
Lawrence Berkeley National Laboratory
LBL Publications

Title
Transitioning from File-Based HPC Workflows to Streaming Data Pipelines with openPMD 
and ADIOS2

Permalink
https://escholarship.org/uc/item/4h81f507

Authors
Poeschel, Franz
E, Juncheng
Godoy, William F
et al.

Publication Date
2022

DOI
10.1007/978-3-030-96498-6_6
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4h81f507
https://escholarship.org/uc/item/4h81f507#author
https://escholarship.org
http://www.cdlib.org/


Transitioning from file-based HPC workflows
to streaming data pipelines

with openPMD and ADIOS2

Franz Poeschel1,4, Juncheng E5, William F. Godoy3, Norbert Podhorszki3, Scott
Klasky3, Greg Eisenhauer6, Philip E. Davis7, Lipeng Wan3, Ana Gainaru3,

Junmin Gu2, Fabian Koller4, René Widera4, Michael Bussmann1,4, and
Axel Huebl2,4

1 Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
2 Lawrence Berkeley National Laboratory (LBNL), Berkeley 94720, California, USA

3 Oak Ridge National Laboratory (ORNL), Oak Ridge 37830, Tennessee, USA
4 Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany

5 European XFEL GmbH (EU XFEL), D-22869 Schenefeld, Germany
6 Georgia Institute of Technology (Georgia Tech), Atlanta 30332, Georgia, USA

7 Rutgers University (Rutgers), New Brunswick 08901, New Jersey, USA

Abstract. This paper aims to create a transition path from file-based
IO to streaming-based workflows for scientific applications in an HPC
environment. By using the openPMP-api, traditional workflows limited by
filesystem bottlenecks can be overcome and flexibly extended for in situ
analysis. The openPMD-api is a library for the description of scientific
data according to the Open Standard for Particle-Mesh Data (openPMD).
Its approach towards recent challenges posed by hardware heterogeneity
lies in the decoupling of data description in domain sciences, such as
plasma physics simulations, from concrete implementations in hardware
and IO. The streaming backend is provided by the ADIOS2 framework,
developed at Oak Ridge National Laboratory. This paper surveys two
openPMD-based loosely-coupled setups to demonstrate flexible appli-
cability and to evaluate performance. In loose coupling, as opposed to
tight coupling, two (or more) applications are executed separately, e.g. in
individual MPI contexts, yet cooperate by exchanging data. This way, a
streaming-based workflow allows for standalone codes instead of tightly-
coupled plugins, using a unified streaming-aware API and leveraging
high-speed communication infrastructure available in modern compute
clusters for massive data exchange. We determine new challenges in
resource allocation and in the need of strategies for a flexible data dis-
tribution, demonstrating their influence on efficiency and scaling on the
Summit compute system. The presented setups show the potential for a
more flexible use of compute resources brought by streaming IO as well
as the ability to increase throughput by avoiding filesystem bottlenecks.

Keywords: high performance computing, big data, streaming, RDMA



2 Franz Poeschel et al.

1 The need for loosely-coupled data pipelines

Scientists working with massively scalable simulations on high-performance
compute (HPC) systems can currently observe an increasing IO bottleneck
threatening the performance of their workflows. As GPU hardware has reshaped
the compute landscape found in the TOP500 list8, state-of the art HPC codes
have become able to exploit the compute power of thousands of GPUs in parallel.
When storage systems cannot keep pace with this development, workflows must
be adapted to continue exploiting advancements made in compute performance.
This paper explores streaming IO as a scalable alternative to persistent IO.

This section first gives an overview on the performance of state-of-the-art
supercomputers as well as on typical scientific workflows for massive data process-
ing. Section 2 proposes streaming IO as an approach at keeping these workflows
scalable on recent systems. Section 3 discusses the challenge of streaming data
distribution. Finally, section 4 builds and examines two prototypical streaming
data processing pipelines and evaluates the data distribution patterns previously
discussed.

1.1 The IO bottleneck – a challenge for large-scale IO

Hoping to bring forward more detailed scientific insights, recent supercomputer
systems strive to enable simulation sizes that are impossible to fit on smaller
clusters. Applications that use a large percentage of resources on such a system
are challenged to near-perfect parallel weak scaling. While from the perspective
of the compute system, achieving this goal – while demanding – has been proven
possible by applications such as PIConGPU [3], storage systems on recent systems
are far less scalable:

system compute parallel FS FS example storage
performance bandwidth capacity requirements
[PFlop · s−1] [TiByte · s−1] [PiByte] [PiByte]

Titan 27 1 27 5.3
Summit 200 2.5 250 21.1
Frontier > 1500 5 - 10 500 - 1000 80 - 100

Table 1: System performance: OLCF Titan to Frontier. The last column shows
the storage size needed by a full-scale simulation that dumps all GPU memory
in the system 50 times.

Table 1 shows that the full-scale peak compute performance increases by a
factor of ∼ 7.4 from Titan (2013) to Summit (2018) and by a further factor of
> 7.5 from Summit to Frontier (planned 2021). Conversely, the parallel bandwidth
increases from Titan to Summit by merely 2.5 and the parallel bandwidth of
8 https://www.top500.org/

https://www.top500.org/


From file-based HPC workflows to streaming data pipelines 3

Frontier is planned at 2-4 times that figure. For the storage capacity, the increase
from Titan to Summit goes by a factor of 7.8, keeping up with the increase in
compute performance. The storage capacity for Frontier, however, is planned at 2-
4 times that of Summit, falling behind the pace of the peak compute performance.
The table shows that full-scale applications that write regular data dumps will
use significant portions of the system storage.

Large-scale capability application runs perceive this as an IO wall: At full
scale, the theoretical maximum parallel filesystem (PFS) throughput per node
on Titan (NVidia Tesla K20x) is 56MByte · s−1, and 95MByte · s−1 on Summit
(NVidia Tesla V100). Summit compute nodes are further equipped with 1.6TiB
of non-volatile memory (NVM). While envisioned as a burst-buffer for the PFS,
draining of NVM data dumps during parallel application runs can lead to a
competition for network resources.

Traditional methods for further processing of simulation data reach their
limits due to the PFS bandwidth. Simulations intending to scale up to full
capability cannot continue to rely on file-based IO and must explore alternative
methods for further processing of data.

