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Abstract

Minimax Optimality in Online Learning under Logarithmic Loss with Parametric Constant
Experts

by

Fares Hedayati

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Peter L. Bartlett (Chair)

We study online prediction of individual sequences under logarithmic loss with parametric
experts. The goal is to predict a sequence of outcomes xt ∈ X , revealed one at a time,
almost as well as a set of experts. At round t, the forecaster’s prediction takes the form of
a conditional probability density qt(· | xt−1), where xt−1 ≡ (x1, x2, · · · , xt−1). The loss that
the forecaster suffers at that round is − log qt(xt | xt−1), where xt is the outcome revealed
after the forecaster’s prediction. The performance of the prediction strategy is measured
relative to the best in a reference set of experts, a parametric class of i.i.d distributions. The
difference between the accumulated loss of the prediction strategy and the best expert in the
reference set is called the regret. We focus on the minimax regret, which is the regret of the
strategy with the minimum of the worst-case regret over outcome sequences.

The minimax regret is achieved by the normalized maximum likelihood (NML) strategy.
This strategy knows the length of the sequence in advance and the probability it assigns
to each sequence is proportional to the maximum likelihood of the sequence. Conditionals
are computed at each round by marginalization which is very costly for NML. Due to this
drawback, much focus has been given to alternative strategies such as sequential normal-
ized maximum likelihood (SNML) and Bayesian strategies. The conditional probability that
SNML assigns to the next outcome is proportional to the maximum likelihood of the data
seen so far and the next outcome. We investigate conditions that lead to optimality of SNML
and Bayesian strategies. A major part of this thesis is dedicated to showing that optimality
of SNML and optimality of a certain Bayesian strategy, namely the Bayesian strategy under
Jeffreys prior are equivalent to each other, i.e. if SNML is optimal, then so is the Bayesian
strategy under Jeffreys prior and if the Bayesian strategy under the Jeffreys prior is optimal
then so is SNML. Note that Jeffreys prior in parametric families is proportional to the square
root of the determinant of the Fisher information. Furthermore we show that optimality of
SNML happens if and only if the joint distribution on sequences defined by SNML is ex-
changeable, i.e. the probability that SNML assigns to any sequence is invariant under any
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permutation of the sequence. These results are proven for exponential families and any para-
metric family for which the maximum likelihood estimator is asymptotically normal. The
most important implication of these results is that when SNML–exchangeability holds NML
becomes horizon–independent, and it could be either calculated through a Bayesian update
with Jeffreys prior or through a one step-ahead maximum likelihood calculation as in SNML.
Another major part of this thesis is focused on showing that SNML–exchangeabilty holds for
a large class of one–dimensional exponential family distributions, namely for Gaussian, the
gamma, and the Tweedie exponential family of order 3/2, and any one–to–one transformation
of them and that it cannot hold for other one–dimensional exponential family distributions.

Finally in this thesis we investigate horizon–dependent priors when Jeffreys prior is not
optimal. Only Jeffreys prior can make a Bayesian strategy optimal. This means that if Jef-
freys prior is not optimal then nor is any other prior, except for possibly a horizon–dependent
prior. This is because if there does not exist a prior that can make the Bayesian strategy
optimal for all horizons then the only possibilities are priors that depend on the horizon of
the game. We investigate the behavior of a natural horizon–dependent prior called the NML
prior. We show that the NML prior converges in distribution to Jeffreys prior, which makes
it asymptotically optimal, but not necessarily optimal for an arbitrary horizon. Furthermore
we show that there are exactly three families, namely Gaussian, gamma and inverse Gaus-
sian, where the NML prior is equal to Jeffreys prior and hence horizon–independent. Two
of these families namely gamma and Gaussian have optimal NML prior. We also investigate
the problem of finding an optimal horizon-dependent prior for online binary prediction with
Bernoulli experts. We could not solve this problem, but we describe insights gained from our
investigation and possible directions that researchers can take in tackling this open problem.
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Chapter 1

Introduction, Definitions and
Notation

1.1 Online Learning under Logarithmic Loss

The aim of online learning under logarithmic loss is to predict a sequence of outcomes
xt ∈ X , revealed one at a time, almost as well as a set of experts. At round t, the fore-
caster’s prediction takes the form of a conditional probability density qt(· | xt−1), where
xt−1 ≡ (x1, x2, · · · , xt−1) and the density is with respect to a fixed measure λ on X . For
example, if X is discrete, λ could be the counting measure; for X = Rd, λ could be Lebesgue
measure. The loss that the forecaster suffers at that round is − log qt(xt | xt−1), where xt
is the outcome revealed after the forecaster’s prediction. The performance of the predic-
tion strategy is measured relative to the best in a reference set of experts. The difference
between the accumulated loss of the prediction strategy and the best expert in the refer-
ence set is called the regret. The focus of this thesis is on parametric constant experts. A
parametric constant expert is a parameterized probability density pθ such that for all t > 0
and for all x ∈ X , pθ (x | xt−1) = pθ (x).

Definition 1 (Parametric Constant Model). A constant expert is an i.i.d stochastic process,
that is, a joint probability distribution p on sequences of elements of X such that for all
t > 0 and for all x in X , p (xt |xt−1 ) = p (xt). A parametric constant model (Θ, (X ,Σ), λ, pθ)
is a parameter set Θ, a measurable space (X ,Σ), a measure λ on X , and a parameterized
function pθ : X → [0,∞) for which, for all θ ∈ Θ, pθ is a probability density on X with
respect to λ. It defines a set of constant experts via pθ (xt |xt−1 ) = pθ (xt).

We call any sequential probability assignment of the form qt(· | xt−1), a strategy. Note
that q1(x1 | x0) = q1(x1) and that any sequential probability assignment of length n defines
a joint density with respect to measure λ on the n outcomes and vice versa. This is because
the product of the conditional probability densities over a sequence of length n, defined by a
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sequential probability assignment, integrates to one, and from any joint density on sequences
of length n, conditional densities can be computed via marginalization.

The exponential family is a natural and widely studied class of probability distributions
(see, for example, [2]). A set of distributions parametrized by θ ∈ Θ on a set of outcomes
X is an exponential family if it can be written as a density pθ(x) = h(x)eθ

Tφ(x)−ψ(θ) defined
relative to a φ : X → Rk and a h : X → [0,∞). Some of the major results of this thesis use
the natural exponential families as the expert set.

Definition 2 (Natural Exponential Family). Natural exponential family distributions on Rd,
are defined with the following probability distribution:

pθ(x) = h(x) exp (xᵀθ − A(θ)) ,

where θ ∈ {θ ∈ Rd|A(θ) < ∞}, x ∈ Rd, h is a reference measure, and the log normalization
A ensures that pθ is a probability distribution.

Definition 3 (Regret). Let (Θ, (X ,Σ), λ, pθ) be a parametric constant model and let q(n)

denote the joint density with respect to measure λ defined by the product of the n sequential
probability assignments qt(xt | xt−1). For any sequence xn from X , the regret of a strategy
q(n) with respect to Θ is given by

RΘ(xn, q(n)) =
n∑
t=1

− log qt(xt | xt−1)− inf
θ∈Θ

n∑
t=1

− log pθ(xt | xt−1) = sup
θ∈Θ

log
pθ(x

n)

q(n)(xn)
.

We consider a generalization of the regret of Definition 3. This is because some strategies
are only defined conditioned on a fixed initial sequence of observations xm−1. Refer to
Section 2.3 for two examples of these kinds of strategies. For such cases we define the
conditional regret of xn, given a fixed initial sequence xm−1, in the following way [see 11,
chap. 11].

Definition 4 (Conditional Regret). Let (Θ, (X ,Σ), λ, pθ) be a parametric constant model,
let xm−1 be a fixed sequence from X , and let q(n) denote the joint density with respect to
measure λ defined by the product of the n sequential probability assignments qt(xt | xt−1) for
t ≥ m. For any sequence xnm, the conditional regret of a strategy q(n) given xm−1 is given by

RΘ(xnm, q
(n) | xm−1) =

n∑
t=m

− log qt(xt | xt−1)− inf
θ∈Θ

n∑
t=1

− log pθ(xt | xt−1)

= sup
θ∈Θ

log
pθ(x

n)

q(n)(xnm | xm−1)
.
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Notice that the strategy q(n) defines only the conditional distribution q(n)(xnm | xm−1). We
call such a strategy a conditional strategy. In what follows, where we consider a conditional
strategy, we assume that xm−1 is such that these conditional distributions are always well
defined.

The interest is in strategies whose average regret 1
n
RΘ(xn, q(n)) diminishes to zero as n

grows larger. A strategy with this property has a predicting power almost as good as someone
who observes the entire sequence of data and picks the best predicting strategy. Equivalently
these strategies do not lose much from not knowing the future and perform almost as well
as one who knows it. We are interested in minimax optimal strategies, which are strategies
q(n) that minimize the supremum over sequences xn of the regret RΘ(xn, q(n)) (or, in the
case of conditional regret, the supremum over sequences xnm of the conditional regret given
xm−1). The NML strategy is the unique minimax optimal strategy (see Section 1.3). NML is
not naturally defined in terms of conditionals. Conditionals are computed at each round by
marginalization of the joint distribution which makes the NML strategy very costly. Due to
this major drawback much focus has been given to alternative strategies such as sequential
normalized maximum likelihood (SNML) and Bayesian strategies (see Sections 1.4, and 1.5).
Much of the work of this thesis is in characterization of the minimax optimality conditions
of these alternatives.

The next section looks at online learning under logarithmic loss from a different perspec-
tive: the MDL principle.

1.2 The MDL principle

Online learning under logarithmic loss is equivalent to data compression in the minimum
description length (MDL) principle context [9]. Before giving a brief overview of this concept,
we review some basics of information theory. Let p( · ) be a distribution over sequences of
data of length n from X n. A well-known result in information theory says that there is a
prefix code, namely the Shannon-Fano code, that assigns to xn ∈ X n a codeword of length
L(Xn) = d− log p(xn)e. This code is optimal, as it minimizes the expected code-length
function EpL(Xn) [9].

The concept of the MDL principle was first introduced by Jorma Rissanen [18]. In short,
the concept looks at learning as finding regularity in data and explaining it more succinctly;
the more succinctly the data is explained the more regularity is found and a better learning
is achieved. Equivalently learning is viewed as the ability to compress data.

Let model M be a class of probability distributions over sequences of data of length
n. Note that each distribution corresponds to a code. We use hypothesis and code inter-
changeably. The MDL principle looks for a hypothesis or a combination of hypotheses inM
that compresses the data the most. Before seeing the data both the sender and the receiver
should agree on a code. The sender cannot pick a code after observing the data, because
the receiver does not know which code was picked and can not decipher the encoded data
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correctly. Among all codes inM, the one that compresses xn the most is the one that corre-
sponds to the maximum likelihood estimate. This is because the prefix code with the smallest
code-length is the prefix code corresponding to a codeword of length minp∈Md− log p(xn)e.
This code however cannot be used, because for the maximum likelihood to be obtained the
data should be observed first. Is there a hypothesis or a combination of hypotheses from
model M that can compress the data asymptotically as well as the best hypothesis? The
answer is positive. Codes with this property are called universal codes or universal models
where the emphasis in the latter is on distributions. Normalized maximum likelihood (NML
in short), Sequential normalized maximum likelihood, and Bayesian strategies are some of
the well-studied universal models. Sections 1.3, 1.4, and 1.5 go over these universal models
in detail.

The logarithmic loss in online learning translates to the number of bits needed to compress
the data in MDL. Online learning defines regret as the difference between the loss of the
player and the loss of the best expert in hindsight, whereas MDL views regret as the number
of extra bits needed to compress the data, in comparison with the best code in hindsight.
For further study of the MDL principle, see the book [9].

1.3 Normalized Maximum Likelihood (NML)

Definition 5 (sup-integrable). We say that for a given horizon n, the model (Θ, (X ,Σ), λ, pθ)
is sup-integrable if for all sequences yn from X∫

Xn
sup
θ∈Θ

pθ(y
n) dλn(yn) <∞;

furthermore, we say that for an initial subsequence xm−1 the model is conditionally sup-
integrable if for all sequences yn−m from X∫

Xn−m+1

sup
θ∈Θ

pθ(x
m−1yn−m+1) dλn−m+1(yn−m+1) <∞.

We call this integral the Shtarkov integral.

The following definition of NML is based on the assumption that the model is sup-
integrable or conditionally sup-integrable. Throughout the thesis, we will assume that the
model is either sup-integrable or conditionally sup-integrable for some fixed initial xm−1,
which makes the conditional NML well-defined.

Definition 6 (NML). Let (Θ, (X ,Σ), λ, pθ) be a parametric constant model which is sup-
integrable. Given a fixed horizon n, the normalized maximum likelihood (NML) strategy with

respect to this parametric constant model is defined via the joint probability distribution p
(n)
nml,

defined as

p
(n)
nml(x

n) =
supθ∈Θ pθ(x

n)∫
Xn supθ∈Θ pθ(y

n) dλn(yn)
.
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If the model is not sup-integrable but it is conditionally sup-integrable for some xm−1, then
the conditional NML is defined as

p
(n)
nml(x

n
m|xm−1) =

supθ∈Θ pθ(x
n)∫

Xn−m+1 supθ∈Θ pθ(x
m−1yn−m+1) dλn−m+1(yn−m+1)

.

As an example, the Gaussian distribution with fixed variance of 1 and mean µ ∈ R and
n = 2 is not sup-integrable. However it is conditionally sup-integrable for any x1 which
makes the conditional p

(2)
nml( · |x1) well-defined. The same phenomena happens for n greater

than 2.
The following theorem plays a central role in many of the results of this thesis. It basically

says that the optimality of a strategy means that it has equal regrets for all sequences of the
same length. It further states that an optimal strategy is equivalent to an NML.

Theorem 1.3.1 (Optimality). Let (Θ, (X ,Σ), λ, pθ) be a parametric constant model. For a
fixed horizon n, a strategy p(n) is minimax optimal if and only if it is an equalizer, i.e. the
regret of the strategy stays the same for all sequences of length n. Moreover, NML is the only
minimax optimal strategy and the conditional NML is the only minimax optimal conditional
strategy.

Proof. First note that regret of NML for an arbitrary sequence xn is :

− log
supθ∈Θ pθ(x

n)∫
Xn supθ∈Θ pθ(y

n) dλn(yn)
−
(
− log sup

θ∈Θ
pθ(x

n)

)
= log

∫
Xn

sup
θ∈Θ

pθ(y
n) dλn(yn),

which is independent of xn. Therefore, NML has the same regret for all sequences of length
n. Let strategy p(n) be an equalizer and let q(n) be a strategy different from p(n). Then for
some zn we should have p(n)(zn) > q(n)(zn) which in turn makes the regret of q(n) for zn

larger than that of p
(n)
nml. If sequence wn maximizes the regret of q(n) then:

RΘ(wn, q(n)) > RΘ(zn, q(n)) > RΘ(zn, p(n)) = RΘ(wn, p(n))

This means that for any strategy q(n) different from p(n), the maximum regret of q(n) over all
sequences of length n is strictly greater than the maximum regret of p(n), therefore p(n) has
the minimum value of the maximum regret, i.e. it is minimax optimal. On the other hand if
p(n) is minimax optimal then it should be an equalizer, because if it is not, then an equalizer
strategy such as NML, has lower maximum regret than p(n), as was shown in the if-part of the
proof. Note that NML should be the only minimax optimal strategy, because as was shown
in this proof, any strategy q(n) different from p

(n)
nml should end up having a maximum regret

strictly greater than that of the NML. Finally the conditional NML attains the minimax
conditional regret bound because the conditional p

(n)
nml( · | xm−1) has equal conditional regret

for any sequence of length n with the first m− 1 outcomes identical to xm−1. This property
guarantees optimality, because the same argument can be applied to conditional regret. If a
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conditional strategy q(n)( · |xm−1) is different from p
(n)
nml( · |xm−1) then we can conclude that

the maximum conditional regret of q(n)( · |xm−1) is strictly greater than that of p
(n)
nml( · |xm−1).

