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Coupling Matrix Representation of Nonreciprocal
Filters Based on Time Modulated Resonators

Alejandro Alvarez-Melcon, Senior Member, IEEE, Xiaohu Wu, Member, IEEE, Jiawei Zang,
Xiaoguang Liu, Senior Member, IEEE, and J. Sebastian Gomez-Diaz, Senior Member, IEEE

Abstract—This paper addresses the analysis and design of
non-reciprocal filters based on time modulated resonators. We
analytically show that time modulating a resonator leads to a set
of harmonic resonators composed of the unmodulated lumped
elements plus a frequency invariant element that accounts for
differences in the resonant frequencies. We then demonstrate that
harmonic resonators of different order are coupled through non-
reciprocal admittance inverters whereas harmonic resonators of
the same order couple with the admittance inverter coming
from the unmodulated filter network. This coupling topology
provides useful insights to understand and quickly design non-
reciprocal filters and permits their characterization using an
asynchronously tuned coupled resonators network together with
the coupling matrix formalism. Two designed filters, of orders
three and four, are experimentally demonstrated using quarter
wavelength resonators implemented in microstrip technology and
terminated by a varactor on one side. The varactors are biased
using coplanar waveguides integrated in the ground plane of the
device. Measured results are found to be in good agreement with
numerical results, validating the proposed theory.

Index Terms—Coupling matrix, microwave filters, non reci-
procity, spatio-temporal modulation, time modulated capacitors.

I. INTRODUCTION

NON-RECIPROCAL components are of key importance
in many electronic systems, such as radar or mobile

and satellite communications [1]. Traditionally, such com-
ponents have relied on magnetic materials, such as ferrites,
under strong biasing fields. Increasingly stringent technologi-
cal demands, in constant pursuit of integration, affordability,
and miniaturization, have triggered the recent emergence of
magnetless non-reciprocal approaches to break the Lorentz
reciprocity principle [2] and the subsequent development of
devices such as circulators [3]–[13], isolators [14]–[20], and
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even non-reciprocal leaky-wave antennas [21]–[23] operating
in the absence of magneto-optical effects.

In this context, the concept of non-reciprocal filters based
on time-modulated resonators have recently been put for-
ward [24]. The operation principle behind this type of filters
relies on tailoring the non-reciprocal power transfer among
the RF and intermodulation frequencies to create construc-
tive/destructive interferences at the input/output ports. The
filters were analyzed in [24] through a dedicated spectral
domain method combined with (ABCD) parameters, and
useful guidelines on how to optimize the frequency, amplitude,
and phase delay of the signals that modulate the resonators
were given. A practical prototype was also experimentally
demonstrated using varactors and lumped inductors.

Here we should remark that the combination of time mod-
ulated resonators with sinusoidal modulation signals will en-
hance the generation of the two first intermodulation products
(the so called +1 and −1 harmonics [16]). The minimization
of higher order intermodulation products may be interesting,
since it will help to keep under control the power conversion
between harmonics, and to simplify the tailoring process
needed to create constructive/destructive interferences at the
input/output ports.

In this paper, we develop a coupling matrix representation
of non-reciprocal filters based on time modulated resonators.
Starting from the initial unmodulated equivalent circuit, a
multi-harmonic equivalent network is rigorously derived, tak-
ing into account the nonlinear harmonics (also known as
intermodulation products) that are internally excited. By in-
troducing the concept of harmonic resonators, the resulting
structure is represented with a simple network based on a
specific coupled resonator topology. It is analytically shown
that resonators of identical harmonic orders are coupled with
the admittance inverters found in the original unmodulated
network while resonators of different harmonic orders are cou-
pled through non-reciprocal admittance inverters. In addition,
analytic formulas are derived to represent the new harmonic
resonators with Frequency Invariant Susceptances [25], [26]
that accounts for differences in the resonant frequencies. In this
way, all the resonators of the resulting network are expressed
in terms of the original unmodulated resonators.

It is important to emphasize that the analytic calculation
of the non-reciprocal admittance inverters and the frequency
invariant susceptances for harmonic resonators, together with
the derived coupling topology, permits to analyze and design
non-reciprocal filters using an asynchronously tuned coupled
resonator network and the classical coupling matrix formalism
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[26]. Here the term asynchronously tuned is used to refer to
coupling topologies having resonators tuned at different reso-
nant frequencies. The formalism permits to easily consider
filters of any order with an arbitrary number of nonlinear
harmonics. As detailed below, this approach also sheds light
on the underlying mechanisms that enable non-reciprocal
responses in time-modulated filters. Besides filters operating at
identical input/output frequencies, this technique can also be
applied to analyze devices that exhibit non-reciprocity between
the fundamental frequency and desired nonlinear harmonics.

After a review of the equivalent network for coupled res-
onators filters in Section II, we introduce in Section III the cou-
pling matrix formalism for time-modulated filters. Numerical
studies are first presented, including the convergence behavior
of the scattering parameters with the number of harmonics.
To demonstrate the usefulness of the proposed approach, in
Section IV we present the design of two non-reciprocal filters
of third and fourth orders. The filters are then experimentally
demonstrated in Section V using quarter wavelength resonators
implemented in microstrip technology. Coupled microstrip
lines are terminated with varactors on one side to build time
modulated resonators. A compact structure is obtained by
integrating the feeding network of the modulating signal in the
same board as the filter. This is achieved by using a coplanar
waveguide feeding network in the ground plane of the device.
Numerical results obtained with the theory presented in this
paper show good agreement with respect to measurements
obtained from the manufactured prototypes.

