µm and limiting the relative point-

ing jitter to <100 µm. Indeed, a more recent interation of the experiment with a

more closely matched betatron function has been shown to preserve the transverse

normalized emittance of the accelerated beam. For future IFEL accelerators, it

is therefore important to properly match the beam into the undulator’s natural

focusing channel in order to preserve the accelerated beam’s normalized tranverse

emittance.
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CHAPTER 6

Tapering enhanced stimulated superradiant

amplification

Up to here, this dissertation has investigated the challenge of accelerating electrons

by transferring energy from the laser to the electron beam in a strongly tapered

undulator. The lack of nearby boundaries or a medium (gas, plasma) to couple the

light to the electrons implies very little irreversible losses and in principle enables

very high energy transfer efficiencies. Simulations show that an IFEL could be

optimized to transfer nearly 80% of optical power to a relativistic electron beam

[17]. Reversing this process by taking the e-beam and laser output from a heavily

loaded IFEL and putting it back into the accelerator backwards, a majority of the

energy stored in the electron beam may be converted to coherent radiation.

Based on this idea, we investigate in this chapter a novel scheme for efficient

generation of radiation whereby a high intensity seed laser pulse and a relativistic

electron beam copropagate in a tapered undulator, and the IFEL interaction is

used to decelerate the beam. The scheme relies on the coherent emission of a

prebunched beam going through an undulator in the presence of an intense driving

field (i.e. stimulated superradiance emission [77]). Very strong tapering of the

undulator is the other key ingredient to enable high conversion efficiencies and

support large deceleration gradients and electron energy losses.

For perspective, saturation effects limit FEL conversion efficiency to levels

comparable to the Pierce parameter ρ which is typically < 0.1% [9]. FEL un-

dulator tapering [28] has been shown to allow much larger efficiencies. At very
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Figure 6.1: An implementation of TESSA. The diagram in a) shows a seed laser fo-

cused into the strongly tapered undulator along with a prebunched electron beam.

As the e-beam energy—blue represents high energy while red is low—decreases

along the undulator, the laser power grows. Plots of b) the normalized electron

energy and laser power along the undulator and c) initial and final longitudinal

phase spaces are shown.

long wavelengths (35 GHz) where it is possible to use a waveguide to maintain an

intense radiation field on axis, up to 35% conversion efficiency has been demon-

strated [78]. At shorter wavelengths [79, 80], the reduction of gain guiding and

the onset of spectral sidebands have limited the effectiveness of tapering [81]. For

example at the LCLS, the power extraction has remained well below the percent

level limiting the amount of energy in the pulse to a few mJ. Higher conversion

efficiencies could lead to unprecedented intensity x-ray pulses with over 1013 pho-

tons per pulse providing sufficient signal-to-noise to enable the long sought goal of

single molecule imaging [11]. In the visible and UV spectral ranges, large electri-

cal to optical conversion efficiencies are also very attractive for the development

of high average power (10-100 kW-class) lasers especially when considering that

superconducting radio-frequency linacs can create relativistic electron beams with

very high wall-plug efficiencies and MW average power.
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Tapering-enhanced stimulated superradiant amplification (TESSA) can be

viewed as essentially an IFEL accelerator run backwards as a decelerator (see

Figure 6.1). The drive laser field stimulating the electron emission can be ob-

tained from an external seed laser or, in a spectral region where external sources

are not available, from redirecting FEL radiation into a TESSA afterburner un-

dulator [82]. In this case, the FEL radiation can be refocused to reach peak

intensities significantly larger than the FEL saturation level, thereby greatly in-

creasing the initial decelerating gradient. In principle, it is also possible to obtain

the seed pulse from the build-up in an oscillator cavity [83]. The required beam

prebunching may be obtained by using the seed laser and a constant parameter

undulator possibly in combination with one or more chicanes to apply R56 for

larger bunching factors and reduced energy spread [33].

In the analysis of TESSA which follows, we identify i) a low gain regime where

the radiation does not vary in power significantly along the undulator so we can

assume a constant and known radiation field and ii) a high gain regime where

significant amplification occurs.

6.1 Low gain regime

In the low gain regime, the energy stored in the radiation field does not signifi-

cantly change along the undulator. By introducing an undulator builder equation

such as Equation 2.44 relating the undulator strength K to its period λu and

specifying Kl for the laser, a low gain tapering equation for the period may be

produced. Such low gain tapers determined by Equation 2.43 for a Gaussian laser

have produced undulator taperings successfully verified with IFEL acceleration

experiments [24, 52].

In order to reach a better understanding of the TESSA dynamics, we start by

analyzing the low-gain regime where the radiation power does not significantly
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change along the undulator. Defining the efficiency as the relative change in en-

ergy for the beam ηnet = γf/γ0−1 and assuming |ηnet| � 1 for the constant period

tapering case, we obtain an estimate of ηnet ≈ −2πNwKl sinψr. In practice to

reach tens of percent efficiency, the number of periods in the undulator Nw should

be on the order of K−1
l . This regime can be useful in an oscillator configuration

(an analysis without undulator tapering is presented in [83]) where a small frac-

tion of the output power is split and redirected at the input and the low gain is

compensating the losses per pass. Note that if the injected electron beam is not

prebunched, the first section of the interaction can be designed with ψr ≈ 0 until

full bunching occurs and the deceleration can start. Since the efficiency in the

low-gain regime is independent of beam parameters, the output radiation power

scales linearly with the input e-beam current. Considering diffraction, for a nearly

constant undulator K, efficiency is maximized when a TEM00 Gaussian seed laser

is focused with a Rayleigh range of zr ≈ 0.15Lw to a waist at the undulator

midpoint [17].

