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Abstract

We evaluated global soil organic carbon (SOC) stocks and turnover time 
predictions from a global land model (ELMv1‐ECA) integrated in an Earth 
System Model (E3SM) by comparing them with observed soil bulk and Δ14C 
values around the world. We analyzed observed and simulated SOC stocks 
and Δ14C values using machine learning methods at the Earth System Model 
grid cell scale (~200 km). In grid cells with sufficient observations, the model
provided reasonable estimates of soil carbon stocks across soil depth and 
Δ14C values near the surface but underestimated Δ14C at depth. Among many
explanatory variables, soil albedo index, soil order, plant function type, air 
temperature, and SOC content were major factors affecting predicted SOC 
Δ14C values. The influences of soil albedo index, soil order, and air 
temperature were primarily important in the shallow subsurface (≤30 cm). 
We also performed sensitivity studies using different vertical root 
distributions and decomposition turnover times and compared to observed 
SOC stock and Δ14C profiles. The analyses support the role of vegetation in 
affecting soil carbon turnover, particularly in deep soil, possibly through 
supplying fresh carbon and degrading physical‐chemical protection of SOC 
via root activities. Allowing for grid cell‐specific rooting and decomposition 
rates substantially reduced discrepancies between observed and predicted 
Δ14C values and SOC content. Our results highlight the need for more explicit
representation of roots, microbes, and soil physical protection in land 
models.

Plain Language Summary

Quantifying feedbacks between the terrestrial carbon cycle and climate is 
important for understanding climate change. Among many factors that 
control terrestrial carbon cycle responses to climate, soil organic carbon 
(SOC) dynamics are particularly important, although highly uncertain. In 
addition to SOC stocks, radiocarbon is an important observational constraint 
for land model predictions. We evaluated, against worldwide observations of 
SOC stocks and radiocarbon, predictions from a new land model used for 
climate change analyses. We analyzed differences between model 
predictions and observations using a machine learning method at a large 
grid cell scale (~200 km). Among many explanatory variables, soil albedo 
index, soil order, plant function type, air temperature, and SOC densities 
were major factors affecting predicted SOC radiocarbon values. The 
influences of soil albedo index, soil order, and air temperature were primarily
important for topsoil. Our sensitivity analysis highlights the role of plant root 



activity in affecting soil carbon turnover, particularly in deep soil, possibly 
through supplying fresh carbon and degrading physical‐chemical protection 
of SOC. Allowing for grid cell‐specific rooting and decomposition rates 
substantially reduced discrepancies between observed and predicted values.
Our results highlight the need for more explicit representation of roots, 
microbes, and soil physical protection in land models.

1 Introduction

Global land models integrated in Earth System Models (ESMs) have been 
used to quantify feedbacks between the terrestrial carbon cycle and climate 
(Friedlingstein et al., 2014). Among many factors affecting terrestrial carbon 
cycle responses to climate, soil organic carbon (SOC) turnover is particularly 
important (Bloom et al., 2016; Carvalhais et al., 2014) but substantially 
underestimated in Coupled Model Intercomparison Project Phase 5 ESMs. As 
demonstrated by He et al. (2016), systematic errors in the representation of 
soil organic matter (SOM) dynamics could lead to very large uncertainties in 
the ability of soils to buffer expected effects of climate change.

Developing model representations of vertically resolved SOC stocks and 
turnover at multiple spatial scales has proven challenging because of 
uncertainties in mechanistic representations (Ahrens et al., 2015; Riley et 
al., 2014; Schmidt et al., 2011), parameter estimation (Luo et al., 2016), 
system characterization (e.g., soil properties and vegetation type) (Mathieu 
et al., 2015), and climate forcing (Campo & Merino, 2016). Although several 
observationally constrained and spatially resolved estimates of global SOC 
stocks are available (Hengl et al., 2014), estimating in situ SOC dynamics 
from observations over decadal to centennial time scales remains 
challenging. Existing methods include combining observed SOC stock and 
aboveground and belowground net primary production estimates (Liski et 
al., 2006), intact soil core incubations (Thomsen et al., 2003), 13C tracer 
studies (Torn et al., 1997), and soil radiocarbon (14C) observations. Among 
those methods, SOC Δ14C profiles provide the most direct constraints on site 
(Ahrens et al., 2015; Dwivedi et al., 2017; Torn et al., 1997) to global‐scale 
model (Koven et al., 2013) estimates of soil carbon dynamics in a vertically 
explicit manner.

