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ABSTRACT OF THE DISSERTATION

Topics in Geometric and Topological Data Analysis

by

Abigail Hickok

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2023

Professor Mason Alexander Porter, Chair

The fields of topological data analysis (TDA) and geometric data analysis (GDA) use al-

gebraic topology and differential geometry to capture topological and geometric structural

properties of data that are not captured by other methods in data science and machine

learning. The primary tool of TDA—and one of the focuses of this dissertation—is persis-

tent homology, which measures the connected components, holes, and higher-dimensional

voids of a data set and tracks how those voids emerge and disappear at different scales. The

objective of GDA is to extract new insights by considering geometric invariants of a manifold,

such as curvature, rather than topological invariants. Previous studies have demonstrated

the power of geometry and topology for analyzing data in complex systems, neuroscience,

biology, and many other fields.

In my thesis, I study both the theory and applications of topological and geometric data

analysis. In the first part of the dissertation, I establish and analyze a new construction,

called a “persistence diagram (PD) bundle,” for doing multiparameter TDA, and I develop

an algorithm to compute a certain class of PD bundles. PD bundles generalize several

important constructions in TDA: vineyards, the persistent homology transform, and fibered

ii



barcodes. In the second part of the dissertation, I apply TDA to several geospatial and

geospatiotemporal data sets. In the last part of the dissertation, I introduce a new method

for curvature estimation in point-cloud data.
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CHAPTER 1

Introduction

It is common for high-dimensional data sets and systems to have lower-dimensional manifold

structure, making them more amenable to analysis. Recently, the fields of topological data

analysis (TDA) and geometric data analysis (GDA) have become popular for studying the

topology, geometry, and manifold structure of data. In TDA, one uses algebraic topology

to analyze the “shape” and global structure of (typically) high-dimensional data [Car20].

These structural properties are often ignored by traditional data-science methods, such as

dimension-reduction algorithms. GDA concerns the inference of geometric invariants of a

manifold, such as curvature, from discrete samples. In addition to its intrinsic mathematical

value, GDA also has the potential to improve manifold-learning algorithms, in which one

seeks to infer lower-dimensional manifold structure of high-dimensional data. This thesis

explores new methods, theory, and applications of TDA and GDA.1

In my research on TDA, I focus on persistent homology (PH), which is an approach from

algebraic topology that one can use to algorithmically find holes of different dimensions

in a data set and quantify the “persistence” of those holes [OPT17]. The computation of

PH has yielded insights into a wide variety of areas, including neuroscience [SPG19,GGB16],

materials science [BHO18], chemistry [MTC10], biology [RB19], dynamical systems [MZR16,

YB20], and collective behavior [TZH15b]. Analyzing PH allows one to quantify holes in data

in a meaningful way and has made it possible to apply topological ideas to a wide variety of

empirical data sets [OPT17].

1The remainder of this introduction, as well as the rest of the thesis, is adapted from [HNP22,Hic22b,
Hic22c,Hic22a,HJJ22,FHP22,HB23].
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In algebraic topology, homology is a quantitative way to characterize a topological space.

For example, suppose that M is a compact, orientable manifold. The rank of the 0-

dimensional homology H0(M) is the number of connected components, the rank of Hk(M)

is the number of k-dimensional holes in M for k ≥ 1, and the dimension of M is equal to

the largest integer n such that Hn(M) is nontrivial2. For instance, if M is the torus S1×S1,

then there is one connected component, there are two 1-dimensional holes, and there is one

2-dimensional hole. Although homology does not uniquely identify a topological space, it

provides useful information about a space’s global structure, and homology can be used to

distinguish a topological space from other topological spaces that have different homology

groups.

In TDA, data often takes the form of a set X of points in Rn, called a point cloud, and we

hope to analyze the topology of a (hopefully lower-dimensional) subspace that the points lie

on. The first step of PH is to construct a filtered simplicial complex, which is a combinatorial

description of a topological space (see Definition 2.2.1). One of the classical approaches to

building a filtered complex is the Čech complex Č(X) (see Definition 2.2.2). At each point

x ∈ X, one places a ball of radius r > 0, where r is the filtration parameter, and then adds a

k-simplex with vertices X ′ ⊆ X to Č(X)r if the intersection
⋂

x∈X′ B(x, r) is nonempty. For

an example, see Figure 1.1. The PH of Č(X) records how the homology of Č(X)r changes

as r increases. As r grows, new homology classes (which represent k-dimensional holes) are

“born” and old homology classes “die”. One way to summarize this information is with a

persistence diagram (PD), which is a multiset of points in the extended plane R2
(see Section

2.3). If there is a homology class that is born at filtration-parameter value b and dies at

filtration-parameter value d, the PD contains the point (b, d). By examining a PD, we can

see how the topology of a data set differs at different scales.

In my research on GDA, I focus on estimating curvature from point clouds sampled

from Riemannian manifolds. A Riemannian manifold is a smooth manifold M equipped

2The homology group Hn(M) is “nontrivial” when there are n-dimensional holes.
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Figure 1.1: The Čech filtration for a point cloud that is sampled from an annulus. Initially,

all the vertices are disconnected, so there are many 0D homology classes. As the filtration

parameter r increases, larger connected components form and 0D homology classes die. At

an even larger filtration-parameter value, a 1D hole appears; that is, a 1D homology class is

born. (This figure appeared originally in [HJJ22].)

with compatible choices of inner product for each tangent space TpM . The presence of this

structure equipsM with a metric (which is induced by the fact that the inner product allows

one to define the length of a tangent vector) and moreover lets us makes sense of various

geometric notions on M—in particular, the notion of curvature. Addionally, many methods

have been developed to estimate other quantities in differential geometry. For example,

estimating geodesic distance (which is the distance between two points on a Riemannian

manifold) is an especially important task, and we rely on methods to estimate it in our work

on curvature estimation.

1.1 Contributions of the thesis

In the first part of this thesis, I introduce the concept of a persistence diagram (PD) bundle,

which is the space of PDs for a fibered filtration function (a set {fp : Kp → R}p∈B of filtrations

that is parameterized by a topological space B). Special cases include vineyards [CEM06],

which can be visualized as continuously-varying stacks of PDs (see Figure 1.2 and Section

2.5), the persistent homology transform [TMB14], and fibered barcodes for multiparameter
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Figure 1.2: An illustration of a vineyard, which consists of a persistence diagram for each time

t. (This figure is a slightly modified version of a figure that appeared originally in [LWA17];

the figure is available under a Creative Commons license.)

persistence modules [And13]. I prove that if B is a smooth compact manifold, then for a

generic fibered filtration function, B is stratified such that within each stratum Y ⊆ B, there

is a single PD “template” (a list of “birth” and “death” simplices) that can be used to obtain

the PD for the filtration fp for any p ∈ Y . If B is compact, then there are finitely many

strata, so the PD bundle for a generic fibered filtration on B is determined by the persistent

homology at finitely many points in B. I also show that not every local section (a continuous

map from an open set in B to the total space E of PDs) can be extended to a global section

(a continuous map B → E). Consequently, the points in the PDs do not typically trace out

separate manifolds as p ∈ B varies; this is unlike a vineyard, in which the points in the PDs

trace out curves (“vines”). When there is a stratification as described above, I construct a

cellular sheaf that stores sufficient data to construct sections and determine whether a given

local section can be extended to a global section.

I also develop an algorithm to compute “piecewise-linear” PD bundles, a wide class that

includes many of the PD bundles that one encounters in practice. I give full details for the

case in which B is a triangulated surface, and I outline generalizations to higher dimensions
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and other cases. The algorithm relies on the stratification that I described above.

In the second part of the thesis, I apply TDA in studies of geospatial data. In Chapter 5,

we analyze local extrema of real-valued spatial and spatiotemporal data. Our TDA approach

captures both local information (specifically, the locations and values of the local extrema)

and global information about the relationships between the extrema, such as the extent

to which extrema are “spatially separated”. By contrast, prior methods to analyze local

extrema yielded only local information. We conduct two case studies: first, we examine

COVID-19 vaccination rates in New York City by zip code at a single point in time; second,

we study a year-long data set of COVID-19 case rates in neighborhoods of Los Angeles. We

use vineyards to track how the local and global structure of the extrema changed with time.

In Chapter 6, we use TDA as a framework to measure and evaluate the equity of the

geographic distribution of a resource (e.g., polling places or vaccination sites). Our aim is to

identify underserved geographic regions (“holes in coverage”). We use PH because it allows

us to study holes in coverage at all scales without needing to choose an arbitrary cutoff

distance. Instead of using geographic distance, we use travel time, which better captures the

“cost” of accessing a resource site. We additionally incorporate wait times at the resource

sites using a weighted Vietoris–Rips filtration. As a case study, we analyze access to polling

places and use PH to identify holes in the distribution of polling places.

In the last part of the thesis, we introduce an intrinsic estimator for the scalar curvature

of a data set that is presented as a finite metric space. Such data sets include point clouds

(from which geodesic distances can be estimated) and networks that are equipped with the

shortest-path metric. Our estimator depends only on the metric structure of the data and

not on an embedding in Rn. We show that the estimator is consistent in the sense that

for points sampled from a probability measure on a compact Riemannian manifold, the

estimator converges to the scalar curvature as the number of points increases. To justify

its use in applications, we show that the estimator is stable with respect to perturbations

of the metric structure. We validate our estimator experimentally on synthetic data that is
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sampled from manifolds with known curvature.

1.2 Organization

The rest of the thesis is organized as follows. I review background material on TDA in

Chapter 2. In Chapters 3 and 4, I present my research on PD bundles; these chapters are

adapted from [Hic22c] and [Hic22a], respectively. My research on geospatial applications of

TDA is in Chapters 5 and 6; these chapters are adapted from [HNP22], [FHP22], and [HJJ22].

In Chapter 7, I discuss curvature estimation; this chapter is adapted from [HB23]. Finally,

in Appendix A, I briefly mention my research on opinion dynamics [HKF22], which I do not

include in the dissertation for narrative reasons.
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CHAPTER 2

Background

In this chapter, I review the fundamentals of TDA and GDA.1

2.1 Topological data analysis

See [EH10,Ghr14,OPT17] for comprehensive introductions to TDA.

2.2 Filtered complexes

In TDA, one usually works with simplicial complexes, a certain combinatorial description of

a topological space, rather than general topological spaces. Simplicial complexes are defined

as follows. A k-simplex σ is the k-dimensional convex hull of k + 1 vertices. The convex

hull of a nonempty subset of these vertices is a face of the simplex. If τ is a face of σ and

τ ̸= σ, then τ is a proper face of σ. A simplicial complex K is a set of simplices that satisfies

two requirements: (1) if σ ∈ K is a simplex, then every face of σ is also a simplex in K; (2)

if σ and τ are simplices in K, then σ ∩ τ is a face of both σ and τ . Constraining ourselves

to simplicial complexes allows us to reduce the computation of homology (and persistent

homology, defined below in Section 2.3) to a linear-algebra calculation.

Consider a simplicial complex K. A filtration function f : K → R is a real-valued function

on K that is monotonic. That is, f(τ) ≤ f(σ) if τ is a face of σ. Monotonicity guarantees

1This chapter is adapted from [Hic22c,Hic22a,Hic22b].

7



(a) K0 (b) K1 (c) K2 (d) K3 (e) K4

Figure 2.1: An example of a filtered complex {Kr}r∈R. We show the simplicial complex Kr

at r = 0, 1, 2, 3, 4. (This figure appeared originally in [HNP22].)

that the r-sublevel sets Kr := {σ ∈ K | f(σ) ≤ r} are simplicial complexes. The set {Kr}r∈R

is a filtered complex.

Definition 2.2.1. A filtered complex is a set {Kr}r∈R of simplicial complexes such that

Kr ⊆ Ks whenever r ≤ s.

The filtration value of a simplex σ ∈ K is f(σ). The parameter r is the filtration parameter.

We will sometimes refer to the pair (K, f) as the filtered complex itself. In Figure 2.1, we

show an example of a filtered complex.

We review the standard methods for building a filtered complex from point cloud data.

For the remainder of this dissertation, let (X, d) denote a metric space, let X = {x1, . . . , xN}

denote a point cloud in X, and let dX = d|X . Often (X, d) is a Euclidean metric space, but

there are exceptions, such as in Chapter 6. For any index set J ⊆ {1, . . . , N}, let xJ denote

the simplex with vertices xj for all j ∈ J .

Definition 2.2.2. The Čech filtered complex Č(X, d,X) is the filtered complex such that

the simplicial complex Č(X, d,X)r consists of the simplices{
xJ |

⋂
j∈J

B(xj, r) ̸= ∅ and J ⊆ {1, . . . , N}
}
,

where B(x, r) := {y ∈ X | d(x, y) ≤ r}. (Equivalently, Č(X, d,X)r is the nerve of

{B(x, r)}x∈X .)
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The Nerve Theorem provides theoretical guarantees for the Čech complex.

Theorem 2.2.3 (Nerve Theorem [Bor48]). If
⋂

j∈J B(xj, r) is either contractible or empty

for all J ⊆ {1, . . . , N}, then Č(X, d,X)r is homotopy-equivalent to
⋃N

i=1B(xi, r).

Homotopy-equivalence is important because homotopy-equivalent spaces have the same ho-

mology.

The Nerve Theorem must be applied with care. In Euclidean space, all balls are con-

vex (hence their intersections are contractible), so the simplicial complex Č(X, d,X)r is

homotopy-equivalent to
⋃

x∈X B(x, r) for all r. In other metric spaces, however, balls are

not always convex. In a Riemannian manifold,
⋂

j∈J B(xj, r) is contractible when r is smaller

than the convexity radius, but even individual balls B(x, r) may not be contractible when

r is too large. For example, on a sphere Sn, a closed ball of radius π is the entire sphere,

which is not contractible. When r is large, the Nerve Theorem may not be applicable.

Computing the Čech filtered complex is computationally intensive [OPT17]. In practice,

researchers often compute the Vietoris–Rips filtered complex instead, which requires only

pairwise distances between the points in X.

Definition 2.2.4. The Vietoris–Rips filtered complex VR(dX) is the filtered complex such

that the simplicial complex VR(dX)r consists of the simplices{
xJ | dX(xi, xj) ≤ 2r for all i, j ∈ J and J ⊆ {1, . . . , N}

}
.

At each r, the simplicial complexes VR(dX)r and Č(X, d,X)r share the same 1-skeleton

(the edges of the simplicial complexes). When the metric space (X, d) is Euclidean, the

Vietoris–Rips filtered complex and the Čech filtered complex are related by the Vietoris–

Rips lemma [EH10], which says that

Č(X, d,X)r ⊆ VR(dX)r ⊆ Č(X, d,X)√2r

for all r.
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Weighted versions of the Čech and Vietoris–Rips filtered complexes were introduced

in [BLM19]. We recall the definitions here.

Definition 2.2.5. Let C1
+([0,∞)) denote the set of differentiable bijective functions ϕ :

[0,∞) → [0,∞) with positive first derivative. A radius function on X is a function r : X →

C1
+([0,∞)). For all points x in X, we denote r(x) ∈ C1

+([0,∞)) by rx.

The protypical example is the radius function of the form

rx(t) :=


−∞ , t < wx

t− wx , otherwise,

(2.1)

where {wx}x∈X (the set of weights) is a set of real numbers. In this case, the ball B(x, rx(t))

has no points until t = wx; at that time, the radius starts growing linearly with t. Another

example is the radius function rx(t) := tsx, where {sx}x∈X is a set of positive real numbers.

This is the case in which a ball centered at x ∈ X grows linearly with t at rate sx.

Definition 2.2.6. Let r : X → C1
+([0,∞)) be a radius function. The weighted Čech fil-

tered complex Č
weighted

(X, d,X, r) is the filtered complex such that the simplicial complex

Č
weighted

(X, d,X, r)t consists of the simplices{
xJ |

⋂
j∈J

B(xj, rxj
(t)) ̸= ∅ and J ⊆ {1, . . . , N}

}
,

where t denotes the filtration parameter. Equivalently, Č
weighted

(X, d,X, r)t is the nerve of

{B(x, rx(t))}x∈X . When the radius function is of the form in Equation 2.1, we use the

notation Č
weighted

(X, d,X, {wx}).

Definition 2.2.7. Let r : X → C1
+([0,∞)) be a radius function. The weighted Vietoris–Rips

filtered complex VRweighted(dX , r) is the filtered complex such that the simplicial complex

VRweighted(dX , r)t consists of the simplices{
xJ | dX(xi, xj) ≤ rxi

(t) + rxj
(t) for all i, j ∈ J and all J ⊆ {1, . . . , N}

}
,
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where t denotes the filtration parameter. When the radius function is of the form in Equation

2.1, we use the notation VRweighted(dX , {wx}).

In addition to the Čech and Vietoris–Rips filtered complexes (and their weighted ver-

sions), there are many other methods for constructing a filtered complex from a point

cloud [OPT17]. For example, in the k-nearest neighbors filtered complex, each point is

connected to its k-nearest neighbors at the kth filtration step.

Definition 2.2.8. The k-nearest neighbors filtered complex KNN(dX) is the filtered complex

such that KNN(dX)k is the simplicial complex that consists of the simplices{
xJ | dX(xi, xj) ≤ dX(xi, xNk

i
) or dX(xi, xj) ≤ dX(xi, xNk

j
)

for all i, j ∈ J and all J ⊆ {1, . . . , N}
}
,

where Nk
i and Nk

j are the indices of the kth nearest neighbors of xi and xj, respectively.

2.3 Persistent homology

In this section, we define persistence modules, persistent homology (PH), and persistence

diagrams. We assume the reader is familiar with homology. (A good introduction to homol-

ogy and algebraic topology is [Hat02].) References for the rest of this section can be found

in [ZC05,CdG16].

A persistence module V over R is a set {Vr}r∈R of vector spaces with a set {vsr : Vr →

Vs for all r ≤ s} of linear maps that satisfy the composition law vts◦vsr = vtr for all r ≤ s ≤ t.

If {Kr}r∈R is a filtered complex, its qth-persistent homology over a field F is the persistence

module {Hq(Kr,F)}r∈R. The linear maps required for the persistence module are the maps

ιsr : Hq(Kr,F) → Hq(Ks,F) induced by the inclusions Kr ↪−→ Ks for all r ≤ s. We will

sometimes omit the field F from our notation when a fixed field has already been chosen.

As r increases, new homology classes are “born” and old homology classes “die”. A

homology class γ ∈ Hq(Kr,F) is born at filtration-parameter value b if it is not in the image
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of ιbr for any r < b. The homology class γ subsequently dies at d ≥ b if ιdb(γ) = 0 and

ιrb(γ) ̸= 0 for all r < d. Not all homology classes die; if ιrb(γ) ̸= 0 for all r > b, then γ never

dies.

For the remainder of this dissertation, we will always assume that K :=
⋃

r∈R Kr is

finite—all simplicial complexes discussed thus far have been finite. Then there is a sequence

{ri}, with ri < ri+1, such that Kri = Kr for all r ∈ [ri, ri+1). The set {ri}i is the set of

filtration values of the simplices in K; these are the critical values at which new simplices

are added. The simplicial complexes {Kri} form a nested sequence

∅ ⊆ Kr1 ⊆ Kr2 ⊆ · · · ⊆ K (2.2)

of simplicial complexes; Equation 2.2 is an alternative definition of a filtered complex (see

Definition 2.2.1 for comparison).

The Fundamental Theorem of Persistent Homology, stated below, shows that we can

decompose the persistence module in a way that yields compatible sets of generators for

each Hq(Kr,R). The direct sum
⊕

iHq(Kri ,F) has the structure of a graded module over the

graded ring F[x]. The action of x on a homogenous element γ ∈ Hq(Kri ,F) is xγ = ι
ri+1
ri (γ).

Theorem 2.3.1 (Fundamental Theorem of Persistent Homology [ZC05]). The graded F[x]-

module
⊕

iHq(Kri ,F) is isomorphic to(⊕
i

ΣaiF[x]
)
⊕
(⊕

j

ΣbjF[x]/(xcj)
)

(2.3)

for some integers {ai}, {bj}, {cj}, where ΣmF[x] denotes an m-shift upward in grading.

A ΣaiF[x] summand corresponds to a homology class that is born at filtration-parameter

value rai and never dies. A ΣbjF[x]/(xcj) summand corresponds to a homology class that is

born at filtration-parameter value rbj and dies at filtration-parameter value rbj + rcj .

The Fundamental Theorem of Persistent Homology allows us to define a persistence

diagram, which is a multiset of points in the extended plane R2
that summarizes persistent
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homology. Given a decomposition in the form of Equation 2.3, the qth-persistence diagram

consists of the points (rai ,∞) for all i, the points (rbj , rbj + rcj) for all j, and all points on

the diagonal (with infinite multiplicity). Note that off-diagonal points may also appear with

multiplicity. The points on the diagonal are included for technical reasons; one can think of

them as homology classes that die instantaneously. We denote the qth-persistence diagram

of a filtered complex (K, f) by PDq(f). More generally, persistence diagrams can be defined

for any persistence module; we denote the persistence diagram of a persistence module V by

PD(V).

A common way to compare two persistence diagrams is to compute their bottleneck dis-

tance. If V and U are two persistence modules, then the bottleneck between PD(V) and

PD(U) is defined to be

W∞(PD(V),PD(U)) := inf
η

sup
x∈PD(V)

∥∥x− η(x)
∥∥
∞ ,

where the infimum is taken over all bijections η : PD(V) → PD(U).

2.4 Computing persistent homology and (birth, death) simplex

pairs

For the remainder of Chapter 2, we compute persistent homology over the field F = Z/2Z.

Computing the persistent homology of a filtered complex (K, f) over F = Z/2Z can be

reduced to computing the set of “birth” and “death” simplices for the generating homology

classes. Informally, a birth simplex σb is a q-simplex that creates a new q-dimensional

homology class when it is added to the filtered complex and a death simplex is a (q + 1)-

simplex that destroys a q-dimensional homology class when it is added to the filtered complex.

For example, in Figure 2.1, the 1D PH has one generator. Its birth simplex is the 1-simplex

(0, 3) and its death simplex is the 2-simplex (0, 2, 3). For every pair (σb, σd) of (birth, death)

simplices, the persistence diagram contains the point (f(σb), f(σd)). For every unpaired birth
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simplex σb, the persistence diagram contains the point (f(σb),∞). We will formally define

birth and death simplices later in Section 2.4.

In [ELZ22], Edelsbrunner and Harer presented an algorithm for computing the (birth,

death) simplex pairs of a filtration f : K → R. Let σ1, . . . , σN be the simplices of K, indexed

such that i < j if σi is a proper face of σj.

Definition 2.4.1. The simplex ordering induced by f is the strict partial order ≺f on K

such that σi ≺f σj if and only if f(σi) < f(σj).

If the simplex orderings ≺f1 ,≺f2 induced by filtrations f1, f2 (respectively) are the same, then

f1(σi) < f1(σj) if and only if f2(σi) < f2(σj) and f1(σi) = f1(σj) if and only if f2(σi) = f2(σj).

The algorithm of [ELZ22] requires a compatible simplex indexing.

Definition 2.4.2. A simplex indexing is an injective function idx : K → {1, . . . , N}.

Definition 2.4.3. A compatible simplex indexing is a function idx : K → {1, . . . , N} such

that idx(σi) < idx(σj) if σi ≺f σj or σi is a proper face of σj. Because a compatible

simplex indexing may not be unique, we fix the simplex indexing induced by f to be the

unique function idxf : K → {1, . . . , N} such that idxf (σi) < idxf (σj) if either σi ≺f σj or if

f(σi) = f(σj) and i < j.

The function idxf is a compatible simplex indexing because if σi is a proper face of σj, then

i < j and f(σi) ≤ f(σj). The sequence idx
−1
f (1), . . . , idx−1

f (N) of simplices is ordered by the

value of f on each simplex, with ties broken by the order of the simplices in the sequence

σ1, . . . , σN . The indexing idxf is defined such that if we define K′
i := {σ ∈ K | idxf (σ) ≤ i},

then

K′
1 ⊆ K′

2 ⊆ · · · ⊆ K′
N

is a nested sequence of simplicial complexes and if rj = f(σi1) = · · · = f(σik), where

i1 < · · · < ik and {rj} = Im(f), with rj < rj+1, then

Krj = K′
i1
⊂ K′

i2
⊂ · · · ⊂ K′

ik
⊂ Krj+1

.
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In other words, {K′
i} is a refinement of {Krj}.

Let D be the boundary matrix compatible with the simplex indexing idxf : K →

{1, . . . , N} that is induced by the filtration function f . More precisely, let D be the matrix

whose (i, j)th entry is

Dij =


1 , idx−1

f (i) is an (m− 1)-dimensional face of the m-dimensional simplex idx−1
f (j)

0 , otherwise.

We decompose the boundary matrix D into a matrix product D = RU such that U is upper

triangular and R is a binary matrix that is “reduced”. A binary matrix R is reduced if

lowR(j) ̸= lowR(j
′) whenever j ̸= j′ are the indices of nonzero columns in R, where lowR(·)

is the pairing function. The quantity lowR(j) is the row index of the last 1 in column j if

column j is nonzero and undefined if column j is the zero vector. An RU decomposition can

be computed in O(N3) time [ELZ22,EH10].

Cohen-Steiner et al. [CEM06] showed that the pairing function lowR(j) depends only on

the boundary matrix D and not on the particular reduced binary matrix R in the decomposi-

tionD = RU . A pair (idx−1(i), idx−1(j)) of simplices with i = lowR(j) represents a persistent

homology class. The birth simplex idx−1(i) creates the homology class and the death simplex

idx−1(j) destroys the homology class. The two simplices in a pair have consecutive dimen-

sions; that is, if dim(idx−1(i)) = q, then dim(idx−1(j)) = q + 1. If dim(idx−1(i)) = q and

dim(idx−1(j)) = p + 1, then a point with coordinates (f(idx−1(i), f(idx−1(j))) is added to

the qth persistence diagram. We refer to f(idx−1(i)) as its birth and to f(idx−1(j)) as its

death. Some simplices are not paired. If i ̸= lowR(j) for all j, then the simplex idx−1(i) is a

birth simplex for a homology class that never dies. Its birth is f(idx−1(i)) and its death is

∞. If dim(idx−1(i)) = q, then a point with coordinates (f(idx−1(i)),∞) is added to the qth

persistence diagram.

The following lemma is a straightforward corollary of the work in [EH10], and we will

rely on it repeatedly in Chapter 3.
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Lemma 2.4.4 ( [EH10]). If f0, f1 : K → R are two filtration functions such that ≺f0 is the

same as ≺f1 , then idxf0 = idxf1 and f1 and f2 both induce the same set of (birth, death)

simplex pairs.

2.5 Vineyards

Let K be a simplicial complex. A 1-parameter filtration function on K is a function f :

K × I → R, where I = [t0, t1] is an interval in R, such that f(·, t) is a filtration function

on K for all t ∈ I. For each t ∈ I, the r-sublevel sets Kt
r = {σ ∈ K | f(σ, t) ≤ r} form a

filtered complex. The set {{Kt
r}r∈R}t∈I is a set of filtrations parameterized by t ∈ I. For

each t ∈ I, one can compute the persistence diagram PD(f(·, t)). The associated vineyard

is the 1-parameter set {PD(f(·, t))}t∈I of persistence diagrams. We visualize the vineyard

in R2 × I as a continuous stack of PDs (see Figure 1.2). The points in the PDs trace out

curves with time; these curves are the vines.

At any single point t ∈ I, a point in PD(f(·, t)) corresponds to a homology class that has a

(birth simplex, death simplex) pair. A vine in a vineyard corresponds to a sequence of (birth

simplex, death simplex) pairs. For a given vine, we denote the pair at t by (σb(t), σd(t)). We

define the persistence of the vine to be
∫ t1
t0
[f(t, σd(t)− f(t, σb(t))]dt.

An algorithm for computing vineyards is given by [CEM06], and we review it here. Define

idxf : K × I → {1, . . . , N} by defining idx(·, t) := idxf(·,t) for all t ∈ I, where idxf(·,t) is the

simplex indexing induced by f(·, t) (see Definition 2.4.3). The simplex indexing only changes

at times t∗ at which f(σ, t∗) = f(τ, t∗) for some σ, τ ∈ K. At t∗, the simplex indexing

of σ and τ may change. (If their indices change and they are the unique pair such that

f(σ, t∗) = f(τ, t∗), then σ and τ are transposed in the simplex indexing and σ and τ have

consecutive indices in the indexing. Otherwise, there is a sequence of such transpositions.)

Let D(t) denote the boundary matrix compatible with the simplex indexing idxf (·, t) and let

lowR(·, t) denote the corresponding pairing function. One computes D(t0) at the initial time
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t0 and an RU decomposition D(t0) = R(t0)U(t0). The initial pairing function lowR(·, t0)

is read off from the initial RU decomposition. Then we sweep through the intersections

t∗ (from left to right) at which the simplex indexing changes. At each t∗, we update the

simplex indexing, RU decomposition, and pairing function. (See Secion 2.6 for more details

on how the pairing function is updated.) This updating procedure yields the birth and

death simplices for the filtration function f(·, t∗), which one can then use to obtain the new

persistence diagram.

The procedure above is an efficient way of computing the diagrams PD(f(·, t)) for all

t ∈ I. At worst, updating R(t∗) requires adding one column to another and adding one row

to another, and similarly for U(t∗). The addition of columns and rows is an O(N) operation,

although in experiments, the authors of [CEM06] found that updating R(t∗) and U(t∗) can

be done in approximately constant time if one uses the sparse matrix representations that

are given in [CEM06]. If there is a single transposition of simplices at t∗, then at most two

(birth, death) simplex pairs are updated, and these updates occur in O(1) time.

A special type of vineyard is a piecewise-linear vineyard. If we are only given f(σ, ti) at

discrete time steps ti, then for all i we extend f(σ, t) to t ∈ [ti, ti+1] by linear interpolation.

In this case, one can compute the transposition times t∗ by using the Bentley–Ottman

planesweep algorithm [BCK08]. This is because computing when/if two simplices σ, τ get

transposed in [ti, ti+1] is equivalent to finding the intersection (if it exists) between the lines

y =
f(σ, ti+1)− f(σ, ti)

ti+1 − ti
(t− ti) + f(σ, ti) ,

y =
f(τ, ti+1)− f(τ, ti)

ti+1 − ti
(t− ti) + f(τ, ti) .

2.6 Updating PH when the simplex indexing is updated

One of the main contributions of [CEM06], in which vineyards were introduced, is an algo-

rithm for updating the (birth, death) simplex pairs when the simplex indexing changes. We
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review the relevant details in this subsection.

Suppose that idxf0 , idxf1 : K → {1, . . . , N} are the simplex indexings that are induced

by filtrations f0, f1 : K → R (respectively), and suppose that idxf0 and idxf1 differ only by

a transposition of a pair (σ, τ) of consecutive simplices. That is, idxf0(τ) = idxf0(σ) + 1,

idxf1(τ) = idxf0(σ), and idxf1(σ) = idxf0(τ). Let Sidxf0
and Sidxf1

be the sets of (birth,

death) simplex pairs for f0 and f1, respectively.
2 The update rule of [CEM06] gives us a

bijection ϕidxf0 , idxf1 : Sidxf0
→ Sidxf1

.

We review the key properties of the bijection ϕidxf0 , idxf1 . We write

ϕidxf0 , idxf1 = (ϕ
idxf0 , idxf1
b , ϕ

idxf0 , idxf1
d ) ,

where ϕ
idxf0 , idxf1
b : Sidxf0

→ K maps a simplex pair (σb, σd) ∈ Sidxf0
to the birth simplex

of ϕidxf0 , idxf1 ((σb, σd)) and ϕ
idxf0 , idxf1
d : Sidxf0

→ K maps (σb, σd) ∈ Sidxf0
to the death

simplex of ϕidxf0 , idxf1 ((σb, σd)). If (σb, σd) ∈ Sidxf0
is a pair such that σb, σd ̸∈ {σ, τ}, then

ϕidxf0 , idxf1 ((σb, σd)) = (σb, σd). If (σ1
b , σ

1
d) ∈ Sidxf0

is the pair that contains σ, then let

λ ∈ {b, d} be the index such that σ1
λ = σ. Similarly, if (σ2

b , σ
2
d) ∈ Sidxf0

is the pair that

contains τ , then let µ ∈ {b, d} be the index such that σ1
µ = τ . The key fact about the update

rule of [CEM06] is that ϕidxf0 , idxf1 is defined such that either

ϕidxf0 , idxf1 ((σ1
b , σ

2
d)) = (σ1

b , σ
1
d) ,

ϕidxf0 , idxf1 ((σ2
b , σ

2
d)) = (σ2

b , σ
2
d) ,

or

ϕ
idxf0 , idxf1
λ ((σ1

b , σ
1
d)) = τ , ϕ

idxf0 ,idxf1
λc ((σ1

b , σ
1
d)) = σ1

λc ,

ϕ
idxf0 , idxf1
µ ((σ2

b , σ
2
d)) = σ , ϕ

idxf0 , idxf1
µc ((σ2

b , σ
2
d)) = σ1

µc ,

2Recall that, by Lemma 2.4.4, the pairs depend only on the simplex orderings idxf0 , idxf1 , which is why
we label the sets by their associated simplex indexings.
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where

λc :=


b , λ = d

d , λ = b

µc :=


b , µ = d

d , µ = b .

In other words, either ϕidxf0 , idxf1 is the identity map or ϕidxf0 , idxf1 swaps σ and τ in the pairs

that contain them. The particular case depends on the order of f0(σ
1
b ), f0(σ

1
d), f0(σ

2
b ), f0(σ

2
d)

(see [CEM06] for details; they are not relevant to the present thesis).

More generally, suppose that idxf0 , idxf1 are the simplex indexings induced by any two

filtrations f0, f1, where idxf0 and idxf1 are no longer required to differ only by the transposi-

tion of two consecutive simplices. Let Sidxf0
and Sidxf1

be the sets of (birth, death) simplex

pairs for f0 and f1, respectively. The update rule of Cohen-Steiner et al. [CEM06] defines

a bijection ϕidxf0 , idxf1 : Sidxf0
→ Sidxf1

as follows. Every permutation can be decomposed

into a sequence of transpositions that transpose consecutive elements, so there is a sequence

ζ0, . . . , ζm of simplex indexings such that ζ0 = idxf0 , ζm = idxf1 , and ζi, ζi+1 differ only by

the transposition of two consecutive simplices. Cohen-Steiner et al. [CEM06] defined

ϕidxf0 , idxf1 := ϕζm−1, ζm ◦ · · · ◦ ϕζ0, ζ1 . (2.4)

Remark 2.6.1. If idxf0 , idxf1 do not differ by only the transposition of two consecu-

tive simplices, then the sequence ζ0, . . . , ζm is not unique. Unfortunately, the definition

of ϕidxf0 , idxf1 does depend on the sequence ζ0, . . . , ζm in its definition. This is implicitly

shown in Prop. 3.4.3.

2.7 Cellular sheaves

We review the definition of a cellular sheaf; references include [HG19,Cur14]. A cell complex

is a topological space Y with a partition into a set {Yα}α∈PY
of subspaces (the cells of the

cell complex) that satisfy the following conditions:

1. Every cell Yα is homeomorphic to Rkα for some kα ≥ 0. The cell Yα is a kα-cell.
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2. For every cell Yα, there is a homeomorphism ϕα : Bkα → Xα, where B
kα is the closed

kα-dimensional ball, such that ϕα(int(B
kα)) = Xα.

3. Axiom of the frontier: If the intersection Yβ ∩ Yα is nonempty, then Yα ⊆ Yβ. We

say that Yα is a face of Yβ.

4. Locally finite: Every x ∈ X has an open neighborhood U such that U intersects

finitely many cells.

For example, a polyhedron is a cell complex whose k-cells are the k-dimensional faces of the

polyhedron. A graph is a another example of a cell complex; the 0-cells are the vertices and

the 1-cells are the edges.

We will first review the most general definition of cellular sheaves, which uses category

theory, and then we will specialize to the case of interest for this dissertation, which does

not require category theory. Let Y be a cell complex with cells {Yα}α∈PY
, and let D be a

category. The set PY is a poset with the relation α ≤ β if Yα ⊆ Yβ. A D-valued cellular

sheaf on Y consists of the following:

1. An assignment of an object F(Yα) ∈ D (the stalk of F at Yα) for every cell Yα in Y .

2. A morphism Fα≤β : F (Yα) → F (Yβ) (a restriction map) whenever Yα is a face of Yβ.

The morphisms must satisfy the composition condition:

Fβ≤γ ◦ Fα≤β = Fα≤γ (2.5)

whenever α ≤ β ≤ γ .

Equivalently, a D-valued cellular sheaf on Y is a functor F : PY → D, where PY is considered

as a category.

A global section of a D-valued cellular sheaf is a function

s : {Yα}α∈PY
→
⋃
α

F (Yα)

20



such that

1. s(Yα) ∈ F(Yα) (i.e., s(Yα) is a choice of element in the stalk at Yα) and

2. if α ≤ β, then s(Yβ) = Fα≤β(s(Yα)) .

In Chapter 3, we will consider a Set-valued cellular sheaf. The objects of the category

Set are sets, and the morphisms between sets A and B are the functions from A to B. A

Set-valued cellular sheaf on a cell complex Y consists of the following:

1. A set F(Yα) for every cell Yα in Y .

2. A function Fα≤β : F(Yα) → F(Yβ) whenever Yα is a face of Yβ. The functions must

satisfy the condition

Fβ≤γ ◦ Fα≤β = Fα≤γ

whenever α ≤ β ≤ γ.

2.8 Riemannian geometry

We briefly review the necessary background from Riemannian geometry. For further read-

ing, I recommend a textbook such as [Pet06]. A Riemannian manifold (M, g) is a smooth

manifold M with a Riemannian metric g, which defines a smoothly-varying inner product

on each tangent space TxM . More formally, a Riemannian metric is an assignment of a

symmetric, bilinear, positive-definite map gx on the tangent space TxM for each x ∈M . For

example, in Euclidean space, the canonical Euclidean metric ḡ assigns the usual Euclidean

inner product to each tangent space.

All manifolds can be given a Riemannian metric. To see this, recall that all manifolds

can be embedded into Euclidean space. If F : (M, g) → (M ′, g′) is any smooth map between

two Riemannian manifolds, the pullback of g′ is the Riemannian metric F ∗g′ that is defined

by (F ∗g′)x(v, w) := g′F (x)(dFxv, dFxw) for all x ∈ M and all v, w ∈ TxM . Therefore, if
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ι :M ↪−→ Rm is an embedding, the canonical Euclidean metric ḡ pulls back to a Riemmanian

metric ι∗ḡ on M . For example, if M is a submanifold of Rm and ι : M ↪−→ RM is the

inclusion, then ι∗ḡx is the restriction of ḡx to TxM . We refer to ι∗ḡ as the Euclidean-induced

Riemannian metric.

A Riemannian metric induces a metric structure. The norm of a vector v ∈ TxM is

∥v∥ := gx(v, v)
1/2. The length of a continuously differentiable path γ : [a, b] →M is L(γ) :=∫ b

a

∥∥γ′(t)∥∥ dt. The geodesic distance between two points x and y in the same connected

component of M is

dM,g(x, y) := inf{L(γ) | γ : [a, b] →M is a C1 path such that γ(a) = x and γ(b) = y}.

If (M, g) is complete, then the infimum is achieved by a geodesic, which is a curve that

locally minimizes length. If x and y are in different connected components, then the geodesic

distance between them is infinite. The closed geodesic ball of radius r at point x is

BM(x, r) := {y ∈M | dM,g(x, y) ≤ r} .

One can define a probability measure on a Riemannian manifold as follows. A Riemannian

metric induces a volume form dV , which is the unique n-form on M that equals 1 on all

positively oriented orthonormal bases. In local coordinates, the expression for the volume

form is

dV =
√
|g|dx1 ∧ · · · ∧ dxn .

The volume form induces a Riemannian measure µ on M . The measure of a Borel set

A ⊆M is µ(A) =
∫
A
dV , and the volume of M is µ(M). Given a smooth probability density

function ρ :M → (0,∞), the induced probability measure is

P[A] :=
∫
A

ρdV

for Borel sets A ⊆ M . A good reference for probability and statistics on Riemannian

manifolds is [Pen06].
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In Chapter 7, we will consider the scalar curvature of a Riemannian manifold. Scalar

curvature characterizes the rate at which the volume of a geodesic ball BM(x, r) grows as

r grows. As r → 0, the scalar curvature S(x) at x ∈ M has the following relationship to

geodesic ball volume:

vol(BM(x, r))

vnrn
= 1− S(x)

6(n+ 2)
r2 +O(r4) , (2.6)

where n is the dimension of the manifold, vn is the volume of a unit Euclidean n-ball,

and vnr
n is the volume of a Euclidean n-ball of radius r. For example, if S(x) is negative

(respectively, positive), then the volume of a small geodesic ball that is centered at x tends

to be larger (respectively, smaller) than the volume of an n-dimensional Euclidean ball of

the same radius.
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CHAPTER 3

Persistence-Diagram Bundles: A Multidimensional

Generalization of Vineyards

This chapter is adapted from [Hic22c].

3.1 Introduction

Developing new methods for analyzing how the topology of a data set changes as multiple

parameters vary is an active area of research [BL22]. For example, if a point cloud evolves

over time (i.e., it is a dynamic metric space), then one may be interested in using time as

a second parameter, in addition to the filtration parameter r. Common examples of time-

evolving point clouds include swarming or flocking animals whose positions and/or velocities

are represented by points ( [CJ17, XAT22,M21]). In such cases, one can obtain a filtered

complex Kt
r0

⊆ Kt
r1

⊆ · · · ⊆ Kt
rn at every time t by constructing, e.g., the Vietoris–Rips

filtered complex for the point cloud at time t. It is also common to use the density of the

point cloud as a parameter ( [SCD22,CCM11,BMT17]). Many other parameters can also

vary in the topological analysis of point clouds or other types of data sets.

One can use a vineyard [CEM06] to study a 1-parameter family of filtrations {Kt
r0

⊆

Kt
r1

⊆ · · · Kt
rn}t∈R such as that obtained from a time-varying point cloud. However, one

cannot use a vineyard for a set of filtrations that is parameterized by a space that is not a

subset of R. For example, suppose that we have a time-varying point cloud whose dynamics

depend on some system-parameter values µ1, . . . , µm ∈ R. Many such systems exist. For
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example, the D’Orsogna model is a multi-agent dynamical system that models attractive and

repulsive interactions between particles [CDM07]. Each particle is represented by a point in

a point cloud. In certain parameter regimes, there are interesting topological features, such

as mills or double mills [TZH15a]. For each time t ∈ R and for each µ1, . . . , µm ∈ R, one can

obtain a filtered complex

Kt,µ1,...,µm
r0

⊆ Kt,µ1,...,µm
r1

⊆ · · · ⊆ Kt,µ1,...,µm
rn (3.1)

by constructing, e.g., the Vietoris–Rips filtered complex for the point cloud at time t at

system-parameter values µ1, . . . , µm. A parameterized set of filtered complexes like the one

in Equation 3.1 cannot be studied using a vineyard for the simple reason that there are too

many parameters.

Such a parameterized set of filtered complexes also cannot be studied using multiparam-

eter PH [CZ07], either. A multifiltration is a set {Ku}u∈Rn of simplicial complexes such

that Ku ⊆ Kv whenever u ≤ v. Multiparameter PH is the F[x1, . . . , xn] module obtained

by applying homology to a multifiltration. (For more details, see reference [CZ07].) The

parameterized set of filtered complexes in Equation 3.1 is not typically a multifiltration be-

cause it is not necessarily the case that Kt,µ1,...,µm
ri

̸⊆ Kt′,µ′
1,...,µ

′
m

ri for all values of t, t′, {µi}, and

{µ′
i}. Neither do we have any canonical simplicial map Kt,µ1,...,µm

ri
→ Kt′,µ′

1,...,µ
′
m

ri . Therefore,

we cannot use multiparameter PH.

3.1.1 Contributions

I introduce the concept of a persistence-diagram (PD) bundle, in which PH varies over an

arbitrary “base space” B. A PD bundle gives a way of studying a fibered filtration function,

which is a set {fp : Kp → F}p∈B of functions such that fp is a filtration of a simplicial

complex Kp. At each p ∈ B, the sublevel sets of fp form a filtered complex. For example,

in Equation 3.1, we have B = Rn+1 and we obtain a fibered filtration function {ft,µ1,...,µm
:

K → R}(t,µ1,...,µm)∈Rm+1 by defining ft,µ1,...,µm to be the filtration function associated with

25



the filtered complex in Equation 3.1. The associated PD bundle is the space of persistence

diagrams PD(fp) as they vary with p ∈ B (see Definition 3.2.2). In the special case in which

B is an interval in R, a PD bundle is equivalent to a vineyard.

I prove that for “generic” fibered filtration functions (see Section 3.3.2), the base space B

can be stratified in a way that makes PD bundles tractable to compute and analyze. Theorem

3.3.15 says that for a “generic” fibered filtration function on a smooth compact manifold B,

the base space B is stratified such that within each stratum, there is a single PD “template”

that can be used to obtain PD(fp) at any point p in the stratum. Proposition 3.3.5 shows

that all “piecewise-linear” PD bundles (see Definition 3.2.4) have such a stratification. The

template is a list of (birth, death) simplex pairs, and the diagram PD(fp) is obtained by

evaluating fp on each simplex. In particular, when B is a smooth compact manifold, the

number of strata is finite, so the PD bundle is determined by the PH at a finite number of

points in the base space.

I show that unlike vineyards, PD bundles typically do not have individual “vines” because

nontrivial global sections are not guaranteed to exist (see Proposition 3.4.3). In other words,

given a point z0 ∈ PD(fp0) for some p0 ∈ B, it may not be possible to extend p0 7→ z0 to a

continuous map s : B → E := {(p, z) | z ∈ PD(fp)}. This is a feature that gives PD bundles

a richer mathematical structure than vineyards.

For any fibered filtration with a stratification as described above (see Theorem 3.3.15 and

Proposition 3.3.5), I construct a “compatible cellular sheaf” (see Section 3.5.2) that stores

the data in the PD bundle. Rather than analyzing the entire PD bundle, which consists of

continuously varying PDs over the base space B, we can analyze the cellular sheaf, which is

discrete. For example, in Proposition 3.5.4, I prove that an extension of p0 7→ z0 to a global

section exists if a certain associated global section of the cellular sheaf exists. A compatible

cellular sheaf stores sufficient data to reconstruct the associated PD bundle and analyze its

sections.

I also give a simple example of vineyard instability in Appendix 3.A. It is often quoted
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in the research literature that “vineyards are unstable”; however, this “well-known fact” has

been shared only in private correspondence and, to the best of my knowledge, has never been

published. The example of vineyard instability is furnished from an example in Proposition

3.4.3.

3.1.2 Related work

PD bundles are a generalization of vineyards, which were introduced in [CEM06]. Two

other important special cases of PD bundles are the fibered barcode of a multiparameter

persistence module [And13] and the persistent homology transform (B = Sn) from shape

analysis [AEH06,TMB14]. I discuss the special case of fibered barcodes in detail in Section

3.2.2.2; the base space B is a subset of the space of lines in Rn. The persistent homology

transform (PHT) is defined for a constructible set M ⊆ Rn+1. For any unit vector v ∈ Sn,

one defines the filtration M v
r = {x ∈ M | x · v ≤ r} (i.e., the sublevel filtration of the

height function with respect to the direction v). PHT is the map that sends v ∈ Sn to

the persistence diagram for the filtration {M v
r }r∈R. The significance of PHT is that it is a

sufficient statistic for shapes in R2 and R3 [TMB14]. Applications of PHT are numerous

and include protein docking [WAB05], barley-seed shape analysis [AQO22], and heel-bone

analysis in primates [TMB14].