This in turn proves the minimax optimality of the conditional NML strategy.

One major drawback of NML is that it is defined in terms of a joint distribution, not
conditionals. Conditionals should be calculated by marginalization at each time which is
very costly. For example to marginalize the first k random variables in a joint distribution
of n binary random variables, in general, 2n−k sums are needed. Another drawback is
the strategy’s dependence on horizon n. This violates the spirit of online learning, which
emphasizes the player’s lack of knowledge of future events.

1.4 Sequential Normalized Maximum Likelihood (SNML)

Definition 7 (SNML). Let (Θ, (X ,Σ), λ, pθ) be a parametric constant model. The sequential
normalized maximum likelihood (SNML) update, is defined as

psnml(xt | xt−1) =
supθ∈Θ pθ(x

t)∫
X supθ∈Θ pθ(x

t) dλ(xt)

under the assumption that the denominator is finite.

Note that in some cases the model is not sup-integrable and hence SNML is not well-
defined. The results of this thesis are based on the assumption that in those cases there
exists an initial sequence xm−1 such that psnml( · |xm−1) is well-defined. Example 2.3.2 in
Chapter 2 goes over one of these cases. SNML in that example is not well-defined for the
exponential distribution but the problem goes away by conditioning on the first observation.
Note that the SNML update does not depend on the horizon; it is naturally defined in terms
of conditionals. For more information about this strategy and its origin refer to [21], [20]
and [24].

In this thesis, the notion of exchangeability of stochastic processes plays an important
role in characterizing conditions that lead to optimality of SNML.

Definition 8 (Exchangeable). A stochastic process is called exchangeable if the joint prob-
ability does not depend on the order of observations, that is, for any n > 0, any xn ∈ X n,
and any permutation σ on {1, . . . , n}, the probability of xn is the same as the probability of
xn permuted by σ.

1.5 Bayesian Strategies

Definition 9 (Bayesian). Let (Θ, (X ,Σ), λ, pθ) be a parametric constant model and let π( · )
be a probability distribution on Θ. In a Bayesian strategy, the joint probability for t obser-
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vations xt, is defined in the following way:

pπ(xt) =

∫
θ∈Θ

pθ(x
t) dπ(θ).

The conditional probability distribution is:

pπ(xt | xt−1) =
pπ(xt)

pπ(xt−1)
.

We denote the conditional Bayesian strategy for a fixed xm−1 as pπ(xnm | xm−1). In this
thesis, Jeffreys prior [12] plays a central role regarding optimality of Bayesian strategies.

Definition 10 (Jeffreys prior). Let (Θ, (X ,Σ), λ, pθ) be a parametric constant model where
Θ ⊆ Rd. Jeffreys prior has density over the parameter space Θ that is proportional to√
|I(θ)|, where I is the Fisher information at θ (that is, the variance of the score, ∂/∂θ ln pθ(X),

where X has density pθ).

Note that if the normalization factor of Jeffreys prior is not finite, the Bayesian strategy
is not defined. We will always assume that in those cases, conditioning on an initial sequence
xm−1, makes the conditional Bayesian strategy under Jeffreys prior well-defined.

Under mild conditions, for exponential family distributions the regret of a Bayesian strat-
egy is no more than a data–independent constant plus the minimax regret. Moreover under
Jeffreys prior, the regret asymptotically approaches the minimax regret [see 11, chaps. 7,8].
Restriction to a fixed suitably bounded subset Θ0 ⊂ Θ is required for these results to hold.
More specifically Θ0 should be an ineccsi subset of Θ. ineccsi stands for “interior (is) non-
empty; closure (is) compact subset of interior”. An ineccsi subset of Θ is a subset Θ0 ⊂ Θ
such that the interior of Θ0 is nonempty and the closure of Θ0 is a compact subset of the
interior of Θ [see 9, p. 209].

1.6 Thesis Roadmap

NML is the unique optimal strategy in online prediction of individual sequences under log-
arithmic loss with parametric experts. The main focus of this thesis is on the optimality
of alternative strategies with much lower computational costs, and hence on when they are
equivalent to NML.

In Chapter 2, we show that in exponential family distributions the SNML is optimal,
meaning it is equivalent to NML, if and only if the joint distribution on sequences defined
by SNML is exchangeable. This property also characterizes the optimality of a Bayesian
prediction strategy for an exponential family. The optimal prior distribution is Jeffreys
prior. Furthermore, we show that the optimality of SNML implies its equivalence to the
Bayesian strategy under Jeffreys prior and vice versa. The main proof technique in showing
this result is using an extension of de Finetti’s theorem on exponential families.
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In Chapter 3, we further extend the results of Chapter 2 to a much broader class of
parametric models, a class for which the maximum likelihood estimator is asymptotically
normal. The optimal prediction strategy, normalized maximum likelihood, depends on the
number n of rounds of the game, in general. However, when a Bayesian strategy is optimal,
normalized maximum likelihood becomes independent of n. Our proof uses this to exploit the
asymptotics of normalized maximum likelihood. The asymptotic normality of the maximum
likelihood estimator is responsible for showing that an optimal Bayesian strategy should
necessarily use the Jeffreys prior.

In Chapter 4, we focus on characterization of one–dimensional exponential family distri-
butions that make the corresponding SNML exchangeable. Chapter 2 showed that in expo-
nential families a Bayesian prediction strategy with Jeffreys prior and sequential normalized
maximum likelihood coincide and are optimal if and only if the latter is exchangeable, which
occurs if and only if the optimal strategy can be calculated without knowing the time horizon
in advance. We show that for one-dimensional exponential families SNML is exchangeable
only for three classes of natural exponential family distributions, namely the Gaussian, the
gamma, and the Tweedie exponential family of order 3/2, and any one–to–one transformation
of them.

In Chapter 5, we study Bayesian strategies with horizon–dependent priors. We showed
in Chapters 2 and 3 that if a Bayesian prediction strategy is optimal then it necessarily
uses Jeffreys prior. As a result, if Jeffreys prior is not optimal then nor is any other prior,
except for possibly a horizon–dependent prior. We investigate the behavior of a natural
horizon–dependent prior called the NML prior. We show that the NML prior converges
in distribution to Jeffreys prior, which makes it asymptotically optimal, but not necessarily
optimal for an arbitrary horizon. Furthermore, we show that there are exactly three families,
namely Gaussian, gamma and inverse Gaussian, where the NML prior is equal to Jeffreys
prior and hence horizon–independent. In two of these families namely gamma and Gaussian
the NML prior makes the corresponding Bayesian strategies optimal. Finally we show that
in terms of the maximum regret in Bayesian strategies, Jeffreys prior is not always better
than the NML prior, and that the NML prior is not always better than Jeffreys prior.

Finally, Chapter 6 talks about the problem of finding an optimal horizon–dependent
prior for online binary prediction with Bernoulli experts. Even though we could not solve
this problem, we shared insights gained from our investigation.
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Chapter 2

Exchangeability Characterizes
Optimality of Sequential Normalized
Maximum Likelihood and Bayesian
Prediction with Jeffreys Prior

In this chapter we investigate when the sequential normalized maximum likelihood strat-
egy is optimal. We show that SNML is optimal if and only if the joint distribution on
sequences defined by SNML is exchangeable. This property also characterizes the optimality
of a Bayesian prediction strategy for an exponential family. The optimal prior distribution
is Jeffreys prior. Note that the results of this chapter are from the paper [11].

2.1 Introduction

As we saw in Theorem 1.3.1, the optimal strategy for sequential probability assignment is
the NML strategy (see Definition 6). NML suffers from two major drawbacks: the horizon
n of the problem needs to be known in advance, and the strategy can be computationally
expensive since it involves marginalizing over subsequences. In this chapter, we consider the
optimality of two approaches that address these difficulties: Bayesian strategies, and sequen-
tial normalized maximum likelihood strategy (SNML) (see Definition 7 and 9). We consider
the questions: for what classes is SNML optimal; for what classes does there exist a prior for
which the Bayesian strategy is optimal; and, in those cases, what is the optimal prior? For
certain parametric classes of experts, Bayesian prediction with a particular choice of prior
namely the Jeffreys prior (Definition 10) has been shown to be asymptotically optimal [see
9, chaps. 7,8]. SNML is within a constant of the minimax regret [14]. We give characteri-
zations of the optimality of these strategies in terms of an elementary property of the joint
distribution defined by the SNML strategy. We show that SNML is optimal precisely when
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its joint distribution is exchangeable (see Definition 8). In the case of natural exponential
family distributions on Rd (Definition 2), we show that the optimal strategy is a Bayesian
strategy iff SNML is exchangeable and in this case the optimal prior is Jeffreys prior.

2.2 Main Results

First, we show in Theorem 2.2.2 that SNML and NML are equivalent if and only if psnml is
exchangeable. This happens only if NML is horizon-independent. Then, we show in Theo-
rem 2.2.4 that exchangeability of psnml further implies the equivalence of NML, the Bayesian
strategy with Jeffreys prior, and SNML. This theorem shows that the SNML strategy and
the Bayesian strategy with Jeffreys prior are optimal in this case.

Note that Theorems 2.2.2 and 2.2.4 are based on the assumption that if NML is not
sup-integrable then there exists an initial xm−1, so that all of the relevant conditional distri-
butions, i.e. conditional NML, conditional SNML and conditional Bayesian strategy under
Jeffreys prior, are defined. From now on, each time we mention NML, SNML, or Bayesian
strategies we mean NML, SNML, or Bayesian strategies conditioned on a suitable sequence
of length m− 1.

When we consider the conditional distribution p(xnm | xm−1) defined by a conditional
strategy, we are interested in exchangeability of the conditional stochastic process, that is,
invariance under any permutation that leaves xm−1 unchanged. Now we are ready to state
and prove the main results of this chapter. The first result applies to any class (countable
or uncountable) for which the conditional strategies SNML and NML are defined.

Lemma 2.2.1. The conditional regret under SNML is equal to

RΘ
snml(x

n | xm−1) = log

∫
supθ pθ(x

n−1, x) dx

psnml(xn−1
m | xm−1)

.

Proof. Write the conditional regret under SNML in the following way.

RΘ
snml(x

n | xm−1)

≡ RΘ(xnm, psnml | xm−1)

= log sup
θ∈Θ

pθ(x
n) − log psnml(x

n
m | xm−1)

= log
pθ̂(x

n)

psnml(xnm | xm−1)
,

where θ̂ is the maximum likelihood estimator of xn. One the other hand

psnml(x
n
m | xm−1)

= psnml(xn | xn−1)psnml(x
n−1
m | xm−1)

=
pθ̂(x

n)∫
supθ pθ(x

n−1, x) dx
psnml(x

n−1
m | xm−1).
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Combining the two previous equations, we get:

RΘ
snml(x

n | xm−1) = log

∫
supθ pθ(x

n−1, x) dx

psnml(xn−1
m | xm−1)

. (2.1)

Theorem 2.2.2. Fix m > 0 and xm−1, and assume that p
(n)
nml(x

n
m|xm−1), and psnml(x

n
m|xm−1)

are well defined. SNML is equivalent to NML and hence is minimax optimal if and only if
psnml is exchangeable.

Proof. By Lemma 2.2.1 RΘ
snml(x

n | xm−1) = log
∫

supθ pθ(xn−1,x) dx

psnml(x
n−1
m |xm−1)

, which means that the regret

is independent of the last observation.
Now, we show that if psnml is exchangeable, then the regret becomes independent of other

observations, which implies that it is an equalizer and hence (by Theorem 1.3.1) equivalent
to NML. Let yn = xm−1znm be a sequence of observations where znm is different from xnm. We
show that the regret of yn is equal to that of xn. Under any permutation of xnm, sup θ∈Θ pθ (xn)
does not change due to the fact that pθ(x

n) =
∏n

i=1 pθ(xi). On the other hand psnml(· | xm−1)
is exchangeable meaning that psnml (x

n
m | xm−1) is permutation invariant. Consequently, for

any permutation σ of xn that leaves xm−1 fixed, RΘ
snml(x

n | xm−1) = RΘ
snml(σ(xn) | xm−1).

These two properties give us the following.

RΘ
snml(x

m−1, xnm | xm−1)

= RΘ
snml(x

m−1, xm, . . . , xn−1, ym | xm−1)

= RΘ
snml(x

m−1, ym, xm+1, . . . , xn−1, xm | xm−1)

= RΘ
snml(x

m−1, ym, xm+1, . . . , xn−1, ym+1 | xm−1)

= RΘ
snml(x

m−1, ym, ym+1, xm+2, . . . , xn−1, xm+1 | xm−1).

Continuing inserting ym+i at the last position and swapping it with xm+i we see that
RΘ
snml(x

n | xm−1) = RΘ
snml(y

n | ym−1). This means that SNML is an equalizer and hence
it is equivalent to conditional normalized maximum likelihood.

Now, we prove the other direction. If SNML is equivalent to NML, meaning that for any
n ≥ m and any xnm,

psnml(x
n
m | xm−1) = p

(n)
nml(x

n
m | xm−1) =

p
(n)
nml(x

n)

p
(n)
nml(x

m−1)
,

then SNML is exchangeable. This is because

p
(n)
nml(x

n) ∝ sup
θ

n∏
i=1

pθ(xi),
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and as the denominator is unchanged, the probability becomes permutation invariant and
hence exchangeable. That is for any n and xnm the conditional probability psnml(x

n
m | xm−1)

is invariant over permutations of xnm.

The next theorem shows that some Bayesian strategy is optimal for a natural expo-
nential family iff SNML is exchangeable. In that case, the optimal prior is Jeffreys prior.
For the proof of this theorem we need a different notion of exchangeability that we call
sum − exchangeability and was introduced originally in [7]. De Finetti’s theorem says that
a binary stochastic process p is exchangeable if and only if it is a mixture of Bernoulli
distributions, i.e. there exists a prior π such that for any n > 0 and any x ∈ {0, 1}n,

p(xn) =

∫
θ∈[0,1]

θ(
∑n
i=1 xi)(1− θ)(n−

∑n
i=1 xi)π(θ) dθ

and the prior π in this equation is unique. Diaconis and Freedman extended this to ex-
ponential families [7], as in Lemma 2.2.3. We need two definitions for this lemma. Here
x1, x2, x3, . . . is a sample path of a stochastic process p.

Definition 11 (sum-compatible). Let h be a non-negative, finite, and locally integrable Borel
function on Rd. We call a general stochastic process p on Rd, sum-compatible with respect
to h if ∀n > 0

p

(
0 < h(n)

(
n∑
i=1

xi

)
<∞

)
= 1, (2.2)

where h(n) is the nth convolution of h, i.e.

h(n)(s) =

∫ (n−1∏
i=1

h(xi)

)
h

(
s−

n−1∑
i=1

xi

)
d x1 · · · d xn−1 (2.3)

Definition 12 (sum-exchangeable). Let h be a non-negative, finite, and locally integrable
Borel function on Rd. We call a general stochastic process p on Rd, sum-exchangeable with
respect to h if ∀n > 0 ,∀ s ∈ Rd

p

(
x1, . . . , xn

∣∣∣∣∣
n∑
i=1

xi = s

)
=

∏n
i=1 h(xi)

h(n)(s)
, (2.4)

where h(n) is the nth convolution of h.

