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Abstract

Urbanization represents a profound shift in human behavior, with significant cultural and health-

associated consequences2,3. Here we investigate chemical and microbial characteristics of houses 

and their human occupants across an urbanization gradient in the Amazon rainforest, from a 

remote Peruvian Amerindian village to the Brazilian city of Manaus. Urbanization was associated 

with reduced microbial outdoor exposure, increased contact with housing materials, 

antimicrobials, and cleaning products, and increased exposure to chemical diversity. Urbanization 

degree correlated with changes in house bacterial and micro-eukaryotic community composition, 

increased house and skin fungal diversity, and increased relative abundance of human skin-

associated fungi and bacteria in houses. Overall, our results indicate large-scale effects of 

urbanization on chemical and microbial exposures and on the human microbiota.

Urbanization represents a major shift from traditional lifestyles. Today, over 50% of the 

world population is urban, and by 2050, the proportion will exceed 66%1. Metabolic and 

autoimmune diseases have increased in parallel with these urbanization-associated lifestyle 

changes2,3, and human microbiota diversity has decreased4-7. Urbanization associated 

changes are numerous, and include diet4,5, urban design and density, house architecture, and 

exposures to environment (both outdoors and indoors8), animals, parasites, and consumer 
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goods. Here, we expand upon prior work on household bacteria8 by performing a 

comprehensive chemical and pan-microbial survey spanning an urbanization gradient in the 

Amazon. We collected human, animal and household samples across a gradient of 

urbanization along a similar latitude in South America, from a remote village isolated in the 

Amazon rainforest (Checherta), to a rural village (Puerto Almendra), a large town (Iquitos) 

and a metropolis (Manaus). This urbanization gradient is associated with significant changes 

in house architecture, leading to reduced outdoor exposure, changes in construction 

materials (more industrial, less natural, p<2.2e-16, Spearman test, Fig. 1) and reduced 

number of inhabitants per house with increased urbanization (K-W χ2=469.09, p<2.2e-16) 

(Fig. 1, Supplementary Table 1). To capture differences between social strata, we sampled 

homes from low-income and middle class areas in the city of Manaus. Microbial and 

eukaryotic composition and diversity were characterized through 16S ribosomal RNA gene 

(16S), 18S ribosomal RNA gene (18S) and internal transcribed spacer 1 (ITS1) sequencing 

of extracted DNA. Chemical composition was assessed by LC-MS/MS for a subset of 

samples (Fig. 1).

The number of distinct chemicals in each sample increased dramatically with urbanization 

(K-W χ2=275.94, p<2.2e-16, Fig. 2h). House surface chemical profiles from the city of 

Manaus (regardless of socioeconomic group) were remarkably different from the other 

locations (Fig. 2a PERMANOVA R2=51.74%, p=0.001, Supplementary Figs. 1 and 2). 

Medication-derived chemicals were only detected in the more urbanized settings of Manaus 

and Iquitos. These include the beta-blocker metoprolol and the antifungal ketoconazole in 

Manaus, and the antifungal clotrimazole in Iquitos and Manaus (Supplementary Table 4, 

Supplementary Figs. 1 and 3). Mass spectral molecular networking analysis identified 

several molecular families from personal care, cleaning products and detergents in Manaus 

(both lower- and middle-class homes), including sodium laureth sulfate, cocamidopropyl 

betaine-related molecules, polyethylene glycol derivatives, and benzalkonium chloride 

family members (Supplementary Table 4, Supplementary Figs. 1 and 3). These results are 

further supported by increased self-reported cleaning frequency in urban settings (K-W 

χ2=907.29, p<2.2e-16, Supplementary Table 1). In silico structure prediction using Network 

Annotation Propagation (NAP)9 revealed that mass spectral features putatively identified as 

lipids or lipid-like molecules are predominantly found in samples from Manaus, whereas 

organic nitrogen compounds are more abundant in the less urbanized areas (Supplementary 

Fig. 2). Many mass spectral features derived from cleaning products fall within the class of 

lipid-like molecules (detergents), thus the predominance of this chemical class in urban 

settings likely derives from differential cleaning habits.

Overall microbial profiles varied significantly between sampling locations. House fungal 

profiles differed significantly between Checherta, Puerto Almendra, Iquitos and Manaus 

(Fig. 2d, PERMANOVA R2=13.47%, p=0.001). Most notably, the relative abundance of 

yeasts, such as Saccharomyces (K-W χ2=131.96, p<2.2e-16) and Debaryomyces (K-W 

χ2=103.88, p<2.2e-16), were lower in urban than in rural houses. Malassezia (K-W 

χ2=43.408, p=2.016e-09), Aspergillus (K-W χ2=103.12, p<2.2e-16) and Candida (K-W 

χ2=69.526, p=2.858e-14) clades increased with urbanization (Supplementary Table 5, 

Supplementary Figs. 4 and 5); while most members of these clades are non-pathogenic, 

these clades also include human pathogens such as Aspergillus fumigatus or Candida 
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albicans. House fungal alpha diversity (K-W χ2=60.752, p=2.428e-12) and house fungal 

biomass (K-W χ2=44.915, p=4.141e-09) increased with urbanization, despite greater use of 

cleaning products and antimicrobials (Fig. 2k, Fig. 3, Supplementary Figs. 12, 

Supplementary Table 4). The more urbanized houses (Manaus low and middle, 97% and 

71%) had more samples with detectable ITS sequences by qPCR, compared to less 

urbanized houses (Checherta 13%, Puerto Almendra 43%, Iquitos 43%, Supplementary Fig. 

