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Abstract

Game Theory -based decision aids have been successfully em-
ployed in real-world policing, anti-terrorism, and wildlife con-
servation efforts (Tambe, Jiang, An, & Jain, 2013). Cognitive
modeling, in concert with model tracing and dynamic parame-
ter fitting techniques, may be used to improve the performance
of such decision aids by predicting individual attacker behav-
ior in repeated security games. We present three simulations,
showing that (1) cognitive modeling can aid in greatly improv-
ing decision-aid performance in the security domain; and (2)
despite the fact that individual attackers will differ in initial
preferences and in how they learn, model parameters can be
adjusted dynamically to make useful predictions for each at-
tacker.
Keywords: cognitive modeling; game theory; behavioral
game theory; strategy selection; agent simulation; model trac-
ing

Introduction
Game Theory (GT) focuses on mathematical models of ra-
tional decision-making. In recent years, GT-based decision-
aiding software has received significant attention for success
in real-world security domain problems, such as scheduling
patrols conducted by the US Coast Guard at multiple major
US ports (Shieh et al., 2012), scheduling police patrols at ma-
jor airports such as LAX (Pita et al., 2008), allocating federal
air marshals on flights of US Air Carriers and several other
applications (Tambe, 2011; Tambe et al., 2013). Success of
GT approaches can be further improved by dropping the as-
sumption that humans are optimally rational decision-makers,
and by using cognitive modeling to predict adversary strategy
selection.

Humans are not perfectly rational, rather, we are boundedly
rational (Simon, 1972). Our ability to make optimal deci-
sions is limited by available information, available time, and
a myriad of cognitive constraints. There is a body of litera-
ture describing biases in human decisions (e.g., Kahneman,
2011), cultural preferences (e.g., Sample, 2015), and cogni-
tive process interactions (e.g., Anderson, 2007) that can aid in
predicting attacker decisions in real-world security problems.

Behavioral game theory is a modification of rational game
theory informed by, “experimental evidence and psychologi-
cal intuition” (Camerer, 2003, p. 465). Ultimately, the goal
of behavioral game theory is to predict behavior and inform
decisions in real-world strategic situations (Gächter, 2008).
Whereas the success of normative game theory in security
domain comes from providing efficient randomization of se-
curity plans and processes, behavioral game theory provides

a more realistic view of human strategy selection based on a
large body of empirical evidence, and argues for use of be-
havioral/cognitive models to predict human behavior.

Cognitive modeling is a method for predicting behavior
based on known cognitive processes and biases. Computa-
tional cognitive models take the form of software that simu-
lates human decisions on a given task. Computational cogni-
tive models have been employed to account for game play in
Prisoner’s dilemma (Lebiere, Wallach, & West, 2000), rock-
paper-scissors (West, Lebiere, & Bothell, 2006), and a col-
laborative foraging Geo Game (Reitter & Lebiere, 2011).

In this paper, computational cognitive models are em-
ployed to predict human behavior in security games. The rest
of this paper describes a normative game theory approach to
decision-making in the security domain, and suggests an al-
ternative approach that employs cognitive modeling for se-
lecting the best strategy in response to individual attacker’s
evolving preferences. We present three simulations highlight-
ing the advantages of using cognitive modeling over norma-
tive game theory, and examine the use of model tracing and
dynamic parameter fitting for predicting individual attacker’s
strategy selection.

Game Theory Approach to Decision Aids
Tambe et al. (2013) describe several successful applications
of game theory decision aid software in real-world security
games. Airport security, coast guard, and police officers em-
ploy this software to patrol for criminal activity. Animal
preservation patrols are aided with this software in their ef-
forts to control poaching. Tambe et al. (2013) focus on Stack-
elberg security games where the defender must perpetually
defend a set of targets with limited resources, and the attacker
can choose to attack a given target after observing defender
actions. The general idea of picking an optimal mix of actions
(i.e. mixed strategy) for the defender so as to decrease the
chances of a successful attack applies across a much wider
context (e.g., sports, cyber security, anti-terrorism).

