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Abstract 

Background: Schizophrenia is a debilitating psychiatric disorder manifested in early adulthood. 

Disrupted-In-Schizophrenia-1 (DISC1) is a susceptible gene for schizophrenia (1-3) implicated 

in neuronal development, brain maturation and neuroplasticity (4, 5). Therefore, DISC1 is a 

promising candidate gene for schizophrenia, but the molecular mechanisms underlying its role in 

the pathogenesis of the disease are still poorly understood. Interestingly, Caveolin-1 (Cav-1), a 

cholesterol binding and scaffolding protein, regulates neuronal signal transduction and promotes 

neuroplasticity. Here we examined the role of Cav-1 in mediating DISC1 expression in neurons 

in vitro and the hippocampus in vivo. 



Adam	Kassan	3	
	

Methods and Results: Overexpressing Cav-1 specifically in neurons using a neuron specific 

synapsin promoter (SynCav1) increased expression of DISC1 and proteins involved in synaptic 

plasticity (PSD95, synaptobrevin, synaptophysin, neurexin, and syntaxin-1). Similarly, SynCav1-

transfected differentiated human neurons derived from induced pluripotent stem cells (hiPSCs) 

exhibited increased expression of DISC1 and markers of synaptic plasticity. Conversely, 

hippocampi from Cav-1 knockout (KO) exhibited decreased expression of DISC1 and proteins 

involved in synaptic plasticity. Finally, SynCav1 delivery to the hippocampus of Cav-1 KO mice 

and Cav-1 KO neurons in culture restored expression of DISC1 and markers of synaptic 

plasticity.  Furthermore, we found that Cav-1 co-immunoprecipitated with DISC1 in brain 

tissues.  

Conclusion: These findings suggest an important role by which neuronal Cav-1 regulates DISC1 

neurobiology with implications for synaptic plasticity. Therefore, SynCav1 might be a potential 

therapeutic target for restoring neuronal function in schizophrenia. 

 

Introduction 

Schizophrenia is one of the least understood debilitating psychiatric illnesses. Typically 

manifested in late adolescence or early adulthood, schizophrenia has an estimated prevalence of 

~1% (6). Schizophrenia is partly a genetic disorder, although it likely involves multiple recessive 

genes, and environmental factors such as physical or psychological abuse and birth 

complications (7-9). While pharmacological treatments such as antipsychotics are available for 

schizophrenia, these classes of drugs show poor efficacy for most patients (10), especially in 

reversing cognitive abnormalities (11, 12). 
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DISC1 is a schizophrenia associated gene originally identified in a Scottish family (1, 3, 

13), and later studies have shown an increasing amount of evidence that supports the possibility 

that DISC1 may be one of the candidate genes for schizophrenia (2, 14-20). DISC1 protein is 

highly expressed in the developing brain (21) and in the dentate gyrus of the adult hippocampus 

(22); it is a multifunctional protein involved in neuritogenesis and neuronal signaling (23-25). 

DISC1 is located in multiple intracellular locations (i.e., the nucleus (26), mitochondria (27), and 

in axons and synapses (28, 29)). Loss of DISC1 function causes deficits in neural development, 

neuronal proliferation, axonal growth, and cytoskeleton modulation, which are consistent with 

abnormal neural development in schizophrenia (30-32). 

Proper neuronal growth (i.e., dendritic arborization, axonal guidance, and formation of 

synaptic contacts) and neurotransmission are dependent upon a polarized membrane platform 

that organizes key membrane receptors, which in turn transduce extracellular cues.  A necessary 

organizer of neuronal signaling components is the scaffolding protein caveolin-1 (Cav-1) (33, 

34). Cav-1 is widely expressed in the central and peripheral nervous systems (35, 36).  Within 

neurons, Cav-1 regulates membrane/lipid raft formation and neurotransmitter and neurotrophin 

signaling (34), promotes dendritic growth and arborization (33), and when over-expressed in 

hippocampal neurons in vivo, augments functional neuroplasticity and improves learning and 

memory (37). To date no relevant functional role of Cav-1 in the pathogenesis of schizophrenia 

has been described, CAV1 gene disruption was recently identified in some patients suffering 

from schizophrenia (38). Because Cav-1 organizes and regulates neurotransmitter and 

neurotrophic receptor signaling pathways (39-41) and G protein-coupled neurotransmitter 

receptors (42-44) necessary for proper dendritic growth and arborization (33, 37), disruption of 