13a, Fisher’s exact test, p=1.71e-12). In addition, house floor fungal biomass was positively 

correlated to alpha diversity (Spearman rho=0.4461, p<0.0001, Supplementary Fig. 13b). 

Increased use of antifungals has been tied to increases in antifungal resistance in both 

medical and agricultural settings10; our results may reflect a similar trend on housing 

surfaces, in which increased antimicrobial and cleaning product usage in urban settings lead 

to reduced fungal sensitivity to these agents and increased fungal loads. Alternatively, our 

observations could reflect increased exposure to resistant strains in urban settings or a 

disruption in the succession dynamics of urban microbial communities, such that stable 

states of communities are disrupted and communities associated with random dispersal and 

assortment take hold. Lower alpha diversity in remote areas could be due to a higher 

proportion of taxa not covered by current databases, which would not be mapped and 

therefore would be missed in subsequent analyses. However, no significant differences in the 

proportion of sequence matches to the reference database were observed among the four 

locations (K-W χ2=1.482, p=0.83, Supplementary Fig. 14e), indicating that this is not the 

case. In relation to rainforest huts, urban houses experience higher temperature (K-W 

χ2=187.72, p=2.2e-16), less indoor natural luminous intensity (K-W χ2=75.146, 

p=3.331e-16), elevated indoor CO2 levels (K-W χ2=182.89, p=2.2e-16), and contain more 

surfaces for fungi to deposit and grow, all of which likely contribute to the urban increase in 

fungal alpha diversity. However, urbanization degree alone explained a larger proportion of 

the variation in beta diversity (RDA R2=23.03%, p=0.002) than temperature, luminous 

intensity in the house and CO2 levels combined (RDA R2=0.502%, non-significant).

Human-derived samples revealed unexpected patterns in fungal composition across body vs 
geographic locations. The strongest differentiating factor for fungal communities was 

urbanization level (PERMANOVA R2=16.32%, p=0.001; RDA R2=37.31%, p=0.002) rather 

than body site (PERMANOVA R2=5.34%, p=0.001; RDA R2=7.61%, p=0.002) 

(Supplementary Fig. 15). This pattern contrasts starkly with typical patterns of bacterial 

community composition11. The fungal composition of human feet and floor samples 

strongly clustered by village (PERMANOVA R2=22.14%, p=0.001; RDA R2=50.05%, 

p=0.002) and not by sampling site (PERMANOVA R2=1.54%, p=0.001; RDA R2=0.899%, 

p=0.002) (Supplementary Fig. 16), with parallel increases in alpha diversity with 

urbanization (K-W χ2=13.349, p=0.0058 for foot and χ2=50.02, p<2.2e-16 for floor, 

Supplementary Fig. 12). The relative abundance of Trichosporon (23.47% in Checherta vs 

1.87% in Manaus middle class), Debaryomyces (22.97% in Checherta vs 0.14% in Manaus 

middle class) and Saccharomyces (5.63% in Checherta vs 0.05% in Manaus middle class) 

decreased, while the relative abundance of Candida (0.66% in Checherta vs 8.24% in 

Manaus low-income) and Aspergillus (0.23% in Checherta vs 6.03% in Manaus low-

income) increased on feet with urbanization (Supplementary Fig. 6, K-W χ2>58, p<0.0001). 

In contrast, the gut fungal diversity decreased with urbanization (fecal and anal combined, 
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K-W χ2=18.057, p=0.0004, Supplementary Fig. 12). With urbanization, the relative 

abundance of Candida (2.23% in Checherta vs 9.41% in Manaus low), and Aspergillus 
(0.37% in Checherta vs 6.27% in Manaus middle) increased in the gut, while the relative 

abundance of Debaryomyces (17.93% in Checherta vs 0.51% in Manaus middle), 

Saccharomyces (9.17% in Checherta vs 0.11% in Manaus middle), Trichosporon (20.98% in 

Checherta vs 1.15% in Manaus low) and Fusarium (4.73% in Checherta vs 0.36% in Manaus 

middle) decreased (Supplementary Fig. 6, K-W χ2>50, p<0.0001). Malassezia and other 

fungi commonly associated with human skin were underrepresented in this study compared 

to prior reports (e.g. 12,13). To control for primer choice effects, we assessed skin fungal 

abundance in 18S data, trimming for fungi only. Indeed, in this analysis, a higher relative 

abundance of Malassezia was observed with urbanization (K-W χ2=43.408, p=2.016e-09). 

Otherwise, similar results were obtained for other fungal genera between ITS sequencing 

and 18S sequencing data trimming for fungi (e.g. urbanization-associated increases in 

Candida (K-W χ2=66.092, p=2.93e-14), Aspergillus (K-W χ2=41.635, p=4.795e-09) and 

Polyporaceae (K-W χ2= 33.704, p=2.287e-07) in 18S data; urbanization-associated 

decreases in relative abundance in homes with urbanization for Trichosporon (K-W 

χ2=17.488, p=0.0005607) and Saccharomycetaceae (K-W χ2=85.985, p<2.2e-16) in 18S 

data). Bacterial composition of the house surfaces segregated by settlement (Fig. 2b, 

PERMANOVA R2=14.65%, p=0.001), with urban homes showing a significantly higher 

relative abundance of skin-associated bacteria (e.g. Corynebacterium, Micrococcus and 

Enhydrobacter) and a lower abundance of microbes normally associated with the 

environment (Supplementary Figs. 10 and 11) than their rural counterparts, as previously 

reported8. For example, relative abundance of Actinobacteria decreased from 44.4% in 

