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Computationally efficient design of directionally
compliant metamaterials

Lucas A. Shaw', Frederick Sun', Carlos M. Portela?, Rodolfo I. Barranco', Julia R. Greer? & Jonathan B. Hopkins®

Designing mechanical metamaterials is overwhelming for most computational approaches
because of the staggering number and complexity of flexible elements that constitute their
architecture—particularly if these elements don't repeat in periodic patterns or collectively
occupy irregular bulk shapes. We introduce an approach, inspired by the freedom and
constraint topologies (FACT) methodology, that leverages simplified assumptions to enable
the design of such materials with ~6 orders of magnitude greater computational efficiency
than other approaches (e.g., topology optimization). Metamaterials designed using this
approach are called directionally compliant metamaterials (DCMs) because they manifest
prescribed compliant directions while possessing high stiffness in all other directions. Since
their compliant directions are governed by both macroscale shape and microscale archi-
tecture, DCMs can be engineered with the necessary design freedom to facilitate arbitrary
form and unprecedented anisotropy. Thus, DCMs show promise as irregularly shaped flexure
bearings, compliant prosthetics, morphing structures, and soft robots.
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echanical metamaterials (a.k.a. architected materials) can

achieve extreme properties that derive primarily from their

architecture instead of their composition!. By controlling
the locations and orientations of microelements (e.g., beams, blades,
and hinges) that constitute their architecture, such materials can be
engineered with super properties otherwise not achievable (e.g.,
extreme strength-to-weight ratios?, tunable negative thermal expan-
sion coefficients, and large negative Poisson’s ratios).

Past research has primarily focused on infinite periodic meta-
materials that achieve their engineered properties with isotropy
because such materials consist of single symmetric cells that
repeat without bounds and are thus manageable to design despite
their numerous constituent elements. Unfortunately, such meta-
materials have limited use because most practical applications
require materials that occupy finite and often irregularly shaped
volumes and achieve anisotropic properties tailored along pre-
scribed directions. Metamaterials that meet these demands
usually require huge numbers of aperiodic (i.e., nonrepeating)
asymmetric cells that occupy volumes with complex boundaries
and are thus too computationally expensive to design.

Previous work has sought to address these challenges by uti-
lizing precomputed databases of different cell designs to generate
aperiodic and practically shaped metamaterials that achieve
desired deformations® or targeted regions of compliance®. Finite
element analysis (FEA), sparse regularization, and constraint
optimization have been employed to generate shapes consisting of
aperiodic distributions of different materials that deform in pre-
scribed ways when actuated’. Aperiodic metamaterials have also
been designed with graded properties (e.g., elasticity® and thermal
expansion’), which vary across their lattice’s geometry. Addi-
tionally, metamaterials that exhibit desired textures when actu-
ated have been designed using a single anisotropic cell that is
oriented in nonrepeating patterns!?. Lastly, aperiodic lattices of
shearing cells have been used to generate monolithic mechanisms
that achieve desired deformations!!.

Despite these advances, a large computational gap remains
between metamaterial research and the ability to implement that
research within most practical applications. A new approach is
necessary to bridge this gap by leveraging simplified assumptions
to enable the automated design of aperiodic metamaterials of
staggering complexity and achieve customized anisotropic prop-
erties while assuming any form.

Metamaterials designed using this approach are called direc-
tionally compliant metamaterials (DCMs) because they are

Fig. 1 Introduction to directionally compliant metamaterials (DCMs). a A
flexure system that exclusively achieves the desired rotational degree of
freedom (DOF) of an elbow but fails to assume its shape and, b an
aperiodic DCM that can be shaped to conform to any elbow shape while
also achieving high stiffness in all directions except about, ¢, the desired
compliant rotational DOF

engineered to achieve high compliance along desired directions
while exhibiting high stiffness along other directions. In contrast
with traditional flexure systems!'2, which are currently used to
achieve desired directions of compliance (i.e., degrees of freedom
(DOFs)), DCMs can be engineered to assume any bulk shape
while achieving unprecedented combinations of DOFs. The rea-
son is that unlike flexure systems, which achieve DOFs almost
exclusively according to how they are shaped on the macroscale,
DCMs achieve their anisotropic properties both according to
their macroscale shape as well as their architecture at smaller
scales. Thus, the design space of DCMs that achieve desired DOFs
while simultaneously assuming desired bulk shapes is sig-
nificantly larger than the design space of flexure systems that
achieve the same objectives.

An example that demonstrates these advantages is a prosthetic
elbow joint. Although flexure systems (e.g., Fig. 1a) could achieve
the joint’s desired rotational DOF with high compliance while
possessing high stiffness in all other directions, no flexure system
could also assume the irregular shape of an elbow. An aperiodic
DCM (e.g., Fig. 1b) could, however, achieve the desired rotational
DOF (Fig. 1¢) while also assuming an elbow shape. Such a joint
would avoid the need for assembly and could be additively fab-
ricated as a monolithic structure while mimicking an elbow with
greater practicality and fidelity.

In addition to enabling directionally compliant joints, DCMs
can facilitate other shape-morphing applications. A DCM could,
for example, be shaped on the macroscale as a propeller blade but
be engineered with a microarchitecture that exhibits a screw DOF
(i.e., a translation coupled with a rotation)!3 about the blade’s axis
while achieving high stiffness in all other directions. The pitch of
the screw DOF could be tuned such that its corresponding blade
would passively reconfigure its angle of attack proportionate to
the angular speed of the propeller due to centripetal forces. Other
DCM applications are discussed in Supplementary Note 1 and
shown in Supplementary Fig. 1 and Supplementary Movie 1.

Most DCMs are currently impossible to design because their
architecture typically consists of unmanageably large numbers of
nonrepeating flexible elements that collectively occupy irregularly
shaped volumes. Existing computational approaches (e.g., topol-
ogy optimization!4) become overwhelmed when searching the
design space of DCMs because the space is infinitely large and the
process of searching the space requires the simultaneous opti-
mization of huge numbers of parameters.