For PHT, Curry et al. [CMT22] proved that the base space Sn is stratified such that

the PHT of a shape M is determined by the PH of {M v
r }r∈R for finitely many directions

v ∈ Sn (one direction v per stratum). This is related to the stratification given by Theorem

3.3.15, in which I show that a “generic” PD bundle whose base space B is a compact smooth

manifold (such as Sn) is similarly stratified and thus determined by finitely many points in

B (one p ∈ B per stratum). The primary difference between the stratifications in [CMT22]

and Theorem 3.3.15 is that in [CMT22], each stratum is a subset in which the order of the

vertices of a triangulated shape M (as ordered by the height function) is constant, whereas

in Theorem 3.3.15, each stratum is a subset in which the order of the simplices (as ordered
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by the filtration function) is constant.

The stratification that we study in the present chapter is used in [Hic22a] to develop an

algorithm for computing “piecewise-linear” PD bundles (see Definition 3.2.4). The algorithm

relies on the fact that for any piecewise-linear PD bundle on a compact triangulated base

space B, there are a finite number of strata, so the PD bundle is determined by the PH at

a finite number of points in B.

The existence (or nonexistence) of nontrivial global sections in PD bundles is related

to the study of “monodromy” in fibered barcodes of multiparameter persistence modules

[CEF13]. Cerri et al. [CEF13] constructed an example in which there is a path through the

fibered barcode that loops around a “singularity” (a PD in the fibered barcode for which

there is a point in the PD with multiplicity greater than 1) and finishes in a different place

than where it starts.

3.1.3 Organization

This chapter proceeds as follows. In Section 3.2, we give the definition of a PD bundle, with

some examples, and we compare PD bundles to multiparameter PH. In Section 3.3, we show

how to stratify the base space B into strata in which the (birth, death) simplex pairs are

constant (see Theorem 3.3.15 and Proposition 3.3.5). We discuss sections of PD bundles

and the existence of monodromy in Section 3.4. We construct a compatible cellular sheaf

in Section 3.5.2. We conclude and discuss possible directions for future research in Section

5.6. In Appendix 3.A, we use the example of monodromy from Section 3.4 to construct

an example of vineyard instability. In Appendix 3.B, we provide technical details that are

needed to prove Theorem 3.3.15.
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3.2 Definition of a Persistence-Diagram Bundle

A vineyard is a 1-parameter set of persistence diagrams that is computed from a 1-parameter

set of filtration functions on a simplicial complexK. We generalize a vineyard to a “persistence-

diagram bundle” as follows.

Definition 3.2.1 (Fibered filtration function). A fibered filtration function is a set {fp :

Kp → R}p∈B, where B is a topological space, {Kp}p∈B is a set of simplicial complexes

parameterized by B, and fp is a filtration function on Kp.

When Kp ≡ K for all p ∈ B, we define f : K × B → R to be the function f(σ, p) := fp(σ).

In a slight abuse of notation, we refer to f : K × B → R, rather than to {fp : K → B}p∈B,

as the fibered filtration function. For all p ∈ B, the function f(·, p) : K → R is a filtration

of K. For several examples with Kp ≡ K, see Section 3.2.1.

Definition 3.2.2 (Persistence-diagram bundle). Let {fp : Kp → R}p∈B be a fibered filtration

function. The base of the bundle is B. The qth total space of the bundle is E := {(p, z)} |

p ∈ B, z ∈ PDq(fp)}, with the subspace topology inherited from the inclusion E ↪→ B×R2
.1

The qth persistence-diagram bundle is the triple (E,B, π), where π : E → B is the projection

(p, z) 7→ p.

For example, when B is an interval in R and Kp ≡ K, Definition 3.2.2 reduces to that of

a vineyard: a 1-parameter set of PDs for a 1-parameter set of filtrations of K. As discussed

in Section 4.1, PHT is a special case with B = Sd. The fibered barcode of a multiparameter

persistence module is another special case; we will discuss it in Section 3.2.2.2.

Remark 3.2.3. In Definition 3.2.2, we are suggestively using the language of fiber bundles.

However, it is important to note that a PD bundle is not guaranteed to be a true fiber bundle.

1Technically, E is a multiset because persistence diagrams are multisets. However, when considering E
as a topological space (which we do in Section 3.4 to study continuous paths in E and sections of the PD
bundle), we consider E as a set.
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The fibers need not be homeomorphic to each other for all p ∈ B. At “singularities” (points

p∗ ∈ B at which PD(fp∗) has an off-diagonal point with multiplicity), points in PD(fp) for

nearby p may merge into each other, changing the homotopy type of the fiber. However, if

f : K × B → R is continuous and p ∈ B is not a singularity, then there is a neighborhood

U ⊆ B and a homeomorphism ϕ : π−1(U) → U × PD(fp∗) that preserves fibers (i.e., a local

trivialization).

As a special case of fibered filtration functions, we define piecewise-linear fibered filtration

functions, which are simpler to analyze.

Definition 3.2.4 (Piecewise-linear fibered filtration function). Let {fp : Kp → R}p∈B be a

fibered filtration function such that Kp ≡ K. We define f(σ, p) := fp(σ) for all σ ∈ K and

p ∈ B. If B is a simplicial complex and f(σ, ·) is linear on each simplex of B for all simplices

σ ∈ K, then f is a piecewise-linear fibered filtration function. The resulting PD bundle is a

piecewise-linear PD bundle.

For instance, the fibered filtration function in Example 3.2.6, below, is piecewise linear.

3.2.1 Examples

The following are concrete examples of PD bundles. We begin with the example that moti-

vated PD bundles in Section 4.1.

Example 3.2.5. Suppose that X(t,µ) = {x1(t,µ), . . . , xk(t,µ)} is a point cloud that varies

continuously with time t ∈ R and system-parameter values µ1, . . . , µm ∈ R. We obtain a

fibered filtration function f : K × Rm+1 → R by defining f(·, (t,µ)) : K → R to be the

Vietoris–Rips filtration function for the point cloud X(t,µ) at all (t,µ) ∈ Rm+1 (or any

other filtration for the point cloud at each (t,µ)). The simplicial complex K is the simplicial

complex that has a simplex for every subset of points in the point cloud.

Example 3.2.6. Consider a color image. Enumerate the pixels and let r(i), g(i), and b(i)

denote the red, green, and blue values of the ith pixel. Triangulate each pixel to obtain a
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simplicial complex K. (Every pixel is split into two triangles.) Let B = {(w1, w2) ∈ [0, 1]2 |

0 ≤ w1 + w2 ≤ 1}. For all (w1, w2) ∈ B, define p(i, (w1, w2)) = w1r(i) + w2g(i) + (1− w1 −

w2)b(i). The function p(i, (w1, w2)) is a weighted average of the red, green, and blue values of

the ith pixel. Define a piecewise-linear fibered filtration function f : K ×B → R as follows.

For a 2-simplex σ, define f(σ,w) = p(i(σ),w), where i(σ) is the pixel containing σ. For any

other simplex σ ∈ K, define f(σ,w) = min{f(τ,w) | σ ⊆ τ, dim(τ) = 2}. At w = (1, 0),

w = (0, 1), and w = (1, 1), the filtration function f(·,w) is the sublevel filtration by red,

green, and blue pixel values, respectively. At all other w ∈ B, the filtration function f(·,w)

is the sublevel filtration by a weighted average of the red, green, and blue pixel values.

Example 3.2.7. Let µ1, . . . , µm ∈ R denote the system-parameter values of some discrete

dynamical system. For given system-parameter values µ ∈ Rm, let xµi ∈ Rn be the solution

at the ith time step and let X(µ) = {xµ0 , . . . , x
µ
k } be the set of points obtained after the first

k time steps. For example, persistent homology has been used to study orbits of the linked

twist map (a discrete dynamical system [AEK17]). We obtain a fibered filtration function

f : K × Rm → R by defining f(·,µ) : K → R to be the Vietoris–Rips filtration function for

the point cloud X(µ) (or any other filtration for the point cloud at each µ). The simplicial

complex K has a simplex for every subset of points in the point cloud.

Example 3.2.8. Suppose that X(t) = {x1(t), . . . , xk(t)} is a time-varying point cloud in

a compact triangulable subset S ⊆ Rn. Let ρh(·, t) be a kernel density estimator at time

t, with bandwidth parameter h > 0. For fixed h and t, we define a filtered complex by

considering sublevel sets of ρh as follows. Let K be a triangulation of S ⊆ Rn. A vertex v of

K is included in the simplicial complex K(t,h)
r if ρh(v, t) ≤ r, and a simplex of K is included

in Kt,h
r if all of its vertices are in K(t,h)

r . For each t and h, the set {K(t,h)
r }r∈R is a filtered

complex. We obtain a fibered filtration function f : K × R2
+ → R by defining f(·, (t, h)) to

be the filtration function associated with the filtered complex {K(t,h)
r }r∈R.

Density sublevels of time-varying point clouds were also considered by Corcoran et al.

in [CJ17], who studied a school of fish swimming in a shallow pool that was modeled as a
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subset of R2. However, Corcoran et al. [CJ17] fixed a bandwidth parameter h and a sublevel

r, and only studied how the PH changed with time (by using zigzag PH).

3.2.2 Comparison to multiparameter PH

Multiparameter PH was introduced in [CZ07]; see [BL22] for a review. Typically, a fibered

filtration function does not induce a multifiltration, but the fibered barcode of a multipa-

rameter peristence module is an example of a PD bundle.

3.2.2.1 Multifiltrations

We review the definition of a multifiltration and compare it to the definition of a fibered

filtration.

Definition 3.2.9. A multifiltration is a set {Ku}u∈Zn of simplicial complexes such that if

u ≤ v, then Ku ⊆ Kv.

The inclusion ιu,v : Ku ↪→ Kv induces a map ιu,v∗ : Hq(Ku,F) → Hq(Kv,F) from the qth

homology of Ku to the qth homology of Kv over a field F. Given a multifiltration {Ku}u∈Zn ,

the multiparameter persistence module is the graded F[x1, . . . , xn]-module
⊕

u∈Zn Hq(Ku,F).

The action of xi on a homogeneous element γ ∈ Hq(Ku,F) is given by xiγ = ι∗u,v(γ), where

vj = uj + δij.

Remark 3.2.10. Some researchers define multifiltrations more generally as functors F :

P → Simp, where P is any poset and Simp is the category of simplicial complexes, with

simplicial maps as morphisms. Definition 3.2.9 is the specific case in which P = Zn and

Fu≤v : Ku → Kv is an inclusion map.

To see why a fibered filtration function does not typically induce a multifiltration, consider

a fibered filtration function {fp : Kp → R}p∈B with B = Rn. Let Kp
r := {σ ∈ Kp | fp(σ) ≤ r}

denote the r-sublevel set of fp. It is not necessarily the case that Kp1
s ⊆ Kp2

r whenever

32



r ≤ s and p1 ≤ p2. Moreover, there are no canonical simplicial maps Kp1
s → Kp2

r , so it is

not guaranteed that {Kp
r}(p,r)∈Rn×R is a multifiltration even in the general sense of Remark

3.2.10. Therefore, such a set of filtered complexes cannot be analyzed using multiparameter

persistent homology.

3.2.2.2 Fibered barcodes

Consider a multifiltration {Ku}u∈Rn . Let L denote the space of lines in Rn with a parame-

terization of the form

L : R → Rn ,

L(r) = rv + b , v ∈ [0,∞)n, ∥v∥ = 1, b ∈ Rn.

For example, when n = 2, the space L is the space of lines in R2 with non-negative slope,

including vertical lines. For each line L ∈ L, we define KL
r := KL(r). That is, {KL

r }r∈R is

the filtered complex obtained by restricting the multifiltration {Ku}u∈Rn to the line L ⊆ Rn.

The set {KL
r }r∈R is a filtered complex because L(r)i ≤ L(s)i for all r ≤ s and i ∈ {1, . . . , n}.

The fibered barcode [And13] is the map that sends L ∈ L to the barcode for the persistent

homology of {KL
r }r∈R.

A fibered barcode is a PD bundle whose base space is B = L. For L ∈ L, the filtration

function is

fL : KL → R ,

fL(σ) = min{r | σ ∈ KL(r)} ,

where KL :=
⋃

r∈R KL(r). Unlike the other examples in Section 3.2.1, the simplicial complex

KL is not independent of L ∈ L.
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3.3 A Stratification of the Base Space

There are many different notions of a stratified space [Wei94]. In the present thesis, what

we mean by a stratification is the following definition.

Definition 3.3.1. A stratification of a topological space B is a nested sequence

B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bn := B

of closed subsets Bm such that the following hold:

1. For allm, the space Bm\Bm−1 is either empty or a smoothm-dimensional submanifold

of B (where we set B−1 := ∅). Them-dimensional strata are the connected components

of Bm \Bm−1. We denote the set of strata by Y .

2. The set Y of strata is locally finite: every p ∈ B has an open neighborhood U such

that U intersects finitely many elements of Y .

3. The set Y of strata satisfy the Axiom of the Frontier : If Yα, Yβ ∈ Y are strata such

that Yβ ∩ Yα, then Yβ ⊆ Yα. We write that Yβ is a face of Yα.

In the present thesis, B is the base space of a fibered filtration function.

Theorem 3.3.15 says that for any “generic” smooth fibered filtration function (see Section

3.3.2), the base space B can be stratified so that in each stratum Y ⊆ B, the set of (birth,

death) simplex pairs is constant and can be used to obtain PD(fp) for any p ∈ Y .

3.3.1 Piecewise-linear fibered filtrations

As a warm-up, we first consider piecewise-linear fibered filtration functions, which will pro-

vide intuition for the general case. However, note that Proposition 3.3.5 below is not simply

a special case of Theorem 3.3.15. We consider all piecewise-linear fibered filtrations, rather

than only generic piecewise-linear fibered filtrations.
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First, we establish some notation and definitions.

Definition 3.3.2. An open half-space of an affine space A is one of the two connected

components of A \H for some hyperplane H.

For example, an open half-space of Rn is a set of the form {x ∈ Rn | Ax > b} for some n×n

matrix A and some vector b ∈ Rn.

Definition 3.3.3. An open polyhedron is the intersection of open half-spaces.

For example, an open polygon P (a polygon without its faces) in R2 is an open 2D polyhedron

because it is the intersection of half-spaces of R2. The 1D faces (i.e., edges) of P are 1D

polyhedra because an edge is a subset of a line L ⊆ R2 and the edge is the intersection of

two half-spaces of L. The 0D faces (i.e., vertices) of P are 0D polyhedra.

We fix a simplicial complex K for the remainder of this section. For each pair (σ, τ) of

simplices in K, we define

I(σ, τ) := {p ∈ B | f(σ, p) = f(τ, p)} . (3.2)

Lemma 3.3.4. Suppose that f : K×B → R is a continuous fibered filtration function (i.e.,

f(σ, ·) : B → R is continuous for all simplices σ ∈ K) and that Y is a path-connected subset

of B. If all pairs (σ, τ) of simplices satisfy either I(σ, τ) ∩ Y = ∅ or I(σ, τ) ∩ Y = Y , then

the simplex ordering is constant in Y . That is, there is a strict partial order ≺Y on K such

that for all y ∈ Y , we have that ≺f(·,y) is the same as ≺Y .

Proof. Let (σ, τ) be a pair of simplices.

Case 1: If I(σ, τ)∩Y = Y , then f(σ, p) = f(τ, p) for all p ∈ Y , so σ ̸≺f(·,p) τ and τ ̸≺f(·,p) σ

for all p ∈ Y .

Case 2: If I(σ, τ) ∩ Y = ∅, then f(σ, p) ̸= f(τ, p) for all p ∈ Y . Let p0 be a point in

Y . Without loss of generality, τ ≺f(·,p0) σ. Therefore, f(σ, p0) > f(τ, p0). To obtain a
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contradiction, suppose that f(σ, p1) < f(τ, p1) for some p1 ∈ Y . Let γ : [0, 1] → Y be

a continuous path from p0 to p1, and let g(s) = f(σ, γ(s)) − f(τ, γ(s)) for s ∈ [0, 1]. By

the Intermediate Value Theorem, there is an s∗ ∈ [0, 1] such that f(σ, γ(s∗)) = f(τ, γ(s∗)),

but this is a contradiction. Therefore, f(σ, p) > f(τ, p) for all p ∈ Y , which implies that

τ ≺f(·,p) σ for all p ∈ Y .

Proposition 3.3.5. If f : K × B → R is a piecewise-linear fibered filtration function, then

B can be partitioned into disjoint polyhedra P on which the simplex ordering induced by

f is constant. That is, there is a strict partial order ≺P on K such that ≺f(·,p) is the same

as ≺P for all p ∈ P . Consequently, the set {(σb, σd)} of (birth, death) simplex pairs for f

is constant in each P and for any p ∈ P , the persistence diagram PD(fp) consists of the

diagonal and the multiset {(f(σb), f(σd)}.

Proof. Let ∆ be an n-dimensional simplex of the simplicial complex B and let σ and τ be

distinct simplices of K. Because f(σ, ·)|∆ and f(τ, ·)|∆ are linear, the set I(σ, τ) ∩∆ is one

of the following:

1. the intersection of an (n− 1)-dimensional hyperplane with ∆ ;

2. ∅ ;

3. ∆ ;

4. a vertex of ∆ .

Therefore, the set ∂∆
⋃
{I(σ, τ) ∩ ∆ | ∅ ⊂ (I(σ, τ) ∩ ∆) ⊂ ∆}σ,τ∈K partitions ∆ into poly-

hedra. By Lemma 3.3.4, the simplex ordering induced by f is constant on each polyhedron.

The last statement of Proposition 3.3.5 follows from Lemma 2.4.4.

For example, if B is a triangulated surface, then the set

L :=
⋃
∆∈B

∂∆ ∪ {I(σ, τ) ∩∆ | ∅ ⊂ (I(σ, τ) ∩∆) ⊂ ∆}σ,τ∈K (3.3)
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Figure 3.1: A line arrangement that represents the partition of a triangulated surface B (the

base space) into polyhedra on which the simplex ordering is constant.

partitions ∆ into polyhedra such that the simplex ordering is constant on each polyhedron,

including the 1D polyhedra (i.e., edges) and the 0D polyhedra (i.e., vertices). The polygonal

subdivision induced by L is called a line arrangement A(L). For an example of such a line

arrangement, see Figure 3.1.

3.3.2 Generic smooth fibered filtrations

We now consider generic smooth fibered filtration functions. Throughout Section 3.3.2,

we consider a smooth fibered filtration function of the form f : K × B → R for some

n-dimensional smooth compact manifold B and some simplicial complex K. (The fibered

filtration f is smooth if f(σ, ·) : B → R is smooth for all σ ∈ K.) To make precise the notion

of a “generic” fibered filtration function, we consider perturbations of f of a certain form.

Because the filtration value of a simplex σ must be at least as large as the filtration value of
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any face τ at all p ∈ B, we consider only perturbations fa : K ×B → R of the form

fa(σi, p) := f(σi, p) + ai ,

where a is an element of the set

A := {a ∈ RN | ai ≤ aj for all i ≤ j} (3.4)

and σ1, . . . , σN are the simplices of K, indexed such that i < j if σi is a proper face of σj.

By construction, fa is a fibered filtration function for all a ∈ A.

For each simplex σk in K, we define the manifold

Mk := {(p, f(σk, p)) | p ∈ B} ⊆ B × R

and for each a ∈ A,we define the manifold

Ma,k := {(p, fa(σk, p)) | p ∈ B} ⊆ B × R . (3.5)

For each pair (σi, σj) of simplices in K, we define I(σi, σj) as in Equation 3.2. The set

I(σi, σj) is the projection of Mi ∩Mj ⊆ B × R to a subset of B. For each a ∈ A, we define

the set

Ia(σi, σj) := {p ∈ B | fa(σi, p) = fa(σj, p)} .

We also define

Em := {I(σi1 , σj1) ∩ · · · ∩ I(σim , σjm)} ,

which is the set of all m-way intersections of sets I(σi, σj). For all a ∈ A, we define

Em
a := {Ia(σi1 , σj1) ∩ · · · ∩ Ia(σim , σjm)} . (3.6)

Lastly, we define

Em,k
a := {Ia(σi1 , σj1) ∩ · · · ∩ Ia(σim , σjm) | ir, jr ≤ k for all r} , (3.7)

which is the set of m-way intersections that only involve the simplices σ1, . . . , σk.
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Remark 3.3.6. There are several facts to keep in mind. First, it is not guaranteed that

Ia(σi, σj) is homeomorphic to I(σi, σj) even for arbitrarily small a. Additionally, the sets

Ia(σi, σj) are not “independent” of each other; a perturbation of f(σ, ·) for a single simplex

σ causes a perturbation of I(σ, τ) for all τ ∈ K. Furthermore, not every element of Em

is an (n − m)-dimensional submanifold, even generically. For example, if I(σi2 , σi1) and

I(σi3 , σi2) are (n− 1)-dimensional submanifolds that intersect transversely, then I(σi3 , σi1)∩

I(σi3 , σi2)∩ I(σi2 , σi1) = I(σi3 , σi2)∩ I(σi2 , σi1) is an (n− 2)-dimensional submanifold, rather

than an (n − 3)-dimensional submanifold. Finally,
⋂m

r=1 I(σir , σjr) is not necessarily equal

to the projection of
⋂m

r=1(Mir ∩Mjr) to B. In other words, not every intersection in B lifts

to an intersection of the manifolds {Mk}Nk=1 ⊆ B × R. These are the main subtleties in the

proof of Theorem 3.3.15.

Definition 3.3.7. Let S be an element of Em
a , where Em

a is defined as in Eq. 3.6. The

set S is m-reduced if it equals a set of the form Ia(σi1 , σj1) ∩ · · · ∩ Ia(σim , σjm), where

i1 > i2 > · · · > im and ir > jr for all r.

For example, if σi1 , σi2 , and σi3 are distinct simplices, then Ia(σi3 , σi2) ∩ Ia(σi2 , σi1) is 2-

reduced, but Ia(σi3 , σi1) ∩ Ia(σi3 , σi2) ∩ Ia(σi2 , σi1) is not 3-reduced. We define

Em
a := {S ∈ Em

a | S is m-reduced} , (3.8)

Em,k
a := {S ∈ Em,k

a | S is m-reduced} , (3.9)

where Em
a is defined as in Equation 3.6 and Em,k

a is defined as in Equation 3.7.

Lemma 3.3.8. For all m ≥ 1, all k, and all a ∈ A, where A is defined as in Eq. 7.12, every

element S in Em,k
a belongs to Em′,k

a for some m′ ≤ m, where Em,k
a and Em′,k

a are defined as

in Eqs. 3.7 and 3.9, respectively.

Proof. We prove the lemma by induction on m. For all k, every S ∈ E1,k
a is 1-reduced by

definition. Assume that Lemma 3.3.8 is true for m−1 ≥ 1, and let S be an element of Em,k
a .
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The set S is equal to a set of the form

Ia(σi1 , σj1) ∩ · · · ∩ Ia(σim , σjm) ,

where ir > jr for all r and k ≥ i1 ≥ i2 ≥ · · · ≥ im without loss of generality. By the induction

hypothesis,

Ia(σi2 , σj2) ∩ · · · ∩ Ia(σim , σjm) = Ia(σi′2 , σj′2) ∩ · · · ∩ Ia(σi′ℓ , σj′ℓ)

for some ℓ ≤ m, where i′r > j′r for all r and k ≥ i1 ≥ i2 ≥ i′2 > i′3 > · · · > i′ℓ. If i1 > i′2, then

S is an element of Eℓ,k and we are done. Otherwise,

Ia(σi1 , σj1) ∩ Ia(σi′2 , σj′2) = Ia(σi1 , σj1) ∩ Ia(σj1 , σj′2)

because i1 = i′2. If j1 = j′2, then

S = Ia(σi1 , σj1) ∩ Ia(σi′3 , σj′3) ∩ · · · ∩ Ia(σi′ℓ , σj′ℓ) ,

so S is (ℓ− 1)-reduced. Otherwise,

S = Ia(σi1 , σj1) ∩ Ia(σj1 , σj′2) ∩ Ia(σi′3 , σj′3) ∩ · · · ∩ Ia(σi′ℓ , σj′ℓ) ,

where k ≥ i1 > j1, j
′
2 and i1 > i′r for all r ≥ 3. By the induction hypothesis, the set

Ia(σj1 , σj′2)∩Ia(σi′3 , σj′3)∩· · ·∩Ia(σi′ℓ , σj′ℓ) belongs to E
ℓ′,k−1
a for some ℓ′ ≤ ℓ−1, so S belongs

to Eℓ′+1,k
a , where ℓ′ + 1 ≤ ℓ ≤ m.

Lemma 3.3.9. For almost every a ∈ A (where A is defined as in Eq. 7.12), we have that

Ma,i intersects Ma,j transversely2 for i ̸= j and every S ∈ Em
a is either ∅ or an (n − m)-

dimensional submanifold of B for all m ∈ {1, . . . , n}, where Ma,i is defined as in Eq. 3.5 and

Em
a is defined as in Eq. 3.8.

Proof. Define gij(p) := f(σi, p)− f(σj, p) for all i ̸= j. For almost every a ∈ A, the quantity

aj − ai is a regular value of gij by Sard’s Theorem. The set of regular values is open for all

2When manifolds M1 and M2 intersect transversely, we will use the notation M1 ⋔ M2.
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i ̸= j because gij is smooth and B is compact. Therefore, there is an ϵ∗ such that for all

i ̸= j, every y ∈ (aj − ai − 2ϵ∗, aj − ai + 2ϵ∗) is a regular value of gij.

Given an a and ϵ∗ as above, it suffices to show that for almost every ϵ ∈ RN with |ϵi| ≤ ϵ∗,

we have that every S ∈ Em
a+ϵ is an (n − m)-dimensional submanifold of B for all m. For

m = 1, every element of E1
a+ϵ is of the form Ia+ϵ(σi, σj) for some i ̸= j. The set Ia+ϵ(σi, σj)

is the (aj − ai + ϵj − ϵi)-level set of g
ij. Because (aj − ai + ϵj − ϵi) is a regular value of gij,

the set Ia+ϵ(σi, σj) is an (n− 1)-dimensional submanifold of B and the manifolds Ma,i and

Ma,j must intersect transversely.

For m ≥ 2, observe that

Em
a = Em,2

a ∪
( N⋃

k=3

Em,k
a \ Em,k−1

a

)
,

where Em,k
a is defined as in Eq. 3.9. We induct on k ∈ {2, . . . , N}, where N is the number

of simplices in K. When k = 2, we have

Em,2
a+ϵ =


{Ia+ϵ(σ1, σ2)} , m = 1

∅ , m ≥ 2 ,

so every S ∈ Em,2
a+ϵ is either ∅ or an (n −m)-dimensional submanifold of B. Now suppose

that k > 2 and that every element of S ∈ Em,k−1
a+ϵ is either ∅ or an (n − m)-dimensional

submanifold for all m. Every element S in Em,k
a+ϵ \ E

m,k−1
a+ϵ is equal to a set of the form

S = Ia+ϵ(σk, σℓ) ∩ S ′ ,

where ℓ ≤ k − 1 and S ′ ∈ Em−1,k−1
a+ϵ . We define the vectors ϵj := (0, . . . , 0, ϵj, 0, . . . , 0) and

bj := a+ϵ−ϵj. Note that Ia+ϵ(σk, σℓ) = Ib+ϵk(σk, σℓ) because b
k
i + ϵ

k
i = ai+ ϵi for all i, and

Em−1,k−1
a+ϵ = Em−1,k−1

bk
because ai+ϵi = bi for all i ≤ k−1. Therefore, every S ∈ Em,k

a+ϵ\E
m,k−1
a+ϵ

is equal to a set of the form

S = Ibk+ϵk(σk, σℓ) ∩ S ′
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for some S ′ ∈ Em−1,k−1
bk

and ℓ ≤ k−1. Because gℓk has no critical values between bℓ− bk− ϵk

and bℓ−bk, we have that Ibk+ϵk(σk, σℓ) is diffeomorphic to Ibk(σk, σℓ) for all ϵk ∈ (−ϵ∗, ϵ∗). In

other words, Ibk+ϵk(σk, σℓ) is a perturbation of Ibk(σk, σℓ) for all ϵk ∈ (−ϵ∗, ϵ∗). By Thom’s

Transversality Theorem, Ibk+ϵk(σk, σℓ) intersects every S
′ ∈ Em−1,k−1

bk
transversely for almost

every ϵk ∈ (−ϵ∗, ϵ∗). This shows that S is either ∅ or an (n−m)-dimensional submanifold of

B for almost every ϵk ∈ (ϵ∗, ϵ∗). Because there are finitely many elements in Em,k
a , we must

have that every S ∈ Em,k
a is either ∅ or an (n−m)-dimensional submanifold of B for almost

every ϵk ∈ (ϵ∗, ϵ∗). Induction on k concludes the proof.

Lemma 3.3.10. For all a ∈ A, with A defined as in Eq. 7.12, define

Bn
a := B Bm

a :=
⋃
ℓ≤m

⋃
S∈En−ℓ

a

S for m < n . (3.10)

If a ∈ A is such that every S ∈ En−ℓ
a is either ∅ or an ℓ-dimensional smooth submanifold

for every ℓ ∈ {1, . . . , n}, where En−ℓ
a is defined as in Eq. 3.8, then Bm

a \Bm−1
a is the disjoint

union of smooth m-dimensional manifolds.

Proof. We have that

Bm
a \Bm−1

a =
⋃

S∈En−m
a

(
S \

⋃
S′∈En−ℓ

a
ℓ≤m−1

S ′
)
.

If S ′ ∈ En−ℓ
a is a subset of S ∈ En−m

a , then S ′ is a closed subset of S. Therefore,S\
⋃

S′∈En−ℓ
a

ℓ≤m−1

S ′

is an open subset of the smooth manifold S, which implies that S \
⋃

S′∈En−ℓ
a

ℓ≤m−1

S ′ is a smooth

manifold. If S1 and S2 are distinct elements of En−m
a , then(

S1 \
⋃

S′∈En−ℓ
a

ℓ≤m−1

S ′
)
∩
(
S2 \

⋃
S′∈En−ℓ

a
ℓ≤m−1

S ′
)
= ∅ ,

which completes the proof.
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For the remainder of Section 3.3.2, let {Bm
a }nm=0 be defined as in Equation 3.10, and

define

Ya =
n⋃

m=0

Ym
a , (3.11)

where Ym
a is the set of connected components of Bm

a \Bm−1
a (with B−1

a := ∅).

Lemma 3.3.11. Let A be defined as in Eq. 7.12. If a ∈ A is such that each Y ∈ Ya is a

manifold, then the simplex ordering induced by f is constant in each Y . That is, there is a

strict partial order ≺Y on K such that ≺fa(·,y) is the same as ≺Y for all y ∈ Y .

Proof. Let Y ∈ Ya. The set Y is connected by definition. Because Y is a manifold, it is also

path-connected. For each pair (σ, τ) of simplices, we have by construction that Y ∩ Ia(σ, τ)

equals either ∅ or Y . (In fact, this statement holds for all a ∈ A and does not require Y to

be a manifold.) By Lemma 3.3.4, the simplex ordering is constant in Y .

Lemma 3.3.12. For almost every a ∈ A (where A is defined as in Eq. 7.12), we have that⋂m
r=1 Ia(σir , σjr) is a submanifold of B and

Tp

( m⋂
r=1

Ia(σir , σjr)
)
=

m⋂
r=1

Tp

(
Ia(σir , σjr)

)
(3.12)

for all points p ∈
⋂m

r=1 Ia(σir , σjr) and all sets {(ir, jr)}mr=1 of index pairs such that {ir, jr} ≠

{is, js} if r ̸= s.

Proof. Because there are finitely many sets of index pairs, it suffices to fix a set {(ir, jr)}mr=1

of index pairs and show that Eq. 3.12 holds for all y ∈
⋂m

r=1 Ia(σir , σjr) for almost every

a ∈ A. By Lemmas 3.3.8 and 3.3.9, the set
⋂m

r=1 Ia(σir , σjr) is a manifold for almost every

a ∈ A. By Lemma 3.B.2, there is a finite open cover {Uk}Kk=1 of B such that for each k, there

is a disjoint partition
⋃

ℓ Jℓ,k = {1, . . . ,m} such that {ir, jr | r ∈ Jℓ1,k}∩{ir, jr | r ∈ Jℓ2,k} = ∅

if ℓ1 ̸= ℓ2 and

π
( ⋂

r∈Jℓ,k

(Ma,ir ∩Ma,jr)
)
∩ Uk =

⋂
r∈Jℓ,k

Ia(σir , σjr) ∩ Uk
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for all ℓ, where π is the projection π : B × R → B. Because the number K of open sets is

finite, it suffices to fix Uk and show that Eq. 3.12 holds for all y ∈
⋂

r=1 Ia(σir , σjr) ∩ Uk for

almost every a ∈ A.

By Lemma 3.B.3, we have

Tp

( m⋂
r=1

Ia(σir , σjr)
)
= Tp

(⋂
ℓ

⋂
r∈Jℓ,k

Ia(σir , σjr)
)
=
⋂
ℓ

Tp

( ⋂
r∈Jℓ,k

(
Ia(σir , σjr)

))
for all p ∈

⋂m
r=1 Ia(σir , σjr) ∩ Uk for almost every a ∈ A. By Lemma 3.B.4, we have

⋂
ℓ

Tp

( ⋂
r∈Jℓ,k

(
Ia(σir , σjr)

))
=
⋂
ℓ

⋂
r∈Jℓ,k

Tp(Ia(σir , σjr)

for all y ∈
⋂m

r=1 Ia(σir , σjr) ∩ Uk for almost every a ∈ A.

For any strict partial order ≺ on K, we define

Z≺
a :={p ∈ B | fa(σ, p) < fa(τ, p) if σ ≺ τ

and fa(σ, p) = fa(τ, p) if σ ̸≺ τ and τ ̸≺ σ} . (3.13)

That is, Z≺
a is the subset of B such that for all z in Z≺

a , the strict partial order ≺fa(·,z) is

the same as ≺.

Lemma 3.3.13. Let A be defined as in Eq. 7.12. If a ∈ A is such that

1. every Y ∈ Ya is a manifold, where Ya is defined as in Eq. 3.11,

2. Ma,i ⋔Ma,j for all i ̸= j, where Ma,i is defined as in Eq. 3.5,

3.
⋂m

r=1 Ia(σir , σjr) is a manifold for all sets {(ir, jr}mr=1 of index pairs, and

4. Tp

(⋂m
r=1 Ia(σir , σjr)

)
=
⋂m

r=1 Tp

(
Ia(σir , σjr)

)
for all sets {(ir, jr}mr=1 of index pairs and

all p ∈
⋂m

r=1 Ia(σir , σjr),

then Ya is locally finite.
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Proof. Let p be a point in B. There are finitely many strict partial orders ≺1, . . . ,≺i on K.

By Lemma 3.B.5, we have that for each j ∈ {1, . . . , i}, there is a subset Y≺j
a ⊆ Ya such that

Z
≺j
a =

⋃
Y ∈Y

≺j
a
Y . For each j, the point p has a neighborhood Uj that intersects at most one

Y ∈ Y≺j
a by Lemma 3.B.6. Therefore

⋂i
j=1 Uj is a neighborhood of p that intersects at most

i elements of Ya.

Lemma 3.3.14. Let A be defined as in Eq. 7.12. If a ∈ A is such that

1. every S ∈ En−ℓ
a is an ℓ-dimensional smooth submanifold for every ℓ ∈ {1, . . . , n}, where

En−ℓ
a is defined as in Eq. 3.8,

2. Ma,i ⋔Ma,j for all i ̸= j, where Ma,i is defined as in Eq. 3.5,

3.
⋂m

i=r Ia(σir , σjr) is a manifold for all sets {(ir, jr}mr=1 of index pairs, and

4. Tp

(⋂m
i=r Ia(σir , σjr)

)
=
⋂m

i=1 Tp

(
Ia(σir , σjr)

)
for all sets {(ir, jr}mr=1 of index pairs and

all p ∈
⋂m

i=r Ia(σir , σjr),

then Ya satisfies the axiom of the frontier in Definition 3.3.1, where Ya is defined as in Eq.

3.11

Proof. By Lemma 3.3.10, each Y ∈ Ya is a manifold. Let Yα be an element of Ya. It suffices

to show that if Yβ ̸= Yα is another element of Ya and Yβ ∩ ∂Yα ̸= ∅, where ∂Yα denotes the

boundary of the manifold Yα, then Yβ ⊆ ∂Yα.

By Lemma 3.3.11, the simplex ordering induced by f is constant on each Y , so there is

a strict partial order ≺α on K such that ≺fa(·,y) is the same as ≺α for all y ∈ Yα. Let Z≺α
a

be defined as in Equation 3.13. By Lemma 3.B.5, there is a subset Y≺α
a ⊆ Ya such that

Yα ∈ Y≺α
a and Z≺α

a =
⋃

Y ∈Y≺α
a
Y . We have ∂Z≺α

a =
⋃

Y ∈Y≺α
a
∂Y because by Lemma 3.3.13,

Y is locally finite. Therefore,

Yβ ∩ ∂Z≺α
a =

⋃
Y ∈Y≺α

a

(Yβ ∩ ∂Y ) . (3.14)
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By Lemmas 3.B.5 and 3.B.7, we have that if Y ∈ Ya intersects ∂Z≺α
a , then Y ⊆ ∂Z≺α

a .

Therefore Yβ ⊆ ∂Z≺α
a because Yβ ∩∂Z≺α

a ⊇ Yβ ∩∂Yα ̸= ∅. Together with Equation 3.14, this

shows that

Yβ =
⋃

Y ∈Y≺α
a

(Yβ ∩ ∂Y ) . (3.15)

By Lemma 3.B.6, every point in B has a neighborhood that intersects at most one Y ∈ Y≺α
a ,

so ∂Y ′ ∩ ∂Y = ∅ for all Y, Y ′ ∈ Y≺α
a such that Y ̸= Y ′. Because Yβ is connected (by

definition) and Yβ ∩ ∂Yα ̸= ∅, we must have that Yβ ∩ ∂Y = ∅ for all Y ∈ Y≺α
a such that

Y ̸= Yα. By Equation 3.15,

Yβ = Yβ ∩ ∂Yα ⊆ ∂Yα .

Theorem 3.3.15. Let B be a smooth compact n-dimensional manifold. For every a ∈ A, de-

fine {Bm
a }nm=0 as in Equation 3.10, with A defined as in Eq. 7.12. For almost every a ∈ A, we

have that {Bm
a }nm=0 is a stratification of B. In each stratum Y , the simplex ordering induced

by fa is constant. (In other words, there is a strict partial order ≺Y on K such that ≺fa(·,y)

is the same as ≺Y for all y ∈ Y .) Consequently, the set {(σb, σd)} of (birth, death) simplex

pairs is constant in each stratum Y and for any p ∈ Y , the persistence diagram PD(fp)

consists of the diagonal (with infinite multiplicity) and the multiset {(f(σb, p), f(σd, p))}.

Proof. By Lemmas 3.3.8, 3.3.9, 3.3.10, 3.3.12, 3.3.13, and 3.3.14, {Bm
a }nm=0 is a stratification

of B for almost every a ∈ A. By Lemma 3.3.11, the simplex ordering induced by fa is

constant in each stratum Y ∈ Ya whenever {Bm
a }nm=0 is a stratification of B. The last

statement of Theorem 3.3.15 follows from Lemma 2.4.4.

3.4 Sections of PD Bundles

Definition 3.4.1 (Local section). Let (E,B, π) be a PD bundle. A local section is a con-

tinuous map s : U → E, where U is an open set in B and π ◦ s(p) = p for all p ∈ U .
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For example, consider a vineyard, in which B is an interval I in R. Let (t0, T ) be an open

interval in I. A local section in the vineyard is a map s : (t0, T ) → E that parameterizes an

open subset of one of the vines (a curve in R3).

Definition 3.4.2 (Global section). Let (E,B, π) be a PD bundle. A global section is a

continuous map s : B → E with π ◦ s(p) = p for all p ∈ B. In particular, a nontrivial global

section is a global section s : B → E such that there exists a p∗ ∈ B for which s(p∗) is not

on the diagonal of PD(fp∗).

In a vineyard, every local section can be extended to a global section. In other words, we

can trace out how the persistence of a single homology class changes over B = [t0, t1] ⊆ R,

so there are individual “vines” in the vineyard. We will show that local sections of a PD

bundle cannot necessarily be extended to global sections. This means that there are not

typically individual “vines” in a PD bundle.

Proposition 3.4.3. There is a PD bundle (E,B, π) for which no nontrivial global sections

exist.

Proof. The proof is constructive. Let K be the simplicial complex in Figure 3.2a, which has

vertices 0, 1, 2, and 3. Let a be the edge with vertices (0, 1), let b be the edge with vertices

(0, 2), let c be the triangle with vertices (0, 1, 2), and let d be the triangle with vertices

(0, 2, 3).

Let f : K×R2 → R be a continuous fibered filtration function that satisfies the following
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(a) (b) (c)

Figure 3.2: (A) The simplicial complex K that is defined in the proof of Proposition 3.4.3.

(B) The conditions on the fibered filtration f : K × R2 → R that is defined in the proof of

Proposition 3.4.3. (C) The (birth, death) simplex pairs in each quadrant for the 1D PH.

conditions:

f(c, (x, y)), f(d, (x, y)) > f(a, (x, y)), f(b, (x, y)) > 0 for all (x, y) ∈ R2 ,

f(a, (x, y)) > f(b, (x, y)) , y > 0 ,

f(a, (x, y)) < f(b, (x, y)) , y < 0 ,

f(c, (x, y)) > f(d, (x, y)) , x > 0 ,

f(c, (x, y)) < f(d, (x, y) , ) x < 0 ,

f(σ, (x, y)) = 0 , for all other σ for all x, y .

The conditions on the fibered filtration function f are illustrated in Figure 3.2b. These

conditions imply that simplices a and b swap their order along the x-axis and the simplices

c and d swap their order along the y-axis.

In Figure 3.2c, we list the (birth, death) simplex pairs for the 1D PH in each quadrant.

In quadrants 1, 2, and 4, the simplex pairs are (a, c) and (b, d). In quadrant 3, the simplex

pairs are (a, d) and (b, c).
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Let (E,R2, π) be the corresponding PD bundle, where E = {((x, y), z) | (x, y) ∈ R2, z ∈

PD1(f(·, (x, y)))} is the total space and π is the projection to R2. We will show that

(E,R2, π) has no nontrivial global sections.

If s : B → E is a global section and s(p∗) is on the diagonal of PD(f(·, p∗)) for some

p∗ ∈ B, then s is a trivial section because f(σb, p) ̸= f(σd, p) for all p for any (birth, death)

simplex pairs (σb, σd) at p. Therefore, if s : B → E is a nontrivial global section, s(p) is not

on the diagonal of PD(f(·, p)) for any p ∈ B.

Suppose that p : [0, 1] → E is a continuous path such that p(u) is not on the diagonal of

PD(f(·, (x, y))) for any (x, y) ∈ R2 and such that

π ◦ p(u) = θ(u) := (cos(2πu+ π/4), sin(2πu+ π/4)) ∈ S1 . (3.16)

That is, π◦p is a parameterization of S1 that starts in the first quadrant of R2. The path p is

determined uniquely by its initial condition p(0). The simplex pairs in the first quadrant are

(a, c) and (b, d), so p(0) equals either (p0, (f(a, p0), f(c, p0))) or (p0, (f(b, p0), f(d, p0))), where

p0 = (
√
2/2,

√
2/2). In Figure 3.3, we illustrate the two possibilities for the path p. If p(0) =

(p0, (f(a, p0), f(c, p0))), then p(1) = (p0, (f(b, p0), f(d, p0))); f p(0) = (p0, (f(b, p0), f(d, p0))),

then p(1) = (p0, (f(a, p0), f(c, p0))). In either case, p(0) ̸= p(1).

To obtain a contradiction, suppose that there were a nontrivial global section s : R2 → E.

Let p : [0, 1] → E be the path p = s ◦ θ, where θ is the parameterization of S1 defined

in Equation 3.16. Then p(0) ̸= p(1) because p is a path satisfying Equation 3.16, but

p(0) = s(
√
2/2,

√
2/2) = p(1).

Note that we will use the fibered filtration f : K × R2 → R that was constructed in

Proposition 3.4.3 as a running example throughout Section 3.5.2.

Remark 3.4.4. Even when dim(B) = 1, it is not guaranteed that a nontrivial global section

exists. To see this, consider the 1D PH of the fibered filtration function above restricted to

S1 ⊆ R2. In this example, dim(B) = 1 and a nontrivial global section does not exist.
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Figure 3.3: A visualization of the two choices for the path p : [0, 1] → E in the proof of

Proposition 3.4.3, where E is the total space of the PD bundle. We show 10 fibers of the PD

bundle for various points p ∈ R2. The first nine PDs (labeled 0 through 8) are PDs for points

p ∈ S1; the kth PD is the PD at tk = θ(uk), where uk = k/8 and θ(u) is the parameterization

of S1 given by Equation 3.16. Note that θ(0) = (
√
2/2,

√
2/2) ∈ S1. The two choices for the

path p(u), which depend only on the choice of p(u0), are shown in red and blue, respectively.

For each k, the red (respectively, blue) dot in the kth PD is equal to p(uk) when p(u0) is

the red (respectively, blue) point in the 0th PD. Observe that p(u0) ̸= p(u8) even though

p0 = p8. The unlabeled PD at the origin is the PD for the origin in R2.
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Remark 3.4.5. In the example of Proposition 3.4.3, it was the “singularity” (the point

(0, 0) ∈ R2 at which the PD had a point of multiplicity greater than 1) that prevented the

existence of a nontrivial global section. Singularities are typical if and only if dim(B) > 1.

This is for the following reason. For a generic fibered filtration function of the form f :

K × B → R, where B is an n-dimensional compact manifold, Lemma 3.3.9 shows that the

intersection I(σ, τ) is an (n − 1)-dimensional submanifold of B for all simplices τ ̸= σ and

that I(σi1 , σj1)∩ I(σi2 , σj2) is an (n−2)-dimensional manifold for all distinct σi1 , σi2 , σj1 , σj2 .

A singularity occurs at p∗ ∈ B when there are two (birth, death) simplex pairs (σ1
b , σ

1
d),

(σ2
b , σ

2
d) at p∗ such that p∗ ∈ I(σ1

b , σ
2
b ) ∩ I(σ1

d, σ
2
d). When dim(B) ≥ 2, the intersection

I(σ1
b , σ

2
b ) ∩ I(σ1

d, σ
2
d) is nonempty in the generic case because it is an (n − 2)-dimensional

submanifold of B. When dim(B) = 1, the intersection I(σ1
b , σ

2
b ) ∩ I(σ1

d, σ
2
d) is empty in the

generic case, so singularities do not typically exist when dim(B) = 1.

3.5 A Compatible Cellular Sheaf

For a given fibered filtration function that induces a stratification of B as in Theorem 3.3.15,

we construct a compatible cellular sheaf. We discuss a motivating example in Section 3.5.1,

and give the definition in Section 3.5.2.

3.5.1 A motivating example

Again consider the example in the proof of Proposition 3.4.3, and also again consider the

path p : [0, 1] → E that is determined uniquely by the choice of

p(0) ∈ {(p0, (f(a, p0), f(c, p0))), (p0, (f(b, p0), f(d, p0)))} ,
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where p0 = (
√
2/2,

√
2/2). The two possibilities for the path p are illustrated in Figure 3.3.

For example, if p(0) = (p0, (f(a, p0), f(c, p0))), then

p(u) =



(
θ(u), (f(a, θ(u)), f(c, θ(u)))

)
, u ∈ [0, 1/8](

θ(u), (f(a, θ(u)), f(c, θ(u)))
)
, u ∈ [1/8, 3/8](

θ(u), (f(b, θ(u)), f(c, θ(u)))
)
, u ∈ [3/8, 5/8](

θ(u), (f(b, θ(u)), f(d, θ(u)))
)
, u ∈ [5/8, 7/8](

θ(u), (f(b, θ(u)), f(d, θ(u)))
)
, u ∈ [7/8, 1] ,

where θ(u) is the parameterization of S1 given by Equation 3.16. As we move through the

quadrants of R2, the point in the PD that represents the pair (a, c) in the first quadrant

becomes the point that represents the pair (a, c) in the second quadrant, which becomes the

point that represents the pair (b, c) in the third quadrant, which becomes the point that

represents the pair (b, d) in the fourth quadrant, which becomes the point that represents

the pair (b, d) in the first quadrant. One can do a similar analysis for the case in which

p(0) = (p0, (f(b, p0), f(d, p0))).