Checherta to 18.5% in Manaus middle class homes (K-W χ2=126.52, p<2.2e-16) while 

Proteobacteria relative abundance doubled with urbanization (22.9% in Checherta huts vs 

51.0% in Manaus middle class houses) (K-W χ2=168.36, p<2.2e-16). This was mirrored by 

increases in skin-associated Proteobacteria in urban areas (27.4% in Checherta vs 38.7% in 

Manaus middle class) (K-W χ2=106.23, p<2.2e-16) (Supplementary Fig. 11). Strikingly, by 

comparing the molecules detected in our study to bacterial datasets in the Global Natural 

Product Social Molecular Networking resource (GNPS)14, we found a higher proportion of 

molecules matched to bacterial datasets in rural locations than in urban sites (Fisher’s exact 

test, p=9.426e-13, Supplementary Table 6). Matched datasets include metabolomic studies 

of a number of environmental bacteria, including 11 different actinomycete datasets. These 

results further indicate a concordance between our 16S and LC-MS datasets.

Effects of urbanization on micro-eukaryotic communities remain largely unknown. We 

complemented our ITS and 16S analyses with 18S rRNA gene sequencing, filtering out 

animal, plant and fungal reads. The house micro-eukaryotic composition also differed by 

location (Fig. 2c, PERMANOVA R2=9.14%, p=0.001), with decreased alpha diversity for 

floors only (K-W χ2=11.4, p=0.009749, Supplementary Fig. 12), but not for all house 

sampling locations combined (Fig. 2J), paralleled by decreased alpha diversity in human 

foot and gut samples (K-W χ2=9.79, p=0.02, Supplementary Fig. 12). These decreases 

could be due to reduced inputs from the environment, and parasite treatment associated with 

greater access to medical care. Indeed, microscopic examination of fecal samples did not 

detect any parasites in Manaus, unlike in rural settings (p<2.2e-16, Spearman test; Fig. 1, 
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Supplementary Table 2 and Figs. 17 and 18). Likewise, we observed an urbanization-

associated decrease in the relative abundance (18S sequencing-based) of the common human 

parasite order Trypanosomatida, which includes human pathogenic genera such as 

Trypanosoma and Leishmania15 (0.064% in Checherta and absent in Manaus, K-W 

χ2=11.679, p=0.008566).

To further explore the connection between microbial and chemical exposures, we performed 

Partial Least Squares Singular Value Decomposition (PLSSVD) analyses of LC-MS/MS, 

16S, 18S and ITS data. Results showed that both chemicals and microbes cluster by village, 

and that the clustering of chemical and microbes per village, respectively, are highly 

overlapping (Supplementary Fig. 20). Procrustes analysis of beta-diversity results for 

chemicals and microorganisms also showed modest correlation between datasets (Monte 

Carlo simulation p<0.0001 and M2=0.797 for 16S-MS Procrustes analysis; p<0.0001 and 

M2=0.782 for ITS-MS Procrustes analysis). Tighter clustering of 16S and MS samples for 

the two extremes of our urbanization gradient, Checherta and Manaus middle class, was 

observed (Supplementary Fig. 21a, c, M-W p=9.59e-5 Manaus middle class vs Manaus 

lower income; p=3.08e-5 Checherta vs Puerto Almendra). The most likely explanation for 

these observations is a close connection between the microbiome and its environmental 

chemistry in those settings, although confounding variables influencing both the microbiome 

and small molecule profile could also account for such results. In contrast, microbiome 

composition is more divergent than chemical composition between Manaus middle and 

Manaus lower income homes (Fig. 2).

Given the expected impact of cleaning product usage on house surface microorganisms, we 

analyzed the relationship between cleaning product levels and microbial communities in 

greater detail (Fig. 2l-n, Fig. 3, Supplementary Data Files 1-4). Overall cleaning product 

usage, as well as each individual cleaning product, were positively correlated with fungal 

diversity (Fig. 3, p<2.2e-16, Spearman test). Very few taxa were correlated with multiple 

cleaning products, suggesting specific effects of the different cleaning products (Fig. 2l-n). 

Members of the Proteobacteria phylum correlated with benzalkonium chloride derivatives, 

while most fungal genera of the Agaricomycetes class correlated with polyethylene glycol 

derivatives (p<0.05, Pearson, FDR-corrected). Many of the organisms that correlated with 

cleaning products occur in multiple environments or were of unknown source. Strikingly 

however, most of the remaining organisms were of environmental origin (aquatic for bacteria 

and micro-eukaryotes; plant-derived for fungi). These correlated microorganisms could 

either be resistant to cleaning products or colonizers filling a niche opened up by cleaning 

practices. Very few correlated organisms were exclusively human-derived, suggesting that 

the resistant or recolonizing organisms are primarily environmentally-derived. Although 

correlation does not mean causation, these patterns support future avenues of investigation.