Game theory suggests that the defender’s mixed strategy
should be a distribution of actions that removes any incen-
tive for the opponent to choose one action over another. For
example, imagine a simple game where there are only two
possible actions for the defender, D1 and D2, and two pos-
sible actions for the attacker, A1 and A2. Let us assume that
attacker payoffs are probabilities of a successful attack, these
probabilities/payoffs being as listed in Table 1 (when the de-
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fender chooses D1, the probabilities of attacker success for
actions A1 and A2 are .2 and .6, respectively; when the de-
fender chooses D2 these probabilities are .5 and .3, respec-
tively). In this scenario, if the defender always chose D1, a
rational attacker would always play A2, winning 60% of the
time. If the defender always chose D2, the attacker would
always play A1, winning 50% of the time. If the defender
played randomly, the attacker would have the incentive to al-
ways play A2, winning 45% of the time.1 A GT-computed
mixed strategy in this game would be for the defender to play
D1 one third of the time, and D2 two thirds of the time. This
would leave the attacker with no preference for either option:
playing either A1 or A2 would only lead to a successful attack
40% of the time.

Table 1
Sample payoffs for the attacker in a security game, where
there are only two possible actions for the defender, D1 and
D2, and two possible actions for the attacker, A1 and A2.

A1 A2
D1 .2 .6
D2 .5 .3

In real world security games there are many more ac-
tions, and payoffs must take into account much more than
success/failure. For example, Kar, Fang, Fave, Sintov, and
Tambe (2015) describe a scenario where the attacker, an ani-
mal poacher, is drawn not only by the success of a poaching
effort, but also by animal density and travel time. That is,
when humans play the security game as an attacker (i.e. an-
imal poacher) they are more likely to choose an action that
leads to less travel time and higher animal density, even when
the risk of failure (capture) is high.

Although animal density and travel distance are character-
istics of the task environment, these factors are also latent in-
dicators of cognitive biases. Direct consideration of such cog-
nitive biases and limitations in formal attacker models should
improve the performance of decision aids in the security do-
main.

Cognitive Modeling Approach
There are many computational models that provide robust
predictions of human behavior. For example, models of re-
inforcement learning provide robust accounts of human trial-
and-error behavior and its neural correlates (e.g., Anderson,
2007; Fu & Anderson, 2006; Holroyd & Coles, 2002; Nason
& Laird, 2005); models of declarative memory provide robust
predictions of fact recall latency and probability (e.g., An-
derson, 2007; Anderson & Reder, 1999; Mackintosh, 1983;
Shanks, 1994); and skill acquisition models provide robust
predictions of how people achieve experise (e.g., Chase &
Simon, 1973; Gobet, 1998; Gobet et al., 2001). Furthermore,
multiple individual process models can be integrated together
to generate more complete and general predictions of behav-
ior across many contexts (Anderson, 2007; Choi & Ohlsson,
2011; Gray, 2007; Veksler, Myers, & Gluck, 2014).

Cognitive models are typically held to account for behav-
ior in the aggregate (average group behavior) rather than for
individual differences. However, even in the absence of pre-
cise individual predicitons, general behavioral tendencies can
be helpful in predicting likely behavior. This is not differ-
ent from predicting large-scale events in physical sciences:
fundamental principles of physics may not help us to predict
exactly where a tsunami will hit, but it is useful to know that
some locations are more probable than others.

Additionally, in repeated security games2 cognitive models
can be dynamically updated to provide better predictions of
individual attacker’s cognition and behavior by use of model
tracing and dynamic parameter fitting. The model trac-
ing technique comprises force-feeding a participant’s expe-
riences to the cognitive model. That is, if the participant and
the model were to choose different strategies, model actions
would be overwritten with participant actions in the model’s
memory. This method was employed in computerized in-
structional aids, “cognitive tutors”, for students learning high
school math in Pittsburgh (Anderson, Corbett, Koedinger,
& Pelletier, 1995).Dynamic parameter fitting is used to ad-
just model parameters based on known data points, so as to
make better individual predictions for future behavior. This
method was employed to predict performance of individual
F-16 pilot teams (Jastrzembski, Gluck, & Rodgers, 2009) and
is employed in software that predicts optimal training sched-
ules based on individual performance histories (Jastrzembski,
Rodgers, Gluck, & Krusmark, 2014). The following simula-
tions examine the use of these techniques for defender agent
software in the security domain.