Lemma 2.2.3 ([7]). Consider a natural exponential family pθ(x) = h(x)ex
ᵀθ -A(θ) over Θ =

{θ ∈ Rd | A(θ) < ∞} where the reference measure h is a non-negative, finite, and locally
integrable Borel function on Rd. A stochastic process p is a mixture of distributions from
this family, i.e. there exists a probability density π with respect to the Lebesgue measure on
Θ such that for any xn, p(xn) =

∫
Θ
π (θ) pθ (xn) dθ, if and only if p is sum-compatible and

sum-exchangeable with respect to the reference measure h.
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Theorem 2.2.4. Suppose the class of parametric constant experts is a natural exponential
family with the reference measure h as defined in Lemma 2.2.3. Also fix m > 0 and xm−1,
and assume that p

(n)
nml(x

n
m|xm−1), pπ(xnm|xm−1) and psnml(x

n
m|xm−1) are well defined, where π

is the Jeffreys prior. Then the following are equivalent.

(a) SNML is exchangeable

(b) SNML = NML:
For all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = psnml(x

n
m|xm−1).

(c) SNML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

psnml(x
n
m|xm−1) = pπ(xnm|xm−1).

(d) SNML = Bayesian with Jeffreys prior :
For all n and all xnm,

p
(n)
snml(x

n
m|xm−1) = pπJ (xnm|xm−1).

(e) NML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

pnml(x
n
m|xm−1) = pπ(xnm|xm−1).

(f) NML = Bayesian with Jeffreys prior:
For all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπJ (xnm|xm−1).

Proof. We prove the equivalence by showing that (a) ⇐⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (b)
and finally (b) ⇐⇒ (f).
(a) ⇐⇒ (b) : We showed this in Theorem 2.2.2.

(b) ⇒ (c) : psnml(x
n
m | xm−1) = p

(n)
nml(x

n
m | xm−1)

For ease of notation we let q(xnm) ≡ psnml(x
n
m | xm−1) = p

(n)
nml(x

n
m | xm−1). Let

∑m−1
i=1 xi = t,

and let
∑n

i=m xi = s. The maximum likelihood estimator is then θ̂ = (OA)−1 ( s+t
n

)
. Writing

x̄n = s−
∑n−1

i=m x̄i and x̄1 = x1, . . . , x̄m−1 = xm−1, we have

p
(n)
nml

(
n∑
i=1

xi = s

∣∣∣∣∣xm−1

)

=

∫ ∏n
i=1 h(x̄i)e

(s+t)ᵀθ̂-nA(θ̂)dx̄m · · · dx̄n−1

p
(n)
nml(x

m−1)

=

(∏m−1
i=1 h(xi)× e(s+t)ᵀθ̂-nA(θ̂)

)
× h(n−m+1)(s)

p
(n)
nml(x

m−1)
.



CHAPTER 2. OPTIMALITY AND SNML-EXCHANGEABILITY 14

This is exactly the density of Yn ≡ Xm + . . . + Xn|Xm−1 = xm−1 where Xi are random
variables generated by NML of horizon n. By Lemma 3.1a in [7] this density function should

be finite and positive with probability one under p
(n)
nml. Since e(s+t)ᵀθ̂-nA(θ̂) and p

(n)
nml(x

m−1) and∏m−1
i=1 h(xi) are finite, so is h(n−m+1)(s). Clearly h(n−m+1)(s) > 0 almost surely under p

(n)
nml.

Hence the conditional NML which is equivalent to the conditional SNML is sum-compatible
with respect to h. Furthermore, with the same notation, we have

q

(
xnm

∣∣∣∣∣
n∑

i=m

xi = s

)

=
q(xnm)∫

q(x̄nm) dx̄m · · · dx̄n−1

=
p

(n)
nml(x

n
m | xm−1)∫

p
(n)
nml(x̄

n
m | xm−1)d x̄m · · · d x̄n−1

=
p

(n)
nml(x

n)/p
(n)
nml(x

m−1)∫
p

(n)
nml(x

m−1, x̄nm)d x̄m · · · d x̄n−1/p
(n)
nml(x

m−1)

=

∏n
i=m h(xi)e

(s+t)ᵀθ̂-nA(θ̂)∫ ∏n
i=m h(x̄i)e(s+t)ᵀθ̂-nA(θ̂)dx̄m · · · dx̄n−1

=

∏n
i=m h(xi)

h(n−m+1)(s)
.

Therefore, the conditional psnml( · | xm−1) is sum-exchangeable with respect to h as well.
Since psnml( · | xm−1) is sum-compatible and sum-exchangeable with respect to h, Lemma
2.2.3 tells us that psnml( . |xm−1) is a mixture of h(x)ex

ᵀθ−A(θ), i.e. there exists a probability
density π with respect to Lebesgue measure on Θ such that:

psnml(x
n
m | xm−1) =

∫
pθ(x

n
m)π(θ) dθ. (2.5)

Now we let

π1(θ) = K × π(θ)

pθ(xm−1)
(2.6)

for a K > 0 chosen so that π1 is a density. Substituting this into Equation (2.5) we get:

psnml(x
n
m | xm−1) =

∫
Θ
pθ(x

n)π1(θ) dθ∫
Θ
pθ(xm−1)π1(θ) dθ

. (2.7)

(c) ⇒ (d) : Now, we consider the regret of psnml(x
n−1
m | xm−1). As psnml(x

n−1
m | xm−1) is a

Bayesian probability density (Equation (2.5)) the results on regrets of Bayesian strategies
can be applied here. If the maximum likelihood estimator θ̂ lies in a fixed, bounded, closed
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subset of Θ which is bounded away from the boundary of Θ, then the regret of a Bayesian
strategy with prior w is [see 11, chaps. 8]:

d

2
log

n

2π
− logw(θ̂) + log

√
detI(θ̂) + o(1),

where I is the Fisher Information (see Definition 10). We apply this theorem to zn−m+1 ≡ xnm
and π. Note that θ̂xnm is the maximum likelihood estimator of xnm. The reason we can apply
Grünwald’s theorem here is twofold. First, the maximum likelihood estimator always exists
because the family is full rank and A invertible. Second, the parameter space Θ is open and
for any maximum likelihood estimator there should exist a bounded subset that contains the
maximum likelihood estimator and is bounded away from the boundary of the parameter
space. Let’s denote the regret of a Bayesian strategy with prior π on a sequence zp by RΘ

π (zp)
and the regret of SNML on zp by RΘ

snml(z
p). Then

RΘ
π (xnm) = RΘ

(
psnml

(
· | xm−1

)
, xnm

)
=
d

2
log

n1

2π
− log π(θ̂xnm) + log

√
detI(θ̂xnm) + o(1),

where n1 = n−m+ 1. However, here we are calculating the conditional regret. It is easy to
verify the following relationship:

RΘ
(
psnml

(
· | xm−1

)
, xnm

)
= RΘ

snml

(
xnm | xm−1

)
− log sup

θ
pθ(x

n) + log sup
θ
pθ(x

n
m).

Hence for conditional SNML we get the following:

RΘ
snml(x

n
m | xm−1) = RΘ

π (xnm) + log sup
θ
pθ(x

n)− log sup
θ
pθ(x

n
m)

=
d

2
log

n1

2π
− log π(θ̂xnm) + log

√
detI(θ̂xnm) + o(1) + log

pθ̂xn (xn)

pθ̂xnm
(xnm)

. (2.8)

If conditional SNML is Bayesian then it is exchangeable and by (a) ⇒ (b) , conditional
SNML is also equivalent to conditional NML and hence has equal regret for all xnm. Con-
sequently the conditional regret in (2.8) should not vary for fixed n and different xnm. We
denote the value of this regret as cn1(xm−1), emphasizing the fact that it depends on n1 and
xm−1 only. Simplifying (2.8) we get

π(θ̂xnm) =
(n1

2π

)d/2
×
√

detI(θ̂xnm)× eo(1)

cn1(xm−1)
×

pθ̂xn (xn)

pθ̂xnm
(xnm)

. (2.9)

Fix θ0 = θ̂xnm . We let N = kn1 (k is a positive integer). There exists a sequence yN

whose maximum likelihood estimator is θ0. This sequence is nothing but k copies of xnm,
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concatenated. The family is of full rank, therefore A is strictly convex and its gradient
invertible. This means θ̂Y N , the maximum likelihood of Y N , is

θ̂Y N = (OA)−1

(∑N
i=1 yi
N

)
= (OA)−1

(
k ×

∑n−1
i=m xi

n1k

)
= (OA)−1

(∑n
i=m xi
n1

)
= θ̂xnm = θ0.

As N grows to infinity then θ̂(xmY N ) → θ̂Y N = θ0. This means that
pθ̂xn

(xn)

pθ̂xnm
(xnm)

in Equation (2.9)

converges to pθ0(xm−1) as N →∞. Using this and Equation (2.9) limN→∞ π(θ̂Y N ) converges
to:

π(θ0)
√

detI(θ0)pθ0(xm−1)

(
lim
N→∞

(
N

2π

)d/2
1

cN(xm−1)

)
.

Since cN(xm−1) does not depend on θ0, π(θ0) = c(xm−1)pθ0(xm−1)
√

detI(θ0), for some

function c. Hence π(θ) ∝ pθ(x
m−1)

√
detI(θ), which in turn by Equation (2.6) means

π1(θ) ∝
√

detI(θ).
(d) ⇒ (e) : This is because, SNML being Bayesian implies exchangeability of SNML and
hence SNML is equal to NML (by (a)⇒ (b) ) which makes NML Bayesian too.
(e) ⇒ (b) : NML being Bayesian means that there exists a prior π, such that for any n > m
and xnm we have

p
(n)
nml(x

n
m | xm−1) =

∫
pθ(x

n)π(θ)dθ∫
pθ(xm−1)π(θ)dθ

.

For n ≥ m, let A(n) be:

A(n) =

∫
sup
θ
pθ(x

m−1, zn−m+1) dzn−m+1.

With this new definition we get :

p
(n−1)
nml (xn−1

m | xm−1) =
supθ pθ(x

n−1)

A(n− 1)
.

We can also get p
(n−1)
nml by marginalizing p

(n)
nml (remember NML is horizon–independent because

it is Bayesian). Then for n > m:

p
(n−1)
nml (xn−1

m | xm−1) =

∫
x

p
(n)
nml(x

n−1
m , x | xm−1)dx =

∫
x

sup
θ

pθ(x
n−1, x)

A(n)
dx.

Therefore for n > m,
supθ pθ(x

n−1)

A(n− 1)
=

∫
x

sup
θ

pθ(x
n−1, x)

A(n)
dx.
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Hence ∫
x

sup
θ
pθ(x

n−1, x) dx =
A(n)

A(n− 1)
sup
θ
pθ(x

n−1). (2.10)

This is also true for n = m if we define

A(m− 1) = sup
θ
pθ(x

m−1).

We know from Lemma 2.2.1 that the conditional regret of xn under SNML is

RΘ
snml(x

n | xm−1) = log

( ∫
supθ pθ(x

n−1, x) dx

psnml(xn−1
m | xm−1)

)
.

Using Equation (2.10) we get

RΘ
snml(x

n | xm−1) = log

[
A(n)

A(n− 1)
× supθ pθ(x

n−1)

psnml(xn−1
m |xm−1)

]
= RΘ

snml(x
n−1|xm−1) + log

A(n)

A(n− 1)
.

Continuing this we get

RΘ
snml(x

n|xm−1) = RΘ
snml(x

m−1|xm−1) +
n∑

i=m

log
A(i)

A(i− 1)

= log sup
θ
pθ(x

m−1) + log
A(n)

A(m− 1)

= logA(n).

This shows that the conditional regret is fixed for a fixed xm−1 and hence the conditional
SNML is an equalizer and equivalent to conditional NML (Theorem 1.3.1).
(e) ⇒ (f) : If NML is Bayesian then it is equal to SNML and therefore SNML is Bayesian
with Jeffreys prior and hence so is NML. This is by (e)⇒ (b)⇒ (c)⇒ (d).
(f) ⇒ (e) : This is trivial because Bayesian with Jeffreys prior is a special case of being
Bayesian.

2.3 Examples

Example 2.3.1 (Bernoulli Distribution). In this setting, the experts are Bernoulli distribu-

tions, pµ(xn) = µ(
∑n
i=1 xi)(1 − µ)(n−

∑n
i=1 xi) with parameter space (0, 1). Converting this to

the natural form we get pθ = exp
(∑n

i=1 xiθ − log
(
eθ + 1

))
with Θ = R, where we use the
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transformation θ = ln µ
1−µ . Consider x5 = (10011) and y5 = (10110), x5 is a permutation of

y5. However psnml(x
5) = 0.00930 6= psnml(y

5) = 0.00932 which in turn means that psnml( . )
is not exchangeable. Therefore, SNML and NML cannot be equivalent and neither is equiv-
alent to a Bayesian strategy. It turns out that the regret of SNML in this case is better than
Bayesian with Jeffreys prior but worse than NML [1].

Example 2.3.2 (Exponential Distribution). The distributions are of the form pθ(x) = 1
θ
e−x/θ

with Θ = (0,∞). It is easy to check that for n = 1, psnml(x) ∝ 1
x
e−x/x ∝ 1

x
which is not

integrable. Jeffreys prior is proportional to 1/θ which is not integrable either. However for
any x1, subsequent conditionals for Bayesian with Jeffreys prior and SNML will be prop-
erly defined. For n > 1 the maximum likelihood estimator for θ is 1∑n

i=1
xi

n

and therefore

psnml(xn | xn−1) is proportional to

sup
θ
pθ(x

n) =

(
1∑n
i=1 xi
n

)n

exp

(
−
∑n

i=1 xi∑n
i=1 xi
n

)
∝ 1

(
∑n

i=1 xi)
n
.

Normalizing this we get

psnml(xn | xn−1) =

(
1∑n
i=1 xi

)n
∫∞

0

(
1∑n
i=1 xi

)n
d xn

=
(n− 1)

(∑n−1
i=1 xi

)n−1

(
∑n

i=1 xi)
n .

The conditional SNML becomes:

psnml(x
n
2 | x1) =

(2− 1)
(∑2−1

i=1 xi
)2−1(∑2

i=1 xi
)2 ×

(3− 1)
(∑3−1

i=1 xi
)3−1(∑3

i=1 xi
)3 · · · ×

(n− 1)
(∑n−1

i=1 xi
)n−1

(
∑n

i=1 xi)
n

=
(n− 1)!x1

(
∑n

i=1 xi)
n .

As psnml(x
n
2 | x1) depends on

∑n
i=1 xi only, we get exchangeability, which in turn implies that

SNML and NML are equivalent. On the other hand, the exponential distribution can be con-
verted to an instance of a natural exponential family distribution by the change of variable
λ = −1

θ
. Hence Theorem 2.2.4 implies that SNML and NML are also equivalent to the

Bayesian strategy with Jeffreys prior, conditioned on the first observation. It is straightfor-
ward to verify this.
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Chapter 3

Optimality of SNML and Bayesian
Strategy under Jeffreys Prior in
Parametric Families with
Asymptotically Normal Maximum
Likelihood Estimators

In this chapter we study online learning under logarithmic loss with regular parametric
models. We show that a Bayesian strategy predicts optimally only if it uses Jeffreys prior.
We showed this result for natural exponential families in the previous chapter; we extend
that to parametric models for which the maximum likelihood estimator is asymptotically
normal. The optimal prediction strategy, normalized maximum likelihood, depends on the
number n of rounds of the game, in general. However, when a Bayesian strategy is optimal,
normalized maximum likelihood becomes independent of n. Our proof uses this to exploit the
asymptotics of normalized maximum likelihood. The asymptotic normality of the maximum
likelihood estimator is responsible for the necessity of Jeffreys prior. Note that the results
of this chapter are from the paper [10].