This analysis yields a bijection of the (birth, death) simplex pairs for any pair of adjacent

quadrants. We illustrate the bijections in Figure 3.4. The bijection between the simplex pairs

in a given quadrant and one of its adjacent quadrants is the same as the bijection defined

by the update rule of Cohen-Steiner et al. [CEM06] for updating the simplex pairs in a

vineyard. A combinatorial perspective on Proposition 3.4.3 is that there is no consistent

way of choosing a simplex pair in each quadrant such that if (σb, σd) is the (birth, death)

simplex pair chosen for a given quadrant and (τb, τd) is the (birth, death) simplex pair chosen

for an adjacent quadrant, then (σb, σd) and (τb, τd) are matched in the bijection between the

two quadrants. This is because if we choose an initial simplex pair in one of the quadrants

and then walk in a circle through the other quadrants, then the simplex pair at which we

finish is different from the initial simplex pair. For example, if we start at (a, c) in the first

quadrant, then we finish at (b, d) when we return to the first quadrant, and vice versa. This
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Figure 3.4: The (birth, death) simplex pairs in each quadrant for the 1D PH of the fibered

filtration function in the proof of Proposition 3.4.3 (see also Figure 3.2). For each pair of

adjacent quadrants, there is a bijection between their sets of simplex pairs; this bijection is

equal to the bijection given by the update rule of Cohen-Steiner et al. [CEM06]. The red

lines connect simplex pairs that are in bijection with each other.

is a discrete way of illustrating the non-existence of a nontrivial global section.

3.5.2 Definition of a compatible cellular sheaf

I generalize the discussion in Section 3.5.1 to fibered filtration functions of the form f :

K×B → R that have a stratification (see Definition 3.3.1) of B such that in each stratum Y ,

the simplex ordering that is induced by f is constant. (In other words, there is a strict partial

order ≺Y on K such that ≺f(·,y) is the same as ≺Y for all y ∈ Y .) Theorem 3.3.15 guarantees

that such a stratification exists for generic fibered filtration functions, and Proposition 3.3.5

guarantees that such a stratification exists for all piecewise-linear fibered filtration functions.

We denote the set of strata by Y = {Yα}α∈J for some index set J .
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Definition 3.5.1. Suppose that F is a Set-valued cellular sheaf whose cell complex, stalks,

and morphisms are of the following form:

1. The cell complex: The cell complex on which F is constructed is the graph G such

that there is a vertex vα for each stratum Yα ∈ Y and an edge eβ,α = (vβ, vα) if Yβ ∈ Y

is a face of Yα. The 0-cells of the cell complex are the vertices of G and the 1-cells are

the edges of G.

2. The stalks: Let Sα denote the set of (birth, death) simplex pairs for a stratum Yα.

The stalk at a 0-cell vα ∈ G is F(vα) := Sα. For a 1-cell eβ,α ∈ G, where Yβ is a face

of Yα, the stalk at eβ,α is F(eβ,α) := Sα.

3. The morphisms: If Yβ ∈ Y is a face of Yα ∈ Y , then the morphism Fvβ≤eβ,α :

F(vα) → F(eβ,α) is the identity map and the morphism Fvβ≤eβ,α : F(vβ) → F(eβ,α) is

Fvβ≤eβ,α := ϕidxβ , idxα ,

where ϕidxβ , idxα is of the form in Eq. 2.4 and idxα : K → {1, . . . , N} and idxβ : K →

{1, . . . , N} are the simplex indexings (recall Definition 2.4.3) on Yα and Yβ, respectively.

Then the cellular sheaf F is a compatible cellular sheaf for the fibered filtration function

f : K ×B → R.

It is not guaranteed that there is a unique compatible cellular sheaf for a given fibered

filtration function f . Although the cell complex (the graph G) is determined uniquely by

f , the stalks and morphisms are not. Recall from Definition 2.4.3 that the simplex indexing

that is induced by f may depend on an intrinsic indexing σ1, . . . , σN of the simplices in K.

(The intrinsic indexing breaks ties when two simplices have the same filtration value.) For

a stratum Yα such that f(σ, y) = f(τ, y) for all y ∈ Yα for some pair (σ, τ) of simplices, the

simplex indexing idxf(·,Yα) depends on the intrinsic indexing, so Sα may not be determined
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uniquely by f . If Sα is not determined uniquely by f , then for any face Yβ of Yα, the stalks

F(vα) and F(eβ,α) are not determined uniquely by f . As discussed in Remark 2.6.1, a

bijection ϕidxβ ,idxα of the form in Equation 2.4 is not determined uniquely by f if idxβ and

idxα do not differ by the transposition of two consecutive simplices. Therefore, the morphism

Fvβ≤eβ,α is not necessarily determined uniquely by f .

However, many aspects of the stalks and morphisms are determined uniquely by f .

Suppose that Yβ ∈ Y is a face of Yα ∈ Y . If f(σ, y) ̸= f(τ, y) for all y in Yα and all simplices

σ ̸= τ , then the simplex indexing idxf(·,Yα) is determined uniquely by f , so the stalks F(vα)

and F(eβ,α) are determined uniquely by f . Theorem 3.3.15 guarantees that this is the generic

case when Yα is an n-dimensional stratum (where n = dim(B)). There are also conditions

under which a morphism is determined uniquely by f . The morphism Fvα≤eβ,α : Sα → Sα

must be the identity map. The morphism Fvα≤eβ,α := ϕidxβ ,idxα is determined uniquely by f

when idxβ and idxα differ by the transposition of two consecutive simplices. Theorem 3.3.15

guarantees that this is the generic case when Yβ is a “top-dimensional” face of Yα (i.e., when

dim(Yβ) = dim(Yα)− 1).

Example 3.5.2. Again consider a fibered filtration function f : K × R2 → R of the form

defined in Prop. 3.4.3, with K defined as in Figure 3.2a with N = 11 simplices. We construct

a compatible cellular sheaf F as follows.

1. The cell complex: The strata are the open quadrants Q1, . . . , Q4, the open half-axes

A12, A23, A34, A14 with Aij = (∂Qi ∩ ∂Qj) \ {0}, and the point 0 ∈ R2. The associated

graph G (the cell complex for F) has a vertex vQi
for the ith quadrant, a vertex vAij

for

the (i, j)th half-axis, and a vertex v0 for the point 0. The graph G has edges (vAij
, vQi

)

and (vAij
, vQj

) for each half-axis Aij, and it has an edge (v0, v) for every vertex v ∈ G

such that v ̸= v0.

2. The stalks: We index the simplices of K such that σ8 = a, σ9 = b, σ10 = c, and

σ11 = d, where a, b, c, d are the simplices defined in Figure 3.2a. The stalk at vQ1 is
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SQ1 = {(a, c), (b, d)}. The vertices vQ2 and vA12 have the same stalk {(a, c), (b, d)}; the

vertices vQ3 , vA23 , and v34 have the same stalk {(a, d), (b, c)};and the vertices vQ4 and

vA14 have the same stalk {(b, d), (a, c)}. The stalks at the edges of G are determined

by the stalks at the vertices. In this example, the stalks at the vertices or edges that

correspond to 2D strata are determined uniquely by f , but the stalks at the vertices and

edges that correspond to 0D or 1D strata depend on our choice of intrinsic indexing.

3. The morphisms: There are only three distinct nonidentity morphisms. The first two

are

FvA23
≤e(A23,Q2)

, Fv0≤e(0,Q2)
: {(a, c), (b, d)} → {(a, d), (b, c)}

(a, c) 7→ (b, c)

(b, d) 7→ (a, d) ,

FvA34
≤e(A34,Q4)

, Fv0≤e(0,Q4)
: {(a, d), (b, c)} → {(a, c), (b, d)}

(a, d) 7→ (a, c)

(b, c) 7→ (b, d) .

The third distinct nonidentity morphism is

Fv0≤e(0,Q1)
: {(a, d), (b, c)} → {(a, c), (b, d)} .

As we move from 0 to Q1, we swap the simplex indices of a and b and we swap the

simplex indices of c and d (in the simplex indexing induced by f). The morphism is

not canonical because the bijection ϕidx0,idxQ1 depends on whether one first swaps a

and b or one first swaps c and d. Therefore, we may define either

Fv0≤e(0,Q1)
: (a, d) 7→ (a, c) ,

(b, c) 7→ (b, d)
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or

Fv0≤e(0,Q1)
: (a, d) 7→ (b, d) ,

(b, c) 7→ (a, c) .

Both choices results in a compatible cellular sheaf.

3.5.3 Sections of the cellular sheaf

Let F be any compatible cellular sheaf for a fibered filtration f : K ×B → R. We write

Fvβ≤eβ,α =
(
F b

vβ≤eβ,α
,Fd

vβ≤eβ,α

)
, (3.17)

where F b
vβ≤eβ,α

: Sβ → Sα maps a pair (σb, σd) ∈ Sβ to the birth simplex of Fvβ≤eβ,α((σb, σd))

and Fd
vβ≤eβ,α

: Sβ → Sα maps (σb, σd) ∈ Sβ to the death simplex of Fvβ≤eβ,α((σb, σd)).

In this subsection, we show that one can view sections of F as sections of the associated

PD bundle.

Lemma 3.5.3. Let Yβ be a face of Yα. For any point p ∈ Yβ and any pair (σb, σd) in F(vβ),

we have

(
f(σb, p), f(σd, p)

)
=
(
f(F b

vβ≤eβ,α
((σb, σd)), p) , f(Fd

vβ≤eβ,α
((σb, σd)), p)

)
, (3.18)

where F b and Fd are defined as in Eq. 3.17.

Proof. If the simplex orderings in Yα and Yβ differ only by a transposition of simplices (σ, τ)

with consecutive indices in the orderings, then Fvβ≤eβ,α is either the identity map or the

map that swaps σ and τ in the pairs that contain them. In either case, Equation 3.18 holds

because f(σ, p) = f(τ, p) for all p ∈ Q. Equation 3.18 holds in general because Fvβ≤eβ,α is

defined as the composition of such maps.

Proposition 3.5.4. Let z0 be a non-diagonal point in PDq(fp0) for some p0 ∈ B, let (σb, σd)

be the (birth, death) simplex pair such that z0 = (f(σb, p0), f(σd, p0)), and let Y0 be the
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stratum that contains p0. Suppose that F is a compatible cellular sheaf, and let v0 be the

vertex in the graph G (see Definition 3.5.1) that is associated with Y0. If there is a global

section s of the cellular sheaf F such that s(v0) = (σb, σd), then there is a global section s of

the PD bundle such that s(p0) = z0.

Proof. Let s be a global section of the cellular sheaf F such that s(v0) = (σb, σd). For every

stratum Yα, we write

s(vα) = (sb(vα), sd(vα)) ,

where sb(vα) is the birth simplex of s(vα) and sd(vα) is the death simplex of s(vα). Let

Y : B → {Yα} be the function that maps p ∈ B to the unique stratum Yα that contains it.

We define s : B → E to be the function

s(p) :=
(
p, f(sb(vY (p)), p), f(sd(vY (p)), p)

)
.

To show that s : B → E is a global section of the PD bundle, it remains to show that it is

continuous. The function s|Yα is continuous for all strata Yα because f(σ, ·) is continuous for

all simplices σ ∈ K. Therefore, it suffices to show that s|Yα
is continuous on each face Yβ of

Yα. Because s is a section of the cellular sheaf,

s(vα) = Fvβ≤eβ,α(s(vβ)) .

By Lemma 3.5.3,(
f(sb(vβ), p), f(sd(vβ), p)

)
=
(
f(F b

vβ≤eβ,α
(s(vβ)), p), f(Fd

vβ≤eβ,α
(s(vβ)), p)

)
for all points p ∈ Yβ. Therefore,(

f(sb(vβ), p), f(sd(vβ), p)
)
=
(
f(sb(vα), p), f(sd(vα), p)

)
for all p ∈ Yβ, which completes the proof.
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3.6 Conclusions

3.6.1 Summary

In this chapter, I introduced the concept of a persistence-diagram (PD) bundle, a framework

that can be used to study the persistent homology of a fibered filtration function (i.e., set

of filtrations parameterized by an arbitrary “base space” B). Special cases of PD bundles

include vineyards [CEM06], the persistent homology transform (PHT) [TMB14], the fibered

barcode of a multiparameter persistence module [And13], and the barcode-decorated merge

tree [CHM22].

In Theorem 3.3.15, I proved that if B is a smooth compact manifold, then for generic

fibered filtrations, B is stratified so that the simplex ordering is constant within each stratum.

When such a stratification exists, the PD bundle is determined by the PDs at a locally finite

(or finite, if B is compact) subset of points in B. In Proposition 3.3.5, I showed that

every piecewise-linear PD bundle has such a stratification into polyhedra. This polyhedral

stratification is utilized in Chapter 4 ( [Hic22a]) in an algorithm for computing piecewise-

linear PD bundles.

I showed that, unlike vineyards, which PD bundles generalize, not every local section of

a PD bundle can be extended to a global section (see Proposition 3.4.3). The implication of

this result is that PD bundles do not necessarily have individual, separated “vines” in the

way that vineyards do.

Lastly, I introduced a cellular sheaf that is compatible with a given PD bundle. In

Proposition 3.5.4, I proved that one can determine whether a local section can be extended

to a global section by determining whether or not there is an associated global section of

a compatible cellular sheaf. A compatible cellular sheaf is a discrete mathematical data

structure for summarizing the data in a PD bundle.
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3.6.2 Discussion

For a given fibered filtration function f with a stratification as in Theorem 3.3.15, I defined

a compatible cellular sheaf F over a graph G. It is tempting to instead define an associated

cellular sheaf directly on the stratification of B. In particular, when f is piecewise linear,

the strata are polyhedra, so the stratification is guaranteed to be a cellular decomposition.

One could certainly define stalks F(Yα) and functions F(Yβ) → F(Yβ) in the same way as

in Definition 3.5.1. The problem is that F would not necessarily satisfy the composition

condition (see Equation 2.5). For instance, this issue occurs in Example 3.5.2 for the same

reason that the morphism Fv0≤e(0,Q1)
in the example is not canonical (see the discussion in

Example 3.5.2).

Additionally, I note that one could have defined a compatible cellular cosheaf rather than

a sheaf.

3.6.3 Future research

I conclude with some questions and proposals for future work:

• What are the obstructions to the existence of a global section that extends a given

local section?

I conjecture that if B \ B∗ is contractible, where B∗ is the set of singularities (i.e.,

points p∗ ∈ B at which there is a point in PD(fp∗) with multiplicity greater than 1),

then every local section can be extended to a global section. I discussed in Remark

3.4.5 that singularities are typical when dim(B) > 1. If the conjecture is true, then

global sections are typically not guaranteed to exist when either dim(B) > 1 or B is

not contractible.

• What algebraic or computational methods can we use to analyze global sections and
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to compute obstructions to the existence of global sections?

It may help to consider the cellular-sheaf perspective from Section 3.5.2, which turns

the question into a discrete problem that one can study computationally.

• PHT is a PD bundle over the base space B = Sn. Are there constructible sets M ⊆

Rn+1 for which the associated PHT has local sections that cannot be extended to global

sections? What is the generic situation?

In Proposition 3.4.3, we constructed a fibered filtration f with B = R2 that has no

global sections. Additionally, in Remark 3.4.4, we noted that f can be restricted to

B = S1 to construct a PD bundle over S1 that has no global sections. However, we do

not know if this PD bundle is realized by the PHT of some constructible set M ⊆ R2.

• Arya et al. [ACM22] showed that the PHT of a constructible set M can be calculated

by “gluing together” the PHT of smaller, simpler subsets of M . Can one generalize

these results to all PD bundles?

• When are PD bundles “stable”?

For example, vineyards are stable for generic 1-parameter filtrations, even though not

every vineyard is stable (see Appendix 3.A for an example). Does an analogous result

hold for generic fibered filtration functions over any base space B?

• It will also be interesting to study real-world applications of PD bundles, such as the

examples that we mentioned in Section 3.2.1.
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APPENDIX

3.A Vineyard instability

For any ϵ > 0, we construct two 1-parameter filtration functions f+
ϵ , f

−
ϵ that are ϵ pertur-

bations of each other (that is, |f+
ϵ (σ, p)− f−

ϵ (σ, p)| < ϵ for all simplices σ ∈ K and all points

p ∈ B) but such that for any bijection between the vines in the respective vineyards, not all

of the matched vines are close to each other. In fact, we can define f+
ϵ and f−

ϵ so that their

vines are arbitrarily far apart.

We construct our example by restricting the filtration function from Section 3.4 to certain

paths through R2. Let K and f : K×R2 → R be defined as in the proof of Prop. 3.4.3. (See

Figure 3.2b.) Because f is continuous, we have that for any ϵ > 0, there is a δ > 0 such that

|f(σ, p)− f(σ,0)| < ϵ/2 when ∥p∥ <
√
2δ and σ is any simplex in K. We define the paths

γ+ϵ (t) :=


(t, t) , |t| ≥ δ

(−δ, δ + 2t) , −δ < t < 0

(−δ + 2t, δ) , 0 ≤ t < δ ,

γ−ϵ (t) :=


(t, t) , |t| ≥ δ

(δ + 2t,−δ) , −δ < t < 0

(δ,−δ + 2t) , 0 ≤ t < δ .

Let f±
ϵ : K×R → R be the 1-parameter filtration function defined by f±(σ, t) := f(σ, γ±ϵ (t)).

By construction, the filtrations f+
ϵ and f−

ϵ are ϵ-perturbations of each other.

Let V + and V − be the vineyards for f+
ϵ and f−

ϵ , respectively, for the 1st degree PH. The
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vineyards V ± each have two vines v±1 , v
±
2 , which are paths v±i : R → R3. The vines are

v+1 (t) =


(f(a, γ+(t)), f(d, γ+(t))) , t ≤ −δ/2

f(b, γ+(t)), f(d, γ+(t))) , t > −δ/2 ,

v+2 (t) =


(f(b, γ+(t)), f(c, γ+(t))) , t ≤ −δ/2

f(a, γ+(t)), f(c, γ+(t))) , t > −δ/2 ,

v−1 (t) =


(f(a, γ−(t)), f(d, γ−(t))) , t ≤ −δ/2

f(a, γ−(t)), f(c, γ−(t))) , t > −δ/2 ,

v−2 (t) =


(f(b, γ−(t)), f(c, γ−(t))) , t ≤ −δ/2

f(b, γ−(t)), f(d, γ−(t))) , t > −δ/2 .

There is no bijection ϕ : {1, 2} → {1, 2} such that v+1 and v+2 are “close” to v−ϕ(1) and

v−ϕ(2), respectively. This is because∥∥v+1 (t)− v−1 (t)
∥∥2 = |f(b, (t, t))− f(a, (t, t))|2 + |f(d, (t, t)))− f(c, (t, t))|2 , t > δ/2 ,∥∥v+1 (t)− v−2 (t)
∥∥2 = |f(b, (t, t))− f(a, (t, t))|2 + |f(d, (t, t)))− f(c, (t, t))|2 , t ≤ −δ/2 ,∥∥v+2 (t)− v−2 (t)
∥∥2 = |f(b, (t, t))− f(a, (t, t))|2 + |f(d, (t, t)))− f(c, (t, t))|2 , t > δ/2 ,∥∥v+2 (t)− v−1 (t)
∥∥2 = |f(b, (t, t))− f(a, (t, t))|2 + |f(d, (t, t)))− f(c, (t, t))|2 , t ≤ −δ/2

and we can define f so that |f(b, (t, t))−f(a, (t, t)| and |f(d, (t, t))−f(c, (t, t))| are arbitrarily

large for t ̸= 0.

3.B Technical Details of Section 3.3

All notation is defined as in Section 3.3.

The following series of lemmas is used to prove Lemma 3.3.12, which shows that for

almost every a ∈ A, the tangent space of the intersection of sets Ia(σir , σjr) is equal to the
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intersection of their tangent spaces.

Lemma 3.B.1. For almost every a ∈ A, we have

Tp

(⋂
j∈J

Ma,j

)
=
⋂
j∈J

Tp(Ma,j)

for all J ⊆ {1, . . . , N} and all p ∈
⋂

j∈J Ma,j.

Proof. Because there are finitely many subsets of {1, . . . , N}, it suffices to show that for a

given J ⊆ {1, . . . , N}, we have Tp

(⋂
j∈J Ma,j

)
=
⋂

j∈J Tp(Ma,j) for all p ∈
⋂

j∈J Ma,j for

almost every a ∈ A. Let {ji}ki=1 be the elements of J , where ji < ji+1 for all i. Because

transverse intersections are generic, we have Ma,ji ⋔ (Ma,j1 ∩ · · · ∩Ma,ji−1
) for every i for

almost every a ∈ A. For such an a ∈ A, we have

Tp

(⋂
j∈J

Ma,j

)
= Tp(Ma,jk) ∩ Tp

( k−1⋂
i=1

Ma,ji

)
because Ma,jk ⋔ (Ma,j1 ∩ · · · ∩Ma,jk−1

). Therefore,

Tp

(⋂
j∈J

Ma,j

)
=

k⋂
i=1

Tp(Ma,ji)

by induction on i.

Lemma 3.B.2. Let a ∈ A, and let {(ir, jr)}mr=1 be a set of index pairs such that {ir, jr} ̸=

{is, js} if r ̸= s. If B is a compact manifold, then there is a finite open cover {Uk}Kk=1 and a

disjoint partition
⋃

ℓ Jℓ,k = {1, . . . ,m} for each k such that

{ir, jr | r ∈ Jℓ1,k} ∩ {ir, jr | r ∈ Jℓ2,k} = ∅

if ℓ1 ̸= ℓ2 and

π
( ⋂

r∈Jℓ,k

(Ma,ir ∩Ma,jr)
)
∩ Uk =

⋂
r∈Jℓ,k

Ia(σir , σjr) ∩ Uk

for all ℓ, where π is the projection π : B × R → B.
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Proof. Suppose that y ∈
⋂m

r=1 Ia(σir , σjr). Let J0
ℓ := {ℓ} be an initial disjoint partition of

{1, . . . ,m}. By definition, π(Ma,iℓ ∩Ma,jℓ) = Ia(σiℓ , σjℓ). If iℓ1 = iℓ2 for some ℓ1 ̸= ℓ2, then

f(σjℓ1 , y) = f(σiℓ1 , y) = f(σjℓ2 , y), so y ∈ π(Ma,iℓ1
∩Ma,jℓ1

∩Ma,iℓ2
∩Ma,jℓ2

). We combine

J0
ℓ1

and J0
ℓ2

into a single subset of the partition, and we iterate until we obtain a disjoint

partition {Jℓ,y}ℓ of {1, . . . ,m} such that

{ir, jr | r ∈ Jℓ1,y} ∩ {ir, jr | r ∈ Jℓ2,y} = ∅

if ℓ1 ̸= ℓ2 and

y ∈ π
( ⋂

r∈Jℓ,y

(Ma,ir ∩Ma,jr)
)

for all ℓ. Therefore, for each ℓ, there is a neighborhood Uℓ,y such that

π
( ⋂

r∈Jℓ,y

(Ma,ir ∩Ma,jr)
)
∩ Uℓ,y =

⋂
r∈Jℓ,y

Ia(σir , σjr) ∩ Uℓ,k .

Now, we set Uy :=
⋂

ℓ Uℓ,y. Because B is compact, there is a finite open cover {Uk}Kk=1 that

has the desired properties by construction.

Lemma 3.B.3. Let {(ir, jr)}mr=1 be a set of index pairs such that {ir, jr} ≠ {is, js} if r ̸= s.

For almost every a ∈ A, we have that if

1.
⋃

ℓ Jℓ = {1, . . . ,m} is a disjoint partition such that

{ir, jr | r ∈ Jℓ1,k} ∩ {ir, jr | r ∈ Jℓ2,k} = ∅

for ℓ1 ̸= ℓ2 and

2. U is an open set in B such that

π
( ⋂

r∈Jℓ

(Ma,ir ∩Ma,jr)
)
∩ U =

⋂
r∈Jℓ

Ia(σir , σjr) ∩ U , (3.19)

for all ℓ, where π is the projection π : B × R → B,

then
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1. the set
⋂

r∈J ′ Ia(σir , σjr) is a manifold for every J ′ ⊆ {1, . . . ,m} and

2. we have

Ty

(⋂
ℓ

⋂
r∈Jℓ

Ia(σir , σjr)
)
=
⋂
ℓ

Ty

( ⋂
r∈Jℓ

Ia(σir , σjr)
)

(3.20)

for every y ∈
⋂m

r=1 Ia(σir , σjr) ∩ U .

Proof. It suffices to show that( ⋂
r∈Jℓ

Ia(σir , σjr) ∩ U
)
⋔
( ⋂

ℓ′<ℓ

⋂
r∈Jℓ

Ia(σir , σjr) ∩ U
)

(3.21)

for all ℓ and almost every a ∈ A.

Informally, what we show first is that at almost every a ∈ A, perturbations of a produce

perturbations of
⋂

r∈Jℓ Ia(σir , σjr) ∩ U for each ℓ. By Lemmas 3.3.8 and 3.3.9, we may

assume that
⋂

r∈J ′ Ia(σir , σjr) is a manifold for every J ′ ⊆ {1, . . . ,m}. By Equation 3.22,

we may assume without loss of generality that there is a sequence k1 < · · · < kc such that

j1 = k1 and ir = jr−1 for all r and jr+1 = ir for all r. In other words, we may assume that⋂
r∈Jℓ Ia(σir , σjr) is of the form

Ia(σkc , σkc−1) ∩ · · · ∩ Ia(σk3 , σk2) ∩ Ia(σk2 , σk1)

for all a. The idea is that because the intersection lifts to an intersection of the corresponding

manifolds (see Equation 3.22) we can pair them up however we like.

Define the function gi : B → R by

gi(p) := f(σki , p)− f(σki−1
, p) .

We will repeatedly use the following fact: If g : B → R is a smooth map and y ∈ R is a

regular value with preimage Zy, then y is a regular value of g|Z for a submanifold Z ⊆ X if

Z ⋔ Zy. For almost every a ∈ A, the quantity aki − aki−1
is a regular value of gi for all i,and

the set of regular values is open. By the same argument as in the proof of Lemma 3.3.9, we
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have (
Ia(σkc , σkc−1) ∩ U

)
⋔
( c−1⋂

i=2

Ia(σki , σki−1
) ∩ U

)
for almost every a ∈ A. Therefore, (akc − akc−1) is a regular value of gk|⋂c−1

i=2 Ia(σki
,σki−1

)∩U .

Additionally, for ϵ ∈ RN such that ϵkc and ϵkc−1 are sufficiently small, there are no critical

values between (akc−akc−1) and (akc−akc−1+ϵkc−ϵkc−1). Because there are no critical values,

the set
⋂

r∈Jℓ Ia(σir , σjr)∩U (which is the (akc − akc−1)-level set of gk|⋂c−1
i=2 Ia(σki

,σki−1
)∩U) is a

submanifold of B that is diffeomorphic to Ia+ϵ(σkc , σkc−1)∩
(⋂c−1

i=2 Ia(σki , σki−1
)
)
∩U (which

is the (akc − akc−1 + ϵkc − ϵkc−1)-level set of gk|⋂c−1
i=2 Ia(σki

,σki−1
)∩U), and these submanifolds are

smoothly parameterized by ϵkc , ϵkc−1 .

Now consider any i∗ ∈ {2, . . . , c − 1}. Because (aki∗ − aki∗−1
) is a regular value of gi∗

and the set of regular values is open, there are no critical values between (aki∗ − aki∗−1
) and

(aki∗ − aki∗−1
− ϵki∗−1

) for sufficiently small ϵki∗−1
. Therefore, for sufficiently small ϵki∗−1

,

the (aki∗ − aki∗−1
− ϵki∗−1

)-level set of gi∗ is a submanifold of B that is diffeomorphic to the

(aki∗ − aki∗−1
)-level set, and these submanifolds are smoothly parameterized by (sufficiently

small) ϵki∗−1
. Because transverse intersections are generic,( c⋂

i=i∗+1

Ia+ϵ(σki , σki−1
)
)
∩
( i∗−1⋂

i=2

Ia+ϵ(σki , σki−1
)
)
∩ U

is transverse to the (aki∗ − aki∗−1
− ϵki∗−1

)-level set of gi∗ for almost every (sufficiently small)

ϵki∗−1
. Additionally, if the intersection is transverse, it is transverse for an open neighbor-

hood of ϵki∗−1
. Therefore, we can assume without loss of generality that this intersection is

transverse at ϵki∗−1
= 0 (if not, we can perturb aki∗−1

so that it is) and for all sufficiently

small ϵki∗−1
. This implies that (aki∗ −aki∗−1

− ϵki∗−1
) is also a regular value of gi∗ restricted to(⋂c

i=i∗+1 Ia+ϵ(σki , σki−1
)
)
∩
(⋂i∗−1

i=2 Ia+ϵ(σki , σki−1
)
)
∩U . For sufficiently small ϵki∗ , there are

no critical values between (aki∗ − aki∗−1
− ϵki∗−1

) and (aki∗ − aki∗−1
+ ϵki∗ − ϵki∗−1

). Therefore,

for sufficiently small ϵki∗ , ϵki∗−1
, we have that( c⋂

i=i∗+1

Ia+ϵ(σki , σki−1
)
)
∩
( i∗⋂

i=2

Ia+ϵ(σki , σki−1
)
)
∩ U ,
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which is the (aki∗ − aki∗−1
)-level set of gi∗ restricted to

( c⋂
i=i∗+1

Ia+ϵ(σki , σki−1
)
)
∩
( i∗−1⋂

i=2

Ia+ϵ(σki , σki−1
)
)
∩ U ,

is a submanifold of B that is diffeomorphic to( c⋂
i=i∗

Ia+ϵ(σki , σki−1
)
)
∩
( i∗−1⋂

i=2

Ia+ϵ(σki , σki−1
)
)
∩ U ,

which is the (aki∗−aki∗−1
+ϵki∗−ϵki∗−1

)-level set of gi∗ restricted to
(⋂c

i=i∗+1 Ia+ϵ(σki , σki−1
)
)
∩(⋂i∗−1

i=2 Ia+ϵ(σki , σki−1
)
)
∩ U . These submanifolds are smoothly parameterized by ϵki∗ and

ϵki∗+1
.

By induction on i∗, we conclude that there is a set A′ ⊆ A such that A \A′ has measure

zero and such that for all a ∈ A′, we have that

1. the set
⋂

r∈Jℓ Ia+ϵ(σir , σjr) ∩ U is a submanifold of B that is diffeomorphic to⋂
r∈Jℓ

Ia(σir , σjr) ∩ U

for sufficiently small ϵ ∈ RN , and

2. these submanifolds are smoothly parameterized by ϵ.

Let a ∈ A′. We showed above that for sufficiently small ϵ ∈ RN , the set of manifolds⋂
r∈ℓ Ia+ϵ(σir , σjr) ∩ U (parameterized by ϵ) is a smoothly parameterized family of embed-

dings of
⋂

r∈ℓ Ia(σir , σjr)∩U into U ⊆ B. Varying {ϵr | r ∈ Jℓ} (while holding ϵr constant for

r ̸∈ Jℓ) produces a smoothly parameterized family of embeddings of
⋂

r∈ℓ Ia(σir , σjr)∩U while

holding
(⋂

ℓ′<ℓ

⋂
r∈Jℓ Ia(σir , σjr) ∩ U

)
constant. Therefore, because transverse intersections

are generic, ( ⋂
r∈Jℓ

Ia(σir , σjr) ∩ U
)
⋔
( ⋂

ℓ′<ℓ

⋂
r∈Jℓ

Ia(σir , σjr) ∩ U
)

for all ℓ for almost every ϵ in a neighborhood of 0 ∈ RN . This proves Eq. 3.21, which

completes the proof.
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Lemma 3.B.4. Let {(ir, jr)}mr=1 be a set of index pairs such that {ir, jr} ≠ {is, js} if r ̸= s.

For almost every a ∈ A, we have that if U is an open set in B such that

π
( ⋂

r∈Jℓ

(Ma,ir ∩Ma,jr)
)
∩ U =

⋂
r∈Jℓ

Ia(σir , σjr) ∩ U (3.22)

for all ℓ, where π is the projection π : B × R → B, then
⋂

r∈J ′ Ia(σir , σjr) is a manifold for

every J ′ ⊆ {1, . . . ,m} and

Ty

(
Ia(σi1 , σj1) ∩ · · · Ia(σim , σjm)

)
=

m⋂
r=1

Ty

(
Ia(σir , σjr)

)
(3.23)

for all y ∈
⋂m

r=1 Ia(σir , σjr) ∩ U .

Proof. By Lemmas 3.3.8 and 3.3.9,
⋂

r∈J ′ Ia(σir , σjr) is a manifold for every J ′ ⊆ {1, . . . ,m}

for almost every a ∈ A. We have

Ty

(
Ia(σi1 , σj1) ∩ · · · ∩ Ia(σim , σjm)

)
⊆

m⋂
r=1

Ty

(
Ia(σir , σjr)

)
because

⋂m
r=1 Ia(σir , σjr) ⊆ Ia(σis , σjs) for all s.

Let v ∈
⋂m

r=1 Ty

(
Ia(σir , σjr)

)
. Define π[m] := π|⋂m

r=1(Ma,ir∩Ma,jr )∩π−1(U), and define

πr := π|Ma,ir∩Ma,jr∩π−1(U) for each r. Each πr is a diffeomorphism fromMa,ir ∩Ma,jr ∩π−1(U)

to Ia(σir , σjr) ∩ U , and π[m] is a diffeomorphism from
⋂m

r=1(Ma,ir ∩ Ma,jr) ∩ π−1(U) to⋂m
r=1 Ia(σir , σjr) ∩ U . Let ỹ := π−1

[m] (which exists because π−1
[m] is a diffeomorphism), and let

ṽ := dπ−1
[m](v) (which exists because dπ[m] is an isomorphism). For all r, we have ỹ = π−1

r (y)

and ṽ := dπ−1
r (v). Therefore,

ṽ ∈
m⋂
r=1

Tỹ

(
Ma,ir ∩Ma,jr

)
.

By Lemma 3.B.1, we have Tỹ

(⋂m
r=1(Ma,ir ∩Ma,jr)

)
=
⋂m

r=1 Tỹ(Ma,ir ∩Ma,jr) for all ỹ ∈⋂m
r=1(Ma,ir ∩Ma,jr) for almost every a ∈ A, so

ṽ ∈ Tỹ

( m⋂
r=1

(Ma,ir ∩Ma,jr)
)
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for almost every a ∈ A. Therefore, v = dπ[m](ṽ) is in Ty

(
π[m]

(⋂m
r=1(Ma,ir ∩Ma,jr)

))
=

Ty

(⋂m
r=1 Ia(σir , σjr)

)
, which implies that

Ty

( m⋂
r=1

Ia(σir , σjr)
)
⊇

m⋂
r=1

Ty

(
Ia(σir , σjr)

)
.

The following series of lemmas is used to prove Lemma 3.3.13, which shows that Ya is

locally finite for almost every a ∈ A, and Lemma 3.3.14, which shows that Ya satisfies the

Axiom of the Frontier for almost every a ∈ A.

Lemma 3.B.5. If a ∈ A is such that each Y ∈ Ya is a manifold, then for any strict partial

order ≺ on K, there is a unique subset Y≺
a ⊆ Ya such that Z≺

a =
⋃

Y ∈Y≺
a
Y .

Proof. Let Y ∈ Ya and suppose that Y ∩ Z≺
a ̸= ∅. This implies that there is a point p ∈ Y

such that ≺fa(·,p) is the same as ≺. By Lemma 3.3.11, the simplex ordering induced by f is

constant in Y , so Y ⊆ Z≺
a .

Lemma 3.B.6. Let ≺ be a strict partial order on K. Let a ∈ A be such that

1. every Y ∈ Ya is a manifold, where Ya is defined as in Eq. 3.11,

2. Ma,i ⋔Ma,j for all i ̸= j, where Ma,i is defined as in Eq. 3.5,

3.
⋂m

r=1 Ia(σir , σjr) is a manifold for all sets {(ir, jr}mr=1 of index pairs, and

4. we have

Tp

( m⋂
r=1

Ia(σir , σjr)
)
=

m⋂
r=1

Tp

(
Ia(σir , σjr)

)
(3.24)

for all sets {(ir, jr}mr=1 of index pairs and all p ∈
⋂m

r=1 Ia(σir , σjr).

Let Y≺
a be the unique subset of Ya such that Z≺

a =
⋃

Y ∈Y≺
a
Y , which exists by Lemma 3.B.5.

Then every p ∈ B has a neighborhood that intersects at most one set Y ∈ Y≺
a .
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Figure 3.B.1: For each point pi, we illustrate the idea behind the homeomorphism ϕ : Ui → B

in the proof of Lemma 3.B.6, where Ui is a neighborhood of pi and B is an open unit ball

in R2. The base space is B = R2; we show only the sets I(σ1, τ1) and I(σ2, τ2), which are

curves in the plane, for some simplices σ1, σ2, τ1, τ2 ∈ K and some fibered filtration function

f : K ×B → R.

Proof. Let S(p) = {(σi, σj) | p ∈ Ia(σi, σj)}. There is a neighborhood U0 of p such that

I(σi, σj) ∩ U0 ̸= ∅ if and only if (σi, σj) ∈ S(p). In a neighborhood of p, each I(σi, σj) is

locally diffeomorphic (via the exponential map, for example) to Tp(Ia(σi, σj)), which is an

(n − 1)-dimensional hyperplane. By Eq. 3.24, these local diffeomorphisms are compatible

with each other, so there is a neighborhood U of p, a set {H(σi, σj)}(σi,σj)∈S(p) of hyperplanes

in Rn, and a homeomorphism ϕ : U → B, where B is the open unit n-ball, such that

ϕ
( ⋂

(σi,σj)∈S′(p)

Ia(σi, σj) ∩ U
)
=

⋂
(σi,σj)∈S′(p)

H(σi, σj) ∩ B

for all S ′(p) ⊆ S(p). See Figure 3.B.1 for intuition, where we illustrate the neighborhood U

for a few points p ∈ B. The hyperplanes induce a stratification of B, with a set Y ′ of strata,

such that for all Y ′ ∈ Y ′, we have Y ′ = ϕ(Y ∩ U) for some Y ∈ Ya. Because Ma,i ⋔ Ma,j

for all i ̸= j, we have that B \ H(σi, σj) is the disjoint union of open sets W1(σi, σj) and
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W2(σi, σj) such that

fa(σi, p
′) < fa(σj, p

′) for all p′ ∈ ϕ−1(W1(σi, σj)) ,

fa(σj, p
′) < fa(σi, p

′) for all p′ ∈ ϕ−1(W2(σi, σj))

for all (σi, σj) ∈ S(p). Suppose that u1 and u2 are points in U such that ≺fa(·,u1) and ≺fa(·,u2)

are both the same as ≺. For each (σi, σj) ∈ S(p), define the set

V (σi, σj) :=


H(σi, σj) , σi ̸≺ σj and σj ̸≺ σi

W1(σi, σj) , σi ≺ σj

W2(σi, σj) , σj ≺ σi .

(3.25)

We define

V :=
⋂

(σi,σj)∈S(p)

V (σi, σj) ̸= ∅ , (3.26)

which is a stratum in Y ′. Therefore, there is a Y ∈ Ya such that Y ∩ U = ϕ−1(V ), with

u1, u2 ∈ Y ∩ U . Therefore, Y is the only element of Y≺
a that U intersects.

Lemma 3.B.7. Let ≺0 be a strict partial order on K, and define O to be the set of strict

partial orders ≺ such that

1. if σ ≺0 τ and σ ̸= τ , then either we have σ ≺ τ or we have σ ̸≺ τ and τ ̸≺ σ,

2. if σ ̸≺0 τ and τ ̸≺0 σ, then σ ̸≺ τ and τ ̸≺ σ, and

3. the strict partial order ≺ is not the same as ≺0.

If a ∈ A is such that

1. every S ∈ En−ℓ
a is an ℓ-dimensional smooth submanifold for every ℓ ∈ {1, . . . , n}, where

n is the dimension of B,

2. Ma,i ⋔Ma,j for all i ̸= j,
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3. the set
⋂m

r=1 Ia(σir , σjr) is a manifold for all sets {(ir, jr)}mr=1 of index pairs, and

4. Ty(
⋂m

r=1 Ia(σir , σjr) =
⋂m

r=1 Ty(Ia(σir , σjr)) for all sets {(ir, jr)}mr=1 of index pairs,

then

∂Z≺0
a =

⋃
≺ in O

Z≺
a .

Proof. By Lemmas 3.3.10, every Y ∈ Ya is a manifold. By Lemmas 3.B.5 and 3.B.6, the

sets Z≺0
a and Z≺

a (for all ≺ in O) are submanifolds of B.

Case 1: If dim(Z≺0
a ) = 0, then we must have

Z≺0
a = Ia(σi1 , σj1) ∩ · · · ∩ Ia(σin , σjn) .

for some Ia(σi1 , σj1) ∩ · · · ∩ Ia(σin , σjn) ∈ En
a. If ≺ is in O, then there is another pair

(σin+1 , σjn+1) of distinct simplices such that σin+1 ̸≺ σjn+1 and σjn+1 ̸≺ σin+1 . Therefore,

Z≺
a ⊆ Ia(σi1 , σj1) ∩ · · · ∩ Ia(σin , σjn) ∩ Ia(σin+1 , σjn+1) ,

which is an element of En+1
a . By choice of a, every S ∈ En+1

a is empty, so Z≺
a = ∅.

Case 2: If dim(Z≺0
a ) ≥ 1, let ≺ be any strict partial order in O. Let p ∈ Z≺

a . Let

S(p) = {(σi, σj) | p ∈ Ia(σi, σj)}. By the same argument as in the proof of Lemma 3.B.6,

there is a neighborhood U of p, a set {H(σi, σj)}(σi,σj)∈S(p) of hyperplanes in Rn, and a

homeomorphism ϕ : U → B, where B is the open unit n-ball, such that

ϕ
( ⋂

(σi,σj)∈S′(p)

Ia(σi, σj) ∩ U
)
=

⋂
(σi,σj)∈S′(p)

H(σi, σj) ∩ B

for all S ′(p) ⊆ S(p). See Figure 3.B.1.

Because Ma,i ⋔Ma,j for all i ̸= j, we have that B \H(σi, σj) is the disjoint union of open

sets W1(σi, σj) and W2(σi, σj) such that

fa(σi, p
′) < fa(σj, p

′) for all p′ ∈ ϕ−1(W1(σi, σj)) ,

fa(σj, p
′) < fa(σi, p

′) for all p′ ∈ ϕ−1(W2(σi, σj))
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for all (σi, σj) ∈ S(p). For each (σi, σj) ∈ S(p), define the set V (σi, σj) as in Equation 3.25,

and define the set V as in Equation 3.26. The set ϕ−1(V ) is a nonempty subset of U ∩ Z≺0
a .

This implies that p is a limit point of Z≺0
a , so Z≺0

a ⊆ Z≺0
a . Because ≺ is not the same as ≺0,

we have that Z≺
a ∩ Z≺0

a = ∅. Therefore, Z≺0
a ⊆ ∂Z≺0

a and

⋃
≺ in O

Z≺
a ⊆ ∂Z≺0

a .

Now suppose that p is in the complement of Z≺0
a ∪

(⋃
≺ in O Z

≺
a

)
. Because ≺fa(·,p) is not the

same as ≺0 or any ≺ in O, there is a pair (σi, σj) of simplices such that f(σi, p) < f(σj, p)

and either we have σj ≺0 σi or we have σj ̸≺ σi and σi ̸≺ σj. By continuity of f , there is a

neighborhood Uσi,σj
of p such that fa(σi, p

′) < fa(σj, p
′) for all p′ ∈ Uσi,σj

. Therefore, Uσi,σj

is in the complement of Z≺0
a , so p is not in Z≺0

a . This implies

∂Z≺0
a ⊆

⋃
≺ in O

Z≺
a ,

which completes the proof.
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CHAPTER 4

Computing Persistence Diagram Bundles

This chapter is adapted from [Hic22a].

4.1 Introduction

In Chapter 3, I introduced PD bundles, a framework for studying the PH of a set of filtrations

that is parameterized by a topological space B. In ordinary persistent homology, one is

given a filtration (e.g., a filtered complex), and one studies how the homology changes as the

filtration parameter increases. For a PD bundle, we consider the case in which one is given

not a single filtration, but rather a fibered filtration function, which is a set {fp : Kp → R}p∈B

of filtration functions that is parameterized by some topological space B (the base space),

where Kp is a simplicial complex for each p ∈ B. At each p ∈ B, the sublevel sets of fp form

a filtered complex. The associated PD bundle is the space of persistence diagrams PD(fp)

as they vary with p ∈ B.

4.1.1 Contributions

I generalize Cohen-Steiner et. al’s algorithm for computing vineyards [CEM06] to an algo-

rithm for efficiently computing PD bundles. I restrict to the case in which the PD bundle is

piecewise linear. This means that B is a simplicial complex, Kp ≡ K for all p ∈ B, and for

every simplex σ ∈ K, the function fσ(p) := fp(σ) is linear in p on every simplex of B. The

restriction to piecewise-linear PD bundles allows us to take advantage of results in compu-
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tational geometry, such as the Bentley–Ottman planesweep algorithm [BCK08] for finding

intersections of lines in a plane and algorithms for solving the point-location problem in a

line arrangement [ST86]. An analogous piecewise-linear restriction was helpful for computing

vineyards in [CEM06].

The idea of the algorithm is to subdivide the base spaceB into polyhedrons and compute a

PD “template” for each polyhedron. The subdivision is given by Proposition 3.3.5 ( [Hic22c]).

For any p ∈ B, the persistence diagram PD(fp) can then be computed in O(N) time from

the PD template for the polyhedron that contains p, where N is the number of simplices in

K. By contrast, computing PD(fp) from scratch takes O(N3) time in the worst case.

The piecewise-linear restriction is reasonable for most applications. For example, suppose

that we have a point cloud X(t, µ) whose coordinates depend on time t and a parameter

µ ∈ R. If the data set arises from either real-world data collection or through numerical

simulation, then we likely only know the coordinates of the point cloud X(t, µ) at a discrete

set {ti} of time steps and a discrete set {µj} of system-parameter values. For every (ti, µj),

there is the filtration function f(ti,µj) : K → R associated with the Vietoris–Rips filtration (or

any other filtration) of X(ti, µj). For the Vietoris–Rips filtration, K is the simplicial complex

that contains a simplex for every subset of points in the point cloud. To obtain a fibered

filtration function, we define B to be a triangulation of [min ti,max ti] × [minµj,maxµj]

whose vertices are {(ti, µj)}ij. We can extend {f(ti,µj)}ij to a fibered filtration function

with base space B by defining the filtration values of a simplex σ via linear interpolation of

{f(ti,µj)(σ)}ij. By construction, the resulting PD bundle is piecewise linear.

I give full details only for the case in which dim(B) is a triangulated surface, but I

discuss the generalization to higher dimensions in Section 4.3.2. When the base space B

is a triangulated surface, it is already an improvement over a vineyard because it allows

three parameters in total: a filtration parameter as well as two parameters that locally

parameterize B.
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4.1.2 Related Work

PD bundles were introduced in [Hic22c] (Chapter 4) as a generalization of vineyards [CEM06].

The algorithm that I present in this chapter for computing PD bundles is a generalization of

the algorithm in [CEM06]. In many ways, the algorithm in this chapter is also reminiscent

of the Rivet algorithm for computing fibered barcodes of 2D multiparameter persistence

modules [LW15].

4.2 Background

A PD bundle is the space of PDs that arises from a set of filtrations that are parameterized

by some topological space B. (See Definitions 3.2.1 and 3.2.2 in Chapter 3.) In [CEM06],

it was computationally easier to work with a piecewise-linear vineyard, which is a vineyard

for a fibered filtration function of the form f : K× [t0, t1] → R such that f(σ, ·) is piecewise

linear for all σ ∈ K. (See the discussion at the end of Section 2.5.) In Chapter 3, we extended

this to a definition of piecewise-linear PD bundles. (See Definition 3.2.4.) For the remainder

of the chapter, we only consider piecewise-linear PD bundles.