II. EQUIVALENT NETWORK OF COUPLED RESONATORS
FILTERS

Let us start from the basic ideal equivalent network of
a lossless in-line filter represented by lumped elements and
admittance inverters as shown in Fig. 1. Fig. 1(a) shows the
normalized lowpass filter prototype with all capacitors normal-
ized to (1F) and the source and load impedances normalized
to (1Ω). For the sake of clarity, but without loss of generality,
we consider a network composed of three resonators (network
of order N = 3). The (N + 2) coupling matrix can be used to
characterize this network [26], leading to

M =


0 MP11 0 0 0

MP11 M11 M12 0 0
0 M12 M22 M23 0
0 0 M23 M33 M3P2

0 0 0 M3P2
0

 . (1)

Here we have used the notation (P1) and (P2) to refer to the
source (S) and load (L) terminations. This notation will be
more convenient when investigating the non-reciprocal behav-
ior of the network in the next section. Note that in this matrix
the diagonal elements (Mu,u with u = 1, 2, · · · , N ) represent
the frequency invariant susceptances shown in Fig. 1(a), while
the off-diagonal elements (Mu,u+1) represent the values of
the admittance inverters of the network. Frequency invariant
susceptances are used in Fig. 1 to account for asynchronously
tuned topologies [26].

Fig. 1. Equivalent circuit of an ideal lossless filter based on lumped elements
and admittance inverters. (a) Normalized lowpass prototype with all elements
having unitary values. (b) Lowpass prototype scaled to arbitrary capacitance
values (C) and port impedances (RP1

, RP2
). (c) Bandpass network resulting

from a standard lowpass to bandpass transformation.

This coupling matrix relates the currents and nodal voltages
in the normalized network shown in Fig. 1(a). The Kirchhoff’s
current law in this network can be written in matrix form as

I =
[
G+ j ω C + j M

]
· V , (2)

where the whole admittance matrix has been expressed as the
sum of three simpler matrices. In this expression (C) is a
matrix containing the capacitors of the network

C =


0 0 0 0 0
0 C 0 0 0
0 0 C 0 0
0 0 0 C 0
0 0 0 0 0

 (3)

and (G) is the so called conductance matrix, which contains
the port admittances as

G =


GP1

0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 GP2

 , (4)

and for the network in Fig. 1(a): C = 1F, GP1
= 1/RP1

=
1 Ω−1, GP2

= 1/RP2
= 1 Ω−1. In this system of equations

(I) represents the current excitation vector and (V ) contains
the unknown nodal voltages [see Fig. 1(a)], as

I =


IP1

0
0
0
0

 , V =


VP1

V1
V2
V3
VP2

 . (5)

From this normalized network, a scaled lowpass circuit
as shown in Fig. 1(b) can be obtained. Capacitors and port
impedances are scaled to arbitrary values (C), and (RP1

=
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Fig. 2. Coupling topology of the in-line filter shown in Fig. 1.

1/GP1
, RP2

= 1/GP2
), respectively. Note that during the

production of a particular filter, the transformation ratios (C)
are calculated with the information of the practical technology
that will be used during the filter implementation. In any case,
the response of the scaled network is the same as the original
network if the values of the admittance inverters (Ju,u+1) and
frequency invariant susceptances (Bu) are conveniently scaled
as

JP11 = MP11

√
GP1

C, Ju,u+1 = Mu,u+1 C, (6a)

JNP2
= MNP2

√
C GP2

, Bu = Mu,u C, (6b)

If a standard lowpass to bandpass transformation is applied
to the network of Fig. 1(b), the capacitors are transformed into
resonators, thus obtaining the traditional bandpass network
shown in Fig. 1(c). In this network all resonators are equal
and take the values

Cp =
C

ω0 FB
, Lp =

FB

ω0 C
=

1

ω2
0 Cp

, (7a)

FB =
ωc2 − ωc1

ω0
, ω0 = 2π f0, (7b)

where f0 is the center frequency of the passband and ωc1

and ωc2 are the lower and upper angular equi-ripple cut-off
frequencies of the passband, respectively.

The network shown in Fig. 1(c) represents a bandpass filter
with the so called in-line coupling topology, as illustrated in
Fig. 2. In this figure, white circles represent the resonators of
the structure (ru), while dashed circles represent the terminal
ports with reference impedances (RP1

= 1/GP1
, RP2

=
1/GP2

). Also, solid lines connecting the circles represent
the ideal admittance inverters of the network (JP11, Ju,u+1,
JNP2 ).

If Kirchhoff’s current law is applied to the nodes of the
bandpass network shown in Fig. 1(c), the following linear
system of equations is obtained
IP1

0
0
0
0

 =


GP1

jJP11 0 0 0

jJP11 Y
(1)
p jJ12 0 0

0 jJ12 Y
(2)
p jJ23 0

0 0 jJ23 Y
(3)
p jJ3P2

0 0 0 jJ3P2
GP2

·

VP1

V1
V2
V3
VP2


(8)

where Y (u)
p is the admittance of the resonators, calculated as

Y (u)
p = j ω Cp +

1

j ω Lp
+ j Bu. (9)

Similarly as before, it is now convenient to express the matrix
of the system as the sum of three matrices as

I =
[
G+ Yinv + Yp

]
· V . (10)

The first matrix is again the conductance matrix defined in (4).
The second matrix is symmetric and contains the values of the
admittance inverters of the network

Yinv = j


0 JP11 0 0 0

JP11 0 J12 0 0
0 J12 0 J23 0
0 0 J23 0 J3P2

0 0 0 J3P2
0

 . (11)

Finally, the third matrix represents the admittances of the
resonators

Yp =


0 0 0 0 0

0 Y
(1)
p 0 0 0

0 0 Y
(2)
p 0 0

0 0 0 Y
(3)
p 0

0 0 0 0 0

 . (12)

Note that the size of all these matrices is the same as that
of the regular coupling matrix with ports, namely (N + 2)×
(N+2). Also, we want to remark that the admittance inverters
are located in the off diagonal elements of (11), and that the
information of the resonators appears in the diagonal entries
of (12). We stress that all matrices involved in the formulation
are symmetric, therefore assuring that the considered network
is completely reciprocal.