CAV1 would likely impair neuronal signaling leading to a schizophrenia-like phenotype. 
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Interestingly, recent findings supported the involvement of caveolin in schizophrenia; for 

instance, CNS pathologies in Cav-1 knockout (Cav-1 KO) mice are similar to those found in 

schizophrenia (34, 45) as Cav-1 KO mice exhibit increased sensitivity to the psychotomimetic 

effects of N-methyl-aspartate receptor antagonist phencyclidine (PCP) (46), a phenomenon also 

observed in schizophrenic patients (47, 48). Additionally, Cav-1 interacts with 5-HT2A (44), a 

target for atypical antipsychotic drugs (49).  Interestingly, Cav-1 KO mice showed an attenuated 

biochemical and behavioral actions of atypical antipsychotic drugs (46). These findings provide 

support linking Cav-1 to schizophrenia. 

In the present study, our goal was to examine if Cav-1 impacts expression of DISC1. 

Interestingly, treatment of primary neurons with synCAV1 lentivirus significantly enhanced the 

expression of DISC1. Furthermore, hiPSCs neurons overexpressing Cav-1 show higher DISC1 

levels. Interestingly, hippocampal homogenates from Cav-1 KO mice showed a significant 

reduction in DISC1. Additionally, synaptic proteins such as PSD95, synaptophysin, 

synaptobrevin and syntaxin 1 were significantly reduced in the homogenates obtained from the 

hippocampi of Cav-1 KO mice compared to WT, where rescue of hippocampal Cav-1 resulted in 

rescue of synaptic protein expression.  

 

Materials and methods 

Animals 

All animals (C57BL/6 mice and rats from Jackson Laboratories, Bar Harbor, Maine) were 

treated in compliance with the Guide for the Care and Use of Laboratory Animals (National 

Academy of Science, Washington, DC). All animal use protocols were approved by the Veterans 

Administration San Diego Healthcare System Institutional Animal Care and Use Committee 
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(San Diego, California) before any procedures were performed. Adult male mice (2-3 months 

old) were housed under normal conditions with ad libitum access to food and water. 

 

Stereotactic Injection 

Mice were anesthetized and prepared for surgery with a protocol modified from a previously 

described study (37). Hippocampal-targeted injections were controlled using Injectomate 

software (Neurostar, Berlin, Germany). Injections were made using a 33-gauge, 10-µL Hamilton 

gas tight syringe (Hamilton, Reno, Nevada). At each coordinate, the needle was lowered at a rate 

of 0.32 mm per second. After 60 seconds, 0.5 µL of adeno-associated virus serotype 9 containing 

synapsin-red fluorescent protein (RFP) (SynRFP) or synapsin-caveolin-1 (SynCav1) was injected 

over 60 seconds (0.5 µL/min injection rate at a viral titer of 109 genome copies (gc)/µL) at three 

locations (rostral to caudal) in each hippocampal hemisphere with an indwelling time of 1 

minute. Sagittal brain sections were stained to confirm location and spread of RFP (data not 

shown). Sections were also stained for hematoxylin and eosin, and histopathologic analysis did 

not reveal any gross morphology or cell death in the hippocampal sections (data not shown). 

 

Primary neuron isolation and culture 

Neonatal rat neurons were isolated from hippocampi using a papain dissociation kit 

(Worthington Biochemical, Lakewood, NJ) as previously described (33, 34). Neurons were 

cultured in neuobasal A media supplemented with B27 (2%), 250 mM GLUTMax1, and 

penicillin/streptomycin (1%). Cells were cultured on poly-D-lysine/laminin (2 µg/cm2) coated 

plates at 37°C in 5% CO2 for 4 d prior to transfection with lentiviral vectors containing the 

synapsin promoter up-stream of the CAV1 gene (SynCav1). SynGFP was used as control vector. 
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Titer for both vectors was 109 infectious units (i.u.) per ml. 

The human neurons were differentiated from the CV4a neuronal stem cells (NSC). Cells were 

first grown on poly-L-Ornithine/Laminin coated plates. Cells were maintained in NPC base 

media (DMEM/F12, N2, B27, and penicillin/streptomycin) supplemented with b-FGF (20 

ng/ml). Cells were then differentiated for 3-4 weeks in differentiating media (NPC base media 

supplemented with BDNF, GDNF and Dibutyryl-cAMP). Neurons were then infected with 

SynCav1 or SynGFP as control.  