Increased urbanization is linked to increased social stratification, and one might expect low-

income neighborhoods in a large metropolis to resemble rural areas due to reduced access to 

services, commodities and goods compared to higher-income groups. Indeed, the 

urbanization score for lower income houses in Manaus was intermediate between rural areas 

and Manaus middle class. However, there were only minor differences in house bacterial 

composition and alpha diversity between the two groups (Fig. 2b, PERMANOVA of the two 
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groups (same below): R2=3.71%, p=0.001; Fig. 2i, M-W p=0.1835), fungal composition 

(Fig. 2d, PERMANOVA R2=5.75%, p=0.001) and chemical composition (Fig. 2a, 

PERMANOVA R2=3.25%, p=0.001). However, reduced human bacterial alpha diversity was 

observed in the higher socio-economic level compared to samples from low-income 

neighbourhoods (M-W p<0.0001, Supplementary Fig. 12). These findings correlate well 

with recent data showing reduced bacterial fecal alpha diversity in populations experiencing 

economic development16. Interestingly, feet samples from people living in low-income areas 

were more similar in terms of bacterial composition to those from Checherta and Puerto 

Almendra than those from Iquitos and Manaus middle-class neighborhoods (Supplementary 

Fig. 11), consistent with walking barefoot. Increasing relative abundance of foot 

Staphylococcus was associated with shoe use (4.76% in Checherta, 6.64% in Manaus low-

income and 29.67% in Manaus middle class) (Spearman rho=0.4627, p=1.212e-12). 

Similarly, more Staphylococcus were found in the floors of homes in middle-class 

neighbourhoods (10.79%) compared to those of low-income homes (2.94%) (M-W 

p=0.012). Overall, these results suggest that the differentiating effects we observed between 

Checherta, Puerto Almendra, Iquitos and Manaus are related to factors shared by all in the 

settlements, more than to individual lifestyles.

This work is an important advance from previous research on the built environment that 

focused on Western urban environments17 or only on bacteria8. While not necessarily 

extrapolatable to all locations, given that many environmental and cultural variables affect 

the microbiome and small molecule profile, these observations provide expanded insights 

into the joint chemical and microbial changes associated with changing cultural practices, 

and their relationship to the transition from infectious to noncommunicable diseases. 

Generalizability is further supported by the fact that we observed common alterations 

between samples collected in Manaus in 2012 and 2013, even though they were collected on 

two separate sampling expeditions (PERMANOVA R2=3.39% for 16S, 3.21% for ITS, 

p=0.001 for both) (Supplementary Fig. 22). Our results provide a comprehensive view of 

microbes in homes and people (bacteria, fungi, other micro-eukaryotes and chemical profile) 

across urbanization, enabling the identification of cross-domain changes correlated with 

disturbances caused by changes in urban design, architecture and human behavior. These 

results will inform future studies into the functional connection between urban lifestyle, 

microbiota and health.

Methods

Sample collection

Researchers collected samples in 2012 in the Amazon, along the same latitude, starting in 

the jungle (Checherta), where no epidemics were present, to the researchers’ best 

knowledge. They then moved to more urbanized societies with the emergence of a lower 

socioeconomic class (Puerto Almendra), to a large town (Iquitos) and to a metropolis 

(Manaus). All samples in Checherta, Puerto Almendra and Iquitos were collected in July-

August 2012. Manaus 2012 samples were collected August-October 2012. Additional 

samples were collected in Manaus in December 2013, including samples from two different 

socio-economic classes (Fig. 1; sampling stratification by neighbourhood). The average 
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temperature during 2012 and 2013 sampling was between 25 and 28°C (Supplementary 

Table 1). With urbanization, more industrial and less natural building materials were used 

(p<2.2e-16, Spearman test, Fig. 1c). Checherta houses were mainly constructed from wood, 

soil, cotton and cloth; Puerto Almendra houses from soil, wood, plastic, bricks, and cloth; 

Iquitos houses from cement, metal, plastic, tiles, ceramic, wood, cotton and paint; Manaus 

low-income houses from cement, ceramic, clay blocks, concrete, fabric and glass; and 

Manaus middle-class houses from ceramic, glass, granite, metal, plaster, tiles, plastic, brick 

and mortar (Fig. 1c). In more rural settings, more people were living in one house or room, 

while in more urbanized areas, the inhabitants had more privacy, with less inhabitants per 

house and more rooms available per inhabitant (χ2=469.09, p<2.2e-16, Kruskal-Wallis (K-

W) test) (Supplementary Table 1). A higher cleaning frequency was noted with urbanization 

(χ2=907.29, p<2.2e-16, K-W test). In Iquitos, Manaus low income and Manaus middle 

class, the house was cleaned much more frequent (almost every day), as compared to 

Checherta (never) and Puerto Almendra (every week to every month) (Supplementary Table 

1). The average natural luminous intensity in the house (χ2=75.146, p=3.331e-16, K-W 

test), CO2 inside (χ2=182.89, p<2.2e-16, K-W test) and air exchange rate inside the house 

decreased in more urban locations (Supplementary Table 1). With urbanization, the 

inhabitants had higher incidence of self-reported allergy (p=6.6e-14, Spearman test), self-

reported asthma (p=0.00013, Spearman test), other self-reported autoimmune diseases, self-

reported cardiovascular diseases, self-reported epilepsy, self-reported thyroid conditions and 

self-reported tumors. In less urban settings, the inhabitants had increasingly more parasites 

(p<2.2e-16, Spearman test) (Supplementary Figs. 17 and 18 and Table 1). Frequently 

encountered parasites included Giardia lamblia, Ascaris lumbricoides, Trichuris trichiura, 
Strongyloides, Ancylostoma duodenale and Hymenolepis nana.