6.2 Low gain TESSA experiment at ATF

The experimental results presented in this dissertation demonstrated energy dou-

bling of a 52 MeV beam with ∼100 MeV/m average accelerating gradients and

capture of up to 30% of an unbunched electron beam [52] using a strongly ta-

pered undulator in a helical geometry IFEL interaction. Reversing the process

to decelerate a prebunched beam by the same mechanism, one could imagine the

possibility of extracting half of the e-beam power and converting it into coherent

radiation. For comparison, FELs are typically limited by the Pierce parameter ρ

to less than 1 percent electro-optical power conversion and even the best lasers

don’t exceed efficiencies of about 30% so converting nearly half of the e-beam

power to coherent radiation would be significant achievement. Since the maxi-
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mum electron beam peak power of 65 GW (1 kA at 65 MeV) at ATF is below the

∼100 GW CO2 laser power needed for 50% deceleration, the gained optical power

does not significantly affect the interaction, and the decelerator operates in the

low gain TESSA regime.

6.2.1 Experimental design

The IFEL decelerator project builds off of the experience of the helical IFEL exper-

iment by retuning the existing helical undulator to decelerate electrons instead of

accelerating them. The experimental setup is depicted in Figure 6.2. The e-beam

and laser both enter from the left side of the figure, and the dipole ID1 cancels

dispersion as it kicks the electrons onto the beamline with the laser pulse. IQ1,

IQ2, and IQ3 are focusing quadrupoles while IPOP1, IPOP2, and IPOP3 house

beamline diagnostics. A prebuncher & phase delay stage located just upstream of

the undulator prebunch and phase-lock the e-beam to the ponderomotive wave.

Downstream of the undulator lies an energy spectrometer for the decelerated beam

as well as a CO2 laser pickout for laser diagnostics (joulemeter, spectrometer, and

streak camera).

In order to further increase the strength of the stimulated radiation, com-

pression and prebunching are necessary. The peak current of the beam will be

increased from 100 A to 1 kA with ATF’s compressor. Furthermore, a combina-

tion prebuncher and chicane phase delay module is currently being built at UCLA

with the goal of increasing the fraction of the beam accelerated to full energy. The

electron beam acquires an energy modulation at the resonant wavelength while

the chicane module delays the modulated beam in order to phase lock to the pon-

deromotive wave at the entrance of the helical IFEL undulator. 3D simulations

show that up to 70 to 90% of the injected beam should be fully decelerated. With

a 30 MeV change in energy, 1 kA current, and 80% capture, an estimated 24 GW

e-beam power should be transferred to the radiation field.
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Figure 6.2: Diagram of the beamline setup for the IFEL decelerator project at

ATF.

6.2.1.1 Helical undulator design

The tapering of the helical undulator was previously modified for the high capture

IFEL configuration, enabling the first demonstration of IFEL resonant energy

tuning. Since the undulator period is predetermined by the dimensions of the

magnets in the undulator, the gap between magnets was changed in order to

manipulate the field and resonant energy along the undulator. In order to reverse

the effect of the accelerator, the undulator may be reversed and the gap tapered in

order to reduce the resonant energy during the interaction. In this case, a positive

resonant phase ψr yields a tapering with decreasing resonant energy along the

undulator. The highest stable energy electron beam that may be produced at the

ATF is 70 MeV, and the final energy of the decelerated electron beam is 42 MeV.

The experimental parameters are summarized in Table 6.1.

When the undulator period and laser parameters are specified along with the

initial condition that K at the entrance be such that the resonant energy is equal

to the input beam’s 70 MeV energy, the tapering equations yields K which in

turn determines the on-axis field strength along the undulator. The undulator

builder equation can then be used to estimate the gap along the undulator needed

to create the designed on-axis field which can then be modeled with Radia.

The laser and e-beam parameters used in the tapering design are specified in
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Table 6.1, and the calculated period and resonant energy as well as the solutions

to the IFEL/FEL equations are shown in Figure 6.3. The initial seed power was

chosen to be large enough for significant deceleration but small enough to increase

the ratio between the signal (stimulated power) to background (seed power). The

resonant phase was set to a constant π/4 as a compromise between bucket depth

and ponderomotive gradient.

Parameter

E-beam energy 70 to 40 MeV

Laser focal intensity 4 TW/cm2

Laser wavelength 10.3µm

Rayleigh range 30 cm

Laser waist undulator midpoint

1/e2 spot size 0.99 mm

M2 1.07

Resonant phase π/4

Table 6.1: IFEL decelerator design parameters

6.2.1.2 Time resolved laser diagnostics

The setup of the beamline for the IFEL decelerator experiment is very similar to

that of the IFEL accelerator experiment with the exception of the laser diagnos-

tics. While the peak power of the radiation is increased nearly 30% during the

interaction, since the laser pulse duration of 4.5 ps is longer than the 1 ps e-beam

duration, the total energy of the radiation field should only increase by a few

percent, necessitating temporally resolved power measurements of the amplified

pulse. In order to resolve the power gain, the amplified CO2 laser pulse will be

extracted from the beamline about 4 m from the undulator where intensities are

below damage thresholds for transport optics and sent to a streak camera for time
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Figure 6.3: The a) period and b) normalized undulator vector potential decreases

along the undulator causing c) the resonant energy to decrease. d) Solutions to the

equations of motion describing the longitudinal IFEL dynamics were calculated

with the design seed laser and undulator tapering.
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Figure 6.4: The radiation power grows along the undulator as the electrons are

decelerated.

domain measurements and a diffraction grating for spectral measurements. Fur-

thermore in order to understand better the laser evolution, small reflections from

the laser will be split off up- and down-stream of the undulator and calibrated to

yield relative energy measurements.

6.2.2 Simulations

Simulations were performed with the 3D FEL code Genesis 1.3 [48] for a 70 MeV

input e-beam, laser focusing parameters listed in Table 6.1 and 100 GW seed laser

power. The radiation power grows along the interaction as shown in Figure 6.4.