Immunoblot Analysis 

Cell lysates were prepared in buffer (50 mM Tris-HCl; 150 mM NaCl; pH 7.4) supplemented 

with protease and phosphatase inhibitors cocktail (Cell Signaling, Beverly, MA, USA). After 30 

min incubation on ice, the cells were homogenized by a 23-gauge needle and the lysates were 

cleared of debris and unbroken cells by centrifugation (800 g, 5 min at 4°C). Protein 

concentrations were determined by the Bio-Rad protein assay (BIO-RAD Laboratories, Hercules, 

CA, USA). Equal amounts of cell lysates (10 µg) were loaded to determine expression of Cav-1, 

PSD95, neurexin (BD Biosciences, Franklin Lakes, NJ, USA), syntaxin1, synaptobrevin, 

synaptophysin (Abcam, Cambridge, MA, USA), and DISC1 (Thermo Fisher Scientific, 

Waltham, MA, USA). All protein expression was normalized to GAPDH (Cell Signaling 

Technology, Danvers, MA, USA). Horseradish peroxidase (HRP) conjugated secondary 

antibodies were from Santa Cruz Biotechnology. Immunoblots were subsequently detected by 

lumigen ECL Ultra (Lumigen, Southfield, Michigan, USA). 

 

Immunoprecipitation 
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Immunoprecipitation against Cav-1 and DISC1 was performed using protein A agarose (Roche, 

Life Science) according to the manufacturer protocol. In brief, brain samples were homogenized 

in lysis buffer. The supernatants were collected by centrifugation at 10.000 g for 10 min at 4°C. 

Lysates were then incubated with antibodies at 4°C for 3 h, followed by and overnight 

incubation of Agarose A. The immunoprecipitates were analysed for the presence of cav-1 and 

DISC1 by western blot.  

 

Statistical analysis 

Results are expressed as mean ± SEM and analyzed using the GraphPad Prism 6 software 

(GraphPad Software, Inc., San Diego, CA, USA). T-tests, one way ANOVA and 2-way ANOVA 

were used to compare certain paired parameters. Values of p <0.05 were considered significant. 

 

Results 

Cav-1 interacts and co-immunoprecipitates with DISC1 

Given no reported links between Cav-1 and DISC1, we first sought to determine if Cav-1 

interacts with DISC1. Our data indicate that Cav-1 co-immunoprecipitated with DISC1 (Figure 

1A,B). 

 

Neuron-targeted overexpression of Cav-1 enhances expression of DISC1 and synaptic 

proteins in primary neurons 

To explore the implication of Cav-1 and DISC1 on the synaptic integrity, we overexpressed Cav-

1, by transfecting primary neurons isolated form hippocampi from neonatal rats with SynCav1 

lentivirus, and we studied the expression of DISC1. Our immunoblot analysis showed that Cav-1 
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was successfully over-expressed (Figure 2A,B). Additionally, our results showed a significant 

increase in the level of DISC1 with over-expression of Cav-1 (Figure 2A,C).  Furthermore, we 

wanted to examine the role of Cav-1 in the regulation of synaptic density proteins in primary 

neurons. Western blot data indicate that overexpressing Cav-1 in primary neurons resulted in 

increased expression of synaptic proteins (PSD95, synaptobrevin, syntaxin-1, and neurexin) 

(Figure 2A, D-G). 

 

Hippocampi from Cav-1 KO mice exhibit decreased expression of DISC1 and synaptic 

proteins  

Because data in Figure 1 showed that Cav-1 overexpression increased expression of DISC1 and 

synaptic proteins, we tested whether the opposite occurred in brain tissue deficient in Cav-1. 

Indeed, immunoblot data showed that loss of Cav-1 was associated with decreased protein 

expression of DISC1 (Figure 3A,B) and the synaptic proteins neurexin-1, synaptobrevin, 

PSD95, synaptophysin and syntaxin (Figure 3 A, C-G).  Interestingly, loss of Cav-1 seemed to 

affect both post and pre-synaptic proteins suggesting decreased synaptic strength(50-52). 