Comparing site‐scale soil measurements to ESM‐scale model predictions 
presents a range of challenges, including biases and scale mismatches in 
system characterization and climate forcing (Mekonnen et al., 2016; 
Schwalm et al., 2010). The first main challenge results from horizontal scale 
discrepancies between the site and the model. Site measurements are 
typically representative of horizontal spatial scales on the order of 1 to 
100 m, while ESM land models have horizontal resolutions of tens to 
hundreds of kilometers. Therefore, ESM SOC Δ14C predictions attempt to 
represent average values across each model grid cell but not necessarily 
observations at a particular site across a heterogeneous landscape. This 
mismatch in spatial scales makes a direct comparison between site‐scale 



measurements and ESM‐scale predictions potentially misleading, for 
example, due to the spatial heterogeneity of SOC Δ14C values and their 
dependence on site‐specific factors. We note that this challenge exists for 
many features of ESM land model predictions (Jiang et al., 2015; Mishra & 
Riley, 2015).

The second main challenge is that site‐scale measurements and ESM‐scale 
predictions have different sources and characteristics of uncertainty. For site 
measurements, the primary source of uncertainty is measurement errors, 
including errors in SOC Δ14C measurements (e.g., associated with the 
incomplete sampling of spatial heterogeneity) and errors in associated 
variables required for interpretation (e.g., bulk density and SOC 
concentration). However, land models incorporate many sources of 
uncertainty, including structural, system characterization, numerical 
implementation errors, and parameterization (e.g., Luo et al., 2016). 
Characterizing those uncertainties and their effects on model predictions is 
difficult.

Recognizing those challenges, we first compared site measurements (i.e., 
671 site‐level vertically resolved SOC Δ14C observations) with predictions 
from a global land model (ELMv1‐ECA; see section 2) at the grid cell scale. A 
small portion of the site measurements has been used by some researchers 
to calibrate site‐level land models for understanding processes that control 
SOM dynamics (Ahrens et al., 2015; Dwivedi et al., 2017; Jenkinson & 
Coleman, 2008). However, at the global scale, to our knowledge, the ability 
to simulate SOC Δ14C values and vertical profiles currently exist in only two 
ESM land models, that is, Community Land Model (CLM; Koven et al., 2013) 
and ELMv1‐ECA (Zhu et al., 2017). ELMv1‐ECA, which is integrated in the 
ESM Energy Exascale Earth System Model (E3SM), was derived from CLM4.5 
and shares aspects of its belowground Century‐based (Parton et al., 1993) 
soil carbon module, although the aboveground carbon cycle dynamics and 
connections with belowground processes (e.g., nutrient dynamics and 
competition) have been substantially changed (see section 2). We then 
employed statistical models to characterize limitations of ELMv1‐ECA and 
provided suggestions for possible improvements. Our goals are to identify 
dominant factors affecting discrepancies between simulated and observed 
SOC Δ14C values, identify potential model process representations 
responsible for these biases, and provide guidance for future model 
development.

2 Methods

2.1 Site Observations and ESM‐Scale Data

We used a recently assembled global SOC Δ14C observational data set from 
671 sites (He et al., 2016; Mathieu et al., 2015; Figure 1) for our analysis. 
Since the soils represented in the data set were collected between 1900 and 
2013, we first “normalized” them to year 2000 at each ESM grid given the 
measured atmospheric Δ14C as input, using the approach developed by He et



al. (2016). The spatial density of observational sites varies widely across the 
globe, with relatively poor coverage in Africa, China, and Eastern Europe. 
Although the data sets listed a wide range of properties, many of them were 
measured only at a small number of sites. For this study, we chose 
commonly measured properties at the 671 sites: vertically resolved SOC 
stock, elevation, soil order, mean annual temperature, mean annual 
precipitation, Whittaker's biome types, total SOC stock, soil bulk density, and
percentage of carbon (more details of the measurements are given in He et 
al., 2016). In addition, to maximize the total number of sites available for 
comparison, we combined measurements from organic and mineral soil 
horizons based on the measurement depth because the current model does 
not explicitly resolve their differences.

