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Using Deep Reinforcement Using Deep Reinforcement 
Learning to Peer Into the Learning to Peer Into the 
Unconquerable Mind: Unconquerable Mind: How Do How Do 

Animals Learn to Track Odor Trails?Animals Learn to Track Odor Trails?

BY ANISHA IYER

Nearly all pet owners and park fre-
quenters have witnessed an animal 

searching furiously along a scent trail. 
Dogs and other olfaction-dependent ani-
mals are expert trail trackers, often relying 
on odor trails to perform life-sustaining 
tasks like foraging for food or navigating 
complex environments. However, odor 
trails in nature are laden with gaps, inter-
secting routes, and sporadic or incomplete 
odor cues which interfere with an animal’s 
ability to develop a clear picture of a trail. 
Such constraints provide much to over-
come for olfaction-dependent animals 
who rely almost solely on olfaction for vital 
behaviors. With such a computationally in-
tensive task, one must wonder: What takes 
place inside an animal’s brain to evaluate 
and optimize such a complex set of dynam-
ic variables in real-time?

Olfaction-based trail tracking is a 
complex and precise behavior, which 
makes it a challenging investigative en-
deavor for theoretical neuroscientists and 
researchers in related fields. Scientists can 
simulate odor trail tracking in laboratory 
settings and have described experimentally 
observed tracking strategies using statis-
tics and geometry. However, questions re-
garding the animal’s cognition still remain 
unanswered, largely due to the difficulty of 
representing such far-reaching questions 
in a testable manner.

As a result, there is a broader goal in 

asking how scientists might reach conclu-
sions about the interconnected systems of 
the infinitely complex brain. The quest to 
find ways to represent cognitive processes 
spans further than this specific research 
question and is complicated by a scientist’s 
need for control in scientific experiments. 
If scientists require an observable version 
of the system in question and a controlled 
way to manipulate its variables, how might 
they find an equivalent for the vast and un-
conquerable brain?

QUESTIONS IN SYSTEMS 
NEUROSCIENCE

Despite centuries of neuroscience re-
search, the precise workings of the brain’s 
olfactory and navigational systems remain 
relatively unclear. Neuroscience is stud-
ied at a cellular and anatomical level, but 
processes like odor trail tracking require a 
robust theoretical framework for scientists 
to develop a system-wide understanding. 
While scientists conceptualize odor trail 
tracking as searching consecutive trail 
sectors using complex mathematical tech-
niques, it seems unreasonable to credit 
an animal’s impressive tracking abilities 
to conscious and deliberate statistical ap-
proximations. Rather, an animal following 
a scent must develop some kind of navi-
gational intuition to deduce probabilities 
without calculating them. 

Figure 1: Dog tracking odor trail

To understand these biological sys-
tems, scientists combine experimental 
and computational research to acquire a 
system-wide understanding, which is the 
basis of a field called systems biology. By 
simulating a subset of the system’s com-
ponents, scientists use models and theo-
retical exploration to glean insights into 
the behavior of widely expansive and in-
tricately complex biological systems. Sys-
tems biology relies on data engineering 
and machine learning techniques to obtain 
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wide range of other industries, ML is rev-
olutionizing technology: In commercial 
sectors, ML optimizes consumer services 
and logistic chains, and in academia, ML 
serves laboratory curiosity. Accordingly, 
various empirical sciences have recruited 
ML methods to analyze high-throughput 
data in new ways.2

ML can be distilled into three branch-
es: supervised learning, unsupervised 
learning, and reinforcement learning. Su-
pervised learning (SL) is the most straight-
forward branch of ML, in which models 
make inferences by training on labeled and 
categorized data. SL requires a knowledge-
able, external supervisor to label the train-
ing data and subsequently simplify the 
task for the machine. For instance, if an SL 
model were trained on a dataset of labeled 
images of cats and dogs, the model could 
learn to predict whether a new image is a 
cat or a dog, performing as a classifier.

Unsupervised learning (UL) is simi-
lar to SL in that it also requires previously 
obtained data, but it uses chaotic and un-

a system-wide understanding of biological 
problems. For odor trail tracking, scientists 
have used machine learning techniques to 
recreate an animal’s learning process as it 
tracks a trail by modeling the way an ani-
mal learns through trial and error in a sim-
ulated environment.1

MACHINE LEARNING

One of today’s most rapidly growing 
technical fields, machine learning (ML), 
focuses broadly on constructing self-im-
proving computer systems and under-
standing the statistical, computational, and 
theoretical laws that govern all learning 
systems on a fundamental level. Across 
a number of disciplines, techniques, and 
applications, ML models make inferences 
based on trends in existing data. Further-
more, these inferences, which operate by 
using machine-based computation, actual-
ly reflect physical neuroscientific learning 
processes that occur in animal life.