III. NETWORK WITH TIME MODULATED RESONATORS

Applying time-varying signals to modulate the capacitors of
the bandpass network shown in Fig. 1 makes the system non-
linear [27], [28]. In this work, we will consider that the values
of the capacitors are modulated in time with the following
sinusoidal variation

C(u)
p (t) = Cp

[
1 + ∆m cos(ωm t+ ϕu)

]
, (13)

where ωm is the angular frequency of the modulating signal,
ϕu is the initial phase, and ∆m is the modulation index. Even
though we will use the same modulation frequency and mod-
ulation index to modulate all capacitors, their initial phases
may be different along the network, i.e., ϕu = (u − 1) ∆ϕ

with u = 1, 2, · · · , N . It will be shown later in this paper
that this phase difference is the key mechanism that enables
non-reciprocal responses [24].

In this scenario, a number of nonlinear harmonics (or
intermodulation products) Nhar are generated in each res-
onator, resulting into the equivalent network shown in Fig. 3.
These nonlinear harmonics are coupled by the time modulated
capacitors. For simplicity, the figure only shows Nhar = 3
harmonics (i.e., k = · · · ,−1, 0, 1, · · · with k denoting the
order of a given nonlinear harmonic).

The application of Kirchhoff’s current law on the network
shown in Fig. 3 leads to a linear system with a structure very
similar to the previous one given in (10). However, each entry
in the matrix system becomes now a submatrix of size Nhar×
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Fig. 3. Equivalent circuit of the ideal filter shown in Fig. 1(c) when a time
domain signal is used to modulate the value of the capacitors. Color boxes
represent the admittance coupling matrix between generated harmonics.

Nhar due to the generated nonlinear harmonics. In this way,
the vector containing the nodal voltages becomes

V =


VP1

V1
V2
V3
VP2

 , VP1
=


VP1,−2

VP1,−1

VP1,0

VP1,+1

VP1,+2

 , (14a)

Vu =


Vu,−2

Vu,−1

Vu,0
Vu,+1

Vu,+2

 , VP2 =


VP2,−2

VP2,−1

VP2,0

VP2,+1

VP2,+2

 , (14b)

where the number of harmonics considered is five (Nhar = 5,
k = · · · ,−2,−1, 0, 1, 2, · · · ) and the total number of un-
knowns in the system of linear equations becomes (N +
2)Nhar. We recall that in our notation (u) is an integer
sweeping the physical resonators (u = 1, 2, · · ·N ). Then (Vu)
of (14b) are simply the 2 to N + 1 entries of (V ) shown
in (14a). Then, following the same strategy as before, the
conductance matrix is written as

G =


GP1 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 GP2

 , (15)

where (0) denotes the zero matrix. The other sub-matrices
are diagonal and represent the loads to the new generated
harmonics as GP1

= GP1
U and GP2

= GP2
U , with U being

the identity matrix. In addition, the matrix of the admittance
inverters can now be written as

Yinv = j



0 JP11 0 0 0

JP11 0 J12 0 0

0 J12 0 J23 0

0 0 J23 0 J3P2

0 0 0 J3P2
0

 , (16)

where the submatrices Ju,u+1 = Ju,u+1 U are also diagonal
and represent the couplings of same order harmonics between
the different resonators. Here we should remark that with

the equivalent network employed, which uses ideal frequency
independent inverters, the couplings of same order harmonics
between different resonators are all identically affected by
the original inverters. This is a narrowband approximation,
usually introduced in the theory of coupling matrices [26].
In real implementations, harmonics will be affected by the
inverters in a slightly different way, due to their intrinsic
dispersive nature. These dispersive effects maybe important
for wideband responses, and special techniques may be needed
to preserve accuracy [29], [30]. However, for narrowband
responses (fractional bandwidths typically less than 10%), the
narrowband approximation usually gives good results [26].

Finally, the matrix that contains the resonator admittances
becomes

Yp =



0 0 0 0 0

0 Y
(1)
p 0 0 0

0 0 Y
(2)
p 0 0

0 0 0 Y
(3)
p 0

0 0 0 0 0

 . (17)

Each admittance submatrix represents the coupling among the
different nonlinear harmonics generated in a resonator with
a time-modulated capacitor. In this paper we have used the
theory reported in [31], [32] to model this non-linear behavior.
Note that this theory is based on considering ideal capacitors.
Applying the theory reported in [31], [32] permits to express

each of these submatrices as

Y (u)
p = Yb + j ωnN

(u)
c + j Bu U, (18)

where ωn is a diagonal matrix containing the angular frequen-
cies of the nonlinear harmonics (spectral matrix), namely

ωn =


ω − 2ωm 0 0 0 0

0 ω − ωm 0 0 0
0 0 ω 0 0
0 0 0 ω + ωm 0
0 0 0 0 ω + 2ωm

 .

(19)
The matrix Yb includes the presence of the inductors in the
modulated resonators and can be expressed as

Yb =
1

j Lp
ωn

−1. (20)

Finally, N (u)
c models how the nonlinear harmonics are excited

due to the modulated capacitors and it can be written as

N (u)
c =


Cp D(u) 0 0 0
E(u) Cp D(u) 0 0

0 E(u) Cp D(u) 0
0 0 E(u) Cp D(u)

0 0 0 E(u) Cp

 . (21)

The new elements of this matrix depend on the modulation
index and on the phases of the modulating signal as

D(u) =
∆m Cp

2
e−j ϕu , E(u) =

∆m Cp

2
e+j ϕu . (22)

By doing straightforward operations with these matrices, the
final admittance submatrix in (18) can be written as shown
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Y
(u)
p =


Y

(−2)
r + jBu jD(u) (ω − 2ωm) 0 0 0

jE(u) (ω − ωm) Y
(−1)
r + jBu jD(u) (ω − ωm) 0 0

0 jE(u) ω Y
(0)
r + jBu jD(u) ω 0

0 0 jE(u) (ω + ωm) Y
(+1)
r + jBu jD(u) (ω + ωm)

0 0 0 jE(u) (ω + 2ωm) Y
(+2)
r + jBu

 (23)

in (23) (top of the page). In this last expression, we have
employed the following auxiliary admittance

Y (k)
r = j Cp

(
ω + k ωm

)
+

1

j Lp

(
ω + k ωm

) . (24)

The form of the matrix shown in (23) admits an interesting
interpretation of the non-linear phenomenon in terms of cou-
pled network resonators. Following the coupling matrix for-
malism, the elements in the diagonal represent new resonators
due to the generated nonlinear harmonics (we will call them
harmonic resonators). Therefore, each physically modulated
resonator gives rise to Nhar new harmonic resonators yielding
to a network of order NharN . These resonators have different
resonant frequencies, transforming the original structure into
an asynchronously tuned coupled resonators network.