Per location, 8 to 10 representative houses were selected and sampled, as well as their 

inhabitants (33 to 53 humans and their pets) (Supplementary Table 3). Six body sites were 

sampled per subject, six objects and eight surfaces were sampled per home, and three body 

samples per pet. All wall samples were collected 1.5 meters above the floor. The total 

number of samples were 107 to 273 house samples, 199 to 320 human samples and 21 to 48 

animal samples per location (Supplementary Table 3). House sites and participants were 

distributed throughout the village/city, except for Manaus lower income vs middle income 

stratification, where samples were collected from within the shanty areas vs middle class 

neighbourhoods of the city, respectively. The first two of the Peruvian villages had a 

population size of 120–200 subjects, therefore our sampling of 40 houses represent 20–33% 

the village as a whole. For the two latter communities, Iquitos has a population of ~400,000 

and Manaus of 2 million, so we only sampled a small transect of these locations.

An urbanization score was calculated based on a series of parameters that are introduced 

when rural areas become cities, i.e. the level of education, access to health care, Western 

practices such as use of shoes, clothes and processed food, roads and traveling time, 

materials used for house construction (determined by visual inspection), and the introduction 

of electrical appliances (fans, air conditioning, washer, dryer, wireless internet, kitchen 

exhaust). The degree of urbanization was determined based on the urbanization score 

(Supplementary Data File 5). Although there are some clear cultural differences between 

Manaus and Peru, these locations were selected because they were all within the same 
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latitude, which for this particular study was necessary to keep similar environmental 

conditions (Supplementary Fig. 2).

Over 300 blank samples were obtained throughout the sampling expeditions. Samples were 

taken for bacterial, fungal, eukaryotic and LC-MS/MS analysis, and metadata collected 

concerning the houses (temperature, relative humidity, luminous intensity in the house, CO2, 

etc.) and their inhabitants (age, gender, length, weight, parasite detection, self-reported 

health status, footwear, pets, etc.).

Researchers complied with all relevant ethical regulations; participants provided informed 

consent for all sample collection. The work was performed under IRB approval from the 

University of Puerto Rico (UPR, # 112–172), from the Ministry of Health of Peru (#001–

2013-CIEI/INS), and from the Federal University of Amazonas in Manaus, Brazil (UFAM, 

#46532). South America maps were obtained from OpenStreetMap (https://

www.openstreetmap.org/), under the Open Data Commons Open Database License (ODbL). 

Human and dog silhouettes were obtained from PhyloPic (http://phylopic.org/), under the 

Public Domain Dedication 1.0 license.

DNA sequencing

DNA extraction and PCR amplification of the 16S, 18S, and ITS genes were performed 

following the protocols described in18 and the Earth Microbiome Project (EMP)19. 16S 

amplicons were sequenced on an Illumina HiSeq platform at the Biofrontiers Sequencing 

Facility located at the University of Colorado (CU) Boulder and the Genomics Core at CU 

Denver. 18S and ITS amplicons were sequenced on an Illumina HiSeq functioning in rapid 

run mode at the Institute for Genomic Medicine located at the University of California San 

Diego. All DNA samples were stored at −80°C.

Blank sample analysis

A total of 2,572 samples from 16S rRNA sequencing were obtained after Deblur. The 2,572 

samples contained 119,655,350 sequences in total, with a minimum of two sequences per 

sample, a maximum of 452,208 sequences per sample, a median of 45,488 sequences per 

sample and an average of 53,754 sequences per sample. A total of 343 blank samples were 

taken during the Amazon missions and 50 blank samples were retrieved with sequences. The 

blanks had an average of 16,628 sequences per sample and a median of 11,284 sequences 

per sample. Seventeen blank samples had less than 1,000 sequences per samples and were 

not withheld after rarefaction. A total of 33 blanks were still present after rarefaction, with 

more than 1,000 sequences per sample. These remaining blank samples contained 

predominantly Pseudomonas spp. (62.67% on average), which were likely contamination20. 

Therefore, no claims or conclusions were taken with Pseudomonas counts. This taxon was 

however not filtered out to prevent skewing the data.

Fungal biomass quantification

To evaluate fungal biomass, ITS quantitation was performed on a subset of samples (n=204) 

using qPCR. Specifically, 204 floor samples from Checherta (n=23), Puerto Almendra 

(n=30), Iquitos (n=40), Manaus low (n=36), and Manaus middle (n=75) were processed with 
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qPCR (Roche LightCycler 480 II, Cat# 05015243001) in triplicate and 40% replication 

using 10 μl reaction volumes (ThermoFisher, PowerUp SYBR green mastermix, Cat# 

A25742), 1 μl of gDNA, and the same ITS primers and amplification metrics as used for 

sequencing (EMP protocol) in a 384 well format. For samples which were sequenced but 

below sampling depth cutoff (n=51), high concordance between ITS sequencing and qPCR 

data were observed, with only 6 of these samples showing mean ITS copies by qPCR >10. 

Likewise, of the sequenced samples with mean ITS copies by qPCR >10 (n=88), all but 6 of 

them had ITS sequencing data that passed our filters. Effective limit of detection for these 

mixed samples is 100–1000 ITS copies, as previously reported21,22. Discrepancies between 

fungal biomass quantification and ITS sequencing results may also be explained by the 

necessary use of different cycling conditions and enzyme mixes between qPCR and 

preparation for sequencing, the fact that qPCR was performed close to five years after ITS 

sequencing, and the higher sensitivity of fluorescence-based assays to PCR inhibitors 

compared to sequencing approaches23.