For example, in Section 4.1 we considered a point cloud X(t, µ) whose coordinates de-

pended on time t ∈ R and parameter µ ∈ R. Given only the coordinates of the point cloud

at a discrete set {ti} of time steps and a discrete set {µj} of parameter values, we obtained

a filtration function f(ti,µj) for every (ti, µj). We extended this to a piecewise-linear fibered

filtration function on B = [min ti,max ti] × [minµj,maxµj] via linear interpolation of the

filtration values for each simplex σ ∈ K.

More generally, suppose that we are given a fibered filtration function of the form f :

K ×
∏m

i=1 Ii → R, where each Ii is a finite subset of R, and we wish to extend f to a

fibered filtration function whose base is B :=
∏m

i=1[min Ii,max Ii]. First, we construct a

triangulation B (i.e., an m-dimensional simplicial complex) of
∏m

i=1[min Ii,max Ii] whose

set of vertices is
∏m

i=1 Ii. (See [LRS10], for example, for a method to triangulate a cubical
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complex.) We then extend f to a piecewise-linear fibered filtration function f : K×B → R

by linearly interpolating f(σ, ·) on each simplex ∆ ∈ B for all simplices σ ∈ K.

In [Hic22c] (Chapter 3), it was shown that if f : K×B → R is a piecewise-linear fibered

filtration function on an n-dimensional simplicial complex B, then B can be subdivided into

n-dimensional polyhedra such that within each polyhedron P , there is a “template” from

which PDq(f(·, p)) can be computed for any p ∈ P . The template is a list of (birth, death)

simplex pairs (σb, σd).

The polyhedra are defined as follows. We define

I(σ, τ) := {p ∈ B | f(σ, p) = f(τ, p)} .

For every n-simplex ∆ in B, the intersection I(σ, τ) ∩ ∆ is ∅, ∆, a vertex of ∆, or the

intersection of an (n− 1)-dimensional hyperplane with ∆. The set⋃
∆∈B

∂∆ ∪
{(
I(σ, τ) ∩∆

)
| ∅ ⊂

(
I(σ, τ) ∩∆

)
⊂ ∆

}
(4.1)

determines the boundaries of a polyhedral decomposition of B, where ∆ denotes an n-simplex

of B and ∂∆ denotes the boundary of ∆. Every polyhedron face is either a subset of ∂∆ or

a subset of I(σ, τ) ∩∆ for some simplex ∆ of B.

As in Sections 2.4 and 2.5, we define the simplex indexing induced by f as follows. Let

σ1, . . . , σN be the simplices of K, indexed such that i < j if σi is a proper face of σj. We

define the simplex indexing function idxf : K × B → {1, . . . , N} to be the unique function

such that idxf (σi, p) < idxf (σj, p) if we have f(σi, p) < f(σj, p) or we have f(σi, p) = f(σj, p)

and i < j.

Proposition 3.3.5 in Chapter 3 says that within each polyhedron P , the set {(σb, σd)} of

(birth, death) simplex pairs for f(·, p) is constant with respect to p.

4.3 Computing piecewise-linear PD bundles

The algorithm to compute piecewise-linear PD bundles has three main parts.
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1. Compute the polyhedra: First, we compute the polyhedra on which the simplex

indexing (and thus pairing function) is constant (see Proposition 3.3.5). For every pair

P1, P2 of adjacent polyhedra, the face Q that they share is a subset of a set of the form

I(σi1 , σj1) ∩ · · · ∩ I(σim , σjm) for some m. In the “generic case,” defined below at the

beginning of Section 4.3.1.1, we have m = 1. We compute and store a reference that

is associated with Q to the set {(σi1 , σj1), . . . , (σim , σjm)}mk=1.

2. Compute the pairing function: Within each polyhedron P , the set of (birth, death)

simplex pairs for f(·, p) is constant with respect to p ∈ P . We compute the set of (birth,

death) simplex pairs for each P . First, we choose an initial point p∗ ∈ B at which we

compute the simplex indexing at p∗, the boundary matrix D(p∗), an RU decomposition

D(p∗) = R(p∗)U(p∗), and the pairing function at p∗. (This is the pairing function for

the entire polyhedron that contains p∗.) This takes O(N3) time. We then traverse the

polyhedra, starting with the polyhedron that contains p∗ and visiting each polyhedron

at least once. As we move from one polyhedron to the next via a shared face Q,

we use the set {(σi1 , σj1), . . . , (σim , σjm)}mk=1 computed earlier for Q to update the RU

decomposition and pairing function via the update rules that are used when computing

vineyards (see [CEM06]). For each polyhedron, we store its pairing function (i.e., the

pairs (σb, σd) of birth and death simplex pairs and also the unpaired simplices σb, which

are birth simplices for homology classes that never die).

3. Query the PD bundle: To see the qth persistence diagram PDq(f(·, p)) associated

with point p ∈ B, we first locate the polyhedron P that contains p. For each pair

(σb, σd) of simplices in the pairing function for P , the diagram PDq(f(·, p)) has a point

with coordinates (f(σb, t), f(σd, t)) if dim(σb) = q. For every q-dimensional simplex σb

that is unpaired in P , the diagram PDq(f(·, p)) contains the point (f(σb, t),∞).

In what follows, we elaborate on each step of the algorithm above. We focus on the case in
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which B is a triangulated surface.

4.3.1 Special case: B is a triangulated surface

Let K be a simplicial complex with simplices σ1, . . . , σN , indexed such that i < j if σi is a

proper face of σj. Let f : K × B → R be a piecewise-linear fibered filtration function, and

suppose that B is a triangulated surface. If T is a triangle in B, then I(σ, τ) ∩ T is either

∅, T , a vertex of T , or a line segment whose endpoints are on ∂T . Figure 4.3.1 shows a

few possible cases for I(σ, τ). The set in Equation 4.1 is a set L of line segments, and the

polygonal subdivision induced by L is a line arrangement1 A(L). For example, see Figure

3.1.

To simplify the exposition, we will make two genericity assumptions for the remainder of

Section 4.3.1. The idea of the algorithm is not different in the general case, but it requires

some technical modifications, which we discuss in Appendix 4.A. The assumptions are as

follows:

1. For all distinct simplices σ, τ ∈ K and all vertices v ∈ B, we have that f(σ, v) ̸= f(τ, v).

This implies that for all triangles T ∈ B, the intersection I(σ, τ) ∩ T is either ∅ or a

line segment whose endpoints are not vertices of T . For example, see Figures 4.3.1a

and 4.3.1b.

2. For all distinct simplices σi1 , σj1 , σi2 , σj2 ∈ K and every triangle T ∈ B such that

I(σi1 , σj1) ∩ T and I(σi2 , σj2) ∩ T are nonempty, the line segments I(σi1 , σj1) ∩ T and

I(σi2 , σj2) ∩ T do not share any endpoints.

Throughout Section 4.3.1, we use the following notation. Let m denote the number of

triangles in B. The numbers of vertices and edges in B are both O(m). Let N denote

1Usually, a “line arrangement” refers to a planar subdivision that is induced by a set of lines in the plane.
However, here I am using the term “line arrangement” slightly more generally. Every line segment in L lies
in some triangle T of B, and the line segments subdivide each triangle into polygons.
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(a) (b) (c)

(d) (e) (f)

Figure 4.3.1: A few possible cases for the set I(σ, τ), which are shown in pink. The black

lines are the 1-skeleton of B.
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the number of simplices in K. For every triangle T of B, let κT denote the number of line

segments ℓ of the form I(σ, τ)∩T and let κ :=
∑

T∈B κT . The worst case is κT = O(N2) and

κ = O(mN2), but these are very crude upper bounds. Let µT denote the number of vertices

of A(L) in the interior of triangle T ∈ B; the quantity µT is equal to the number of points

of the form I(σi1 , σj1) ∩ I(σi2 , σj2) ∩ T . Let µ denote the total number of vertices in A(L),

which is
∑

T∈B µT +O(m+ κ). In the worst case, µT = O(κ2T ) = O(N4) and µ = O(mN4),

but these are again very crude upper bounds. The numbers of edges and polygons in A(L)

are O(µ).2

4.3.1.1 Computing the polygons

For a piecewise-linear vineyard, computing the intervals on which the simplex indexing is

constant can be reduced to finding the intersections between the piecewise-linear functions

y = f(σ, p) and y = f(τ, p) for all pairs (σ, τ) of simplices in K. Likewise, for a piecewise-

linear PD bundle, computing the polygons on which the simplex indexing is constant can be

reduced to finding the intersections I(σ, τ) for all pairs (σ, τ) of simplices.

We seek to compute the line arrangement A(L), where L is the set of line segments

defined by Equation 4.1. (See Figure 3.1.) The polygons of A(L) are the polygons on which

the simplex indexing is constant. We store A(L) using a doubly-connected edge list (DCEL)

data structure, which is a standard data structure for storing a polygonal subdivision of the

plane [BCK08]. The DCEL data structure can be used without modification to represent

A(L), which is a polygonal subdivision of a triangulated surface.3 The space complexity of

A(L) is O(µ). We compute A(L) using the following algorithm (illustrated in Figure 4.3.2):

2Within each triangle T of B, the numbers of edges and polygons in A(L) ∩ T are O(µT ) by Euler’s
formula, as noted in [BCK08].

3The primary reason to consider triangulated surfaces, rather than any simplicial complex B such that
dim(B) ≤ 2, is so that we can use a DCEL data structure to represent A(L). Otherwise, what follows in
Section 4.3.1 works just as well for any 2D simplicial complex.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3.2: Computing the polygons. (A) The line arrangement A(L) is initialized to

represent the triangulated base space B, which in this case consists of two triangles. (B) We

find the vertices v of A(L) that lie on the 1-skeleton of B. (C)–(H) For each triangle T of

B, we incrementally add the line segments of the form I(σ, τ)∩T . The endpoints of a given

line segment are a pair (v, w) of vertices in (B). In (D), an internal vertex (a vertex at the

intersection of two line segments) is created when the last line segment is added. Three of

the line segments intersect at the internal vertex.
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1. We initialize A(L) so that it represents the triangulation B. (See Figure 4.3.2a.) In

addition to the usual data that a DCEL stores, we enumerate the triangles in B and

every half edge e stores the index of the triangle in B that e is on the boundary of.

2. For every triangle T ∈ B, we initialize an empty dictionary D(T ).4 The keys will be

pairs (σ, τ) of simplices for which I(σ, τ) ∩ T is a line segment, and the value of (σ, τ)

will be a list of the endpoints (v, w) of the line segment. We denote the value of (σ, τ)

by D(T )[(σ, τ)]. These dictionaries use O(κ) space.

3. For each edge e of B, we compute the vertices of A(L) that lie on e. (See Figure 4.3.2b.)

These are the vertices that equal I(σ, τ)∩e for some pair (σ, τ) of simplices. To do this,

we consider the restriction of f to e, which is a 1-parameter filtration function (the

input to a vineyard). For each σ ∈ K, the set {(p, f(σ, p)) | p ∈ e} is a line segment ℓσ,e

and I(σ, τ) ∩ e is the point p ∈ e at which ℓσ,e and ℓτ,e intersect. We use the Bentley–

Ottman planesweep algorithm [BCK08] to compute these intersections, thus obtaining

the vertices v of A(L) that lie on e. For a vertex v that equals I(σ, τ) ∩ e, we add v

to the list D(T )[(σ, τ)]. Completing step 3 takes O(N) space and O((mN + κ) logN)

time in total for all edges in B, and can be parallelized over the edges.5

4. For each triangle T ∈ B and for each key (σ, τ) in the dictionary D(T ), there is an

associated pair (v, w) of vertices which are the endpoints of the line segment I(σ, τ)∩T .

We seek to add all of these line segments to the DCEL that represents A(L). (See

Figures 4.3.2C–H.) There are many standard algorithms for doing this: one example is

the incremental algorithm (see e.g., Chapter 8.3 of [BCK08]), in which the line segments

are incrementally added one at a time. The worst-case run time of the incremental

4A dictionary is a data structure for storing (key, value) pairs.

5In some cases, in may be more efficient to consider the restriction of f to an Euler path γ through the
1-skeleton of B, rather than the restriction of f to each edge separately. For example, if B is of the form in
Figure 4.3.3a, then an Euler path is given by Figure 4.3.3b.
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(a) (b)

Figure 4.3.3: (A) A triangulated base space B. (B) An Euler path γ through the 1-skeleton

of B, starting at the bottom-left vertical edge (violet) and ending at the top-right vertical

edge (red).

algorithm in triangle T is O(κ2T ), for a total run time of O(
∑

T∈B κ
2
T ), and it can be

parallelized over the triangles T ∈ B.

In Figure 4.3.2, we illustrate the algorithm for computing the polygons.

As we add line segments to A(L), we keep track of the pairs (σ, τ) of simplices that

correspond to each edge of A(L). If edge e of A(L) is a subset of I(σ, τ), then e stores a

reference to the pair (σ, τ). We add the reference to (σ, τ) at the time that edge e is created in

A(L). If P1, P2 are adjacent polygons of A(L) that share edge e, then the simplex indexings

in P1, P2 are related via the transposition of σ and τ .

4.3.1.2 Computing the pairing function

Let G be the dual graph to the line arrangement A(L). The graph G contains a vertex vP

for every polygon P of A(L) and an edge between two vertices if the corresponding polygons

are adjacent. We compute a path Γ that visits every vertex of G at least once. For example,

see Figure 4.3.4. One way to obtain such a path is via depth-first search, which takes O(µ)

time because the number of nodes in G (polygons of A(L)) is O(µ). This yields a path Γ

whose length is O(µ).
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Figure 4.3.4: A path Γ (in white) that visits every polygon in the line arrangement A(L).

At the first vertex vP of Γ, we compute the simplex indexing in polygon P , the RU

decomposition for the boundary matrix in P , and the (birth, death) simplex pairs in P .

To store the RU decomposition, we use the sparse matrix data structure from [CEM06].

The polygon P stores a reference to its (birth, death) simplex pairs. To store the current

simplex indexing, each simplex stores a reference to its index in the current indexing (which

we initialize to the indexing in P ).

We traverse the path Γ. As we walk from one polygon P1 to the next polygon P2 by

crossing an edge e in A(L), we update the simplex indexing, the RU decomposition, and

the (birth, death) simplex pairs. To update the simplex indexing, recall that edge e stores

a reference to the simplex pair (σ, τ) such that e ⊆ I(σ, τ). This implies that the simplex

indexings in P1 and P2 are related via the transposition of σ and τ because we must have

(without loss of generality) f(σ, p) > f(τ, p) for p ∈ P1 and f(σ, p) < f(τ, p) for p ∈ P2, with

f(σ, p) = f(τ, p) on the shared edge e. We update the simplex indexing by swapping the

indices that σ and τ store. To update the RU decomposition and the (birth, death) simplex

pairs, we apply the update algorithm of [CEM06]. This takes O(N) time in the worse case,

but often approximately constant time in practice; see [CEM06] and the earlier discussion in

Section 2.5. In P2, we store the new (birth, death) simplex pairs. Storing the simplex pairs

uses O(N) space for each polygon of A(L), so we use O(Nµ) space in total.
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We can optimize the space requirements by recalling from [CEM06] that most updates

of the simplex indexing do not change the (birth, death) simplex pairs. If the update from

P1 to P2 does not change the simplex pairs, we can delete the edge in A(L) that P1 and P2

share, thus merging P1 and P2 into a single polygon and reducing the size of A(L).

4.3.1.3 Querying the PD bundle

We consider the scenario in which a user seeks to query many points p ∈ B in real time and

see the qth persistence diagram PDq(f(·, p)) associated with each queried point p.

To compute the qth persistence diagram PDq(f(·, p)) associated with a given p, we first

identify the polygon P of A(L) that contains p. We do this in two steps. The first step is

to identify the triangle T ∈ B that contains p. This takes O(m) worst-case time because it

takes constant time to test if a given triangle contains p. In certain cases, one can identify

the triangle T more efficiently. For example, if B is a triangulation of the form in Figure

4.3.3a, then one can locate the triangle T in O(1) time by simply examining the coordinates

of p. The second step is to locate the polygon P in T that contains p. This is a well-studied

problem in computational geometry; it is known as the point-location problem. When one is

planning to perform many point-location queries on the same line arrangement (i.e., if one

is querying many points p ∈ B), the standard strategy is to precompute a data structure so

that the subsequent point-location queries can be done efficiently. There are many strategies

for doing this (see, e.g., Chapter 38 in [TOG17]). One method is the slab-and-persistence

method [ST86], in which one precomputes a “persistent search tree” for the line arrangement.

We construct a persistent search tree for each triangle in B. Using separate persistent search

trees for the planar subdivisions in each triangle, the slab and persistence method takes

O(
∑

T∈B µT log(µT )) preprocessing time, O(µ) space, and O(maxT∈B log µT ) time per query.

We obtain PDq(f(·, p)) by evaluating f(·, p) on the simplices in the pairing function for

polygon P , which was precomputed in the previous step (see Section 4.3.1.2). This takes

O(N) time. For every (birth, death) pair (σb, σd) of simplices, PDq(f(·, p)) has a point with
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coordinates (f(σb, t), f(σd, t)) if dim(σb) = q. For every unpaired q-dimensional simplex σb,

the diagram PDq(f(·, p)) has a point with coordinates (f(σb, t),∞).

4.3.2 Generalizing to higher-dimensional base spaces

The algorithm of Section 4.3.1 (as outlined at the beginning of Section 4.3) does not require

many modifications for higher-dimensional base spaces B. We replace the subdivision of B

into polygons by a subdivision of B into n-dimensional polyhedra, where n = dim(B). In the

third step (querying the PD bundle), one uses a point-location algorithm for a hyperplane

arrangement (see, e.g., [Mei93,CF94]). Only the first step (computing the polyhedra) requires

a meaningful modification, which are described below.

When n = 2, the intersection of I(σ, τ) with a triangle T ∈ B is the intersection of

a line with T , which is a line segment Lσ,τ,T . These line segments completely determine

the polygonal subdivision of B because the line segments are the faces of the polygons. In

turn, each line segment Lσ,τ,T is completely determined by the intersection of Lσ,τ,T with

the 1-skeleton of B; this intersection is a pair (vσ,τ,T , wσ,τ,T ) of points. In Section 4.3.1.1, we

computed the set {(vσ,τ,T , wσ,τ,T )}σ,τ,T by restricting the fibered filtration function f to each

edge of B and applying the Bentley–Ottman planesweep algorithm.

In general, the intersection of I(σ, τ) with an n-simplex ∆ ∈ B is the intersection of an

(n − 1)-dimensional hyperplane Hσ,τ,∆ with ∆; the intersection is an (n − 1)-dimensional

polyhedron Pσ,τ,∆. The set {Pσ,τ,∆}σ,τ,∆ completely determines the polyhedral subdivision of

B that is given by Proposition 3.3.5 because the polyhedra Pσ,τ,∆ are the (n−1)-dimensional

faces of the n-dimensional polyhedra in the subdivision. In turn, each polyhedron Pσ,τ,∆ is

completely determined by its intersection with the edges of B, as follows. Them-dimensional

faces of Pσ,τ,∆ are the set

{Hσ,τ,∆ ∩∆(m+1) | ∆(m+1) is an (m+ 1)-dimensional face of ∆ and Hσ,τ,∆ ∩∆(m+1) ̸= ∅} .

For every (m+1)-dimensional face ∆(m+1) of ∆ such thatHσ,τ,∆∩∆(m+1) ̸= ∅, the intersection
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Hσ,τ,∆ ∩ ∆(m+1) is the m-dimensional polyhedron whose (m − 1)-dimensional faces are the

set

{Hσ,τ,∆ ∩∆(m) | ∆(m) is an m-dimensional face of ∆(m+1)} .

By induction, the faces of Pσ,τ,∆ are determined by

{Hσ,τ,∆ ∩ e | e is a 1-dimensional face of ∆ (i.e., e is an edge)} ,

which are the vertices of Pσ,τ,∆. Consequently, we can compute each Pσ,τ,∆ by determining

its vertices. As in the case in which B is a triangulated surface, we do this by restricting the

fibered filtration function f to each edge of B and applying the Bentley–Ottman planesweep

algorithm.

4.4 Conclusions and Discussion

I introduced an algorithm for efficiently computing persistence diagram (PD) bundles when

the fibered filtration function is piecewise linear. I gave full details for the case in which

the base space B is a triangulated surface. Additionally, in Section 4.3.2, I discussed how

one can generalize the algorithm to higher dimensions. I conclude with some questions and

proposals for future work:

• What invariants can we use to summarize and analyze PD bundles in ways that do not

require exploratory data analysis?

The current algorithm asks a user to “query” the PD bundle at various points in the

base space. This is useful for qualitative analysis or if one has a function whose input

is a PD and one seeks to optimize that function over B. However, other applications

may require global invariants.

• How do we generalize the algorithm to fibered filtration functions that are not piecewise

linear?
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For piecewise-linear fibered filtration functions, we used the fact that the base space B

can be subdivided into polyhedrons such that there is a single PD “template” (a list

of (birth, death) simplex pairs) for each polyhedron. The template can then be used

to obtain PDq(fp) at any point p in the polyhedron. For “generic” fibered filtration

functions, it was shown in [Hic22c] (Chapter 3) that the base space B is stratified such

that for each stratum, there is a single PD template that can be used to obtain PDq(fp)

at any point p in the stratum.

• How do we generalize to the case where Kp is not constant with respect to p ∈ B?

In this case, simplices are added and removed from the filtration as p ∈ B varies, so

the algorithm must be modified.
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APPENDIX

4.A Technical details of the algorithm

Let K be a simplicial complex with N simplices, indexed σ1, . . . , σN such that i < j if σi is a

proper face of σj. Let B be a triangulated surface, and let f : K×B → R be a piecewise-linear

fibered filtration function. In Section 4.3.1, we made two generic assumptions to simplify

the exposition. If assumption (1) holds, then every nonempty I(σi, σj)∩ T is a line segment

ℓ that subdivides triangle T into polygons Q1, Q2 such that

(idxf (σi, p1)− idxf (σj, p1))× (idxf (σi, p2)− idxf (σj, p2)) < 0

for all p1 ∈ Q1 and p2 ∈ Q2 (i.e., σi and σj have different relative orders in Q1 and Q2). We

say that σi and σj swap along ℓ because σi and σj have different relative orders on either

side of ℓ. If assumption (1) does not hold, then for any triangle T in B and pair (σi, σj) of

simplices, it is possible that I(σi, σj) ∩ T equals either T or an edge of T . If e is an edge of

triangle T such that e ⊆ I(σi, σj) ∩ T , then σi and σj swap along line segment e if

(idxf (σi, p1)− idxf (σj, p1))× (idxf (σi, p2)− idxf (σj, p2)) < 0

for all p1 ∈ T1 and p2 ∈ T2, where T1 and T2 are the triangles of B that are adjacent to e

(i.e., σi and σj have different relative orders in T1 and T2). In Figure 4.A.1, we illustrate an

example where assumption (1) does not hold. We highlight the line segments that σi and σj

swap along.

If assumption (2) does not hold, then there may be a line segment ℓ in a triangle T such

that I(σi1 , σj1) ∩ T = ℓ = I(σi2 , σj2) ∩ T for two distinct pairs (σi1 , σj1) and (σi2 , σj2) of

simplices in K.

In Sections 4.A.2 and 4.A.3, I explain the modifications for the algorithm when we do

not make the assumptions of Section 4.3.1. It suffices to modify step 1 (see Section 4.3.1.1)

and step 2 (see Section 4.3.1.2). Step 3 (Section 4.3.1.3) remains the same.
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(a) (b) (c)

Figure 4.A.1: Examples of fibered filtration functions for which assumption (1) of Section

4.3.1 does not hold. (A) The pair (σi, σj) is a pair of simplices such that I(σi, σj) ∩ T = T

for every pink triangle T and I(σi, σj) ∩ T = ℓ if ℓ ⊆ T is a pink line segment. Without

loss of generality i < j, so idxf (σi, p) < idxf (σj, p) if f(σi, p) = f(σj, p). (B) Suppose that

f(σj, p) < f(σi, p) on green triangles and f(σi, p) < f(σj, p) on yellow triangles. In blue, we

draw the line segments on which the pair (σi, σj) swaps. (C) Suppose that f(σi, p) < f(σj, p)

on green triangles and f(σj, p) < f(σi, p) on yellow triangles. In blue, we again draw the

line segments on which the pair (σi, σj) swaps.
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4.A.1 Preliminaries

As in Section 4.3.1.1, we consider the restriction of f to every edge e of B to find the vertices

of A(L) that lie on the 1-skeleton of B.

Definition 4.A.1. A vertex v for a pair (σ, τ) of simplices is detected along edge e if, while

traversing edge e during the Bentley-Ottman algorithm, we detect the point v ∈ e as a point

where the relative order of σ and τ changes.

A vertex v for the pair (σ, τ) is detected along edge e if and only if σ and τ have different

relative orders at the endpoints of e. If v is an endpoint of e, then v is detected if and only

if the relative order at v is different from the relative order in the interior of the edge e.

Definition 4.A.2. A line segment (v, w) is detected in triangle T if there is a pair (σ, τ)

of simplices such that vertex v is detected along an edge e1 of T for (σ, τ) and vertex w is

detected along an edge e2 of T for (σ, τ).

Lemma 4.A.3, below, characterizes the conditions under which a pair of simplices swaps

along a line segment.

Lemma 4.A.3. Let (v, w) be a line segment that is not on the boundary of B.

1. If v and w are not the endpoints of an edge in B, let T be the unique triangle that

contains (v, w). A pair (σi, σj) of simplices swaps along the line segment (v, w) if and

only if (v, w) is detected in triangle T .

2. If v and w are the endpoints of an edge in B, let T1, T2 be the two triangles adjacent

to that edge. A pair (σi, σj) of simplices swaps along the line segment (v, w) if and

only if (v, w) is detected in exactly one of T1, T2.

Proof. Statement (1) was the situation in Section 4.3.1, so it remains only to prove statement

(2).
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Suppose that (v, w) are the endpoints of an edge e in B that is not on the boundary of

B. Let T1, T2 be the two triangles adjacent to T . As illustrated in Figure 4.A.2a, we denote

the third vertex of T1 by u1, the third vertex of T2 by u2, the other two edges in T1 by e2,

e3, and the other two edges in T2 by e4, e5.

A pair (σi, σj) swaps along (v, w) only if e ⊆ I(σi, σj) ∩ T1 ∩ T2. If e ⊆ I(σi, σj) ∩ T for

triangle T , then either I(σi, σj)∩T = e or I(σi, σj)∩T = T . If we have both I(σi, σj)∩T1 = T1

and I(σi, σj) ∩ T2 = T2, then (σi, σj) does not swap along (v, w) because σi and σj have the

same relative order in T1 and T2. Therefore, the pair (σi, σj) swaps along (v, w) only if the

intersection of I(σi, σj) with one triangle is e and the intersection with the other triangle

is either e or the entire triangle. Without loss of generality, I(σi, σj) ∩ T1 = e and either

I(σi, σj) ∩ T2 = T2 or I(σi, σj) ∩ T2 = e.

The line segment (v, w) can only be detected in triangle Tk if e = I(σi, σj) ∩ Tk. If

I(σi, σj) ∩ T1 = e then we must also have e ⊆ I(σi, σj) ∩ T2, so either I(σi, σj) ∩ T2 = T2

or I(σi, σj) ∩ T2 = e (and vice versa if I(σi, σj) ∩ T2 = e). Therefore (v, w) is detected in

Tk only if I(σi, σj) = e and the intersection with the other triangle is either e or the whole

triangle. Without loss of generality, Tk = T1.

In Figures 4.A.2b–4.A.2f, we illustrate the possible cases in which I(σi, σj) ∩ T1 = e and

either I(σi, σj) ∩ T2 = T2 or I(σi, σj) ∩ T2 = e. We will show that in each of these cases,

statement (2) holds. In all other cases, we have already shown that neither (σi, σj) swaps

along the line segment (v, w) nor is (v, w) detected in T1 or T2.

Without loss of generality, we assume i < j, so idxf (σi, p) < idxf (σj, p) if p ∈ I(σi, σj).

Case 1: I(σi, σj) ∩ T2 = T2.

There are two subcases.

1. Case 1.1: (Figure 4.A.2b) f(σi, p) < f(σj, p) for all p ∈ T1 \ e.
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(a) (b) Case 1.1 (c) Case 1.2

(d) Case 2.1 (e) Case 2.2 (f) Case 2.3

Figure 4.A.2: (A) The vertices, edges, and triangles that were defined in the proof of Lemma

4.A.3. (B–F) The cases in the proof of Lemma 4.A.3. Pink regions are regions on which σi

and σj have equal filtration values.
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In this subcase, we have idxf (σi, p) < idxf (σj, p) for all p ∈ T1 ∪ T2. Therefore, the

pair (σi, σj) does not swap along (v, w). Neither v nor w is detected along any edges

of T1 or T2, so the line segment (v, w) is not detected in either T1 or T2.

2. Case 1.2: (Figure 4.A.2c) f(σj, p) < f(σi, p) for all p ∈ T1 \ e.

In this subcase, we have idxf (σi, p) < idxf (σj, p) for p ∈ T2 and idxf (σj, p) < idxf (σi, p)

for all p ∈ T1\e. Therefore, the pair (σi, σj) swaps along (v, w). The vertex v is detected

along edge e2 and the vertex w is detected along the edge e3. Because e2 and e3 are

edges of T1, the line segment (v, w) is detected in T1. The vertices v and w are not

detected along any edge of T2, so (v, w) is not detected in T2.

Case 2: I(σi, σj) ∩ T2 = e.

There are three subcases.

1. Case 2.1: (Figure 4.A.2d) f(σj, p) < f(σi, p) for all p ∈ T1 ∪ T2 \ e.

In this subcase, we have idxf (σj, p) < idxf (σi, p) for all p ∈ (T1 ∪ T2) \ e. Therefore,

the pair (σi, σj) does not swap along (v, w). The vertex w is detected along edges e3

and e5. The vertex v is detected along edges e2 and e4. Therefore, (v, w) is detected

in both T1 and T2.

2. Case 2.2: (Figure 4.A.2e) Either we have f(σj, p) < f(σi, p) for all p ∈ T1 \ e and

f(σi, p) < f(σj, p) for all p ∈ T2 \ e or we have f(σi, p) < f(σj, p) for all p ∈ T1 \ e and

f(σj, p) < f(σi, p) for all p ∈ T1 \ e. Without loss of generality, we assume the former.

In this subcase, idxf (σi, p) < idxf (σj, p) for all p ∈ T2 and idxf (σj, p) < idxf (σi, p) for

all p ∈ T1 \ e. Therefore, the pair (σi, σj) swaps along (v, w). The vertex v is detected

along e2 and the vertex w is detected along e3, so (v, w) is detected in triangle T1.

Neither v nor w is detected along any edge of T2, so (v, w) is not detected in T2.
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3. Case 2.3: (Figure 4.A.2f) f(σi, p) < f(σj, p) for all p ∈ T1 ∪ T2 \ e.

In this subcase, we have idxf (σi, p) < idxf (σj, p) for all p ∈ T1 ∪ T2. Therefore, the

pair (σi, σj) does not swap along (v, w). Neither v nor w is detected along any edge of

T1 or T2, so (v, w) is not detected in either T1 or T2.

Lemma 4.A.4 below will be used to modify step 2 of the algorithm: computing the simplex

pairing function.

Lemma 4.A.4. Let idx0, idx1 : K → {1, . . . , N} denote two different simplex indexings (not

necessarily compatible with f ; see Definition 2.4.2), where N is the number of simplices in

K. Let {(σik , σjk)}mk=1 be the set of pairs (σik , σjk) such that

(idx0(σik)− idx0(σjk))(idx1(σik)− idx1(σjk)) < 0 .

That is, σik and σjk have different relative orders in idx0 and idx1. Let ζ0 := idx0, and for

k = 1, . . . ,m, let ζk : K → {1, . . . , N} be the simplex indexing obtained by transposing

(σik , σjk) in the simplex indexing ζk−1. If ζk−1(σik) and ζk−1(σjk) are consecutive integers for

all k, then ζm = idx1. Furthermore, the sequence {(σik , σjk)}mk=1 can be ordered so that this

conditions holds.

Proof. First, we prove that there is at least one pair (σik , σjk) such that idx0(σik) and idx0(σjk)

are consecutive integers. Let k∗ = argmink

∥∥idx0(σik)− idx0(σjk)
∥∥. To obtain a contradic-

tion, suppose that s1 := idx0(σik∗ ) and s2 := idx0(σjk∗ ) are not consecutive integers. With-

out loss of generality, s1 < s2. For r = 1, . . . , s2 − s1 − 1, let τs1+r := idx−1
0 (s1 + r) (i.e.,

τs1+1, . . . , τs2−1 are the simplices between σik∗ and σjk∗ ). For all r, we must have that either

(σik∗ , τs1+r) ∈ {(σik , σjk)}mk=1 or (σjk∗ , τs1+r) ∈ {(σik , σjk)}mk=1 (i.e., either the relative order

of σik∗ and τs1+r changes or the relative order of σjk∗ and τs1+r changes). By definition of k∗,

we must have that none of the pairs in the set {(τs1+r1 , τs1+r2)}r1,r2 are in {(σik , σjk)}mk=1 (i.e.,
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the relative order of the simplices τs1+1, . . . , τs2−1 does not change). Therefore we must either

have (σik∗ , τs1+1) ∈ {(σik , σjk)}mk=1 or (σjk∗ , τs1+r) ∈ {(σik , σjk)}mk=1 for all r. In either case,

one of these is a transposition of simplices whose indices in idx0 are consecutive integers,

which is a contradiction.

Now we prove the lemma by induction on m. When m = 1, we showed above that

idx0(σi1) and idx0(σj1) are consecutive integers, so ζ1 = idx1. In the general case, we can

assume idx0(σi1) and idx0(σj1) are consecutive integers without loss of generality. The set

{(σik , σjk)}mk=2 is the set of pairs (σik , σjk) such that

(ζ1(σik)− ζ1(σjk))(idx1(σik)− idx1(σjk)) < 0 .

That is, σik and σjk have different relative orders in ζ1 and idx1 for all k = 2, . . . ,m. By

induction, we can assume that the sequence {(σik , σjk)}mk=2 is ordered such that ζk−1(σik)

and ζk−1(σjk) are consecutive integers for k = 2, . . . ,m and ζm = idx1.

4.A.2 Modifications to step 1: Computing the polygons

In Section 4.3.1.1, we maintained a dictionary D1(T ) for each triangle T ∈ B. The keys were

pairs (σ, τ) such that I(σ, τ)∩T was a line segment in T , and the value of (σ, τ) was the list

[v, w] of vertices in A(L) that were the endpoints of the line segment I(σ, τ) ∩ T .

Now we maintain two additional dictionaries D2(T ) and D3(T ) for each triangle T ∈ B.

These dictionaries are initialized to be empty, and are updated as we traverse the edges of

B. At any time in this process, the keys of D2(T ) are pairs (v, w) of vertices in A(L) such

that

1. the line segment (v, w) has been detected in T ,

2. the line segment (v, w) is not an edge of B.

The value of D2(T )[(v, w)] is a list [(σi1 , σj1), . . . , (σim , σjm)] of the simplex pairs that we
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have found so far such that σik and σjk swap along (v, w). The keys of D3(T ) are vertices

v ∈ A(L) such that

1. vertex v has been detected along an edge e of triangle T ,

2. there is a pair (σ, τ) of simplices such that (σ, τ) swaps at v and we have not yet found

a vertex w such that I(σ, τ) ∩ T = (v, w).

The algorithm of Section 4.3.1.1 is modified as follows. Suppose that we detect a vertex

v along edge e in A(L) for the set {(σi1 , σj1), . . . , (σim , σjm)} of simplex pairs. We do the

following:

1. Update D1: For each triangle T ∈ B that is adjacent to e, we append v to the list of

vertices for D1(T )[(σik , σjk)] for all k, as in Section 4.3.1.1.

2. Update A(L): If v is not an endpoint of e, we split the edge e in A(L) and add an

internal vertex in e, as in Section 4.3.1.1. If v is an endpoint of e, we do not split the

edge or create a new vertex because B already has a vertex at v.

3. Update D2, D3, and edge labels: For each triangle T adjacent to e and each

(σik , σjk):

• If v is the only vertex in the list D1(T )[(σik , σjk)], then we have not yet detected a

line segment for (σik , σjk) of the form (v, w) for some vertex w. We do the follow-

ing: If v is not in D3(T ), add key v to D3(T ) with value [(σik , σjk)]. Otherwise,

append (σik , σjk) to D3(T )[v].

• Otherwise, there is another vertex w ∈ D1(T )[(σik , σjk)]. This implies that we

have just detected a line segment (v, w) in T for (σik , σjk). We remove (σik , σjk)

from D3(T )[w].
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– If v and w are not both vertices of B, then (v, w) is not an edge of B. We

do the following: If (v, w) is not in D2(T ), then add key (v, w) to D2(T ) with

value [(σik , σjk)]. Otherwise, append (σik , σjk) to D2(T )[(v, w)].

– Otherwise, v and w are both vertices of triangle T . This means we have

detected a line segment (v, w) in T in which v and w are the endpoints of

an edge e′ in B. If e′ is an edge on the boundary of B, then we do nothing.

Otherwise, let T2 be the other triangle adjacent to e′. By Lemma 4.A.3, the

pair (σik , σjk) swaps along (v, w) if and only if the line segment is not detected

in T2. If e
′ already stores a reference to (σik , σjk), then we remove it because

this implies that e′ was detected in T2 already. Otherwise, we add a reference

to (σik , σjk) on e
′.

When the traversal of the 1-skeleton is done, we add lines to A(L). For every triangle

T ∈ B and every key (v, w) ∈ D2(T ), we add a line segment with endpoints v, w to the

DCEL that represents A(L). For every edge in the DCEL that is a subset of the line

segment (v, w), we label the edge with a reference to the list D2(T )[(v, w)], which is the list

{(σi1 , σj1), . . . , (σim , σjm)} of simplex pairs that swap along the line segment.

4.A.3 Modifications to step 2: Computing the pairing function

We compute a path Γ as in Section 4.3.1.2 and traverse Γ. At each step, we walk from one

polygon P1 to the next polygon P2 by crossing an edge e in A(L). The edge e stores a list

of simplex pairs (σ, τ) such that σ and τ have different relative orders in the polygons P1,

P2. We update the simplex indexing one transposition at a time. Let idx : K → {1, . . . , N}

denote the current indexing, which we initialize to the simplex indexing idxf (·, P1) in P1.

While the list that e stores is nonempty, we do the following:

1. Let (σ, τ) be the first element of the list.

2. If idx(σ) and idx(τ) are consecutive integers, then we update idx by swapping the
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order of σ and τ . As in Section 4.3.1.2, we also update the RU decomposition, and the

(birth, death) simplex pairs. We remove (σ, τ) from the list.

3. Otherwise, we move (σ, τ) to the end of the list.

At the end of this algorithm, idx is the simplex indexing idxf (·, P2) in P2 (by Lemma 4.A.4),

the RU decomposition is an RU decomposition for P2, and we have computed the (birth,

death) simplex pairs for P2.
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CHAPTER 5

Analysis of Spatial and Spatiotemporal Anomalies

Using Persistent Homology: Case Studies with

COVID-19 Data

This chapter is primarily adapted from [HNP22], a paper that I led.1 Appendix 5.B.3 is

adapted from [FHP22].

5.1 Introduction

Many systems are spatial in nature. When working with spatial data sets, it is important

to study the role of underlying spatial relationships [CG13]. To illustrate this importance,

consider the spatiotemporal dynamics of Coronavirus disease 2019 (COVID-19) case rates.

The spatial adjacencies between the neighborhoods of a city affect the dynamics of disease

spread [PG16], and it is important to account for them. Researchers have studied a wide

variety of spatial data sets, such as gross domestic product and life expectancy by country

[Gap, BZ18] and voting in elections across different regions of a state [FP21]. Such data

sets often also include temporal information (e.g., daily COVID-19 case rates), and it is also

important to account for it.

We develop new methods for using TDA to analyze geospatial and geospatiotemporal

1I developed the methods, wrote the code, analyzed the results, and wrote the paper (with input and
comments from Mason Porter and Deanna Needell).

102



(a) (b)

Figure 5.1.1: (a) The graph of a function f : R2 → R that has two “well-separated” local

maxima. (b) The graph of a function g : R2 → R whose two local maxima have the same

locations and values as f , but which are not well-separated from each other.

data sets in a way that directly incorporates spatial information. In this chapter, we treat

geographical data as 2D data and construct a 2D filtered complex to represent it. Other

spatial applications that have been examined using PH include sensor networks [SG07],

percolation [SHC18], city-street networks [FP20], and the accessibility of polling places (see

Chapter 6).

5.1.1 Our Contributions

We use TDA to analyze local extrema of real-valued geospatial data.2 Our approach captures

both local information (specifically, the geographical locations and the values of the local

extrema) and global information about the relationships between the extrema. The global

information includes the extent to which extrema are “spatially separated” (see Figure 5.1.1).

2See Section 5.3 for our definition of a “local maximum” and a “local minimum” of a real-valued function
on a discrete set of geographical regions.
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To the best of our knowledge, existing methods of analyzing local extrema yield only local

information. One can check whether a geographical region is an extremum by comparing

its value to those of its neighboring regions. However, this approach does not provide any

global information about the extrema. For example, it cannot distinguish between the two

cases in Figure 5.1.1.

When we examine time-dependent data, we use vineyards (see Section 2.5) to incorporate

temporal information. Examining vineyards allows us to measure the persistence of extrema

with time, observe how spatial separations between extrema change with time, and track how

geographical locations of extrema change with time. We accomplish the last of these by using

the vineyards to match the extrema at one time to the corresponding extrema at another

time. (They may not be at the same geographical locations.) We identify the geographical

locations of extrema by examining the sequence of (birth simplex, death simplex) pairs

for each vine; the death simplex corresponds to the geographical location. Notably, we

use information about the sequence of (birth simplex, death simplex) pairs for each vine,

rather than using only the (birth, death) filtration values for each vine; to the best of our

knowledge, our paper [HNP22], from which this chapter is adapted, is the first to do so. A

naive approach, such as comparing each region to its neighboring regions at each time step,

does not come with a natural way to match the extrema that one identifies at different times

and does not provide information about changes in global structure. With our approach, we

are able to track how the global spatial structure of data changes with time.

Another contribution of our research is a new method to construct an “efficient” simplicial

complex whose underlying space3 is homeomorphic to a geographical space (which is the

set of regions, as we will explain shortly).4 In our applications, we possess geographical

data in the form of shapefiles. Each geographical region (e.g., a neighborhood or zip

3The underlying space of a simplicial complex is the union of its simplices. It is common in studies of
TDA for authors to conflate the combinatorial and topological structures of a simplicial complex.

4The simplicial complex is “efficient” in the sense that it minimizes the number of simplices.
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code) is represented in a shapefile by a polygon (or by multiple polygons, if the region is

disconnected) with many vertices (about 100 to 1000 vertices, depending on the particular

shapefile and the particular region). These polygons approximate the real-life boundaries

of the geographical regions. A naive approach to building a simplicial complex is to simply

triangulate each of the polygons. However, this approach has two issues. The first is that

there are often small overlaps between the polygons or spurious gaps between the polygons

because the polygon boundaries do not exactly match the real-life geographical boundaries.

The vertices of a polygon often lie in the interior of another polygon. The second issue is that

simply triangulating these polygons, which each have a very large number of vertices, would

create orders-of-magnitude more simplices than are necessary to represent a geographical

space. It is important to attempt to minimize the number of simplices in a simplicial complex

because PH and vineyard computation times are very sensitive to the number of simplices.

Rather than naively triangulate the given polygons, we use the shapefile of a geograph-

ical space to infer adjacency information about the associated regions; we then use only this

information to build a simplicial complex for that geographical space. In the resulting sim-

plicial complex, each region is represented by a union of triangles. We use about 1 to 10

triangles per region, depending on the number of neighbors of the region. By contrast, the

naive approach above requires about 100 to 1000 triangles per region. Two adjacent re-

gions that have a connected intersection share exactly one edge in our simplicial complex,

except in rare special cases that we will discuss in Section 5.2. In our simplicial complex

for a geographical space, the union of any subset of geographical regions is homeomorphic

to the underlying space of the simplicial subcomplex (see Section 5.2 for the definition of a

simplicial subcomplex) that is induced by the union of the corresponding triangles. When

the geographical regions satisfy the mild assumptions (A1)–(A4) that we define in Section

5.2, our construction uses the minimum number of simplices that is possible for a simplicial

complex with the property above. (See Property (P) in Section 5.2.)

As case studies, we apply our approach to two data sets. The first data set is a geospatial
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data set of per capita vaccination rates in New York City (NYC) by zip code [Cit]. The

homology classes correspond to zip codes in which the vaccination rate is either lower or

higher (depending on choices that one can make in our approach) than in the neighboring

zip codes. The estimates of these rates are at a single point in time (23 February 2021). The

second data set consists of 14-day mean per capita COVID-19 case rates in neighborhoods

in the city of Los Angeles (LA) in the time period 25 April 2020–25 April 2021. Mod-

eling the spatiotemporal spread of COVID-19 is a complex task [Ari21, VTD20]. In this

geospatiotemporal data set, the homology classes of our approach correspond to COVID-19

anomalies, which are regions whose case rates are higher than in the neighboring regions.5

It is important to examine such anomalies, as COVID-19 spreads with significant spatial

heterogeneity and thus has heterogeneous effects on different areas.6 Many factors (such

as mobility, population density, socioeconomic differences, and racial demographics) play a

role in how COVID-19 affects regions differently [HSA21,HGL21,Cen]. In our case study of

COVID-19 case rates in LA, we construct a vineyard that (1) conveys which anomalies are

most persistent in time and (2) reveals how the anomalies move geographically with time.

5.1.2 Related Work

Our method addresses several limitations of previous efforts to combine TDA with geospatial

analysis. In [SHP16], Stolz, Harrington, and Porter studied the percentage of United King-

dom voters by district that voted to leave the European Union in the “Brexit” referendum.

The holes that they identified using PH correspond to districts that voted differently than

5We examine local maxima in the case-rate data. This contrasts to COVID-19 “hotspots,” which the
CDC has defined using an absolute threshold for the number of cases and criteria that are related to the
temporal increase in the number of cases [OKC20].

6Other scholars have studied contagions using TDA in ways that do not yield topological features with
geographical meaning. For example, recent work used TDA to study the spatiotemporal spread of COVID-
19 [SZW21] and Zika [SLG20]. These papers examined topological features in atmospheric data, which were
then used to forecast case rates. TDA was also used in [TKH15] to study the Watts threshold model of a
social contagion on noisy geometric networks.
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the neighboring districts. However, their approach does not distinguish between homology

classes that were merely noise and homology classes that correspond to small geographical

districts. In [FP21], Feng and Porter developed an approach to study PH by constructing

filtered complexes using the level-set method [OF03] of front propagation from scientific

computation.7 Using their level-set complexes, they examined the percentage of voters in

each precinct of California counties that voted for a given candidate (e.g., Hillary Clinton)

in the 2016 United States presidential election. The homology classes represent precincts

that voted more heavily for Clinton than the neighboring precincts. The level-set complexes

in [FP21] have two key limitations. The first is that they cannot handle time-dependent

data, as they are built to study either data at a single point in time or data that has been

aggregated over some time window to yield time-independent data. The second limitation

is that these simplicial complexes reduce real-valued data (e.g., the percentage of voters

who voted for Clinton) to binary data (e.g., whether or not the majority voted for Clin-

ton). Consequently, in this example, the level-set-based PH does not capture the extent to

which a blue “political island” voted more heavily for Clinton. By contrast, our approach

is designed specifically to capture such information. As a trade-off, we no longer capture

the geographical sizes of the political islands. For further discussion, see Feng, Hickok, and

Porter [FHP22], who applied the level-set filtration to study the cumulative case count in

Los Angeles on one specific day.