Simulation 1: Model Tracing
A cognitive model can predict general tendencies, but it is
unlikely that a model will predict all decisions of a given in-
dividual, even on fairly simple tasks. Model predictions for
each of the attacker’s decisions contain an element of uncer-
tainty, X. This simulation explores CM-based agent perfor-
mance for varying sizes of X, and compares CM performance
to a normative game theory approach.

For this simulation we employ a sample repeated security
game where the attacker and defender have four strategies
each, and attacker payoffs are probabilities of attacker suc-
cess as represented in Table 2. Given this payoffs matrix, if
the defender played a fixed strategy (e.g., always play D2),
the attacker could find a corresponding strategy that would
win 90% of the time (e.g., if defender always plays D2, then
attacker should always play A3). If the defender was equally
likely to choose any action, the attacker could optimize by
always playing A1, winning 52.5% of the games. A defender
agent based on GT would employ a mixed strategy, choosing
actions D1, D2, D3, and D4 with probabilities .275, .240,

1Playing A1 against a random opponent would have a 35%
chance of winning, and playing any mix of A1 and A2 would have a
chance of winning that is between 35% and 45%.

2Repeated security games differ from "one shot" security games
in that the attacker attempts multiple attacks in sequence.
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Table 2
Payoffs for the attacker in a security game used for Simula-
tions 1-3, where there are four possible actions for the de-
fender {D1,D2,D3,D4}, and four possible actions for the at-
tacker {A1,A2,A3,A4}.

Attacker
A1 A2 A3 A4

D1 .15 .45 .50 .90
D2 .55 .10 .90 .45
D3 .50 .90 .15 .45

D
ef

en
de

r

D4 .90 .50 .50 .10

.275, and .210, respectively. This mixed strategy would leave
the attacker without a preference, where any given action
would have a 50% probability of success.

However, humans are not perfectly rational, and human at-
tacker action preferences will change based on their experi-
ence. For example, if the attacker chooses A1 and happens to
lose, they will be less likely to choose A1 in future attacks,
regardless of whether A1 is ultimately a good choice. Con-
versely, if the attacker chooses A1 and happens to win, they
will be more likely to choose A1 in future attacks, regardless
of whether A1 is ultimately a poor choice.

More formally, after performing some action, A, the ex-
pected utility of this action, UA, is incremented by the fol-
lowing term:

∆UA = α(R − UA), (1)

where α is the learning rate, and R is the value of the feed-
back (e.g. success/failure, reward/punishment). This type of
learning (error-driven reinforcement learning) is a very robust
principle of biological brains (e.g., Anderson, 2007; Bayer &
Glimcher, 2005; Fu & Anderson, 2006; Kable & Glimcher,
2009).3 The action chosen at each decision point is one with
the highest value of the term U + X, where X represents ex-
ploratory tendencies plus all the unknown factors driving hu-
man decision-making at the given moment.

From the perspective of predicting attacker actions,
decision-making can be thought of as a stochastic process,
where the action with the highest U is the most likely to be se-
lected. A defender agent based on CM would employ model
tracing to keep track of U values for each attacker action, and
then employ this knowledge to outguess the attacker. That
is, once each game plays out, and actual attacker action in
that game, A, and outcome of the game, R, are both known,
the model of the attacker can be updated in accordance with
Equation 1. For each consecutive game, CM would predict
that the most likely attacker action is one with highest U, and
makes a corresponding best choice (e.g., if the attacker in this
simulation is likely to choose A2, defender will choose D3).

Let us assume, for now, that we know attacker learning
rate (in this simulation we assume α = .2, as is the default in
the ACT-R cognitive architecture; Anderson, 2007), and their
perceived rewards for success and failure (in this simulation
we assume R = 1 for each win, and R = −1 for each loss), and

the attacker has no prior preferences for any actions. Holding
these variables constant allows us to answer what the effect
of X will be – the lack of predictability in human decision-
making.