Figure 6.5 shows the output beam’s longitudinal phase space at the end of the

undulator. Up to 43% of the beam is captured and decelerated from 70 to 42 MeV

while the radiation power grows by nearly 30%. The transverse profile of the laser

spot is also shown in Figure 6.6.

6.2.3 Experimental outlook

While recent achievements in IFEL acceleration have focused on high-gradient ac-

celeration, the UCLA-BNL helical IFEL decelerator experiment aims to achieve

high-gradient deceleration in order to demonstrate high efficiency electro-optical

conversion. The undulator tapering design achieves this by matching the reso-
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Figure 6.5: The e-beam longitudinal phase space is shown at the exit of the

undulator. The beam loses 28 MeV as the particles are decelerated from 70 to

42 MeV.

Figure 6.6: The transverse radiation profile is shown at the exit of the undulator.

Growth of the radiation at the center of the seed is clearly visible.
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nant energy and ponderomotive accelerating gradients for decelerating resonant

phases with the strongly tapered helical IFEL undulator. By compressing and

prebunching the electron beam, significant power gain should be observable with

time resolved laser measurements. For moderate laser intensities, over 40% of the

e-beam energy is predicted to be converted to coherent radiation. Such gains are

impressive for a single pass amplifier, and when stacked in a laser recirculation

scheme, may pave the way to yet greater laser amplification in future experiments.

6.3 High gain regime

Whenever the stimulated superradiant emission becomes the dominant contribu-

tion to the total laser field driving the interaction, the undulator can be tapered

more aggressively in order to take advantage of the additional ponderomotive

drive. In this case, the tapering which maximizes conversion efficiency depends

on the injected e-beam current since a higher current generates more radiation per

unit length which allows larger decelerating gradients and higher electro-optical

energy transfer rates. Thus, whereas the output radiation power scales linearly

with injected current in the TESSA low gain regime, the output power in the high

gain regime grows faster than linearly with respect to input e-beam current.

The main difference in calculating the tapering is that now Kl is the total

electromagnetic field due to the seed plus the stimulated radiation, which is a

dynamic variable evolving throughout the interaction and depending on the entire

history of the e-beam spot size, current profile, and change in resonant energy

throughout the interaction. The result is a complicated delay differential equation

for Kl where three-dimensional effects play an important role. In this case, it is

easier to optimize the undulator tapering by solving for the actual field evolution

with the help of 3D simulations.

In practice, the well-benchmarked 3D FEL simulation code Genesis [48] is
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used to solve for the intensity of the radiation sampled by the electrons after

a small number of undulator periods without tapering. This value is then fed

into the tapering equation to calculate the optimum change of parameters for the

following undulator section. These parameters along with the recorded particle

and radiation distributions from the previous simulation are read by Genesis for

the next step of the calculation which evolves the system for another small section

of undulator. The optimization algorithm is then repeated until the end of the

undulator. The result is an optimum undulator tapering and a self-consistent 3D

simulation of the evolution of the electron beam and radiation in the optimized

tapered undulator.

This tapering generation algorithm, dubbed Genesis-informed tapering scheme,

or GITS, can be used both in the constant and the varying period cases. For the

former, Equation 2.42 is used to calculate the undulator K parameter variation

while the period is held constant to the initially assigned value. For the variable

period undulator, Equation 2.43 is used where K is related to the period by the

undulator builder equation.

It is of critical importance to choose the variation of the undulator parameters

in order to maintain the majority of the particles trapped in the ponderomotive

bucket. In particular due to 3D effects, not all particles experience the same laser

intensity or Kl. In order to account for this problem, GITS looks up the local

intensity seen by each macro-particle in the simulation and softens the tapering

to keep any desired fraction of the beam trapped within the resonant bucket.

A particle maintains resonance if it is trapped near a local minimum of the

ponderomotive potential. For particles with small relative energy deviations from

resonance η = γ/γr − 1, the Hamiltonian can be approximately written as

H = ckw

(
η2 − 2KlK

1 +K2
(cosψ + cosψr + (ψ + ψr − π sgnψr) sinψr)

)
(6.1)
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Particles in regions of phase space with H < 0 are trapped within the bucket,

while particles outside of the bucket where H > 0 are free. It is important to note

that the size and location of the bucket changes with the field sampled by each

particle. Equation 6.1 is first evaluated for each particle with ψr = 0 to select

particles with H < 0. We then determine the minimum Kl for this fraction of

particles and use it with the tapering equations to determine the tapering of the

undulator parameters.

With this method, it is helpful to start with a prebunched beam so that the

tapering is allowed to change rapidly. Prebunching via the method of energy

modulation with an undulator followed by R56 via a chicane or drift is greatly

desirable here as it results in highly bunched beams with reduced energy spread,

which increases ease of trapping by concentrating the injected e-beam in phase

space. The use of a chicane also enables the e-beam bunches to be phase shifted

to the center of the accelerating bucket. Furthermore, refocusing the driving

radiation increases the bucket height, further decreasing the Hamiltonian and

therefore increasing ease of trapping.

The advantages of prebunching and focusing the radiation before deceleration

with TESSA help explain the differences with respect to standard FEL tapering.