Chemical extraction and UPLC-Q-TOF MS/MS analysis

To avoid possible biased small molecule recovery due to different swab types, we only 

performed LC-MS/MS analysis on swabs from Fisher (cat# 23–400-119), for which we had 

representation across all study locations (n=270). Swabs were extracted and analyzed using 

a previously validated workflow described in24,25. Swabs were extracted in 300 μL of 50:50 

ethanol/water solution for 2 hours on ice then overnight at −20°C. Swab sample extractions 

were concentrated in a centrifugal evaporator, and redissolved in 100 μL of 50:50 ethanol/

water with internal standard (fluconazole 1μM). The ethanol/water extracts were then 

analyzed using a previously validated UPLC-Q-TOF MS/MS method24,25. Liquid 

chromatography separation was performed on a Thermo Fisher Scientific UltiMate 3000 

UPLC system using a 1.7 μm C18 (50 × 2.1 mm) UHPLC Column (Phenomenex). UPLC 

conditions of analysis were set as follow: column temperature: 40 °C, flow rate 0.5 mL/min, 

mobile phase A 98 % water / 2 % acetonitrile / 0.1 % formic acid (v/v), mobile phase B 98 

% acetonitrile / 2 % water / 0.1 % formic acid (v/v). A linear gradient was used for the 

chromatographic separation: 0–2 min 0–20 % B, 2–8 min 20–99 % B, 8–9 min 99–99% B, 

9–10 min 0% B.

MS/MS analysis was performed on a Maxis Q-TOF (Quadrupole-Time-of-Flight) mass 

spectrometer (Bruker Daltonics), controlled by the Otof Control 4.0 and Hystar 3.2 software 

packages (Bruker Daltonics) and equipped with ESI source. Full-scan MS spectra (m/z 80–

2000) were acquired in a data-dependent positive ion mode. Instrument parameters were set 

as follows: nebulizer gas (nitrogen) pressure: 2 Bar, capillary voltage: 4,500 V, ion source 

temperature: 180°C, dry gas flow: 9 L/min, spectra rate acquisition: 10 spectra/s. MS/MS 

fragmentation of 10 most intense selected ions per spectrum was performed using ramped 

collision induced dissociation energy, ranged from 10 to 50 eV to get diverse fragmentation 

patterns. MS/MS active exclusion was set after 4 spectra and released after 30 seconds.

MS, 16S, 18S and ITS data analysis

MS/MS data were processed using Optimus software26 (v0.1, downloaded Jan. 3 2017) with 

default parameters, except as follows: m/z tolerance 20 ppm, retention time tolerance 30s, 
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noise threshold 3,000. To control for swab characteristics and swab-derived molecules, 

features were only retained if they had a minimum intensity ratio of 3.0 compared to blank 

swabs. Feature intensity was normalized using total ion current (TIC). Beta diversity was 

assessed using the Bray-Curtis distance metric, and visualized with principal coordinates 

analysis (PCoA) using QIIME v1.9.127. The correlation between the distance matrix and 

certain metadata categories was tested with permutational multivariate analysis of variance 

(PERMANOVA)28, which reports an R2 value indicating the proportion of variation 

explained by this category, and a p-value representing the statistical significance. Putative 

feature identification was performed by performing mass spectral molecular networking and 

spectral library matching using the Global Natural Products Social Molecular Networking 

(GNPS) platform14,29. Data was filtered by removing all MS/MS peaks within ±17 Da of the 

precursor m/z, followed by data clustering with MS-Cluster, with a parent mass tolerance of 

1 Da and a MS/MS fragment ion tolerance of 0.5 Da (these settings were used as reference 

spectra contributed by the GNP community also contain low resolution spectra); consensus 

spectra containing less than 3 spectra were discarded. Networking parameters were as 

follows and can be accessed publicly at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?

task=549cfafcdaef4a7496768f45bb90771c#: cosine score above 0.65; more than 4 matched 

peaks; nodes in each other’s respective top 10 most similar nodes. Analog search was 

enabled against the library with a maximum mass shift of 100.0 Da. The spectra in the 

network were then searched against GNPS spectral libraries and GNPS datasets, with the 

same parameters. Such parameters have been associated with 1–5% false discovery rates on 

comparable datasets30 and all putative identification hits were manually inspected 

(Supplementary Fig. 3). To further enhance putative structure identification we performed in 
silico structure annotation through Network Annotation Propagation (NAP)9. Parameters 

were set to 10 first candidates for consensus score, fusion result for consensus enabled, 15 

ppm accuracy for exact mass candidate search, cosine value to subselect inside a cluster: 0.8, 

[M+H] adduct, maximum 10 candidate structures in the graph, parent mass selection 

enabled, structure databases: GNPS, CHEBI, HMDB, SUPNAT. NAP output is publicly 

available at: https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?

task=af425ada55d54adca9c7b28a823af54c. A major challenge of in silico annotation is the 

uncertainty around the correct structure among a predicted candidate list 9. Predicted 

structures cannot be verified through the comparison of a reference library spectrum, but 

fragmentation patterns need to be manually confirmed, a task infeasible for the over 10,000 

mass spectral features found in our mass spectral molecular network. To get an overview of 

putative identifications we retrieved through GNPS library matching and in silico structure 

annotation, we calculated most predominant chemical classes per mass spectral molecular 

family (two or more connected components of a graph) by submitting in silico structures and 

structures retrieved through library matching to automated chemical classification using 

ClassyFire31,32. Subsequently, to evaluate the consistency of structure annotation, we 

calculated a ClassyFire score (Supplementary Fig. 2). A ClassyFire score of 1 represents a 

scenario where all predicted structures within the mass spectral molecular family fall within 

the same chemical class, whereas a score close to 0 represents a scenario where no 

predominant chemical class could be identified within the mass spectral molecular family, 

possibly resulting from false annotations. All annotations are level 2/3 according to the 2007 

metabolomics consortium standard initiative33. Molecular networks were visualized using 