Throughout computer science and a 

Figure 2: Art depicting neuronal migration. The heterogeneous makeup of this image, in both artistic and symbolic cellular contexts, represents 
the complex task of trying to capture or recreate elements of neuroscience that we do not fully understand.

“Furthermore, these 

inferences, which operate 

by using machine-based 

computation, actually re-

flect physical neuroscientif-

ic learning processes that 

occur in animal life.”

filtered data that has not been labeled or 
categorized. ML models for unsupervised 
learning would recognize trends and pat-
terns in chaotic data and use these obser-
vations to make inferences and predictions 
about new data. Beyond SL and UL, rein-
forcement learning employs supervised, 
unsupervised, and novel learning tech-
niques to learn optimal strategies for suc-
cess in a goal-oriented environment.
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state of the environment, the agent’s ac-
tions play a large role in opening or clos-
ing pathways to reward. In the short term, 
an agent takes actions that change small 
aspects of the state and alter the potential 
for expected reward. However, if the agent 
takes a suboptimal action, it could limit 
future avenues for reward, metaphorical-
ly closing a door to a particular outcome. 
Building upon its short-term goal to op-
timize statistical descriptions of reward 

in the environment, the agent pursues its 
ultimate goal of traversing the maximal 
reward pathway through complicated and 
highly unintuitive “black box” algorithms. 
Such algorithms are termed “black box” al-
gorithms because it is too complex to try 
to obtain a comprehensive understanding 
of their inner-workings. Resultantly, sci-
entists ignore the question of how “black 
box” algorithms work, when working with 
them, focusing only on which inputs to 

REINFORCEMENT LEARNING

Reinforcement learning models con-
cern an agent as it fine-tunes its strategy 
to seek reward in an environment, solely 
through trial and error. Rather than iden-
tifying whether an image’s features match 
more to a dog or a cat, RL problems typi-
cally center around an active agent trying 
to learn an optimal strategy, or policy, in a 
dynamic environment, such as a winning 
strategy for a game of chess. Broadly, RL 
agents learn to interact with their unknown 
and dynamic environment with no prior 
knowledge, where the in-progress policy 
is responsible for selecting present and po-
tential future actions that affect each pro-
gressive state of the environment. While 
there are certain elements that must be 
controlled or simplified by scientists when 
setting up an RL model, these models are 
arguably the most accurate representations 
of policy-based human learning developed 
thus far, where policy-based learning refers 
to the fine-tuning of strategy that someone 
like a chess player would use to win a chess 
game.2

In every state of the environment, 
there are pathways through which the 
agent can achieve reward, which are close-
ly dependent on the agent’s own actions. 
With an RL agent’s capacity to affect the 

Figure 3: A schematic of an artificial neural network (ANN), modeled after a biological neuron with input-receiving dendrites, a cell body that 
takes in electrochemical information from dendrites, an axon hillock which conditionally triggers an electrical action potential if the voltage 
surpasses a threshold, an axon down which the action potential propagates, and a synaptic terminal where the output is sent to the next neuron 
in the circuit. Here, the ANN takes in several numerical inputs, which undergo a linear transformation by the transfer function, or net input 
function, to integrate biases and tunable weights representing the mathematically-identified importance of data from that node. Transformed 
inputs are sent into an activation function which conditionally activates the neuron depending on whether the output surpasses a threshold. 
Deep neural networks have more complicated architectures than ANNs, with several hidden layers and more sophisticated mathematical 
processing.

Figure 4: Reinforcement learning; depicts agent-environment interaction and relationship.

42               Berkeley Scientific Journal | SPRING 2022
FEATURES



“The foundational 

principle of using reward 

to reinforce behaviors 

connects directly to 

neuroscience, rendering 

RL algorithms intentional 

microcosms of the 

adaptable brain.”

in its environment. In the same way, a re-
inforcement learning agent, which would 
begin naive, builds upon a nonexistent 
understanding of its environment through 
corrective feedback to reach an optimal 
strategy. The foundational principle of us-
ing reward to reinforce behaviors connects 
directly to neuroscience, rendering RL al-
gorithms intentional microcosms of the 
adaptable brain.