The FEL mechanism fills the ponderomotive bucket at zero resonant phase so

that only a relatively small core region of phase space may be matched into an

accelerating bucket. Conversely, the TESSA approach tailors the input phase

space to match well a strongly decelerating bucket from the beginning, allowing

strong deceleration without sacrificing a significant fraction of the injected beam,

and then optimizes the deceleration by matching the tapering and ponderomotive

gradients while selecting the resonant phase in order to maximize trapping.
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6.4 High power EUV light source

In the rest of this chapter we examine the results of GITS for a couple of relevant

cases where high extraction efficiency can enable break-through applications for

electron beam-based light sources. In the first example we consider a 1 GeV linac-

driven radiation source for EUV lithography, which requires achieving high average

power at 13.5 nm. In a conventional SASE FEL optimized for this wavelength

range, a practically achievable Pierce parameter is on the order of ∼0.002, thus

a state-of-the-art superconducting RF light source such as XFEL can achieve

about 100 W average power output with ∼50µA average current. Applying a

conventional adiabatic tapering technique to maximize the output power with a

5 GW seed and 23 m long undulator with parabolically tapered K could possibly

increase the efficiency to 18% as shown in Figure 6.7a, yielding 8 kW average

power which is still insufficient to meet industry needs of roughly 20 kW average

power.

On the other hand, using a refocused EUV seed to drive a TESSA amplifier, it

is possible to convert nearly half of the electron beam power into the 13.5 nm light,

all within a 23 m long undulator. The solid lines in Figure 2 show the radiation

power increase from the starting seed peak power of 5 GW from an upstream

FEL to a final >1.8 TW as the electron beam with a modest initial bunching

factor of 0.58 is decelerated in the process from 1 GeV to 320 MeV for a variable

period undulator. Note that this remarkable numerical result still corresponds to a

relatively modest decelerating gradient value of about 30 MeV/m, something that

has already been demonstrated experimentally in the inverse (IFEL) configuration.

While the undulator builder equation describes the relationship between pe-

riod and field amplitude for fixed gap, it is also possible to change the field by

increasing the gap while holding the period constant. The results of simulations

for a fixed period undulator optimization (dashed curves in Figure 6.7) show a
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Figure 6.7: The results of GITS optimizations for a 1 GeV, 4 kA e-beam with

a moderate initial bunching factor of 0.58 lasing at 13.5 nm with a seed power of

5 GW from an upstream FEL are shown in the above plots for the case of varying

period (solid lines) and constant period (dashed). Also shown are the results of

simulations for an undulator with parabolic tapering (dot-dashed lines).
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reduced output peak power of 1.35 TW, demonstrating that varying the period

of the undulator improves the conversion efficiency.

Applying these results to the same example of a 50 µA average current XFEL-

like driver beam (1 GeV electron energy, 20 kHz rep rate, 4 kA peak current, and

500 fs rms bunch length) with the TESSA afterburner, one can achieve >20 kW

average power output at 13.5 nm—well within the application target range.

Parameter EUV X-ray

E-beam energy 1 → 0.32 GeV 14.35 → 10.7 GeV

Rms energy spread 0.002 0.0001

E-beam current 4 kA 4 kA

E-beam emittance 2.0 mm-mrad, 0.3 mm-mrad

E-beam spot size 45µm 10.5µm

Initial bunching 0.58 shot noise

Laser peak power 5 GW → 1.8 TW 5 MW → 9.6 TW

Laser wavelength 13.5 nm 3.0 Å

Seed Rayleigh range 1 m 3 m

Seed waist 3 m 4 m

Undulator period 2.32 → 1.00 cm 3.34 → 2.90 cm

Undulator K 1.86 → 0.19 3.63 → 2.85

Undulator length 23 m 120 m

Resonant phase 0 → 1.14 0 → 0.66

Table 6.2: EUV and x-ray GITS simulation parameters

6.5 X-ray FEL afterburner

As another example, we consider the application of TESSA tapering to the gen-

eration of hard x-rays. The challenge here is to maximize the energy per pulse in

161



order to enable single molecule imaging. More than 1013 photons in a <10 fs pulse

are required in order to beat the damage and obtain the diffraction information

before destroying single molecules [84]. For 4 keV photons (3 Å wavelength), the

peak power corresponding to this pulse approaches 1 TW.

We start our simulations with an unbunched electron beam and 5 MW of

seeded FEL radiation power, which is typical after self-seeding [85]. An impor-

tant effect is uncovered by the time-dependent simulations. When trapped in the

ponderomotive potential, the electrons undergo synchrotron oscillations in longi-

tudinal phase space with period zs = λw
√

(1 +K2)/4KKl cosψr and sideband

frequencies are generated as discussed in [79]. In the time-domain, these cor-

respond to oscillations in the time-profile of the field amplitude. This effect is

clear in the simulation results shown in Figure 6.8 where we follow a 5 fs slice of

the beam along the undulator. The ripple in the temporal power profile shown

in Figure 6.8b appears in the spectrum in Figure 6.8c as sidebands around the

central resonant frequency. As the amplitude of this oscillation grows, particles

in those slices experiencing lower laser intensities detrap from the ponderomotive

bucket and efficient energy exchange stops. While time independent simulations

yield 13 TW of power, the sideband instability limits the average power of time

dependent simulations to less than 6 TW as shown in Figure 6.8a.

Shown along the undulator in a) are the mean powers for simulations with

identical initial conditions but different frequencies of chicane delays used to sup-

press the sideband generation. b) and c) show the output temporal profiles and

spectra for a standard time dependent simulation and a sideband suppressed sim-

ulation with delays every 13 m. The undulator parameters and bunching factor

for the case with delays per 13 m are depicted in d) and output longitudinal phase

space is depicted in e).
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Figure 6.8: GITS simulations for the case of an x-ray FEL afterburner with a

14.35 GeV, 4 kA unbunched electron beam and 5 MW seed laser with 3 Å wave-

length.

6.5.1 Sideband suppression

This synchrotron sideband instability is somewhat mitigated by strong tapering

which causes the synchrotron frequency to quickly vary along the interaction [81].