The resonant frequencies of the new harmonic resonators
can be obtained by equating the diagonal elements of the
matrix shown in (23) to zero. However, following the coupling
matrix formalism, it would be convenient to formulate all
resonators to be equal, with additional frequency invariant
susceptances to account for differences in the resonant fre-
quencies. This can be accomplished by first writing (24) as

Y (k)
r = j ω Cp + j Cp k ωm +

1

j ω Lp

(
1 + k ωm/ω

) , (25)

and then applying the following Taylor expansion

1

1 + x
≈ 1− x+ · · · , x < 1 (26)

to the third term to obtain

Y (k)
r ≈ j ω Cp +

1

j ω Lp
+ j

(
Cp k ωm +

k ωm

ω2 Lp

)
. (27)

Note that this Taylor expansion can be used in this context
since, in general, we will assume: ωm << ω. This assumption
is again related to the narrowband approximation assumed
throughout the paper, and to the fact that to achieve good
power conversion between non-linear harmonics, the modu-
lation frequency should lay within the passband of the filter
[24].

The comparison of this expression with (9) shows that
the harmonic resonators can be made all equal to the static
resonators in the unmodulated network. The differences in
resonant frequencies can be modeled with additional frequency
invariant susceptances, defined as

B̂k = Cp k ωm +
k ωm

ω2
0 Lp

, (28)

where, in order to make the frequency invariant susceptances
truly independent on frequency, the center frequency of the

passband ω0 has been used in the last definition. The ap-
proximation will remain valid for narrowband filters. These
frequency invariant susceptances can also be formulated in
terms of the initial lowpass capacitors as

B̂k =
2 k ωm C

ω0 FB
. (29)

It can be observed that the frequency invariant susceptances
associated to harmonic resonators depend on the order of the
nonlinear harmonic itself k, on the modulation frequency ωm

and on the passband bandwidth. This expression is also very
useful, since it will directly translate into the diagonal elements
of the coupling matrix for the non-reciprocal filter by setting
the lowpass capacitor to unity, i.e., C = 1.

It is illustrative to compare the structure of the matrices
shown in (8) and in (23). Specifically, the off diagonal el-
ements of the matrix (23) indicate that the new harmonic
resonators are coupled following an in-line coupling topology
among them. However, it can be observed that the matrix is not
symmetric. This indicates that these harmonic resonators are
coupled through non-reciprocal admittance inverters. Follow-
ing this idea, we define a non-reciprocal admittance inverter to
represent the coupling between two different harmonics k− 1
and k, belonging to a specific physical resonator u, as{

J
(k,k−1)
u = D(u)

[
ω + k ωm

]
, Low to up.

J
(k−1,k)
u = E(u)

[
ω + (k − 1)ωm

]
, Up to low.

(30)

so a coupling from a lower order harmonic to an upper order
harmonic will use the top formula of (30), while a coupling
from an upper order harmonic to a lower order harmonic will
involve the bottom formula. An explicit expression for this
non-reciprocal inverter can be obtained in the lowpass domain
as

J
(k,k−1)
u =

∆m

2

C

ω0 FB
e−jϕu

[
ω0 + k ωm

]
J
(k−1,k)
u =

∆m

2

C

ω0 FB
e+jϕu

[
ω0 + (k − 1)ωm

] (31)

where the center angular frequency of the passband has been
used to define frequency invariant inverters.

Here we remark that these admittance inverters are different
from those shown in (16). Admittance inverters in (16) come
from the unmodulated network, and they couple same order
harmonics between different physical resonators. On the con-
trary, these new admittance inverters play an important role in
the non-linear process occurring within each time modulated
resonator. As a consequence, the new admittance inverters
in (31) model the couplings between the different harmonics,
generated, due to the non-linear process, within the same
physical resonator.
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Fig. 4. Coupling topology of the in-line filter shown in Fig. 1(c) when the
capacitors of the resonators are modulated with a time varying signal.

These last expressions indicate that the coupling between
adjacent harmonic resonators belonging to a specific physical
modulated capacitor can be controlled with the modulation
frequency ωm, modulation index ∆m, and initial phase of the
modulation signal ϕu. Moreover, the degree of non-reciprocity
of the coupling depends on both, the initial phase of the modu-
lating signal and the modulation frequency. These expressions
represent the values along the off-diagonal elements of the
coupling matrix for the final non-reciprocal filter, once the
value of the lowpass capacitor is set to unity (C = 1).

The analysis presented above permits an insightful interpre-
tation of non-reciprocal filters in terms of an asynchronously
tuned coupled resonators network. As already indicated, the or-
der of the equivalent network is N Nhar. Its coupling topology
is further shown in Fig. 4. In this figure, harmonic resonators
are identified with white circles as r

(k)
u . These harmonic

resonators are defined with the same inductors (Lp), capacitors
(Cp) and frequency invariant susceptances (Bu) as the orig-
inal static resonators. However, the new frequency invariant
susceptances (B̂k) given in (29) must be added to correctly
represent their resonant frequencies. Furthermore, solid lines
represent regular inverters modeling the couplings of same
order harmonics between different physical resonators, as de-
fined in (6). Finally, lines terminated in arrows represent non-
reciprocal inverters modeling the couplings between different
order harmonic resonators belonging to the same physical
resonator, as defined in (30) or (31). It is also interesting
to note that this coupled resonator network can easily be
characterized with the traditional coupling matrix formalism
[26], using the results obtained in this Section. In this case the
size of the coupling matrix is (N + 2)Nhar × (N + 2)Nhar.