We used a data‐driven approach in this analysis to analyze data at the ESM 
scale. Even though some parameters seem mechanistically unrelated at the 
local scale, it is possible for them to be associated with each other at the 
ESM scale through some compound hidden factors. We included all available 
ESM‐scale information (or forcing data) in this study to identify useful 
information to improve mechanistic understanding. The ESM‐scale data are 
primarily surface and near‐surface information, and they came from different
sources. For this study, we only used those that are as input to our model. 
Specifically, they include air and soil temperature, precipitation (or rainfall), 
slope, elevation standard deviation, clay content, SOM density (SOMD), soil 
albedo index, soil order, and plant function types (PFTs). We obtained the 
temperature and rainfall data from CRUNCEP Version 7 data set 
(Viovy, 2018) and the slope and elevation standard deviation from HYDRO1k 
(Verdin & Greenlee, 1996). We extracted clay content and SOMD data from 
Global Soil Data Task (Task, 2000), soil albedo index and soil order data from
a global surface data set (Lawrence & Chase, 2007), and global PFTs based 



on Lawrence and Chase (2010). For soil order and PFTs, at those grid cells 
where site measurements are available, we directly used the data from He et
al. (2016). Calculating soil albedo index involved fitting soil reflectance 
values at each grid for each month to find values that would reproduce the 
same average snow‐free surface albedo as were observed by Moderate 
Resolution Imaging Spectroradiometer (MODIS) at local solar noon on the 
middle day of the month (Lawrence & Chase, 2007).

2.2 ELMv1‐ECA Model

2.2.1 Model Structure

The development of ELMv1‐ECA started from CLM4.5BGC (Koven et 
al., 2013), which represents vertically resolved soil Biogeochemistry (BGC) 
based on the Century model (Parton et al., 1993) including decomposition, 
soil O2 and its effects on decomposition, plant inputs, and soil nitrogen 
dynamics. ELMv1‐ECA added several features that affect C inputs to soil and 
SOC dynamics. Briefly, the relevant changes for the current work include the 
following: (a) incorporation of a prognostic phosphorus cycle based on Wang 
et al. (2007); (b) a new approach to represent nutrient competition between 
plants, microbes, and mineral surfaces based on the equilibrium chemistry 
approximation (ECA) (Tang & Riley, 2013; Zhu et al., 2016, 2017); (c) 
dynamic leaf stoichiometry that affects photosynthesis (Ghimire et al., 2016; 
Walker et al., 2014); and (d) dynamic C, N, and P allocation within the plant 
based on Friedlingstein et al. (1999), which considers light, water, soil 
nitrogen, and phosphorus stresses.

Although the basic structures in ELMv1‐ECA and CLM4.5 for soil 12C and 14C 
dynamics are the same, there are differences between the models in 
representing terrestrial nutrient cycles, and therefore constraints on SOC 
dynamics. Specifically, CLM4.5 represents carbon and nitrogen interactions 
with the relative demand hypothesis, which limits plant and soil nitrogen 
uptake rates based on competitors' relative demands. In contrast, ELMv1‐
ECA constrains carbon, nitrogen, and phosphorus interactions using the ECA 
competition hypothesis (Riley et al., 2018). ECA partitions available soil 
nutrients to multiple nutrient consumers based on their competitive traits 
(e.g., maximum uptake rates and affinities) (Zhu et al., 2017).

2.2.2 Numerical Simulation

We simulated vertical profiles of SOC Δ14C values globally using ELMv1‐ECA 
on 1.9° × 2.5° grids. For this study, we used the 10 layers of 
biogeochemically active soil to a depth of 380 cm with exponentially 
increasing thicknesses from 1.6 to 90 cm with higher spatial resolution near 
the surface (Koven et al., 2013).

The model was driven by CRUNCEP reanalysis meteorological forcing (Harris 
et al., 2014), including temperature, precipitation, wind speed, humidity, 
radiation, and air pressure. Model simulations first ran to preindustrial (1850)
equilibrium condition with a two‐step process using prescribed PFT 



distributions (K.W. Oleson & Bonan, 2000) and constant atmospheric 
CO2 concentration (285 ppm). In the first step, the model ran for 1,000 years 
with “accelerated soil decomposition,” which is an approach that increases 
the turnover time of the soil carbon pools (slow turnover pool and passive 
pool) by 15 and 675 times (Koven et al., 2013). This approach ensures that 
both the soil carbon bulk and 14C pools have equilibrated. The atmospheric 
radiocarbon content during the spin‐up is held constant at 0‰ (Koven et 
al., 2013), although there is evidence from tree rings that atmospheric 
concentrations over the past 20,000 years were 14C enriched compared to 
present day (Reimer et al., 2013). Given the computational cost of ELMv1‐
ECA, it is not possible to run a simulation for 20,000 years to account for the 
history. However, analysis with a simple first‐order decay SOC model 
indicates that the Δ14C bias associated with the assumption of ignoring this 
atmospheric enrichment is between a few per mil near the surface and 
~50‰ at depth; we will discuss the impact of this potential bias in section 5 
below.