3.1 Introduction

The optimal strategy for sequentially assigning probability to outcomes is known to be nor-
malized maximum likelihood (see Theorem 1.3.1). NML suffers from two major drawbacks:
the horizon n of the problem needs to be known in advance, and the strategy can be com-
putationally expensive since it involves marginalizing over subsequences. In this chapter, we
investigate the optimality of two alternative strategies, namely the Bayesian strategy and
the sequential normalized maximum likelihood strategy (see Definitions 7 and 9). We show
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that for a very general class of parametric models (Definition 1), optimality of a Bayesian
strategy means that the strategy uses Jeffreys prior. Furthermore we show that optimality
of the Bayesian strategy is equivalent to optimality of sequential normalized maximum like-
lihood. The major regularity condition for these parametric families is that the maximum
likelihood estimator is asymptotically normal. This classical condition holds for a broad
class of parametric models.

3.2 Definitions and Notation

The asymptotic normality of the maximum likelihood estimator is the major regularity
condition of the parametric models that is required for our main result to hold.

Definition 13 (Asymptotic Normality of MLE). Consider a parametric constant model
(Θ, (X ,Σ), λ, pθ) with Θ ⊆ Rd. We say that the parametric model has an asymptotically
normal MLE if, for all θ0 ∈ Θ,

√
n
(
θ̂(xn) − θ0

)
d→ N

(
0, I-1 (θ0)

)
,

where I(θ) is the Fisher information at θ, xn is a sample path of pθ0, and θ̂(xn) is the maximum

likelihood estimator of θ given xn, that is, θ̂(xn) maximizes pθ(x
n).

Asymptotic normality holds for regular parametric models; for typical regularity condi-
tions, see for example, Theorem 3.3 in [16].

For parametric models whose maximum likelihood estimators take values in a countable
set, we need the notion of a lattice MLE.

Definition 14 (Lattice MLE). Consider a parametric model (Θ, (X ,Σ), λ, pθ) with Θ ⊆ Rd.
The parametric model is said to have a lattice MLE with diminishing step-size hn, if for any
θ, the possible maximum likelihood estimators of n i.i.d random variables generated by pθ
are points in Θ that are of the form (b + k1hn, b + k2hn, · · · , b + kdhn), for some integers
k1, k2, · · · , kd and some real numbers b and hn. Additionally hn is positive and diminishes to
zero as n goes to infinity.

3.3 Main Result

We show that in parametric models with an asymptotically normal MLE, the optimality of
a Bayesian strategy implies that the strategy uses Jeffreys prior. Furthermore, we show that
the optimality of a Bayesian strategy is equivalent to the optimality of sequential normalized
maximum likelihood. This extends the result for natural exponential family distributions
from the previous chapter to regular parametric models. Note that NML is the unique
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optimal strategy (Theorem 1.3.1), so when we say that some other strategy is equivalent to
NML, that is the same as saying that strategy predicts optimally.

The results shown in this part are based on the assumption that if NML is not sup-
integrable then there exists an initial sequence xm−1 such that conditional NML, conditional
SNML and conditional Bayesian strategy under Jeffreys prior are all well-defined. From now
on, each time we mention NML, SNML, or Bayesian strategies we mean NML, SNML, or
Bayesian strategies conditioned on a suitable initial sequence of length m− 1.

Theorem 3.3.1. Suppose we have a parametric model (Θ, (X ,Σ), λ, pθ) with an asymptot-
ically normal MLE. Assume that the MLE has a density with respect to Lebesgue measure
or that the model has a lattice MLE with diminishing step-size hn. Also assume that I(θ),
the Fisher information at θ is continuous in θ, and that, for all x, pθ(x) is continuous in θ.

Also fix m > 0 and xm−1, and assume that p
(n)
nml(x

n
m|xm−1), pπ(xnm|xm−1) and psnml(x

n
m|xm−1)

are well defined, where π is the Jeffreys prior. Then the following are equivalent.

(a) NML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπ(xnm|xm−1).

(b) NML = SNML:
For all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = psnml(x

n
m|xm−1).

(c) NML = Bayesian with Jeffreys prior:
For all n and all xnm,

p
(n)
nml(x

n
m|xm−1) = pπJ (xnm|xm−1).

(d) psnml( · |xm−1) is exchangeable.

(e) SNML = Bayesian:
There is a prior π on Θ such that for all n and all xnm,

psnml(x
n
m|xm−1) = pπ(xnm|xm−1).

(f) SNML = Bayesian with Jeffreys prior:
For all n and all xnm,

psnml(x
n
m|xm−1) = pπJ (xnm|xm−1).

Proof. We prove that (a), (b), and (c) are equivalent, and that (d), (e), and (f) are equivalent.
The equivalence of (b) and (d) is Theorem 2.2.2.
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(a) ⇒ (b): NML being equivalent to a Bayesian strategy means that NML is horizon-
independent. Hence for any m− 1 < t ≤ n,

p
(n)
nml(xt|x

t−1) = pπ(xt|xt−1) = p
(t)
nml(xt|x

t−1) = psnml(xt|xt−1),

which means that NML is equivalent to SNML.
(b) ⇒ (c): We use the asymptotic normality property to prove this below.
(c) ⇒ (a): This is immediate.
(d) ⇒ (e): We know that (d) and (b) are equivalent by Theorem 2.2.2, and that (b) implies
(a), but (b) and (a) together imply (e).
(e) ⇒ (d): Since SNML is Bayesian, psnml(x

n) =
∫ ∏n

i=1 pθ (xi) d π(θ) for some prior dis-
tribution π on Θ. As

∏n
i=1 pθ (xi) does not depend on the order of observations, SNML is

exchangeable.
(e) ⇒ (f): (e) implies (d), which implies both (b) and (c), and together these imply (f).
(f) ⇒ (e): This is immediate.
The heart of the proof is verifying that
(b) ⇒ (c): NML being equivalent to SNML means that, for all m− 1 ≤ t ≤ n,

psnml(x
t | xm−1) = p

(n)
nml(x

t | xm−1) (3.1)

=

∫
supθ pθ(x

t, yn−t)d λn−t(yn−t)∫
supθ pθ(x

m−1, yn−m+1)d λn−m+1 (yn−m+1)

=

∫
pθ̂(xt,yn−t)

(xt, yn−t)d λn−t (yn−t)∫
pθ̂(xm−1,yn−m+1)

(xm−1, yn−m+1)d λn−m+1 (yn−m+1)
,

where θ̂(xt,yn−t) is the maximum likelihood estimator upon observing xt, yn−t. As n goes to

infinity, θ̂(xt,yn−t) converges to θ̂yn−t . This is because as n goes to infinity, 1
n

[∑t
i=1 log pθ(xi)

]
in the following equation goes to zero :

θ̂(xt,yn−t) = arg max
θ∈Θ

1

n

[
t∑
i=1

log pθ(xi) +
n−t∑
j=1

log pθ(yj)

]
.

Now we rewrite Equation (3.1) in a different form. Let Cθ0
∆θ be a hypercube centered at θ0

with all sides having length h, where ∆θ = hd, is the volume of the hypercube. Define

Snxt(θ0) =
{
zn−t

∣∣∣θ̂(xt,zn−t) ∈ Cθ0
∆θ/
√
nd

}
,

where Cθ0
∆θ/
√
nd

is a hypercube that has volume ∆θ/
√
nd with all sides having length equal

to h/
√
n. Let PΘ

∆θ/
√
nd

be the largest collection of disjoint hypercubes Cθ0
∆θ/
√
nd

that fit in Θ.
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Note that as ∆θ goes to zero PΘ
∆θ/
√
nd

covers the whole Θ. Define

gn(xt, xm−1,∆θ) =

∑
C
θ0

∆θ/
√
nd

∫
Sn
xt

(θ0)
pθ0(xt)pθ0(yn−t)d λn−t (yn−t)∑

C
θ0

∆θ/
√
nd

∫
Sn
xm−1 (θ0)

pθ0(xm−1)pθ0(yn−m+1)d λn−m+1 (yn−m+1)
.

First of all we show that

lim
n→∞

lim
∆θ→0

| gn(xt, xm−1,∆θ)− p(n)
nml(x

t | xm−1) | = 0.

Since for all n, we have psnml(x
t | xm−1) = p

(n)
nml(x

t | xm−1) this implies that gn(xt, xm−1,∆θ)
converges to psnml(x

t | xm−1). Then we show that the limit of gn(xt, xm−1,∆θ) as n goes to
infinity and ∆θ goes to zero is a Bayesian conditional under Jeffreys prior. Now, it is easy
to see the following:

p
(n)
nml(x

t | xm−1)

=

∑
C
θ0

∆θ/
√
nd

∫
Sn
xt

(θ0)
pθ̂(xt,yn−t)

(xt)pθ̂(xt,yn−t)
(yn−t)d λn−t (yn−t)∑

C
θ0

∆θ/
√
nd

∫
Sn
xm−1 (θ0)

pθ̂(xm−1,yn−m+1)
(xm−1)pθ̂(xm−1,yn−m+1)

(yn−m+1)d λn−m+1 (yn−m+1)
.

The only difference between this and gn(xt, xm−1,∆θ) is that instead of θ0 we have the param-
eter θ̂(xm−1,yn−m+1) for each hypercube. The distance between two points in each hypercube

is at most h
√
d/n, hence ∣∣∣θ0 − θ̂(xt,yn−t)

∣∣∣ ≤ h

√
d

n
.

As ∆θ and consequently h go to zero, θ0 converges to θ̂(xt,yn−t) for the expressions in the

numerator and to θ̂(xm−1,yn−m+1) for those in the denominator. Due to the continuity of the
likelihood for each hypercube in the numerator, we have

lim
∆θ→0

pθ0
(
xt, yn−t

)
= pθ̂(xt,yn−t)

(
xt, yn−t

)
.

Similarly, for each hypercube in the denominator we have

lim
∆θ→0

pθ0
(
xm−1, yn−m+1

)
= pθ̂(xm−1,yn−m+1)

(
xm−1, yn−m+1

)
.

Hence gn(xt, xm−1,∆θ) converges to p
(n)
nml(x

t | xm−1). Furthermore as n goes to infinity the
NML probability does not change, because it is equivalent to SNML and thus is horizon-
independent. This means limn→∞ lim∆θ→0 g

n(xt, xm−1,∆θ) = psnml(x
t | xm−1).
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Next we show that the limit of gn(xt, xm−1,∆θ) as n goes to infinity and ∆θ goes to zero
is a Bayesian conditional under Jeffreys prior, which completes the proof. The following is
easy to see:

pθ0

(
θ̂(xt,Y n−t) ∈ Cθ0

∆θ/
√
nd

)
=

∫
Sn
xt

(θ0)

pθ0(yn−t)d λn−t
(
yn−t

)
.

Moreover, we have

pθ0

(
θ̂(xt,Y n−t) ∈ Cθ0

∆θ/
√
nd

)
= pθ0

(
θ̂(xt,Y n−t) − θ0 ∈ C0

∆θ/
√
nd

)
(3.2)

= pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈

√
nC0

∆θ/
√
nd

)
(3.3)

= pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈ C0

∆θ

)
. (3.4)

Hence ∫
Sn
xt

(θ0)

pθ0(yn−t)d λn−t
(
yn−t

)
= pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈ C0

∆θ

)
.

Also,

gn(xt, xm−1,∆θ) =

∑
C
θ0

∆θ/
√
nd

pθ0(xt)pθ0

(√
n(θ̂(xt,Y n−t) − θ0) ∈ C0

∆θ

)
∑

C
θ0

∆θ/
√
nd

pθ0(xm−1)pθ0

(√
n(θ̂(xm−1,Y n−m+1) − θ0) ∈ C0

∆θ

) .
Let F n

xt,θ0
(.) be the cumulative distribution function of the random variable

√
n(θ̂(xt,Y n−t) − θ0)

when the data is i.i.d. and generated by pθ0(·). Define F n
xm−1,θ0

(·) similarly. With these
definitions,

gn(xt, xm−1,∆θ) =

∑
C
θ0

∆θ/
√
nd

pθ0(xt)F n
xt,θ0

(C0
∆θ)∑

C
θ0

∆θ/
√
nd

pθ0(xm−1)F n
xm−1,θ0

(C0
∆θ)

.

Now we find the limit as ∆θ goes to zero. There are two possibilities: either the MLE has a
density with respect to Lebesgue measure or the model has a lattice MLE with diminishing
step-size hn. In the latter case, upon constructing PΘ

∆θ/
√
nd

, we choose the hypercubes so that

all points of the form (b+ k1hn, b+ k2hn, · · · , b+ kdhn) in Θ are centers of some hypercubes.
Furthermore we make sure that each of these hypercubes contains at most one point of the
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form (b + k1hn, b + k2hn, · · · , b + kdhn), namely the center. Let ∆θn be small enough to
make this phenomenon hold. This construction makes many hypercubes Cθ0

∆θn/
√
nd

void of

maximum likelihood points. Let us abbreviate pθ0

(
θ̂(xt,Y n−t) ∈ Cθ0

∆θ/
√
nd

)
in Equation (3.2)

by Gn
xt,θ0

(
Cθ0

∆θ/
√
nd

)
. Equation (3.2) shows that Gn

xt,θ0

(
Cθ0

∆θ/
√
nd

)
= F n

xt,θ0

(
C0

∆θn

)
. Many of

Gn
xt,θ0

(
Cθ0

∆θ/
√
nd

)
are zero, namely those with θ0 that do not correspond to a θ̂(xt,yn−t), hence:∑
C
θ0
∆θn√
nd

pθ0(xt)F n
xt,θ0

(
C0

∆θn

)
=
∑
C
θ0
∆θn√
nd

pθ0(xt)Gn
xt,θ0

(
Cθ0

∆θ/
√
nd

)

=
∑

θ0∈Θ̂n
xt

pθ0(xt)Gn
xt,θ0

(
Cθ0

∆θ/
√
nd

)
,

where Θ̂n
xt =

{
θ ∈ Θ | ∃ yn−t s.t. θ̂(xt,yn−t) = θ

}
. Furthermore we have the following.

gn(xt, xm−1,∆θn) =

∑
θ0∈Θ̂n

xt
pθ0(xt)Gn

xt,θ0

(
Cθ0

∆θ/
√
nd

)
∑

θ0∈Θ̂n
xm−1

pθ0(xm−1)Gn
xm−1,θ0

(
Cθ0

∆θ/
√
nd

) .
Note that Gn

xt,θ0

(
Cθ0

∆θ/
√
nd

)
is the probability that θ̂(xt,Y n−t) equals θ0 where Y n−t are

n− t random variables generated by pθ0 in an i.i.d fashion.
As n goes to infinity, the distribution of θ̂(xt,Y n−t) becomes independent of xt. This is

because 1
n

∑t
i=1 log pθ(xi) converges to zero for all θ, and θ̂(xt,Y n−t) converges in probability

to θ0. This along with the asymptotic normality of MLE implies that for all θ0 ∈ Θ̂xt,n,
Gn
xt,θ0