For general population X is often estimated as gaussian
noise with a mean of 0 and a standard deviation, σ, that varies
between 5% and 25% of maximum reward values. We ran the
simulation for σ values of .05, .15, and .25, averaging over
1024 simulation runs per parameter setting. The results of
this simulation, displaying the number of prevented attacks
over the course of 200 consecutive security games, are shown
in Figure 1.

Figure 1. Simulation 1: Predicted advantages of using cogni-
tive models in security games, given various levels of decision
predictability. σ refers to uncertainty in the human attacker
decisions, rather than in CM defender.

For all σ values in this simulation GT prevented 50.0%
of the attacks (100.0 attacks prevented in 200 consecutive
attempts). Depending on the predictability factor, CM pre-
vented between 121.5 and 153.6 attempts on average (22%-
54% more than GT). In addition to GT and CM, Figure 1 in-
cludes predicted baseline performances against random and
fixed-strategy defenders. Predictably, a fixed-strategy de-
fender does worst, losing in 75-90% of the games after about
10 initial games. Less obvious may be the fact that random-
strategy agent performs almost as well as GT, winning on av-
erage 49.6% of the games, compared to 47.5% that we may
have predicted against a perfectly rational agent.

The conclusion to draw from these simulation results is that
humans are not normative decision makers, nor are we com-
pletely unpredictable; thus an approach that considers human
cognition can perform better than normative GT. We can em-
ploy model tracing to improve defender performance in the
security domain despite the fact that many attacker actions are
not perfectly predictable. Finally, the less uncertainty there is
in attacker behavior, the more attacks can be prevented. Thus,
as we begin to account for a greater proportion of attacker
cognition we can reduce the size of the X factor, and further
improve defender performance.

3To be clear, the mechanism being described here, Reinforce-
ment Learning, is only one of many cognitive processes that guides
attacker behavior. In this paper we only focus on Reinforcement
Learning in repeated security games as a clear and tractable exam-
ple of how CM can aid in building better decision aids for real-world
security domain problems.
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Simulation 2: Preferred Strategies
Simulation 1 highlights the advantages of cognitive model
predictions despite the uncertainty factor, X, in human
decision-making. To isolate the effect of X we made a few
assumptions, one of those being that the attacker has no ini-
tial action preferences. However, the four attacker strategies
described in Simulation 1, Table 2 are not some arbitrarily
named buttons A1-A4, but rather meaningful action-paths to
the person(s) performing the attacks.

Let us assume, for example, that in the context of a cyber-
attack, the hacker has two decisions: (1) whether to scan for
vulnerabilities at a faster or a slower rate, and (2) whether
to focus the attack on the main data server or on multiple
perimeter machines. The hacker in this case has some risk
aversion and believes that faster scans and attacking the main
server present higher risks, resulting in initial perceived utili-
ties for the safer-perimeter, safer-main, faster-perimeter, and
faster-main options of +.10, +.05, 0.00, and -.10, respec-
tively. We will refer to these initial utilities as preference
set A, when they correspond to actions A1, A2, A3, and A4,
respectively; and preference set B when they correspond to
actions A4, A3, A2, and A1, respectively.

The question is, given that the attacker has some prior pref-
erences, does it hurt the defender to assume that the attacker is
a “blank slate”? Simulation revealed that CM would prevent
about the same number of attacks against attackers with pref-
erence sets A or B as it would against blank slate attackers,
see top of Figure 2. At worst, against an attacker with pref-
erence set B, σ = .05, CM prevents 2.3 attacks less in 200
attempts than against a blank-slate, σ = .05 attacker. The
difference for each other attacker type is less than one attack
in 200 attempts. GT agent performance remains at 50% re-
gardless of attacker preferences.