 

Re-expressing Cav-1 in Cav-1 KO mice increases DISC1 and synaptic proteins 

To elucidate whether re-introducing Cav-1 could reverse the effect seen with loss of Cav-1, Cav-

1 KO mice underwent stereotactic injections of AAV9-SynCav1. Successful over-expression of 

Cav-1 in the hippocampus was confirmed by immunoblot (Figure 4A,B). Interestingly, re-

expression of Cav-1 in Cav-1 KO hippocampi significantly increased the levels of DISC1 

expression (Figure 4A,C) as well expression of pre- and post-synaptic proteins like PSD95, 

synaptophysin, synaptobrevin and neurexin-1 (Figure 4A, D-H).   
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Neuron-targeted overexpression of Cav-1 enhances expression of DISC1 and synaptic 

proteins in differentiated human neurons derived from induced pluripotent stem cells 

(iPSCs) 

To investigate whether the effect of Cav-1 on DISC1 and synaptic protein could be extrapolated 

to hiPSCs, primary human fibroblasts were reprogrammed into hiPSCs and subsequently 

differentiated into neurons. Interestingly, our data indicated that overexpressing Cav-1 in iPSC 

neurons (Figure 5A,B) was associated with an increased level of DISC1 (Figure 5A,C). 

Additionally, immunoblot data showed a significant increase in synaptic protein markers 

(synaptobrevin, PSD95, synaptophysin, syntaxin 1A, and neurexin) after Cav-1 over-expression 

(Figure 5A, D-H).  

 

Discussion 

DISC1 is a promising candidate for mental illnesses and synaptic regulation (5). Cav-1 is 

also essential for maintaining and stabilizing proper synaptic signaling (34). Over the past 

decade, there has been progress in understanding the neurobiology of schizophrenia, mainly by 

the identification of different susceptible gene factors (20, 53, 54). The present study is the first 

to definitively demonstrate that genetic manipulation of the scaffolding protein Cav-1 directly 

regulates expression of DISC1, a schizophrenia associated gene. 

We have previously shown that increase in Cav-1 expression enhances signaling and 

promotes neuronal survival and growth (33). Interestingly, loss of Cav-1 accelerates 

neurodegenration (52) and Cav-1 KO mice have behavioral deficits and many schizophrenia-like 

symptoms such as altered motor function, altered emotion as well as memory deficits (34, 45, 55, 
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56). Furthermore, hippocampi from Cav-1 KO mice have reduced cerebrovascular volume and 

large reduction in neurons (52). It is also reported that Cav-1 KO mice are resistant to atypical 

antipsychotic drugs (46). In this context, Cav-1 is a scaffold for D2-dopamine and 5-HT2A 

receptors, which represent canonical targets for typical and atypical antipsychotic drugs (44, 49, 

57, 58). These findings suggest the possibility that restoring Cav-1 could be one way to reduce 

non-responsiveness to antipsychotics. Cav-1 KO mice also exhibited increased sensitivity to 

psychomimetic effects of phencyclidine (PCP), a phenomenon observed in patients with 

schizophrenia (47, 48). For instance PCP significantly disrupted PPI in Cav-1 KO mice, and 

increased locomotor activity (46). 

DISC1, an intracellular scaffold protein with many proteins interactions (8, 59-63), is 

essential for neuronal growth, regulation of early brain development, and synaptic formation and 

maintenance (23-25). DISC1 has been associated with a number of mental illnesses (64). DISC1 

is highly expressed in the hippocampus (22) and downregulation of DISC1 in the adult dentate 

gyrus leads to abnormal morphological development and mispositioning of new dentate granule 

cells (65). Interestingly, impairment of adult hippocampal neurogenesis has been reported in 

schizophrenia (66). Furthermore, DISC1 mouse models display synaptic pathologies (67) and 

show cognitive deficits reflecting the ones found in schizophrenia such as impaired working 

memory (68, 69). The importance of DISC1 in synaptic function comes from its interaction with 

many proteins enriched in the synapses that regulate synaptic maturation and plasticity (59, 60). 

Knockdown of DISC1 in new-born granule cells in adulthood also leads to defects in axonal 

targeting and development of synaptic outputs (70). Indeed, DISC1 was been found to localize in 

the synapse in human postmortem samples (28), as well as mice and rats (71-73). More 
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specifically, DISC1 has been shown to be enriched in the postsynaptic density (PSD) fraction 

(71, 72, 74). 