(·) converges to the density of a multivariate normal distribution with mean θ0 and

covariance matrix I−1(θ0). A simple computation shows that the limit of Gn
xt,θ0

(
Cθ0

∆θ/
√
nd

)
as n goes to infinity is

√
nd |I(θ0)| /(2π)d. Now we construct hypercubes of sides of length

hn and centers from Θ̂n
xt for the numerator and from Θ̂n

xm−1 for the denominator. Let δn be
the volume of each of these hypercubes. It is obvious that δn diminishes to zero as n goes
to infinity. Using Riemann integral and the continuity of Fisher information and likelihood,
we obtain:

lim
n→∞

gn(xt, xm−1,∆θn) = lim
n→∞

∑
θ0∈Θ̂n

xt
pθ0(xt)Gn

xt,θ0

(
Cθ0

∆θ/
√
nd

)
δn∑

θ0∈Θ̂n
xm−1

pθ0(xm−1)Gn
xm−1,θ0

(
Cθ0

∆θ/
√
nd

)
δn

=

∫
Θ
pθ(x

t)
√
|I(θ)| dθ∫

Θ
pθ(xm−1)

√
|I(θ)| dθ

,
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which shows that the strategy is Bayesian with Jeffreys prior. On the other hand if the MLE
has a density with respect to Lebesgue measure then we get the following:

lim
∆θ→0

1√
nd

∑
C
θ0
∆θ√
nd

pθ0(xt)F n
xt,θ0

(
C0

∆θ

)
= lim

∆θ→0

1√
nd

∑
C
θ0

∆θ/
√
nd

pθ0(xt)

(
F n
xt,θ0

(C0
∆θ)

∆θ/
√
nd

)
∆θ√
nd

= lim
∆θ→0

∑
C
θ0

∆θ/
√
nd

pθ0(xt)

(
F n
xt,θ0

(C0
∆θ)

∆θ

)
∆θ√
nd

=

∫
Θ

pθ0(xt)fnxt,θ0(0)d θ0,

where fnxt,θ0(·) is the density of F n
xt,θ0

. This means that

gn(xt, xm−1) ≡ lim
∆θ→0

gn(xt, xm−1,∆θ) =

∫
Θ
pθ0(xt)fnxt,θ0(0)d θ0∫

Θ
pθ0(xm−1)fnxm−1,θ0

(0)d θ0

. (3.5)

As n goes to infinity, the distribution of θ̂(xt,Y n−t) becomes independent of xt. This is

because 1
n

∑t
i=1 log pθ(xi) converges to zero for all θ, and θ̂(xt,Y n−t) converges in probability

to θ0. This along with the asymptotic normality of MLE shows that as n goes to infinity we
get the following convergence :

√
n
(
θ̂(xt,Y n−t) − θ0

)
d→ N

(
0, I−1 (θ0)

)
.

Let Fθ0(·) be the cumulative distribution function of the multivariate normal distribution
with mean 0 and covariance matrix I−1(θ0). Asymptotic normality implies that

F n
xt,θ0

(
C0

∆θ

)
→ Fθ0(C0

∆θ).

This means that fnxt,θ0(θ0) converges to the density of a multivariate normal distribution

with mean 0 and covariance matrix I−1(θ0). A simple computation shows that this value is√
|I(θ0)| /(2π)d. Now the only concern is whether we can take the limit of n→∞ inside the

integral in Equation (3.5). We let knxt(θ) =

√
(2π)dfnxt,θ(0), hence Equation (3.5) becomes:

gn(xt, xm−1) =

∫
Θ
pθ(x

t)knxt(θ)dθ∫
Θ
pθ(xm−1)knxm−1(θ)dθ

.

As fnxt,θ(θ) converges to
√
I(θ0)/(2π)d when n goes to infinity, knxm−1(θ) and knxt(θ) converge

to
√
| I(θ) | as n goes to infinity. Now we use Lebesgue’s dominated convergence theorem
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[26] and Fatou’s lemma [25] to show that limit and integral are interchangeable. Fatou’s
lemma shows that :∫

Θ

pθ(x
m−1)

√
| I(θ) |dθ ≤ lim

n→∞

∫
Θ

pθ(x
m−1)knxm−1(θ)dθ.

Let

hnxt(θ) =
pθ(x

t)knxt(θ)

lims→∞
∫

Θ
pθ(xm−1)ksxm−1(θ)dθ

.

As n goes to infinity, knxt(θ) approaches
√
| I(θ) | . Hence for ε =

√
| I(θ) | there exists an nθ

such that | knxt(θ)−
√
| I(θ) | | ≤ ε for n > nθ.

Therefore for n > nθ we have knxt(θ) ≤ 2
√
| I(θ) | , and

hnxt(θ) ≤
2pθ(x

t)
√
| I(θ) |∫

Θ
pθ(xm−1)

√
| I(θ) |dθ

.

Now let h̄nxt(θ) = hnxt(θ) for n > nθ and zero otherwise. For all n and θ ∈ Θ we have :

h̄nxt(θ) ≤
2pθ(x

t)
√
| I(θ) |∫

Θ
pθ(xm−1)

√
| I(θ) |dθ

.

It is obvious that the limits of both are equal as n goes to infinity. Furthermore, note that
h̄nxt(θ) is upper bounded by an integrable function, namely twice the conditional Bayesian
density of xt under Jeffreys prior given xm−1. We know that the conditional Bayesian density
of xt under Jeffreys prior given xm−1 is integrable from the assumption of the theorem.
Consequently, Lebesgue’s dominated convergence theorem is applicable here:

lim
n→∞

gn(xt, xm−1) = lim
n→∞

∫
Θ

hnxt(θ)d θ

= lim
n→∞

∫
Θ

h̄nxt(θ)d θ

=

∫
Θ

lim
n→∞

h̄nxt(θ)d θ

=

∫
Θ
pθ(x

t)
√
| I(θ) |

limn→∞
∫

Θ
pθ(xm−1)knxm−1(θ)dθ

.

Also, we have

lim
n→∞

∫
Θ

pθ(x
m−1)knxm−1(θ)dθ =

∫
Θ

lim
n→∞

pθ(x
m−1)knxm−1(θ)dθ

=

∫
Θ

pθ(x
m−1)

√
| I(θ) |dθ,
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because otherwise psnml(x
t | xm−1) = limn→∞ g

n(xt, xm−1) = limn→∞
∫

Θ
h̄nxt(θ)d θ would not

be a distribution. Hence we get:

lim
n→∞

lim
∆θ→0

gn(xt, xm−1,∆θ) =

∫
Θ
pθ(x

t)
√
I(θ)dθ∫

Θ
pθ(xm−1)

√
I(θ)dθ

.

Notice that the proof does not use any properties of the Fisher information matrix. Thus,
if the MLE is asymptotically normal with covariance V (θ), then an optimal Bayesian strategy
has prior proportional to

√
|V (θ)|.

3.4 Examples

Example 3.4.1. In this example the parametric family is the class of one-dimensional Gaus-
sian distributions with unknown mean and variance µ and σ2, i.e.

pµ,σ2(x) =
1√
2π

exp

{
− 1

2σ2
x2 +

µ

σ2
x− µ2

2σ2
+ log σ

}
.

The MLE is

µ̂n =
1

n

n∑
i=1

xi and σ̂2
n =

1

n

n∑
i=1

(xi − µ̂n)2 .

The conditional SNML satisfies

psnml(xn|xn−1) ∝
(
2πσ̂2

n

)−n
2 exp

{
−
∑n

i=1 (xi − µ̂n)2

2σ̂2
n

}

=
e−

n
2 n

n
2

(2π (n− 1))
n
2

1(
σ̂2
n−1 + 1

n
(xn − µ̂n−1)2)n2 .

Normalizing yields:

psnml(xn|xn−1) =
Γ
(
n
2

)
Γ
(

1
2

)
Γ
(
n−1

2

) (nσ̂n−1)−
1
2

(
1 +

(xn − µ̂n−1)2

nσ̂2
n−1

)−n
2

.

It can be shown [14] that for n > 1

R(xn2 , psnml | x1)−R(xn−1
2 , psnml | x1)

=
n+ 1

2
log n− n

2
log(n− 1)− 1

2
log 2e+

Γ
(
n−1

2

)
Γ
(
n
2

) .

This shows that the conditional SNML is an equalizer and hence equivalent to the conditional
NML. Moreover, asymptotic normality holds for any µ ∈ R and any σ ∈ R+ and pµ,σ2(x) is
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continuous in µ and σ2, hence Theorem 3.3.1 can be applied. This shows that conditional
SNML and NML are equivalent to a conditional Bayesian strategy under Jeffreys prior. A
direct computation of the Bayesian strategy with Jeffreys prior verifies this. Note that since
this example is not a natural exponential family, the results of the previous chapter cannot
be applied here.

Example 3.4.2. In this example, the parametric family is the class of one-dimensional
asymmetric student-t distributions as defined in [28] with unknown skewness parameter α ∈
(0 , 1) and fixed left and right tail parameters v1 = v2 = 1, i.e.

pα(x) =


1
π

(
1 +

(
x

2α

)2
)−1

for x ≤ 0 ,

1
π

(
1 +

(
x

2(1−α)

)2
)−1

for x > 0 .

Zhu and John Galbraith [28] established asymptotic normality of maximum likelihood esti-
mators in asymmetric student-t distributions. Note that additionally for any x, pα(x) is
continuous in α, hence Theorem 3.3.1 is applicable to this example. Proposition 2 in [28]
shows that the Fisher information of pα is proportional to 1

α(1−α)
. This means that Jeffreys

prior is proportional to 1√
α(1−α)

. After normalization we get 1

π
√
α(1−α)

. Calculating the regret

of the Bayesian strategy under Jeffreys prior shows that for a fixed n > 0, the regret changes
for different sequences of observations. For example, for n = 3, and sequence of observations
(1, 1,−1) the maximum likelihood estimator of α is 0.4136 and the regret of the Bayesian
strategy under Jeffreys prior is 1.1472. On the other hand if we observe (2, 2,−2), the max-
imum likelihood estimator is 0.3777 with 1.1851 for regret. This means that the Bayesian
strategy under Jeffreys prior is not optimal because otherwise it should have resulted in equal
regrets for sequences of equal length. Furthermore Theorem 3.3.1 shows that no prior dis-
tribution on (0 , 1) can make the Bayesian strategy optimal and SNML can not be optimal
either.
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Chapter 4

Characterization of Exponential
Families with Minimax Optimal
SNML and Bayesian with Jeffreys,
and with Horizon-independent NML

In Chapter 2, we showed that a Bayesian prediction strategy with Jeffreys prior and
sequential normalized maximum likelihood (SNML) coincide and are optimal if and only
if the latter is exchangeable, which occurs if and only if the optimal strategy can be cal-
culated without knowing the time horizon in advance. In this chapter we show that for
1-dimensional exponential families SNML is exchangeable only for three classes of exponen-
tial family distributions, namely the Gaussian, the gamma, and the Tweedie exponential
family of order 3/2, and any one-to-one transformation of them. The results of this chapter
are from the paper [3].

4.1 Introduction

In this chapter our set of experts are i.i.d. exponential families of distributions, examples of
which include normal, Bernoulli, multinomial, gamma, Poisson, Pareto, geometric distribu-
tions and many others. In online learning under logarithmic loss as we saw in Theorem 1.3.1,
the minimax regret is achieved by the normalized maximum likelihood strategy. If the pa-
rameter space of a d-dimensional exponential family is constrained to a compact subset of
the parameter space, NML achieves regret (d/2)ln n+O(1) [22, 19]. For unconstrained pa-
rameter spaces, the NML strategy is often not defined because it relies on sup-integrability
and in many cases the model is not sup-integrable. In these cases NML can be replaced by
the conditional normalized maximum likelihood strategy, which acts like NML, except that a
small initial segment of the sequence is observed before prediction starts and then the NML



CHAPTER 4. OPTIMAL EXPONENTIAL FAMILIES 31

strategy is calculated conditioned on that initial segment. Whereas NML is optimal in the
sense of achieving minimax regret (whenever it is finite), conditional NML is optimal in the
sense that it achieves minimax conditional regret. Unfortunately both conditional NML and
(whenever it is defined) the original NML suffer from two major drawbacks: the horizon
n of the problem needs to be known in advance, and the strategy can be computationally
expensive since it involves marginalizing over all possible future subsequences up to itera-
tion n. These drawbacks motivated researchers to come up with an approximation to NML,
known as sequential normalized maximum likelihood, or SNML for short. See [24, 20, 21] and
Definition 7.

SNML predictions coincide with those of the NML distribution under the assumption
that the current iteration is the last iteration. Therefore, SNML can be viewed as an ap-
proximation to NML for which the time horizon of the game does not need to be known.
Kotlowski and Grünwald [14] showed that for general exponential families SNML is optimal
up to an O(1)–term. Interestingly, acting short-sighted and looking only one step ahead does
not hurt much.

A natural question to ask is if there are cases in which looking one step ahead in the
prediction game is exactly the best one can do, even if the time horizon is known? In other
words, when do SNML and NML coincide? This question is of fundamental importance
for online learning for at least the following two reasons. First, we know that in a general
sequential decision process, obtaining the optimal strategy requires recursive solution of the
Bellman equation by a backward induction. A positive answer to the question above implies
that we can avoid the backward induction altogether, because the optimal strategy in that
case is independent of the time horizon: we get the same, optimal strategy no matter how far
into the future we look. Thus, we only need to analyze the worst case regret with respect to
the current outcome to be predicted. Second, as it was shown in the last two chapters, when
NML and SNML coincide, they become Bayesian strategies and the prior of the Bayesian
strategy must be Jeffreys prior. In other words, if NML is time-horizon independent, then the
Bayesian strategy with Jeffreys prior is the minimax strategy. This happens if and only if the
SNML strategy is exchangeable (see Theorems 3.3.1 and 2.2.4). Testing the exchangeability
of the sequential strategy is, however, hard. What exponential families have exchangeable
sequential normalized maximum likelihood strategies, and therefore have SNML=NML?

In this chapter we give a complete answer to this question, when the reference set of
experts is a 1-dimensional natural exponential family. We show that there are essentially
only three exponential families with a time-horizon independent minimax strategy (and hence
both SNML and the Bayesian strategy with Jeffreys prior are equivalent to NML and thus
optimal). These families are gamma, Gaussian and compound Poisson families (but also
included are those families that can be obtained by a fixed transformation of the random
variable from any of the three above, e.g. Pareto, Laplace, Rayleigh and many others). This
implies that only in these three families is NML independent of the horizon, so that predicting
by optimizing one–step ahead becomes equivalent to predicting by optimizing n–steps ahead,
where n is the amount of data that the player is eventually going to observe.
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The chapter is organized as follows. We introduce the mathematical context for our
results in Section 4.2. We then give our main result in Section 4.3, showing that gamma,
Gaussian and a compound Poisson family are the only families with time-horizon independent
minimax strategies. Short versions of the proofs are given in Section 4.3. We end with a
short discussion in Section 4.4.

4.2 Setup

We work with 1-dimensional i.i.d. natural exponential families. For these families X can be
identified with a subset of R and the set of ’experts’ is a set of distributions {pθ | θ ∈ Θ} on
R, each of which is of the form

pθ(x) = h(x)eθx−A(θ), θ ∈ Θ. (4.1)

Here h is a reference measure, given as a density relative to the underlying measure λ, and
A is the cumulant generating function given by A(θ) = ln

∫
eθx dh(x). The so-called natural

parameter space of the family is the set

Θfull = {θ ∈ R |A(θ) <∞} (4.2)

We will generally work with potentially restricted families with parameters sets Θ that may
be proper subsets of Θfull and that we always require to have nonempty interior (so for
example, we do not consider finite subfamilies). Families with Θ = Θfull are called full.