It is interesting to note that according to the admittance in-
verters expressed in (31), the coupling increases with the order
of the harmonics. This implies that higher order harmonics will
undergo very high couplings, which is a somewhat counter-
intuitive scenario. The situation, however, can be explained
with the coupling topology shown in Fig. 4. This topology
explicitly states that couplings to higher harmonics can only
occur from contiguous harmonics. Therefore, the power cannot
be coupled from the fundamental frequency to harmonics of

(a) (b)

(c) (d)

Fig. 5. Different paths that can be followed by electromagnetic waves to
travel from port 1 to port 2 (top row) and from port 2 to port 1 (bottom row)
in the coupling topology described in Fig. 4.

very high orders, with a very strong coupling.
The topology shown in Fig. 4 explicitly shows that the non-

reciprocal response in time-modulated filters originates due
to the non-reciprocal coupling [see (31)] between adjacent
nonlinear harmonics that appear in time-modulated resonators.
Following this scheme, the underlying non-reciprocal mecha-
nism can be intuitively understood as follows. Electromagnetic
waves propagating from port 1 can reach port 2 and keep the
same oscillation frequency by (i) going through the admittance
inverters that link the different resonators at the fundamental
frequency, as in regular in-line filters (see Fig. 2 and Fig. 5a);
and (ii) going through an ideally infinite number of routes
(assuming an infinite number of nonlinear harmonics) that
appear in the topology due to the presence of harmonic
resonators. One specific example of these routes, illustrated in
Fig. 5b, involves the harmonic admittance inverters J (−1,0)

1 ,
J
(−2,−1)
2 , J (−1,−2)

3 , and J
(0,−1)
3 that impart a total phase of

+ϕ1 +ϕ2−2ϕ3 to the waves propagating therein. The output
at port 2 is then conformed by the interference of the waves
coming from all possible routes. Let us now consider the
dual case, i.e., waves coming from port 2 and propagating
towards port 1. As in our previous analysis, propagating waves
can follow the path of common in-line filters (see Fig. 5c)
plus potentially any of the ideally infinite routes enabled by
harmonic resonators. The former leads to reciprocal contri-
butions whereas any of the paths that encompasses nonlinear
harmonics introduces non-reciprocity due to the non-reciprocal
response of the impedance inverters. For instance, Fig. 5d
shows the route previously analyzed but considering now the
opposite propagation direction of the waves. This specific path
involves the same harmonic impedance inverters as before, but
traversed in the opposite direction, thus providing a total phase
of −ϕ1−ϕ2 + 2ϕ3 to the waves (negative with respect to the
previous scenario). For instance, assuming ∆ϕ = 45◦, the total
phase difference between forward and backward paths in this
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example is of 90◦. It is thus evident that an adequate control
of the phase imparted by each time-modulated resonator is key
to control the response of this type of filters. At port 1, waves
coming from all routes interfere to construct the output signal.
Strong non-reciprocity at the same frequency arises due to the
different wave interference that appears in ports 1 and 2.

The design of time-modulated non-reciprocal filters can be
carried out following the guidelines shown in [24]. In such
design, the goal is to optimize the modulation frequency and
index as well as the initial phase of the modulation signal
applied to each resonator to (i) independently manipulate
the interference of all waves that merge at ports 1 and 2
to boost non-reciprocity; (ii) maximize the energy coupled
to nonlinear harmonics; and (iii) ensure that most energy
is transferred back to the operation frequency at the device
ports to minimize loss. It is important to remark that it is
required to modulate at least two physical resonators to enable
non-reciprocal responses [24]. If one modulates just a single
resonator, the incoming energy will simply be distributed
among various nonlinear harmonics that will then propagate
through the network. Finally, note that we have focused on
non-reciprocal responses at the same frequency. It is indeed
possible to design devices based on time-modulated resonators
that exhibit non-reciprocal responses between the fundamental
frequency and any desired nonlinear harmonic. These devices
will be governed by the topology shown in Fig. 4 and will
follow the theory developed here.

IV. NUMERICAL RESULTS

Using the coupling matrix formalism derived above, a
software tool for the analysis of non-reciprocal in-line filters
has been developed. In this Section, we will investigate the
convergence of the numerical algorithm as a function of the
number of harmonics Nhar included in the calculations.

The first example is a filter of order three whose unmodu-
lated response has equal ripple return losses of RL = 13 dB.
The filter coupling matrix yields

M3 =


0 0.8894 0 0 0

0.8894 0 0.8294 0 0
0 0.8294 0 0.8294 0
0 0 0.8294 0 0.8894
0 0 0 0.8894 0

 .

(32)
This coupling matrix gives the response of the normalized
lowpass prototype. The bandpass response is adjusted to have
a bandwidth of 47 MHz, with a center frequency of f0 =
975 MHz (FB = 4.8%). By using the procedure shown in
[24], the modulation parameters were optimized, leading to
the following values: fm = 22.8 MHz, ∆m = 0.050, and
∆ϕ = 35◦.

Here we should remark that the design of this filter is not
yet completely determined by synthesis techniques. Rather,
the coupling matrix shown in (32) gives the initial response
of the unmodulated filter. Once this response is established,
the parameters of the modulation signals are optimized to
obtain the desired non-reciprocal response, using the procedure
reported in [24].

0.9 1 1.1
Frequency (GHz)

-40

-30

-20

-10

0

M
ag

ni
tu

de
 o

f S
11

 (
dB

)

N
har

=3

N
har

=5

N
har

=7

(a)

0.9 1 1.1
Frequency (GHz)

-40

-30

-20

-10

0

M
ag

ni
tu

de
 o

f S
22

 (
dB

)

N
har

=3

N
har

=5

N
har

=7

(b)

0.9 1 1.1
Frequency (GHz)

-40

-30

-20

-10

0

M
ag

ni
tu

de
 o

f S
21

 (
dB

) N
har

=3

N
har

=5

N
har

=7

(c)

0.9 1 1.1
Frequency (GHz)

-40

-30

-20

-10

0

M
ag

ni
tu

de
 o

f S
12

 (
dB

)

N
har

=3

N
har

=5

N
har

=7

(d)

Fig. 6. Scattering parameters of the third order non-reciprocal filter designed
in Section IV. Results are computed with the coupling matrix approach
introduced in this work using an increasing number of harmonics in the
numerical method.