1.2 From monolithic frameworks to loosely-coupled pipelines

Multi PB-scale data output does not solely pose a technical challenge, as from
a domain scientist’s perspective this raw data also provides a relatively low
informational density, necessitating data extraction through adequate analysis.

An example is the particle-in-cell simulation PIConGPU [3, 9], developed at
the Helmholtz-Zentrum Dresden-Rossendorf. It produces massive amounts of raw
data that requires further processing and extraction of information. As depicted
in figure 1, PIConGPU provides a number of tightly-coupled plugins to perform
simple analysis tasks on raw data.

radiation energy particles
phase space particle calorimeter
particle merger energy histogram
intensity energy fields

…

PIConGPU
and tightly-coupled plugins

Async. data piping …

Particle Reduction

GAPD

ParaView/VisIt
loosely-coupled

independent
applications

Fig. 1: Tight and loose coupling in the example of PIConGPU

In the context of this work, the tightly-coupled approach is defined as a data
analysis routine built into the data producer, which cannot be used as a stan-
dalone application. It brings the advantage of trivial data access at the expense
of flexibility. While a tightly-coupled plugin can benefit from using the same
address space as the actual simulation, it also comes with a list of downsides.
The development of such plugins is highly application specific, requiring more
development resources, and the software stack of all plugins, including potentially



4 Franz Poeschel et al.

very large frameworks with incompatible dependencies and compiler contraints,
needs to compile and link at once. The heavy investment of developing a plugin
only pays off for algorithms that scale well with the simulation size. As shown
in [14], algorithms that require communication between the processes can some-
times run faster separately at smaller scale even with the additional cost of
data movement. An example analysis in large 3D PIConGPU runs that does
not benefit from proportionally scaled-up parallel analysis is the extraction of a
distributed 2D simulation slice followed by a 2D Hilbert transform, often used to
find the position of a laser pulse.

This paper defines loose coupling as a workflow wherein multiple discrete
stages in a computational data processing pipeline are performed by different
independent applications, usually launched as different processes on the system.
Loose coupling does not require combining several heterogeneous stages of a sim-
ulation/analysis/visualization/aggregation workflow into a monolithic integrated
application, which is indeed often impossible due to contradicting dependency
requirements in complex software stacks.

This paper’s approach at creating loosely-coupled workflows in an efficient
and scalable manner is data streaming, introduced in section 2.

1.3 Related work

SIMEX platform [6, 7] implements the openPMD standard [11] through HDF5
files and uses loose coupling to integrate “some of most advanced simulation tools
[…] to mimic an entire light source beamline”. Similarly, Mayes et al. [19] (LUME)
integrates single simulation modules with openPMD into a file-based loosely-
coupled pipeline for unified particle accelerator and lightsource modeling. Wan et
al. [22] investigate layout reorganization of parallel PIC simulation data to increase
file IO performance, including downstream processing and data loads on finely
chunked, distributed data. An established framework for loose coupling in the
domain of Big Data is the JVM-based Apache Spark [24]. DASK [4] is a Python-
based framework for “scalable analytics”. Its approach is to couple multiple
loosely-coupled tasks via the definition of a fine-grained task-graph, yielding an
acyclic dataflow. FLUX [2] builds a framework for the graph-based scheduling for
jobs in an HPC environment, allowing to divide compute resources across multiple
applications. The position of this paper’s work in frameworks such as DASK or
FLUX is that of a means for exchange of scientific data between arbitrarily scaled,
parallel compute/analysis processes controlled by these emerging frameworks.
Staging (streaming) methods in ADIOS are described in Abbasi et al. [1] and were
recently redesigned into a scalable publish/subscribe abstraction that supports
various coupling use-cases [17]. Both Ascent (part of the Alpine project [15]) as
well as the SENSEI [18] project build in-situ visualization and analysis algorithms,
running alongside simulations to avoid bottlenecks in bandwidth and storage
incurred by post-hoc processing. ADIOS is an available data transport method.
Compared to these frameworks, openPMD initially standardizes data organization
and self-describing meta-data as frequently needed for analysis, coupling and
interpretation in the respective domain-science [11]; it can be implemented directly



From file-based HPC workflows to streaming data pipelines 5

on a variety of data transports/libraries and formats, yet also provides a scalable
reference implementation, openPMD-api [13].

2 Building a system for streaming IO

The considerations in subsection 1.2 already hint at the largest challenge in loose
coupling compared to tight coupling: Instead of reducing the raw simulation
data by mode of analysis within the simulation by using a tightly-coupled plugin,
transfer of massive amounts of data into a reading application becomes necessary,
rendering relevant the IO bottleneck discussed in subsection 1.1. This section
presents data streaming (sometimes also referred to as staging) as a means to
implement highly-scalable loosely-coupled data processing pipelines.

2.1 Loosely coupled data processing pipelines built via streaming

Data streaming in this work refers to a form of IO between two (or more)
applications that bypasses persistent storage media, using instead scalable high-
speed communication infrastructure such as Infiniband. In such workflows, data
is sometimes held (staged) in a temporary location, e.g. RAM or NVM.

Streaming Area
Persistent Storage

PIConGPU Particle Reduction Analysis
e.g. scatter plot

Aggregation

Visualization

openpmd-pipe

Fig. 2: An envisioned complex, loosely-coupled workflow: PIConGPU is the data
producer, a domain-specific particle reduction can conserve relevant ensemble
properties, the analysis step might filter and bin, and aggregation might create
a temporal integration from high-frequency data. At various sections of the
workflow, visualization or data dumps might be generated from subscribers.

Such methods are interesting from two perspectives: For the scientist working
in a loosely-coupled setup, persistent storage of intermediate raw data is in
general not necessary, and from the perspective of the IO system, it is not
feasible. In consequence, our response to the IO wall lies in streaming-based
loosely-coupled workflows that allow to forgo persistent storage infrastructure
bound by parallel bandwidths and filesystem capacities. An example for a loosely-
coupled scientific data processing pipeline, consisting of multiple simulations, is
depicted in figure 2, demonstrating a multi-stage pipeline that avoids writing
unwanted intermediate results to permanent storage. The script openpmd-pipe,
which allows for capturing a stream into a file, serves as basis for this paper’s
first benchmark in section 4.1.