The reason why initial preference sets A and B do not
greatly disturb the model tracing approach has to do with the
nature of error-driven learning (Rescorla & Wagner, 1972).
This long-established principle of human learning suggests
that the more surprising (i.e. unexpected) a given outcome
is, the greater the change in the human (or simulated) brain.
Thus, if human subjective utility for some action is 0.5 and
the model assumes that utility to be 0.0, and the actual out-
come value after that action was performed was 1.0, the
change in action-utility in the model would be half of that
in the human. After just a few experiences the model and
human action-utilities would begin to converge, and model
predictions would become more accurate.

A problem may occur in the instances where initial hu-
man preferences are strong enough that some actions are
never even attempted. For example, let us examine prefer-
ence sets C and D that are five times as strong as preference
sets A and B, with initial perceived utilities for the safer-
perimeter, safer-main, faster-perimeter, and faster-main op-
tions of +.50, +.25, 0.00, and -.50, respectively. Given these
preference sets, an attacker (especially one with a low X fac-
tor) will be very unlikely to choose the faster-main option.

Figure 2. Simulation 2: Predicted CM performance when at-
tacker has biases prior to the first attack. Each trend-line rep-
resents CM performance against a different attacker type (at-
tackers differ by uncertainty factors and initial preferences).
Preference sets A, B, C, and D are represented in figure leg-
ends as (A), (B), (C), and (D) respectively. Each data point
represents an average over 1024 simulation runs.

This would throw off model predictions. A CM defender
would still perform better than GT against attackers with such
preferences, but much worse than it would against attackers
with no initial preferences, see middle graph in Figure 2.

To account for potential extreme negative preferences, we
can add Initial Utility Decay (IUD), dynamically adjusting
initial action-utilities for any actions that are not being at-
tempted by the attacker. The assumption is that if the attacker
is not choosing a given option, then that option must have a
lower subjective utility for them. For current simulation pur-
poses we will employ linear decay, decrementing UA by 0.05
at each decision point for every action A that the attacker does
not exercise.

The results of employing a CM defender agent with initial
utility decay are shown at bottom of Figure 2. As the figure
suggests, initial utility decay greatly aids in accounting for
strong initial preferences, resulting in almost no difference
(less than 1 attack in 200 attempts) between defending against
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blank-slate attackers and those with preference sets C and D.
This improvement comes at a slight cost against a blank-slate
attacker. CM performance with IUD is slightly worse than
that without IUD against a blank-slate attacker (red lines at
bottom and top of Figure 2, respectively), preventing 1.3, 0.4,
and 0.4 attacks less in 200 attempts against attackers with σ
values of .05, .15, and .25, respectively.

IUD is just one potential method for dynamic parameter
adjustment in cognitive modeling. There are undoubtedly
better alternatives to overcoming the problem of initial pref-
erences other than linear IUD. The focus here is not in find-
ing the optimal method, but rather in highlighting the bene-
fits of using cognitive modeling in the security domain. This
simulation suggests that even when individual attackers have
unpredictable initial preferences, CM preferences can be ad-
justed dynamically without incurring a significant loss in per-
formance.

Simulation 3: Learning Rate
Simulations 1 and 2 explore how CM-based defender agent
performance in repeated security games is affected by deci-
sion unpredictability and initial preferences of human attack-
ers. One other variable from Equation 1 that we have yet to
discuss is the learning rate, α. This simulation focuses on CM
performance given different attacker learning rates.

Table 3
Number of attacks prevented in 200 attempts by CM defender
(IUD=.05). Each data point represents an average over 1024
simulations. α and σ refer to learning rate and uncertainty
in the human attacker decisions. GT-based defender perfor-
mance for all attackers is 100.0.