McCall et al. Page 11

Nat Microbiol. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=549cfafcdaef4a7496768f45bb90771c#
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=549cfafcdaef4a7496768f45bb90771c#
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=af425ada55d54adca9c7b28a823af54c
https://proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=af425ada55d54adca9c7b28a823af54c


Cytoscape version 3.4.034. Chemical structures were drawn with ChemDraw Professional 

16.0. Venn diagrams were built using http://bioinformatics.psb.ugent.be/webtools/Venn/.

All three types of DNA sequence data: 16S (n=2178), 18S (n=525), and ITS (n=758) were 

quality-filtered to discard sequences with a quality score of <20. 16S sequence data were 

trimmed to 100 nt, while 18S and ITS sequence data were trimmed to 150 nt. Quality 

filtering and trimming was done in QIITA (https://qiita.ucsd.edu/)35. Sequences were 

denoised using Deblur 1.0.236 and assigned taxonomy using SortMeRNA 2.037. The 

reference sequence databases used for these two steps were: 16S: Greengenes v13_838, 18S: 

SILVA v12339, and ITS: UNITE v7.140. OTU tables generated in the primary processing 

step were rarefied to 1,000 sequences per sample for all marker types. After this operation, 

90.12% of DNA samples (16S: n=2,120, 18S: n=328, ITS: n=671) were retained. Alpha 

diversity for each sample and distances between samples were calculated using QIIME27. 

Alpha diversity as measured by Observed OTU, Chao1, Gini evenness and Shannon were 

calculated with QIIME. Beta diversity was measured by the abundance weighted Jaccard 

metric, visualized with principal coordinates analysis (PCoA) and tested with 

PERMANOVA28 in QIIME. The contributions of multiple factors to the community 

variation were compared using the cumulative effect sizes computed from the redundancy 

analysis (RDA)41 implemented in vegan 2.5.4 42. This analysis also reports R2 and p-values, 

in which R2 values of different factors are directly comparable. Blank samples were 

included for all sample types, at all locations and were analyzed as discussed above.

Multi-omics analysis

LC-MS/MS and microbiome data were analyzed together using two strategies: First, the beta 

diversity PCoAs of the two data types were transformed and overlaid using Procrustes 

analysis43 implemented in QIIME. Top ten dimensions were retained, with 1,000 Monte 

Carlo permutations performed to assess the statistical significance of correlation, as 

represented by the M2 metric (larger is less correlated) and its p-value. The distribution of 

per-sample pairwise distances weighted by the loadings of the corresponding axes in the 

Euclidean space was compared using the M-W test. Second, we used the Partial Least 

Squares Singular Value Decomposition (PLSSVD) method44 to infer the correlation within 

and between the two data types. This was performed using the PLSSVD function in scikit-

learn, which calculates a singular value decomposition (SVD) on the covariance matrix 

between log transformed chemical and microbial abundances. A pseudocount was added to 

both datasets to avoid taking logs of zero. The loadings calculated from PLS were visualized 

using a biplot, where the points represent microbes, and the arrows represent chemicals. The 

angle between arrows provide information about correlations between chemicals. Arrows 

pointing the same direction indicate positive correlation, whereas arrows pointing in 

opposite directions indicate negative correlations. The longer the arrows are, the larger the 

variance is within the specific small molecule. The distance between arrows provides 

information about correlation between chemicals–smaller distances indicates higher 

correlation between chemicals. Indicator value analysis was performed using the labdsv45 

package to identify which microbes and chemicals are likely to be uniquely associated to 

specific socio-economic classes.
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The correlation between the relative abundance of MS and DNA was assessed using the 

Pearson correlation analysis, as implemented in QIIME. For MS, we calculated the sums of 

the MS1 feature abundances of four categories of chemicals that are frequently associated 

with cleaning and personal care products: sodium laureth sulfate, benzalkonium chloride 

derivatives, polyethylene glycols, and cocamidopropyl betaine derivatives. For each type of 

microorganism, we calculated the sums of the relative abundances of OTUs assigned to each 

taxonomic rank (phylum, class, order, family and genus). The sums of MS and DNA 

features were subject to the Pearson correlation analysis, with 1000 permutations. The p-

values after Benjamini-Hochberg FDR correction were reported.

Statistics and reproducibility

We used PERMANOVA to determine whether diversity levels correlated with a categorical 

metadata column. Cumulative effect sizes of multiple metadata columns were calculated 

using the redundancy analysis (RDA). Rank-based differences among the settlements were 

tested using non-parametric Kruskal-Wallis tests. Pairwise differences between two groups 

were tested using non-parametric Mann-Whitney U tests. Monotonic relationships between 

two variables were tested using non-parametric Spearman correlation test. The alternative 

hypothesis is by default two-sided. Boxplots were made with R default code: box length = 

interquartile range (IQR), Q3 - Q1; upper whisker = min(max(x), Q3 + 1.5 * IQR) and lower 

whisker = max(min(x), Q1 – 1.5 * IQR). To compare the relationship between ITS biomass 

(copies per μl) and ITS richness (Chao1 index), both values of successfully quantified 

samples were log transformed and compared using Spearman correlation implemented in 

Prism v.8.0.0. Reproducibility of findings is supported by the fact that beta diversity was 

comparable for microbiome samples for Manaus middle class collected on two separate trips 

(2012 and 2013). Samples collected in Manaus in 2012 and in 2013 group together by 

principal coordinate analysis and are both distinct from the other settlements, further 

confirming reproducibility of our findings.