This paper introduces the theory necessary to design arbitrarily
shaped DCMs that are locally comprised of easily computed
anisotropic constituents. Inspired by the mathematics underlying
the freedom and constraint topologies (FACT) approach!>-17,
this theory leverages simplified assumptions about constituent
elements to enable the automated design of three-dimensional
(3D) DCMs of immense complexity with unmatched efficiency.
We demonstrate the theory’s computational superiority using our
MATLAB tool (see Supplementary Software) and introduce the
principles that govern how both macroscale form and archi-
tecture affect the DOFs of DCMs.

Results

Design approach. The approach introduced here leverages the
vector spaces of the FACT library!>-17 graphically depicted in
Supplementary Fig. 2 to rapidly generate DCMs with desired
DOFs. The vector spaces of the FACT library utilize screw the-
ory!'8-20 and collectively embody the design space of all compliant
systems. One set of spaces, called freedom spaces!>~17, consist of
red rotation lines, green screw lines, and black translation arrows
and represent all the combinations of DOFs that a system could
achieve. Another set of complementary spaces, called constraint
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spaces!>-17, consist of blue constraint-force lines and represent
the region of space within which flexible elements must be placed
to achieve the DOFs of their corresponding freedom space.
Additional FACT-library details are discussed in Methods.

Although the FACT library was originally created to facilitate
the synthesis of flexure systems via a paper—pencil approach, this
work demonstrates that an advanced automated approach can
leverage the same library alongside computation to enable the
rapid generation of complex DCMs with even greater benefit to
the field of metamaterials. Whereas other approaches fail to
generate DCMs because their computational cost is too high, the
approach introduced here can generate DCMs with orders of
magnitude less cost. The reason is that unlike other computa-
tional approaches that simultaneously consider the constituent
material properties, geometric parameters, locations, and orienta-
tions of every element within a DCM, the approach introduced
here simplifies the scenario significantly by only modeling the
locations and orientations of each element using 6 x 1 pure-force
wrench vectors (PEWVs)15-20, W,_,. These vectors are depicted
as the blue constraint-force lines within the constraint spaces of
the FACT library in Supplementary Fig. 2. The mathematics
required to define PFWVs and to use these vectors to model
elements of any geometry are provided in Methods.

Elements modeled using PFWVs are treated as ideal elements
that are infinitely stiff along the axes of the blue constraint-force
lines that pass through the element’s geometry but are infinitely
compliant in all other directions. This assumption dramatically
simplifies the design process such that the locations and
orientations of hundreds to thousands of elements per second
can be determined within DCMs using a standard desktop
computer. Although the ideal-element model produces DCMs
that would theoretically exhibit infinite stiffness in all directions
except along their infinitely compliant DOFs, once geometric
parameters and material properties are assigned to their elements,
the DOFs achieved by such DCMs actually exhibit finite
compliant values that are consistently the most compliant of all
other directions.

The proposed approach’s steps are briefly summarized here.
The DCM’s volume is first divided into smaller cell volumes
within which elements are to be placed to ensure that each cell
will individually achieve the desired DOFs. A DCM consisting of
many such smaller cells could be made to assume a variety of bulk
shapes without compromising the desired DOFs because each cell
is redundant and can, therefore, be removed from the material’s
volume with minimal consequence. Once the DCM’s volume is
divided into constituent cell volumes, the DCM’s desired DOFs
are then modeled as 6 x 1 twist vectors!>=20, Ty, ,, according to
the mathematics detailed in Methods. The freedom space that
represents the combination of all the desired DOFs is then
calculated by linearly combining the twist vectors that model each
DOF. The complementary constraint space of the resulting
freedom space is then identified using the FACT library. If this
constraint space belongs within the region shaded yellow in the
FACT library of Supplementary Fig. 2 (i.e., 0 DOF Type 1, 1 DOF
Type 1 through 3, 2 DOF Type 3 through 9, and 3 DOF Type 2
and 3), the geometry of that constraint space can be used to
determine the appropriate kind, number, location, and orienta-
tion of flexible elements within each cell volume according to the
theory in Methods. Such constraint spaces that lie within the
yellow shaded region of the FACT library are called cell spaces
because they are the only constraint spaces that can occupy any
volume of space with enough independent PFWVs to generate
cell topologies that achieve their intended DOFs. Thus, if the
desired freedom space’s complementary constraint space is not a
cell space, it can’t be used to synthesize the DCM’s cells. As a
result, alternating layers of cells that each achieve some of the

DOFs within the freedom space should be designed to collectively
achieve all the DOFs within the freedom space when they are
stacked together in series. To synthesize such serially-stacked
layers, intermediate freedom spaces'®17 should be selected from
within the freedom space according to the rules in Methods. Each
intermediate freedom space selected represents the combination
of the DOFs that each serially-stacked cell layer will contribute to
the DCM’s freedom space. The intermediate freedom spaces
selected must link to complementary constraint spaces that are
cell spaces because these spaces must then be used to generate the
individual cell topologies within the DCM’s alternating cell layers.

A case study of the design approach is provided here and
animated in Supplementary Movie 2. The case study is a DCM
that achieves a single screw DOF with a desired pitch, p, as shown
by the green line in Fig. 2a. The DCM volume is first divided into
individual cell volumes as shown. The freedom space of the
desired screw DOF is then identified as the freedom space labeled
1 DOF Type 2 in Supplementary Fig. 2 (Fig. 2b). Its constraint
space consists of nested circular hyperboloids filled with PFWVs
that satisfy p = d"tan(6) according to the geometric parameters, d
and 0, labeled in Fig. 2b. Since the constraint space is a cell space
(i.e., it belongs within the region shaded yellow in Supplementary
Fig. 2), each cell that constitutes the final DCM design (Fig. 2¢) is
synthesized from within the geometry of the constraint space
according to the rules provided in Methods. The resulting DCM
consists of nine identical stacked layers (Fig. 2d) constructed
using six different cell designs (Fig. 2e) that each utilize five wire
elements (i.e., slender cylindrical beams) aligned with indepen-
dent PFWVs from within the constraint space of Fig. 2b.
Although this space contains enough independent PFWVs that
pass through the volume of each cell within the DCM because the
space is a cell space, not all of the PFWVSs’ corresponding colinear
wire elements can directly join the cell’s rigid bodies together
without layer extensions that protrude from these bodies. Thus,
layer extensions are used within some of the cell designs (i.e., the
blue, green, yellow, and red cells in Fig. 2e). If a higher cell
resolution had been specified such that many more cells would
have been generated, a propeller-blade shape could have been
carved out of the resulting DCM without altering its screw DOF
to enable the propeller application discussed previously.