In general, the design of this filter fully from synthesis
techniques is very complex, and will involve (i) the calculation
of suitable reflection and transmission polynomials to properly
represent the desired (non-reciprocal) transfer functions, (ii)
the extraction from these polynomials of a suitable coupling
matrix and (iii) the transformation of the obtained coupling
matrix into a form that represents the coupling topology shown
in Fig. 4.

Fig. 6 shows the scattering parameters at the fundamental
frequency, obtained for this filter with increasing number
of harmonics Nhar = 3, 5, 7. Here numerical results were
obtained from the responses of the coupling matrices for
the time modulated network. The coupling matrix is easily
calculated starting with the coupling matrix given in (32) for
the unmodulated network, and with the selected parameters
for the modulation signal (fm, ∆m and ∆ϕ). Then, using
the coupling topology shown in Fig. 4, the coupling matrix
entries for the time modulated network are computed with (29)
and (31) (with C = 1). It can be observed that the results
are in general very stable, showing only small differences as
the number of harmonics is increased. Note that the algorithm
converges using just Nhar = 5 harmonics and increasing fur-
ther the number of harmonics leads to negligible changes in the
simulated response. Results show that the filter has a passband
which is quite flat in the forward direction with a bandwidth of
48 MHz measured at the return loss level of 11 dB. It should
be stressed that, even though the network is non-reciprocal it is
symmetric and thus return losses from both ports are identical.
Insertion losses within the passband in the forward direction
are 2.5 dB. Since the network is lossless, these losses are in
fact due to power that is converted to nonlinear harmonics
and is not converted back to the fundamental frequency. A
very strong non-reciprocity is obtained at the center of the
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passband, being the insertion loss of about 17 dB. Overall,
the insertion losses in the backward direction are greater that
8 dB within the whole useful bandwidth. We observed in
this case that fairly good isolation can be obtained at the
center of the passband. However, the isolation deteriorates
at the edges of the useful bandwidth. As explained in the
previous section, the non-reciprocity is obtained by provoking
energy conversion from the fundamental frequency to the
generated non-linear harmonics. Although these conversion
effects are non-reciprocal in magnitude and phase, the main
mechanism that allows to obtain high non-reciprocity is the
difference in phase between the forward and backward paths.
Therefore, high isolation is obtained by adjusting the phases
among the resonators to produce phase cancellation effects in
the backward direction. With a small number of resonators
(three in this example), these cancellation effects can be
made efficient in a narrow bandwidth. Moreover, as it will
be discussed in our next example, there is a trade-off between
the isolation level and the bandwidth where this isolation is
achieved. In general, larger isolation values can be obtained
but only over a narrower bandwidth.

If we define the directivity between the forward and back-
ward directions as

D =
|S21|2

|S12|2
, (33)

then a directivity of D0 = 14.5 dB is obtained at center
frequency. Moreover, the directivity within the useful passband
is always better than D = 5.5 dB.

To demonstrate the convergence of the algorithm when the
order of the network is increased, we have also designed a
fourth order non-reciprocal filter. For this second example the
return losses of the unmodulated filter are RL = 18.5 dB,
leading to the following coupling matrix

M4 =


0 0.997 0 0 0 0

0.997 0 0.873 0 0 0
0 0.873 0 0.68 0 0
0 0 0.68 0 0.873 0
0 0 0 0.873 0 0.997
0 0 0 0 0.997 0

 .

(34)
This time the bandpass response is adjusted to have a band-
width of 58 MHz at a center frequency f0 = 890 MHz, given
a fractional bandwidth of FB = 6.5%. After optimization, the
parameters of the modulated capacitors are fm = 19 MHz,
∆m = 0.076, and ∆ϕ = 48◦.

Fig. 7 shows the simulated scattering parameters with
increasing number of nonlinear harmonics Nhar = 3, 7, 9.
It is evident that the response is inaccurate if only three
harmonics are included in the calculations. After increasing
further the number of harmonics, the differences among the
different simulations reduce considerably, especially for the
reflection characteristic and the forward transmission coeffi-
cient. We have verified that including additional harmonics in
the simulations leads to negligible variations in the simulated
response, which indicates that good convergence is obtained
with nine harmonics. As expected, this study shows that more
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Fig. 7. Scattering parameters of the forth order non-reciprocal filter designed
in Section IV. Results are computed with the coupling matrix approach
introduced in this work using an increasing number of harmonics in the
numerical method.

harmonics needs to be used in the numerical simulations when
the order of the network increases.

Moreover, it has been previously shown [16], that in this
type of modulated resonators only the two first higher order
harmonics are important in the non-linear process. Conse-
quently, the minimum number of harmonics that need to be
considered in the numerical simulations should grow, with the
number of resonators in the network, according to the rule:
Nhar = 2 (N − 1) + 1. Note that the convergence results
presented for the third and fourth order filters, shown in Fig. 6
and Fig. 7, are in agreement with this rule.

The filter shows an almost flat response for the transmission
coefficient in the forward direction, having a bandwidth of
40 MHz measured at a return loss of RL = 12 dB. The
insertion losses in the forward direction are smaller than
IL = 3.3 dB within the useful passband. Again, these
losses correspond to power converted from the fundamental
frequency into nonlinear harmonics that is not converted
back into the fundamental frequency. The response of the
filter shows a strong non-reciprocal behavior in the backward
direction. Around the center frequency, the directivity is better
than D0 = 13.7 dB in a bandwidth of 26 MHz. In the whole
useful passband, the directivity is shown to be better than
D = 9 dB.