Synaptic plasticity is a dynamic mechanism that regulates synaptic function and, 

therefore, the information flow between presynaptic and postsynaptic neurons. Neural circuit 

functions rely mainly on the synaptic plasticity, and alteration in synaptic plasticity is responsible 

for many neurological and neuropsychiatric diseases (75-80). In fact, the cognitive deficits and 

positive symptoms manifested in schizophrenia suggest that there is impairment in the 

information processing performed by neural circuits within the brain (81, 82). The cognitive 

deficits in schizophrenia range from impaired sensory processing to deficits in the cognitive 

control mechanisms necessary to manage and organize information (83-85). Interestingly, risk 

genes and genetic mutations identified in schizophrenia patients are involved in synaptic function 

(86-90).  Synaptic proteins, such as PSD95, synaptobrevin, syntaxin-1A and neurexin, are 

important for formation and proper function of post-synaptic densities, thus maintaining high 

fidelity neurotransmission (91-93). Similar studies on putative mouse models of schizophrenia 

have strongly suggested synaptic dysfunction (86, 89, 94-96). Abnormalities in the functional 

connectivity between micro-circuits in different brain regions are considered to be an important 

pathophysiological mechanism underlying dysfunction in schizophrenia and functional imaging 

and EEG studies in schizophrenia as well as mouse models support this possibility (75, 76, 78, 

97-102). Furthermore, in vivo plasticity studies conducted in persons with schizophrenia have 

shown reduction or complete absence of long-term plasticity evoked by transcranial stimulation 

(103-106). By understanding the basic pathophysiological mechanisms of cognitive decline and 

how the subcellular organization of key synaptic molecules is altered, we hope to better 
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understand the cellular and molecular mechanisms that may underlie schizophrenia and other 

neuropsychiatric diseases. 

Although schizophrenia is a complex genetic and environmental disorder, not 

characterized by a single cause, it is the functional effect that will lead to the development of the 

illness by impairing synaptic plasticity and neuron interactions. We believe that by maintaining 

the proper function of neurons, and restoring the levels of synaptic proteins, there may be 

potential to conceivably treat the disease. Pharmacological treatments for schizophrenia are 

mainly antipsychotic drugs exerting their effects through blockade of the type 2 dopaminergic 

receptor (107). The use of these drugs for treatment is based on 60 year-old mechanism and have 

severe side effects. The non-efficacy of these drugs suggests a need to discover novel therapeutic 

targets and approaches to deliver these therapies. 

A limitation of the present study is a lack of understanding of the cellular mechanism 

through which Cav-1 regulates DISC1 expression. Previous work from our group has shown that 

Cav-1 co-localizes with NMDARs, and loss of Cav-1 disrupts NMDAR-mediated signaling, 

NMDAR-mediated cAMP production, and NMDAR-mediated neuroprotection against oxygen-

glucose deprivation (33, 34). Interestingly others have shown in certain mouse models involving 

reduced NMDAR expression, that these mice also have decreased DISC1 levels and exhibit 

schizophrenia-like mental disorders such as increased motor activity and deficits in social and 

sexual interactions (108).  The modulation of DISC1 by Cav-1 could also involve cAMP 

signaling. Previous studies have shown that DISC1 regulates cAMP production through its 

interaction with certain phosphodiesterases (PDE4) in post-synaptic densities (109-111).  Based 

upon our past and current findings that SynCav1 increases NMDAR and DISC1 expression, and 

augments NMDAR-mediated cAMP production (33), it is conceivable that SynCav1 could 
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potentially reverse the schizophrenia-like behavioral phenotype in a DISC1/cAMP-dependent 

signaling pathway.  More experiments need to be conducted to confirm this hypothesis. 

In summary, the present findings demonstrate an important role for Cav-1 in regulating 

DISC1 expression and maintaining synaptic proteins essential for neuroregeneration, synapse 

formation and function. Neuronal Cav-1 maybe a control point in neurotransmission and 

neuromodulation that is impaired in schizophrenia. Further understanding of how Cav-1 and 

DISC1 interact to maintain and organize neuronal growth, signaling and proper function is of 

upmost importance to better understand and identify potential molecular targets for treating 

schizophrenia. 
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Legends 

 

Figure 1. Caveolin-1 (Cav-1) is an interaction partner of Disrupted-In-Schizophrenia 1 

(DISC1) 

Brain homogenates were immunoprecipitated with a Cav-1 or DISC1 antibodies. 