6 Franz Poeschel et al.

The IO system presented in this work focuses on the following criteria, driven
by needs of domain scientists:
Efficiency Naturally, any IO system prepared for the Exascale era needs to

move massive amounts of data in a scalably efficient manner.
Expressiveness Scientists need to express, transport and share their data and

meta-data in a language that comes naturally within the problem’s domain.
Any need for manually dealing with low-level concepts should be avoided and
needs of FAIR principles [23] should be considered as integral part.

Flexibility The IO system should be usable on different systems and in different
setups with different IO backends and configurations without altering the
application code’s data description. Optimization for system specifics should
be exposed through runtime configuration.

Reusability Current-day IO routines are often written in terms of persistent-
storage based reading and writing. Upgrading to a streaming-aware IO
description should be straightforward. The upgraded routine should allow
for file-based as well for streaming-based IO.

2.2 Impact in an increasingly heterogeneous compute landscape

These properties in an IO system prepare scientific workflows for a trend towards
heterogeneity in software and hardware, up to approaches such as federated
computing. Keeping true to the efficiency of integrated solutions, this more
modular approach avoids a fixed description of the concrete IO layer, replacing it
with an idiomatic data-focused description within the scientific domain and leaving
the physical choice of IO transport or storage as a runtime parameter. While
the remainder of this paper focuses on two prototypical setups for performance
and feasibility benchmarking, further more complex workflows are thinkable, two
examples including edge computing and machine learning workflows.

For edge computing, such an IO framework, while still satisfying the needs of
classical scientific simulation workflows, can serve as the communication layer
in the complex communication patterns demanded between compute and edge
nodes. Scientific software is thus generalized to unify traditional as well as
upcoming workflows into one data description. Similarly, such an IO system
makes it possible to schedule each compute part of a loosely-coupled simulation
separately on heterogeneous systems, making use of available compute resources
in a way best fit for each one. Hence, a GPU compute partition can be used
for hardware-accelerated simulation codes, while a CPU-based post-processing
transformation of the data can be scheduled on more fitting hardware.

An interesting application for machine learning is found in the computation of
surrogate models for simulations. As argued before, scientific simulations create
lots of data – in machine learning setups, the training of an accurate model
additionally needs a rich set of input data. Both these facts combine into data
requirements that can no longer be supported by file-based IO routines. An
envisioned workflow supported by a flexible IO system consists of a long-running
surrogate model training process being fed by dynamically launching instances
of a scientific simulation via streaming methods, thus bypassing the filesystem.



From file-based HPC workflows to streaming data pipelines 7

2.3 openPMD and ADIOS2: Scientific Self-Description & Streaming

In this paper, we explore a streaming-aware IO infrastructure that leverages sci-
entific self-description of data through the Open Standard for Particle-Mesh Data
(openPMD) [11]. We use ADIOS2 [8] to add a streaming backend implementation
to the library openPMD-api [13].

The openPMD-api, developed openly in collaboration of Helmholtz-Zentrum
Dresden-Rossendorf, the Center for Advanced Systems Understanding and Law-
rence Berkeley National Laboratory, is an IO middleware library that assists
domain-scientists with data description along the openPMD standard for FAIR
particle-mesh data, used already in numerous physics simulations.9

In comparison to direct implementations of application codes against high-
speed IO backends [10], using openPMD-api saves thousands of lines of code
per application, reduces integration time for application developers, promotes
sharing of best practices for IO library tuning options, provides a high-level
interface to describe scientific data and conserves this standardized meta-data for
analysis and coupling workflows. The expressiveness property from subsection
2.1 is thereby achieved. The ability to pick different backends and configurations
for them at runtime brings flexibility. Implementing high-speed backends such as
HDF5, ADIOS1 and ADIOS2 as depicted in figure 3 achieves efficiency (whereas
a serial JSON backend serves for prototyping and learning purposes). Additional
language bindings on top of the core C++ implementation ease integration
into many established post-processing frameworks, such as Python bindings for
parallel readers into ParaView, Dask and domain-specific analysis tools.

data transport
and storage

producer/
consumer

standardized scientific
data description

IO library
backends

Reader

Writer
openPMD-api

ADIOS1

ADIOS2

JSON

HDF5

Files: BP

RDMA/TCP: SST

MPI: SSC

WAN: DataMan

Fig. 3: IO software stack built by openPMD and ADIOS2

We leverage the benefits of the openPMD-api and make its interface aware
of streaming, thus allowing scientists that already script their traditional data
analysis routines for file-based IO to rapidly transition to streaming IO with a
small number of changes, keeping in mind the goal of reusability.

The ADIOS2 (adaptable IO system) framework [8], developed by Oak Ridge
National Laboratory, in collaboration with Kitware Inc., Lawrence Berkeley
9 https://github.com/openPMD/openPMD-projects

https://github.com/openPMD/openPMD-projects


8 Franz Poeschel et al.

National Laboratory, Georgia Institute of Technology and Rutgers University, is
a unified high-performance IO framework, located one logical layer of abstraction
below the openPMD-api, and provides the backend implementation for streaming
IO. It supersedes the earlier ADIOS1 framework [16] by creating a general IO-API
based on the publisher/subscriber model, decoupling the data producers and
consumers in a manner that allows for a flexible framework to incorporate various
data movement engines specialized for different use cases (permanent storage,
staging through local NVMes, streaming through RDMA, TCP and MPI, etc). It
provides efficiency at extreme-scale and flexibility by providing many specialized
IO engines. ADIOS2 also supports reusability via the publish/subscribe API that
allows for selecting an engine at runtime without any change to the user code.

The openPMD-api (0.14.0) uses mainly its BP3 and BP4 (binary pack) engines
for file-based IO, SSC (strong static coupler) for strong coupling via MPI, and
its SST (sustainable staging transport) engine for loose coupling [17] on which
this paper focuses.