Our new approach to compute PH is also able to resolve some other technical issues

in [FP21]. In particular, some of the homology classes in the level-set approach of [FP21] are

geographical artifacts that are indistinguishable from true features of a data set. By contrast,

the finite 1D homology classes in our approach are either in one-to-one correspondence with

the local maxima of a real-valued geospatial function or in one-to-one correspondence with

its local minima, depending on the choices that one makes. Additionally, unlike the level-set

7The name “level-set method” may cause confusion. Importantly, the level-set simplicial complex of
[FP21] is not the simplicial subcomplex that has simplices with some prescribed filtration value (i.e., a level
set of the filtration values of a simplicial complex).
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approach in [FP21], we are able to detect extrema that are adjacent to the boundary of a

geographical space.

Other methods to construct simplicial complexes from geospatial data, such as rasteriza-

tion of a shapefile or treating the regions as a point cloud, require a trade-off between the

number of simplices and the accuracy of the representation of the geographical regions. For

example, the level-set-based PH method of [FP21] uses orders-of-magnitude more simplices

to achieve sufficient resolution of the smallest geographical regions (e.g., densely populated

urban centers that are important to analyze). See Section 5.6 for further discussion.

We use vineyards in the present chapter, but there are also other ways to study the

topology of time-varying data. For example, zigzag PH [CS10] was used in [CJ17] to an-

alyze time-dependent point clouds (such as swarms) and in [TMK20] to study time-delay

embeddings of dynamical systems. Crocker plots and crocker stacks (i.e., stacks of crocker

plots for different values of a smoothing parameter) illustrate how the Betti numbers of a

time-dependent point cloud change with time and with a scale parameter r [XAT22]. Addi-

tionally, Kim and Mémoli [M21] used multiparameter PH [CZ07] to study time-dependent

point clouds. In Appendices 5.B.4 and 5.B.5, we show how one can use multiparameter

PH [CZ07,BL22] and multiparameter zigzag PH [CS10] to study our COVID-19 spatiotem-

poral data sets.

5.1.3 Organization

The remainder of this chapter proceeds as follows. In Section 5.2, we formulate how

we construct simplicial complexes. In Section 5.3, we define several filtration functions

and discuss how to interpret the resulting PDs and vineyards. In Section 5.4, we ap-

ply our method to the LA and NYC data sets. In Section 6.4, we discuss our method-

ological choices. In Section 5.6, we summarize our work and discuss some of its impli-

cations. In the appendix, we discuss technical details of the simplicial complex construc-

tion, discuss alternative topological approaches for studying PH in geospatiotemporal data,
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provide further information about the LA results, compare our approach to an “all-but-

one” statistical test, and show some demographic data. Our code is available at https:

//bitbucket.org/ahickok/vineyard/src/main/.

5.2 Constructing a Simplicial Complex

We now show how we construct a simplicial complex K from geographical data (e.g., a

shapefile that specifies approximate geographical boundaries of a set of geographical re-

gions). We partition a given geographical space into regions. In Section 5.4.1, the regions

are zip codes in NYC; in Section 5.4.2, the regions are neighborhoods in the city of LA. Let

S be the set of regions. We refer to the complement of
⋃

R∈S R as the exterior region. We

construct a 2D simplicial complex K with the following property:

(P) There is an assignment of 2D simplices to regions such that the union of any subset of

regions is homeomorphic to the underlying space of the simplicial subcomplex 8 that is

induced by the union of the corresponding 2D simplices.

In Figure 5.2.1, we show an example of our construction, which we discuss in this section and

present in more detail in Appendix 5.A. Under the mild assumptions (A1)–(A4) that we state

shortly, our simplicial complex has the minimum number of simplices that is possible for a

simplicial complex that satisfies property (P). Constructing an efficient simplicial complex

is important because the time that it takes for TDA computations depends sensitively on

the number of simplices in a simplicial complex.

In our case studies, the geographical data take the form of shapefiles. In a shapefile,

each region is represented by a polygon with holes9 (or by multiple polygons with holes, if

8The simplicial subcomplex that is induced by a set E ⊆ K is the smallest simplicial complex K′ that
contains the set E of simplices. That is, if K′′ is a simplicial complex that contains E, then K′ ⊆ K′′. When
K is 1D, a simplicial subcomplex is equivalent to an induced subgraph.

9A polygon with holes is of the form P = Q−
⋃h

i=1 int(Hi), where Q is a polygon that encloses polygons
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(a) (b)

Figure 5.2.1: (a) A set S of geographical regions, as given by a shapefile [Geo]. (b) The

resulting simplicial complex K.

the region is disconnected) that closely approximates the actual geographical region. (A

shapefile stores the coordinates of the boundaries of the polygons.) For an example of

shapefile data, see Figure 5.2.1a. As we discussed in Section 5.1.1, the polygon boundaries

are not always aligned perfectly, so their interiors sometimes overlap and gaps can occur

between them. Therefore, to construct a simplicial complex K, we must do more than merely

triangulate these polygons. Additionally, the polygons in our shapefiles have roughly

between 100 and 1000 vertices, which is many more vertices per region than in the simplicial

complex K that we will construct shortly.

We make the following assumptions about geographical regions:

(A1) There are a finite number of regions, and each region has a finite number of connected

components.

(A2) Each component of a region is homeomorphic to D0−
⋃h

i=1 int(Di), where D0 is a closed

disk that encloses some number (which can be 0) of other closed disks D1, . . . , Dh (i.e.,

the holes of the region). For all i ̸= j, the intersection Di ∩ Dj has at most one

point. See, for example, the West Vernon region in Figure 5.2.2b; it is homeomorphic

to D0 −D1 (an annulus) for two disks D0 and D1 that do not intersect. (In our case

H1, . . . ,Hh (the holes) [OR87] and int(Hi) denotes the interior of Hi. It is possible to have h = 0 holes.
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(a) Valley Glen (b) West Vernon

Figure 5.2.2: Various neighborhoods of Los Angeles, as given by a shapefile [Geo]. (a)

The four neighborhoods Valley Glen, Valley Village, Sherman Oaks, and North Hollywood

intersect in a point. (b) The neighborhood West Vernon has a hole because of its neighbor

Vermont Square.

studies, it is rare for any of the disks to intersect.)

(A3) The intersection between any two regions has a finite number of components, and the

interiors of the regions do not intersect.

(A4) The intersection between three or more regions is either a point or ∅.

Assumptions (A1)–(A4) are very reasonable for human-made geographical boundaries.

We do not even require the regions to be simply connected or the region intersections to be

connected. In Figure 5.2.1a, we illustrate the most typical situation that we encounter. In

this example, LA neighborhood Granada Hills is homeomorphic to a disk and its boundary

intersects the boundaries of five neighboring regions (counting the exterior region). In Fig-

ures 5.2.2 and 5.2.3a, we illustrate a few other configurations that can arise in geospatial

applications.

We now outline our procedure for building a simplicial complex. For each region R, we

construct a “reduced” polygon with holes PR that has orders-of-magnitude fewer vertices

than the polygons with holes in the associated shapefile. The number of holes in PR

is equal to the number of holes of the geographical region R. We glue the boundaries of

111



{PR | R ∈ S} together in a way that respects the geographical region boundaries. We

then triangulate each of the polygons to obtain a 2D simplicial complex K. We assign a 2D

simplex σ ∈ K to the region R whose polygon PR originally contained σ. In Figure 5.2.1,

we show an example of the resulting K. Our code for our simplicial-complex algorithm is

available at https://bitbucket.org/ahickok/vineyard/src/main/.10 In the remainder

of this section, we discuss the details of this process.

5.2.1 Constructing a Reduced Polygon with Holes for each Region

Without loss of generality, we assume that each region is connected; if not, we treat each

component of a region as if it were its own region. For each region R, we construct a reduced

polygon with holes PR using only adjacency information that we infer from a shapefile.

Let D0, D1, . . . , Dh be the disks in the statement of assumption (A2), and let Bi = ∂Di.

Under the geographical assumptions (A1)–(A4), the intersections of a region R with its

neighbors are such that for each boundary Bi, one can order the neighbors in clockwise

(or counterclockwise) fashion, possibly with repetition.11 Let Si denote this sequence of

neighbors around Bi. We list intersections with the exterior region in the same manner as

for any other neighboring region. We also record whether each intersection is 1D or 0D. For

example, in Figure 5.2.2a, the clockwise sequence of neighbors around the boundary of Valley

Glen is {Van Nuys, North Hollywood, Valley Village, Sherman Oaks}. The intersection with

Valley Village is 0D and the other intersections are 1D. For regions such as West Vernon in

10This code has one limitation that the algorithm in the present chapter does not. It requires that no
interior region (i.e., a region that is contained in the outer boundary of another region) intersects any other
interior region. This does not occur in our data, and we believe that it does not occur in most geographical
spaces.

11Theoretically, several 0D intersections can be adjacent to each other, although this scenario does not
occur in our data sets. That is, in principle, there can exist a sequence {Ni, . . . , Ni+k} of neighbors such
that Nj ∩ R is the same point p for all j. The order of this sequence is not determined uniquely by the
intersections of the neighbors with R. Instead, we order them in the order in which they appear clockwise
(or counterclockwise) around the point p. This sequence must be finite because there are a finite number of
regions and (A2) implies that Nj1 ̸= Nj2 if j1 ̸= j2.

112

https://bitbucket.org/ahickok/vineyard/src/main/


Figure 5.2.2b, we obtain a sequence Si for each boundary Bi. Each sequence is unique up to

the choice of starting neighbor.

Given a sequence of neighbors for each boundary Bi (which, if necessary, we adjust as in

Appendix 5.A.1), we construct a polygon with holes PR as follows. Let (P ′)R be a polygon

that has one edge for each N ∈ S0 for which the corresponding component of N ∩ B0 is

1D. Let {HR
i }hi=1 be a set of polygons that are contained in (P ′)R and satisfy the following

properties:

1. HR
i has one edge for each N ∈ Si for which the corresponding component of N ∩Bi is

1D,

2. HR
i ∩HR

j ̸= ∅ if and only if Di ∩Dj ̸= ∅,

3. PR ∩HR
i ̸= ∅ if and only if D0 ∩Di ̸= ∅, and

4. if the intersection of two polygons in {PR, HR
1 , . . . , H

R
h } is nonempty, then the inter-

section is a vertex.

The locations of the vertices do not matter. We define PR to be (P ′)R −
⋃h

i=1 int(H
R
i ),

which is homeomorphic to R by assumption (A2). Finally, we annotate each edge of PR

with the neighbor that corresponds to it. We also annotate each vertex with the sequence

of its adjacent regions, which we list in clockwise order starting with R.

5.2.2 Gluing Together the Polygons with Holes

We glue the polygons with holes {PR | R ∈ S} along their edges according to their edge and

vertex annotations. More precisely, if PR1 has n nonadjacent edges with the annotation R2

(which is the typical situation when R1 ∩ R2 has n components that are 1D), then PR2 has

exactly n nonadjacent edges with the annotation R1. For example, in Figure 5.2.3, R1 =

Koreatown and the annotated polygon with holes PR1 has two edges with the annotation

R2 = Wilshire Center. Let (u, v), with u and v in clockwise order, be the vertices of an
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edge in PR1 with annotation R2. Because the n edges are nonadjacent, u and v must each

have at least three neighbors (including R1 and R2). For example, in Figure 5.2.3, again

consider the two edges with the annotation Wilshire Center. The two vertices u1 and v1 of

one edge have the adjacency sequences {Koreatown, Hancock Park, Wilshire Center} and

{Koreatown, Wilshire Center, Little Bangladesh}, respectively. The two vertices u2 and v2

of the other edge have the adjacency sequences {Koreatown, Little Bangladesh, Wilshire

Center} and {Koreatown, Wilshire Center, Pico-Union}, respectively. For a given (u, v), we

seek an edge (x, y) (with x and y in clockwise order) in PR2 with the annotation R1 such that

(1) u and y are annotated with the same sequences and (2) v and x are annotated with the

same sequences. We know that there must be at least one such edge because (u, v) represents

a component of R1 ∩R2 and there is some edge in PR2 that represents the same component

(so its vertices have the same sequences of adjacent regions as u and v). In Lemma 5.A.2,

we prove that there is a unique such edge. If there are n > 1 consecutive edges e0, . . . , en−1

on the boundary of KR1 with annotation R2, then there are n consecutive edges e′0, . . . , e
′
n−1

on the boundary of KR2 with annotation R1. This situation arises precisely because of the

adjustments that we discuss in Appendix 5.A.1. We glue ei to e
′
n−i for all i. If R1 ∩ R2 is

homeomorphic to S1, then the choice of e′0 as the first edge in PR2 is not unique, but all

choices result in topologically equivalent spaces. In Figure 5.2.3b, we show the result of the

gluing process for Koreatown and its neighbors.

5.2.3 Triangulating the Polygons with Holes

We triangulate each polygon with holes PR using the inductive algorithm in [OR87]. We

show examples of triangulated polygons with holes in Figure 5.2.4. The result of this trian-

gulation process is a 2D simplicial complex K with property (P). (We assign a 2D simplex in

the polygon with holes PR to the geographical region R.) The simplicial complex K is a min-

imal simplicial complex with property (P) because (1) each polygon with holes PR has the

minimum number of vertices and holes and (2) the number of triangles in the triangulation
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(a) (b)

Figure 5.2.3: (a) A geographical set S that consists of the neighborhood Koreatown and its

neighbors, as given by a shapefile [Geo]. Observe that the neighborhood Little Bangladesh

has only two neighbors and that the intersection between Koreatown and Wilshire Center

has two components. (b) The result of gluing Koreatown’s polygon to the polygons of its

neighbors.

of PR is determined by its number of vertices and its number of holes by Euler’s theorem

(see [OR87]). For an example of a triangulated polygon with holes, see Figure 5.2.1b.

5.3 Our Filtration Functions

We define various filtrations that one can use with the simplicial complex K that we con-

structed in Section 5.2, and we discuss how to interpret the resulting PDs and vineyards.

Let S be the set of geographical regions R that the simplicial complex K represents, and

let F : S → R be a real-valued function on S. For example, in Section 5.4.1, F (R) is the

per capita full-vaccination rate (i.e., having received all required doses of some vaccine) for

COVID-19 in NYC zip code R. In Sections 5.3.1 and 5.3.2, we define two filtration functions

that are induced by F . Given a time-dependent and real-valued function F (t, R), we define

time-dependent filtration functions in Section 5.3.3. For example, in Section 5.4.2, F (t, R)

is the 14-day mean per capita COVID-19 case rate in neighborhood R on day t. From a

time-dependent filtration function, we compute a vineyard.
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(a) (b) (c) (d)

Figure 5.2.4: Triangulation of a polygon with holes PR for a region R when (a) R has no

holes, (b) R has a single hole, (c) R has multiple holes, and (d) R has a hole that touches

the exterior boundary of R.

5.3.1 The Sublevel-Set Filtration

In this subsection, we define a sublevel-set filtration. In our applications, we use the 1D PH

of the sublevel-set filtration to analyze local maxima in our data sets. We illustrate the idea

of a sublevel-set filtration in Figure 5.3.1.

Definition 5.3.1 (Sublevel-set filtration). Let K be the simplicial complex that we obtain

from our construction in Section 5.2 for a set S of regions, and let g be the assignment of 2D

simplices to the regions. Let F : S → R. We define the sublevel-set filtration function f by

considering the sublevel sets of F . On the 2D simplices σ, we define the filtration function

by

f(σ) = F (g(σ)) .

We extend the filtration function to the remaining (lower-dimensional) simplices as follows.

If σ is a vertex or edge on the boundary of K, we set

f(σ) = min
R
F (R).

Otherwise, we set

f(σ) = min{f(σ̃) | σ̃ is a 2D simplex for which σ is a vertex or edge of σ̃}. (5.1)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5.3.1: In panels (a)–(e), we show the α-sublevel sets for increasing α of a function

f : R2 → R that has two well-separated local maxima. In (a), for the smallest value of α,

there is one hole that corresponds to the global maximum. In (b), a second hole appears; it

corresponds to the other local maximum. In (d), the second hole is filled in. In (e), the first

hole is filled in. In panels (f)–(j), we show the α-sublevel sets for increasing α of a function

g : R2 → R whose two local maxima have the same locations and values as f , but are not

well-separated from each other. The second hole does not appear until the sublevel set in

panel (h). In all panels, the jagged edges are artifacts of the way that the Python package

matplotlib plots surfaces.
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At filtration parameter-value α, the simplicial complex Kα is the simplicial subcomplex

of K that is induced by the union of the set of 2D simplices σ such that F (g(σ)) ≤ α and the

set of vertices and edges that are on the boundary of K. Henceforth, we say that the vertices

and edges on the boundary of K are “exterior-adjacent.” By construction, the underlying

space of Kα is homeomorphic to the union of all regions R such that F (R) ≤ α and the

exterior boundary. We set f(σ) = minR F (R) for exterior-adjacent vertices and edges σ for

technical reasons that we will explain in a few paragraphs. In appendix 5.B.2, we explore an

alternative definition in which we set the filtration values of exterior-adjacent vertices and

edges σ to minR{F (R) | R ⊆ C}, where C is the connected component that contains σ.

The 1D PH of the sublevel-set filtration encodes information about the structure of the

local maxima of F . A region R of a geographical space is a local maximum if the value of

F (R) is larger than the value of F (N) for all neighboring regions N of R for which N ∩ R

is 1D. More generally, we consider a set E ⊆ S of regions (where |E| = 1 is possible) to be

a local maximum if

1. the interior of
⋃

R∈E E is connected,

2. the value of F is constant on E (we denote this value by F (E)), and

3. the value F (E) is larger than the value F (N) for all regions N ̸∈ E such that N ∩ R

is 1D for some R ∈ E.

If E is a local maximum, there is a 1D homology class whose death simplex is one of the

simplices in the preimage g−1(E), where g is the map from 2D simplices in K to geographical

regions in S. The class dies at filtration parameter-value α = F (E). For example, if F (R) is

the COVID-19 case rate in region R, then the 1D homology classes correspond to COVID-

19 anomalies and the death simplex of a 1D homology class indicates the epicenter of that

anomaly. The larger the value F (E) in comparison to nearby regions (including regions that

are not necessarily immediate neighbors), the more persistent the homology class is. If the
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union of all regions (excluding the exterior region) is not simply connected, then there is at

least one 1D homology class with an infinite death time. See Figure 5.4.1b for an example.

The infinite 1D homology classes correspond to the holes in the geographical space, rather

than to local maxima. The local maxima of F are in one-to-one correspondence with the

set of 1D homology classes with finite death times.12 There is a canonical mapping from

finite 1D homology classes to regions. A class that is represented by the simplex pair (σb, σd)

is mapped to the region g(σd) that includes σd. The region g(σd) is the location of the

local maximum of F that corresponds to the homology class,13 and the death simplex’s

filtration value f(σd) is the value of the local maximum. The death simplices of the finite 1D

homology classes and their filtration values give the local-maximum locations R and their

function values F (R).

With the 1D PH, we can do more than simply identify local maxima and their locations;

the 1D PH also reveals information about relationships between the local maxima. If the

local maxima are well-separated from one another, then the corresponding homology classes

all have early birth times. For example, the NYC data set has several connected compo-

nents. One can think of the global maximum of each connected component as being “totally

separated” from each other because they are on different connected components. The cor-

responding 1D homology classes are all born at the earliest possible filtration time, which

is minR F (R) (see Figure 5.4.2a). We show an example of well-separated local maxima in

Figure 5.1.1a. By contrast, the two local maxima in Figure 5.1.1b are not well-separated, so

the homology class that corresponds to the lower peak in Figure 5.1.1b is born at a larger

filtration value than the homology class in Figure 5.1.1a. See Figure 5.3.1 for a visualization

12Recall that in our definition of a local maximum, we only compare the value of a region R (or the
constant value of a set E of regions) to the values of neighbors N that have a 1D intersection with R (or
with a region in E). It is possible for two local maxima, R1 and R2, to have a 0D intersection. In that case,
let N be the set of regions that are adjacent to R1∪R2. Then N is homotopy-equivalent to a figure-8, which
has two 1D homology generators. One of them corresponds to R1, and the other one corresponds to R2.

13Let E ⊆ S be the local maximum that corresponds to the 1D homology class. If E = {R}, then
g(σd) = R. However, if E contains multiple regions, then g(σd) is only one of the regions in E.
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of the sublevel sets. The birth times of the 1D homology classes reflect structural information

about the local maxima.

We set the filtration value of exterior-adjacent vertices and edges to the global minimum

minR F (R) so that 1D PH can detect local maxima on the boundary of a geographical space.

(We consider an alternative approach in appendix 5.B.2.) This is important for the LA data

set of COVID-19 case rates. In Figure 5.4.7, we observe that many of the most-persistent

COVID-19 anomalies are on the boundary of the geographical space; it is crucial that we are

able to detect them. If we had not defined the exterior-adjacent filtration values in this way,

then the filtration value of exterior-adjacent vertices and edges σ would be F (R), where R

is the unique region that is adjacent to σ. If R is a local maximum, its corresponding 1D

homology class is born and dies at filtration parameter-value α = F (R). In the PD, it then

appears as a point on the diagonal. Therefore, for 1D PH to detect local maxima on the

boundary of a geographical space, we must adjust the filtration values of exterior-adjacent

vertices and edges.

The 0D homology classes correspond to local minima of F . However, unlike for the 1D

homology classes, there is not a natural mapping from 0D homology classes to the locations

of the minima. In appendix 5.B.1, we discuss the interpretation and computation of 0D

homology classes.

5.3.2 The Superlevel-Set Filtration

An alternative to using the sublevel-set filtration from Section 5.3.1 is to use superlevel sets

of F to construct a superlevel-set filtration. In our case study on COVID-19 vaccination

rates in NYC, we use a superlevel-set filtration to analyze local minima of the vaccination

rate. We define a local minimum analogously to the way that we defined a local maximum

in Section 5.3.1. We illustrate the idea of the superlevel-set filtration in Figure 5.3.2.

Definition 5.3.2 (Superlevel-set filtration). Let F : S → R for a set S of regions. The
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Figure 5.3.2: The α-superlevel sets, with α decreasing from left to right, for the graph of a

function f : R2 → R with two local minima.

superlevel-set filtration function f is the sublevel-set filtration function that is induced by

−F .

At filtration parameter-value α, the simplicial complex K−α is the simplicial subcomplex

of K that is induced by the union of the set of exterior-adjacent simplices and the set of

2D simplices σ for which F (g(σ)) ≥ α. By construction, the underlying space of K−α

is homeomorphic to the union of regions R for which F (R) ≥ α along with the exterior

boundary. Local maxima of F now correspond to 0D homology classes, and local minima of

F now correspond to 1D homology classes; this is the opposite situation from the sublevel-

set filtration. Our discussion of local maxima for the sublevel-set filtration in Section 5.3.1

applies to local minima for the superlevel-set filtration, and our discussion of local minima

for the sublevel-set filtration in Section 5.3.1 applies to local maxima for the superlevel-set

filtration. The only difference is that the filtration values in the superlevel-set filtration are

the additive inverses of the function values of F . This implies, for example, that the death

filtration value of a 1D homology class that corresponds to a local minimum at region R is

α = −F (R), rather than α = F (R).

5.3.3 A Time-Dependent Filtration

Suppose that we have a time-dependent, real-valued function F (t, R) whose domain is

{t0, t1, . . . , tn} × S, where t0 ∈ R is the initial time and tn ∈ R is the final time. For
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example, in Section 5.4.2, the value F (t, R) is the 14-day mean per capita COVID-19 case

rate in neighborhood R on day t. We seek to analyze the structure of local extrema as they

change with time.

Definition 5.3.3 (Time-dependent sublevel-set filtration). Let F : {t0, t1, . . . , tn} × S → R

be a time-dependent function on a set S of regions, and let K be the simplicial complex

for S from the construction in Section 5.2. At each time ti ∈ {t0, t1, . . . , tn}, we define the

time-dependent filtration function f(ti, ·) to be the sublevel-set filtration that is induced by

F (ti, ·). To extend this filtration function to the entire interval [t0, tn], we linearly interpolate

f(·, σ) on each subinterval [ti, ti+1] for all simplices σ ∈ K.

In the present chapter, we only use the time-dependent sublevel-set filtration, but one can

analogously define a time-dependent superlevel-set filtration. We have implemented both of

these filtrations in our code.

We use a time-dependent sublevel-set filtration to construct a vineyard. This allows us

to track how the extrema move in both space and time. As in Section 5.3.1, each finite vine

corresponds to a local maximum whose location at time t is given by the region g(σd(t)) that

contains the vine’s time-dependent death simplex σd(t).
14. The length of a vine corresponds

to its persistence in time.

5.4 Case Studies

We now apply our methods to two data sets, which we illustrate in Figure 5.4.1.

14It is known that vineyards are not stable; see Appendix 3.A in Chapter 3 for an example of vineyard
instability. A small perturbation in filtration values can cause crossing of vines that previously did not cross
(i.e., it is an “avoided crossing”) This, in turn, causes simplex pairings to change. Therefore, the geographical
region g(σd(t)) that corresponds to a particular vine at time t is sensitive to small perturbations in filtration
values.
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(a) NYC zip codes (b) LA neighborhoods

Figure 5.4.1: We show (a) the per capita COVID-19 full vaccination rate in NYC by (modi-

fied) zip code on 23 February 2021 and (b) the 14-day mean per capita COVID-19 case rate

in the city of LA by neighborhood on 30 June 2020. In both (a) and (b), the white regions

are geographical regions that do not belong to the depicted city.

5.4.1 COVID-19 Vaccination Rates in New York City

We examine vaccination rates in (modified) zip codes of NYC.15 We demonstrate the effects

of the two filtrations that we defined in Section 5.3. The geographical boundaries of the zip

codes are given by a shapefile [NYCc]. From the shapefile, we construct a simplicial

complex K in the manner that we described in Section 5.2. The vaccination data set, which

we obtained from the NYC Department of Health & Mental Hygiene website [Cit], consists

of the number of fully vaccinated people in each zip code on 23 February 2021.16 For each

zip code, we divide this number by its population estimate in [Cit] to obtain a per capita

vaccination rate. For zip code R, we define F (R) to be the per capita vaccination rate in R

15The NYC Department of Health and Mental Hygiene uses modified zip code tabulation areas (MOD-
ZCTA) for COVID-19 data [NYCc]. In these modified zip codes, some zip codes with small populations are
combined [NYCb]. We henceforth refer to modified zip codes as simply “zip codes.”

16At the time, the NYC Department of Health and Mental Hygiene defined “fully vaccinated” people to
be individuals who either had received both doses of the Pfizer or Moderna vaccine or had received one dose
of the Johnson & Johnson vaccine. (This differs from common parlance at that time, in which people were
sometimes considered to be “fully vaccinated” only after two weeks had passed since their final dose of a
vaccine.)
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on 23 February 2021.

We do not possess the daily vaccination-rate data that is necessary to compute a vineyard,

so instead we calculate the PH of K with the sublevel-set and superlevel-set filtrations from

Sections 5.3.1 and 5.3.2. We show the resulting PDs for the 1D PH in Figure 5.4.2. As we

described in Section 5.3.1, the points in the PD from the sublevel-set filtration correspond to

zip codes in which vaccination rates are higher than in the neighboring zip codes. The death

of a homology class is the vaccination rate in that zip code, and the birth of a homology

class reflects the extent of spatial isolation of that zip code from other local maxima. An

earlier birth filtration implies more spatial isolation. Similarly, the points in the superlevel-

set filtration PD correspond to zip codes in which the vaccination rate is lower than in the

neighboring areas. As we discussed in Section 5.3.1, we obtain the zip code that is associated

with a homology class from its death simplex σd. We color the points in the PDs by the

boroughs of their corresponding zip codes.

In Figures 5.4.3 and 5.4.4, we highlight the locations of the maxima and minima, respec-

tively. In Figures 5.4.3a and 5.4.4a, we color the extrema based on their vaccination rates.

In Figure 5.4.4a, we observe that the minima all have near-0 vaccination rates. In Figures

5.4.3b and 5.4.4b, we color each zip code according to the persistence (i.e., death − birth)

of its corresponding homology class. These two figures incorporate global information about

the structure of the extrema, as we described in the paragraph above and in Section 5.3.

For example, in Figure 5.4.4b, we observe that some of the minima (specifically, those with

the largest persistence values) are significantly more spatially separated than others, even

though all of the minima have similar vaccination rates. A larger persistence of a local min-

imum indicates a greater difference in the vaccination rate between the minimum and the

neighboring zip codes. A zip code that is a local minimum with a larger persistence may

have a greater inequity in vaccine access than its neighboring regions. Such insights may be

useful for sociologists and policy makers.

An issue arises from the fact that several of the NYC zip codes are islands and thus are
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(a) Sublevel-set filtration (b) Superlevel-set filtration

Figure 5.4.2: PDs for the 1D PH of the NYC simplicial complex with filtrations that are

induced by the per capita full vaccination rate by zip code on 23 February 2021. We show

only the finite homology classes. Each point in a PD corresponds to a zip code, which

we label according to its borough [NYCa], that has (a) a higher vaccination rate than its

neighboring zip codes or (b) a lower vaccination rate than its neighboring zip codes.

(a) (b)

Figure 5.4.3: Maps of the local maxima of the NYC vaccination-rate function. (a) Color

corresponds to the vaccination rate of a zip code. (b) Color corresponds to the persistence

(i.e., death− birth) of the corresponding homology class.
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(a) (b)

Figure 5.4.4: Maps of the local minima of the NYC vaccination-rate function. (a) Color

corresponds to the vaccination rate of a zip code. (b) Color corresponds to the persistence

(i.e., death− birth) of the corresponding homology class.

isolated. These islands are trivial extrema because they are not adjacent to any other zip

codes. One may wish to exclude these trivial extrema from a PD. In appendix 5.B.2, we

propose alternative methods for handling disconnected geographical spaces such as NYC.

One can use the PDs in Figure 5.4.2 to study inequities in vaccine access. For example,

one may seek to discern patterns in demographic data that correspond to the most-persistent

points in the PDs. For interested readers, we provide some demographic data in appendix

5.E.

5.4.2 COVID-19 Case Rate in the City of Los Angeles

We now examine time-dependent COVID-19 case rates in neighborhoods of the city of LA.17

The geographical boundaries of the neighborhoods are given by a shapefile [Geo]. From

17We exclude Angeles National Forest because it has only 20 inhabitants.
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the shapefile, we construct a simplicial complex K in the manner that we described in

Section 5.2. We know the number of cases in each neighborhood on each day from 25 April

2020 to 25 April 2021. For each neighborhood, we divide the case count by the neighborhood

population to obtain per capita case rates, and we calculate a running 14-day mean18 on each

day to smooth the data. For neighborhood R and time t ∈ {0, 1, . . . , 365}, we define F (t, R)

to be the 14-day mean per capita case rate in R on day t after 25 April 2020. We compute

the vineyard for a simplicial complex K using the time-dependent sublevel-set filtration that

is induced by F (t, R). We show the most important and interesting subsets of our vineyard

in Figures 5.4.5 and 5.4.8. See Figure 5.C.1 for the full vineyard.

The vines in the vineyard correspond to COVID-19 anomalies, which we define to be

neighborhoods that have a higher running 14-day mean COVID-19 case rate than the sur-

rounding neighborhoods for at least one day. Anomalies that are more spatially isolated yield

vines with earlier births, and anomalies with high case rates yield vines with late deaths. See

Section 5.3.1 for a detailed discussion. We color each vine according to the geographical lo-

cation(s) of its anomaly. As we discussed in Section 5.3.3, we obtain the anomaly location(s)

from the time-dependent death simplex σd(t) of a vine. The function σd(t) is a piecewise-

constant function; as it changes, so does the location of the associated anomaly. Therefore,

the color of a vine can change with time. For example, consider Figure 5.4.5, where we show

the five most-persistent vines.19 The global maximum of the data set is initially in Little

Armenia, but it moves to Vermont Square at about t = 220. In the vineyard, we see this from

the vine that is initially blue (for Little Armenia) from time t = 0 until about t = 220 and

then orange (for Vermont Square) starting from about time t = 220 through time t = 365.

There are also other vines whose locations change with time. Such geographical location

changes do not need to be adjacent, but they often are near each other. In Figure 5.4.7, we

18On day t, we take the mean of the case rates on days t, t − 1, . . . , t − 13. Some outlets (e.g., [STA])
report running 14-day means of COVID-19 case counts, and other outlets (e.g., [The]) report 14-day trends.

19Recall from Chapter 2.5 that the persistence of a vine is
∫ T

t0
[f(t, σd(t)− f(t, σb(t))]dt.
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(a)

(b)

Figure 5.4.5: (a) The five most-persistent vines of the vineyard for the LA simplicial complex

with a sublevel-set filtration from the 14-day mean per capita case rate during the period 25

April 2020–25 April 2021. Each vine corresponds to a COVID-19 anomaly. We color each

vine according to the geographical locations of its associated anomaly, which can change

with time. (See Figure 5.4.6 for the legend.) (b) A different view of the same five vines.
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Figure 5.4.6: The legend for Figure 5.4.5. Each of the depicted regions is a local maximum

of the COVID-19 case-rate function for some subset of the time period 25 April 2020–25

April 2021.

Figure 5.4.7: A map of the most-persistent anomalies of the COVID case-rate function in

LA during the time period 25 April 2020–25 April 2021. Each of the highlighted regions is

a local maximum of the COVID-19 case-rate function for some subset of the time period.

highlight these anomalies on a map.

A vineyard encodes the temporal persistence of anomalies. The length of time that a

vine is not on the diagonal plane of a vineyard, which we henceforth call the “length” of

a vine, is the amount of time that an anomaly exists in the vineyard. At the beginning

of the COVID-19 pandemic, all neighborhoods had low per capita case rates. We expect

an emerging anomaly to have a low case rate for a long time and then for the case rate to

grow rapidly starting at some later time. An emerging anomaly in the “low-case-rate” phase

yields a vine that is close to the diagonal for a long time. By examining the lengths of vines,

we hypothesize that one can distinguish between concerning emerging anomalies (i.e., those
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that may become major COVID-19 anomalies in the future) and anomalies of lesser concern,

even when the anomalies have similar case rates.

In Figure 5.4.8, we show case rates early in the time period that we track (and close to

the “beginning”20 of the COVID-19 pandemic) by computing the vineyard for the period

25 April 2020–25 May 2020. In the depicted vineyard, we exclude the 20 most-persistent

vines to more easily see the vines that are close to the diagonal plane. Many of these

latter vines are short, so their associated anomalies are short-lived. The longer vines are

anomalies that are longer-lived and thus of greater concern in the long run, even though

they are close to the diagonal during the period 25 April 2020–25 May 2020. For example,

there is an anomaly at Wilmington that we show with the light-blue vine. This vine is close

to the diagonal plane, but it has a large temporal persistence during the period 25 April

2020–25 May 2020. In Figure 5.4.5, we see that Wilmington eventually becomes one of the

most-persistent anomalies in LA.

5.5 Discussion

In our approach, we needed to make a variety of choices. There are other ways to construct

a simplicial complex to represent a geographical space. There are also other choices of topo-

logical tools for analyzing time-varying data. We briefly discuss some of these possibilities

in the next several paragraphs.

If one only cares about local information (specifically, the locations and values of the

extrema) and not about global information (such as the spatial separation between extrema),

then an alternative method for constructing a simplicial complex K is to construct the dual

graph of the set S of regions. That is, for each region component R, there is a vertex

vR ∈ KR, and if regions R1 and R2 are adjacent, then there is an edge between vR1 and vR2 .

20The COVID-19 pandemic was declared a national emergency on 13 March 2020 [Tru], and the city of
LA closed its public schools and ordered the closure of restaurants, bars, and gyms on 16 March 2020 [Kan].

130



(a)

(b)

Figure 5.4.8: (a) Vineyard for the LA simplicial complex with a sublevel-set filtration for the

14-day mean per capita case rate during the period 25 April 2020–25 May 2020. We exclude

the 20 most-persistent vines to more easily see the vines that are near the diagonal plane.

Each vine is associated with a COVID-19 anomaly, and we color each vine according to the

geographical location(s) of its anomaly. See Figure 5.4.9 for the legend. (b) A different view.
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Figure 5.4.9: The legend for Figure 5.4.8. Each of the depicted regions is a local maximum

of the COVID-19 case-rate function for some subset of the time period 25 April 2020–25

May 2020.

If we wish to study local maxima of a function F : S → R, then we define the filtration of an

edge e = (vR1 , vR2) to be f(e) = max{F (R1), F (R2)} and we define the filtration of a vertex

vR to be f(vR) = 0. (There is an analogous definition for studying local minima.) In the 0D

PH of the filtered complex (K, f), the homology classes correspond to local maxima. If a

homology class’s birth simplex is the vertex vR, then R is the corresponding local maximum

and F (R) is the death of the homology class. All the 0D homology classes are born at 0;

thus the birth does not provide any additional information, as it did for our construction

in Section 5.2. Because of this, we do not obtain any global information from the PH of

(K, f).

Rasterization gives another alternative method to construct a simplicial complex from

shapefile data. When one rasterizes a shapefile, one can transform the resulting image

into a simplicial complex by imposing the pixels of the image onto a triangulation of the plane.

However, our approach has several key advantages over rasterization. First, the number of

simplices in the simplicial complex that one obtains by rasterizing a shapefile is orders-of-

magnitude larger than the number of simplices in our construction. Computing the PH of

a simplicial complex with fewer simplices allows significantly faster computations. Second,

the simplicial complex that one obtains by rasterization has no guarantee of “topological

correctness,” as property (P) may not hold. The extent to which the resulting simplicial

complex is topologically correct depends on the resolution of the rasterization, and using

a higher resolution requires more simplices. Our construction of simplicial complexes also
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yields a natural way to map a 2D simplex to the geographical region that contains it. We

use this preservation of geographical information to find the locations of the local extrema.

Lastly, our construction allows us to detect anomalies on the boundary of a geographical

space.

Our construction uses geographical adjacencies, but one may instead wish to employ “ef-

fective” distances between regions. One can calculate effective distances using mobility and

transportation data. Two regions that are closely connected via transportation are effectively

closer than they are based on direct geographical considerations; this affects phenomena such

as the dynamics of infectious diseases [BH13,SBS21].

We used only 1D PH to study extrema, but one can alternatively use 0D PH if one is not

interested in the geographical locations of the extrema; we discuss this in Appendix 5.B.1.

In Appendix 5.B.2, we discuss alternative filtrations that one can apply to geographical

spaces (such as NYC) that are disconnected. We used a time-dependent function on a

geographical space to compute vineyards, but an alternative is to use an approach that

is based on multiparameter PH. In Appendix 5.B.4, we discuss how one does this when

the time-dependent function F (·, R) is monotonic for all regions R. When F (·, R) is not

monotonic for all R, we discuss in Appendix 5.B.5 how one can use an approach that is

based on multiparameter zigzag PH. Both multiparameter PH and multiparameter zigzag

PH are difficult to visualize, and they both suffer from a lack of easily interpretable invariants.

Consequently, we chose to compute vineyards for our applications.

5.6 Conclusions

We developed methods to directly incorporate spatial structure into applications of topolog-

ical data analysis (specifically, of persistent homology) to geospatiotemporal and geospatial

data. We defined a way to construct a simplicial complex that efficiently and accurately

represents a geographical space. Given a function on a geographical space, we defined fil-
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tration functions on a simplicial complex such that the homology classes are in one-to-one

correspondence with either local minima or local maxima. By constructing a vineyard, one

can track how the local extrema move and change with time.

We conducted case studies using COVID-19 vaccination and case-rate data. In one case

study, we examined geospatial vaccination-rate structure in New York City on one day. In our

other case study, in which we examined geospatiotemporal data, we constructed a vineyard

to examine COVID-19 case-rate anomalies in the city of Los Angeles over the course of one

year. From the vineyard, we identified the locations of these anomalies and measured the

severity of the associated disease outbreaks. The vineyard also captures information about

the relationships between anomalies, such as the extent to which they are isolated from each

other. We calculated the temporal persistence of each anomaly based on the length of its

corresponding vine.

There are several ways to build on our research. It is desirable to discover how to use a

vineyard to produce systematic forecasts of how a disease (or something else) will spread in

space and time. We hypothesized in Section 5.4.2 that one can identify “emerging anomalies”

in the COVID-19 case-count data set as vines that are long but close to the diagonal plane.

In other applications, one may wish to forecast which locations of local extrema will have the

largest data values and/or the largest temporal persistences. One may also wish to forecast

how extrema will move in space. It will be valuable to investigate how to use the output of

our approach as an input to forecasting models.

Our approach is useful for a wide variety of applications, and it seems possible to gen-

eralize it for many others. For example, given spatiotemporal voting data, one can identify

regions that vote differently from the neighboring regions. This would allow one to generalize

the work of [FP21] to track the intensity of voting differences and study spatial relationships

between different political islands. Our methodology is not restricted to geographical data.

It is applicable whenever one has a surface that is partitioned into a finite number of re-

gions and a real-valued function (or a sequence of real-valued functions) on those regions.
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For example, it may be possible to apply our approach to grayscale image data by parti-

tioning an image into regions in which pixel values are close to each other. It also seems

possible to extend our approach to higher dimensions; this would require constructing a

higher-dimensional simplicial complex when one has adjacency information for the higher-

dimensional regions. For example, in three dimensions, one can use such an extension of our

approach to study atmospheric, oceanic, and video dynamics.
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APPENDIX

5.A Details of our Simplicial-Complex Construction

5.A.1 Boundary-Sequence Adjustment

Before constructing the polygons with holes PR for each region R, we adjust the boundary

sequences if necessary. The adjustment procedure proceeds as follows. Let DR
0 , D

R
1 , . . . , D

R
hR

be the disks in the statement of assumption (A2), let BR
i = ∂DR

i , and let SR
i denote the

sequences of neighbors around BR
i . First, we adjust the sequences so that, for each region

R and each BR
i , the first element of SR

i has a 1D intersection with R. We then adjust the

sequences so that |SR
i | ≥ 3 for all R and i. When |SR

i | < 3, there are two cases:

1. (Case 1) If |SR
i | = 1, let N be the unique element of SR

i . This situation occurs if R is

an island, and it can also occur if R lies inside N or if N lies inside R. We adjust SR
i

to be the sequence {N,N,N}. If N is not the exterior region, let j be the index such

that BN
j intersects R. Adjust SN

j to be the sequence {R,R,R} to compensate for the

adjustment that we made to SR
i .

2. (Case 2) If |SR
i | = 2, let N1 and N2 be the two elements of SR

i . If BR
i intersects R,

then R is adjacent to the exterior; without loss of generality, let N1 denote the exterior

region. For example, in Figure 5.2.3a, SLittle Bangladesh
0 = {Koreatown,Wilshire Center}.

We adjust SR
i to be the sequence {N1, N1, N2}. If N1 is not the exterior region, which

occurs if R is not adjacent to the exterior, then we also adjust SN1
j to compensate,

where j is the index of the boundary component of N1 that intersects R. In this case,

we adjust SN1
j by repeating R an additional time.
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5.A.2 Construction of K from the Set {PR | R ∈ S}

We present two lemmas that we used in Section 5.2 to construct K by gluing together the

set {PR | R ∈ S} of polygons with holes.

Lemma 5.A.1. Let R1 and R2 be connected regions in a set S that satisfies assumptions

(A1)–(A4). Let D0, . . . , Dh be the disks in the statement of (A2) for R1. It is then the case

that exactly one of the following statements is true:

1. R2 ⊆ int(D0)
c and R2 ∩ int(Di) = ∅ for all i > 0; or

2. there is an i > 0 such that R2 is enclosed in Di and R2 ∩ int(Dj) = ∅ for all j ̸= i.

Proof. Because the interiors of R1 and R2 do not intersect, it must be true that int(R2) ⊆

int(D0)
c ∪
(⋃h

i=1 int(Di)
)
. Therefore,

int(R2) =
(
int(D0)

c ∩ int(R2)
)
∪
( h⋃

i=1

int(Di) ∩ int(R2)
)
.

The claim follows because int(R2) is connected and int(D0)
c, int(D1), . . . , int(Dh) are pairwise

disjoint.

Lemma 5.A.2. Let PR be the annotated polygon with holes for a connected region R, let

v be a vertex in PR, and let {R,N1, . . . , Nn} be the sequence of region adjacencies for v. If

n ≥ 2 and N1, . . . , Nn are connected, then PR has at most one other vertex w with the same

set of region adjacencies. Additionally, if w exists, its sequence of region adjacencies must

be {R,Nn, . . . , N1}, which is the mirror of the orientation of neighbors around v.

Proof. Suppose that w is another vertex in PR with the same set of region adjacencies as v.

Let v′ and w′ denote the points on the boundary of R that correspond, respectively, to v and

w. Let R0 be any connected region that is adjacent to both v′ and w′, let D0, D1, . . . , Dh

denote the disks in the statement of (A2) for R0, and let Bi = ∂Di. Suppose that v′ is in

Bi. If i = 0, then there is a neighboring region N that is contained entirely in int(D0)
c (by
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Lemma 5.A.1) and adjacent to v′. If i > 0, then there is a neighboring region N that is

contained entirely in int(Di) (by Lemma 5.A.1) and adjacent to v′. In either case, w′ ∈ Bi

because w′ is also adjacent to N . Let Bi1 , . . . , Bim be the boundaries that contain v′. As we

just showed, it must also be true that w′ ∈ Bi1 , . . . , Bim . If m > 1, then w′ ̸∈ Bi1 ∩ · · · ∩Bim

because Di1 ∩ · · · ∩Dim is a single point by assumption (A2); this is a contradiction. This

argument shows that if v and w have the same set of region adjacencies, then there is a

unique Bi that contains v
′, there is a unique Bj that contains w, and Bi = Bj.

Let B be the disk boundary of R that contains v and w. Either the interior of R is

contained in the region that is bounded by B or it is contained in the complement of the

region that is bounded by B. Without loss of generality, we suppose that the former is true.

Let π be the permutation of {1, . . . , n} such that the sequence of region adjacencies around

w is {R,Nπ(1), . . . , Nπ(n)}. Let i1, i2 ∈ {1, . . . , n}, with i1 < i2, be a pair of indices. By the

argument above (with R0 = Ni1), there is a unique disk boundary B1 for Ni1 that contains

v′ and w′. Similarly, there is a unique disk boundary B2 for Ni2 that contains v′ and w′. We

have that v′, w′ ∈ B1 ∩B2.

Because B1 is homeomorphic to S1, there exist paths γ1 and γ2 from v′ to w′ such that

γ1 ∪ γ2 = B1. Because the interior of Ni1 does not intersect R, it follows that γ1 and γ2 are

both in the complement of the region that is bounded by B′. There are two paths from v′

to w′ on B′. Let τ be the unique choice of path such that R is not contained in the region

that is bounded by the closed curve τ ∪ γ1. Either γ1 is in the region that is bounded by the

closed curve τ ∪γ2 or γ2 is in the region that is bounded by the closed curve τ ∪γ1. Without

loss of generality, we suppose that the latter is true.

Analogously to our argument above, there exist paths γ3, γ4 from v′ to w′ such that

γ3 ∪ γ4 = B2 and γ3 and γ4 are in the complement of the region that is bounded by B.

Because B2 is homeomorphic to S1, the paths γ3 and γ4 are either both contained in the

region that is bounded by γ1 ∪ τ or both contained in the complement of the region that is

bounded by γ2 ∪ τ . Because i2 > i1, it must be the former case. Therefore, π(i2) < π(i1).
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It follows that π is order-reversing. If there were another vertex x in B that is adjacent to

the same set of regions, then the orientation of those regions around x would be the mirror

of both the orientation of regions around v and the orientation of regions around w. This

gives a contradiction when n ≥ 2.

For example, let R be the region Koreatown in Figure 5.2.3a. The two vertices that are

shared by Koreatown and Little Bangladesh have the same region adjacencies, but they have

mirrored orientations.