The second step is a 200‐year “regular spin‐up” with baseline soil 
decomposition rates to produce the 1850 equilibrated state. The model 
output at the end of the spin‐up was then used to initialize the model for the 
1850–2000 transient simulation with diagnostic atmospheric 
CO2 concentrations from Mauna Loa Observatory (Masarie & Tans, 1995), 
nitrogen and phosphorus deposition (Lamarque et al., 2005; Mahowald et 
al., 2008), and atmospheric Δ14C values, which include the nuclear weapons 
testing sources (“bomb spike”) (Levin et al., 2010). The atmospheric Δ14C 
values are taken in those simulations to be spatially uniform.

2.2.3 Sensitivity Analysis

In addition to the baseline simulation, we also conducted modeling 
experiments to explore the sensitivity of ELMv1‐ECA‐simulated SOC and Δ14C 
values to several factors. Based on previous work (e.g., Dwivedi et al., 2017; 
Koven et al., 2013), vertically resolved SOC Δ14C values are sensitive to both 
vertical rooting profiles (and therefore fresh carbon inputs) and SOC 
decomposition rates. In ELMv1‐ECA (as in CLM4.5), the zτ parameter controls 
the vertical decline in soil decomposition rates. We therefore performed 
sensitivity analyses to rooting profiles (Jackson et al., 1997; Zeng, 2001) 
and zτ values (0.2, 0.35, 0.5, 0.65, and 0.8 m). A lower zτ value implies lower 
SOC decomposability with increasing depth (Koven et al., 2013). The 
protocols for spin‐up and transient simulations are identical to the baseline 
simulation. Our objective with these analyses is to gain insights into the 
relative importance of input versus turnover vertical profiles on SOC 14C 
dynamics.

2.3 Methods for Comparison

Ideally, the model should be forced with characterization and climate forcing 
measurements at the site scale so that scale discrepancies could be 
minimized and direct comparisons with measurements could be made. 



Unfortunately, this approach is impractical for this study due to the lack of 
local information across the 671 sites. As discussed above, comparisons 
between site‐scale observations and ESM‐scale model predictions face 
several problems because of scale mismatch. Since direct comparisons with 
model predictions forced by site‐level data are not possible in this case, we 
made comparisons by arithmetic averaging of site observations at each 
depth interval measured within an ESM grid cell. As noted above, 
observational studies were often designed to maximize spatial heterogeneity
to evaluate mechanistic controls, rather than to provide accurate large‐scale 
estimates. An example of this potential problem is from site 21 (Hawaiian 
Islands; see Figure 2), where the oldest profiles are not spatially 
representative of the entire Hawaiian Islands. Although we are unable to 
address these shortcomings here, they motivate the need for more 
observations specifically designed to provide accurate spatial averages.

2.3.1 Statistical Approaches for Comparisons

Characterization of the spatial variability of radiocarbon requires careful 
experimental design as done by Schrumpf et al. (2011) for plot‐scale data 
acquisitions. At the ESM scale, however, data acquisition at sufficiently fine 
scales would be prohibitive. Although current site observations were often 
linked to studies (e.g., chronosequences) that maximize differences to 
enhance process understanding, we hope they provide information on the 
spatial variability of the true values. We upscaled the site measurements to 
the ESM scale using arithmetic average and obtained values at 70 ESM grid 
cells (Figure 2), each of which includes at least three observations for 



comparison to ELMv1‐ECA predictions. We chose to use simple averaged 
values in this study to reduce possible biases. Since we typically have a 
small number of samples within each ESM grid cell and we do not know their 
true statistical distributions, we use bootstrap methods (Efron & 
Tibshirani, 1993) to calculate the sample mean and the associated standard 
errors. After upscaling, we investigated relationships between the averaged 
values and the model predictions as functions of multiple other factors using 
a machine learning method, which will be detailed below.

Let   be the jth site measurement within the ith grid cell, i ∈ S and j ∈ Ai, 
where S denotes the index set of all the grids that include at least three site 
measurements, and Ai is an index set of all the sites within the ith grid cell. 