We fabricated the DCM of Fig. 2¢ at the microscale using two-
photon lithography, which achieved minimum feature resolutions
of ~1.5um (Fig. 3a). To validate the desired screw DOF, we
performed in situ uniaxial compression experiments (Supple-
mentary Movie 2) while tracking the rotation of each rigid layer
using a scanning electron microscope (SEM). Imposing quasi-
static deformation (¢=10"3 s~!) to the elastic strain limit
(e =~ 8%) produced the corresponding clockwise rotation accord-
ing to the intended pitch of the desired screw DOF. This elastic
response was validated via FEA (Fig. 3b), which showed the same
rotation upon compression. The details of this FEA are specified
in Methods. The FACT-predicted pitch, p, of 30 um/rad was
closely matched by the FEA calculations, while the experiments
achieved an average pitch of 38.3 um/rad, attributed to non-
negligible friction between the indenter and the top pyramid-
shaped layer as well as inherent manufacturing defects (Fig. 3c).
To assess the repeatability of the screw deformation, we
performed cyclic compressions (Fig. 3d) in which a constant
pitch was observed above a ~4pum displacement. Minor
permanent deformation accumulated after the first two cycles,
which prevented the material to revert to the zero-rotation state
upon unloading, but it did not affect the value of the pitch when
deformed in the linear regime. Additional plots are provided in
Supplementary Fig. 3. Note that although an alternative single-
screw-DOF metamaterial has previously been designed!? prior to
this work, the theory of this paper enables the automated
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Fig. 2 Single degree-of-freedom (DOF) screw example. a The available volume is divided into individual cell volumes and the desired screw DOF is
specified. b The screw DOF's freedom space and its complementary constraint space shown with parameters that relate its geometry to the pitch, p, of the
screw, ¢ the resulting aperiodic directionally compliant metamaterial (DCM) design consisting of, d nine identical layers each made of, e six unique cell
designs
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Fig. 3 Validation of the screw degree-of-freedom (DOF) example. a In situ nanomechanical compression experiment on a screw directionally compliant
metamaterial (DCM) fabricated using two-photon lithography, during which the corners of the rigid layers were tracked (red circles) and compared with
the undeformed configuration (yellow circles). b Finite element analysis (FEA) assuming fully linear behavior depicting the clockwise rotation observed in
experiments. ¢ Pitch comparison between freedom and constraint topologies (FACT) prediction and FEA (30 pm/rad), and experiments (38.3 pm/rad).
d Cyclic compression of the screw-DOF DCM. The experimental data points in € and d correspond to the averaged top-layer rotation for a minimum of two
identical samples, while the error bars correspond to the standard deviation amongst the samples (scale bar in a, 50 pm)
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Fig. 4 Example with a rotational degree-of-freedom (DOF). a A rotational freedom space and, b its constraint space of intersecting planes can be used,
¢, d, to synthesize individual cells that individually achieve the desired rotation so, e, an aperiodic directionally compliant metamaterial (DCM) with,
f intersecting blade elements can be generated to achieve, g-i, the desired rotation for a variety of bulk shapes (colors in g-i are defined in Fig. 3b)

synthesis of metamaterials that achieve any combination of DOFs
(i.e., screws, translations, and rotations) located and oriented any
way desired.

Single-DOF case study. Suppose a cube-shaped 5x5x5-cell DCM
is desired that is stiff in all directions except about a single
rotational axis through its center as shown in Fig. 4a. The free-
dom space that embodies the desired rotational DOF is depicted
as the red line, labeled 1 DOF Type 1 in Supplementary Fig. 2. Its
constraint space consists of the intersecting blue planes shown in
Fig. 4b. Since this constraint space is a cell space, the portion of
the space that fills each cell volume can be used to synthesize their
respective topologies. Two blade elements per cell can, for
instance, be selected such that each blade’s plane corresponds
with a plane from the constraint space as shown in Fig. 4c, d to
ensure that each cell individually achieves the desired DOF. Recall
that the rules for determining the number and way flexible ele-
ments should be selected from within constraint spaces to achieve
the desired DOFs embodied by their freedom spaces are provided
in Methods. The remaining cells can be similarly synthesized to
generate the aperiodic DCM of Fig. 4e. Note from the view shown
in Fig. 4f that the planes of the blade elements all intersect the
rotational axis. Modal analysis demonstrates that regardless of
what constituent material the resulting design is assigned, the first
mode shape corresponds with the desired compliant rotation
(Fig. 4g) for a variety of DCM bulk shapes, e.g., a hollowed-out
cube (Fig. 4h) or a halved cube (Fig. 4i). Many more irregular

shapes (e.g., the elbow shape of Fig. 1b,c) could be carved out of
the cube-shaped DCM without compromising its desired rota-
tional DOF if a higher cell resolution is applied. The process for
designing this case study is animated in Supplementary Movie 3
and details regarding its FEA verification are provided in
Methods.

Multi-DOF case study. It is not always obvious which freedom
space maps to a given set of DOFs when more than one DOF is
desired. Suppose a cube-shaped 4x4x4-cell DCM is desired that
achieves the three rotational DOFs shown in Fig. 5a. The freedom
space that represents the combination of these intersecting rota-
tions, labeled 3 DOF Type 3 in Supplementary Fig. 2, is the sphere
of all red rotation lines that intersect a common point as shown in
Fig. 5b. To determine this freedom space, the desired DOFs were
modeled using twist vectors according to the theory in Methods
and were linearly combined to generate all the other twist vectors
within the resulting freedom space. The freedom space’s com-
plementary constraint space is a sphere of PEWVs that intersect
the same point as the rotation lines within the freedom space.
Since this constraint space is a cell space, the DCM of Fig. 5c
could be synthesized by aligning the axes of three wire elements
in each cell with three independent PFWVs from within the
constraint space of Fig. 5b according to the rules detailed in
Methods. Note that many of the resulting cell designs require
layer extensions. Regardless of constituent material properties, the
final DCM’s first three mode-shapes correspond with the three
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Fig. 5 Example with three intersecting rotational degrees of freedom (DOFs). a Three desired intersecting rotational DOFs and, b the freedom and
constraint spaces used to synthesize, ¢ a directionally compliant metamaterial (DCM) that, d-f, achieves the desired compliant rotations (colors in d-f are

defined in Fig. 3b)

desired rotations as shown in Fig. 5d-f. If a higher cell resolution
had been used, the resulting DCM could have been formed to
mimic the DOFs and shapes of natural wrist, shoulder, or hip
joints for various prosthetic or soft-robot applications. The pro-
cess for designing this case study is animated in Supplementary
Movie 3 and details regarding its FEA verification are provided in
Methods.