In order to suppress further the sideband instability, we introduce delay modules

periodically throughout the undulator. The function of these delays [86] is to

introduce 180 degree phase shifts for the sideband oscillations while preserving

the phase of the fundamental resonant frequency. The required delays are on

the order of zs(1 + K2)/4γ2 or 30-100 nm for our case and can be introduced

using magnetic chicanes. Isochronous chicanes are preferred for this application

since due to the large energy spread of the electron beam during the deceleration,

bunching and trapped fraction are degraded by the introduction of a large chicane

dispersion. The number of the chicanes required to suppress the formation of the

sidebands is set by the instability growth rate.

Simulations with such delays placed every 13 m (9 delays total) yield more

than 11 TW peak power levels and nearly 10 TW average power with 120 m
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undulator as shown in Figure 6.8 and summarized in Table 6.4. For an 8 fs

electron beam 2 times longer than the 4 fs total slippage length, this simulated

output power corresponds to ∼ 1014 photons per pulse. Simulations with more

frequent delays, also shown in Figure 6.8a, further reduce the sideband growth

and produce average powers approaching that of time independent simulations.
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CHAPTER 7

Conclusions

The results of the helical inverse free electron laser experimental program detailed

in thesis for the first time demonstrate monoenergetic, high gradient, high energy

gain acceleration of a large fraction of an electron beam injected into a laser-

accelerator. These achievements suggest the IFEL as an excellent candidate for

compact laser-based acceleration in the medium-to-high energy range. Energy

gain larger than 50 MeV and 100 MeV/m average gradients exceeding those of

conventional radio frequency accelerators were obtained using laser intensities of

order 1013 W/cm2—nearly five orders of magnitude lower than those used with

LWFA experiments.

Additionally, we showed that the accelerator output energy may be controlled

by varying the gap within the undulator. The high capture run demonstrated

average accelerating gradients of 78 MeV/m competitive with high-gradient RF

accelerators. Furthermore the accelerator achieved relatively low energy spread

of less than 2% and about 1% output energy stability despite ∼ 30% laser energy

fluctuations. The quality and stability of the resulting electron beam’s longitudi-

nal phase space compares very favorably with other advanced accelerator schemes,

and may be improved with techniques for better phase space matching presented

in Chapter 3. Moreover, the fraction captured may be greatly improved with

the aid of a prebuncher, and simulations show that GeV electron beams may be

achieved with a 100 TW CO2 laser and a 1 m long helical undulator [87] at the

future ATF2 facility [88]. Thus the achievements of the high capture run demon-
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strate the promise of the IFEL as a useful accelerator and pave the way for future

experiments.

The performance of the experiment and its recent predecessors relied on pow-

erful CO2 laser systems, yet since only a couple such lasers in the world are capable

of such performance, future IFEL accelerators may use more commercially avail-

able high power radiation sources such as TiSa lasers. Recent experiments have

indeed successfully used TiSa lasers to drive IFELs [64] and even demonstrate

∼ 200 MeV/m accelerating gradients [27]. Our studies in Chapter 3 suggest that

GeV acceleration in a meter is achievable with 20 TW of 800 nm radiation, and

we show through simulations that many schemes are possible for improving the

capture and properties of the accelerated beam. Furthermore, we demonstrated

via self consistent simulations of the radiation and particle dynamics that the

IFEL accelerator may be designed to perform well even when heavily loaded and

transfer up to 80% of the laser power to the electron beam with sufficient current.

This shows that the IFEL is capable of high efficiencies in addition to high gra-

dients and motivated the design of a dynamic undulator tapering code GITS to

algorithmically design the undulator taper.

The potential for extremely high energy transfer efficiency suggested the possi-

bility of efficiently producing radiation with strongly tapered undulators by essen-

tially reversing the IFEL. This approach to radiation production which we refer

to as tapering enhanced stimulated superradiant amplification (TESSA) in Chap-

ter 6 is unique in that it pairs a tightly prebunched electron beam with a strongly

focused seed laser as one would do in the design of an IFEL to decelerate elec-

trons with gradients far exceeding those of FELs. Using this IFEL deceleration

approach to radiation generation offers the capability of producing lasers of far

higher efficiencies and average and peak powers than existing 4th generation light

sources. Maintaining high conversion efficiencies from wall to e-beam to radiation

may allow the production of ultra high average power visible light sources with a
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wide range of applications including fusion science, defense and optically-driven

accelerators for high luminosity colliders [20]. Application of TESSA to 13.5 nm

radiation production could enable nearly 50% single-pass electro-optical energy

conversion which in turn may be used to address the challenges of EUV lithogra-

phy currently faced by the semiconductor industry. Applying the TESSA design

principles to 1 µm light generation, which the atmosphere is nearly transparent to,

offers highly efficient power beaming to Earth’s satellites, which may enable the

aerospace industry to beat the limits imposed by the Tsiolkovsky rocket equation.

Finally, we applied the GITS tapering code to the challenge of maximizing

x-ray production at future FEL facilities. Since the decelerating gradients are

reduced by the 1/γ dependence of the ponderomotive force, the undulator must

be made many synchrotron oscillations long for significant power production, giv-

ing radiation sidebands time to grow which ultimately halt power production.

We show that these sidebands may be suppressed by introducing periodic phase

delays. Resulting simulations suggest the possibility of 10 TW power extrac-

tion (nearly 20% of the beam power) from a 4 kA, 14.35 GeV electron beam in

120 m. Such radiation could be useful for single-shot diffraction measurements.