The purpose of SST is to enable very dynamic coupling workflows, allowing
arbitrary numbers of readers to register to a stream while it keeps running.
Between each writer and reader, communication between their respective parallel
instances can go in arbitrary patterns up to full m×n meshes, opening connections
only between instances that exchange data. The engine can pick from different
low-level data transport implementations: The libfabric10-based RDMA (remote
direct memory access) data transport for high scalability and use of technologies
such as Infiniband, as well as the TCP data transport that uses network sockets
for communication and that works as a fallback if libfabric is not available on
the system.
The openPMD-api documentation11 lists and explains a minimal example how
to communicate between a writer and a reader with ADIOS2/SST (highlighted
blue in figure 3). If not specified differently, this study uses the SST engine with
the RDMA data transport, backed by libfabric 1.6.3a1.

3 Data distribution patterns

A writer for openPMD-formatted output will generally produce data in form
of n-dimensional chunks that differ in size (location in the problem domain)
and parallel instance of origin (location in the compute domain). A non-trivial
decision problem emerges concerning which data regions should be read by which
instance of a reading code. This section determines properties that efficient data
distributions should have and discusses a number of algorithms to achieve these
properties.

10 https://ofiwg.github.io/libfabric/
11 https://openpmd-api.readthedocs.io/en/0.13.3/usage/streaming.html

https://ofiwg.github.io/libfabric/
https://openpmd-api.readthedocs.io/en/0.13.3/usage/streaming.html


From file-based HPC workflows to streaming data pipelines 9

3.1 Properties found in a performant distribution pattern

The SST engine of the ADIOS2 framework leaves some leeway for experimenta-
tion and optimization by theoretically allowing fully-connected communication
patterns where each reading instances holds communication with each writing
instance. For a performant pattern, we put forward a number of properties:

Locality Rather than fully-connected “m× n” style communication patterns,
each instance’s communication partners should bounded in number and
located close within the system’s topology. When carefully picking a local
communication pattern, perfect IO weak scaling behaviour can ideally be
achieved. Naturally, this point is subject to the communication infrastructure
and the topology of a system.

Balancing The distribution of data over parallel instances of a reading applica-
tion should be as even as possible. Loose coupling serves as an opportunity
to implement load balancing in a data processing pipeline.

Alignment Access patterns should be congruent with the data layout in the
backend. For ADIOS2, which generally organizes data in form of the chunks
as they were written, this means that loaded chunks should coincide as much
as possible with those that were written. Loading a chunk that must be
pieced together from parts of several written chunks inhibits efficiency.

Read constraints Applications often impose domain-specific constraints on
the temporal and/or spatial order of data for processing. This can limit the
sensible distribution patterns.

3.2 Chunk distribution algorithms

This subsection surveys a number of chunk distribution algorithms in the context
of the properties as detailed in subsection 3.1. Pseudocode is found in the
supplementary material [20]. Since the read constraints property depends on
the data requirements within the problem domain, we do not further concern
ourselves with it in this subsection.

Each of the following algorithms guarantees a complete distribution of data
from writers to readers. Efficiency cannot generally be guaranteed and requires
careful scheduling of applications and selection of a fitting distribution strategy.

Round Robin The Round Robin approach at chunk distribution distributes the
available data chunks over the parallel readers until none are left. It optimizes only
for the alignment property, fully forgoing the properties of locality and balancing.
It is interesting only in situations where its effects can be fully controlled by
other means, such as knowledge on the way data is produced and consumed.

Slicing the dataset into n-dimensional hyperslabs Since datasets have
known sizes, one possibility is pre-assigning regions in form of hyperslabs in
a dataset to reading ranks. This comes close to the conventional approach of
explicitly selecting chunks to load. The available chunks are intersected with the
hyperslab assigned to a rank to determine that rank’s chunks to load.



10 Franz Poeschel et al.

This approach optimizes for the balancing property, mostly ignoring the other
two properties. However, the locality property can be achieved if the distribution
of parallel compute resources correlates with the problem domain, a condition
often met in codes that do not use complex load balancing schemes. Similarly,
the alignment property is achieved to some extent by the controlled number of
cuts on the problem domain.

Since the achieved distribution is generally one that can be easily dealt with
in reading analysis codes, this makes this rather simple approach interesting.

Binpacking This approach tries to combine the advantages of the first two
approaches. The rough proceeding is to calculate an ideal amount of data per
rank, slice the incoming chunks such that this size is not exceeded and then
distribute those size-fitted chunks across the reading ranks. The last step is
non-trivial and an instance of the NP-complete bin-packing problem. Johnson
[12] discusses algorithms to approximate the problem. For this paper, we adapt
the Next-Fit algorithm to approximate the problem within a factor of 2, i.e. at
most the double number of bins is used. For the purpose of chunk distribution, it
is simple to modify such that each reading rank gets assigned at worst double
the ideal amount. Later benchmarks in subsection 4.3 show that this worst-case
behavior, while uncommon, does in practice occur.

Other than Round Robin, this algorithm has a guarantee on data balancing,
and other than the approach that slices the dataset into hyperslabs, it guarantees
that the incoming chunks are not arbitrarily subdivided, but instead at most sliced
into fixed-sized subchunks, creating some notion of alignment. Both guarantees
are weakened compared to those given by the earlier algorithms.

Distribution by Hostname This algorithm serves to enrich the previous
algorithms by some notion of data locality, making use of the information on
topology of the writing and reading codes. Its schematics are sketched in figure 4.

distribution
within node

distribution
by hostname

fallback
distribution

leftover chunks

partially
assigned chunks

unassigned
chunks

fully
assigned chunks

Fig. 4: Workflow for keeping a chunk distribution’s locality property by keeping
communication within the same node.

It works in two phases: The first phase sorts chunks by node to readers on
the same node. Specifically, the hostname is used for this step, and it can also be
replaced with other layers in a system’s topology, such as CPU sockets or host



From file-based HPC workflows to streaming data pipelines 11

cohorts. A secondary distribution algorithm computes the chunk distribution
within each single node.

After this, chunks may remain unassigned if a node is populated only by
writers and no readers. To ensure a complete distribution, any of the preceding
algorithms can be chosen as a fallback distribution for the leftover chunks.

As a result, this algorithm can be used to dynamically adapt to job scheduling:
If nodes are populated by writers and readers at the same time, communication
stays within a node. If however a job is scheduled to populate nodes only with
either writers or readers, another strategy is automatically picked up.