5.B Alternative Topological Approaches

5.B.1 0D Persistent Homology

We do not compute 0D PH in the present chapter. However, it is appropriate to use 0D

PH to study the structure of local extrema when one is not interested in their geographical

locations.

Let F be a real-valued function on a set S of geographical regions. In Section 5.3.1

(respectively, Section 5.3.2), we described how one can analyze the local maxima (respec-

tively, local minima) of F by computing the 1D PH of the sublevel-set filtration (respectively,

superlevel-set filtration). We now discuss how the 0D PH of the sublevel-set filtration (re-

spectively, superlevel-set filtration) yields information about local minima (respectively, local

maxima) of F .

The 0D PH of the sublevel-set filtration encodes information about the structure of local

minima of F in a way that is similar to how 1D PH encodes information about the structure

of local maxima. One can imagine taking α-sublevel sets of the function in Figure 5.3.2

(where we display α-super level sets) to see why this is true. A region R is a local minimum

if F (R) is less than F (N) for all neighboring regions N of R for which N ∩R is 1D. If R is

a local minimum, there is a 0D homology class whose birth simplex is one of the vertices in
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one of the triangles in the preimage g−1(R). The class is born at filtration parameter-value

α = F (R). For the LA data set of COVID-19 case rates, 0D homology classes correspond to

regions that have a lower case rate than neighboring regions. The smaller the value F (R) in

comparison to the neighboring regions, the more persistent the homology class is. There is

also one infinite 0D homology class for each connected component. One can think of these

classes as corresponding to a “local minimum” in the exterior region. However, unlike for 1D

homology classes, there is no canonical map from 0D homology classes to regions because

the birth simplex of a 0D class is a vertex that belongs to several regions. Analogously,

the 0D PH of the superlevel-set filtration encodes information about the structure of local

maxima of F . However, as with a sublevel-set filtration, there is no canonical map from 0D

homology classes to regions. Therefore, one cannot easily use the 0D PH of the sublevel-set

filtration (respectively, superlevel-set filtration) to identify the geographical locations of the

local minima (respectively, local maxima), so we did not examine 0D PH in our case studies.

5.B.2 Alternative Filtrations for Disconnected Geographical Spaces

In Section 5.3.1 (respectively, Section 5.3.2), we defined a sublevel-set filtration (respectively,

superlevel-set filtration) in which we set the filtration values of all exterior-adjacent vertices

and edges to the global minimum (respectively, to the additive inverse of the global maxi-

mum) of F . In applications in which the union of all regions is not connected, such as for

the NYC zip codes in Section 5.4.1, an alternative definition is to consider extrema on each

connected component separately, rather than on the entire geographical space at once. This

solves the problem that an isolated region (i.e., a geographical island21) is trivially both a

local maximum and a local minimum because it is not adjacent to any other regions. In

Definitions 5.3.1 and 5.3.2, they appear as 1D homology classes that are born at the earliest

filtration time; this may falsely emphasize the persistence of these trivial extrema.

21These are literal islands, rather than “islands” from a PH computation.
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Definition 5.B.1 (Alternative Sublevel-Set Filtration). Let K be the simplicial complex

from Section 5.2 for a set S of regions, and let g be the assignment of 2D simplices to

regions. Additionally, let F : S → R. If σ is a vertex or edge on the boundary of K, let

σ̃ be the 2D simplex for which σ is on the boundary of σ̃. On σ, we define the alternative

sublevel-set filtration function f to be

f(σ) = min
R

{F (R) | R ⊆ C} ,

where C is the connected component that contains the region g(σ̃). On all other simplices,

the filtration function f is equal to the sublevel-set filtration function.

Definition 5.B.2 (Alternative Superlevel-Set Filtration). Let F : S → R for a set S of

regions. The alternative superlevel-set filtration function f is the alternative sublevel-set

filtration function that is induced by −F .

Definitions 5.B.1 and 5.B.2 are appropriate options if one seeks to treat each connected

component independently. In these alternative definitions, each connected component uses

only information about other regions in the same component. One then compares region

values F (R) to global extremum values on their connected components. One consequence

of using these definitions is that one ignores isolated regions, which are trivial extrema. In

Definitions 5.B.1 and 5.B.2, these isolated extrema appear as points on the diagonal of a

PD. This is often an appropriate way to handle isolated regions. However, when an isolated

region is a global extremum of a data set, this may be undesirable. This situation never

occurs in our data.

NYC has 14 connected components; several of them are zip codes that correspond to

isolated islands. The alternative sublevel-set and superlevel-set filtrations effectively treat

each connected component of NYC separately. In Figures 5.B.1a and 5.B.1b, we show the

PDs that we compute using the alternative sublevel-set and superlevel-set filtrations that

are induced by the vaccination-rate function that we defined in Section 5.4.1. In these PDs,

we compare a zip code’s per capita vaccination rate to the global minimum or maximum
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(a) Alternative sublevel-set filtration (b) Alternative superlevel-set filtration

Figure 5.B.1: PDs for the 1D PH of the NYC simplicial complex with filtrations that are

induced by the per capita full vaccination rate by zip code on 23 February 2021. We show

only the finite homology classes. Each point in a PD corresponds to a non-isolated zip code,

which we label according to its borough [NYCa], that has (a) a higher vaccination rate than

its neighboring zip codes or (b) a lower vaccination rate than its neighboring zip codes.

rate on its connected component, rather than to the global extremum in all of NYC. More

precisely, the birth time of a connected component’s global extremum is either the lowest

per capita vaccination rate of that component (for the alternative sublevel-set filtration) or

the additive inverse of the highest per capita vaccination rate of that component (for the

alternative superlevel-set filtration). Consequently, the trivial island extrema yield homology

classes on the diagonal of a PD.

The alternative sublevel-set filtration and the alternative superlevel-set filtration, along

with time-dependent versions of them, are implemented in our code at https://bitbucke

t.org/ahickok/vineyard/src/main/.

5.B.3 Level-set complexes

This appendix is adapted from [FHP22] and consists of only the contributions that I led.
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In this appendix, we use a level-set construction of simplicial complexes, which were

introduced in [FP21], to study anomalies in COVID-19 infections.

5.B.3.1 Definition of a Level-Set Complex

We now briefly review the level-set construction of filtered complexes that was introduced

in [FP21]. In a level-set filtration, one describes data as a manifold. Let M denote a two-

dimensional (2D) manifold, such as data in an image format. We construct a sequence

M0 ⊆M1 ⊆ · · · ⊆Mn

of manifolds (where M0 is an approximation of M) as follows. At each time t, we evolve the

boundary Γt of Mt outward according to the level-set equation of front propagation [OF03].

Specifically, for a manifoldM that is embedded in R2, we define a function ϕ(x⃗, t) : R2×R →

R, where ϕ(x⃗, t) is the signed distance function from x⃗ to Γt at time t ≥ 0. We propagate

Γt outward at velocity v using the partial differential equation

∂ϕ

∂t
= v|∇ϕ| (5.2)

until all homological features die. The evolution (5.2) gives a signed distance function at

each time t. We take Mt to be the set of points x⃗ such that ϕ(x⃗, t) > 0. (This corresponds

to points inside the boundary Γt.) In our examples in this appendix, we use v = 1.

By imposing {Mi} over a triangular grid of points (see [FP21]), we obtain a corresponding

simplicial complex Ki for each Mi. Because the level-set equation (5.2) evolves outward, we

satisfy the condition that Ki ⊆ Ki+1 for all i, so {Ki} is a filtered complex.

5.B.3.2 An Application of Level-Set Complexes to COVID-19 Data

We use PH to analyze the spatial properties of the spread of COVID-19 in Los Angeles (LA)

neighborhoods and California counties. In contrast to the main part of this chapter, we

do not consider spatiotemporal dynamics. We consider two data sets. The first is a highly

143



(a) LA Neighborhoods (b) California Counties

Figure 5.B.2: Cumulative COVID-19 case counts on 30 June 2020 in (a) Los Angeles neigh-

borhoods and (b) California counties. We plot the LA case counts on a linear scale and the

California county case counts on a (natural) logarithmic scale.

granular data set that consists of COVID-19 case counts in 136 LA neighborhoods on 30

June 2020. The second is a coarser data set that consists of case counts in the 58 counties

of California on the same day [Fac]. For each data set, we also have geographic information

in the form of a shapefile [Por19,Geo]. We visualize these data sets in Figure 5.B.2.

Let MLA denote the 2D manifold that consists of the union of LA neighborhoods with

fewer than 750 cumulative cases, and let MCA denote the union of California counties with

fewer than 5,000 cumulative cases. We approximate these manifolds by rasterizing the as-

sociated shapefiles to obtain manifolds MLA
0 and MCA

0 . We show MLA
0 and MCA

0 in Fig-

ure 5.B.3. As we described in Section 5.B.3.1, we construct sequences of manifolds starting

from MLA
0 and MCA

0 using level-set dynamics (5.2). We then construct a level-set filtration

for each of these sequences by imposing the manifolds in them on a triangulation of the

plane.
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(a) MLA
0 (b) MCA

0

Figure 5.B.3: Initial manifolds for the level-set filtrations that we construct from data of

the spread of COVID-19. (a) The manifold MLA
0 is an approximation of the manifold MLA,

which consists of the union of LA neighborhoods with fewer than 750 cumulative cases on 30

June 2020. (b) The manifold MCA
0 is an approximation of the surface MCA, which consists

of the union of California counties with fewer than 5,000 cumulative cases on 30 June 2020.
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In Figure 5.B.4, we show the PDs that we compute for the 1D PH of our level-set

complexes for the two data sets. These PDs can help us identify COVID-19 anomalies. We

define an “anomaly” to be a set of geographical regions (neighborhoods in the LA data and

counties in the California data) in which the case count is higher than in the surrounding

area. This notion of an anomaly is analogous to the political “islands” that were studied

using PH in [FP21]. An anomaly with a case count that is at least as large as the threshold

(750 for LA neighborhoods and 5,000 for California counties) appears as a 1D hole in M0,

unless the anomaly is adjacent to the boundary of the map (e.g., LA County in California).

The anomalies that are not adjacent to the boundary correspond to homology classes that are

born at time 0. The persistence of the corresponding 1D homology class is proportional to

the geographic size of the anomaly. Therefore, the PDs reflect both the number of anomalies

and the sizes of the anomalies.

There is not a one-to-one correspondence between anomalies and homology classes. Ho-

mology classes that are born after time 0 usually reflect only the geography of the regions,

although they sometimes correspond to anomalies on the boundary of the map. There is

also not a one-to-one correspondence between anomalies and homology classes that are born

at time 0. Some of the homology classes that are born at 0 are simply holes in the map

(e.g., see Figure 5.B.2a), and anomalies that are adjacent to a boundary do not necessarily

correspond to any homology class.

The analysis in this appendix shows that one can use a level-set filtration to study

the number and sizes of COVID-19 anomalies on both a granular level (by considering

neighborhoods in Los Angeles) and a coarse level (by considering counties in California). We

used only case counts in our computations, but one can also construct level-set filtrations

for the death counts, hospitalization counts, or other quantities. The level-set filtration

is flexible, but this approach has important limitations. For example, we only detected

anomalies with a case count that is above some fixed threshold. This restricts us to measuring

the severity of an outbreak based on its geographic area. One way to address this issue is
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(a) LA neighborhoods (b) CA counties

Figure 5.B.4: The PDs for the 1D PHs of the level-set filtrations for COVID-19 cases in (a)

LA and (b) California.

by applying the level-set filtration after constructing a cartogram [GN04], instead of directly

from a shapefile. Additionally, the level-set filtration is unable to detect anomalies that

occur on the boundary of a map (e.g., Los Angeles County when considering counties in

California). These limitations were addressed by the methods in the main part of this

chapter.

5.B.4 Multiparameter Persistent Homology

One can use multiparameter persistent homology (MPH) to study how the topology of a

data set changes as one varies multiple parameters. For a review of MPH, see [CZ07,BL22].

One can use MPH to study local extrema of functions that are nondecreasing with time.

To apply MPH to our COVID-19 case-rate data, two feasible parameters are (1) time and

(2) the cumulative COVID-19 case rate. However, MPH is difficult to analyze. Although

there are invariants (e.g., the rank invariant), there is no complete discrete invariant [CZ07].

By contrast, one can use PDs for single-parameter PH.
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Definition 5.B.3. Let K be the simplicial complex from the construction in Section 5.2 for

a set S of regions. Let F : {t0, . . . , tn} × S → R be a function such that F (t, R) ≥ F (s, R)

for all t ≥ s. Define the function f(ti, σ) to be the sublevel-set filtration that is induced by

F (ti, ·). Let {α0, . . . , αℓ} be the image of F , where ℓ + 1 is the number of elements in the

image. We define the bifiltration

Ki,j :=



{σ ∈ K | f(ti, σ) ≤ αj} , i ∈ {0, . . . , n} , j ∈ {0, . . . , ℓ}

K , j > ℓ and i ≥ 0

Kn,j , i > n and j ≥ 0

∅ , i < 0 or j < 0 .

One can use Definition 5.B.3 to study cumulative COVID-19 case rates as a function of

time.

5.B.5 Multiparameter Zigzag Persistent Homology

One can use multiparameter zigzag PH (MZPH) to study how the topology of a data set

changes as one varies multiple parameters nonmonotonically. See Section 2.1 of [CS10] for a

short discussion of MZPH.

To use MZPH to study our COVID-19 case-rate data, two feasible parameters are (1)

time and (2) the current COVID-19 case rate. A diagram of simplicial complexes, such

as in Equation 5.3, induces a diagram of homology groups. This is a representation of a

quiver. However, there are no known well-behaved statistical summaries (in contrast to

single-parameter zigzag PH).

Definition 5.B.4. Let K be the simplicial complex from the construction in Section 5.2

for a set S of regions, and suppose that F : {t0, . . . , tn} × S → R. Define half steps

ti+1/2 := ti + (ti+1 − ti)/2 for i ∈ {0, . . . ,m − 1}, and let si := ti/2. Define the function
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G : {s0, . . . , s2n} × S → R as follows:

G(si, R) =


F (si, R) , i is even

max{F (t(i−1)/2, R), F (t(i+1)/2, R)} , i is odd .

We define the function h(si, ·) to be the sublevel-set filtration that is induced by G(si, ·).

Let {α0, . . . , αℓ} be the image of G. We define

Ki,j :=



{σ ∈ K | h(si, σ) ≤ αj} , i ∈ {0, . . . , 2n} , j ∈ {0, . . . , ℓ}

K , j > ℓ and i ≥ 0

K2n,j , i > 2n and j ≥ 0

∅ , i < 0 or j < 0 .

This yields the following diagram:

Kα0,s3 Kα1,s3 Kα2,s3 Kα3,s3

Kα0,s2 Kα1,s2 Kα2,s2 Kα3,s2

Kα0,s1 Kα1,s1 Kα2,s1 Kα3,s1

Kα0,s0 Kα1,s0 Kα2,s0 Kα3,s0

. (5.3)

The inclusion maps induce a corresponding diagram of homology groups.

One can use Definition 5.B.4 to study non-cumulative COVID-19 case rates as a function

of time.

5.C The Full LA Vineyard

In Figure 5.C.1, we show the full vineyard that we discussed in Section 5.4.2.
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(a)

(b)

Figure 5.C.1: (a) The vineyard for the LA simplicial complex that we construct using the

sublevel-set filtration from the 14-day mean per capita case rate during the period 25 April

2020–25 April 2021. Each vine is associated with a COVID-19 anomaly. We color each vine

according to the geographical location(s) of its associated anomaly, which can change with

with time. (See Figure 5.C.2 for the legend.) (b) A different view of the same vineyard.
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Figure 5.C.2: The legend for Figure 5.C.1. Each of the depicted regions is a local maximum

of the COVID-19 case-rate function for some subset of the time period 25 April 2020–25

April 2021.

5.D Results of an All-But-One Statistical Test

In Chapter 5, we examined local extrema of real-valued geospatial data; we called these

“anomalies”. For real-valued geospatiotemporal data, one can alternatively examine a dif-

ferent notion of anomaly. In this context, we say that a region is an anomaly if one is not

able to infer its data successfully from the data of the other regions. More precisely, let X

be the matrix whose (i, j)th entry is the value of region j at time step i. In our case study

of COVID-19 case rates in LA, the regions are the neighborhoods of LA and the (i, j)th

entry of X is the 14-day mean per capita case rate in region j on the ith day after 25 April

2020. Let xj denote the jth column of X, and let Xj denote the matrix that one obtains

by deleting column xj. The vector xj has the data for region j, and the matrix Xj has

the data for all regions except for region j. We define our prediction of region j to be the

least-squares solution b∗ to Xjb = xj, and we quantify the predictability of region j by cal-

culating the relative residual norm
∥∥Xjb∗ − xj

∥∥
2
/
∥∥xj
∥∥
2
. A smaller relative residual norm
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Figure 5.D.1: The results of an all-but-one statistical test for the LA COVID-19 case-rate

data. We plot the relative residual norm for each neighborhood.

indicates greater predictability.

In Figure 5.D.1, we show the result of this “all-but-one” statistical test for the LA COVID-

19 data set. In this figure, we plot the relative residual norm for each neighborhood. All

neighborhoods have near-0 relative residual norms, so the neighborhoods’ case rates are very

predictable when one knows the case rates of all other neighborhoods. The mean relative

residual norm is only 5.970 × 10−7, with a standard deviation of σ≈7.558 × 10−7. The

neighborhoods with the least predictability (specifically, those whose relative residual norms

have a z-score that is larger than 3) are Brookside, Little Armenia, Little Tokyo, Sycamore

Square, and Toluca Terrace. We show their relative residual norms and z-scores in Table

5.D.1.

The difference between what we learn from the all-but-one statistical test and what we

learn from our TDA approach is the following. Using our TDA approach, we identified local

extrema (i.e., regions whose values are either all larger than or all smaller than those of all

neighboring regions); this is a geographical notion of anomaly. By contrast, the all-but-one

statistical test does not inherently capture local extrema because the test does not con-
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Neighborhood Relative Residual Norm z-score

Brookside 3.973×10−6 4.466

Little Armenia 3.220×10−6 3.471

Little Tokyo 3.944×10−6 4.429

Sycamore Square 3.944×10−6 4.429

Toluca Terrace 2.873×10−6 3.012

Table 5.D.1: The relative residual norms and z-scores for the LA neighborhoods that are

least predictability according to our all-but-one test.

sider geographical adjacencies. Despite this conceptual difference, we observe some overlap

between the anomalies that the two approaches identify. For example, the neighborhoods

Little Tokyo and Little Armenia are identified as anomalies by both approaches. For further

examples, compare Figure 5.D.1 with Figure 5.4.7.

5.E Demographic Data

We provide some demographic data for NYC and LA for readers who are interested in

studying patterns between the PDs and demographic data, although an investigation of

such patterns is beyond the scope of the present study. In Figure 5.E.1, we plot the median

income for each zip code22 [US19]. The geographical boundaries of the NYC and LA zip

codes are given by the shapefiles [NYCc] and [Cor], respectively. It is worthwhile to

examine and compare other demographic data (such as racial, religious, and political data)

to the PDs.

22We do not possess median income data for LA zip codes 90073, 90089, 90095, 91330, 91522, and 91608.
These zip codes are in non-residential areas. For example, 90073 corresponds to the Veterans Administration.
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(a) (b)

Figure 5.E.1: (a) Median household income by zip code in NYC. (b) Median household

income by zip code in LA.
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CHAPTER 6

Persistent Homology for Resource Coverage: A Case

Study of Access to Polling Sites

This chapter is adapted from [HJJ22], which was co-led by Benjamin Jarman, Michael John-

son, Jiajie (Jerry) Luo, and myself and co-authored with Mason Porter.1

6.1 Introduction

The geographical distribution of resources such as polling sites (i.e., locations where people

vote), hospitals, COVID-19 vaccination sites, Department of Motor Vehicles (DMV) loca-

tions, and Planned Parenthood clinics is a major factor in the equitability of access to those

resources. Consequently, given the locations of a set of resource sites, it is important to

quantify their geographical coverage and to identify underserved geographical regions (i.e.,

“holes in coverage”).

A naive approach to quantifying resource coverage is to consider the geographical dis-

tances from resource sites by simply calculating the percentage of people who reside within

some cutoff distance D of the nearest resource site. This naive approach is common in policy.

For example, in March 2021, President Joseph Biden announced a goal of having 90% of the

adult United States population within 5 miles (i.e., D = 5 miles) of a COVID-19 vaccination

1I contributed the main idea for the project (analyzing polling sites with persistent homology with the
goal of accounting for real-world factors such as travel time), co-designed the methods with B. Jarman, M.
Johnson, and J. Luo, performed the statistical calculations in Section 7.5.6, and wrote the paper with all
co-authors.
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site [The21]. Additionally, it is required by Indian law that 100% of voters live within 2 km

of a polling site [SSH19] (i.e., D = 2 km). However, such an approach poses at least two

issues:

(1) it requires choosing an arbitrary cutoff distance D; and

(2) using only geographical distance fails to account for many other factors, such as pop-

ulation density and the availability (and facility) of public transportation, that affect

ease of access to a resource.

These issues severely limit the utility of this naive approach.

In the present chapter, we use TDA to study holes in resource coverage. A set X of

resource sites, with specified latitudes and longitudes, is a point cloud in R2. We define a

metric d that accounts for travel time (see Section 6.2), and we compute the PH of X in

the metric space (R2, d). One can interpret the PH classes as “holes in coverage.” Our

TDA approach gives a way to measure and evaluate how equitably a resource is distributed

geographically.

Our approach using PH addresses both of the issues (see points (1) and (2) above) of the

naive approach that we discussed above. First, PH eliminates the need to choose an arbitrary

cutoff distance because one can study holes in coverage at all scales. Second, instead of using

geographical distance as our metric, we construct a distance function d that is based on travel

times. We also incorporate the waiting time at each resource site by constructing a weighted

VR filtration (see Definition 2.2.7) in which we weight vertices using estimates of waiting

times at the associated sites. In a city with a high population density or a poor transportation

system, the time that is spent waiting at or traveling to a resource site can be a much higher

barrier to access than geographical distance [GS03, HK05]. We estimate waiting times by

using Global Positioning System (GPS) ping data from mobile phones at the resource sites,

and we estimate travel times by using street-network data, per capita car-ownership data,

and the Google Maps application programming interface (API) [Goo]. Using these estimates,
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we construct a weighted VR filtration in which we weight vertices by our estimates of waiting

times; we define the distance between two vertices to be the estimated round-trip travel time

between them. Because the weighted VR filtration is stable, small errors in our estimates

cause only small errors in the resultant PH [ACG19].

In the present chapter, we examine polling sites as a case study of using PH to study

the coverage of resource sites. We restrict our attention to six cities: Atlanta, Chicago,

Jacksonville (Florida), Los Angeles2, New York City (NYC), and Salt Lake City. We use

these cities in part because data about them (e.g., car-ownership data) is widely available.

Additionally, these cities differ vastly in their demographics and infrastructures, and we

can thus compare a variety of different types of cities. Moreover, Atlanta and NYC are

both infamous for long waiting times at polling sites, especially in non-White neighborhoods

[Fow20, Kan19]. In 2020, some counties in the Atlanta metropolitan area had a mean of

3,600 voters per polling site; the number of polling sites had been cut statewide by 10% since

2013 [Fow20]. In NYC, a mean of 4,173 voters were assigned to each polling site in 2018. As

a comparison, in 2004, Los Angeles County and Chicago only had an estimated 1,300 and

725 voters per polling site, respectively [Kan19]. However, Los Angeles is infamous for its

traffic [Sch21], and that can hinder voter access to polling sites. Los Angeles and Chicago

also differ in the quality of their public transportation, which affects voters’ travel times to

polling sites. In our investigation, we seek both to compare the coverage of polling sites in

our six focal cities and to identify underserved areas within each city.

6.1.1 Related work

One can use tools from geography to study resource accessibility. Pearce et al. [PWB06] used

a geographical-information-systems (GIS) approach to study the accessibility of community

resources and how it affects health. Hawthorne and Kwan [HK12] used a GIS approach

2For Los Angeles, we actually study Los Angeles County. We discuss the reasons for this choice in
Subsection 6.2.5.
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and a notion of perceived distance to measure healthcare inequality in low-income urban

communities. Brabyn and Barnett [BB04] illustrated that there are regional variations in

geographical accessibility to general practitioners in New Zealand and that these regional

variations depend on how one measures accessibility.

Another motivation for our study of resource-site coverage is the related problem of sensor

coverage. Given a set S of sensors in a domain Ω ⊆ R2, one seeks to determine if every point

in Ω is within sensing range of at least one sensor in S. Typically, each sensor has a fixed,

uniform sensing radius rs. In this case, the problem is equivalent to determining whether

or not the domain Ω is covered by balls of radius rs around each s ∈ S. In [SG07, SG06],

de Silva and Ghrist gave homological criteria for sensor coverage. Approaches to study

sensor coverage that use computational geometry (specifically, ones that involve the Voronoi

diagram for S and the Delauney triangulation of S) were discussed in [LWF03,MKP01].

Our problem is also a coverage problem, but there are important differences. The key

conceptual difference is that we consider neighborhoods whose sizes vary with the filtration

parameter, rather than neighborhoods of a fixed, uniform radius rs. Additionally, we do

not seek to determine whether or not the balls of any particular radius cover the domain;

instead, our goal is to quantify the coverage at all choices of radius and to determine how the

holes in coverage evolve as we increase the filtration parameter. Another difference between

the present chapter and sensor-coverage problems is that our point cloud represents a set of

resource sites (in particular, polling sites), rather than a set of sensors. In a sensor network,

pairwise communication between sensors can play a role in whether or not the sensors are

fully “connected” to each other (in a graph-theoretic sense) and in determining whether or

not a domain is covered [ZH05]. By contrast, communication between resource sites does

not play a role in studying access to those resource sites.

Several other papers have applied PH to geospatial data. Feng and Porter [FP21] de-

veloped two methods to construct filtrations—one that uses adjacency structures and one

that uses the level-set method [OF03] of front propagation—and applied their approaches
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to examine geospatial distributions of voting results in the 2016 United States presidential

election. They identified “political islands” (i.e., precincts that voted more heavily for a can-

didate than the surrounding precincts). In [FP20], Feng and Porter used their approaches

to study spatial networks. Stolz et al. [SHP16] used PH to examine the geospatial distribu-

tion of voting results in the “Brexit” referendum. Hickok et al. [HNP22] used PH to study

geospatial anomalies in COVID-19 case-rate data (see also [FHP22]) and vaccination-rate

data (see Chapter 5).

6.1.2 Organization

The chapter proceeds as follows. We describe our method in Section 6.2, present the results

and analysis of persistence diagrams in Subsection 7.5.6, and conclude and discuss implica-

tions, limitations, and potential future directions of our work in Section 6.4. Our code is

available at https://bitbucket.org/jerryluo8/coveragetda/src/main/.

6.2 Our Construction of Weighted VR Complexes

For each city, we construct a weighted VR filtration (see Definition 2.2.7) in which the point

cloud X = {xi} is the set of polling sites in R2 and the weight wi of a point xi is an estimate

of the waiting time at the corresponding polling site. We define the radius function

rxi
(t) :=


−∞ , t < wxi

t− wxi
, otherwise .

(6.1)

Instead of computing a weighted VR filtration with respect to Euclidean distance, we define

a distance function that estimates the mean amount of time that it takes to travel to and

from a polling site. With respect to this distance function, the union
⋃

iB(xi, rxi
(t)) is the

set of points y such that the estimated time for an individual at y to vote (including waiting

time and travel time in both directions) is at most t.
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We construct our distance function as follows. Let x and y be two polling sites. We

estimate the expected time for an individual to travel from x to y and back to be

d̃(x, y) := C(Z(x))min{tcar(x, y), twalk(x, y), tpub(x, y}

+ (1− C(Z(x)))min{twalk(x, y) , tpub(x, y)} ,

where Z(x) is the zip code that includes x (a polling site), C(Z(x)) is our estimate of the

fraction of voting-age people in Z(x) who can travel by car to a polling site, and tcar(x, y),

tpub(x, y), and twalk(x, y) are our estimates of the expected travel time from x to y and

back by car, public transit, and walking, respectively. We estimate C(Z(x)) by dividing

an estimate of the number of personal vehicles in Z(x) by an estimate of the voting-age

population in Z(x); see Subsection 6.2.3. We discuss how we calculate tcar, tpub, and twalk in

Subsection 6.2.1.

Our definition of d̃(x, y) captures the cost (in time) to vote. In particular, d̃(x, y) is an

estimate of the mean travel time for somebody who resides in the zip code Z(x) to travel from

x to y and back. We assume that all individuals choose the fastest mode of transportation

that is available to them. Specifically, we assume that individuals who can travel by car

choose the fastest option between driving, taking public transit, and walking. That is, their

travel time is min{tcar(x, y), twalk(x, y), tpub(x, y}. Likewise, we assume that individuals who

do not have access to travel by car choose the fastest option between taking public transit

and walking. That is, their travel time is min{twalk(x, y), tpub(x, y}. We estimate that the

fraction of a population that has a car is C(Z(x)), so the fraction without a car is 1−C(Z(x)).

Therefore, d̃(x, y) is the (estimated) mean time for a person who resides in zip code Z(x) to

travel from x to y and back.

The function d̃(x, y) is not symmetric (i.e., d̃(x, y) ̸= d̃(y, x)) because C(Z(x)) ̸= C(Z(y)).

However, we need a symmetric function to construct a weighted VR filtration. To construct

a symmetric distance function that is based on d̃(x, y), we define the distance between x and

y to be a weighted average of d̃(x, y) and d̃(y, x), where we determine the weights from the
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populations of the zip codes that include x and y. More precisely, we define the distance

between x and y to be

d(x, y) :=
1

P
[PZ(x)d̃(x, y) + PZ(y)d̃(y, x)] , (6.2)

where PZ(x), and PZ(y) are the populations of the zip codes Z(x) and Z(y), respectively,

and P := PZ(x) + PZ(y) is the sum of the populations of Z(x) and Z(y). With respect to

this distance function, the ball B(x, r) is the set of points y such that the expected time for

an individual to travel back and forth between x and y is at most r, where the individual

is randomly chosen to start at either x or y with probabilities that are weighted by the

populations of their associated zip codes.

6.2.1 Estimating travel times

The definition of our distance function (see Equation (6.2)) requires us to estimate the

pairwise travel times by car, public transit, and walking between each pair of polling sites.

We measure these times in minutes.

We estimate the time that it takes to walk between each pair of polling sites by using

street networks, which are available through the OpenStreetMap tool [Ope21], for each of

our cities. Using OpenStreetMap, we calculate a shortest path (by geographical distance)

between each pair of polling sites. In Figure 6.2.1, we show an example of a shortest path

between two polling sites in Atlanta.

Let L(x, y) denote the length (which we measure in meters) of a shortest path (by ge-

ographical distance) between polling sites x and y. Our estimate of the walking time (in

minutes) from x to y and back is twalk(x, y) := 2L(x, y)/vwalk, where vwalk = 85.2 meters per

minute is an estimate of the mean walking speed of adult humans [BBH06].

To estimate travel times by car and by public transportation, we use the Google Maps

Distance Matrix API [Goo]. Because of budgetary constraints (and the cost of five dollars

per thousand API queries), we only use this API to estimate the travel times between each
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Figure 6.2.1: A shortest path (by geographical distance) between two polling sites in zip

code 30314 in Atlanta.

polling site and the 25 geographically closest polling sites to it. We refer to these sites as a

polling site’s 25 nearest neighbors.

For each of the 25 nearest neighbors, we separately calculate both the time from a polling

site to each neighbor and the time to a polling site from each neighbor. These two travel

times are often different because of differing traffic conditions or other factors. We estimate

the remaining pairwise travel times as follows. Let G be the unweighted, undirected graph

whose vertices are the polling sites and whose edges connect each vertex to its 25 nearest

geographical neighbors.3 Let Gcar and Gpub be the weighted, directed graphs whose vertices

3The relation of being one of a vertex’s 25 nearest neighbors is not symmetric. Therefore, the degrees of

162



and edges are those of G and whose weights are given by the travel times (by car and public

transportation, respectively) that we compute using the Google Maps API. The weight of

the directed edge from vertex x to vertex y is the travel time from x to y. For two polling

sites x and y, we define tcar(x, y) and tpub(x, y) to be the sums of the lengths of the shortest

weighted paths from x to y and y to x in Gcar and Gpub, respectively.

6.2.2 Estimating waiting times

Our weighted VR filtrations have weights at each vertex (i.e., polling site) that are given

by an estimate of the mean time spent (i.e., mean waiting time) by a voter at that polling

site. In a nationwide study of waiting times at polling sites [CHP19], Chen et al. used

smartphone data of hundreds of thousands of voters to estimate waiting times. They also

examined potential relationships between waiting times and racial demographics.

We construct our estimates using the congressional district-level estimates in [CHP19]

(see their Table C.2) as follows. For each polling site x, we take the mean of the waiting-time

estimates for each congressional district that overlaps with the zip code Z(x) that contains

x. We believe that this averaging procedure gives a better estimate of the waiting times of

individuals who live in the zip code that includes x than simply using the estimate in [CHP19]

for the congressional district that includes x.

6.2.3 Estimates of demographic information

We obtain estimates of demographic data at the zip-code level from 2019 five-year American

Community Survey data [US]. In particular, we use voting-age population data from Table

ACSDT5Y2019.B29001 and vehicle-access data from Table ACSDT5Y2019.B25046.

some vertices are larger than 25.
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6.2.4 Polling-site zip codes

Much of our data is at the zip code level, and we treat a polling site’s zip code as repre-

sentative of its local area. Certain polling sites (predominantly government buildings) have

their own zip codes, despite their populations of 0. Therefore, we adjust the zip codes of

such polling sites to match the zip codes of the directly surrounding areas.

6.2.5 Treatments of Los Angeles and New York City

Because of the oddly-shaped city limits of Los Angeles, which include several holes, we use

the entirety of Los Angeles County (except for its islands) when we examine Los Angeles.

Because of the disconnected nature of New York City, we subdivide New York City into

three regions (Queens and Brooklyn, Manhattan and the Bronx, and Staten Island) and

treat each region separately. We then combine our results for the three regions into a single

presentation. For example, we combine the PDs into a single PD for all of New York City.

6.3 Results

We compute the PH of the weighted VR filtrations of Section 6.2 for Atlanta, Chicago, Jack-

sonville, Los Angeles County, NYC, and Salt Lake City. We show their PDs in Figure 6.3.1.

A homology class that dies at filtration-parameter value t represents a “hole in coverage”

that persists until time t. One can interpret this to mean that somebody who lives in a

“hole in coverage” that dies at t needs more than t minutes (including both waiting time

at a polling site and travel time back and forth to the site) to cast a vote. We consider

both 0D and 1D homology classes in our analysis. 1D homology classes represent “holes

in coverage” bounded by closed paths, while 0D homology classes represent holes between

different connected regions of coverage. In our analysis, we do not use the homology-class

birth values because we view them as irrelevant for this application. The reason for this
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City
Homology

Dimension

Median

(minutes)

Variance

(minutes)

Atlanta
0 59.8 75.9

1 74.0 140.2

Chicago
0 53.1 30.2

1 65.0 57.2

Jacksonville (Florida)
0 42.8 75.7

1 57.5 331.9

Los Angeles County
0 59.5 54.1

1 74.3 74.3

New York City
0 55.0 55.3

1 68.0 104.9

Salt Lake City
0 82.6 37.3

1 99.1 23.0

Table 6.3.1: The medians and variances of the homology-class death values for each city.

(As we discussed in the main text, we consider Los Angeles County, rather than only the

city of Los Angeles.)

is that a birth value indicates only the filtration-parameter value at which a coverage hole

materializes. In Figure 6.3.2, we show a box plot of the distribution of homology-class death

values for each city. Larger death values suggest that a city may have worse coverage, and a

wider distribution of death values suggests that there may be more variation in polling-site

accessibility within a city. In Table 6.3.1, we show the medians and variances of the 0D and

1D homology-class death values for each city.

We compare the coverages of the cities by examining the death values in the PDs. For

example, in the PDs for Atlanta and Chicago in Figure 6.3.1, we see that Atlanta’s homology
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(a) Atlanta (b) Chicago

(c) Jacksonville (Florida) (d) Los Angeles County

(e) New York City (f) Salt Lake City

Figure 6.3.1: Our PDs for each city for the PH of the weighted VR complexes that we defined

in Section 6.2.
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Figure 6.3.2: Box plots of the death values of the 0D and 1D homology classes for each city.

classes tend to die later in the filtration than Chicago’s homology classes. We can also see

this in Figure 6.3.2, in which we show box plots of the death values for each city, and in

Figure 6.3.3, in which we plot the distributions of death values for Atlanta and Chicago. Our

PDs and visualizations of summary statistics suggest that Chicago has better polling-site

coverage than Atlanta.

We use the death simplices to locate and visualize holes in polling-site coverage. We

interpret the death simplex of a homology class as the “epicenter” of the associated coverage

hole because the death simplex represents the last part of the hole to be covered. For

example, the death simplex of a 0D homology class is an edge between two polling sites;

we interpret the homology class as a hole in coverage between those two polling sites. The

death simplex of a 1D homology class is a triangle that is the convex hull of three polling

sites; we interpret the homology class as a hole in coverage between those three polling sites.

In Figures 6.3.4 and 6.3.5, we show the death simplices with the largest death values.4 For

4More precisely, for each city and each homology dimension (0 and 1), we show the death simplices whose
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(a) 0D homology classes (b) 1D homology classes

Figure 6.3.3: Histograms of the death values of the 0D and 1D homology classes for Atlanta

and Chicago.

example, consider panels (a) and (b) of Figure 6.3.4 and Figure 6.3.5, in which we show the

0D and 1D homology-class death simplices for Atlanta and Chicago. The areas of lowest

coverage (i.e., the areas that contain the death simplices with the largest death values) in

Atlanta tend to be in the southwest, whereas the areas of lowest coverage in Chicago tend

to be in the northwest and southeast. There is one homology class in Atlanta that has a

significantly larger death filtration value than the other classes in Atlanta and any of the

classes in Chicago. This homology class represents a 1D hole in coverage in southwest Atlanta

(see Figure 6.3.5a).

death values have a z-score of at least 1. We calculate the z-score as follows. Let d be the death value of a
q-dimensional homology class (where q = 0 or q = 1) for city C. The z-score of d is z = (d−µC,q)/σC,q, where
µC,q and σC,q are the mean and standard deviation of the distribution of death values of the q-dimensional
homology classes for city C.
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(a) Atlanta (b) Chicago

(c) Jacksonville (Florida) (d) Los Angeles County

(e) New York City (f) Salt Lake City

Figure 6.3.4: Death simplices for the 0D homology classes with the largest death values. The

colors correspond to the death values.
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(a) Atlanta (b) Chicago

(c) Jacksonville (Florida) (d) Los Angeles County

(e) New York City (f) Salt Lake City

Figure 6.3.5: Death simplices for the 1D homology classes with the largest death values. The

colors correspond to the death values.
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6.4 Conclusions and Discussion

6.4.1 Summary

We showed that PH is a helpful approach to study accessibility and equitability. It allows one

to examine holes in resource coverage with respect to an appropriate choice of “distance,”

which one constructs to incorporate important features of a problem of interest. The distance

can be based on geography, time, or something else. In the present chapter, we used PH to

study and quantify holes in polling-site coverage in six United States cities (technically, in

five cities and in Los Angeles County). For each city, we constructed a filtration in which a

homology class that dies at time t represents a geographical region in which it takes more

than t minutes to cast a vote (including both travel time and waiting time). We interpreted

the death simplex of a homology class as the location of the corresponding hole in resource

coverage. The information in the PH allowed us both to compare the accessibility of voting

across our chosen cities and to determine the locations of the coverage holes within each city.

A key benefit of our use of PH is that it enabled us to identify holes in coverage at all time

scales. Moreover, it allowed us to use a distance that we designed for the problem at hand,

rather than merely using geographical distance, which does not capture important factors

in resource accessibility [BB06]. We based our distance function on estimates of travel time,

which is more reasonable and accurate than geographical distance for capturing resource

accessibility [PWB06].

6.4.2 Limitations

To conduct our study, we needed to estimate a variety of quantities (see Section 6.2), in-

cluding travel times, waiting times, and demographic information. We also made several

simplifications because of computational and monetary constraints. We now discuss some

issues that are important to address before attempting to incorporate our approach into
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policy-making.

One limitation of our study is our estimation of travel times. As we discussed in Sub-

section 6.2.1, we computed travel times using the Google Maps API. Because of monetary

constraints, we only computed a subset of the travel times and used a graph-based estimate

to determine the others. Additionally, we computed each travel time between polling sites

only once. Computing more precise estimates of travel times is important for better captur-

ing the accessibility of polling sites. One way to do this is to compute the same travel time

multiple times across different days and times of day and take an average.

Another limitation of our study is the granularity of our data. As we discussed in Sub-

section 6.2.2, our waiting-time data is at the scale of congressional districts. Because there is

heterogeneity in the waiting times at different polling sites in the same congressional district,

it is important to obtain finer-grained data for the waiting times at polling sites. Having

finer-grained waiting times (e.g., if possible, procuring an estimated waiting time for each

polling site) would improve our ability to capture voting accessibility.

We also made several topological approximations. For each city, we worked with a

weighted VR filtration, which approximates a weighted Čech filtration, which in turn ap-

proximates the nested set {
⋃
B(xi, rxi

(t))}t∈R of spaces, where {xi} is a set of polling site

locations and rxi
(t) is the radius function that we defined in Section 6.2. The nested set

of spaces is directly relevant to our application, as the holes in
⋃
B(xi, rxi

(t)) are the true

holes in polling-site coverage. We made our approximations, which are standard in TDA

and are well-justified (see Section 2.2) [OPT17], to reduce computational cost. However, the

convexity condition of the Nerve Theorem (see Theorem 2.2.3 in Chapter 2), which is what

justifies the approximation of
⋃
B(xi, rxi

(t)) by a weighted Čech complex, is not guaranteed

to be satisfied for all times t. The Nerve Theorem implies that the weighted Čech complex

is homotopy-equivalent to
⋃
B(xi, rxi

(t)) whenever the balls B(xi, rxi
(t)) are convex. This

condition always holds in Euclidean space, but it is not guaranteed to hold in the space that

we defined in Section 6.2. Homotopy-equivalence is important because homotopy-equivalent
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spaces have the same homology and thus have the same “holes.”

Finally, our approach only detects holes in the convex hull of a set of resource sites. Al-

though this may be inconsequential if resource sites are sufficiently spread out geographically,

it can be problematic if the resource sites are overly concentrated near a few locations. One

way to address this issue is to incorporate the city boundaries into the construction of the

filtrations. This would help capture holes in coverage in regions that lie outside the convex

hull of the resource sites and to help identify the filtration-parameter value t at which an

entire city is covered by the balls B(xi, rxi
(t)).

6.4.3 Future work

As we discussed in Subsection 6.4.2, we made several topological approximations of the

object of interest, which is the nested set {
⋃
B(xi, rxi

(t))}t∈R of spaces. Instead of using a

weighted VR filtration, one can construct a more direct approximation of {
⋃
B(xi, rxi

(t))}t∈R

as follows. One can first discretize a city by imposing a grid onto it, and one can then

construct the filtered cubical complex that is induced by the distance to the nearest polling

site. However, this is much more computationally expensive than our approach in the present

chapter, and it would also entail many more travel-time queries (which cost money) than in

the present chapter.

It is also important to incorporate city boundaries into the construction of filtrations.

One way to do this is as follows. Let x1, . . . , xn denote the resource sites, and let y1, . . . , ym

denote the points that one obtains by discretizing a city boundary. One can extend our

distance function Equation (6.2) by defining5

d(xi, yj) :=
2

P
[PZ(xi)d̃(xi, yj) + PZ(yj)d̃(yj, xi)] , (6.3)

5The factor of 2 comes from the fact that xi is a resource site but yj is not.
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where P , Z, and d̃ are as in Equation (6.2) and

d(yi, yj) =


0 , yi and yj are adjacent points of the discretized city boundary

∞ , otherwise .

(6.4)

At each filtration-parameter value, the simplicial complex that one constructs using the

distance Equation (6.2) with the extensions Equation (6.3) and Equation (6.4) includes

both the points that one obtains by discretizing the boundary and the edges that connect

adjacent boundary points. The largest death value is then the filtration-parameter value t

that corresponds to when an entire city is covered by the balls {B(xi, rxi
(t))} (i.e., when

there are no holes in coverage).

We used death simplices to locate the holes in coverage, but there are many other ap-

proaches that one could take. By calculating minimal generators [LTH21], one can identify

representative cycles that encircle the holes. HyperTDA [BYM22] is a technique to analyze

the structure of minimal generators by constructing a hypergraph and applying hypergraph

centrality measures and community detection methods. This approach might provide in-

sights into the spatial structure of the minimal generators. Another approach involves using

Decorated Merge Trees (DMTs) [CHM22] to locate 1D holes in coverage. The cluster of

points (polling sites) that contain a 1D hole in coverage is the set of points (polling sites)

corresponding to the leaves in the DMT descended from the birth point of that hole. Al-

though these approaches are beyond the scope of the present chapter, it would be interesting

to explore them in future work.

Although we explored a specific case study (namely, the accessibility of polling sites), it

is also relevant to conduct similar investigations for other resources, such as public parks,

hospitals, vaccine distribution centers, grocery stores, Planned Parenthood clinics, and De-

partment of Motor Vehicle (DMV) locations. One can use similar data to construct a filtra-

tion, although it may be necessary to modify the choices of distance and weighting. One can

also use ideas from mobility theory [BBG18] to help construct suitable distances and weight-
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ings. For example, all DMV offices offer largely the same services, so it seems reasonable to

assume that people will go to their nearest office. Therefore, in a study of DMV accessibility,

it seems appropriate to use travel time as a distance function, just as we did in our analysis

of polling sites. However, in other applications, it is not reasonable to use travel time alone

as a distance function. For example, different grocery stores may offer different products at

different prices, so travel time alone may not be appropriate as a choice of distance function.

Additionally, although waiting time is a significant factor for investigating the coverage of

polling sites, there are many applications for which it does not make sense to incorporate

waiting time. For example, the time that is spent in a public park or recreation center is

typically not a barrier to access. In applications for which waiting time is not an accessibil-

ity factor, it seems more appropriate to use a standard VR filtration than a weighted VR

filtration. With salient modifications (such as the ones that we described in this subsection

and in Subsection 6.4.2), we can apply our approach to many other types of resource sites.
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CHAPTER 7

An Intrinsic Approach to Scalar Curvature Estimation

for Point Clouds

This chapter is adapted from a paper with Andrew Blumberg that is in preparation.

7.1 Introduction

Curvature, which measures the extent to which a Riemannian manifold deviates from being

“flat,” is a generalization of the use of the second derivative to measure the extent to which

a curve pulls away from the tangent line at a point. There are several different notions

of curvature in Riemannian geometry. The focus of this chapter is scalar curvature, which

quantifies the curvature at a point by a scalar in R. One way to think of scalar curvature

is that it is proportional to the “average” sectional curvature, which assigns a curvature

value to every plane in the tangent space at a point by considering the curvature of the 2D

submanifold that is determined by the plane. On a surface, scalar curvature is equal to twice

the Gaussian curvature.

The purpose of this chapter is to study the problem of estimating the scalar curvature

of a manifold given a finite sample X ⊂M , which we assume consists of independent draws

from some (possibly nonuniform) probability density function ρ : M → R+. Our estimator

is based on the fact that scalar curvature characterizes the growth rate of the volume of a

geodesic ball BM(x, r) as r increases. As r → 0, the scalar curvature S(x) at x ∈M has the
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following relationship to geodesic-ball volume:

vol(BM(x, r))

vnrn
= 1− S(x)

6(n+ 2)
r2 +O(r4) , (7.1)

where n is the dimension of the manifold, vn is the volume of a unit Euclidean n-ball, and

vnr
n is the volume of a Euclidean n-ball of radius r. We proceed by computing maximum-

likelihood estimators for the volumes on the left side of equation (7.1) and fitting a quadratic

function to approximate S(x). Our estimate Ŝ(x) is −6(n + 2)Ĉ(x), where Ĉ(x) is the

quadratic coefficient of the fitted curve.