At this point it is interesting to observe that the optimum
modulation frequency (fm = 19 MHz) is slightly smaller
than the bandwidth of the filter. This condition assures that
the two first intermodulation products can be strongly excited,
while the generation of higher order intermodulation products
are minimized. Also, we emphasize that the response of the
filter was optimized to achieve a good trade-off between the
isolation level, and the bandwidth where it is achieved. Other
optimization criteria are possible, for instance by increasing
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Fig. 8. Scattering parameters of the fourth order non-reciprocal filter designed
in Section IV computed using the commercial tool ADS (cross symbols), the
coupling matrix approach introduced in this work with approximations (CM;
dashed line) and without approximations (solid lines). Approximations involve
the use of (27)-(29) and (31). In both calculations the number of harmonics
has been fixed to Nhar = 9.

further the isolation level, at the expense of reducing the
bandwidth where this isolation is achieved. For instance we
have verified that by decreasing the frequency of the mod-
ulation signal to fm = 18 MHz, the directivity increases
to D0 = 33.1 dB, although in a narrow bandwidth of only
8.6 MHz. In any case, this example shows that the proposed
system offers high flexibility in the characteristics that can be
achieved, that could be adapted to many different scenarios.

As validation of the theory presented in this paper, we
employ this last filter design to compare our results with
those obtained with the commercial tool ADS [33]. Here
we remark that the ADS results were obtained using ideal
built-in models to implement the time modulated capacitors
through (13), combined with the large signal scattering pa-
rameters analysis module. In addition, we also check what
is the impact of the approximations introduced in order to
formulate the frequency independent elements required by the
coupling matrix formalism. Essentially, the approximations
involve (i) the representation of the harmonic resonators with
the frequency invariant susceptances of (29), instead of using
the rigorous admittances given in (24); and (ii) the use of
frequency independent admittance inverters of (31), instead of
the rigorous expressions shown in (30). Fig. 8 compares the
filter response using these two different approaches, and using
the commercial tool ADS. It can be observed that our theory
(Rigorous) agrees perfectly with the results obtained with
ADS. Small differences can be observed between these two
results (ADS, Rigorous), and the results obtained introducing
the approximations (CM). This indicates that the impact of
the approximations introduced is indeed small, especially for
narrowband filters.

V. PRACTICAL REALIZATION

In this Section we present the fabrication and measure-
ment of the two previously designed non-reciprocal filters,
implemented in microstrip technology. Fig. 9 and Fig. 10

show the details of the filters together with pictures of the
manufactured prototypes. It can be observed that the top
metalization layer contains the input/output RF feeding lines

(a) (b)

(c) (d)

Fig. 9. Geometry of the third order filter designed in microstrip technology.
(a) Detail of the top metalization layer. (b) Detail of the bottom metalization
layer. Panels (c)-(d) show a picture of the top and bottom metalization layers
of the fabricated prototype, respectively.

TABLE I
DIMENSIONS (IN MILLIMETERS) OF THE FABRICATED 3RD-ORDER FILTER

(SEE FIG. 9).

W1 W2 W3 S1 S2 S3 h1 l1 l2

50 3.44 3 2.66 0.36 0.22 11.3 153 72

l3 l4 l5 l6 l7 l8 l9 Φ1 Φ2

31.3 69 100 17 31.95 15.5 20.4 1.8 1

TABLE II
DIMENSIONS (IN MILLIMETERS) OF THE FABRICATED 4TH-ORDER FILTER

(SEE FIG. 10).

W4 S4 S5 S6 h2 l10 l11 l12

70 4.56 2.21 0.21 9.3 160 73 27.8

l13 l14 l15 l16 l17 l18 l19 l20

70.3 98.1 23.4 22.5 14 17 25.5 26.9

and that the resonators are realized using quarter wavelength
transmission lines terminated on one side with a via-hole
connected to a varactor. On the bottom metalization layer,
the ground plane of the microstrip line is modified to feed the
various varactors (from Skyworks, model SMV1234) with the
corresponding modulating signals using coplanar waveguides.
In the figures we also show the positions where the varactors
are soldered in the board. Note that a choke lumped inductor
of value 180 nH is incorporated to increase the isolation
between the signals oscillating at f0 and fm. It should be
emphasized that this implementation enforces that the RF and
modulating signals are supported on different planes of the
substrates which significantly increases the isolation between
them (> 30 dB). The substrate material used for the fabrication
is Rogers RT/duroid 6035 HTC with a relative dielectric
constant εr = 3.5 and a thickness of 1.524 mm. The final
dimensions of the fabricated prototypes are collected in Table I
and Table II for the third and fourth order filters, respectively.

Fig. 11a shows the measured results for the third order filter
in the absence of any modulation and compares them with
the simulated response using the coupling matrix formalism.
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(a) (b)

(c) (d)

Fig. 10. Geometry of the fourth order filter designed in microstrip technology.
(a) Detail of the top metalization layer. (b) Detail of the bottom metallization
layer. Panels (c)-(d) show a picture of the top and bottom metalization layers
of the fabricated prototype, respectively.

Here we should remark that the simulated responses of the
filters are all obtained with the theoretical analysis presented
in Section III. In addition, it can be observed in the measured
response some deviations with respect to the response of
the designed prototype shown in Fig. 6. The differences
are mainly due to the insertion losses within the passband,
which are around IL = 2.8 dB, and to some parasitic cross
couplings that were not taken into account during the initial
design. These two factors have been included in the simulated
responses obtained with the coupling matrix formalism derived
in this work, shown in Fig. 11. Losses in the resonators are
modeled with an additional resistor connected in parallel. The
response show in Fig. 11a is used to extract the unloaded
quality factors of the resonators, giving QU = 114. This
unloaded quality factor is small, but it is not uncommon of
planar technology [34], and especially when using microstrip
line printed resonators. In addition, we have found that the
drop of selectivity in the lower side of the passband is mainly
due to a non negligible cross coupling between the ports and
the second resonator, giving normalized coupling factors or
MP12 = M2P2

= 0.26. Although of much weaker value,
there is also a small parasitic coupling between the first and
third resonator, which is modeled with a normalized coupling
factor of M13 = 0.09. It can be observed that the agreement
between measured and simulated results are reasonably good,
once losses and parasitic couplings are included in the derived
coupling matrix formalism.