4 Evaluation for two streaming setups

This section sees the construction and evaluation of two setups for streaming.
The first setup uses streaming as a method for asynchronous IO, giving us a
first insight into streaming performance characteristics. The second setup then
constructs a data processing pipeline built from PIConGPU as data source and
from GAPD, a GPU-accelerated diffraction simulation, as a data sink. It includes
a study on the influence of chunk distribution strategies, of resource allocation,
of streaming backend and of parallel scaling.

4.1 Streaming as basis for an asynchronous IO workflow

The first setup demonstrates the potential that streaming has for exhausting
idle compute resources. Data is streamed to a different process to be written to
the filesystem in the background. The approach does not avoid the filesystem
bottleneck, but instead provides asynchronous IO and hides the cost of IO if
there is enough free memory to stage data.

In our evaluations, the data producer is the aforementioned particle-in-cell
simulation code PIConGPU [3]. With the particle-in-cell algorithm being a
computational method within the field of plasma physics, the raw output of
PIConGPU is particle-mesh based and naturally expressible in openPMD.

For rapid setups of asynchronous IO pipelines via streaming, we developed the
tool openpmd-pipe, which is an openPMD-api based Python script that redirects
any openPMD data from source to sink. While this script performs the most
simple transformation that any stage in a loosely-coupled pipeline might possibly
do (none at all), it serves as an adaptor within a loosely-coupled pipeline: Further
enabled workflows include (de)compressing a dataset or conversion between
different backends, and capture of a stream into a file, used by the following
setup. Within the context of openPMD, this builds expressivity comparable to
using POSIX tee (by using the SST engine as a multiplexer) and to POSIX pipes
(by using openpmd-pipe as an adaptor piece), motivating its name.

Figure 5 on the next page shows the setup for this first benchmark with
openpmd-pipe on the Summit supercomputer [21]. (Software versions are docu-
mented in the supplementary materials [20].)



12 Franz Poeschel et al.

Persistent Storage

PIC

PIC

PIC PIC

PIC PIC

openpmd-pipe

node 0

PIC

PIC

PIC PIC

PIC PIC

openpmd-pipe

node 1

PIC

PIC

PIC PIC

PIC PIC

openpmd-pipe

node n

• • •

Fig. 5: Benchmark setup: Each node hosts 6 instances of PIConGPU, one per GPU.
Those feed their data to one instance of openpmd-pipe which then asynchronously
writes to the PFS.

Each compute node hosts six instances of PIConGPU, running a Kelvin
Helmholtz simulation that is weakly scaled along the y axis. 9.14GiB are produced
per data output step and parallel process. Each node hosts one instance of
openpmd-pipe to which each PIConGPU process on the same node sends data
via SST. openpmd-pipe then writes that data to the parallel filesystem (Alpine).

This way, each node creates only one file on the parallel filesystem – a
feature also supported natively by the ADIOS2 BP engine under the name of
aggregation. Regular ADIOS2 BP output with node-level aggregation serves as
the benchmarks’s baseline. The baseline is referred to as “BP-only”, while the
setup shown in figure 5 is “SST+BP”. Each benchmark runs for fifteen minutes
and attempts to write data every 100 time steps in the simulation. The setup
uses a feature in the ADIOS2 SST engine to automatically discard a step if the
reader is not ready for reading yet.12. This way, the simulation is never affected
by actual file operations and IO granularity is automatically reduced if it becomes
too slow.

Figure 6 on the facing page plots the throughput results. It shows the per-
ceived throughput which we define through dividing the amount of data to be
stored/sent by the time from starting the operation to its completion. Unlike
the raw throughput, this includes latency time needed for communication and
synchronization. It provides a good lower bound on the throughput while simpli-
fying measurement in user code. When streaming, the time is measured between
requesting and receiving data on the reader’s side. Since the SST+BP setup
performs IO in two phases, the throughput is shown for both of them.

The throughput is computed by average over each single data dump and over
each parallel instance, scaled to the total amount of written data. Each benchmark
is repeated three times and the plot shows each of those measurements.

The figure shows reasonable scaling behavior for both filesystem throughput as
well as streaming throughput, with slight deviations from ideal scaling appearing
12 "QueueFullPolicy" = "Discard" The alternative is to block. A queue of steps can

be held for some additional leeway, but it requires additional memory.



From file-based HPC workflows to streaming data pipelines 13

64 128 256 512102

103

104

number of nodes

to
ta

lp
er

ce
iv

ed
th

ro
ug

hp
ut

[G
iB

y
te

·s
−
1
]

SST+BP (streaming part)
SST+BP (filesystem part)
BP-only
extrapolated ideal parallel scaling

PFS bandwidth limit

Fig. 6: Perceived total throughput. The file-based outputs (BP-only as well as
SST+BP) are limited by the PFS bandwidth. At 512 nodes, the methods reach
4.15, 2.32, and 1.86TiByte · s−1 on average, respectively.

at 512 nodes. At the time of running the benchmarks, the streaming example
was not able to run without crashing on 1024 nodes.13 At 4.0 to 4.3TiByte · s−1,
the streaming throughput exceeds the PFS bandwidth (2.5TiByte · s−1) at 512
nodes. Since the first phase in the SST+BP setup already performs node-level
data aggregation, the perceived BP throughput is higher than in the BP-only
setup. At 512 nodes, the PFS bandwidth is approached (2.1 to 2.4TiByte · s−1).

Figure 7 on the next page plots the measured load/store times from the same
benchmark. By computing the average numbers, the previous figure did not show
any meaningful information on outliers. In parallel contexts, outliers can be serious
hurdles for performance, hence figure 7 shows the data as boxplots (including
each single measurement across all three repetitions of each benchmark). Results
are shown for the streaming part of the SST+BP setup and for the BP-only
setup. For BP-only, the median times range between 10 and 15 seconds with the
worst outlier at 45 s. The median time for streaming is between 5 and 7 seconds
with the worst outlier just above 9 s. A general trend is the increasing number of
outliers at 256 nodes. At 512 nodes, longer load times become numerous enough
to skew the median and no longer be outliers, explaining the observed decreasing
throughput.