Methodologically, the broader goal of 
RL algorithms to achieve maximal reward 
is emblematic of the brain’s limbic system 
and neurochemical reinforcement during 
the formation of neuronal connections. 
Animals learn from neurochemical rein-
forcement signals that are naturally em-
bedded in the process of trial and error.3 
As a result, the parallel between the neuro-
chemical learning process of an animal and 
the RL training of an agent is a curious one 
that enables multidirectional biomimicry. 
Roughly speaking, RL learning mimics the 
formation of synaptic connections from 
neurochemical reinforcement by uptick-
ing the model’s quantification of reward 
to reinforce smart actions. Deepening the 
connection to neuroscientific learning, RL 
algorithms function in this manner to rein-
force actions with simulated neurochemi-
cal reinforcement, once again maintaining 
a strong, but general, connection to the 
growth and reinforcement of neural syn-
apses on a cellular and molecular level.

Moreover, using RL to represent a sys-
tem of animalian learning is particularly 
significant because the method of RL learn-
ing is based on principles of neuroscientific 
learning. An agent’s encounters with posi-
tive reinforcement, for the computational 
purposes of training, are indicative of the 
positive neurochemical reinforcement an 
animal receives while it learns a task in 
nature. This proposes a conceptual transla-
tion of modeled neurochemical reinforce-
ment, via numeric upticking of reward, 
into actual neurochemical reinforcement, 
via excitatory neurotransmitters and oth-
er biophysical potentiation mechanisms 
during the training of the real animal.

As a result, RL is highly applicable to 
cognitive neuroscience, with strong quan-
titative components. Through the direct 
application of RL for simulation in neu-
roscience, as well as foundationally and 
methodologically, RL maintains inten-

tional, direct, and symbolic connections to 
neuroscience.

CONCLUSION

Questions in cognitive neuroscience 
span the vast inner-workings of the brain 
and its interconnected systems, augment-
ing the need to develop scientific ap-
proaches which can answer them. A com-
mon barrier in systems biology is the task 
of creating an accurate representation of 
the system in question, which would offer 
insight into the complex process of inter-
est, such as odor trail tracking. RL enables 
scientists to establish a model of the neuro-
logical systems needed to create this level 
of precision and optimization in an ani-
mal incapable of consciously calculating 
high-level statistical computations. 

For odor trail tracking, RL algorithms 
allow scientists to obtain further insight 
into the requirements for cognitive neu-
roscience’s abilities and the extents of neu-
roscientific systems. With RL’s ability to 
recreate cognitive neuroscience problems 
and to represent an agent’s development 
through models, the field of RL opens up 
possibilities to further understand cogni-
tive neuroscience systems and peer into the 
unconquerable mind. As science continues 
to deepen its interest in the use of RL for 
neuroscience, the field holds a promising 
future for how scientists can use RL to shed 
light on cognitive neuroscience’s complex 
processes and systems.

feed in and what outputs to expect. As a 
result of this architectural composition, RL 
has great potential to aptly represent situa-
tions where a conscious being crafts an op-
timal policy through trial and error. 

RL AS IT RELATES TO 
NEUROSCIENCE

RL algorithms allow us to recreate 
and optimize models of complex tasks, like 
playing a game of chess or tracking a sur-
face-born odor trail. For the latter, an RL 
model can recapitulate the behavior of an 
animal searching for the source of an odor, 
a task that requires complex computation 
and statistical optimization that exceeds 
any animal’s conscious computational ca-
pacity. Through this simulation, scientists 
have access to a model whose variables can 
be manipulated to understand the extent to 
which conditions like environmental, spa-
tial, and physical constraints affect or limit 
the agent’s behavior. By testing the agent’s 
ability to overcome simulated constraints, 
RL algorithms can lend insight into the ex-
tents of an animal’s tracking ability. 

Foundationally, RL theory is based 
on psychological and neuroscientific prin-
ciples of learning and reward. Much like 
how an infant is born with no prior knowl-
edge and only a sensorimotor connection 
to its environment, RL agents begin with 
no background and only a means to take 
actions to affect the state of the environ-
ment. From feedback, an infant modifies 
its behaviors to develop a more powerful 
understanding of how to optimally behave 

“An agent’s encounters 

with positive 

reinforcement, for 

the computational 

purposes of training, 

are indicative of the 

positive neurochemical 

reinforcement an animal 

receives while it learns a 

task in nature.”
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