Let   and  be the arithmetic average of individual measurements and
model predictions within the grid cell, respectively. Since we do not have a 
large number of site measurements at each grid cell to reliably derive an 
underlying probability distribution, we assume those measurements have 
Gaussian distribution. Thus, we have

(1)

Ideally, the average   should be strongly correlated to the model 
prediction  . However, because of the spatial variability of Δ14C values and 
the limited sample size within grid cells, they are often very different. The 
discrepancies may depend on many large‐ and small‐scale factors. 
Identifying those factors and understanding their dependencies may provide 
useful information on improving model formulations and parameters, as well 
as guidance for further collection of site measurements.

We compared site‐scale measurements to ESM‐scale model predictions using
a statistical approach. In the approach, we considered the differences 

between the averaged observations (  ) and predicted values (   (i.e.,
residuals) as dependent variables and fit them as functions of many 
available large‐scale factors:

(2)

where G represents fitting functions and the other variables are defined 
above. We generally expect the numerical model will provide good estimates
of the mean observations at the ESM scale and variations of the observed 
and predicted data sets are of a similar order. If one of the variations is 
substantially larger than another one, this approach may mainly fit the 
effects of the variable with the larger variations.

The goal of this analysis is to identify important factors that affect 
discrepancies at the ESM scale. The results may provide information on 
mechanistic representations of processes related to those ESM‐scale factors. 



It is possible that the discrepancies are mainly caused by the inaccuracy of 
input parameters at those scales. In this case, we need to improve the 
accuracy of the input data.

2.3.2 Machine Learning Method for Data Analysis

We use a tree‐based ensemble machine learning method called random 
forests (Breiman, 2001) to perform nonlinear statistical analysis described in 
equation 2. Random forests is a substantial modification of “bootstrap 
aggregating” (also known as bagging) (Breiman, 1996), which is a technique 
for reducing variance in classification or regression predictions. Trees are 
ideal candidates for bagging because they can capture complex interaction 
structures in the data and they typically have large variance and low bias 
(Hastie et al., 2009). For regression, we first fitted the same regression tree 
many times to the bootstrap‐sampled version of training data and then 
averaged their results (Hastie et al., 2009). However, simply rerunning the 
same learning algorithm on different subsets of the data can cause highly 
correlated predictors, limiting the amount of variance reduction. The random
forests approach tries to decorrelate the base learner by learning trees 
based on randomly chosen subsets of input variables, as well as a randomly 
chosen subset of data cases. As a result, random forests methods often have
outstanding predictive accuracy and have been widely used in many 
applications (Murphy, 2012). Random forests is particularly useful when 
input variables are correlated and the number of training data is relatively 
small compared to the number of inputs.

Although the goal of many applications of random forests is to obtain 
accurate predictions from trained models, we here focus on identifying main 
factors that affect the discrepancies between observed and simulated data. 
We set the number of trees for random forests as 1,000, which is quite large.
Similar to Klueter et al. (2015), we calculated p value metrics with 2,000 
permutations using the R package “rfPermute” developed by Archer (2016), 
under the null hypothesis that the tested variable is not important. If the 
calculated p value is less than a preset critical level (i.e., 0.1), we reject the 
null hypothesis and consider the factor to be statistically significant under 
the critical level.

3 Results

3.1 Direct Comparison at the ESM Scale

We first compared the averaged site Δ14C measurements over grid cells with 
ELMv1‐ECA predictions at locations with measurements available down to 
100‐cm depth (Figures 2a–2d). This analysis provides a general idea of how 
observed and simulated Δ14C values are compared. Figure 3 shows the 
comparisons at depths of 10, 30, 50, 70, and 100 cm. The site indices are 
sorted from lowest to highest latitudes (i.e., increasing from south to north). 
We restricted the analysis to grid cells where at least three site‐level 
observations exist for that particular depth, resulting in a decreasing number



of sites as depth increased (i.e., 59, 53, 49, 39, and 27 sites for depths of 10,
30, 50, 70, and 100 cm, respectively). We used linear interpolation to 
estimate values at those depths where observations and model predictions 
were not aligned. The model predictions were generally consistent with the 
mean site measurements at each depth, but uncertainties in the averaged 
site measurements were large and the root mean square discrepancies 
increased with increasing depths (i.e., 134‰, 137‰, 139‰, 157‰, and 
157‰ for depths 10, 30, 50, 70, and 100 cm, respectively). In addition, the 
model was compared poorly with observations for site indices above 60, 
which correspond to sites with latitudes higher than 56°N (Figure 2).