Data availability

Mass spectrometry data have been deposited in MassIVE (accession number 

MSV000082924). Molecular networking jobs can be accessed here: https://gnps.ucsd.edu/

ProteoSAFe/status.jsp?task=549cfafcdaef4a7496768f45bb90771c (full housing dataset). 

GNPS molecular networking jobs for dataset matching can be accessed here: https://

gnps.ucsd.edu/ProteoSAFe/status.jsp?task=f1bc8144b7f648dc94215a34b94537df 

(Checherta), https://gnps.ucsd.edu/ProteoSAFe/status.jsp?

task=044f5c1437e4453eb9d47afafadb7cfb (Puerto Almendra), https://gnps.ucsd.edu/

ProteoSAFe/status.jsp?task=c3736e2379d1470f8b9e990a1afeb682 (Iquitos), https://

gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8799f335311540bdb5af75da896bd87c (Manaus 

low-income) and https://gnps.ucsd.edu/ProteoSAFe/status.jsp?

task=1070c36112c940a186fcf4454f845f08 (Manaus middle class; searches performed 

August 19 2018). In silico structure annotation using NAP can be accessed here: https://

proteomics2.ucsd.edu/ProteoSAFe/status.jsp?task=af425ada55d54adca9c7b28a823af54c. 

The raw sequencing data and processed BIOM tables are available at Qiita (https://

qiita.ucsd.edu/) under study ID 10333, and also at EMBL-EBI under submission number 

ERP107551.
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Code availability

Instructions and source codes for replicating the bioinformatic analyses are available at: 

https://github.com/knightlab-analyses/amazon-urbanization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design.
a. Samples were collected in four different locations in South America along the Amazon 

river across an urbanization gradient: Checherta: remote jungle village, Puerto Almendra: 

rural village, Iquitos: large town, Manaus: metropolis (OpenStreetMap). In Manaus two 

different socio-economic classes were studied: lower income and middle-class. b. At each 

location 10 different houses and their inhabitants (humans and pets) were sampled. 

Sampling locations are illustrated by red dots. Microbial samples were collected for 

bacterial, fungal and eukaryotic analysis, with replicate samples for LC-MS/MS-based 

chemical profiling. Architectural and environmental parameters were monitored. Samples 

from the houses included wall, floor, bed (hammock), chair handle, table, faucet (water 
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container), countertop, cup and fireplace. Human samples included skin (arm, hand, foot); 

oral, nasal and anal/fecal samples. Pet samples included oral/nasal, skin and anal samples. c. 

Use of building materials across the five locations (right, natural building materials; left, 

industrial building materials; determined by visual inspection).
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Figure 2. House chemical and microbial diversity is altered by urbanization.
a. Principal coordinate analysis (PCoA) of chemical compounds (n=270), showing strong 

clustering by community, but not by socioeconomic group within one community (Bray-

Curtis distance metric; PERMANOVA R2 and p-values are displayed). b-d. PCoA of 

bacterial (n=681), eukaryotic (n=215) and fungal (n=401) composition showing significant 

segregation among locations in the urbanization gradient (Jaccard distance metric; 

PERMANOVA R2 and p-values are displayed within each panel). e-g. Correlation between 

chemical richness and diversity of bacteria (e), eukaryotes (f) and fungi (g). h-k. Diversity of 

chemicals (h, observed richness, n=270) and microbes (i-k, Shannon diversity) (i, n=681, j, 
n=215, k, n=401) across the urbanization gradient. Boxplots display median and 

interquartile range, with boxplot whiskers extending to the most extreme data point within 

1.5 times the interquartile range of the first (lower whisker) or third (upper whisker) quartile. 

Grey boxes on top of each panel indicate sample groupings (one group per row) by the M-W 

test. Samples sharing a grey bar at the same position are not significantly different (two-

sided M-W p>0.05). Chemical and fungal diversity increased with urbanization. No 

significant differences were observed in 16S or 18S alpha diversity across the urbanization 

gradient. Chemical diversity analyses were based on all detected small molecule features in 

our dataset. l-n. Correlation analysis of cleaning and personal care product abundance and 
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house bacteria (l, n=256), microeukaryotes (m, n=82) or fungi (n, n=140). Only correlations 

with an FDR-corrected Pearson correlation p-value greater than 0.05 are displayed. Outer 

nodes represent microorganisms (colored by phylum for bacteria, clade for eukaryotes and 

class for fungi; shaped by source) and central rectangles represent cleaning/personal care 

products. Names indicate the cleaning/personal care product at the center of each correlation 

cluster. Edge length is proportional to Pearson correlation p-value (FDR-corrected); edge 

thickness is proportional to Pearson correlation coefficient (independent scale for each 

panel). Negative correlations are indicated by red edges.
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Figure 3. House fungal diversity is correlated to cleaning/personal care product abundance and 
overall chemical diversity.
a. Correlation plot of house microbial diversity (16S, ITS and 18S) with cleaning/personal 

care product derivatives (MS) (n=270). Colored according to Pearson correlation coefficient 

(blue, positive correlation; red, negative correlation; scale displayed right). b. Correlation of 

fungal diversity (ITS) with chemical diversity (MS) (n=141) (p<2.2e-16, Spearman test). c. 

Correlation of fungal diversity (ITS) in houses with urbanization score (n=671) (p<2.2e-16, 

Spearman test).
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