Our first main theorem shows that our scalar-curvature estimator is asymptotically stable.

That is, small errors in distance measurement (e.g., from geodesic-distance estimation) cause

only small errors in our scalar-curvature estimates. This is especially important so that one

can accurately estimate scalar curvature in real-world data sets, which are invariably noisy.

Theorem A (Theorem 7.3.1). Let M be a compact Riemannian manifold that is equipped

with a probability measure ρ that has full support. Let {Xk}k∈N be a sequence of finite

samples, with |Xk| → ∞, that are drawn from M according to ρ and equipped with metrics

dk such that

max
(x,y)∈Xk×Xk

|dk(x, y)− d(x, y)| → 0 as k → ∞ ,

where d(x, y) is the geodesic distance between x and y. Then for a suitable sequence of radius

sequences and any sequence {xk} of points with xk ∈ Xk, we have |Ŝ[dk](xk)− Ŝ[d](xk)| → 0

in probability as k → ∞.

Remark 7.1.1. In fact, we can extract an effective stability bound from the proof of Theo-

rem 7.3.1; the distance between curvature estimators is controlled by an explicit bound that

involves an additive term based on the radius sequence and a term that is controlled by the

discrepancy δk := max(x,y)∈Xk×Xk
|dk(x, y)− d(x, y)|.

We can then establish our second main theorem, which establishes that our scalar cur-

vature estimate Ŝ(x) converges to the true scalar curvature S(x) under certain asymptotic

conditions as |Xk| → ∞.

177



Theorem B (Theorem 7.4.3). Under the same hypotheses as the preceding theorem, for a

suitable sequence of radius sequences, |Ŝ[dk](xk)−S(xk)| → 0 in probability as k → ∞, where

{xk} is any sequence of points such that xk ∈ Xk for each k.

We test our scalar-curvature estimator on point clouds that are sampled from several dif-

ferent manifolds (see Section 7.5). Broadly, the experiments demonstrate that our method is

accurate on manifolds of constant scalar curvature, especially on low-dimensional manifolds.

Additionally, our method is robust with respect to additive isotropic noise.

The primary limitation of our method is that we typically cannot accurately estimate

scalar curvature on regions of the manifold where the scalar curvature has high variation or

where it achieves a minimum or maximum. For example, in our experiments on the torus

and hyperboloid, we find that we cannot accurately estimate curvature near points where

scalar curvature is minimized. However, our results are qualitatively correct even when the

pointwise estimates are inaccurate. On the torus and the hyperboloid, we correctly detect

the scalar-curvature sign and relative changes in scalar curvatures across the surfaces.

Applications

We estimate scalar curvature using only metric data (i.e., pairwise geodesic distances between

points that are sampled from on a manifold). Consequently, our estimator can be applied to

any finite metric space. We expect that our estimator can be used to inform a choice of low-

dimensional embedding space. For example, if one finds that the scalar curvature of a data set

is negative (respectively, positive) everywhere, then this would suggest embedding the points

into hyperbolic space (respectively, a sphere). In recent years, there has been much research

on non-Euclidean embeddings, such as hyperbolic embeddings [KLB20,SDG18,NK17].

Another application is the generalization of curvature to metric spaces that do not obvi-

ously come from manifolds. A notable example is given by a network with the shortest-path

metric. This yields a definition of discrete scalar curvature that is defined on the vertices of
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a network.

Related Work

There are several other papers on curvature estimation. Sritharan et al. [SWH21] developed

a different method to estimate scalar curvature by using the second fundamental form and

the Gauss–Codazzi equation. However, their method requires an embedding of the points

in Euclidean space. Furthermore, it is sensitive to noise because it involves tangent-space

estimation. In one experiment, in which points were sampled from a Klein bottle, their

method did not recover the correct sign for the scalar curvature after only a small amount of

Gaussian noise was added (standard deviation σ = .01). By contrast, we are able to obtain

higher accuracy on noisy data sets.

Bhaskar et al. [BMF22] defined “diffusion curvature,” which is a new (unsigned) measure

of local curvature for point clouds. Although diffusion curvature is not the same as Gaussian

or scalar curvature, numerical experiments in [BMF22] suggest that it is correlated with

Gaussian curvature. However, unlike Gaussian and scalar curvature, diffusion curvature is

always positive, so it cannot be used to infer whetherscalar curvature is positive or nega-

tive. By contrast, our scalar-curvature estimates are signed, so our method can be used to

distinguish between regions of positive and negative curvature.

Chazal et al. [CCL09] showed that curvature measures (which are distinct from curvature)

can be estimated stably. However, as in [SWH21], their method requires an embedding of

the points in Euclidean space. Moreover, their method is not feasible for point clouds in

high dimensions because it requires computing and storing the boundaries and intersections

of a set of balls in the ambient space; Chazal et al. implemented and tested their method

only in R3. By contrast, the accuracy and computational complexity of our method in the

present chapter depends only on the intrinsic dimension of the manifold; it does not depend

on the dimension of the ambient space.
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Topological data analysis can also be used to detect curvature. Bubenik et al. [BHP20]

used persistent homology to classify point clouds by the curvature of the constant-curvature

surface from which they were sampled. However, the scope of [BHP20] was limited to

Gaussian curvature of constant-curvature surfaces.

Lastly, we note that there is an important relationship to discrete network curvature

[SSG18]. Our scalar-curvature estimator can be applied to networks with the shortest-path

metric. There are two other definitions of discrete scalar curvature for networks, both of

which are defined as “contractions” of discrete Ricci curvature [SGR15,SJS17].1 These are

justified by the fact that scalar curvature is the trace of Ricci curvature. However, it has not

been proven that either notion of discrete scalar curvature converges to the scalar curvature

of the manifold when the network is a geometric network on a manifold.

Organization

We discuss our method for estimating scalar curvature in Section 7.2. We prove stability

(Theorem 7.3.1) in Section 7.3 and convergence (Theorem 7.4.3) in Section 7.4. Finally, we

discuss our numerical experiments in Section 7.5.

7.2 Estimating scalar curvature via geodesic ball-volume estima-

tion

Suppose that we are given a distance matrix dX , which is a matrix whose (i, j)th entry is

the distance between the ith and jth points of a point cloud X that consists of N points.

By a slight abuse of notation, we will write dX(x, y) to denote the distance between points

x ∈ X and y ∈ X. We assume that

1More precisely, the discrete scalar curvature at a node is defined to be the sum of its adjacent edges’
discrete Ricci curvature. Sandhu et. al [SGR15] defined scalar curvature at a vertex as the contraction of
Ollivier–Ricci curvature. Sreejith et. al [SJS17] defined scalar curvature as the contraction of Forman–Ricci
curvature.
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1. (X, dX) is a metric subspace of an unknown Riemannian manifold (M, g) of unknown

dimension n and

2. X is sampled randomly from an unknown probability density function ρ :M → R+.

Let d denote the geodesic distance on M . Importantly, we do not assume that we are given

coordinates for the point cloud X; we assume only that we have the distance matrix dX .

However, it is possible to begin with a point cloud X (instead of its distance matrix dX),

from which one can estimate geodesic distances using, for example, the graph-approximation

technique of Tenenbaum et al. [TdL00,BSL00].

We summarize our scalar-curvature estimation method in Figure 7.2.1. To estimate the

scalar curvature S(x) at a point x ∈ X, the idea of our approach is to estimate vol(BM(x, r))

for a sequence of increasing r and then estimate S(x) by fitting a quadratic polynomial to

the estimated ball-volume ratios vol(BM(x, r))/(vnr
n).

7.2.1 Maximum-likelihood estimator of ball volume

For a given radius r and a point x ∈ X, we estimate vol(BM(x, r)) as follows. Let N be the

number of points in X, and let N [dX ](x, r) denote the number of points in BM(x, r) ∩ (X \

{x}). That is,

N [dX ](x, r) := |{y ∈ X \ {x} | dX(x, y) ≤ r}| .

When the metric dX is clear from context, we omit it from the notation and write N(x, r).

Let µρ(x, r) denote the mean density within BM(x, r). That is,

µρ(x, r) :=
1

vol(BM(x, r))

∫
z∈BM (x,r)

ρ(z)dV ,

where dV is the volume form on M . When ρ(x) ≡ ρ is constant, µρ(x, r) = ρ. In Section

7.2.4, we discuss a method to estimate µρ(x, r) empirically, without prior knowledge of

vol(BM(x, r)).
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Figure 7.2.1: The pipeline for our scalar-curvature estimation method.

182



Our likelihood function for vol(BM(x, r)) is

L(v) = P[N(x, r) | vol(BM(x, r)) = v]

=

(
N − 1

N(x, r)

)(
µρ(x, r)v

)N(x,r)(
1− µρ(x, r)v

)N−1−N(x,r)

because the random variable N(x, r) is a binomial random variable with N − 1 trials and

success probability µρ(x, r) · vol(BM(x, r)). Solving 0 = L′(v), we find that the maximum-

likelihood estimator is

v∗ =
N(x, r)

(N − 1)µρ(x, r)
. (7.2)

The expectation of v∗ is

E[v∗] =
E[N(x, r)]

(N − 1)µρ(x, r)
= vol(BM(x, r)). (7.3)

7.2.2 Dimension estimation

Our scalar-curvature estimation method requires an estimate n̂ ∈ N of the manifold dimen-

sion n; there are myriad methods to do this [CS16]. One method to estimate dimension

is the maximum-likelihood method of Levina and Bickel [LB04], which requires only the

distance matrix dX as input. (See Section 7.5.2 for details.) When the distance matrix dX is

not clear from context, we denote our dimension estimate by n̂[dX ]. We assume that n̂ = n

in our theoretical results (Sections 7.3 and 7.4), and we have n̂ = n for all data sets in our

numerical experiments (Section 7.5).

7.2.3 Density estimation

In Equation 7.2, the mean density µρ(x, r) in the ball must be estimated empirically. To do

so, we first empirically estimate the density at each point z ∈ X. One method for doing so

is kernel density estimation (KDE) on a manifold [OG09], which requires only the distance

matrix dX and an estimate n̂ of the manifold dimension as input.

Remark 7.2.1. We denote a choice of density estimator by ρ̂, and we denote our density
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estimate at z ∈ X by ρ̂[dX , n̂](z). For example, in our numerical experiments in Section

7.5, the density estimator ρ̂ is a kernel density estimator with either a Gaussian or biweight

kernel. If dX and n̂ are clear from context, we omit them and write ρ̂(z).

After we compute our pointwise-density estimates ρ̂(z) for all z ∈ X, we calculate an

estimate µ̂ρ[ρ̂](x, r) of the mean density µρ(x, r) within B
M(x, r). We define

µ̂ρ[ρ̂](x, r) :=


(

1
N(x,r)

∑
z∈BM (x,r)∩(X\{x}) 1/ρ̂(z)

)−1

, N(x, r) > 0

ρ̂(x) , N(x, r) = 0 .

(7.4)

We write µ̂ρ[ρ](x, r) when ρ̂(x) = ρ(x) for all x ∈ X.

Notably, our estimate µ̂ρ[ρ̂](x, r) is not the sample mean of {ρ̂(z) | z ∈ BM(x, r) ∩ (X \

{x}). The sample mean 1
N(x,r)

∑
z ρ̂(z) is an overestimate of µρ(x, r) because points with

high density are overrepresented in the sample BM(x, r) ∩ (X \ {x}).

Remark 7.2.2. When r is small, we have µρ(x, r) ≈ ρ(x) ≈ ρ̂(x). Indeed, one can show

that µρ(x, r) → ρ(x) as r → 0. However, in our numerical experiments in Section 7.5, our

scalar-curvature estimation method sometimes requires us to estimate µρ(x, r) when r is not

small. Informally, what we show in Lemma 7.2.3 is that 1/µ̂ρ[ρ̂](x, r) is a good approximation

to 1/µρ(x, r) even for large r. (Estimating the maximum-likelihood estimator of Equation

7.2 requires us to estimate the reciprocal 1/µρ(x, r).) In our experiments (Section 7.5),

we observe significant empirical improvement from using Equation 7.4 to estimate µρ(x, r)

instead of using ρ̂(x) to estimate µρ(x, r). This observation holds even when the data is

uniformly sampled because µ̂ρ[ρ̂](x, r) averages the empirical densities (which may differ

from the ground-true density) within the ball.

Lemma 7.2.3. If X is a point cloud sampled from the probability density function ρ :M →

R+, then

E
[ 1

µ̂ρ[ρ](x, r)

]
=

1

µρ(x, r)

for all x ∈ X and r > 0.
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Proof. The quantity 1
µ̂ρ[ρ](x,r)

is the sample mean of 1/ρ(z) for z ∈ BM(x, r) ∩ (X \ {x}).

Therefore,

E
[ 1

µ̂ρ[ρ](x, r)

]
= E

[ 1

ρ(z)

]
,

where z is a point that is conditioned to lie in BM(x, r). The probability density function

for z is

ψ(z) :=
ρ(z)∫

w∈BM (x,r)
ρ(w)dV

. (7.5)

Therefore,

E
[ 1

ρ(z)

]
=

∫
z∈BM (x,r)

1

ρ(z)
ψ(z)dV =

vol(BM(x, r))∫
w∈BM (x,r)

ρ(w)dV
=

1

µρ(x, r)
. (7.6)

7.2.4 Empirical approximation of the maximum-likelihood estimator

For a given x ∈ X and radius r > 0, we define our estimate of vol(BM(x, r)) to be

v̂ol[dX , ρ̂](x, r) :=
N [dX ](x, r)

(N − 1)µ̂ρ[ρ̂](x, r)
, (7.7)

where µ̂ρ[ρ̂](x, r) is defined as in Eq. 7.4. We write v̂ol[dX , ρ](x, r) when ρ̂(x) = ρ(x) for all

x ∈ X.

The quantity v̂ol[dX , ρ̂](x, r) is an approximation of the true maximum-likelihood esti-

mator v∗ in Eq. 7.2. An equivalent formula for v̂ol[dX , ρ̂](x, r) is

v̂ol[dX , ρ̂](x, r) =

∑
z∈BM (x,r)∩(X∩{x})

1
ρ̂(z)

(N − 1)
. (7.8)

Lemma 7.2.4. If X is a finite point cloud that is sampled from the probability density

function ρ :M → R+, then

E
[
v̂ol[dX , ρ](x, r)

]
= vol(BM(x, r))

for all x ∈ X and r > 0.
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Proof. Let N be the number of points in X. For all k ∈ {0, . . . , N − 1},

E
[
v̂ol[dX , ρ](x, r)

∣∣∣N(x, r) = k
]
=

k

N − 1
E[1/ρ(z)] (7.9)

by Equation 7.8, where z is randomly drawn according to the probability density function

ψ(z) defined in Equation 7.5. Substituting Equation 7.6 into Equation 7.9 yields

E
[
v̂ol[dX , ρ](x, r)

∣∣∣N(x, r) = k
]
=

k

(N − 1)µρ(x, r)
(7.10)

for all k ∈ {0, . . . , N − 1}. Therefore,

E
[
v̂ol[dX , ρ](x, r)

]
=

N−1∑
k=0

E
[
v̂ol[dX , ρ](x, r)

∣∣∣N(x, r) = k
]
· P[N(x, r) = k]

=
1

(N − 1)µρ(x, r)

N−1∑
k=0

k · P[N(x, r) = k]

=
E[N(x, r)]

(N − 1)µρ(x, r)

= vol(BM(x, r)) .

Lemma 7.2.5. Let X be a point cloud that consists of N points that are sampled from the

probability density function ρ : M → R+. If M is compact, then there is a constant A > 0

that only depends on ρ and the Riemannian metric of M and satisfies

var(v̂ol[dX , ρ](x, r)) ≤ Arn/N

for sufficiently large N , sufficiently small r, and all x ∈ X.

Proof. By Lemma 7.A.2,

var(v̂ol[dX , ρ](x, r)) =
var(1/ρ(z)) · µρ(x, r) · vol(BM(x, r))

(N − 1)
+

varN(x, r)

(N − 1)2µρ(x, r)2
, (7.11)

where z ∈ BM(x, r) is a point chosen randomly from the probability density function ψ(z)

defined as in Eq. 7.5 and

var(N(x, r)) = (N − 1)µρ(x, r)vol(B
M(x, r))(1− µρ(x, r)vol(B

M(x, r))) .
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Now we bound var(1/ρ(z)). Define

A(r) := max
x∈M, z∈BM (x,r)

|ρ(z)− ρ(x)| . (7.12)

The quantity A(r) exists becauseM is compact and ρ is continuous. We note that A(r) → 0

as r → 0. For the remainder of the proof, we assume that r is sufficiently small such that

A(r) ≤ min(ρ)/2. Because h(ρ) = 1/ρ2 is convex and monotonically decreasing for ρ > 0,

we have ∣∣∣ 1

ρ(z)2
− 1

ρ(x)2

∣∣∣ ≤ |h′(min{ρ(z), ρ(x)})| · A(r) ≤ 2A(r)

(ρ(x)− A(r))3
≤ 16A(r)

min(ρ)3

for all z ∈ BM(x, r). Therefore,∣∣∣E[1/ρ(z)2]− 1/ρ(x)2
∣∣∣ ≤ 16A(r)

min(ρ)3
.

Similarly, ∣∣∣ 1

µρ(x, r)2
− 1

ρ(x)2

∣∣∣ ≤ 16A(r)

min(ρ)3

because |µρ(x, r)− ρ(x)| ≤ A(r). Therefore,

var(1/ρ(z)) =
∣∣∣E[ 1

ρ(z)2

]
− 1

µρ(x, r)2

∣∣∣
≤
∣∣∣E[ 1

ρ(z)2

]
− 1

ρ(x)2

∣∣∣+ ∣∣∣ 1

µρ(x, r)2
− 1

ρ(x)2

∣∣∣
≤ 32A(r)

min(ρ)3
. (7.13)

var(1/ρ(z)) · µρ(x, r) · vol(BM(x, r))

(N − 1)
≤ 32 · A(r)max(ρ) · vol(BM(x, r))

min(ρ)3(N − 1)

for sufficiently small r such that A(r) < min(ρ)/2. By Lemma 7.A.1, there is a constant

B′ > 0 such that vol(BM(x, r)) ≤ B′rn for all x and sufficiently small r. Additionally, we

have A(r) < 1 for sufficiently small r, so

var(1/ρ(z)) · µρ(x, r) · vol(BM(x, r))

(N − 1)
≤ 32B ·max(ρ)

min(ρ)3
· r

n

N
(7.14)
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for sufficiently large N , sufficiently small r, and some constant B > 0. Lastly, we bound

varN(x,r)
(N−1)2µρ(x,r)2

. We have

varN(x, r)

(N − 1)2µρ(x, r)2
=

vol(BM(x, r))(1− µρ(x, r)vol(B
M(x, r))

(N − 1)µρ(x, r)

≤ vol(BM(x, r))

(N − 1)µρ(x, r)

≤ B

min(ρ)
· r

n

N
, (7.15)

where B > 0 is the same constant as earlier in the proof. Substituting Equations 7.14 and

7.15 into Equation 7.11 completes the proof.

7.2.5 Fitting a quadratic curve

For radius r > 0, let y(x, r) and ŷ[dX , ρ̂, n̂](x, r) denote the actual and estimated ball-volume

ratios, respectively, for a ball of radius r that is centered at a fixed x ∈ X. That is, we define

y(x, r) :=
vol(BM(x, r))

vnrn
, (7.16)

ŷ[dX , ρ̂, n̂](x, r) :=
v̂ol[dX , ρ̂](x, r)

vn̂rn̂
, (7.17)

where v̂ol[dX , ρ̂](x, r) is defined as in Eq. 7.7. When ρ̂(x) = ρ(x) for all x ∈ X, we write

ŷ[dX , ρ, n̂](x, r). When dX , ρ̂, or n̂ are clear from context, we omit them from our notation.

Let rmin and rmax, respectively, be the minimum and maximum ball radius that we

consider, where 0 ≤ rmin < rmax. These are hyperparameters that must be set by a user.

Let r0 := rmin < r1 < · · · < rm := rmax be a monotonically increasing sequence, which is also

set by a user. These are the radius values at which we estimate geodesic ball volumes by

empirically approximating the maximum-likelihood estimator, as in Section 7.2.4. We allow

any choice of sequence {ri}mj=1, although we study only two possible choices in this chapter:

1. Equal spacing: The sequence is evenly spaced with spacing ∆r. This is the choice

that we make in Theorems 7.3.1 and 7.4.3.
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2. Nearest-neighbor distance: In our numerical experiments, we allow {rj} to depend

on x and set rj to beequal to the distance from x to its jth nearest neighbor.

We define C(x) to be the coefficient such that 1+C(x)r2 is the “best-fit” quadratic curve

to the curve y(x, r)for r ∈ [rmin, rmax]. More precisely, we define

C(x) := argmin
c∈R

∥∥y(x, r)− (1 + cr2)
∥∥
L2([rmin,rmax])

.

One can show that

C(x) =

∫ rmax

rmin
r2[y(x, r)− 1]dr

1
5
(r5max − r5min)

.

We define

Ĉ[dX , ρ̂, n̂](x) :=

∑m
i=1 r

2
i (ŷ[dX , ρ̂, n̂](x, ri)− 1)(ri − ri−1)

1
5
(r5max − r5min)

(7.18)

to be an estimate of C(x). We omit dX , ρ̂, and n̂ from our notation when they are clear

from context.

7.2.6 Our scalar curvature estimate

Putting together Sections 7.2.1–7.2.5, we estimate scalar curvature.

Definition 7.2.6. Let dX be a distsance matrix, let ρ̂ be a density estimator, and let n̂

be a dimension estimate. Given hyperparameters rmin ≥ 0 (the minimum ball radius that

we consider), rmax > rmin (the maximum ball radius that we consider), and {rj}mj=0 (the

sequence of ball radii that we consider, where r0 = rmin and rm = rmax), our estimate of the

scalar curvature at x is

Ŝ[dX , ρ̂, n̂](x) := −6(n̂+ 2)Ĉ[dX , ρ̂, n̂](x) ,

where Ĉ[dX , ρ̂, n̂](x) is defined in Equation 7.18.

When the distance matrix dX , density estimator ρ̂, and dimension estimate n̂ are clear

from context, we omit them and write Ŝ(x).
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7.2.7 Computational complexity

In our numerical experiments (Section 7.5), we find that setting ri equal to the distance to

the ith nearest neighbor results in an estimate that is both accurate and computationally

efficient. In this case,

v̂ol[dX , ρ̂](x, ri) =
1

N − 1

m∑
j=1

1

ρ̂(zj)
,

where zj ∈ X is the jth nearest neighbor of x. We precompute the pointwise density

estimates ρ̂(z) for all z ∈ X. For every x ∈ X, we sort {d(x, z) | z ∈ X} to compute its

nearest neighbors z1, z2, . . . and its distance to those neighbors. Given these quantities, the

set {v̂ol[dX , ρ̂](x, ri)}mi=1 can be computed in O(m) time for any m because

v̂ol[dX , ρ̂](x, ri+1) = v̂ol[dX , ρ̂](x, ri) +
1

(N − 1) · ρ̂(zi+1)
.

7.3 Stability

Most real-world data sets have errors or noise, so the given distances dX likely differ from

the true geodesic distances d. If the geodesic distances are estimated from a point cloud,

errors are expected even if there is no noise in the data (i.e., the point cloud) itself. Density

estimation introduces additional errors. Theorem 7.3.1 below says that our scalar curvature

estimate Ŝ is stable with respect to errors in metric data and density estimation. This allows

us to accurately estimate scalar curvature in real-world data or in synthetic point-cloud data

in which distances are estimated.

Throughout this section, we consider a compact n-dimensional Riemannian manifold M

with geodesic distance d and a sequence {Xk}∞k=1 of point clouds that are sampled randomly

from a probability density function ρ :M → R+. We assume that |Xk| → ∞ as k → ∞. Let

dXk
denote the geodesic distance matrix for Xk. By a slight abuse of notation, let dXk

(x, y)

denote the geodesic distance between points x ∈ Xk and y ∈ Xk. We also consider sequences

{rmin, k}∞k=1, {rmax, k}∞k=1, and {(∆r)k}∞k=1 of hyperparameter values. The kth radius sequence
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that we consider is {rj,k}mk
j=0, where rj,k := rmin, k + j(∆r)k. When k is clear from context,

we omit it and write rj instead of rj,k. We require that

1. 0 < rmin, k < rmax, k for all k,

2. the number mk := (rmax, k − rmin, k)/(∆r)k of radial steps is a positive integer for all k,

and

3. rmin, k → 0 , rmax, k → 0 , and (∆r)k → 0 as k → ∞.

Theorem 7.3.1 (Stability). For each k, suppose that d̂Xk
is a metric on Xk such that

δk := max
x,x′∈Xk

|d̂Xk
(x, x′)− d(x, x′)| → 0 as k → ∞ .

Suppose that ρ̂ is a density estimator such that

ηk := max
x∈Xk

∣∣∣ρ̂[d̂Xk
](x)− ρ(x)

∣∣∣→ 0 as k → ∞ ,

and suppose that n̂[d̂Xk
] = n̂[dXk

] = n for sufficiently large k. If the hyperparameter-value

sequences satisfy

1. maxj
A(2rj)

rnj r
2
max, k

→ 0 as k → ∞ ,

2. ηk/(rmin, k + (∆r)k)
n+2/3 → 0 as k → ∞ ,

3. rmin, k + (∆r)k > δk for sufficiently large k ,

4. |Xk|(∆r)k(rmin, k + (∆r)k − δk)
n → ∞ as k → ∞ ,

5. rmin, k/r
3
max, k → 0 as k → ∞ ,

6. ((∆r)k + δk)/r
3
max, k → 0 as k → ∞, and

7. ((∆r)k + δk)/[(rmin, k + (∆r)k − δk)
n+1r2max, k] → 0 as k → ∞ ,

then |Ŝ[d̂Xk
, ρ̂, n̂](xk) − Ŝ[dXk

, ρ, n̂](xk)| → 0 in probability as k → ∞, where {xk} is any

sequence of points such that xk ∈ Xk.
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Remark 7.3.2. The conditions above on the hyperparameter-value sequences are complex.

The following is a set of simpler conditions that collectively imply the conditions of Theorem

7.3.1:

1. A(r)
rn+2 → 0 as r → 0 ,

2. ηk/r
n+2/3
min, k → 0 as k → ∞ ,

3. δk = O(rn+2
min, k) as k → ∞ ,

4. |Xk|(∆r)krnmin, k → ∞ as k → ∞ ,

5. (rmin, k)/r
3
max, k → 0 as k → ∞ , and

6. (∆r)k/r
n+5/3
min, k → 0 as k → ∞ .

Proof of Theorem 7.3.1. For any x ∈ Xk, we have∣∣∣Ŝ[d̂Xk
, ρ̂](x)− Ŝ[dXk

, ρ](x)
∣∣∣ = 6(n+ 2)

∣∣∣Ĉ[d̂Xk
, ρ̂](x)− Ĉ[dXk

, ρ](x)
∣∣∣ .

The theorem follows from Lemma 7.A.5, which shows that

|Ĉ[d̂Xk
, ρ̂](xk)− Ĉ[dXk

, ρ](xk)| → 0

in probability as k → ∞.

7.4 Convergence

Informally, what we show in Theorem 7.4.3 is that (1) as the number of points increases, (2)

as our given metric data becomes more accurate, and (3) as our density estimations become

more accurate, our scalar curvature estimate Ŝ(x) converges to the true scalar curvature S(x).

Throughout this section, the symbols M , d, n, {Xk}∞k=1, dXk
, ρ, {rmin, k}∞k=1, {rmax, k}∞k=1,

{(∆r)k}∞k=1, mk and {rj}mk
j=1 are defined as in Section 7.3.
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Theorem 7.4.3 is an immediate consequence of Theorem 7.3.1 (stability) and Prop. 7.4.2,

a proposition (see below) that states that if we are given perfect metric data and the exact

density, then our scalar curvature estimate Ŝ(x) converges to S(x) as the number of points

increases. The challenge is that we must take rmax, k → 0 for Equation 7.1 to hold, but (as

we show in Prop. 7.4.1 below) the mean squared error of the ball-ratio estimate ŷ[dX , ρ](x, r)

grows as O(1/(Nrn)) as r → 0, where N is the number of points in the point cloud.

Proposition 7.4.1. Let X be a point cloud that consists of N points that are drawn from

the probability density function ρ : M → R+. Then there is a constant A > 0 that only

depends on ρ and the Riemannian metric of M such that

MSE(ŷ[dX , ρ](x, r)) = var(ŷ[dX , ρ](x, r)) ≤
A

Nrn

for sufficiently large N , sufficiently small r, and all x ∈ X.

Proof. By Lemma 7.2.4,

MSE(ŷ[dX , ρ](x, r)) = var(ŷ[dX , ρ](x, r)) .

By Lemma 7.2.5, there is a constant A′ > 0 such that

var(v̂ol[dX , ρ̂](x, r)) ≤
A′rn

N

for sufficiently large N , sufficiently small r, and all x ∈ X. Therefore,

var(ŷ[dX , ρ](x, r)) =
var(ŷ[dX , ρ](x, r))

v2nr
2n

≤ A′

v2nNr
n

for sufficiently large N , sufficiently small r, and all x ∈ X.

Proposition 7.4.2. Suppose that n̂[dXk
] = n for sufficiently large k. If the hyperparameter-

value sequences satisfy

1. (∆r)k/r
3
max, k → 0 as k → ∞ ,
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2. |Xk|(rmin, k + (∆r)k)
n → ∞ as k → ∞ , and

3. rmin, k/r
3
max, k → 0 as k → ∞ ,

then |Ŝ[dXk
, ρ, n̂](xk) → S(xk)| → 0 as k → ∞, where {xk} is any sequence of points such

that xk ∈ Xk.

Proof. Let x be any point in Xk. By Eq. 7.1, we have

C(x) =

∫ rmax, k

rmin, k

[
− S(x)

6(n+2)
r4 +O(r6)

]
dr

1
5
(r5max, k − r5min, k)

= − S(x)

6(n+ 2)
+O(r2max, k) .

The absolute difference |Ŝ[dXk
, ρ](x)− S(x)| is

|Ŝ[dXk
, ρ](x)− S(x)| = 6(n+ 2)|Ĉ[dXk

, ρ](x)− C(x)|+O(r2max, k) .

Applying Lemma 7.A.6 yields the desired result.

Theorem 7.4.3. For each k, suppose that d̂Xk
is a metric on Xk such that

δk := max
x,x′∈Xk

|d̂Xk
(x, x′)− d(x, x′)| → 0 as k → ∞ .

Suppose that ρ̂ is a density estimator such that

ηk := max
x∈Xk

∣∣∣ρ̂[d̂Xk
](x)− ρ(x)

∣∣∣→ 0 as k → ∞ .

Suppose that n̂[d̂Xk
] = n̂[dXk

] = n for sufficiently large k. If the hyperparameter-value

sequences satisfy

1. maxj
A(2rj)

rnj r
2
max, k

→ 0 as k → ∞ ,

2. ηk/(rmin, k + (∆r)k)
n+2/3 → 0 as k → ∞ ,

3. rmin, k + (∆r)k > δk for sufficiently large k ,

4. |Xk|(∆r)k(rmin, k + (∆r)k − δk)
n → ∞ as k → ∞ ,
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5. rmin, k/r
3
max, k → 0 as k → ∞ ,

6. ((∆r)k + δk)/r
3
max, k → 0 as k → ∞, and

7. ((∆r)k + δk)/[(rmin, k + (∆r)k − δk)
n+1r2max, k] → 0 as k → ∞

then |Ŝ[d̂Xk
, ρ̂, n̂](xk)− S(xk)| → 0 in probability as k → ∞, where {xk} is any sequence of

points such that xk ∈ Xk.

Remark 7.4.4. The simpler set of conditions from Remark 7.3.2 collectively implies the

conditions of Theorem 7.4.3.

Proof of Theorem 7.4.3. The theorem follows from Theorem 7.3.1 and Prop. 7.4.2.

7.5 Numerical Experiments

7.5.1 Data sets

We generate synthetic data by sampling uniformly at random from manifolds with known

scalar curvature.

First, we sample N = 104 points each from three constant-curvature surfaces:

1. A disk in the Euclidean plane with radius 2. The scalar curvature is S(x) ≡ 0.

2. A unit 2-sphere. The scalar curvature is S(x) ≡ 2.

3. A disk in the hyperbolic plane with hyperbolic radius 2. The scalar curvature is

S(x) ≡ −2 .

For the last of these, we use the Poincaré disk model. Notably, the points that we sample

from the hyperbolic plane are not embedded in Euclidean space, which means that it is

not possible to use the scalar-curvature estimation method of [SWH21]. To avoid boundary
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effects, we only estimate curvature at points within the unit disk in the Euclidean sample

and within hyperbolic radius 1 in the hyperbolic sample. Additionally, we sample point

clouds from S2 with noise. For σ ∈ {.001, .003, .01, .03}, we sample N = 104 points from S2

and add isotropic Gaussian noise with standard deviation σ.

Next, we sample point clouds from several other manifolds. We sample N = 104 points

each from the higher-dimensional unit spheres Sn for n = 3, 5, and 7. Lastly, we sample one

point cloud each from two surfaces with non-constant scalar curvature:

1. A 2-torus. We sample N = 104 points from a 2-torus with parameters r = 1, R = 2.

2. A one-sheet hyperboloid. The points (x, y, z) ∈ R3 are given by the equations

x = 2
√
1 + u2 cos(θ) ,

y = 2
√
1 + u2 sin(θ) ,

z = u

for u ∈ R and θ ∈ [0, 2π). We sample points uniformly at random from the subset of

the hyperboloid such that |z| ≤ 2 until we have N = 104 points within the subset such

that |z| ≤ 1. To avoid boundary effects, we only estimate curvature at points on the

hyperboloid such that |z| ≤ 1.

7.5.2 Dimension estimation

To estimate dimension, we use the maximum-likelihood method of Levina and Bickel [LB04].

Our estimate of the dimension of a point cloud X is the nearest integer n̂ to

1

k2 − k1 + 1

k2∑
k=k1

n̂k ,
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where k1 and k2 are hyperparameters and

n̂k :=
1

N

N∑
i=1

n̂k(xi) ,

n̂k(xi) :=
[ 1

k − 1

k−1∑
j=1

log
(Tk(xi)
Tj(xi)

)]−1

,

where Tj(xi) is the distance from xi to its jth nearest neighbor in X. For all data sets,

we set k1 = 20 and calculate n̂ for k2 ∈ {30, . . . , 100}. We obtain n̂ = n, where n is the

ground-truth dimension, for all data sets and all choices of k2.

We make one modification to [LB04], which is that instead of using Euclidean distance

to measure distances to nearest neighbors, as was done in [LB04], we use geodesic distance.2

This choice reduces overall computation time because computing geodesic nearest-neighbor

distances is also part of our scalar-curvature estimation pipeline. In addition, using geodesic

distance improves the accuracy of the approximations that were made in [LB04] and allows

us to estimate the dimension of our Poincaré-disk data, which is not embedded in Euclidean

space.

7.5.3 Density estimation

We use kernel density estimation to obtain pointwise estimates of density, using the dimen-

sion estimates obtained in Section 7.5.2. We test two choices of kernel: (1) a Gaussian kernel

because it is a very common choice for density estimation and (2) a biweight kernel because

it is compactly supported. As input, the kernel function takes geodesic distances (either

exact or estimated), rather than Euclidean distances.

2In cases where we can calculate both exact and estimated geodesic distances, we use both; otherwise, we
use whichever is available. For S2, S3, S5, S7, and the Euclidean disk, we possess both exact and estimated
geodesic distances. For the Poincaré disk, we have only exact geodesic distances. For all other data sets, we
have only estimated geodesic distances.
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7.5.4 Geodesic-distance estimation

On the spheres, the Euclidean disk, the torus, and the hyperboloid, we estimate pairwise

geodesic distances using the method of Tenenbaum et al. [TdL00, BSL00]. For each point

cloud, we construct the k-nearest neighbor graph G with k = 20 for n = 2, with k = 50 for

n = 3, with k = 100 for n = 5, and with k = 200 for n = 7. Edge weights are Euclidean

distances. Our estimation of the geodesic distance between points x1 and x2 is the length of

a shortest path in G.

7.5.5 Hyperparameter choices

Our method requires a choice of minimum ball radius rmin, maximum ball radius rmax, and

radius sequence {rj}mj=0 such that r0 = rmin and rm = rmax. For a given point x in a data

set, we set ri equal to the distance from x to its ith nearest neighbor (as measured by the

given distance matrix dX), for the subset of neighbors such that rmin ≤ ri ≤ rmax. We set

rmin = 0 for all data sets.

Our choice of rmax differs across data sets because the scales and sampling densities are

different in different data sets. For the spheres (including the point clouds with noise), we

set rmax = π/2. For the Euclidean and Poincaré disks, we set rmax = 1. For the torus, we

set rmax = π. For the hyperboloid, we set rmax = 2. These values were chosen to minimize

the amount of noise in our curvature estimation results and to ensure that our geodesic balls

BM(x, r) do not intersect the boundary of the manifold M .

7.5.6 Results

First, we apply our method to our constant-curvature data sets. For the two surfaces that

are embedded into Euclidean space (S2 and the Euclidean disk), we test our method in two

different ways. First, we use the exact geodesic distances for our distance matrix. Second,

we estimate geodesic distances from the point clouds. In Figure 7.5.1, we show our results.
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(a) (b)

(c) (d)

Figure 7.5.1: Histograms for our scalar-curvature estimates on three surfaces of constant

curvature, given (A–B) exact geodesic distances and (B–C) point clouds, from which geodesic

distances were estimated. In (A) and (C), we use a Gaussian kernel to estimate density,

and in (B) and (D), we use a biweight kernel to estimate density. The ground-truth scalar

curvatures values are −2 in the hyperbolic disk, 0 in the Euclidean disk, and 2 on the sphere.
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We next test our method on the point clouds that are sampled from higher-dimensional

spheres. Again, we test our method once in which we input exact geodesic distances and a

second time in which we estimate geodesic distance from the point clouds. In early exper-

iments, we found that on the highest-dimensional spheres (n ≥ 5), using a biweight kernel

to estimate density led to significantly better performance than using a Gaussian kernel, so

we use a biweight kernel for density estimation. In Figure 7.5.2, we show our results. Unex-

pectedly, we find in Figure 7.5.2(A) that scalar curvature is systematically underestimated

(although still reasonably accurate) when we start with the exact geodesic distances. In both

experiments, the accuracy of our estimates decreases as the dimension n increases, but the

performance is comparable to that in [SWH21]. The main reason that scalar curvature is

more difficult for us to estimate in higher dimensions is that the mean squared error in our

ball-ratio estimates increases exponentially in n (see Prop. 7.4.1). Another reason is that

the accuracy of geodesic-distance estimation decreases as n increases and N stays constant.

Typically, the number of points N must scale exponentially with n to maintain the same

“resolution” of the manifold, so it is unsurprising that our scalar curvature estimates become

less accurate as n increases for fixed N .

To test our method on manifolds with non-constant scalar curvature, we apply our scalar-

curvature estimator to our torus and hyperboloid data sets. On both surfaces, we find that

using a Gaussian kernel for density estimation yields more accurate curvature estimates, so

we use a Gaussian kernel. We show our results in Figure 7.5.3. On the torus, our estimator

correctly distinguishes between regions of positive, negative, and zero scalar curvature. The

estimates are accurate except near θ = π, where scalar curvature is minimized. On the

hyperboloid, our estimator correctly identifies the fact that scalar curvature is minimized

(and negative) near z = 0 and increases as z increases. As in the torus, the estimates are

accurate except near z = 0, where scalar curvature is minimized.

We investigate the stability of our estimator by estimating curvature on our noisy-sphere

data sets. We show our results in Figure 7.5.4. In Figures 7.5.4(A) and (B), we show
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(a) (b)

Figure 7.5.2: Histograms for our scalar-curvature estimates on Sn (for n = 2, 3, 5, 7) using (A)

exact geodesic distances and (B) point clouds, from which geodesic distances were estimated.

In (A) and (B), the histograms are plotted on a log–log scale. The ground-truth scalar

curvature, which is indicated by the red dashed lines, is S(x) ≡ n(n− 1) for each n and all

x ∈ Sn. To improve visualization, we removed about 10 of the curvature estimates on S7

that were extreme outliers.

our results when we use Gaussian and biweight kernels, respectively, for density estimation

and we input the estimated geodesic distances to the kernel. At the highest noise level

(standard deviation σ = .03), our scalar curvature estimates have the wrong sign when we

use a biweight kernel, but all other curvature estimates have the correct sign. In Figures

7.5.4(C) and (D), we test our estimator by inputting Euclidean distances to the kernel for

density estimation. We find that performance is significantly improved, especially at the

highest noise level (σ = .03). This suggests that if a point cloud has a high noise level, then

one should input the Euclidean distances to the kernel instead of inputting the estimated

geodesic distances, which may not be accurate enough.
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(a) (b)

(c) (d)

Figure 7.5.3: (A) Scalar-curvature estimation on a torus. (B) Scalar curvature on the torus

as a function of angle θ. In red, we show the exact scalar curvature values; in blue, we

show the estimated scalar curvature values. (C) Scalar-curvature estimation on a one-sheet

hyperboloid. (D) Scalar curvature on the hyperboloid as a function of the z coordinate.

In red, we show the exact scalar curvature values; in blue, we show the estimated scalar

curvature values.
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(a) (b)

(c) (d)

Figure 7.5.4: Scalar-curvature estimation on S2 with isotropic Gaussian noise (standard

deviation σ) added to the point cloud. (A) We use a Gaussian kernel for density estimation.

The kernel takes the estimated geodesic distances as input. (B) We use a biweight kernel

that takes estimated geodesic distances as input. (C) We use a Gaussian kernel that takes

Euclidean distances as input. (D) We use a biweight kernel that takes Euclidean distances

as input.
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7.6 Conclusions

In this chapter, we developed a new method to estimate scalar curvature in discrete data.

The only information that our approach requires is the set of pairwise distances between

the points. By contrast, prior methods were limited to surfaces in R3 or to point clouds

embedded in Euclidean space. Because our method depends only on metric data, one can

use it to estimate curvature not only in point-cloud data (from which geodesic distances can

be estimated using the approach in [TdL00,BSL00], for example), but also at vertices in a

graph that is equipped with the shortest-path metric or at points in any finite metric space.

We proved that under suitable conditions, our estimator is stable (Theorem 7.3.1) and that

it converges to the ground-truth scalar curvature (Theorem 7.4.3).

We validated our method on several synthetic data sets in Section 7.5. Notably, our

experiments included a data set (a point cloud that is sampled from the Poincaré disk) for

which we possessed only the pairwise exact geodesic distances, not an embedding of the

points in Euclidean space. Our experiments on point-cloud data embedded in Euclidean

space are equivalent to experiments on geometric graphs, which are graphs in which vertices

are sampled from a manifold, edges connect nearby points, and edge weights are given by

distances. This is because we estimated geodesic distance in our point clouds by constructing

a nearest-neighbor graph (which is a type of geometric graph) and computing shortest-path

lengths. Therefore, our method for scalar-curvature estimation on a point cloud is equivalent

to scalar-curvature estimation on the nearest-neighbor graph equipped with the shortest-path

metric. Our experiments show that one can achieve reasonable accuracy even without having

or using a Euclidean embedding of the data.

The primary limitation of our estimator is that it can be inaccurate on regions with

non-constant curvature, especially near points on a manifold where a local extremum in the

curvature is attained. (For example, see our experiments on the torus and hyperboloid in

Section 7.5.) The reason is that when the radius r is small, we cannot reliably estimate the
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ratio between vol(BM(x, r)) and the volume of a Euclidean ball of radius r (see Prop. 7.4.1).

We addressed this by using a relatively high rmax parameter, which controls the maximum

ball radius that we consider. However, requiring r to be relatively large has the drawback

that we are unable to detect local variation in scalar curvature; we are effectively smoothing

out the curvature. In future work, we plan to investigate strategies to increase the accuracy

of our method on manifolds with non-constant scalar curvature.

We expect that our scalar-curvature estimator will improve with improvements in state-

of-the-art methods for density and geodesic-distance estimation on manifolds. Our method

involves density estimation on a manifold as an intermediary step, and it also requires

geodesic-distance estimation when we are given a point cloud embedded in Euclidean space

instead of a distance matrix dX . There are several other methods for geodesic-distance

estimation that we did not use in our experiments; see [AHH19, LD19], for example. Im-

provements to the intermediary steps of our pipeline will lead to better performance of our

scalar-curvature estimator.

It would also be interesting to incorporate machine learning into our curvature-estimation

pipeline. For example, at each point, we estimate a sequence of ball-volume ratios (see Eq.

7.17); this is a vector that one can feed into a neural network, rather than using the method

in Section 7.2.5 for estimating a quadratic coefficient. One could also use a graph neural

network in which the graph is the nearest-neighbor graph for the data set and the initial node

features are the vectors of ball-volume ratio estimates. Using machine learning would allow

one to sidestep the choices of hyperparameters (the maximum ball radius rmax, the minimum

ball radius rmin, and the radius sequence {rj}), although those decisions would be replaced

by different hyperparameter choices (e.g., a choice of learning rate). However, our current

approach has the advantage that it is highly interpretable. We have designed our method

so that, at minimum, one can reliably trust that the scalar curvature sign is accurate—in

many cases, the sign of the curvature is the qualitative information that matters most—and

that our method will generalize to manifolds that are not present in the training data set.

205



APPENDIX

7.A Technical details of Chapter 7

Here we prove some technical lemmas for proving our stability theorem (Theorem 7.3.1) and

convergence theorem (Theorem 7.4.3). The notation that we use is the same as in Sections

7.3 and 7.4.

Lemma 7.A.1. If M is compact, then there are positive constants B(1) and B(2) such that

B(1)rn ≤ vol(BM(x, r)) ≤ B(2)rn (7.19)

for sufficiently small r and all x in M .

Proof. By Equation 7.1, there are positive constants B
(1)
x , B

(2)
x , and rx for each x ∈M such

that

B(1)
x rn ≤ vol(BM(x, r)) ≤ B(2)

x rn for r < rx .

Because the Riemannian metric g is smooth, the quantities r′x, B
(1)
x , and B

(2)
x can be chosen

for each x ∈ M such that the functions x 7→ r′x, x 7→ B
(1)
x , and x 7→ B

(2)
x are continuous.

If M is compact, then B(i) := maxx∈M B
(i)
x and r∗ := minx∈M rx exist, so Eq. 7.19 holds for

r < r∗ and all x in M .

Lemma 7.A.2. Let X be a point cloud that consists of N points drawn from probability

density function ρ :M → R+. Then

var(v̂ol[dX , ρ](x, r)) =
var(1/ρ(z)) · µρ(x, r) · vol(BM(x, r))

N − 1
+

varN(x, r)

(N − 1)2µρ(x, r)2
,

where z ∈ BM(x, r) is a point chosen randomly from the probability density function ψ(z)

defined in Eq. 7.5 and

var(N(x, r)) = (N − 1)µρ(x, r)vol(B
M(x, r))(1− µρ(x, r)vol(B

M(x, r))) .
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Proof. By Lemma 7.2.4,

var(v̂ol[dX , ρ](x, r)) = E
[
(v̂ol[dX , ρ](x, r)− vol(BM(x, r)))2

]
.