Figure 4 shows the vertical profiles of Δ14C observations and model 
predictions to 100‐cm depth within 21 grid cells across the globe where at 
least three observational sites with vertically resolved Δ14C observations are 
available. Except for the three high‐latitude grid cells (62, 65, and 68), the 
simulated near‐surface (0–50 cm) SOC Δ14C values all fall within, or are close 
to the 95% confidence bounds. The model captured the observed near‐
surface vertical Δ14C profiles but consistently predicted too enriched Δ14C 
values at depths >50 cm compared to the mean observed values. 



Predictions were outside the 95% confidence bounds in seven of the grid 
cells at 100‐cm depth (i.e., grid cells 3, 12, 15, 16, 39, 55, and 65).

We also compared observed and predicted depth‐resolved SOC stocks in 17 
grid cells where at least three observational sites with vertically resolved 
observations to 100‐cm depth are available (Figure 5). At depths of 10 and 
30 cm, the model predictions were within or close to the 95% confidence 
bounds, except for grid cells 15, 16, 65, and 68. Generally, the predicted 
vertical profiles were less variable than observed, which we evaluated and 
improved in the site‐level model simulations described below.



3.2 Identification of Important Factors at the ESM Scale

We analyzed the limited Δ14C observations using permutation‐based 
hypothesis testing. Figure 6 shows the results obtained using random forests
with 2,000 permutations. At 10‐cm depth (Figure 6a), soil albedo index, soil 
order, slope, PFTs, SOM, and air temperature are important factors 
(i.e.,p values less than 0.10) for explaining discrepancies between observed 
and predicted Δ14C values. At 30‐cm depth (Figure 6b), soil albedo index, 
PFTs, and air temperature are among the most important factors. For deeper
layers (i.e., 50, 70, and 100 cm; Figures 6c–6e), the only significant factors 
are SOM and PFTs.



3.3 Sensitivity Analysis

To further investigate the capability of the model to reproduce the observed 
Δ14C values and SOC content, we conducted sensitivity analysis with two 
rooting profiles (Jackson et al., 1997; Zeng, 2001) and five zτ values, as 
described in section 2. Each of these simulations required a full spin‐up, as 
described in section 2. We found that the model was highly sensitive to zτ at 



all five soil depths (10, 30, 50, 70, and 100 cm); deep soil predictions in 
many cases were also highly sensitive to the rooting profile 
(Figures 7 and 8). Importantly, no single zτ parameter could reproduce the 
observations across all grid cells, which implied the importance of vertical 
differences in soil characteristics (e.g., soil microbial community, mineral 
protection, and root interaction) in determining soil decomposability.



We tested whether the discrepancies shown in Figures 7 and 8 can be 
reduced by adjusting rooting profiles and zτ separately at the grid cell scale. 
The results (Figure 9) show that site‐level parameter selections significantly 
reduced the differences between observed and predicted Δ14C values and 
SOC content, highlighting the importance of site‐level heterogeneity. Our 
results demonstrated that parameterization of soil carbon decomposability, 
especially in a vertically explicit matter, is challenging due to small‐scale 
heterogeneity. A more mechanistic representation of soil decomposability is 
warranted in ESM land models, to accurately predict global soil carbon 
turnover, especially for deep soils.



Contrary to expectations, Δ14C predictions were more consistent with 
observations than SOC stocks (compare Figures 9a and 9b). Leaf litter inputs 
into soil concentrate in topsoil layers and requires vertical mixing to 
accumulate in deeper soil layers. In ELMv1‐ECA, vertical mixing is 
parameterized as a diffusive flux with constant diffusivity across depth and 
sites. Fine root litter input to soil follows prescribed rooting profiles that 
decline with depth. In general, these two factors implicitly force higher 
predicted SOC content nearer the surface. In particular, the current model 
structure could not (regardless of parameter values) reproduce observed 
site‐level SOC contents that increase with depth (e.g., Figure 8, sites 49 and 
62; Figure 9 red outliers).

Since vertical diffusion of soil carbon could affect deep SOC stocks and Δ14C 
values, we also conducted sensitivity analysis with vertical diffusion rates 
ranging from 0.0002 to 0.0008 m2/year. We found that the predicted vertical 
Δ14C profiles were less sensitive to vertical diffusion than to rooting profiles 
(see Figure 10). However, since it is widely recognized that model 
parameterization of vertical mixing is uncertain (Koven et al., 2013), we 
recommend that future work constrains these values observationally.