CM learning rate
0.1 0.2 0.3 0.4 auto

α=0.1, σ=0.05 139.0 140.8 138.1 136.0 140.4
α=0.2, σ=0.05 139.4 152.5 152.3 151.6 151.9
α=0.3, σ=0.05 133.5 152.8 155.0 154.8 154.5
α=0.4, σ=0.05 131.6 150.1 154.4 154.7 153.9
α=0.1, σ=0.15 117.3 117.6 117.5 116.4 117.1
α=0.2, σ=0.15 130.9 133.0 133.0 132.2 132.3
α=0.3, σ=0.15 136.0 140.8 141.3 141.6 140.8
α=0.4, σ=0.15 136.1 142.6 144.4 144.4 143.9
α=0.1, σ=0.25 110.6 110.8 110.5 109.8 110.4
α=0.2, σ=0.25 120.5 121.6 121.5 121.4 121.3
α=0.3, σ=0.25 127.4 129.9 130.5 130.3 129.6
α=0.4, σ=0.25 131.3 134.6 135.9 136.0 135.1

Table 3 displays CM (IUD=.05) performance with differ-
ent assumed learning rates, playing 200 consecutive security
games against attackers with different actual learning rates.4

In general, the higher the attacker learning rate (i.e., the more
of a factor their experiences are in their decision-making),
the easier it is to predict attacker decisions and prevent future
attacks. Depending on the attacker, the range of differences
between the best and worst CM performance was as high as

23 attacks in 200 attempts; though assuming a higher attacker
learning rate does not hurt CM defender performance as much
as assuming a lower learning rate.

The “auto” learning rate (right-most column) represents a
CM defender that dynamically adjusts the learning rate pa-
rameter prior each decision. That is, the “auto” CM agent
adjusts its assumption about the attacker learning rate de-
pending on which assumed learning rate would result in a
greater number of correct predictions for all known attacker
decisions. As implemented in this simulation, the “auto”
agent contrasts prediction history of CM agents with assumed
learning rates of .1, .2, .3, and .4, and mimics the next deci-
sion of the agent with the best prediction rate.

Dynamically fitting the learning rate parameter in this way
does not guarantee that the attacker learning rate will be cor-
rectly inferred at any given decision point, mostly due to the
uncertainty in attacker decisions. Thus, the “auto” CM per-
formance cannot be as good as that of an omniscient agent.
However, the “auto” learning rate produces near-optimal per-
formance, see Figure 3.

Figure 3. Simulation 3: Best, worst, and auto performance
from Table 3. α and σ refer to learning rate and uncertainty
in the human attacker decisions, rather than in CM defender.

To be clear, the “auto” learning rate method employed
here is not the only method for adjusting model parame-
ters. The focus here, however, is not on finding the optimal
method for dynamic parameter fitting, but rather on highlight-
ing the availability of techniques in cognitive modeling, such
as model tracing and dynamic parameter fitting, for provid-
ing individual/team -tailored decision predictions that can be
of great use in the security domain and beyond.

Summary & Discussion
In recent years, game theory -based decision-aid software has
received significant attention for success in real-world secu-
rity domain problems, such as scheduling patrols conducted
by the US Coast Guard and police, allocating federal air mar-
shals on flights, and major anti-poaching efforts. Behavioral
game theory points out that normative approaches provide un-
realistic predictions of human choice, and suggests the use of

4Results in Table 3 and Figure 3 are based on games against a
blank-slate agent, but all effects hold against agents with initial pref-
erences.
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behavioral/cognitive models. In this paper we focus on the
use of cognitive modeling to improve on the success of nor-
mative game-theory approaches in the security domain.

We present three simulations that highlight the potential
advantages of employing cognitive models for predicting at-
tacker decisions. The simulations suggest that (1) cognitive
modeling provides performance advantages over normative
game theory approaches, and (2) model parameters can be
adjusted dynamically to make useful predictions about each
individual human attacker despite the fact that each individual
attacker may have different preferences and learning abilities.

The presented simulation results provide encouraging evi-
dence of potential usefulness of cognitive models in the con-
text of real-world security problems. Despite the fact that
simulations in this paper are based on robust behavioral phe-
nomena, the presented results should be taken as theoretical
in nature, requiring further empirical validation. In future
work we plan to gather human data and validate current sim-
ulation results.

In the current paper we only focus on a single cognitive
process, as an example of how cognitive modeling may be
employed in this domain. There is a wide array of established
cognitive models beyond what we could explore in this paper.
Integration of more models in CM-based decision aids would
help in reducing the uncertainty factor, further improving the
rate of prevented attacks.
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