Finally, to compare overall performance between both approaches, we count
the number of successfully written data dumps within the given time frame of
15 minutes. The BP-only setup blocks the simulation during IO. The number
of successfully dumped simulation steps ranges from 22 ∼ 23 on 64 nodes to

13 After recent successful streaming setups at 1024 nodes, the likely cause for this were
scalability issues in the metadata strategy used in the openPMD-api.



14 Franz Poeschel et al.

64 128 256 512

10

20

30

40

number of nodes

fil
e

du
m

pi
ng

ti
m

e
[s

]

(a) BP-only: write times

64 128 256 512

5

6

7

8

9

number of nodes

pe
rc

ei
ve

d
lo

ad
ti

m
e

[s
]

(b) SST+BP: streaming part (read times)

Fig. 7: Perceived runtimes for file-based writes and streaming loads as boxplots.
The box displays the interval containing 50% of sampled measurements. The
upper whisker is at the largest value below “(upper quartile) + 1.5 · IQR” (inter
quartile difference), lower whisker accordingly.

17− 20 on 512 nodes. In contrast, the SST+BP setup can increase the number
of data dumps as long as the IO time can be hidden within the simulation time.
Hence, we observe 32 ∼ 34 data dumps at 64 and at 128 nodes. Between 22 and
27 data dumps are written at 256 nodes and only 16 ∼ 17 at 512 nodes. This is
because outputs are dropped as soon as the IO time cannot be hidden behind
the simulation time any more.

We examine the portion of the simulation time that the IO plugin requires in
PIConGPU (first percentage: raw IO operation, second percentage: IO plugin
including host-side data preparation and reorganization). For the BP-only setup
those numbers range from (44%/54%) at 64 nodes to (55%/64%) at 512 nodes, ex-
plaining the slight drop in successfully dumped simulation steps. For the streaming
side of the SST+BP setup, they range from (2.1%/27%) to (6.2%/32%), showing
that raw IO is barely noticeable at low scale, while gaining some significance due
to communication latencies between up to 3072 writers in our setup.

As the BP engine in ADIOS2 has a feature to write data synchronously to
node-local NVM drives and drain them asynchronously to the parallel filesystem,
enabling this feature is possible for both setups benchmarked so far. However, we
consistently measure worse throughputs achieved by doing so, most peculiarly a
significant decrease in the performance of the SST engine. As noted in subsection
1.1, asynchronous draining can compete for network resources with other parts
of a parallel application, i.e. inter-node communication. Such an effect on MPI
and the SST engine is a possible reason for this observed behavior.

4.2 A staged simulation-analysis pipeline: Setup

The next benchmark loosely couples a PIConGPU simulation with an X-ray scat-
tering analysis code named GAPD [5]. GAPD is an “atom-based polychromatic



From file-based HPC workflows to streaming data pipelines 15

diffraction simulation code for direct, kinematics-based simulations of X-ray/
electron diffraction of large-scale atomic systems with mono-/polychromatic
beams and arbitrary plane detector geometries” [5]. It takes into regard only
particle data while ignoring mesh data produced by PIConGPU or similar simu-
lations. Through scaling up to GPU clusters via MPI, GAPD is able to simulate
diffraction patterns of systems up to 5 billion atoms.

Running this analysis is not only interesting from the perspective of extracting
meaningful and interpretable data from the massive amounts of raw data produced
by the simulation, it is also valuable as a means of reducing the amount of data
to be processed via IO systems by several orders of magnitude down from the
number of raw macroparticles to the number of points in reciprocal space.

GAPD is coupled with PIConGPU and configured to calculate the SAXS
(Small-angle X-ray scattering) pattern from the input stream with the kinematical
method [5]. If needed, the X-ray energy/wavelength, detection geometry can
be adjusted in the input file whose configuration for the following benchmarks
is found in the supplementary material along with software versions and an
example for a created scatter plot [20]. This way, we commit ourselves to a
realistic problem statement to be solved by simulation with PIConGPU and
GAPD (scaled weakly to analyze scaling behavior) and aim to utilize the compute
resources as fully as possible, avoiding waiting times introduced either by IO or
asynchrony.

For reducing IO-introduced waiting times, IO should perform as fast as possible.
To this end, the influence of chunk distribution strategies is shown. For reducing
asynchrony-introduced waiting times, the setup will not block the simulation by
performing IO. Again, ADIOS2 is configured to drop steps if the analysis has
not finished yet, thus letting the pacing of the analysis determine the frequency
of output. We demonstrate that this frequency can be tweaked by shifting the
share of compute resources between writer and reader.

Codes must be scheduled carefully to allow for localized communication pat-
terns. The Summit compute system hosts six GPUs per node, and the surveyed
setup shares them equally between simulation and analysis, running three in-
stances of PIConGPU and three instances of GAPD on each node. Distribution
algorithms may or may not take the topology of the setup into account and we
will show the impact of either.

Since GAPD only reads particle data, field data needs not be sent and does
not influence the IO system, reducing the IO size per process to ∼ 3.1GiB. The
field data stays relevant for computing the next steps in the PIC simulation.

4.3 A staged simulation-analysis pipeline: Evaluation

We evaluate the following three distribution strategies, based on the algorithms
discussed in section 3.2:

(1) Distribution by hostname: Communication happens exclusively within
a node. Distribution within a node is done via the Binpacking approach.

(2) Binpacking: Only the Binpacking algorithm runs and topology is ignored.



16 Franz Poeschel et al.

(3) Slicing the dataset into hyperslabs: The datasets are sliced into equal-
sized hyperslabs which are distributed over the reading instances. Since
PIConGPU uses no load balancing and data distribution in the problem
space hence correlates with data distribution across the hardware, this
approach keeps some notion of locality and avoids fully interconnected
communication meshes.

64 128 256 512

101

102

103

104

number of nodes

to
ta

lp
er

ce
iv

ed
th

ro
ug

hp
ut

[G
iB

y
te

·s
−
1
]

by hostname (RDMA)
binpacking (RDMA)
hyperslabs (RDMA)

by hostname (sockets)
binpacking (sockets)
hyperslabs (sockets)

Fig. 8: Perceived total throughput. At 512 nodes, the RDMA-based methods
reach 4.93, 1.35 and 5.12TiByte · s−1 on average, respectively. The sockets-based
methods reach 995, 15 and 985GiByte · s−1. The by hostname and hyperslabs
strategy results overlap each other, for RDMA and sockets alike.