Fig. 11b presents the measured versus simulated results
when the modulating signal is applied to the varactors and the
filter is excited from the first port. It can be observed that the
filter behaves as in the unmodulated case, with increased losses
of around IL = 4.5 dB that account for both dissipation effects
and the power converted into nonlinear harmonics. The useful
bandwidth measured at a return loss level of RL = 11 dB
is 45 MHz. Fig. 11c shows the response of the prototype
when it is excited from the second port. The filtering response
is suppressed and instead the device behaves as an isolator
that attenuates all incoming power. Maximum non-reciprocity

TABLE III
BASIC ELECTRICAL PERFORMANCES OBTAINED FOR THE TWO

MANUFACTURED FILTERS.

IL (dB) RL (dB) D (dB) FB (%)

Third order 4.5 11 13.8 4.6

Fourth order 4.4 11 13.6 6.4

is achieved at the center of the passband with a directivity
of D0 = 13.8 dB. It can be observed that when losses and
parasitic cross couplings are included in the coupling matrix
model, a good agreement is maintained between measured data
and numerical simulations.

Measurements corresponding to the fourth order filter are
shown in Fig. 12. Fig. 12a plots the response of the filter
before introducing the modulating signal and compares it
with respect to the response of the ideal circuit. Again the
bandwidth and the ripple level obtained within the passband
are very similar. Measured results exhibit a perfectly constant
equi-ripple response, since the resonant frequencies of the
resonators are slightly tuned with constant voltages applied
to the varactors. The insertion losses due to dissipation effects
in the resonators and in the varactors are slightly larger than in
the previous filter, obtaining a minimum level of IL = 3.2 dB
that slowly increases towards the end of the passband. The
insertion losses measured in the unmodulated case (Fig. 12a)
were used again to extract the unloaded quality factor of
the resonators, obtaining essentially the same value as in the
previous example. This is something to be expected, since the
same resonators as before were used in this second prototype,
and the same technology was used for manufacturing. In
any case, this also shows high repeatability of the employed
manufacturing process.

Measured results again show a drop in selectivity as com-
pared to the designed response of Fig. 7, especially in the
lower side of the passband. Once more we found that this
is due to parasitic cross couplings not taken into account
during the initial design process. In the comparison shown
in Fig. 12, we can observe good agreement between measured
and simulated responses when losses and parasitic couplings
are included in the derived model. Again, we found that the
strongest parasitic couplings occur between the ports and the
closest non contiguous resonators: MP12 = M3P2

= 0.23
and MP13 = M2P2

= 0.1. However, non negligible parasitic
couplings have also been found between internal resonators:
M13 = M24 = 0.12 and M14 = 0.06.

Fig. 12b presents the measured results obtained from the
manufactured prototype when the modulating signal is applied
to the varactors and the filter is excited from the first port.
The fabricated prototype behaves as a filter with a useful
bandwidth of 57 MHz measured at a return loss level of
RL = 11 dB. With respect to the unmodulated case, the
insertion losses in the forward direction have increased to
IL = 4.4 dB. As in the previous case, the extra losses
are due to power converted into nonlinear harmonics that is
not converted back to the fundamental frequency. Exciting
the device from the second port significantly attenuates the
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Fig. 11. Measured response of the manufactured third order non-reciprocal filter and comparison with respect to the numerical results obtained with the
proposed technique (losses and parasitic cross couplings have been included in the coupling matrix approach). (a) Unmodulated response (note that in this
case S11 = S22 and S12 = S21). (b)-(c) Response obtained when the modulating signal is applied to the varactors and the filter is excited (shown in the
inset using a magenta arrow) from the first (b) and the second (c) port.
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Fig. 12. Measured response of the manufactured fourth order non-reciprocal filter and comparison with respect to the numerical results obtained with the
proposed technique (losses and parasitic cross couplings have been included in the coupling matrix approach). (a) Unmodulated response (note that in this
case S11 = S22 and S12 = S21). (b)-(c) Response obtained when the modulating signal is applied to the varactors and the filter is excited (shown in the
inset using a magenta arrow) from the first (b) and the second (c) port.

propagating energy. The strong non-reciprocity predicted by
the initial simulations is confirmed by the measurements.
Around the center frequency of the passband, the directivity
is better than D0 = 13.6 dB in a bandwidth of 35 MHz.
Across the entire passband, the directivity is always better than
D = 7.2 dB. In general, good agreement between measured
and simulated responses are obtained when losses and parasitic
couplings are included in the derived coupling matrix model.
For reference, the basic performances for both manufactured

filters are collected in Table III.

Another important characteristic of these devices for many
applications is the power handling levels. The hardware built
could not be tested under high power signals. Primarily, the
power handling will be limited by the technology used to build
a similar unmodulated circuit [35]. However, an interesting
future research topic will be the assessment on how the
additional circuitry needed by modulation signals and the
presence of varactors affect the power handling levels, and
which arrangements are more appropriate to reduce these
undesired effects.

VI. CONCLUSION

We have presented the analysis of non-reciprocal filters
based on time modulated capacitors using a coupling ma-
trix formalism. From the initial topology of the filter, a
novel coupling topology using harmonic resonators is first
derived. Closed form analytic expressions have been obtained
to represent the harmonic resonators with frequency invariant
susceptances, thus obtaining the diagonal elements of the
traditional coupling matrix. Also, non-reciprocal admittance
inverters have been analytically computed to account for the
couplings between harmonic resonators, thus obtaining the off-
diagonal elements of the coupling matrix. The derived analysis
method has been validated with the design and fabrication
of third and fourth order filters implemented in microstrip
technology. Measured results on the fabricated prototypes, and
results obtained with a commercial tool are found to agree well
with respect to numerical calculations obtained using the new
coupling matrix formulation, thus fully validating the theory
presented.
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