By Equation 7.10,

E
[
(v̂ol[dX , ρ](x, r)− vol(BM(x, r)))2

∣∣∣N(x, r) = k
]

= E[v̂ol[dX , ρ](x, r)2 | N(x, r) = k]− 2kvol(BM(x, r))

(N − 1)µρ(x, r)
+ vol(BM(x, r))2 (7.20)

for all k ∈ {0, . . . , N − 1}. By Equation 7.8,

E[v̂ol[dX , ρ](x, r)2 | N(x, r) = k] =
k2

(N − 1)2
· E
[(1
k

k∑
i=1

1/ρ(zi)
)2]

, (7.21)

where {zi}ki=1 = BM(x, r) ∩ (X \ {x}). If k ≥ 1, the quantity 1
k

∑k
i=1 1/ρ(zi) is a sample

mean. Therefore,

E
[(1
k

k∑
i=1

1/ρ(zi)
)2]

=
var(1/ρ(z))

k
+ E[1/ρ(z)]2 =

var(1/ρ(z))

k
+

1

µρ(x, r)2
, (7.22)

where z is chosen from the probability density function ψ(z) defined in Equation 7.5. The

last equality follows by Equation 7.6. Substituting Equation 7.22 into Equation 7.21 and

Equation 7.21 into 7.20, we obtain

E
[
(v̂ol[dX , ρ](x, r)− vol(BM(x, r)))2

∣∣∣N(x, r) = k
]

=

[
k

(N − 1)2
· var

( 1

ρ(z)

)
+
k2 − 2k(N − 1)µρ(x, r)vol(B

M(x, r)) + (N − 1)2µρ(x, r)
2vol(BM(x, r))2

(N − 1)2µρ(x, r)2

]
(7.23)

for k ∈ {1, . . . , N − 1}. When k = 0, Equation 7.23 holds because the right-hand side equals

vol(BM(x, r)) and E[(v̂ol[dX , ρ](x, r)− vol(BM(x, r)))2 | N(x, r) = 0] = vol(BM(x, r)).

To simplify the right-hand side of Equation 7.23, we observe that N(x, r) is a binomial

random variable with N − 1 trials and success probability µρ(x, r)vol(B
M(x, r)), so

E[N(x, r)] = (N − 1)µρ(x, r)vol(B
M(x, r))
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and

E[(N(x, r)− EN(x, r))2 | N(x, r) = k]

= k2 − 2k(N − 1)µρ(x, r)vol(B
M(x, r)) + (N − 1)2µρ(x, r)

2vol(BM(x, r)) .

Therefore

E
[
(v̂ol[dX , ρ](x, r)− vol(BM(x, r)))2

∣∣∣N(x, r) = k
]

=
k

(N − 1)2
· var(1/ρ(z)) + 1

(N − 1)2µρ(x, r)2
· E[(N(x, r)− EN(x, r))2 | N(x, r) = k] .

Putting it all together, we have that var(v̂ol[dX , ρ](x, r)) equals

E
[
(v̂ol[dX , ρ](x, r)− vol(BM(x, r)))2

]
=

N−1∑
k=0

E
[
(v̂ol[dX , ρ](x, r)− vol(BM(x, r)))2

∣∣∣N(x, r) = k
]
P[N(x, r) = k]

=

(
var(1/ρ(z))

(N − 1)2

N−1∑
k=0

k · P[N(x, r) = k]

+
1

(N − 1)2µρ(x, r)2

N−1∑
k=0

E[(N(x, r)− EN(x, r))2 | N(x, r) = k]P[N(x, r) = k]

)

=
var(1/ρ(z))

(N − 1)2
E[N(x, r)] +

var(N(x, r))

(N − 1)2µρ(x, r)2

=
var(1/ρ(z)) · µρ(x, r) · vol(BM(x, r))

(N − 1)
+

var(N(x, r))

(N − 1)2µρ(x, r)2
,

where

var(N(x, r)) = (N − 1)µρ(x, r)vol(B
M(x, r))(1− µρ(x, r)vol(B

M(x, r)))

becauseN(x, r) is a binomial random variable with parametersN−1 and µρ(x, r)vol(B
M(x, r)).

Lemma 7.A.3. Assume that n̂[dXk
] = n for sufficiently large k. Let {ak}∞k=1 and {bk}∞k=1

be sequences of positive real numbers such that
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1. 0 < ak < bk for all k,

2. ak, bk → 0 as k → ∞, and

For each k, let Rk be a finite subset of [ak, bk] such that |Rk|
|Xk|ank

→ 0 as k → 0. Then

max
r∈Rk

|ŷ[dXk
, ρ](xk, r)− 1| → 0

in probability as k → ∞, where {xk} is any sequence of points such that xk ∈ Xk.

Proof. Let ϵ > 0. To simplify our notation, we denote ŷ[dXk
, ρ](x, r) by ŷ(x, r). For any

x ∈ Xk and any r ∈ [ak, bk],

P
[
|ŷ(x, r)− 1| > ϵ

]
≤ P

[
|ŷ(x, r)− y(x, r)|+ |y(x, r)− 1| > ϵ

]
. (7.24)

By Equation 7.1, there are constants A > 0 and r1 > 0 such that

|y(x, r)− 1| ≤ Ar2 for r < r1 and all x ∈M .

Let r2 = min(
√
ϵ/(2A), r1). If r < r2, then |y(x, r)−1| < ϵ

2
. For sufficiently large k, we have

bk < r2, so by Equation 7.24,

P
[
|ŷ(x, r)− 1| > ϵ

]
≤ P

[
|ŷ(x, r)− y(x, r)| > ϵ/2

]
(7.25)

for any r ∈ [ak, bk] and for sufficiently large k. By Chebyshev’s inequality,

P
[
|ŷ(x, r)− y(x, r)| > ϵ/2

]
≤ 4var(ŷ(x, r))

ϵ2
. (7.26)

By Proposition 7.4.1, there are positive constants B and r3 < r2 such that

var(ŷ(x, r)) ≤ B

|Xk|rn

for sufficiently large k, all r < r3, and any x ∈ Xk. Substituting into Equation 7.26 shows

that

P
[
|ŷ(x, r)− y(x, r)| > ϵ/2

]
≤ 4B

ϵ2|Xk|rn
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for any r < r3 and any x ∈ Xk. For sufficiently large k, we have bk < r3, so

P
[
|ŷ(x, r)− y(x, r)| > ϵ/2

]
≤ 4B

ϵ2|Xk|ank
for any r ∈ [ak, bk] and for sufficiently large k. Therefore,

P
[
max
r∈Rk

|ŷ(x, r)− y(x, r)| > ϵ/2
]
≤ 4B|Rk|
ϵ2|Xk|ank

By hypothesis, the right-hand side approaches 0 as k → ∞ because |Rk|
|Xk|ank

→ 0. Applying

Equation 7.25 concludes the proof.

Lemma 7.A.4 (Stability of ŷ). For each k, suppose that d̂Xk
is a metric on Xk such that

δk := max
x,x′∈Xk

|d̂Xk
(x, x′)− d(x, x′)| → 0 as k → ∞

and ρ̂ is a density estimator such that

ηk := max
x∈Xk

|ρ̂[d̂Xk
](x)− ρ(x)| → 0 as k → ∞ .

Suppose that n̂[d̂Xk
] = n̂[dXk

] = n for sufficiently large k. Additionally, suppose that the

hyperparameter-value sequences satisfy the conditions:

1. (rmin, k + (∆r)k)/r
3
max, k → 0 as k → ∞ .

2. ηk/(rmin, k + (∆r)k)
n+2/3 → 0 as k → ∞ .

3. maxj
A(rj)

rnj r
2
max, k

→ 0 as k → ∞, where A(r) is defined as in Equation 7.12.

4. rmin, k + (∆r)k − δk > 0 for sufficiently large k .

5. δk+(∆r)k
(rmin, k+(∆r)k−δk)n+1r2max, k

→ 0 as k → ∞ .

Define ℓk := min{ℓ ∈ Z | ℓ(∆r)k ≥ δk}. Then there is a sequence {ξk} of nonnegative real

numbers satisfying ξk/r
2
max, k → 0 as k → ∞ such that for any sequence {xk}∞k=1, where

xk ∈ Xk for all k,

ŷ[dXk
, ρ](xk, rj−ℓk)− ξk ≤ ŷ[d̂Xk

, ρ̂](xk, rj) ≤ ŷ[dXk
, ρ](xk, rj+ℓk) + ξk
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for all j ≥ 2 and

ŷ[dXk
, ρ](xk, r1 − δk)− ξk ≤ ŷ[d̂Xk

, ρ̂](xk, r1) ≤ ŷ[dXk
, ρ](xk, r1+ℓk) + ξk

for j = 1.

Proof. For convenience, let ŷk(x, r) denote ŷ[d̂Xk
, ρ̂](x, r) and let ŷ(x, r) denote ŷ[dXk

, ρ](x, r).

Define

λ+j,k := ℓk(∆r)k ,

λ−j,k :=


ℓk(∆r)k , j ≥ 2

δk , j = 1

for all j and k. Our goal is to compare ŷk(x, rj) to both ŷ(x, rj − λ−j,k) and ŷ(x, rj + λ+j,k).

The “radial shift values” λ±j,k are defined so that they satisfy

1. rj ± λ±j,k > 0 (all shifted radius values are positive) and

2. δk ≤ λ±j,k ≤ δk + (∆r)k

for all j and sufficiently large k. For the remainder of the proof, we consider only k sufficiently

large such that (1) holds. The key is that because λ±j,k ≥ δk for all j and k,

N [dXk
](x, r − λ−j,k) ≤ N [d̂Xk

](x, r) ≤ N [dXk
](x, r + λ+j,k) (7.27)

for all x ∈ Xk and r ≥ 0. We use Eq. 7.27 to compare v̂ol[d̂Xk
, ρ̂](x, r) and v̂ol[dXk

, ρ](x, r ±

λ±j,k). First we quantify the error introduced by the error in density estimation. Observe

that∣∣∣v̂ol[d̂Xk
, ρ̂](x, r)− v̂ol[d̂Xk

, ρ](x, r)
∣∣ = ∣∣∣ N [d̂Xk

](x, r)

(|Xk| − 1)µ̂ρ[ρ̂](x, r)
− N [d̂Xk

](x, r)

(|Xk| − 1)µ̂ρ[ρ](x, r)

∣∣∣
≤
∣∣∣ 1

µ̂ρ[ρ̂](x, r)
− 1

µ̂ρ[ρ](x, r)

∣∣∣ .
≤
∣∣∣ 1

µ̂ρ[ρ̂](x, r)
− 1

ρ(x)

∣∣∣+ ∣∣∣ 1

µ̂ρ[ρ](x, r)
− 1

ρ(x)

∣∣∣ (7.28)
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If N [d̂Xk
](x, r) ≥ 1 and dXk

(x, z) ≤ r, then∣∣∣ 1

ρ(z)
− 1

ρ(x)

∣∣∣ ≤ A(r)

min(ρ)2

and ∣∣∣ 1

ρ̂(z)
− 1

ρ(x)

∣∣∣ ≤ ∣∣∣ 1

ρ̂(z)
− 1

ρ(z)

∣∣∣+ ∣∣∣ 1

ρ(z)
− 1

ρ(x)

∣∣∣
≤ ηk

(min(ρ)− ηk)2
+

A(r)

min(ρ)2
.

If N [d̂Xk
](x, r) = 0, then∣∣∣ 1

µ̂ρ[ρ̂](x, r)
− 1

ρ(x)

∣∣∣ = ∣∣∣ 1

ρ̂(x)
− 1

ρ(x)

∣∣∣ ≤ ηk
(min(ρ)− ηk)2

,∣∣∣ 1

µ̂ρ[ρ](x, r)
− 1

ρ(x)

∣∣∣ = 0 .

Therefore,∣∣∣ 1

µ̂ρ[ρ̂](x, r)
− 1

ρ(x)

∣∣∣+ ∣∣∣ 1

µ̂ρ[ρ](x, r)
− 1

ρ(x)

∣∣∣ ≤ ηk
(min(ρ)− ηk)2

+
2A(r)

min(ρ)2
.

By Eq. 7.28,

v̂ol[d̂Xk
, ρ](x, rj)−

( ηk
(min(ρ)− ηk)2

+
2A(rj)

min(ρ)2

)
≤ v̂ol[d̂Xk

, ρ̂](x, rj)

≤ v̂ol[d̂Xk
, ρ](x, rj) +

ηk
(min(ρ)− ηk)2

+
2A(rj)

min(ρ)2
. (7.29)

Together, Equations 7.27 and 7.29 show that

N [dXk
](x, rj − λ−j,k)

(|Xk| − 1)µ̂ρ[ρ](x, rj)
−
( ηk
(min(ρ)− ηk)2

+
2A(rj)

min(ρ)2

)
≤ v̂ol[d̂Xk

, ρ̂](x, rj)

≤
N [dXk

](x, rj + λ+j,k)

(|Xk| − 1)µ̂ρ[ρ](x, rj)
+
( ηk
(min(ρ)− ηk)2

+
2A(rj)

min(ρ)2

)
. (7.30)
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We have ∣∣∣ N [dXk
](x, rj ± λ±j,k)

(|Xk| − 1)µ̂ρ[ρ](x, rj)
− v̂ol[dXk

, ρ](x, rj ± λ±j,k)
∣∣∣

≤
∣∣∣ 1

µ̂ρ[ρ](x, rj)
− 1

µ̂ρ[ρ](x, rj ± λ±j,k)

∣∣∣
≤
∣∣∣ 1

µ̂ρ[ρ](x, rj)
− 1

ρ(x)

∣∣∣+ ∣∣∣ 1

µ̂ρ[ρ](x, rj ± λ±j,k)
− 1

ρ(x)

∣∣∣
≤ A(rj)

min(ρ)2
+
A(rj + λ+j,k)

min(ρ)2

≤
2A(rj + λ+j,k)

min(ρ)2
.

Therefore, by Eq. 7.30,

v̂ol[dXk
, ρ](x, rj − λ−j,k)−

( ηk
(min(ρ)− ηk)2

+
2A(rj)

min(ρ)2
+

2A(rj + λ+j,k)

min(ρ)2

)
≤ v̂ol[d̂Xk

, ρ̂](x, rj)

≤ v̂ol[dXk
, ρ](x, rj + λ+j,k) +

( ηk
(min(ρ)− ηk)2

+
2A(rj)

min(ρ)2
+

2A(rj + λ+j,k)

min(ρ)2

)
.

Because A(r) increases monotonically,

v̂ol[dXk
, ρ](x, rj − λ−j,k)−

( ηk
(min(ρ)− ηk)2

+
4A(rj + λ+j,k)

min(ρ)2

)
≤ v̂ol[d̂Xk

, ρ̂](x, rj)

≤ v̂ol[dXk
, ρ](x, rj + λ+j,k) +

( ηk
(min(ρ)− ηk)2

+
4A(rj + λ+j,k)

min(ρ)2

)
. (7.31)

Next, we use Equation 7.31 to compare ŷk(x, rj) to ŷ(x, rj ± λ±j,k) for all j ∈ {1, . . . ,mk}.

Dividing Equation 7.31 by vnr
n
j , we obtain

v̂ol[dXk
, ρ](x, rj − λ−j,k)

vnrnj
−
( ηk
(min(ρ)− ηk)2vnrnj

+
4A(rj + λ+j,k)

vnrnj min(ρ)2

)
≤ ŷk(x, rj)

≤
v̂ol[dXk

, ρ](x, rj + λ+j,k)

vnrnj
+
( ηk
(min(ρ)− ηk)2vnrnj

+
4A(rj + λ+j,k)

vnrnj min(ρ)2

)
(7.32)

213



for all j. We now compare v̂ol[dXk
, ρ](x, rj ± λ±j,k)/(vnr

n
j ) to ŷ(x, rj ± λ±j,k). We have

∣∣∣ŷ(x, rj ± λ±j,k)−
v̂ol[dXk

, ρ](x, rj ± λ±j,k)

vnrnj

∣∣∣ = v̂ol[dXk
, ρ](x, rj ± λ±j,k)

vn

∣∣∣∣∣ 1

(rj ± λ±j,k)
n
− 1

rn

∣∣∣∣∣
=

N [dXk
](x, rj ± λ±j,k)

(|Xk| − 1)vnµ̂ρ[ρ](x, r)

∣∣∣∣∣ 1

(rj ± λ±j,k)
n
− 1

rnj

∣∣∣∣∣
≤ 1

vnµ̂ρ[ρ](x, r)

∣∣∣ 1

(rj ± λ±j,k)
n
− 1

rnj

∣∣∣
≤ 1

vnmin(ρ)

∣∣∣ 1

(rj ± λ±j,k)
n
− 1

rnj

∣∣∣ .
Because g(r) = 1/rn is convex and monotonically decreasing for r > 0, we have∣∣∣ 1

(rj + λ+j,k)
n
− 1

rnj

∣∣∣ ≤ λ+j,k|g
′(rj)| =

nλ+j,k

rn+1
j

and ∣∣∣ 1

(rj − λ−j,k)
n
− 1

rnj

∣∣∣ ≤ λ−j,k|g
′(rj − λ−j,k)| =

nλ−j,k
(rj − λ−j,k)

n+1
.

Therefore, ∣∣∣ŷ(x, rj + λ+j,k)−
v̂ol[dXk

, ρ](x, rj + λ+j,k)

vnrnj

∣∣∣ ≤ 1

vnmin(ρ)

nλ+j,k

rn+1
j

(7.33)

and ∣∣∣ŷ(x, rj − λ−j,k)−
v̂ol[dXk

, ρ](x, rj − λ−j,k)

vnrnj

∣∣∣ ≤ 1

vnmin(ρ)

nλ−j,k
(rj − λ−j,k)

n+1
. (7.34)

Together, Equations 7.32, 7.33, and 7.34 show that

ŷk(x, rj) ≥ ŷ(x, rj − λ−j,k)−

(
ηk

(min(ρ)− ηk)2vnrnj
+

nλ−j,k
vnmin(ρ)(rj − λ−j,k)

n+1

+
4A(rj + λ+j,k)

vnrnj min(ρ)2

)
,

ŷk(x, rj) ≤ ŷ(x, rj + λ+j,k) +

(
ηk

(min(ρ)− ηk)2vnrnj
+

nλ+j,k

vnmin(ρ)rn+1
j

+
4A(rj + λ+j,k)

vnrnj min(ρ)2

)
.
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We define the following error terms:

ξ+j,k :=
ηk

(min(ρ)− ηk)2vnrnj
+

nλ+j,k

vnmin(ρ)rn+1
j

+
4A(rj + λ+j,k)

vnrnj min(ρ)2
,

ξ−j,k :=
ηk

(min(ρ)− ηk)2vnrnj
+

nλ−j,k
vnmin(ρ)(rj − λ−j,k)

n+1
+

4A(rj + λ+j,k)

vnrnj min(ρ)2
,

ξk := max
j

{ξ+j,k, ξ
−
j,k} .

The error terms ξ±j,k are nonnegative. To complete the proof, it suffices to show that

ξk/r
2
max, k → 0 as k → ∞. For sufficiently large k,

ηk
vnrnj (min(ρ)− ηk)2r2max, k

≤ ηk
vn(rmin, k + (∆r)k)n(

1
2
min(ρ))2r2max, k

.

Rearranging the terms on the right-hand side, we obtain

ηk
vn(rmin, k + (∆r)k)n(

1
2
ρ)2r2max, k

=
4

vnmin(ρ)2

(
ηk

(rmin, k + (∆r)k)n+2/3

)(
(rmin, k + (∆r)k)

2/3

r2max, k

)
.

By hypothesis, the quantity above approaches 0 as k → ∞, so maxj
ηk

vnrnj (min(ρ)−ηk)2r
2
max, k

→ 0

as k → ∞. Additionally,

nλ+j,k

vnmin(ρ)rn+1
j r2max, k

≤ n(δk + (∆r)k)

vnmin(ρ)(rmin, k + (∆r)k − δk)n+1r2max, k

,

nλ−j,k
vn min(ρ)(rj − λ−j,k)

n+1r2max, k

≤ n(δk + (∆r)k)

vnmin(ρ)(rmin, k + (∆r)k − δk)n+1r2max, k

.

By hypothesis, the right-hand sides above approach 0 as k → ∞. Finally, we upper bound
A(rj+λ+

j,k)

rnj r
2
max, k

by recalling that A(r) increases monotonically and

rj + λ+j,k = rj + ℓk(∆r)k

≤ rj + δk + (∆r)k

≤ 2rj

for sufficiently large k. Therefore,
A(rj+λ+

j,k)

rnj r
2
max, k

≤ A(2rj)

r2max, kr
n
j
, which approaches 0 by hypothesis.

This implies that ξk/r
2
max, k → 0 as k → ∞.
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Lemma 7.A.5 (Stability of Ĉ). For each k, suppose that d̂Xk
is a metric on Xk such that

δk := max
x,x′∈Xk

|d̂Xk
(x, x′)− d(x, x′)| → 0 as k → ∞ .

Suppose that ρ̂ is a density estimator such that

ηk := max
x∈Xk

∣∣∣ρ̂[d̂Xk
](x)− ρ(x)

∣∣∣→ 0 as k → ∞ ,

and suppose that n̂[d̂Xk
] = n̂[dXk

] = n for sufficiently large k. If the hyperparameter-value

sequences satisfy

1. maxj
A(2rj)

rnj r
2
max, k

→ 0 as k → ∞ ,

2. ηk/(rmin, k + (∆r)k)
n+2/3 → 0 as k → ∞ ,

3. rmin, k + (∆r)k > δk for sufficiently large k ,

4. |Xk|(∆r)k(rmin, k + (∆r)k − δk)
n → ∞ as k → ∞ ,

5. rmin, k/r
3
max, k → 0 as k → ∞ ,

6. ((∆r)k + δk)/r
3
max, k → 0 as k → ∞, and

7. ((∆r)k + δk)/[(rmin, k + (∆r)k − δk)
n+1r2max, k] → 0 as k → ∞

then |Ĉ[Xk, d̂Xk
, ρ̂](xk) − Ĉ[Xk, d, ρ](xk)| → 0 in probability as k → ∞, where {xk} is any

sequence of points such that xk ∈ Xk.

Proof. To simplify our notation, we define

Ĉk(x) := Ĉ[d̂Xk
, ρ̂](x) ,

Ĉ(x) := Ĉ[d, ρ](x) ,

ŷk(x, r) := ŷ[d̂Xk
, ρ̂](x, r) ,

ŷ(x, r) := ŷ[d, ρ](x, r)
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for all x ∈ Xk. Let ℓk = min{ℓ′k ∈ Z | ℓ′k(∆r)k ≥ δk}, let ak = rmin, k + (∆r)k − δk, and let

bk = rmax, k + ℓk(∆r)k. By hypothesis and choice of ℓk,

ak > 0 for all k ,

|Xk|(ak)n → ∞ as k → ∞ ,

ak < (rmin, k + (∆r)k) → 0 as k → ∞ ,

bk = rmax, k + (∆r)k + (ℓk − 1)(∆r)k < (rmax, k + (∆r)k + δk) → 0 as k → ∞ .

Let J := {2− ℓk, . . . ,mk + ℓk}, where mk :=
rmax, k−rmin, k

(∆r)k
is the number of radial steps. Let

Rk := {rj | j ∈ J} ∪ {rmin, k + (∆r)k + δk}. We have

|Rk| = mk + 2ℓk ≤ mk +
δk

(∆r)k
+ 1 ≤ 2

(∆r)k
+ 1 .

Because |Xk|(∆r)k(rmin, k + (∆r)k − δk)
n → ∞, we have |Rk|

|Xk|ank
→ 0 as k → ∞. Therefore,

by Lemma 7.A.3,

P
[
max
r∈Rk

|ŷ(x, r)− 1| ≤ 1
]
→ 1 (7.35)

as k → ∞.

By Lemma 7.A.4, there is a nonnegative sequence {ξk} such that ξk/r
2
max, k → 0 and

ŷ[dXk
, ρ](xk, rj−ℓk)− ξk ≤ ŷ[d̂Xk

, ρ̂](xk, rj) ≤ ŷ[dXk
, ρ](xk, rj+ℓk) + ξk (7.36)

for all j ≥ 2 and

ŷ[dXk
, ρ](xk, r1 − δk)− ξk ≤ ŷ[d̂Xk

, ρ̂](xk, r1) ≤ ŷ[dXk
, ρ](xk, r1+ℓk) + ξk (7.37)

for sufficiently large k. (The case j = 1 is different because it is not necessarily true that

r1−ℓk ≥ 0.)

Let ϵ > 0. We want to show that P[|Ĉk(x) − Ĉ(x)| < ϵ] → 1 as k → ∞. By Equation

7.35, it suffices to show that |Ĉk(x)− Ĉ(x)| < ϵ for sufficiently large k if

max
r∈Rk

|ŷ(x, r)− 1| ≤ 1 . (7.38)
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Therefore, for the remainder of the proof, we assume Equation 7.38 holds.

First, we obtain an upper bound on Ĉk(x) − Ĉ(x). The upper bounds in Equations

7.36–7.37 imply that

Ĉk(x) =
5

r5max, k − r5min, k

(
mk∑
j=1

r2j

(
ŷk(x, rj)− 1

)
(∆r)k

)

≤ 5

r5max, k − r5min, k

(
mk∑
j=1

r2j

(
ŷ(x, rj+ℓk)− 1 + ξk

)
(∆r)k

)
.

Substituting r2j = r2j+ℓk
− ℓk(∆r)k(2rj + ℓk(∆r)k), we obtain

Ĉk(x) ≤
5

r5max, k − r5min, k

mk∑
j=1

(
r2j+ℓk

− ℓk(∆r)k(2rj + ℓk(∆r)k)
)(
ŷ(x, rj+ℓk)− 1 + ξk

)
(∆r)k

=
5

r5max, k − r5min, k

(
mk+ℓk∑
j=1+ℓk

r2j

(
ŷ(x, rj)− 1 + ξk

)
(∆r)k

−
mk∑
j=1

(
ℓk(∆r)k(2rj + ℓk(∆r)k)

)(
ŷ(x, rj+ℓk)− 1 + ξk

)
(∆r)k

)
.

Rearranging terms, we obtain

Ĉk(x) ≤ Ĉ(x) +
5

r5max, k − r5min, k

(
mk+ℓk∑
j=1+ℓk

r2j ξk(∆r)k +

mk+ℓk∑
j=mk+1

r2j

(
ŷ(x, rj)− 1

)
(∆r)k

−
ℓk∑
j=1

r2j

(
ŷ(x, rj)− 1

)
(∆r)k

−
mk∑
j=1

ℓk(∆r)k(2rj + ℓk(∆r)k)
(
ŷ(x, rj+ℓk)− 1 + ξk

)
(∆r)k

)
.

By Equation 7.38,

Ĉk(x) ≤ Ĉ(x) +
5ξk

r5max, k − r5min, k

mk+ℓk∑
j=1+ℓk

r2j (∆r)k

+
5(1 + ξk)

r5max, k − r5min, k

(
mk+ℓk∑
j=mk+1

r2j (∆r)k +

ℓk∑
j=1

r2j (∆r)k

+

mk∑
j=1

ℓk(∆r)k(2rj + ℓk(∆r)k)(∆r)k

)
.
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By comparing the sum
∑mk+ℓk

j=1+ℓk
r2j (∆r)k to the integral

∫ rmax, k+(∆r)k+δk
0

r2dr, we obtain

Ĉk(x) ≤ Ĉ(x) +
5ξk

r5max, k − r5min, k

· (rmax, k + (∆r)k + δk)
3

3

+
5(1 + ξk)

r5max, k − r5min, k

(
mk+ℓk∑
j=mk+1

r2j (∆r)k +

ℓk∑
j=1

r2j (∆r)k

+

mk∑
j=1

ℓk(∆r)k(2rj + ℓk(∆r)k)(∆r)k

)
.

By hypothesis, rmin, k ≤ Brmax, k for some B < 1 and (∆r)k + δk < rmax, k for sufficiently

large k, so

Ĉk(x) ≤ Ĉ(x) +
40

3(1−B5)
· ξk
r2max, k

+
5(1 + ξk)

(1−B5)r5max, k

(
mk+ℓk∑
j=mk+1

r2j (∆r)k +

ℓk∑
j=1

r2j (∆r)k

+

mk∑
j=1

ℓk(∆r)k(2rj + ℓk(∆r)k)(∆r)k

)
.

Because rj increases monotonically with j,

Ĉk(x) ≤ Ĉ(x) +
40

3(1−B5)
· ξk
r2max, k

+
5(1 + ξk)

(1−B5)r5max, k

(
ℓk(∆r)k(rmax, k + ℓk(∆r)k)

2

+ ℓk(∆r)k(rmin, k + ℓk(∆r)k)
2 + (rmax, k − rmin)ℓk(∆r)k(2rmax, k + ℓk(∆r)k)

)
.

By choice of ℓk, we have ℓk(∆r)k < δk + (∆r)k, so

Ĉk(x) ≤ Ĉ(x) +
40

3(1−B5)
· ξk
r2max, k

+
5(1 + ξk)(δk + (∆r)k)

(1−B5)r5max, k

(
(rmax, k + (δk + (∆r)k))

2

+ (rmin, k + (δk + (∆r)k))
2 + (rmax, k − rmin, k)(2rmax, k + (δk + (∆r)k))

)
.

Because 0 ≤ rmin, k < rmax, k,

Ĉk(x) ≤ Ĉ(x) +
40

3(1−B5)
· ξk
r2max, k

+
5(1 + ξk)(δk + (∆r)k)

(1−B5)r5max, k

(
2(rmax, k + (δk + (∆r)k))

2

+ rmax, k(2rmax, k + δk + (∆r)k)

)
.
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By hypothesis, δk + (∆r)k < rmax, k for sufficiently large k, so

Ĉk(x)− Ĉ(x) ≤ 40

3(1−B5)
· ξk
r2max, k

+
55(1 + ξk)

(1−B5)
· (δk + (∆r)k)

r3max, k

for sufficiently large k. The right-hand side is positive and approaches 0 as k → ∞, so

Ĉk(x)− Ĉ(x) < ϵ (7.39)

for sufficiently large k.

Next, we obtain a lower bound on Ĉk(x) − Ĉ(x). The calculation proceeds almost the

same way as our calculation of an upper bound, except that the lower bound in Equation

7.37 is of a slightly different form than the upper bound. The lower bounds in Equations

7.36–7.37 imply that

Ĉk(x) =
5

r5max, k − r5min, k

(
mk∑
j=1

r2j

(
ŷk(x, rj)− 1

)
(∆r)k

)

≥ 5

r5max, k − r5min, k

(
r21

(
ŷk(x, r1 − δk)− 1− ξk

)
(∆r)k

+

mk∑
j=2

r2j

(
ŷ(x, rj−ℓk)− 1− ξk

)
(∆r)k

)
.

Substituting r2j = r2j−ℓk
+ ℓk(∆r)k(2rj − ℓk(∆r)k), we obtain

Ĉk(x) ≥
5

r5max, k − r5min, k

(
r21

(
ŷ(x, r1 − δk)− 1− ξk

)
(∆r)k

+

mk−ℓk∑
j=2−ℓk

r2j

(
ŷ(x, rj)− 1− ξk

)
(∆r)k

+

mk∑
j=2

ℓk(∆r)k(2rj − ℓk(∆r)k)
(
ŷ(x, rj−ℓk)− 1− ξk

)
(∆r)k

)
.
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Rearranging terms, we have

Ĉk(x) ≥ Ĉ(x) +
5

r5max, k − r5min, k

(
r21

(
ŷ(x, r1 − δk)− 1− ξk

)
(∆r)k

+
0∑

j=2−ℓk

r2j

(
ŷ(x, rj)− 1

)
(∆r)k − r21

(
ŷ(x, r1)− 1

)
(∆r)k

−
mk∑

j=mk−ℓk+1

r2j

(
ŷ(x, rj)− 1

)
(∆r)k −

mk−ℓk∑
j=2−ℓk

r2j ξk(∆r)k

+

mk∑
j=2

ℓk(∆r)k(2rj − ℓk(∆r)k)
(
ŷ(x, rj−ℓk)− 1− ξk

)
(∆r)k

)
.

By Equation 7.38,

Ĉk(x) ≥ Ĉ(x)− 5ξk
r5max, k − r5min, k

mk−ℓk∑
j=2−ℓk

r2j (∆r)k −
5(1 + ξk)

r5max, k − r5min, k

(
r21(∆r)k +

1∑
j=2−ℓk

r2j (∆r)k

+

mk∑
j=mk−ℓk+1

r2j (∆r)k +

mk∑
j=2

ℓk(∆r)k(2rj − ℓk(∆r)k)(∆r)k

)
.

By comparing the sum
∑mk−ℓk

j=2−ℓk
r2j (∆r)k to the integral

∫ rmax

0
r2dr, we obtain

Ĉk(x) ≥ Ĉ(x)−

(
5ξk

r5max, k − r5min, k

·
r3max, k

3

)
− 5(1 + ξk)

r5max, k − r5min, k

(
r21(∆r)k +

1∑
j=2−ℓk

r2j (∆r)k

+

mk∑
j=mk−ℓk+1

r2j (∆r)k +

mk∑
j=2

ℓk(∆r)k(2rj − ℓk(∆r)k)(∆r)k

)
.

By hypothesis, rmin, k ≤ Brmax, k for some B < 1, so

Ĉk(x) ≥ Ĉ(x)−

(
5

3(1−B5)
· ξk
r2max, k

)
− 5(1 + ξk)

(1−B5)r5max, k

(
r21(∆r)k +

1∑
j=2−ℓk

r2j (∆r)k

+

mk∑
j=mk−ℓk+1

r2j (∆r)k +

mk∑
j=2

ℓk(∆r)k(2rj − ℓk(∆r)k)(∆r)k

)
.

Because r2j increases monotonically with j ∈ {2− ℓk, . . . ,mk} (and noting that r2−ℓk > 0 by

221



hypothesis),

Ĉk(x) ≥ Ĉ(x)−

(
5

3(1−B5)
· ξk
r2max, k

)
− 5(1 + ξk)

(1−B5)r5max, k

(
r21(∆r)k + ℓkr

2
1(∆r)k

+ ℓkr
2
max, k(∆r)k + (mk − 1)(∆r)kℓk(∆r)k(2rmax, k − ℓk(∆r)k)

)
.

≥ Ĉ(x)− 5

3(1−B5)
· ξk
r2max, k

− 5(1 + ξk)

(1−B5)r5max, k

(
(1 + ℓk)r

2
1(∆r)k + 3r2max, k(∆r)kℓk

)
≥ Ĉ(x)− 5

3(1−B5)
· ξk
r2max, k

− 5(1 + ξk)

(1−B5)r5max, k

(
(1 + 2ℓk)r

2
max, k(∆r)k + 3r2max, k(∆r)kℓk

)
.

By choice of ℓk, we have ℓk(∆r)k < (∆r)k + δk, which implies

Ĉk(x)− Ĉ(x) ≥ −

(
5

3(1−B5)
· ξk
r2max, k

)
− 5(1 + ξk)

(1−B5)r3max, k

(
6(∆r)k + 5δk

)
≥ −

(
5

3(1−B5)
· ξk
r2max, k

)
− 30(1 + ξk)

(1−B5)
· (∆r)k + δk

r3max, k

.

The right-hand side is negative and approaches 0 as k → ∞, so

Ĉk(x)− Ĉ(x) > −ϵ (7.40)

for sufficiently large k. Together, Equations 7.39 and 7.40 complete the proof.

Lemma 7.A.6. If the hyperparameter-value sequences satisfy

1. (∆r)k/r
3
max, k → 0 as k → ∞ ,

2. |Xk|(rmin, k + (∆r)k)
n → ∞ , and

3. rmin, k/r
3
max, k → 0 as k → ∞ ,

then |Ĉ[dXk
, ρ](xk) − C(xk)| → 0 in probability as k → ∞, where {xk} is any sequence of

points such that xk ∈ Xk.
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Proof. Let x be any point in Xk. For all j ∈ {1, . . . ,mk}, let ŷj := ŷ(x, rj) and let yj :=

y(x, rj). The absolute difference |Ĉ(x)− C(x)| is bounded above by

|Ĉ(x)− C(x)| ≤ 5

r5max, k − r5min, k

(∣∣∣ mk∑
j=1

r2j (∆r)k −
∫ rmax, k

rmin, k

r2dr
∣∣∣

+
∣∣∣ ∫ rmax, k

rmin, k

r2y(x, r)dr −
mk∑
j=1

r2jyj(∆r)k

∣∣∣+ ∣∣∣ mk∑
j=1

r2j (ŷj − yj)(∆r)k

∣∣∣) .
Because rmin, k/r

3
max, k → 0 (by hypothesis), there is a constant B < 1 such that rmin, k ≤

Brmax, k for all k. Therefore,

|Ĉ(x)− C(x)| ≤ 5

(1−B5)r5max, k

(∣∣∣ mk∑
j=1

r2j (∆r)k −
∫ rmax, k

rmin, k

r2dr
∣∣∣

+
∣∣∣ ∫ rmax, k

rmin, k

r2y(x, r)dr −
mk∑
j=1

r2jyj(∆r)k

∣∣∣+ ∣∣∣ mk∑
j=1

r2j (ŷj − yj)(∆r)k

∣∣∣) .
(7.41)

The first term on the right-hand side of Equation 7.41 is a Riemann-sum error. For any

function f(r) that is integrated on [rmin, k, rmax, k], the error in the right Riemann sum is

bounded above by maxr∈[rmin, k,rmax, k] |f ′(r)|(∆r)k · (rmax, k − rmin, k)/2. Therefore,∣∣∣ ∫ rmax, k

rmin, k

r2y(x, r)dr −
mk∑
j=1

r2jyj(∆r)k

∣∣∣
≤ (∆r)k

(
max

r∈[rmin, k,rmax, k]

∣∣∣ d
dr
r2y(x, r)

∣∣∣)(rmax, k − rmin, k)/2

≤ (∆r)k

(
max

r∈[rmin, k,rmax, k]

∣∣∣ d
dr
r2y(x, r)

∣∣∣)rmax, k/2. (7.42)

We have d
dr
r2y(x, r) = r2 d

dr
y(x, r) + 2ry(x, r). By Equation 7.1, we have limr→0 y(x, r) = 1

and limr→0
d
dr
y(x, r) = 0. Therefore, | d

dr
r2y(x, r)| = O(r) as r → 0, so there is a constant

A > 1 such that maxr∈[rmin, k,rmax, k] | d
dr
r2y(x, r)| ≤ 2Armax, k for sufficiently small rmax, k. Thus

for sufficiently large k,(
max

r∈[rmin, k,rmax, k]

∣∣∣ d
dr
r2y(x, r)

∣∣∣)rmax, k/2 ≤ Ar2max, k (7.43)
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because rmax, k → 0 as k → ∞.

Let ϵ > 0. By hypothesis,
r3max, k

(∆r)k
→ ∞ as k → ∞, so

r2max, k ≤
r5max, k(1−B5)ϵ

15A(∆r)k
(7.44)

for sufficiently large k. Substituting Equation 7.44 into Equation 7.43 and Eq. 7.43 into Eq.

7.42 yields ∣∣∣ ∫ rmax, k

rmin, k

r2y(x, r)dr −
mk∑
j=1

r2jyj(∆r)k

∣∣∣ ≤ r5max, k(1−B5)ϵ

15
. (7.45)

Next, we bound the second term on the right-hand side of Equation 7.41, which is also a

Riemann-sum error. For a monotonic function f(r) that is integrated on [rmin, k, rmax, k], the

error in the right Riemann sum is bounded above by (∆r)k|f(rmax, k)−f(rmin, k)|. Therefore,∣∣∣ mk∑
j=1

r2j (∆r)k −
∫ rmax, k

rmin, k

r2dr
∣∣∣ ≤ (∆r)k(r

2
max, k − r2min, k) ≤ (∆r)k · r2max, k .

By Eq. 7.44,∣∣∣ mk∑
j=1

r2j (∆r)k −
∫ rmax, k

rmin, k

r2dr
∣∣∣ ≤ r5max, k(1−B5)ϵ

15A
<
r5max, k(1−B5)ϵ

15
(7.46)

for sufficiently large k.

Putting the inequalities of Eqs. 7.46 and 7.45 into Eq. 7.41, we obtain

|Ĉ(x)− C(x)| ≤ 2

3
ϵ+

∣∣∣ mk∑
j=1

r2j (ŷj − yj)
∣∣∣ 5(∆r)k
(1−B5)r5max, k

.

Therefore,

P[|Ĉ(x)− C(x)| > ϵ] ≤ P

[∣∣∣ mk∑
j=1

r2j (ŷj − yj)
∣∣∣ > (1−B5)r5max, kϵ

15(∆r)k

]
. (7.47)

We have E
[∑mk

j=1 r
2
j ŷj

]
=
∑mk

j=1 r
2
jyj because E[ŷj] = yj (Lemma 7.2.4). By applying Cheby-

shev’s inequality to the right-hand side of Eq. 7.47, we obtain

P[|Ĉ(x)− C(x)| > ϵ] ≤
( 15

(1−B5)ϵ

)2((∆r)k
r5max, k

)2
var
( mk∑

j=1

r2j ŷj

)
. (7.48)
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We expand the variance as

var
( mk∑

j=1

r2j ŷj

)
=

mk∑
j=1

r4jvar(ŷj) +
∑
i ̸=j

r2i r
2
j cov(ŷi, ŷj).

For all i ̸= j, we have cov(ŷi, ŷj)
2 ≤ var(ŷi)var(ŷj). Therefore,

var
( mk∑

j=1

r2j ŷj

)
≤
( mk∑

j=1

r2j

√
var(ŷj)

)2
.

By Prop. 7.4.1, there is a constant A′ ≥ 0 such that

var(ŷj) ≤
A′

|Xk|rnj

for all j and sufficiently large k. Therefore,

var
( mk∑

j=1

r2j ŷj

)
≤ A′

|Xk|

( mk∑
j=1

r
2−n/2
j

)2
(7.49)

for sufficiently large k. Below, we use Eq. 7.49 to obtain an upper bound on the right-hand

side of Eq. 7.48. There are two cases, depending on n.

Case 1: (2 ≤ n ≤ 4).

In this case, ( mk∑
j=1

r
2−n/2
j

)2
≤ r4−n

max, k

(rmax, k − rmin, k

(∆r)k

)2
≤
r6−n
max, k

(∆r)2k
(7.50)

because r
2−n/2
j is monotonically increasing. Combining Eqs 7.48, 7.49, and 7.50, we obtain

P[|Ĉ(x)− C(x)| > ϵ] ≤
( 15

(1−B5)ϵ

)2((∆r)k
r5max, k

)2 A′

|Xk|
r6−n
max, k

(∆r)2k

≤ A′
( 15

(1−B5)ϵ

)2 1

|Xk|rn+4
max, k

= A′
( 15

(1−B5)ϵ

)2 1

|Xk|(rmin, k + (∆r)k)n/3+4/3

(rmin, k + (∆r)k
r3max, k

)n/3+4/3

.

Because n/3 + 4/3 ≤ n for n ≥ 2 and rmin, k + (∆r)k < 1 for sufficiently large k,

P[|Ĉ(x)− C(x)| > ϵ] ≤ A′
( 15

(1−B5)ϵ

)2 1

|Xk|(rmin, k + (∆r)k)n

(rmin, k + (∆r)k
r3max, k

)n/3+3/4
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for sufficiently large k. By hypothesis,
(

rmin, k+(∆r)k
r3max, k

)
→ 0 and 1

|Xk|(rmin, k+(∆r)k)n
→ 0 as

k → ∞. Therefore, P[|Ĉ(xk)− C(xk)| > ϵ] → 0 as k → ∞.

Case 2: (n > 4).

In this case,( mk∑
j=1

r
2−n/2
j

)2
≤ (rmin, k + (∆r)k)

4−n
(rmax, k − rmin, k

(∆r)k

)2
≤ (rmin, k + (∆r)k)

4−n
(rmax, k

(∆r)k

)2
(7.51)

because r
2−n/2
j is monotonically decreasing. Combining Eqs 7.48, 7.49, and 7.51 yields

P[|Ĉ(x)− C(x)| > ϵ] ≤ A′
( 15

(1−B5)ϵ

)2((∆r)k
r5max, k

)2 (rmin, k + (∆r)k)
4−nr2max, k

|Xk|(∆r)2k

= A′
( 15

(1−B5)ϵ

)2(rmin, k + (∆r)k
r2max, k

)4 1

|Xk|(rmin, k + (∆r)k)n
.

By hypothesis,
(

rmin, k+(∆r)k
r2max, k

)
→ 0 and 1

|Xk|(rmin, k+(∆r)k)n
→ 0 as k → ∞. Therefore,

P[|Ĉ(xk)− C(xk)| > ϵ] → 0 as k → ∞.
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CHAPTER 8

Conclusions

In this thesis, I presented new applications, methods, and theory of topological data analysis

(TDA) and geometric data analysis (GDA).

First, I introduced the concept of a PD bundle, which is a generalization of a vineyard

(which is used, e.g., for time-varying persistent homology) that allows one to analyze the

topological features of any parameterized set of filtrations. I proved that generic PD bundles

are determined by finitely many points in the “base space” (the parameter space) when the

base space is a smooth compact manifold. Exploiting this fact, I developed an algorithm to

compute “piecewise-linear” PD bundles. We also explored the phenomenom of “monodromy”

that can occur in PD bundles but does not occur in vineyards. The development of PD

bundles raises many questions. In particular, it remains to understand the stability of

PD bundles, to develop good summary statistics for applications, and to strengthen the

connection with important special cases like the persistent homology transform.

In the next part of the thesis, we applied TDA to several spatial and spatiotemporal data

sets. The first set of applications (see Chapter 5) was a set of COVID-19 data sets (case-

count data in Los Angeles and vaccination data in New York City), for which we used TDA

to analyze both the local and global structure of local extrema. For the Los Angeles data, we

used vineyards to study how the spatial structure of case-count anomalies (i.e., local maxima)

evolved with time. In the next chapter (see Chapter 6), we used PH to study the accessibility

of polling places and to identify “holes in coverage.” In ongoing work, my collaborators and

I are generalizing our method to study the accessibility of public green space (specifically,
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parks) in urban areas. This extension requires mathematical modifications to account for

the different quality of different parks.

In the last part of the thesis, we defined an intrinsic estimator for scalar curvature. The

estimator can be applied not only to point-cloud data but also to any finite metric space,

such as a network that is equipped with the shortest-path metric. We proved that the

estimator converges to the ground-truth scalar curvature and that it is stable with respect

to perturbations in the metric structure. We also validated it on synthetic data that is

sampled from manifolds with known curvature. One of the broad challenges in geometric

data analysis is that local geometric invariants (such as scalar curvature) are sensitive to noise

and small perturbations of the underlying manifold. In our curvature-estimation research,

we addressed this challenge by estimating the quantity of interest (geodesic-ball volume) at

multiple length scales. This strategy is also the key behind the stability of PH. A major goal

of future work is to develop strategies to stably estimate other local geometric invariants.

To conclude, this thesis strengthens the theoretical and computational foundations of

TDA and GDA, which are fields that use ideas from algebraic topology, differential geometry,

computational geometry, and statistics to analyze (typically) high-dimensional data. By

harnessing the power of algebraic topology and differential geometry, we developed novel

methods to reveal structure in complex data sets.
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APPENDIX A

Opinion Dynamics

In [HKF22], I led a study of opinion dynamics on hypergraphs. The content of this paper is

not included in the dissertation only because the topic does not fit with the other papers.

In this appendix, I briefly summarize our results and contributions, adapted from [HKF22].

In opinion dynamics, one models how people’s opinions evolve with time as they interact

with each other. Typically, one models social relationships as edges of a network and nodes

can interact only with their neighbors in the network. A bounded-confidence model (BCM)

is a model of opinion dynamics in which nodes are influenced only by nodes whose opinions

are sufficiently close (within a “confidence bound” c) of their own opinion. The opinion of

each node is represented as a real number, which is an appropriate choice for opinions that

lie on a one-dimensional continuous spectrum.

In [HKF22], we developed a BCM of opinion dynamics on hypergraphs, which allowed us

to study the effect of polyadic social interactions on opinion formation. (Each hyperedge of

a hypergraph encodes a polyadic social relationship.) We proved that our hypergraph BCM

almost surely converges to consensus on the complete hypergraph for a wide range of initial

conditions for the opinions of the nodes, including all bounded initial opinion distributions.

We also showed that, under suitable conditions, echo chambers can form on hypergraphs

with community structure. We demonstrated that the opinions of nodes can sometimes

jump from one opinion cluster to another in a single time step; this phenomenon (which

we called “opinion jumping”) is not possible in BCMs on ordinary graphs. Additionally, we

analyzed the convergence time of our model.
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