Figure 8 shows the perceived throughput. As in section 4.1, the perceived
throughput is defined by the time between write/load request and the end of
the operation. This figure is subject to communication latencies, rendering the
perceived throughput a lower bound for the actual throughput.

Again, each single benchmark is repeated three times and the plot shows
the single measurements. The throughput is computed as the average over
each parallel writer and each data exchange between writer and reader. The
benchmark additionally shows the throughput observed with the sockets-based
WAN implementation of the SST engine up until 256 nodes.

The RDMA tests show a reasonable quasi-linear parallel scaling behavior. The
slightly higher peak bandwidth of 5.18TiByte · s−1 compared to the bandwidths
observed in subsection 4.1 can be related to the lower amount of data sent
as well as to the different scheduling and communication patterns. Strategy
(2) has a consistently worse performance than the other two strategies which
clock out relatively similarly. The distinctive difference of strategy (2) is the
number of communication partners that each parallel instance has, suggesting
that controlling this number is important. Since no intra-host communication



From file-based HPC workflows to streaming data pipelines 17

infrastructure is used, keeping communication strictly within one node in strategy
(1) bears no measurable improvement over strategy (3).

The WAN/sockets tests show similar tendencies, but at a consistently worse
throughput than their RDMA-based counterparts. The worst throughput, with
the Binpacking strategy, achieves throughputs between 400 and 970GiByte · s−1,
correlating to loading times up to and above three minutes. We conclude that
for scientific simulations, where data is usually written in bulk, sockets do not
provide a scalable streaming solution.

64 128 256 512
0.6

0.8

1

1.2

1.4

1.6

1.8

number of nodes

pe
rc

ei
ve

d
lo

ad
ti

m
e

[s
]

(a) Strategy (1) – Hostnames

64 128 256 512
0.6

0.8

1

1.2

1.4

1.6

1.8

number of nodes

pe
rc

ei
ve

d
lo

ad
ti

m
e

[s
]

(b) Strategy (3): Hyperslabs

Fig. 9: Perceived data loading times for strategies (1) and (3) as boxplots.

Figure 9 plots the loading times for the two most promising strategies as
boxplot. The median loading times are relatively consistent at 0.9 s for both
strategies, explaining the good parallel scaling. The outliers observed for the
Hostname strategy at 512 nodes all stem from the same single communication
operation. Upon closer inspection, in that operation the Binpacking strategy
(used within a node in strategy (1)) sent double the ideal amount of data to
a single reader. This demonstrates that the worst-case behavior of the simple
approximation algorithm can occur in practice. We conclude that for this setup,
strategy (3) yields the best observed throughput and does not suffer from sporadic
imbalances. Further heuristics should be explored for making the Binpacking
algorithm more resistant against those.

With the setup chosen so far, GAPD takes around 5 minutes and 15 seconds
to compute one scatter plot. Without blocking the simulation, this allows to
create a scatter plot every 2000 steps in our experiments for the RDMA-based
transport. Doing so via file-based loose coupling would require writing outputs of
size 9.3TiB per scatter plot at 512 nodes (after filtering the relevant data!). For
the single data dump where the worst-case behavior of the Binpacking approach
was observed, the respective scatter plot took roughly 10 minutes of computation
due to the bad parallel load balancing.

For increasing the frequency of scatter plots, a benefit of loose coupling can be
exploited: Dedicating five GPUs on a node to GAPD and only one to PIConGPU



18 Franz Poeschel et al.

decreases the compute time for GAPD to roughly one minute, allowing it to run
every 400 simulation steps. This is achieved only by changing the job script and
without such a feature having been explicitly coded into either application, as
would be necessary in a tightly-coupled monolithic application.

5 Summary & Outlook

The library openPMD-api has been extended to enable domain scientists a
straight-forward transition from file-based to streaming IO. All data is scien-
tifically self-describing and IO is performed flexibly, adapting to requirements
from workflows and compute systems. Our benchmarks use streaming to exhaust
available compute resources and to avoid bottlenecks caused by parallel filesys-
tems. The achieved throughputs from the use of RDMA/Infiniband streaming
reach double the bandwidth of the Summit PFS. In the first benchmark, this
paper demonstrates the construction of a pipeline for asynchronous IO, and
node-level data aggregation comes naturally with the setup. The second bench-
mark demonstrates the straightforward setup of a prototypical loosely-coupled
simulation-analysis pipeline, avoiding to write intermediate results to persistent
storage. The importance of data distribution is discussed and we respond to
the challenge with flexibly interchangeable distribution algorithms, allowing to
rapidly evaluate the best-performing strategy for a discrete setup. This approach
allows for future extensibility towards setups with properties such as application-
specific constraints or parallel load balancing that influence data distribution.
Our experiments saw no benefits from using purely intra-node communication
compared to inter-node communication. Backends with support for inter-process
communication (IPC) techniques are a chance to exhaust potential from node-
local communication, ideally to achieve near-perfect scaling at extreme scale.
By substantiating that common technology like network sockets may not hold
up to the challenge of streaming IO for HPC applications, this work employs
efficient transport layers such as Infiniband successfully in an accessible manner
for scientifically self-describing streaming data pipelines.

Acknowledgements This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725. Supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science
and the National Nuclear Security Administration). Supported by EC through Laserlab-
Europe, H2020 EC-GA 871124. Supported by the Consortium for Advanced Modeling
of Particles Accelerators (CAMPA), funded by the U.S. DOE Office of Science under
Contract No. DE-AC02-05CH11231. This work was partially funded by the Center of
Advanced Systems Understanding (CASUS), which is financed by Germany’s Federal
Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science,
Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by
the Saxon State Parliament.



From file-based HPC workflows to streaming data pipelines 19

References

[1] Hasan Abbasi et al. “Datastager: scalable data staging services for petascale
applications”. In: Cluster Computing 13.3 (2010), pp. 277–290.

[2] Dong H. Ahn et al. “Flux: A Next-Generation Resource Management
Framework for Large HPC Centers”. In: 2014 43rd International Conference
on Parallel Processing Workshops. 2014, pp. 9–17. doi: 10.1109/ICPPW.
2014.15.