Case study with a freedom space not linked to a cell space. Not
every constraint space can be used to generate the layers of a
DCM. Suppose, for instance, a DCM is desired that achieves
two intersecting rotations on its top surface as shown in Fig. 6a.
The freedom space that represents the combination of those
DOFs, labeled 2 DOF Type 1 in Supplementary Fig. 2, is a
planar disk of red rotation lines that intersect at the same point
(Fig. 6b). Its constraint space consists of a plane of PFWVs that
is coplanar with the disk of rotations and a sphere of PFWVs
that intersect at the same point where the rotations intersect
(Fig. 6¢). Since the PEWVs on the plane of the constraint space
don’t pass through the cells in the DCM, there are not enough
independent PFWVs in the rest of the constraint space (i.e., the
sphere) to synthesize the cells with flexible elements that
directly connect the layers together. Thus, alternating layers of
cells that each achieve some of the DOFs within the freedom
space should be designed to collectively achieve all the DOFs
within the freedom space when they are stacked together. To
synthesize such cell layers, intermediate freedom space should
be selected from within the freedom space according to the
rules discussed in Methods. The intermediate freedom spaces
should also link to complementary constraint spaces that are
cell spaces since those are the only spaces that can occupy any
volume of space with enough independent PFWVs to generate
correct cell topologies located anywhere. Note that the freedom
spaces of all previous examples link to constraint spaces that are
cell spaces but the freedom space of Fig. 6b does not link to a
cell space, which is why intermediate freedom spaces that do
link to cell spaces are required. Suppose, for this example, the
two rotations shown in Fig. 6a were each selected as the
intermediate freedom spaces from within the space of Fig. 6b.

The intersecting planes of the first intermediate freedom space’s
complementary constraint space (Fig. 4b) can be used to syn-
thesize the flexible elements of each cell (Fig. 6d) in the first
layer (Fig. 6e) such that the cells in that layer individually and
collectively achieve the rotation of their intermediate freedom
space. The second intermediate freedom space’s com-
plementary constraint space (Fig. 4b) can then be used to
synthesize the flexible elements of each cell (Fig. 6f) in the
second layer (Fig. 6g) such that the cells in that layer indivi-
dually and collectively achieve their differently oriented inter-
mediate freedom space. If this process continues for each
successive alternating layer, the resulting aperiodic DCM
(Fig. 6h) will achieve all the DOFs within the full freedom space
of Fig. 6b as shown in Fig. 6i, j. The final design can then
be additively fabricated and shaped as desired (Fig. 6k). The
process for designing this case study is animated in Supple-
mentary Movie 3 and details regarding its FEA verification
are provided in Methods.

Automated design tool. A MATLAB tool (provided in Supple-
mentary Software) was created to automate the design of DCMs.
The tool first prompts users to specify cell size and resolution. In
the example of Fig. 7, a cell size of 2.54 cm and a resolution of
4x4x4 cells was chosen. The tool then prompts users to specify
the desired DOFs and to identify their corresponding freedom
space. In the example of Fig. 7a, two orthogonal translational
DOFs and two orthogonal rotational DOFs were chosen on the
top surface of the DCM, which combine to produce the freedom
space, labeled 4 DOF Type 8 in Supplementary Fig. 2. This
freedom space contains a disk of translations and an infinite
number of stacked disks filled with rotations and screws (Fig. 7b).
If the freedom space selected links to a constraint space that is a
cell space, this constraint space is used by the tool to generate all
the cells within the DCM using the mathematics detailed in
Methods. If, however, the freedom space does not link to a cell
space, the tool then requires the user to identify intermediate
freedom spaces that link to constraint spaces that are cell spaces
and combine to produce the freedom space. Since the freedom
space in Fig. 7b does not link to a cell space, the freedom space
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Fig. 6 Example with two intersecting rotational degrees of freedom (DOFs). a Two desired intersecting rotational DOFs and, b their freedom and,

¢ constraint spaces. Since the plane of the constraint space doesn't fill all space, two intermediate freedom spaces must be used. d The constraint space of
the first intermediate freedom space is used to synthesize the unit cells of, e the first layer. f The constraint space of the second intermediate freedom
space is used to synthesize the unit cells of, g the second layer. h This process is repeated for alternating layers until the final directionally compliant
metamaterial (DCM) is synthesized that, i, j achieves the desired DOFs. k The DCM can be additively fabricated and shaped as desired (scale bar in k,

10 cm, and colors in i and j are defined in Fig. 3b)

labeled 2 DOF Type 8 in Supplementary Fig. 2 was chosen twice
and oriented as shown in Fig. 7c. Note that these spaces do link to
cell spaces and they combine to form the freedom space of
Fig. 7b. The tool then uses the constraint spaces (Fig. 7d) of these
intermediate freedom spaces to generate the appropriate number,
location, and orientation of wire elements within each cell of the
DCM (Fig. 7e, f). The tool also automatically generates layer
extensions when necessary. Note from Fig. 7e, f that the wires
within the alternating layers, labeled LI and L2, lie within the
parallel disks of their respective constraint spaces and some of the
cells required layer extensions. The tool then generates an.stl file
of the resulting design (Fig. 7g), which can be uploaded to 3D

printers (Fig. 7h). The tool also uses a custom-developed modal-
analysis approach, which is provided in Supplementary Software
and discussed in Methods, to generate animated .gif files of the
DCM’s DOFs (Fig. 7i). A demo of the tool is provided in Sup-
plementary Movie 4. The computational times required by a
standard desktop computer to generate uxuxu DCM designs that
achieve the DOFs of Fig. 7a, i are plotted in Fig. 7j.