According to the standard general definition of exponential families [2], we can have θf(x)
instead of θx in the exponent of 4.1 , for an arbitrary fixed function f . Families with f(x) = x
are called natural exponential families relative to random vector X (dened as X(x) = x).
However, as long as f is smooth and one-to-one, a general exponential family with statistic
f(x) can always re-expressed as a natural exponential family relative to a different random
variable Y = f(X) (i.e. it defines exactly the same distributions on the underlying space),
so our restriction to natural families is actually quite mild; see also the discussion right after
our main result Theorem 4.3.9.

4.3 Main Results

We now provide a sequence of lemmas and theorems that lead up to our main result, Theo-
rem 4.3.9. We provide a full proof of Lemma 4.3.1 and the final Theorem 4.3.9 in the main
text, since, while not at all the most difficult ones, these results contain the key ideas for
our reasoning. All other results are followed by a short proof sketch/idea.We first provide a
number of definitions that will be used repeatedly.
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4.3.1 Definitions

From now on, whenever we refer to an ‘exponential family’, unless we explicitly state other-
wise, we mean an i.i.d. natural 1-dimensional family as in (4.1).

Our analysis below involves various parameterizations of natural exponential families,
in particular the natural, the mean (see below) and the geodesic (see Section 4.3.3 below)
parameterization. We typically use Θ for (a subset of) the natural parameter space, M
for (a subset of) the corresponding mean-value space and B for the geodesic space, but if
statements hold for general diffeomorphic parameterizations we use Γ to denote (subsets
of) the parameter space (mean, geodesic and natural parameterizations are all instances of
‘diffeomorphic’ parameterizations [see 9, p. 611]). We then denote parameters by γ and we
let γ̂(xn) be the maximum likelihood (ML) estimate for data xn. If xn has no or several ML
estimates, γ̂(xn) is undefined. We let Γ̂n be the subset of ML estimates for data of length
n, i.e. the set of γ ∈ Γ such that γ = γ̂(xn) for some data xn of length n, and we let Γ̂◦

be the set of γ in the interior of Γ that are contained in Γ̂n for some n. (recall that we
always assume that Γ is closed). We will also use symbols M̂n, M̂

◦, B̂n, B̂
◦, . . . to denote

corresponding sets in particular parameterizations. D (γ0‖γ1) := D (pγ0‖pγ1) denotes the KL
divergence of γ1 to γ0.

We recall the standard fact that every natural exponential family can be parameterized by
the mean value ofX: for each θ in the natural parameter space Θ, we can define µθ := Epθ [X];
then the mapping from θ to µθ is one-to-one and strictly increasing, and the image µ(Θ) is
the mean-value parameter space M . We use µ̂(xn) for the maximum likelihood estimator in
the mean-value parameter space. We will frequently use the variance function V (µ) which
maps the mean of the family to its variance, i.e. V (µ) is the variance of pµ. We note that
the Fisher information I(µ) in the mean-value parameterization is the inverse of V (µ) [see
9, chap. 18].

Definition 15 (convex core). Consider a natural exponential family as in (4.1). Let x0 =
inf{x : x ∈ support of h}, and x1 = sup{x : x ∈ support of h}. The convex core is the
interval from x0 to x1 with x0 included if and only if h has a point mass at x0, and with x1

included if and only if h has a point mass at x1. We denote the convex core by cc.

For example for a Bernoulli model, the convex core is [0, 1], with 0 and 1 included. The
intuition is that the convex core includes mean–values that can be achieved by distributions
corresponding to natural parameter values ∞ and/or –∞, in the cases where these are
well–defined.

Definition 16 (maximal). An exponential family with maximal mean-value parameter
space is an exponential family where the mean value parameter space equals the convex core
cc.

For example, truncated exponential families such as Bernoulli [0.2, 0.8] do not satisfy the
maximal mean-value condition. Note also that if we take the Bernoulli model in the natural
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parameter space with the full parameter set Θfull then we get mean-value parameter space
µ(Θfull) = (0, 1), without the boundary points included. The maximal mean-value parameter
space does include the Bernoulli boundary points. In the Gaussian location family with
varying µ and fixed variance however, the maximal mean-value parameter space coincides
with µ(Θfull) = R. Thus, the maximal mean-value parameter space coincides sometimes,
but not always with µ(Θfull) (the name ‘full’, although standard in the exponential family
literature, is therefore perhaps a bit misleading).

4.3.2 Characterizations of SNML-Exchangeability

We now present three lemmas, which give an abstract characterization of SNML exchange-
ability. Then in Section 4.3.3 we will make these concrete, leading to our main theorem.

We let m be the smallest n such that for all xn ∈ X n,∫
pγ(x

n)I (γ)
1/2 dγ <∞ and∫

Xn−m
sup
γ∈Γ

pγ(x
m, yn−m) dλn−m(yn−m) <∞,

that is, such that Jeffreys posterior π(γ | xn) := pγ(x
n)I(γ)1/2/

∫
pγ(x

n)I (γ)
1/2 dγ is proper

(integrates to 1) for any conditioning sequence of length n ≥ m, and that the conditional
minimax regret is finite. Note that this implies that NML, Bayes with Jeffreys prior, and
SNML, conditioned on any initial sequence of length m, are well-defined. From now on, each
time we mention NML or SNML we mean NML or SNML conditioned on an initial sequence
of suitable length m. In most of our examples m = 1 suffices.

We call the distribution pγ regular if, for all xn with γ̂(xn) = γ, we have µγ = µ̂(xn) =
Epγ [X] = n−1

∑n
i=1 xi, i.e., in the mean-value parameter space, the ML estimator is equal to

the observed average. This is always the case if the ML estimate is in the interior of Γ [9,
see chap. 18], but if the ML estimate is on the boundary there can be exceptions, e.g. if Γ
is a truncated parameter set. The following lemma is central:

Lemma 4.3.1. Consider a natural exponential family (4.1) where the parameter set Γ is an
interval.

1. If the SNML distribution for such a family is exchangeable then for all n > m there is
a constant Cn such that for all regular γ0 ∈ Γ̂n, we have:∫

Γ

e−nD(γ0‖γ)I(γ)
1/2 dγ = Cn. (4.3)

2. If furthermore the family has maximal mean-value parameter space, then the SNML
distribution for such a family is exchangeable if and only if for all n > m there is a
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constant Cn such that for all γ0 ∈ Γ̂n∫
Γ

e−nD(γ0‖γ)I(γ)
1/2 dγ = Cn. (4.4)

The essence of the lemma is that Cn remains constant as γ0 varies. This will be key to
proving our main result.

Proof. As discussed in Theorem 3.3.1, if Γ is an interval, then SNML exchangeability is
equivalent to the fact that Bayes with Jeffreys prior and NML coincide. Thus, equivalently,
we must have, for all x1, · · · , xn ∈ X n, and all t, such that m ≤ t < n,

pπ
(
xnt+1

∣∣xt ) = p
(n)
NML

(
xnt+1

∣∣xt ) . (4.5)

Since

pπ
(
xnt+1

∣∣xt ) =

∫
Γ

pγ
(
xnt+1

)
dπ
(
θ
∣∣xt ) =

∫
Γ

pγ
(
xnt+1

) pγ(x
t)I(γ)1/2∫

Γ
pγ′(xt)I (γ′)

1/2 dγ′
dγ,

and

p
(n)
NML

(
xnt+1

∣∣xt ) =
pγ̂(xn)(x

n)∫
Xn−t pγ̂(xt,yn−t)(xt, yn−t) dλn−t(yn−t)

in the diffeomorphic parametrization Γ, (4.5) is equivalent to∫
Γ

pγ(x
n)I(γ)

1/2 dγ = C(n, xt)× pγ̂(xn)(x
n), (4.6)

where

C(n, xt) =

∫
Γ
pγ′(x

t)I (γ′)
1/2 dγ′∫

Xn−t pγ̂(xt,yn−t)(xt, yn−t) dλn−t(yn−t)
.

We now prove that C(n, xt) = Cn, i.e. it may depend on n but it does not depend on
x1, . . . , xn. The key observation is that (4.6) is satisfied for any t ≥ m, in particular for
t = m, so that C(n, xt) cannot depend on xnm+1. However, since C(n, xt) and all other
terms in (4.6) are invariant under any permutation of xt, we conclude that C(n, xt) does not
depend on the whole sequence xn.

Now we divide both sides of (4.6) by pγ̂(xn)(x
n) and we exponentiate inside the integral.

This gives: ∫
γ

e
− ln

pγ̂(xn)(xn)

pγ (xn) I(γ)
1/2 dγ = Cn. (4.7)

We have thus shown that, assuming Γ is an interval, SNML exchangeability is equivalent to
the condition that (4.7) holds for a fixed Cn, for all xn ∈ X n.
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Now for Part 1, let γ0 = γ̂(xn). We now use the celebrated robustness property of
exponential families [9, Section 19.3, Eq. 19.12]. This property says that for all γ0 such that
pγ0 is regular, for all xn with γ̂(xn) = γ0, we have

nD(γ0‖γ) = ln
pγ̂(xn)(x

n)

pγ(xn)
; (4.8)

the result follows.
For Part 2, we note that, if the mean-value parameter space is maximal, then it must

be an interval, and all points in this space must be regular [9, Section 19.3, Eq. 19.10].
The only-if direction follows immediately by Part 1. To see the converse, note that if the
mean-value parameter space is maximal, then the maximum likelihood estimator exists and
is unique for all xn ∈ X n (see [5]), and all γ ∈ Γ are regular. Hence Equation (4.8) holds for
all xn ∈ X n so that (4.4) implies that (4.7) holds for all xn ∈ X n and therefore that SNML
exchangeability holds.

We will also need a second lemma relating SNML exchangeability to maximality:

Lemma 4.3.2. Consider a natural exponential family as in (4.1). If SNML is exchangeable,
then the mean-value parameter space is maximal.

Proof Sketch In our definition of exponential families we require that the parameter set
Γ has nonempty interior, thus we may assume that it contains an interval. We can then
show by approximating the integral in (4.3) by a Gaussian integral using standard Laplace-
approximation techniques (as in e.g. [9, chap. 7]) that, for general 1-dimensional exponential
families, the integral in (4.3) converges to (2π/n)1/2 for any γ0 in the interior of Γ. If SNML
exchangeability holds, then we can show using Lemma 4.3.1 and continuity that this must
also hold for all boundary points of Γ. But if the parameter space is not maximal, then the
same standard Laplace approximation of the integral in (4.3) gives that for boundary points
of Γ, the integral converges to (1/2)(2π/n)1/2 and we have a contradiction.

Proof. Without loss of generality consider the mean-value parameter space. Assume the
given exponential family is SNML-exchangeable and, without loss of generality, that the
parameter space contains an interval [µ0, µ1] with µ0 < µ1. By Lemma 4.3.1 we have for all
n, all regular points in x ∈ M̂n ∩ [µ0, µ1] that∫

[µ0,µ1]

exp (−nD (x‖µ))V (µ)−
1/2 dµ = Cn (4.9)

is independent of x. Note that all points in the interior of [µ0, µ1] must be regular [9, Section
19.3, Eq. 19.10].

By a standard Laplace approximation of the integral in (1) (done by a Taylor approxi-
mation of the KL divergence, D (x‖µ) ≈ 1

2
(x− µ)2 V (x)−1, so that for large n the integral
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becomes approximately Gaussian) we get, for each closed interval Mc that is a subset of the
convex core, for each x in the interior of Mc, that∫

Mc
exp (−nD (x‖µ))V (µ)−

1/2 dµ(
2π
n

)1/2
→ 1 (4.10)

and ∫
{µ∈Mc:µ≥x} exp (−nD (x‖µ))V (µ)−

1/2 dµ(
2π
n

)1/2
→ 1

2
(4.11)

For a precise statement and proof of these results, see e.g. [9, Theorem 8.1 combined
with Eq. (8.14)]. Combining (4.10) with (4.9), taking Mc = [µ0, µ1], it follows that Cn →
(2π/n)1/2. Now for each ε > 0 there is an n such that x ∈ M̂n ∩M and |x− µ0| < ε. Hence
by continuity the equality (4.9) also holds for x = µ0, so we get∫

[µ0,µ1]
exp (−nD (µ0‖µ))V (µ)−

1/2 dµ(
2π
n

)1/2
→ 1 (4.12)

Now assume (for the purpose of establishing a contradiction) that the convex core cc includes
an x′ < µ0 with x′ 6∈M (M being the parameter space of the family), and let M ′ = [x′, µ1].
Then µ0 is in the interior of M ′ and so, taking Mc = M ′, (4.11) with x = µ0 gives that the
same integral as in (4.12) converges to 1/2; we have arrived at a contradiction.

In the same way, one proves that there can be no x′ > µ1 with x′ in the convex core.
Thus, the interval must coincide with the convex core, which is what we had to prove.

4.3.3 The Main Theorem

In the following we will use the Tweedie exponential family of order 3/2 [13]. These are natural
exponential families characterized by a variance function of the form V (µ) = kµ3/2, where
µ is the mean and V (µ) is the variance function defined earlier (i.e. V (µ) is the variance
of pµ). Each of the elements is a compound Poisson distribution obtained by adding a
Poisson distributed number of gamma distributions [13]. It is interesting to note that such
distributions have a point mass at 0 so that the left tail gives a finite contribution to the
Shtarkov integral but the right tail is light and gives an infinite contribution to the Shtarkov
integral. Hence this family does not have finite minimax regret.

Lemma 4.3.3. The following three types of exponential families are SNML exchangeable:
The full Gaussian location families with fixed σ2 > 0, the full gamma distributions with shape
parameter k > 0, and the full Tweedie family of order 3/2.

Proof Sketch It is straightforward to check that all three families have maximal mean-value
parameter space. The result now follows by checking that Condition (4.4) holds for these
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families, which is relatively straightforward by taking derivatives of the cumulant generating
function.

Proof. For each of the families it is sufficient to prove that∫
cc

exp (−nD (γ0‖ γ))

V (γ)
1/2

dγ

does not depend on γ0 ∈ cc where cc denotes the convex core of the family.
In the Gaussian location family with variance σ2 we have D (γ0‖ γ) = D (0 ‖γ − γ0 ), and

V (γ) = σ2, so the integral is invariant because of the invariance of the Lebesgue integral.

The scaling property of the gamma families implies that D (γ0‖ γ) = D
(

1
∥∥∥ γ
γ0

)
. For the

gamma family with shape parameter k we have V (γ) = γ2/k. Hence the integral equals

∫ ∞
0

exp (−nD (γ0‖γ))

(γ2/k)
1/2

dγ = k
1/2

∫ ∞
0

exp
(
−nD

(
1‖ γ

γ0

))
γ

dγ

= k
1/2

∫ ∞
0

exp (−nD (1‖t))
t

dt,

where we have used the substitution t = γ/γ0. Hence the integral does not depend on γ0.
We consider the Tweedie family of order 3/2.Then the divergence can be calculated as

D (µ0‖µ1) =

∫ µ1

µ0

µ− µ0

2µ3/2
dµ

=
[
µ

1/2 + µ0µ
−1/2
]
µ1
µ0

= µ
1/2
1 + µ0µ

−1/2
1 − 2µ

1/2
0

=

(
µ

1/2
1 − µ

1/2
0

)2

µ
1/2
1

.