Improvements in x-ray mirrors may allow focusing high power x-ray lasers, thereby

increasing accelerating gradients and achieving even larger efficiencies. Since the

laser emittance decreases with decreasing wavelength, x-rays may in principle be

focused to much smaller areas than near infrared lasers so production of increas-

ingly large x-ray laser powers could one day help push the frontiers of extremely

high field physics.
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APPENDIX A

Laser accelerator energy fluctuations

Compared to other laser-driven advanced accelerators, the IFEL has an advantage

in terms of achievable gradient for a given laser intensity. The rate of change in

energy for an IFEL is proportional to the product of the laser and undulator

normalized vector potential amplitudes defined as the momentum carried by each

field divided by mc and given by Kl = eAl/mc = eEl/kmc
2 and K = eAw/mc =

eBw/kwmc where El and Bw are the laser electric and undulator magnetic field

amplitudes, and k and kw are the laser and undulator wavenumbers. We make the

assumption that Kl � K which is typical for existing IFELs. Since the undulator

parameter K can be easily made larger than unity using few-cm long periods and

0.5 T-level fields, impressive gradients can be sustained even at non-relativistic

laser intensities. To draw a comparison, laser wake field accelerators (LWFA)

present a characteristic dependence of the accelerating wave amplitude as K2
l and

have only demonstrated significant energy gain with relativistic (i.e. Kl > 1) laser

intensities [20].

The IFEL’s reduced reliance on laser intensity becomes even more attractive

considering the effect of fluctuations of laser parameters on accelerator perfor-

mance. Laser driven accelerators either accelerate via direct coupling of the laser

electric fields to the injected particles’ velocities or via a ponderomotive interac-

tion whereby a field-induced transverse motion couples to the laser’s transverse

fields. The former requires abruptly extracting the electrons from the laser field

after a short interaction distance about γ2λ before dephasing (here, γ is the par-

168



ticle energy and λ is the laser wavelength) [89] or slowing the phase velocity of

light in a gas (inverse Cherenkov acceleration), optical fiber. Each of these has

corresponding drawbacks or complications making them unattractive: damaged

optics, low laser ionization thresholds, and induced wakefields. Dielectric laser

accelerators directly couple the laser’s electric field to the longitudinal motion

of the electrons by propagating lasers through dielectric structures perpendicular

to the electron motion, but present challenging limits on beam charge and emit-

tance as the apertures of these structures tend to be roughly the size of the laser

wavelength.

The nonlinear laser ponderomotive force depends on the square of the laser

field F ∼ 1
γ
∇E2

l resulting from the interaction of the fast laser-induced transverse

motion v⊥ ∼ El/γ with the laser electric field. The force’s dependence on the laser

intensity E2
l necessitates large peak intensities and results in a one-to-one depen-

dence of driving force variations on input intensity fluctuations δF/F = δI0/I0; if

the input laser intensity fluctuates by 10%, the accelerated particle energy does

too. Time of arrival and pointing jitter only exacerbates this problem. This

ponderomotive force may be used to drive wakes in plasma for plasma wakefield

acceleration resulting in net energy gains linearly varying by the intensity divided

by the plasma density γf ∼ E2
l /n0 [20]. The use of the wakes circumvents the

undesirable 1/γ suppression in the ponderomotive force, but at the expense of sub-

stantially increased output energy fluctuations due to the addition of significant

plasma density fluctuations δγf/γf =
√

(δI0/I0)2 + (δn0/n0)2. Consequentially,

typical shot to variations in output parameters for laser wake field accelerators are

1-5% for energy, 1-10% for relative energy spread, and 5-50% for charge despite

their impressive accomplishments [21]. Laser beat wave acceleration utilizes two

lasers with appropriate focusing to control the ponderomotive phase [89]. Assum-

ing that the lasers are synchronized but with similar but uncorrelated intensity

fluctuations, the resulting force is expected to fluctuate by δF/F = 1√
2
δI0/I0.
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Fluctuations in input laser parameters are a critical limiting factor in laser driven

particle accelerators, and until they are made about as stable as klystrons, laser

accelerators will remain less stable than conventional RF accelerators.

Accelerator Energy fluctuations δγ/γ

Direct laser 1
2
δI0/I0

Dielectric laser 1
2
δI0/I0

Pondermotive δI0/I0

LWFA
√

(δI0/I0)2 + (δn0/n0)2

Beat wave 1√
2
δI0/I0

IFEL < 2
√

(cosψr + (1− π/2|ψr|)ψr sinψr)KlK/(1 +K2)

Table A.1: Laser accelerator stability characteristics

The IFEL accelerating gradient is on par with the direct laser accelerators as

the most immune to laser fluctuations. It accomplishes this feat by essentially

replacing one of the lasers in the beat wave accelerator scheme with a static

undulator magnetic field, yielding a force linearly proportional to the laser field

F ∝ El. This force yields fluctuations of δF/F = 1
2
δI0/I0 which are 30% less than

laser beat wave accelerators and better than 50% less than LWFA. Furthermore

since the ponderomotive phase velocity does not involve the laser amplitude, the

IFEL output energy is largely immune to laser fluctuations. At worst, it may

slosh around within the relative resonant energy bandwidth |ηsep(ψr = −π/4)| <

0.78
√
KlK/(1 +K2) if injected slightly off resonance (see Equation 2.35). In our

experiment, the energy of the accelerated beam varied by a mere 1.3% rms while

the laser power fluctuated by 27% (see Section 5.4).

The IFEL may be designed to accommodate laser parameter tolerances in order

to accelerate any desired fraction of input beam to a fixed final energy producing

beams with relative energy spreads scaling as σγ/γ ∼
√
El which varies with

laser intensity fluctuations as δσγ/σγ = 1
4
δI0/I0. With insignificant final energy
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fluctuations and very modest 1
4
δI0/I0 energy spread fluctuations, the IFEL is the

most stable laser accelerator capable of significant energy gain for conventional

electron beams.
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APPENDIX B

IFEL simulation tools

Several simulation programs are useful in the design of an IFEL accelerator, and

the ones we will use are listed in Table B. The undulator taper design calculated

from the tapering equations and design parameters is a good starting point since

it determines properties such as the resonant energy and ponderomotive bucket

dimensions. Still, particles slightly detuned from resonance may not maintain

their quasi-resonance if the acceleration is violent—that is, if the resonant en-

ergy changes significantly within one synchrotron period. In order to assess their

behavior, it is useful to solve the 1D equations of motion for a collection of par-

ticles with the designed undulator taper. The combination of taper design and

1D simulations provide quick estimates of the accelerator performance for a given

parameter set and enable studies of the effects of varying the input parameters in

order to optimize the design.