Although experienced engineers may be able to intuit some of
the DCM designs provided previously, the automated tool of this
work can rapidly generate designs that are too complex for most
humans to visualize. Two such examples, which were generated
by the tool, are provided in Fig. 8. The design of Fig. 8a achieves

NATURE COMMUNICATIONS | (2019)10:291 | https://doi.org/10.1038/s41467-018-08049-1 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

a

Translation DOFs b 4 DOF type 8

Intermediate freedom spaces

2 DOF type 8 2 DOF type 8

Constraint space

Time to generate design (sec)

z
h
g XA*.‘V
0
= //« Y \-\\\\‘\‘{\\\\
e % Dy i
-0.08 7} n \\\\\-\’\\\‘\\\\
/’/l,]l/, 3 \“\
-0.012{ Ui ,‘
-0.02 oio\zx\s\ /«/‘63//0?2 ~0.02 e
J/(,)yo 010 040 = x{®

40
Number of unit cells, u, in a uxuxu lattice

60 80 100

Fig. 7 Automated design tool. a Users specify the desired degrees of freedom (DOFs) and, b the freedom space that results from the combination of those
DOFs. If that freedom space does not link to a constraint space that is a cell space, ¢, intermediate freedom spaces must be selected from within the
freedom space that do link to cell spaces. The tool then generates the directionally compliant metamaterial (DCM) topology using, d the constraint spaces
of the intermediate freedom spaces. e, f The elements in the alternating layers lie within their corresponding constraint spaces. g The tool generates an.stl
file that, h can be used to additively fabricate the design. i Animated .gif files of the DCM's DOFs are also generated. j Plot of the computational time
required by the tool to generate a uxuxu DCM that achieves the four DOFs specified (scale bar in h, 5cm, and colors in i are defined in Fig. 3b)

the 2 DOF Type 4 freedom space in Supplementary Fig. 2. This
freedom space consists of a disk of intersecting screws of the same
pitch. The tool’s modal analysis shows that the two independent
screw DOFs (Fig. 8b, ¢) that combine to generate the desired
freedom space are successfully achieved by the design generated.
The design of Fig. 8d achieves the 3 DOF Type 6 freedom space in
Supplementary Fig. 2. This freedom space consists of two parallel
planes of parallel rotation lines oriented in orthogonal directions
with respect to each other and a translation arrow that is
perpendicular to these planes. The freedom space also possesses
other screw lines that are not shown in Fig. 8d to avoid visual
clutter. The tool’s modal analysis shows that the two desired
independent rotational DOFs and the one desired independent
translational DOF (Fig. 8e-g) that combine to generate the
desired freedom space are successfully achieved by the design

generated. Animated .gif files that show how the designs of Fig. 8
deform are provided in Supplementary Movie 4.

Effect of bulk shape on DOFs. The DOFs achieved by a DCM
are similarly affected by its bulk shape and architecture. Thus,
the freedom space of a DCM is determined by linearly com-
bining the twist vectors that constitute the freedom space of the
DCM'’s architecture and the freedom space of the DCM’s bulk
shape if it were filled with a homogenous material. We
experimentally demonstrate this principle using the example of
Fig. 9 (see Supplementary Movie 5). The freedom space of a
homogenous material shaped like the system shown in Fig. 9a is
a single translation arrow (i.e., 1 DOF Type 3 in Supplementary
Fig. 2). If the same shape rotated 90° is used as the system’s
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Fig. 8 Less intuitive designs generated by the automated tool. a A design that achieves, b, ¢ two intersecting screw degrees of freedom (DOFs) with the
same pitch. d A different design that achieves, e, f two orthogonally skew rotational DOFs and, g an orthogonal translational DOF
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Fig. 9 Directionally compliant metamaterial (DCM) shape affects degrees of freedom (DOFs). a A bulk shape that achieves a translational DOF but would,
b achieve two translational DOFs if the shape were rotated 90° and used inside of itself. ¢ The freedom space of a DCM results from the sum of its
architecture's freedom space and its bulk shape's freedom space. d DCM was additively fabricated and, e, f tested in two different directions. g The

stiffness in both directions are the same (scale bar in d, 5cm)

periodic architecture as shown in Fig. 9b, the freedom space of
the resulting DCM, as predicted by the principle discussed
previously, is the disk of translations (2 DOF Type 10) shown in
Fig. 9c. This freedom space results from the linear combination
of the translational DOF of the DCM’s bulk shape and the
translational DOF of the DCM’s architecture. The DCM was 3D
printed (Fig. 9d) and loaded along the two directions of the
DCM’s translational DOFs (Fig. e, f). The plot of Fig. 9g
demonstrates that the compliance along these directions (i.e., x
and y-axes) are similar. Another example that demonstrates
this section’s principle is provided in Supplementary Note 2

and shown in Supplementary Fig. 4 and in Supplementary
Movie 5.

Discussion

We created an approach that leverages the vector spaces of the
FACT library to enable the automated synthesis of metamaterials
(i.e, DCMs) that achieve desired combinations of compliant
DOFs while assuming any form. The reason such materials can
achieve these properties is that their DOFs are independently
determined by both the DOFs of their architecture and the DOFs
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of their bulk shape. To maintain this independence for ensuring
high shape versatility, the cell resolution of DCMs should be
sufficiently high (ie., cell size should be orders of magnitude
smaller than the characteristic size of the DCM) such that enough
redundant cells exist in the architecture to span any cross-section
of the material’s shape.

Compared to other computational approaches (e.g., topology
optimization) that typically require 10s of hours to generate a
single two-dimensional (2D) cell design within a periodic meta-
material, the approach proposed here requires only 10s of sec-
onds to generate thousands of different 3D cell designs within
aperiodic DCMs (ie., ~6 orders of magnitude more cells
per second can be generated). It also does not require pre-
computed databases of cell designs>®, which typically demand
significant time to populate and large amounts of memory to
store. Rather, the approach rapidly searches the most promising
branches of the mathematically complete design tree to generate
DCM solutions, which enable irregularly shaped flexure bearings,
compliant prosthetics, morphing structures, and soft-robots that
are too complex to synthesize using alternative approaches. The
theory introduced also paves the way for enabling the synthesis of
general metamaterial configurations beyond the stacked-layer
serial designs of this work.