Therefore we have to prove that the following integral is constant

∫ ∞
0

exp (−nD (γ0‖γ))V (γ)−
1/2 dγ =

∫ ∞
0

exp

−n
(
γ1/2 − γ1/2

0

)2

γ1/2

 γ−
3/4 dγ

=

∫ ∞
0

exp

−
(
nγ1/2 − nγ1/2

0

)2

nγ1/2

 γ−
3/4 dγ.
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The substitution γ = t4n−2 gives

4

n1/2

∫ ∞
0

exp

−
(
t2 − nγ1/2

0

)2

t2

 dt.

This integral is independent of γ0, which proves the theorem.

Remark 4.3.4. What we call “gamma” here includes also Pareto, Laplace, Rayleigh, Levy,
Nakagami and many other families of distribution that are derived from the gamma fam-
ily by a smooth one-to-one transformation. As the next lemma shows, smooth one-to-one
transformations preserve SNML exchangeability.

Lemma 4.3.5. Suppose {pγ( · ) | γ ∈ Γ} indexes an exponential family for a r.v. X that is
SNML exchangeable. Let Y = f(X) for some smooth one-to-one function f and let qγ( · )
be the density of Y under pγ( · ). Then the family {qγ( · ) | γ ∈ Γ} is SNML exchangeable as
well.

Proof. Since the family pγ( · ) is SNML exchangeable, hence for any n > m the following
joint distribution is invariant under permutations of xn that leaves xm invariant:

psnml(x
n
m+1|xm) =

n∏
t=m+1

supγ pγ(x
t)∫

X supγ pγ(x
t−1, x) dx

(4.13)

Now under the Y = f(X) transformation the density of Y becomes

qγ(y) = pγ(f
−1(y))

∣∣∣∣d f−1(y)

d y

∣∣∣∣ . (4.14)
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For the ease of notation we let v(y) =
∣∣∣d f−1(y)

d y

∣∣∣ . Hence qγ(y) = pγ (f−1 (y)) v(y) and

psnml(y
n
m+1|ym) =

n∏
t=m+1

supγ qγ(y
t)∫

X supγ qγ (yt−1, y) dy

=
n∏

t=m+1

supγ qγ (f(x1) · · · f(xt))∫
X supγ qγ (f(x1) · · · f(xt−1), y) dy

=
n∏

t=m+1

supγ pγ (x1 · · ·xt)
∏t

j=1 v(yj)∫
X supγ pγ (x1 · · ·xt−1, f−1(y))

∏t−1
j=1 v(yj)v(y) dy

=
n∏

t=m+1

supγ pγ(x
t)v(yt)∫

X supγ pγ(x
t−1, f−1(y))v(y) dy

=
n∏

t=m+1

supγ pθ(x
t)v(yt)∫

X supγ pγ(x
t−1, x) dx

= psnml(x
n
m+1|xm)

n∏
t=m+1

v(yt) .

Hence psnml(y
n
m+1|ym) too is invariant under any permutation of yn leaving ym invariant, and

hence exchangeable. Note that in the last but one equation we used the change of variable
f−1(y) = x and the fact that v(y)dy = dx .

As an example consider a random variable X with a gamma distribution of the form
Gamma (1/2, c/2). Now if X goes through the one-to-one transformation f(X) = 1/X then
1/X ∼ Inverse-Gamma (1/2, c/2) which is the same as Levy (0, c), hence Levy (0, c) is also
SNML exchangeable. It is indeed easy to directly verify the SNML exchangeability of
Levy (0, c) using Lemma 4.3.1.

Now we are ready to state the next theorem which is simply a disjunction of two con-
ditions necessary for SNML exchangeability in a parameterization called geodesic. The
geodesic parameterization is the parameterization in which the Fisher information is con-
stant. We will denote parameters in this parameterization by β with parameter set B. We
can reparameterize from the natural parameter space Θfull to the geodesic space by setting:

β =

∫
I(θ)

1/2 dθ, (4.15)

so that dβ = I(θ)1/2 dθ. Note that this is a bijection. This allows us to replace the integration
measure in the condition of Lemma 4.3.1 and we get an equivalent condition: for any n > m
the following is independent of β0 ∈ B̂n∫

B

e−nD(β0‖β) dβ. (4.16)
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For an arbitrary parameterization, let

J (k)(γ0) =
1

k!

dk

dγk
D(γ0‖γ) |γ=γ0 , (4.17)

which is the coefficient of the k-th term in the Taylor series expansion of D(γ0‖γ).

Theorem 4.3.6. Consider a natural exponential family (4.1). In terms of the geodesic
parameterization, a necessary condition for SNML exchangeability is that there is a C s.t.
for all n ≥ m, and all β0 ∈ B̂◦ we have

5(J (3)(β0))2 − 4J (4)(β0)J (2)(β0) = C. (4.18)

Proof Sketch A fifth-order Taylor expansion of (4.16) gives terms of different order in n,
and each term should be constant. Equation (4.18) corresponds to the first non-trivial term
in the expansion.

Proof. First of all, to obtain a better understanding of J (k)(γ0), we list a few of its properties:

1. For any parameterization, it holds that 2J (2)(γ0) is equal to the Fisher information at
γ0 in the parameterization.

2. In the geodesic parameterization, J (2)(β0) is constant over B̂◦ and we will denote it as
J (2).

3. In the natural parameterization, for k ≥ 2,

J (k)(θ0) =
1

k!
A(k)(θ0) =

1

k!
I(k−2)(θ0) , (4.19)

where A(k) is the kth derivative of the cumulant generating function, i.e. the kth
cumulant, and I(m) is the m-th derivative of the Fisher information (I(0) is just the
Fisher information).

A Taylor expansion of Equation (4.4) as a function of n gives that certain Taylor co-
efficients must equal zero and an elaborate calculation of the Taylor coefficient leads to
Equation (4.18).

In the geodesic parameterization, the integral in Equation (4.4) becomes Equation (4.16).
We denote this integral by s(β0, n). Using a fifth-order Taylor expansion we will show the
following:

s(β0, n) = Φ + n−
3/2 · 3

4

π1/2

(J (2))5/2
· u(β0) +O(n−2) (4.20)

where

u(β0) =
5

4
· (J (3)(β0))2

J (2)
− J (4)(β0), (4.21)
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Φ = π
1/2

(nJ(2))1/2 is a Gaussian integral (scaled by n) and the n−2 remainder term may be both

negative and positive. Condition (4.18) easily follows from Equation (4.20) as follows: take
β0, β1 in B̂◦. By Equation (4.16) we must have that s(β0, n) − s(β1, n) = 0 for all large n.
But by Equation (4.20) this difference is equal to

cn−
3/2 · (u(β0)− u(β1)) +O(n−2)

for a constant c > 0 independent of β0 and β1. Since this must be 0 for all large n and since
u(·) does not depend on n, this can only be true if u(β0) = u(β1). We can do this for any β0

and β1 which makes Condition (4.18) follow.
Now we proceed to prove the claim in Equation (4.20). Define A = [β0 − c, β0 + c] for some
fixed c > 0, taken small enough so that A is a subset of the interior of B (this is why needed
to restrict to B̂◦ rather than B̂n). We can write

s(β0, n) = f(β0, n) + g(β0, n) + h(β0, n) (4.22)

where we define:

f :=

∫
β∈A

e−nD(β0‖β) dβ,

g :=

∫
β>β0+c

e−nD(β0‖β) dβ h :=

∫
β<β0−c

e−nD(β0‖β) dβ

(We write f instead of f(β0, n) whenever β0 and n are clear from context; similarly for g, h).
We have

g ≤ sup
β′>β0+c

e−(n−m)D(β0‖β′)
∫
β>β0+c

e−mD(β0‖β) dβ ≤ c2e−c3n
c4 (4.23)

for some constants c2, c3, c4 > 0. Here we used that D(β0‖β′) is increasing in β′ so that the
sup is achieved at β0 + c, and the fact that by definition m was chosen such that the integral
with mD(β0‖β) in the exponent is finite. We can bound h similarly. Thus, the error we
make if we neglect the integral outside the set A is negligible, and we can now concentrate
on approximating f , the integral over A. We can write

f(β0, n) =

∫
A

e−nJ
(2)(β0)(β0−β)2

(
e−nJ

(3)(β0)(β0−β)3

e−nJ
(4)(β0)(β0−β)4

e−n·O(β0−β)5
)

dβ (4.24)

where the constant in front of the 5th-order term is bounded because we require A to be a
compact subset of the interior of B. The fourth-order and fifth-order terms in the integral
can themselves be well approximated by a first-order Taylor approximation of ex and we can
rewrite f as ∫

A

e−nJ
(2)(β0)(β0−β)2

(
e−nJ

(3)(β0)(β0−β)3

(1 + V )(1 +W )
)

dβ
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where V = −nJ (4)(β0)(β0−β)4+O(n2(β0−β)8) andW = O(n(β0−β)5). Similarly, the second
factor in the integral can be well-approximated by a second order Taylor approximation of
ex = 1 + x+ (1/2)x2 +O(x3) so that we can further rewrite f as∫

A
e−nJ

(2)(β0)(β0−β)2
(1 + U)(1 + V )(1 +W ) dβ =∫

A
e−nJ

(2)(β0)(β0−β)2
(1 + U + V +W + UV + UW +WV + UVW ) dβ

where

U = −nJ (3)(β0)(β0 − β)3 +
1

2
n2(J (3)(β0))2(β0 − β)6 +O(n3(β0 − β)9).

Writing ΦA :=
∫
A

e−nJ
(2)(β0)(β0−β)2

dβ we can thus further rewrite f as

f = ΦA +

∫
A

e−nJ
(2)(β0)(β0−β)2

(U + V +R1 +R2) dβ

where R1 and R2 are remainder terms,

R1 = UV =O(n2|β0 − β|7) +O(n3(β0 − β)10)

+O(n4|β0 − β|13) +O(n3|β0 − β|11) +O(n4(β0 − β)14)

+O(n5|β0 − β|17)

and
R2 = W (1 + U + V + UV )) = O(n|β0 − β|5).

Since
∫∞
−∞ |x|

me−nx
2

dx = O(n(−m−1)/2), we have
∫
A

e−nJ
(2)(β0)(β0−β)2

(R1 +R2) dβ = O(n−2),
and hence we get

f = ΦA +

∫
A

e−nJ
(2)(β0)(β0−β)2

(U + V ) dβ +O(n−2).

Now, using the fact that
∫ a
−a x

3e−nx
2

dx = 0 for all a > 0, the integral over the first term in
U is 0. The final terms in U and V can be dealt with as the remainder terms above, and we
can rewrite f further as

f = ΦA +

∫
A

e−nJ
(2)(β0)(β0−β)2

(
1

2
n2(J (3)(β0))2(β0 − β)6 − nJ (4)(β0)(β0 − β)4

)
dβ +O(n−2).

If we integrate over the full real line rather than A then the error we make is of order
O(e−cn) ≤ O(n−2). The integrals over the real line can be evaluated whence we get:

f = Φ +
n2

2
(J (3)(β0))2 ·

(
15

8

π1/2

(nJ (2)(β0))7/2

)
− nJ (4)(β0) ·

(
3

4

π1/2

(nJ (2)(β0))5/2

)
+O(n−2)

= Φ + n−
3/2 · π1/2 ·

(
15

16
· (J (3)(β0))2

(J (2))7/2
− 3

4
· J

(4)(β0)

(J (2))5/2

)
+O(n−2). (4.25)

Combining with (4.22) and (4.23) Equation (4.20) follows.
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Note that originally the necessary and sufficient condition for SNML exchangeability was
for all β0 in B̂n, not just B̂◦ as stated in Lemma 4.3.1. Here we slightly weakened it and
only require β0 ∈ B̂◦. In this form the condition is not necessarily sufficient any more, but
as we will see in the proof of Theorem 4.3.9, it is still sufficiently necessary for our purposes.

Theorem 4.3.7. Consider a natural exponential family as in (4.1) with maximal mean-
value parameter space. A necessary condition for SNML exchangeability is that the variance
function is given by either

V (µ) = (c1µ+ k)2 (4.26)

or
V (µ) = (c1µ+ k)

3/2 , (4.27)

for some constants c1 and k.

Proof Sketch The differential equation (4.18) can be rephrased in terms of the mean value
parameterization. Two solutions are (4.26) or (4.27). Other potential solutions are ruled out
by a higher-order (in fact 7th-order) expansion.

Proof. The proof follows from Condition (4.18), which gives necessary conditions for ex-
changeability: there exists a constant C, such that for all n ≥ m, all β0 ∈ B̂◦,

5
(J (3)(β0))2

J (2)
− 4J (4)(β0) = C.

To rephrase the above condition in terms of the natural parameterization, we use:

∂

∂β
(. . .) =

dθ

dβ

∂

∂θ
(. . .) = I−

1/2(θ)
∂

∂θ
(. . .),

because β =
∫
I(θ)1/2 dθ, so that dβ

dθ
= I(θ)1/2. We use the fact that D(β0‖β) = D(θ0‖θ),

where θ0 = θ(β0) and θ = θ(β) are corresponding parameters in the one-to-one mapping
β 7→ θ. We also know that in the natural parameterization:

∂2

∂θ2
D(θ0‖θ) = I(θ).

We use the above properties to get:

∂D(β0‖β)

∂β
=
∂D(θ0‖θ)

∂θ
I−

1/2(θ),

∂2D(β0‖β)

∂2β
= 1− 1

2

∂D(θ0‖θ)
∂θ

I−2(θ)
dI(θ)

dθ
,

∂3D(β0‖β)

∂3β
= −1

2
I−

3/2(θ)
dI(θ)

dθ
+
∂D(θ0‖θ)

∂θ

(
I−

7/2(θ)

(
dI(θ)

dθ

)2

− 1

2
I−

5/2(θ)
d2I(θ)

dθ2

)
,

∂4D(β0‖β)

∂β4
=

7

4
I−3(θ)

(
dI(θ)

dθ

)2

− I−2(θ)
d2I(θ)

dθ2
+
∂D(θ0‖θ)

∂θ
(. . .) .
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From the above and (4.17) we get that:

J (2)(β0) =
1

2
,

J (3)(β0) =
1

3!

(
−1

2
I−

3/2(θ0)
dI(θ0)

dθ0

)
,

J (4)(β0) =
1

4!

(
7

4
I−3(θ0)

(
dI(θ0)

dθ0

)2

− I−2(θ0)
d2I(θ0)

dθ2
0

)
,

where, as before, θ0 = θ(β0), and we used the fact that ∂D(θ0‖θ)
∂θ

= 0 at θ = θ0. Plugging
the above into (4.18) and rearranging the terms gives the following differential equation for
I(θ0):

− 4

3
I−3(θ0)

(
dI(θ0)

dθ0

)2

+ I−2(θ0)
d2I(θ0)

dθ2
0

= const(θ0) (4.28)

for any θ0 = θ(β0) for all β0 ∈ B̂◦. We now solve (4.28). Let us introduce a new variable
z(θ0) = I−1/3(θ0). Then:

dz

dθ0

= −1

3
I−

4/3 dI

dθ0

, (4.29)

d2z

dθ2
0

=
4

9
I−

7/3

(
dI

dθ0

)2

− 1

3
I−

4/3 d2I

dθ2
0

.

(we omit the dependence on θ0 for the sake of clarity). The l.h.s. of Equation (4.28) becomes

−1

3
I−

2/3 d2z

dθ2
0

= −1

3
z2 d2z

dθ2
0

.

Hence, the differential equation has simplified to:

d2z

dθ2
0

=
c

z2
, (4.30)

for some constant c.
Assume c = 0. Integrating Equation (4.30) once gives dz

dθ0
= a. Using that z = I−1/3(θ0)

and I (θ) = V (µ (θ)) in the natural parametrization, we can rewrite the equation as

−1

3
V −

4/3dV

dµ

dµ

dθ0

= a,

or, equivalently,

V (µ)−
1/3 dV (µ)

dµ
= const(µ).
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This differential equation has solutions of the form:

V (µ) = (c1µ+ k)
3/2

for some constants c1 and k.
To find other SNML exchangeable families we may from now on assume that c 6= 0.