Code

Longitudinal

dynamics

Transverse

dynamics

Radiation

feedback

1D equations Yes No No

Genesis Yes Approximate Yes

Tredi Yes Yes No

GPT Yes Yes No

Table B.1: Capabilities of various IFEL simulation tools

The 1D simulations aid fast prototyping but ignore two important effects: the

transverse dependence in the accelerator dynamics and the evolution of the radi-
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ation field. In this case, the well known FEL simulation code Genesis 1.3 [48], is

useful for studying these effects on accelerator performance. The code simulates

the particle motion in three dimensions and solves the radiation evolution on a

transverse grid. This is useful for studying the effects of beam loading on the

accelerator’s performance when electrons absorb a significant fraction of energy

from the laser, a topic which will be discussed in detail later in this chapter. For

computational efficiency, Genesis calculates the longitudinal motion by solving the

FEL period averaged equations of motion, glossing over the fast oscillations re-

sulting from the direct action of the laser on the particles which generally averages

to zero in standard FEL and IFEL interactions [59]. Despite this approximation,

Genesis is well suited for modeling the FEL interaction and has been used to guide

the design of successful FEL experiments such as the LCLS [61, 60].

Since Genesis does not allow for arbitrary period tapering, we chained together

Genesis simulations for each undulator period using the measured period and K

parameter from measurements [62]. As an insurance policy for this unorthodox

approach, we verified that the results of our IFEL simulations agreed with Tredi, a

code successfully used in the design of the Neptune IFEL experiment [24]. The use

of the period averaged equations limits Genesis’ applicability in certain situations.

Since the transverse dynamics of FELs are nearly completely determined by the

undulator field, the transverse motion is calculated by applying an undulator

transport matrix to the electron beam parameters. Consequently, Genesis cannot

simulate electron trajectories in an optical deflector mode using a TEM10 such as

[30]. Another consequence is that it can only approximate intraperiod undulator

field modulations from strong tapering as constant or linearly or quadratically

increasing. A magnetic field map is needed to better account for these effects.

The particle tracking code General Particle Tracer (GPT) [66] is useful for more

accurately modeling the transverse particle dynamics. GPT solves the particle

trajectories in three dimensions using the Lorentz force equations. The fields are
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specified either by functions within modules or imported field maps. An immediate

benefit to supporting functional field definitions is the ability to model laser fields

with various transverse modes such as TEM10. 3D undulator field maps generated

with a magnetostatic code Radia [57] and imported to GPT offer an even closer

approximation to realistic transverse dynamics including focusing. When first

modeling IFELs with GPT, we found agreement between GPT and another 3D

simulation code, Tredi [63], which was previously bench-marked against IFEL

experimental results in planar undulators [24]. Furthermore, GPT has now been

shown useful for modeling both the Rubicon IFEL as well as a 800 nm laser driven

IFEL experiment at the Lawrence Livermore National Laboratory [27]. With this

complete suite of simulation tools we can realistically model the experiment.
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APPENDIX C

Laser induced emittance growth

Up until now, we have investigated the particle dynamics within a combination

of undulator and laser fields. When electrons interact with intense lasers, non-

linear effects may occur. We therefore, investigate the effect of a laser field on a

copropagating electron beam.

Consider a free electron with energy γmc2 copropagating with a linearly y-

polarized planar EM-wave. We opt for a plane wave rather than a Gaussian pulse

to simplify the dynamics. The Hamiltonian for the system is given by the invariant

magnitude of the four-momentum vector.

(H − qΦ)2 − (~p− q ~A)2c2 = m2c4

⇒ H =

√
(~p− q ~A)2c2 +m2c4 + qΦ

(C.1)

Here, the externally applied electrostatic potential Φ is zero while the vector

potential supplied by the plane wave is given by

~A = x̂
E0

ck
sin kζ (C.2)

where ζ ≡ z − ct, k is the laser wavenumber, and E0 is the laser electric field.

The mechanical momentum can be found by taking the partial with respect to

the canonical momentum. For the time component, this yields the result that

the Hamiltonian equals the total particle energy: H = γmc2. For the spatial

components, we have
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d~x

dt
=
∂H

∂~p
=
~p− q ~A
γm

⇒ γm~̇x = ~p− x̂qE0

ck
sin kζ

⇒


γmẋ = px − sgn(q)mcKl sin kζ

γmẏ = py

γmż = pz

(C.3)

Here, as before with the IFEL treatment, we define the normalized laser vector

potential amplitude as Kl = |q|E0/mc
2k. We now have to determine the evolution

of the particle’s z, γ, and px coordinates to make sense of the evolution of x. We

will assume that particles are uniformly distributed over the initial position z0.