Methods

FACT library. Supplementary Fig. 2 contains the mathematically complete library
of all 50 freedom spaces. The chart organizes the freedom spaces into seven dif-
ferent columns according to the number of DOFs that combine to generate them.
Each freedom space is labeled with a type number at its upper left corner. The
freedom spaces that lie outside the black-outlined pyramid of Supplementary Fig. 2
are not shown with their complementary constraint spaces because such spaces do
not possess enough independent PFWVs to synthesize parallel flexure systems!>-17
(i.e., systems that directly join two bodies together using parallel elements like the
layered cells within the DCMs of this paper). Additionally, only freedom spaces
that link to constraint spaces that are cell spaces (i.e., spaces that lie within the
region shaded yellow in Supplementary Fig. 2) can fill any volume of space with
enough independent PFWVs to enable the synthesis of cells that successfully
achieve their intended DOFs regardless of where they are located in a DCM.
Although others have mathematically categorized screw systems similar to the
vector spaces of FACT for other applications?!~29, the library of Supplementary
Fig. 2 has been organized to facilitate the design of DCMs. Exploded views of each
freedom and constraint space type in the library are provided and described in
detail with the equations that define their geometry in prior publications!*1°.

Mathematically defining PFWVs. PFWVs!5-20, W, are graphically depicted as
the blue constraint-force lines (Supplementary Fig. 5) that constitute the constraint
spaces of the FACT library. These vectors are defined according to

Wer = [f13 rlx3xf1x3]T (1)

where fi,; is a 1x3 force vector that points in the direction of the blue constraint-
force line’s axis, and r;,3 is a 1x3 location vector that points from the coordinate
system to any location along that line’s axis. Physically speaking, blue constraint-
force lines represent the axis about which a force can be imparted.

Modeling general flexible element geometries. There are three categories of
flexible elements—parallel?’, serial?$, and hybrid?°. Since parallel elements are
sufficient for generating DCM examples that achieve any desired combination of
DOFs and require the least amount of computation to model them compared to
serial or hybrid elements, parallel elements are used exclusively to generate the
DCM s of this work. If, however, a future work desires serial or hybrid elements, the
theory to model them exists?%2.

An element is parallel if blue constraint-force lines can fill the element’s entire
geometry without exiting the geometry at any point and directly connect the two
rigid bodies that the element joins together. A parallel element is modeled using the
constraint space that graphically depicts the linear combination of the constraint-
force lines” corresponding PFWVs that satisfy the previous two conditions. Thus,
the constraint space of an element represents the forces that the element is capable
of resisting (i.e., the element’s directions of highest stiffness). As an example,
consider the parallel wire element shown in Supplementary Fig. 5. The constraint
space that models this element is the single blue constraint-force line that satisfies
the two conditions specified above. This model treats the wire element as if it is
infinitely stiff along its axis but is infinitely compliant in all other directions since
the constraint-force line can only impart forces along its axis. Additionally, note

that the constraint space models only the location and orientation of the element
and does not consider its material properties or its geometric parameters (i.e., its
diameter or length).

All other parallel element geometries can be similarly modeled. Example
parallel elements and the constraint spaces that model their behavior are shown in
Supplementary Fig. 6. The DOF column and type numbers for each of these
constraint spaces are labeled in the figure using the convention established in
Supplementary Fig. 2.

Modeling DOFs and freedom spaces. Just as constraint spaces are generated by
linearly combining their independent PFWVs defined in equation (1), freedom
spaces are generated by linearly combining their DOFs. DOFs can be mathema-
tically modeled using 6 x 1 twist vectors!o—20, T, defined by

T
Tou1 = [@1x5  (Crx3X 1y3) + pwyy;] 2)

where w3 is a 1 x 3 angular velocity vector that points along the twist’s axis, €13 is
a 1 x 3 location vector that points from the coordinate system to any location along
the twist’s axis, and p is the scalar pitch of the twist. If the twist’s pitch is zero, the
twist is a red rotation line. If the twist’s pitch is any other finite nonzero value, the
twist is a green screw line. If the twist’s pitch is infinity, the twist is a black
translation arrow and is defined according to

Tey = (0143 V1x3]T 3)
where 0y, is a 1 x 3 zero vector, and vy, is a 1 x 3 linear velocity vector that points
along the axis of the twist. Although all the compliant directions contained within a
freedom space are modeled using twist vectors, the DOFs of a freedom space are
the independent twist vectors that linearly combine to generate the other twist
vectors (i.e., compliant directions) within the freedom space.

Selecting elements within constraint spaces. This section explains how con-
straint spaces can be used to determine the location and orientation of flexible
elements from within the constraint spaces’ geometries to ensure that the resulting
system achieves its intended DOFs. For a parallel system to successfully achieve the
n DOFs of its intended freedom space, flexible elements that collectively contain m
independent PFWVs should be selected from within the freedom space’s com-
plementary constraint space where

m=6—n (4)

Thus, since the freedom space of Fig. 2b consists of one screw DOF (i.e., n = 1),
each cell within the final DCM (Fig. 2c) requires flexible elements that together
contain m = 6-n =5 independent PFWVs from within the freedom space’s
complementary constraint space. Consequently, each of the cells in the DCM of
Fig. 2¢ consist of five wire elements with axes that are colinear to five independent
PFWVs from within the constraint space of Fig. 2b.

Thus, although Eq. (4) can be used to determine the correct number, m, of
independent PFW Vs to select from within a constraint space, the equation does
not provide guidance on how to select the m PFWVs such that they are
independent. Gaussian elimination? could be used as a mathematical approach
to confirm whether a collection of m PFWVs are independent by determining if
a matrix consisting of the PFW Vs possesses a rank of m. The rules provided with
the shapes of Supplementary Fig. 7, however, offer a more intuitive approach for
selecting PFWV's from constraint spaces such that they are independent. Each
constraint space in the FACT library consists of various combinations of the
nine shapes shown in Supplementary Fig. 7a-i. The instructions above each
shape in the figure describe how many independent PFW Vs lie within the shape
and how they should be selected from the shape such that they will be
independent.

Different flexible elements contain different numbers of independent PEWV's
within their geometry. Whereas a wire element contains a single independent
PFWYV, blade elements contain three independent PFWVs. The number of
independent PFWVs within a general flexible element is the number of
independent PFWVs within the element’s constraint space. Thus, the number, m,
of independent PFWV's within each element shown in Supplementary Fig. 6 can be
determined by subtracting the labeled DOF number, #, from 6 according to Eq. (4).