[3] M. Bussmann et al. “Radiative Signatures of the Relativistic Kelvin-
Helmholtz Instability”. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. SC
’13. Denver, Colorado: ACM, 2013, 5:1–5:12. isbn: 978-1-4503-2378-9. doi:
10.1145/2503210.2504564.

[4] Dask Development Team. Dask: Library for dynamic task scheduling. 2016.
url: https://dask.org.

[5] J. C. E et al. “GAPD : A GPU-Accelerated Atom-Based Polychromatic
Diffraction Simulation Code”. en. In: Journal of Synchrotron Radiation
25.2 (Mar. 2018), pp. 604–611. doi: 10.1107/S1600577517016733.

[6] C Fortmann-Grote et al. “SIMEX: Simulation of Experiments at Advanced
Light Sources”. In: 11th NOBUGS Conf. Copenhagen, 2016, pp. 29–34. doi:
10.17199/NOBUGS2016.21.

[7] C. Fortmann-Grote et al. “Simulations of ultrafast x–ray laser experiments”.
In: Proc. SPIE 10237, Adv. X-ray Free. Lasers Instrum. IV. 2017, 102370S.
doi: 10.1117/12.2270552.

[8] W. F. Godoy et al. “ADIOS 2: The Adaptable Input Output System.
A framework for high-performance data management”. In: SoftwareX 12
(2020), p. 100561.

[9] Axel Huebl. “PIConGPU: Predictive Simulations of Laser-Particle Accelera-
tors with Manycore Hardware”. PhD thesis. Technische Universität Dresden,
July 2019. doi: 10.5281/zenodo.3266820.

[10] Axel Huebl et al. “On the Scalability of Data Reduction Techniques in
Current and Upcoming HPC Systems from an Application Perspective”.
In: High Performance Computing. Ed. by Julian M. Kunkel et al. Cham:
Springer International Publishing, 2017, pp. 15–29. isbn: 978-3-319-67630-2.

[11] Axel Huebl et al. openPMD: A meta data standard for particle and mesh
based data. https://doi.org/10.5281/zenodo.591699. 2015. doi: 10.5281/
zenodo.591699. url: https://github.com/openPMD.

[12] David Johnson. “Near-Optimal Bin Packing Algorithms”. PhD thesis. Mas-
sachusetts Institute of Technology, 1973.

[13] Fabian Koller et al. openPMD-api: C++ & Python API for Scientific I/O
with openPMD. 2018. doi: 10.14278/rodare.27. url: https://github.com/
openPMD/openPMD-api.

[14] J. Kress et al. “Comparing Time-to-Solution for In Situ Visualization
Paradigms at Scale”. In: 2020 IEEE 10th Symposium on Large Data Analysis
and Visualization (LDAV). 2020, pp. 22–26. doi: 10.1109/LDAV51489.
2020.00009.

https://doi.org/10.1109/ICPPW.2014.15
https://doi.org/10.1109/ICPPW.2014.15
https://doi.org/10.1145/2503210.2504564
https://dask.org
https://doi.org/10.1107/S1600577517016733
https://doi.org/10.17199/NOBUGS2016.21
https://doi.org/10.1117/12.2270552
https://doi.org/10.5281/zenodo.3266820
https://doi.org/10.5281/zenodo.591699
https://doi.org/10.5281/zenodo.591699
https://github.com/openPMD
https://doi.org/10.14278/rodare.27
https://github.com/openPMD/openPMD-api
https://github.com/openPMD/openPMD-api
https://doi.org/10.1109/LDAV51489.2020.00009
https://doi.org/10.1109/LDAV51489.2020.00009


20 Franz Poeschel et al.

[15] Matthew Larsen et al. “The alpine in situ infrastructure: Ascending from
the ashes of strawman”. In: Proceedings of the In Situ Infrastructures on
Enabling Extreme-Scale Analysis and Visualization. 2017, pp. 42–46.

[16] Qing Liu et al. “Hello ADIOS: the challenges and lessons of developing lead-
ership class I/O frameworks”. In: Concurrency and Computation: Practice
and Experience 26.7 (2014), pp. 1453–1473.

[17] J. Logan et al. “Extending the Publish/Subscribe Abstraction for High-
Performance I/O and Data Management at Extreme Scale”. In: IEEE Data
Eng. Bull. 43 (2020), pp. 35–46.

[18] Burlen Loring et al. “Improving Performance of M-to-N Processing and Data
Redistribution in In Transit Analysis and Visualization”. In: Eurographics
Symposium on Parallel Graphics and Visualization. Ed. by Steffen Frey,
Jian Huang, and Filip Sadlo. The Eurographics Association, 2020. isbn:
978-3-03868-107-6. doi: 10.2312/pgv.20201073.

[19] C E Mayes et al. “Lightsource Unified Modeling Environment (LUME) - A
Start-to-End Simulation Ecosystem”. In: IPAC (2021).

[20] Franz Poeschel et al. Supplementary material: Transitioning from file-based
HPC workflows to streaming data pipelines with openPMD and ADIOS2.
doi: 10.5281/zenodo.4906276.

[21] Sudharshan S. Vazhkudai et al. “The Design, Deployment, and Evaluation
of the CORAL Pre-Exascale Systems”. In: SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis. 2018,
pp. 661–672. doi: 10.1109/SC.2018.00055.

[22] Lipeng Wan et al. “Improving I/O Performance for Exascale Applications
through Online Data Layout Reorganization”. under review. 2021.

[23] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data
management and stewardship”. en. In: Scientific Data 3.1 (Dec. 2016),
p. 160018. issn: 2052-4463. doi: 10 . 1038/ sdata . 2016 . 18. (Visited on
06/06/2021).

[24] Matei Zaharia et al. “Apache Spark: A Unified Engine for Big Data Pro-
cessing”. In: Commun. ACM 59.11 (Oct. 2016), pp. 56–65. issn: 0001-0782.
doi: 10.1145/2934664.

https://doi.org/10.2312/pgv.20201073
https://doi.org/10.5281/zenodo.4906276
https://doi.org/10.1109/SC.2018.00055
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1145/2934664

	Transitioning from file-based HPC workflows to streaming data pipelines with openPMD and ADIOS2