Immunoprecipitates were then probed for the presence of Cav-1 and DISC1 by western blotting. 

Negative controls are incubated without antibodies. 

 

Figure 2. Neuron-targeted expression of Caveolin-1 (Cav-1) enhances expression of 

Disrupted-In-Schizophrenia-1 (DISC1) and synaptic proteins in wild-type (WT) primary 

neurons.  

Primary rodent neurons were isolated from rats’ neonatal hippocampi. Neurons were grown in 

culture for 4 days and infected with a lentivirus containing the SynCav-1 or SynGFP as control 

(2x109 viral particles) for 72h. Homogenates were immunoblotted for Cav-1, DISC1, PSD95, 

Synaptobrevin, Syntaxin1, Neurexin, Synaptophysin and GAPDH (A). Western blots 

quantification showed over-expression of Cav-1 protein (B). Syncav1 also significantly 

enhanced the protein expression of DISC1 (C), and other synaptic proteins: PSD95 (D), 

Synaptobrevin (E), Syntaxin1 (F), and Neurexin (G). *p<0.05 between SynCAV1 and SynGFP.  
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Figure 3. Hippocampal homogenates show a caveolin dependent reduction in Disrupted-In-

Schizophrenia-1 (DISC1) and synaptic proteins.  

Hippocampi were isolated from the brains of Wild-type (WT) and caveolin-1 knock-out (Cav-1 

KO) mice (2-3 months). Homogenates were immunoblotted for Cav-1, DISC1, PSD95, 

Synaptobrevin, Syntaxin1, Neurexin, Synaptophysin and GAPDH (A). Western blots 

quantification showed a significant decrease in the protein expression level of DISC1 (B), and 

other synaptic proteins: Neurexin (C), Synaptobrevin (D), PSD95 (E), Synaptophysin (F), 

Syntaxin1 (G). *p<0.05 between WT and Cav-1 KO. 

 

Figure 4. Neuron-targeted expression of caveolin-1 (Cav-1) enhances expression of 

Disrupted-In-Schizophrenia-1 (DISC1) and synaptic proteins in caveolin-1 knockout (Cav-

1 KO) mice hippocampi.  

2 months old Cav-1 KO mice were subjected to stereotactic injection of Associated Adeno virus9 

(AAV9) containing SynCav-1 or SynRFP (as control), wild-type (WT) mice served as basal 

control. Mice were sacrificed one moth later and hippocampi were collected and homogenized. 

Homogenates were immunoblotted for Cav-1, DISC1, PSD95, Synaptobrevin, Syntaxin1, 

Neurexin, Synaptophysin and GAPDH (A). Western blot quantification showed that SynCav-1 

injection restored the Cav-1 expression (B) and significantly increased the expression levels of 

DISC1 (C), and other synaptic proteins: PSD95 (D), Synaptophysin (E), synaptobrevin (F) and 

neurexin (G). *p<0.05 between WT vs SynCAV1 and WT vs SynRFP. #p<0.05 between 

SynRFP and SynCAV1. 
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Figure 5. Neuron-targeted expression of caveolin-1 (Cav-1) enhances expression of 

Disrupted-In-Schizophrenia-1 (DISC1) and synaptic proteins in human differentiated 

primary neurons.  

The human neurons were differentiated from the Craig Venter 4a (CV4a) neuronal stem cells 

(NSC), which are derived from human induced pluripotent stem cells (PSCs). Neurons were 

differentiated in differentiating media for 3-4 weeks. After differentiation, neurons were infected 

by a letivirus containing the Cav-1 driven by synapsin promoter (HIV-synCAV1) for 72h. 

SynGFP served as control vector (109 viral particle from both vectors). Homogenates were 

immunoblotted for Cav-1, DISC1, synaptobrevin, PSD95, synaptophysin, syntaxin1, neurexin 

and GAPDH (A). Western blots quantification showed over-expression of Cav-1 protein (B). 

Syncav1 also significantly enhanced the protein expression of DISC1 (C), and other synaptic 

proteins: Synaptobrevin (D), PSD95 (E), Synaptophysin (F), syntaxin (G) and neurexin (H). 

*p<0.05 between WT and SynCAV1. 