The principles of this section can be used to synthesize the parallel topologies of
general DCM cells. Suppose, as an example, a parallel cell is desired that achieves a
single rotational DOF located on the edge of the cell’s two rigid bodies as shown in
Supplementary Fig. 8a. The complementary constraint space of this single-rotation
freedom space, labeled 1 DOF Type 1 in Supplementary Fig. 2 and shown larger in
Supplementary Fig. 8b, is the set of planes that intersect the rotation’s axis. Thus,
according to Eq. (4), m = 5 total independent PFWVs must be selected from within
this constraint space because its freedom space contains n =1 DOF. Since the
constraint space consists of intersecting planes, which according to Supplementary
Fig. 6 are each the constraint space of a single blade element (i.e., 3 DOF Type 1), a
blade element could be selected from within any one of the intersecting planes.
Additionally, since the planar constraint space of a blade element contains only
three independent PFWVs according to Supplementary Fig. 7d, two more
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independent PFWVs must be selected from within the constraint space of
Supplementary Fig. 8b to ensure that the resulting cell achieves the desired
rotational DOF only. Thus, two wire elements could be selected with axes that are
colinear with PFWVs that lie within another plane in the constraint space as shown
in Supplementary Fig. 8a. A different view of the same cell is shown in
Supplementary Fig. 8c. The resulting cell would be stiff in all directions except
about the desired rotational DOF.

The cell in Supplementary Fig. 8a,c is exactly-constrained!®3! because the
sum of the independent PFWV's contained within each of its elements equals m
from Eq. (4) (i.e., three independent PFWVs from the blade added to one
independent PFWV from each of the two wires equals five independent
PFWVs, which is how many independent PFWVs lie within the cell’s
constraint space). If additional elements had been selected from within the
planes of the constraint space beyond the blade and two wire elements, the
resulting cell would possess redundant elements and would be over-
constrained!®31. Note all the cell designs that constitute the DCMs of Figs. 1b,
4e, 6h, and 9b are over-constrained whereas all the cell designs that constitute
the DCMs of Figs. 2¢, 5¢, 7j, 8a, and 8d are exactly-constrained. Over-
constraining the cells within DCMs has little effect on their overall behavior
since DCM layers are already heavily over-constrained by the redundant cells
that constitute their layers. This cell redundancy is at the core of why DCM’s
can be shaped in arbitrary ways without compromising their desired DOFs.
Thus, although it is acceptable to over-constrain individual cells, it is typically
computationally more efficient to synthesize exactly-constrained cells because
such cells possess the fewest number of necessary elements.

As another example, exactly-constrained DCM cells consisting of different
flexible elements could be synthesized to achieve the screw DOF of Fig. 2b.
Consider the cell, shown from two different views in Supplementary Fig. 8d, e, that
achieves a single screw DOF (i.e., n = 1) because it contains two wire elements with
axes that are colinear with two independent PFW Vs within the constraint space of
Fig. 2b and one circular-hyperboloid element, labeled 3 DOF Type 7 in
Supplementary Fig. 6, which contains three independent PFWVs that also lie
within the constraint space. Thus, because the sum of the independent PFWVs
contained within each of its elements equals m from Eq. (4) (i.e., three independent
PFWVs from the circular-hyperboloid element added to one independent PFWV
from each of the two wires equals five independent PFWVs, which is how many
independent PFW Vs lie within the cell’s constraint space since n = 1).

Selecting intermediate freedom spaces within freedom spaces. If a DCM’s
desired freedom space does not link to a constraint space that is a cell space,
intermediate freedom spaces must be selected that do link to constraint spaces that
are cell spaces to successfully synthesize the DCM. The twist vectors within the
intermediate freedom spaces selected must linearly combine to generate the twist
vectors within the desired freedom space only. Any number of intermediate free-
dom spaces can be selected, but each selected intermediate freedom space repre-
sents the DOFs achieved by its corresponding alternating layer within the DCM.
Thus, if L intermediate freedom spaces are selected, the DCM needs to possess at
least L layers to successfully achieve the desired freedom space.

FEA details. Abaqus was used to perform the FEA on the DCM in Fig. 3b using
10-node quadratic tetrahedral elements (C3D10). A linear elastic material model
was used with the parameters of Nanoscribe Ip-Dip polymer. Specifically, a
Young’s Modulus of 2.7 GPa and a Poisson’s ratio of 0.49 were used. A total of
940,000 elements were used to ensure mesh convergence. A vertical displacement
was applied to the nodes on the pyramid, while their in-plane DOFs were left
unconstrained. The DOFs of the nodes at the base of the DCM were fully con-
strained. During compression, the DOFs from the nodes at each layer’s corners
were used to calculate the corresponding rotations. SolidWorks was used to per-
form the linear modal analyses for the case studies of Figs. 4g-i, 5d-f, 6i, j, and
Supplementary Fig. 4d-f using the default mesh settings. Although almost any
constituent material could have been used to produce the first n mode shapes such
that they correspond with the FACT predicted n DOFs for any of these case
studies, the default properties of Acrylonitrile Butadiene Styrene (ABS) where used
to generate the results in the figures.