4 Discussion

In this study, we evaluated soil carbon stock and turnover predictions from 
an ESM land model—ELMv1‐ECA. Although direct comparisons between 
model predictions and mean site Δ14C measurements at each depth were 
generally consistent, uncertainties in the averaged site measurements were 
large and their root mean square discrepancies with predictions increased 
with increasing depth (Figures 3 and 4). This result implied that 
parameterization of depth‐dependent soil carbon turnover needs to be 
improved. In ELMv1‐ECA, an exponential decay function (of soil depth) was 
applied (Koven et al., 2013), which was intended to represent the reduction 
of microbial activity with depth due to multiple unrepresented factors (e.g., 
physical protection and substrate supply). The larger model biases in deep 
soil toward younger soil carbon ages, compared with shallow soil, indicated 



that this depth‐dependent parameterization was oversimplified. As noted in 
section 2, the SOC Δ14C bias associated with our assumption of a 0‰ 
atmosphere prior to the modern age may have led to biases between a few 
per mil near the surface and ~50‰ at depth. Such biases further motivate 
improved representation of processes leading to the observed vertical 
profiles of Δ14C values and in particular to the relatively depleted values at 
depth.

Our sensitivity analysis revealed that the vertical decline of SOC 
decomposability with an e‐folding factor in the model is insufficient 
(Figure 7). We argue that an improved model structure should be based on a 
mechanistic representation of plant, microbes, and mineral interactions, 
rather than a simple exponential decay factor. This argument is consistent 
with the results of several recent studies that use site‐level land models and 
SOC and Δ14C site observations. For example, Ahrens et al. (2015) used a 
process‐based model (COMISSION) with the constraints from site‐scale 
observations in Germany to study contribution of sorption, DOC transport, 
and microbial interactions to SOC Δ14C profiles. They found different factors 
dominate SOC Δ14C values in topsoil (≤30 cm; e.g., sorptive stabilization) and
subsoil (>30 cm; e.g., DOC transport and microbial depolymerization). 
Dwivedi et al. (2017) used a biotic and abiotic model of SOM (i.e., BAMS1) 
and observations from a seven‐site chronosequences in Northern California 
and from a Russian Chernozem site where soils were sampled 100 years 
apart. They demonstrated that explicitly incorporating microbial activity, 
sorption, and vertical transport led to consistent predictions of SOM stocks 
and Δ14C values, with different dominant factors across the vertical profile. 
Our data‐driven statistical analysis supports the idea that plants exert a 
strong control on SOC age, particularly in deep soils, but we note that we 
had insufficient site‐level data to infer the relative strength of other 
potentially important factors, for example, vertical transport.

At the ESM scale and using machine learning‐based analysis, we identified 
soil albedo index as one of the main factors at shallow depths (≤30 cm; 
Figure 6). As described by K. Oleson et al. (2013) in the technical description 
of CLM4.5, the soil albedo index was prescribed to best reproduce observed 
MODIS solar noon surface albedo values at the grid cell scale based on the 
method of Lawrence and Chase (2007). MODIS albedo is a compound 
variable dependent on many factors, such as solar zenith angles, surface soil
moisture, fractional vegetation cover, leaf plus stem area index, and 
greenness (Liang et al., 2005; Myhre et al., 2005). Consequently, the soil 
albedo index used here is a compound factor representing a combination of 
multiple land surface features. The inferred strong relationship with SOC Δ14C 
values may imply the importance of other grid cell‐specific parameters not 
currently included in the model. This explanation is consistent with the very 
good predictions obtained when we applied grid cell‐specific parameters to 
predict SOC stocks and Δ14C values (Figure 9). Future work should identify 



and quantify the controllers of these grid cell‐specific parameters, which 
could then be used for extrapolation to larger scales.

PFT characterization played an important role in affecting the difference 
between the mean site measurements and ELMv1‐ECA predictions. As shown
in Figure 6, PFT was one of the most important factors for all depths. 
Similarly, SOMD was a very important factor in explaining differences 
between measured and simulated SOC Δ14C values. The effects of soil order 
on SOC Δ14C values are limited to the shallow subsurface (i.e., 10 cm) at the 
ESM scale. Soil order does not explain the mean measured data and their 
differences from ELMv1‐ECA predictions beyond 10‐cm depth (Figure 6).