First, let’s examine the evolution of px. The absence of the x and y coordinates

in the Hamiltonian implies that the canonical momentum conjugate to those co-

ordinates is conserved. Since dpx/dt = 0, we can determine px by requiring that

the initial normalized velocity be equal to x′0 at t = 0 and z = z(t = 0) ≡ z0.

x′0 =
px
γmc

− sgn(q)
Kl

γ
sin kζ

⇒ x′ = x′0 − sgn(q)
Kl

γ
(sin kζ − sin kz0)

(C.4)

Recall the definition of the longitudinal coordinate ζ = ∆z(t) + z0 − ct. Us-

ing Equation C.3, the time dependence of ζ can be determined using ∆z(t) =∫ t
0
dtpz/γm. The time evolution of pz is given by the variation in the Hamilto-

nian with respect to z.

dpz
dt

= −∂H
∂z

= q
~p− q ~A
γm

· ∂
~A

∂z

=
px − sgn(q)mcKl sin kζ

γm
· qE0

c
cos kζ

= sgn(q)x′0mc
2kKl cos kζ +

kmc2K2
l

γ

(
sin(kz0) cos(kζ)− 1

2
sin 2kζ

) (C.5)
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For sub-relativistic laser fields such as that used in the Rubicon IFEL ex-

periment where K � 1, these terms are largely ignorable since the relative

laser-induced momentum fluctuations within one period of oscillation |∆p|/kpz ≈

x′0Kl/γ are incredibly small. Since the longitudinal velocity is constant and close

to c, we can approximate vz − c ≈ −c/2γ2 in the phase evolution of the wave

kζ ≈ kz0 − k′ct where we’ve defined k′ ≡ k/2γ2. Since the energy is γmc2 ≈ pzc

to a good approximation, it too is relatively constant. Integrating the transverse

velocity in Equation C.4 and requiring that x = x0 at t = 0 yields the position as

a function of z.

x = x0 + x′0ct+ sgn(q)
Kl

k′γ
(cos kz0 − cos(k′ct− kz0) + ck′t sin kz0) (C.6)

In order to calculate the normalized emittance, we need the variance in x and

its normalized velocity x′. Squaring each of these terms and averaging over these

initial coordinates yields expressions for each. We will assume that the initial

coordinates x0 and z0 and the velocity x′0 each average to zero while the energy

averages to γ.

εx,n = γ
√
σ2
xσ

2
x′ − σ2

x,x′ (C.7a)

σ2
x = σ2

x,0 + 2ctσxx′,0 + (ct)2σ2
x′,0 +

K2
l

k′2γ2

(
1 +

1

2
(k′ct)2 − cos k′ct− k′ct sin k′ct

)
(C.7b)

σ2
x′ = σ2

x′,0 +
K2
l

γ2
(1− cos k′ct) (C.7c)

σxx′ = σxx′,0 + ct

(
σ2
x′,0 +

K2
l

2γ2
(1− cos k′ct)

)
(C.7d)

The first thing to note is that there are two harmonic frequencies: k′ and 2k′.

In addition to harmonic components there are terms linear and others quadratic

in time which cause irreversible emittance growth. The growth itself comes from
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Figure C.1: Laser heater model and GPT simulations for three different beam

waists: 100, 200, and 400 µm.

the random initial positions of the particles which are born in the laser field. In

experiments with intense lasers where electrons are swiftly kicked into a laser field,

this emittance growth may become significant and irreversible if enough coaxial

propagation is allowed. Another point is that the sign of the charge dropped out

in Equation C.7 so positrons may be expected to behave in the same way.

In order to investigate the validity of the model, we compared prediction with

GPT, introduced at the beginning of this chapter. We used a functional form of

the plane wave laser field with a wavelength of 10.3 µm and a peak field strength

4 GV/m. The 50 MeV beam is started from a waist of 200 µm with a 2 µm

normalized emittance and allowed to propagate 6 m.

Figure C.1 shows the normalized emittance as a function of position. The

model and simulation are in reasonable agreement for these parameters. As pre-

dicted, there are two oscillation frequencies. The first has a period of 19.7 cm as

predicted by λ′ = 2γ2λ while the second is half that. Larger spreads in angles

associated with smaller beam waists for constant emittance clearly increase the

irreversible emittance growth rate. On the other hand, keeping the beam large

so that the angular spread is small keeps the irreversible emittance growth small

but increases the emittance oscillation amplitude. This suggests that emittance

growth can be mitigated somewhat during injection to and extraction from the

laser and expanding during copropagation with the laser. There are clear minima
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of the oscillations where if the beam is extracted, which would could reduce some

of the emittance growth. Since the emittance oscillation periods scale with energy,

after acceleration the increased period may allow easier extraction.

While the discussion has been limited to a linearly polarized plane wave laser,

the results are somewhat general. For example, a circularly polarized laser can

be treated as two orthogonally polarized lasers. Since the motion in the plane

perpendicular to the polarization is unaffected by the laser, the analysis for the

emittance growth in each planes is independent. The difference with respect to a

fundamental Gaussian mode laser is primarily the transverse field strength vari-

ation and a variation in the laser phase from the Guoy phase shift on-axis and

due to the curved phase fronts off-axis. Nevertheless, the plane wave may be a

reasonable approximation in many cases of interest. Understanding these contri-

butions to the electron beam’s emittance growth can assist in out understanding

of limitations on laser accelerator accelerators and guide experimental design.
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C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid. Multi-meter fiber-
delivery and pulse self-compression of milli-joule femtosecond laser and fiber-
aided laser-micromachining. Opt. Express, 22(9):10735–10746, May 2014.

182



[38] D. J. Richardson, J. Nilsson, and W. A. Clarkson. High power fiber lasers:
current status and future perspectives. J. Opt. Soc. Am. B, 27(11):B63–B92,
Nov 2010.

[39] M.N. Zervas and C.A. Codemard. High power fiber lasers: A review. Selected
Topics in Quantum Electronics, IEEE Journal of, 20(5):219–241, Sept 2014.

[40] A. van Steenbergen, J. Gallardo, J. Sandweiss, and J.-M. Fang. Observation
of energy gain at the bnl inverse free-electron-laser accelerator. Phys. Rev.
Lett., 77:2690–2693, Sep 1996.

[41] Amplitude Technologies. 2-4 rue du bois chaland, ce 2926, 91029 evry, france.
http://www.amplitudetechnologies.com/.

[42] F. H. O’Shea, G. Marcus, J. B. Rosenzweig, M. Scheer, J. Bahrdt, R. Wein-
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