Mathematics underlying the automated tool. The mathematics of this section
enabled the automated design tool provided in Supplementary Software. If a DCM
cell’s topology is to be synthesized such that it achieves a certain freedom space, the
constraint space of that freedom space can be calculated according to

[TFS]nXE[A]6x6w6><1 =0, (5)

where [Tgs],x6 is an 7 x 6 matrix that contains the transpose of the freedom space’s,
n, independent DOF twist vectors arranged in n rows, and [A]ee is a 6 x 6 matrix
defined by

[0]5,5
;5

s ©

v | 0.

where [0]345 is a 3 x 3 matrix filled with zeros and [I]s.3 is a 3 x 3 identity matrix.
Note from Eq. (5) that the null space of [Tgs],xs[Alsxs is the linear combination of
m independent 6 x 1 wrench vectors, W ;. The freedom space’s complementary
constraint space geometrically represents this linear combination, which can be
mathematically modeled using a 6 x m matrix, [Wcsle x> that consists of the
independent wrench vectors, W, ;, arranged in columns according to

T

Wl.l Wl,Z Wl,3 W1.4 WI.S WLS
Wy Wy, Wz,s Wz,4 Wys Wi

Weslsxm= . . . . . . ()
Wm,l Wm,Z Wm.3 Wm.4 Wm‘S Wm,G

where W;; is the jth component in wrench vector, i. Recall that the relationship

between m and n is given in Eq. (4). If A, is a mx1 vector where each of its m
components can be any real number, then [WcslexmAmx1 represents any wrench
vector within the constraint space. Not all of the wrench vectors in the constraint
space are guaranteed to be PEWVs, i.e., wrench vectors of the form given in Eq. (1)
where the force vector, f,3, consists of three components, f;, f,, and f3, according to

f1x3:[f1 f fa] (8>

and where the location vector, r).3, possesses three components, ry, 75, and 73,
according to

rs=[r o1 )

Since it is necessary to identify m independent PFWVs that lie within the
constraint space of Eq. (7) and directly join the cell’s two rigid bodies together to
correctly place flexible elements in the DCM’s cell, a location vector, r;3, for one of
these elements is first selected. This location vector points from the coordinate
system to a random point generated between specific bounds on the bottom side of
cell (a)’s upper rigid body, labeled in Supplementary Fig. 9. If the wire element
being placed possesses a radius of R, its location vector’s x-axis component, 7,
should be greater than or equal to x, + R and less than or equal to x,+s—R so that
the element doesn’t spill into the space designated for the neighboring cell. Note
from Supplementary Fig. 9 that s is the side length of each cube-shaped cell.
Similarly, the vector’s y-axis component, r,, should be greater than or equal to y, +
R and less than or equal to y,+s—R for the same reason. The vector’s z-axis
component, r3, should equal z, + t, where ¢ is the thickness of the cell’s two rigid
bodies. Given the random location vector selected within these bounds on the
bottom side of the cell’s upper rigid body, the equation

i £ £ (fi—nf) (nfi—nf) (nf—nfi)]"= Weslow mAma
(10)

is enforced to ensure that wrench vectors are identified from within the constraint
space that pass through the random point, r;,s, but are also PEWVs according to
the form in Eq. (1). By substituting the top three rows of Eq. (10) into the bottom
three rows of the same equation, another equation is derived according to

M] Apx1 = 0y (11)

3xm

where

('z Wis—=rWi, = Wm) (rz Wy =r3Wyp — Wz.4> <’z Wins = 13Woa = Wi
M., = (”3Wu —nWis— Wx.s) (":«Wz.l —nWys— W2_5>

("1 Wip =Wy — Wl.ﬁ) (Vl Wy =Wy — W2.5> <’1 Wiz =Wyt = Wi

)
<’3 Wing =Wy — Wm.S)
)
(

12)

and 0,,,; is a mx 1 zero vector. If the o independent vectors that result from the
null space, A,,;x1, of [M]s,, are arranged within an m x 0 matrix, [A],x. according
to

A1,1 A2,1 e A

0,1
A, Ay o A,

(Al o= (13)
Al,m AZ‘m e Au.m

the force vector, f}3, of all the PFWVs that lie in the constraint space and pass
through the point, ry.3, can be determined according to

T
f1><3 = ([WCSsub]Sxm[A]mxoaoxl) (14)
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where
W1,1 W2.1 T Wm.l
Wessblsum= | Wiz Wap -0 Wy (15)
Wiz Wy oo Wy

and a,,; is an 0 x 1 vector with o components of any real and finite value. Since
only one PFWYV that lies within the constraint space and passes through the point,
I'ix3, IS necessary to place a wire element, the automated approach randomly
assigns the components within a,; to be any value between —1 and 1. The next
step is to check if the resulting PFWV generated also directly joints the two rigid
bodies together within the cell. To this end, the conditions (x, + R) < (r, +f,b) <
(x, +s—R) and (y, + R) < (r, +£,b) < (y, + s — R) are enforced, where b can
be solved using r; + f;b = z, + s — t. Thus, the final conditions enforced

are

f—ls— X, +s—
(xa+R)§<rl+f3( 2t)>§(a+ R) (16)
and

Ga R < (n+26-20) < Oy 4R (17)

If the PFWV generated satisfies these conditions, a wire element with a radius of
R joins the cell’s bodies together starting from the point r,,; and ending where the
wire passes through the top surface of the cell’s lower rigid body along the vector,
f,3, which defines the wire’s axis. This approach is repeated until each cell within
the entire DCM is exactly-constrained by m wire elements that are colinear with
independent PFVWs that satisfy the conditions discussed above. An algorithm is
also provided in Supplementary Software for including layer extensions where
necessary.

Custom-developed modal analysis approach. Embedded within the automated
tool of Supplementary Software is a simplified modal analysis approach that
enables the DOF verification and animation of the DCMs that the tool designs.
Most DCMs require this simplified approach to analyze their DOFs because tra-
ditional FEA packages become overwhelmed by the extreme number of elements
that constitute DCM architectures. The simplified approach was used to generate
Fig. 7i, j, and Fig. 8a-g. The approach constructs a specialized stiffness matrix32,
[Stiff], by treating each wire or blade within the DCM being analyzed as a single
beam element. A specialized mass matrix>3, [Mass], is also constructed using the
mass and mass moments of inertia about the centers of mass of each of the DCM’s
rigid layers. The eigen values of [Mass] ~![Stiff] are then calculate to determine and
animate the first n mode shapes, which will typically correspond directly to the
DCM’s intended n DOFs (or at very least they will correspond to the linear
combinations of these DOFs).

Code availability. The Supplementary Software code is available using a GitHub
repository link provided below. Additional code used to generate the plots in
the paper beyond that found in Supplementary Software are available from the
corresponding author upon request. (https://github.com/jonathanbhopkins/
Computationally-Efficient-Design-of-Directionally-Compliant-Metamaterials.git)

Data availability

The authors declare that all data supporting the findings of this study are included
in the main manuscript file or Supplementary Information or are available from
the corresponding author upon request. The computer-aided design (CAD) models
necessary to replicate the FEA results of this study are also available from the
corresponding author upon request.
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