There are several limitations related to acquisition and processing of soil 
radiocarbon measurements. First, soil radiocarbon data were primarily 
collected to enhance process understanding by maximizing differences of 
other factors (e.g., chronosequences), but not to characterize spatial 
variability at the ESM scale. These data were collected over many years by 
many investigators, and our approach here was to analyze that large 
existing 14C data set. For the purpose of model comparison, ideally, sites 
would be selected so that the measured radiocarbon data have a better 
spatial representation of the entire grid cell. However, in practice, defining 
proper spatial representation for land modeling and for understanding 
terrestrial ecosystem dynamics remains a grand challenge.

Given current understanding of controllers on SOC stocks and Δ14C values, we
recommend future measurement campaigns additionally acquire information
regarding, to the extent possible, plant properties (e.g., type, biomass, and 
rooting profiles) and soil properties (e.g., depth‐resolved mineralogy and 
bulk density). Further, site selection should focus on characterizing spatial 
averages, rather than large gradients; observed quantities would facilitate 
development of quantities appropriate for comparison and analysis in an 
ESM context. Our analysis was driven and limited by quality and availability 
of other data types used at both ESM and site scales. It is therefore possible 
that we missed factors deemed to be important SOC decomposition 
controllers. In addition, the data set used for the current study was collected 
between 1900 and 2013; our model‐based normalization to year 2000 (He et 
al., 2016) at each ESM grid cell could be subject to uncertainty.

Additionally, the current methods for calculating mean site measurements 
also suffered from limitations, such as small sample size. Currently, the 
sample size for grid cell‐scale averaging was from 3 to 28, resulting in about 
20–60% Monte Carlo errors. Moreover, we did not consider distance and 
spatial correlation structures in those site data. A straightforward but costly 
method to reduce uncertainty or errors is to collect significantly more site 
data. Another approach is to make strong assumptions on the spatial 
structure of soil Δ14C values, for example, parametric models such as 
geostatistical methods (Cressie, 1993) or nonparametric models such as 
machine learning methods (Murphy, 2012). These types of methods are 



typically applied to regional‐scale problems, where other types of 
information may exist for deriving the spatial structure. Although current 
methods suffer from these limitations, to our knowledge, they are more 
realistic than traditional site‐ to ESM‐scale comparisons.

5 Conclusions

We compared soil radiocarbon observations with a global land model 
(ELMv1‐ECA, which is integrated in the ESM E3SM) at multiple depths 
through direct comparisons and through machine‐learning analysis at the 
ESM grid cell scale. Using the same rooting depth parameter for each PFT 
and a single value for vertically resolved decomposition factor globally led to 
modeled SOC and Δ14C values generally consistent with observations near 
the surface but with discrepancies increasing with depth. In general, the 
default model predicts too enriched Δ14C values (i.e., too young SOC ages) at 
deeper depths. However, allowing grid cell‐specific values for rooting and 
decomposition vertical profiles substantially improved model predictions 
compared to observations.

Our statistical analyses identified soil albedo index, PFTs, soil order, air 
temperature, and SOMD as the major factors with significant effects on 
predicting soil Δ14C profiles at the ESM scale. However, these factors play 
different roles in shallow (≤30 cm) and deep (>30 cm) soils. The influences 
of soil albedo index, soil order, and air temperature on SOC and Δ14C values 
were mainly limited to the shallow subsurface, but PFT and SOC density have
effects on SOC Δ14C values at all the depths.

Our study also suggested that we could reduce shallow‐depth discrepancies 
between the observed and predicted large‐scale Δ14C values by using 
machine‐learning methods and more accurate information regarding soil 
albedo index, soil order, and air temperature. However, to improve the 
predictions at deeper layers, better mechanistic models that describe SOC 
cycling rates and PFT effects are required. To this end, we tested the role of 
rooting profile, the e‐folding factor controlling SOC decomposition depth 
dependence, and vertical diffusion rates. We found that a model that better 
captures factors controlling the depth dependence of microbial activity could
improve Δ14C predictions. Finally, we showed that site‐specific values for 
rooting and decomposition vertical profiles substantially improved model 
predictions compared to observations. This latter result suggests that more 
site‐specific information will be required to improve global‐scale models of 
soil carbon cycling. Overall, our modeling and data analysis provide insights 
into the mechanisms that control observed patterns of soil Δ14C profiles and 
thus provide useful guidance for future soil decomposition model 
development in ESM land models.
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