We need to take a closer look at higher-order terms in the Taylor expansion of the integral
(4.16) and obtain a stronger necessary condition for exchangeability.

Similarly as in the proof Theorem 4.3.6, we expand the integral over A = [β0− c, β0 + c]:

f(β0, n) =

∫
A

e−nJ
(2)(β0)(β0−β)2

(
6∏

k=3

e−nJ
(k)(β0)(β0−β)k

)
e−nO((β0−β)7) dβ

=

∫
A

e−nJ
(2)(β0)(β0−β)2

(
7∏

k=3

(1 +Xk)

)
dβ ,

where

X3 = −nJ (3)(β0)(β0 − β)3 +
1

2
n2(J (3)(β0))2(β0 − β)6 +

1

3!
n3(J (3)(β0))3(β0 − β)9

+
1

4!
n4(J (3)(β0))4(β0 − β)12 +O(n5(β0 − β)15) ,

X4 = −nJ (4)(β0)(β0 − β)4 +
1

2
n2(J (4)(β0))2(β0 − β)8 +O(n3(β0 − β)12) ,

X5 = −nJ (5)(β0)(β0 − β)5 +O(n2(β0 − β)10) ,

X6 = −nJ (6)(β0)(β0 − β)6 +O(n2(β0 − β)12) ,

X7 = −O(n(β0 − β)7) .

We assume that Condition (4.18) is satisfied, so that O(n−3/2) term in the expansion (cf.
Equation (4.20)) is constant in β0. Since if we integrate over the full real line rather than A
then the error we make is of order O(e−cn), and (β0 − β)m under Gaussian integral over the
full real line results in O(n(−m−1)/2) if m is even, and 0 if m is odd, there will be no terms
of order O(n−2). Therefore, we need to look for terms of order O(n−5/2). There are five of
them and their sum must be independent of β0 (using similar argument as for the O(n−3/2)
term in the proof of Theorem 4.3.6):

1

4!
n4(J (3)(β0))4(β0 − β)12 +

1

2
n2(J (4)(β0))2(β0 − β)8 − nJ (6)(β0)(β0 − β)6

− 1

2
n3(J (3)(β0))2J (4)(β0)(β0 − β)10 + n2J (3)(β0)J (5)(β0)(β0 − β)8 = const(β0) .

All the terms appear in the Gaussian integral. Given the fact that for even m,∫
e−nJ

(2)(β0)(β0−β)2

(β0 − β)mdβ = (m− 1)!! (2π)
1/2 (2nJ (2)

)−m+1
2 ,
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we can rewrite the condition on the O(n−5/2) term as:

11!!

4!
n−

5/2(J (3)(β0))4
(
2J (2)

)−13/2
+

7!!

2
n−

5/2(J (4)(β0))2
(
2J (2)

)−9/2

− 5!!n−
5/2J (6)(β0)

(
2J (2)

)−7/2 − 9!!

2
n−

5/2(J (3)(β0))2J (4)(β0)
(
2J (2)

)−11/2

+ 7!!n−
5/2J (3)(β0)J (5)(β0)

(
2J (2)

)−9/2
= const(β0).

Given that J (k)(β0) = 1
k!
∂kD(β0‖β)

∂βk

∣∣∣
β=β0

, and denoting Dk = ∂kD(β0‖β)
∂βk

∣∣∣
β=β0

, we rewrite the

condition above again as:

11!!

4!(3!)4
D4

3 +
7!!

2(4!)2
D2

4 −
5!!

6!
D6 −

9!!

2(3!)24!
D2

3D4 +
7!!

3!5!
D3D5 = const(β0),

where we also skipped the n−5/2 terms and used the fact that D2 = 1 in the geodesic
parameterization. Evaluating the factorials and multiplying by a constant gives:

385D4
3 + 105D2

4 − 24D6 − 630D2
3D4 + 168D3D5 = const(β0). (4.31)

Now, we need to evaluate D3, D4, D5, and D6. For the sake of argument, we will write
them down in terms of the previously defined variable z(θ) = I−1/3(θ). We will also use a
shorthand notation zn = dnz

dθn
:

∂2D(β0‖β)

∂β2
= 1 +

3

2

∂D(θ0‖θ)
∂θ

z2z1 ,

∂3D(β0‖β)

∂β3
=

3

2
z

1/2z1 +
∂D(θ0‖θ)

∂θ

(
3z

5/2z2
1 +

3

2
z

7/2z2

)
,

∂4D(β0‖β)

∂β4
=

15

4
zz2

1 + 3z2z2 +
∂D(θ0‖θ)

∂θ

(
15

2
z3z3

1 +
45

4
z4z1z2 +

3

2
z5z3

)
,

∂5D(β0‖β)

∂β5
=

45

4
z

3/2z3
1 +

99

4
z

5/2z1z2 +
9

2
z

7/2z3 ,

+
∂D(θ0‖θ)

∂θ

(
45

2
z

7/2z4
1 +

135

2
z

9/2z2
1z2 +

45

4
z

11/2z2
2 +

75

4
z

11/2z1z3 +
3

2
z

13/2z4

)
,

∂6D(β0‖β)

∂β6
=

315

8
z2z4

1 +
1305

8
z3z2

1z2 + 36z4z2
2 +

237

4
z4z1z3 + 6z5z4 +

∂D(θ0‖θ)
∂θ

(. . .) .

Now, if we assume Condition (4.18) is satisfied, then so is the differential equation (4.30) at
θ0. It follows from (4.30) that:

z2(θ0) = cz(θ0)−2,

z3(θ0) = −2cz(θ0)−3z1(θ0),

z4(θ0) = 6cz(θ0)−4z1(θ0)2 − 2c2z(θ0)−5 .
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Using the above and the fact that ∂D(θ0‖θ)
∂θ

∣∣∣
θ=θ0

= 0, we finally write:

D2 = 1,

D3 =
3

2
z1/2z1,

D4 =
15

4
zz2

1 + 3c,

D5 =
45

4
z

3/2z3
1 +

63c

4
z

1/2z1,

D6 =
315

8
z2z4

1 +
645c

8
zz2

1 + 24c2.

(all values of z and z1 on the r.h.s. are evaluated at θ0). We plug this into (4.31), denote
x := z1/2z1, and get:

385
81

16
x4 + 105

(
225

16
x4 +

90

4
cx2 + 9c2

)
− 24

(
315

8
x4 +

645c

8
x2 + 24c2

)
− 630

9

4
x2

(
15

4
x2 + 3c

)
+ 168

3

2
x

(
45

4
x3 +

63c

4
x

)
= const(θ0),

and after rearranging the terms:

x4

(
385 · 81

16
+

105 · 225

16
− 24 · 315

8
− 630 · 15 · 9

16
+

168 · 45 · 3
8

)
+ cx2

(
105 · 90

4
− 24 · 645

8
− 630 · 9 · 3

4
+

168 · 3 · 63

8

)
+ c2 (105 · 9− 24 · 24) = const(θ0)

Interestingly the O(x4) term disappears and we get:

144cx2 + 369c2 = const(θ0) . (4.32)

Since we have assumed that c 6= 0, Equation (4.32) is satisfied only when x(θ0) = const(θ0).

Since x(θ0) = z(θ0)1/2 dz(θ0)
dθ0

, this leads to(
dz(θ0)

dθ0

)2

=
const(θ0)

z(θ)
.

Using that z(θ0) = I−1/3(θ0) and I (θ) = V (µ (θ)) in the natural parametrization, and
Equation (4.29), we get the following differential equation in terms of the variance function:(

dV (µ)

dµ

)2

= −18cV (µ),



CHAPTER 4. OPTIMAL EXPONENTIAL FAMILIES 49

which has a general solution of the form:

V (µ) = (c1µ+ k)2

for some constants c1 and k.

Now we are ready to state our main theorem. We need one more definition: we say that
a full exponential family of form (4.1) is a linear transformation of another full exponential
family if, for some fixed a, b, it is the set of distributions given by (4.1), with each occurrence
of x replaced by ax+ b.

Remark 4.3.8. By Remark 4.3.4, linear transformations preserve SNML exchangeability.
In a Gaussian location family, translating a distribution by b gives another distribution in
the same exponential family, and the Gaussian location families are the only families with
this property. Scaling a gamma distribution by a positive a gives another distribution in
the same exponential family, and the gamma family is the only exponential family with this
property.

Theorem 4.3.9. The only natural 1-dimensional i.i.d. exponential families that have ex-
changeable SNML are the following three:

• The full Gaussian location families with arbitrary but fixed σ2 > 0

• The full gamma exponential family with fixed shape parameter, and linear transforma-
tions of this family.

• The full Tweedie exponential family of order 3/2, and linear transformations of this
family.

Before we prove this theorem, let us briefly discuss its generality. As we already indicated
in the third paragraph after Equation (4.1), every exponential family defined with respect to
a sufficient statistic f(X) can be re-expressed as a natural family with respect to X as long
as f is smooth and one-to-one. Thus the theorem also determines SNML exchangeability for
general 1-dimensional i.i.d. exponential families with such f . Namely, if such a family, when
mapped to a natural family, becomes the gamma, Gaussian or Tweedie 3/2 family, then it is
SNML exchangeable; otherwise it is not. The former is the case, for, for example, the Pareto
and other families mentioned in Remark 4.3.4; the latter is the case, for, for example, the
Bernoulli and Poisson distributions.

Proof. Lemma 4.3.3 says that these three families are SNML exchangeable. As we know that
SNML exchangeability can only happen for families with maximal mean-value parameter
space (Lemma 4.3.2), we focus on these families only. Thus, it is left to show that no other
family with maximal mean-value parameter space is SNML exchangeable.
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Theorem 4.3.7 gives the necessary condition for SNML exchangeability in terms of the
variance function. Now we look at each case separately. The first part of the disjunction
is the Equation (4.26), where the variance function is quadratic. Exponential families with
quadratic variance functions have been classified by [15]. His result is that modulo linear
transformations the only exponential families with quadratic variance functions are Gaussian,
Poisson, gamma, binomial, negative binomial and the exotic hyperbolic secant distribution.
Of these only the Gaussian and the gamma families have the desired form. We note that
the exponential distributions are special cases of gamma distributions.

Now we get to the second case where the variance function is given by Equation (4.27).
If c1 = 0 we get an exponential family where the variance is constant, i.e. the family is the
Gaussian translation family. Then the term k corresponds to a translation of the exponential
family and we may assume that k = 0. If c1 6= 0 we can scale up or down and obtain the
equation

V (µ) = 2µ
3/2. (4.33)

There exists an exponential family with this variance function, namely the Tweedie family
of order 3/2 with V (µ) = 2µ3/2. Since exponential families are uniquely determined by their
variance function [15], the Tweedie family of order 3/2 is the only family satisfying (4.33).

4.4 Discussion

The present chapter has focused on 1-dimensional exponential families, whose parameter
spaces have a nonempty interior. Any model that admits a 1-dimensional sufficient statistic
can be embedded in a one dimensional exponential family. One can prove that SNML ex-
changeability implies that the parameter space must have non-empty interior, thus strength-
ening our results further.

We do not have any general results for the multidimensional case, but we can make a
few observations: products of models that are SNML exchangeable are also exchangeable.
All multidimensional Gaussian location models can be obtained in this way by a suitable
choice of coordinate system. The only other SNML exchangeable models we know of in
higher dimensions are Gaussian models where the mean is unknown and the scaling of the
covariance matrix is unknown. This can be seen from the fact that a sum of squared Gaussian
variables has a gamma distribution. The Tweedie family of order 3/2 does not seem to play
any interesting role in higher dimensions, because it cannot be combined with the other
distributions.

Finally, we note that for all three exponential family distributions that are SNML ex-
changeable, the model is not sup-integrable, so NML is not defined. Thus, if we consider
NML (rather than conditional NML) in 1-dimensional exponential families, we see that NML,
when it is defined, is always horizon dependent. We conjecture that this conclusion will hold
for arbitrary models. SNML exchangeability arises only in conditional models, and this is
restricted to a few, very important models.
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Chapter 5

Optimal Horizon-Dependent Priors,
the NML Prior

In Chapter 2, we showed that if a Bayesian prediction strategy is optimal then it neces-
sarily uses Jeffreys prior. As a result, if Jeffreys prior is not optimal then nor is any other
prior, except possibly a horizon–dependent prior. This chapter investigates the behavior
of a natural horizon–dependent prior called the NML prior. We show that the NML prior
converges in distribution to Jeffreys prior, which makes it asymptotically optimal, but not
necessarily optimal for an arbitrary horizon. Furthermore we show that there are exactly
three families, namely Gaussian, gamma and inverse Gaussian, where the NML prior is equal
to Jeffreys prior and hence horizon–independent. Two of these families, namely gamma and
Gaussian, have optimal NML prior. Finally we show that Jeffreys prior is not always better
than the NML prior, and that the NML prior is not always better than Jeffreys prior.

5.1 Introduction

Online learning under logarithmic loss aims to predict a sequence of outcomes xt ∈ X ,
almost as well as the best expert from a reference se, which in this chapter, are i.i.d natural
exponential families. These families are parametrized by the natural parameter θ from a
parameter space Θ. See Equation (5.1) or by parameter µ, called the mean-value parameter ,
from the mean-value parameter space Γ. See Equation (5.3).

We are interested in optimal Bayesian strategies. As it was shown in Chapter 2, if a
Bayesian strategy is optimal then the strategy necessarily uses Jeffreys prior. This leaves
open the possibility that a horizon-dependent prior (that is, one that depends on n, the
number of rounds of the game) is optimal. For instance, in the case of Bernoulli experts, the
Bayesian strategy with Jeffreys prior is not optimal. Xie and Barron [27] studied horizon-
dependent priors. Although they did not find a prior of this kind that gives optimal pre-
dictions, they demonstrated a horizon-dependent prior that makes the Bayesian strategy
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behave asymptotically like NML (even for data sequences with maximum likelihood esti-
mators on the boundary). In this chapter we investigate a natural horizon-dependent prior
that is motivated by NML. We call this prior the NML prior (see Definitions 17 and 18).
For a fixed horizon n and the expert set {pµ( · ) | µ ∈ Γ}, the NML prior at µ0 is defined
to be proportional to the density of the maximum likelihood estimator of n i.i.d samples
from pµ0( · ) at µ0. As n goes to infinity the NML prior converges in distribution to Jeffreys
prior, and hence makes its corresponding Bayesian strategy asymptotically behave like NML
(Lemma 5.3.1). This chapter investigate the following questions:

• The NML prior is asymptotically optimal, but is it optimal for any horizon n? We
show not in all cases.

• Is the NML prior ever horizon independent, and if so how is it related to Jeffreys prior?
We show that there are exactly three natural exponential families—namely gamma,
inverse Gaussian and Gaussian (Theorem 5.3.2)—for which the NML prior is horizon
independent, and in those cases it is equal to Jeffreys prior.

• Does the NML prior lead to lower regret than Jeffreys prior or vice versa? We show
examples of both cases.

• Are there families for which the Bayesian strategy with the NML prior is optimal?
The answer is positive. Two of the three families that have their NML priors equal to
Jeffreys prior namely, the gamma and Gaussian families, have optimal NML priors.

• Finally we leave open the question whether there are other parametric families whose
Bayesian strategy under the NML prior is optimal. Our two positive examples, namely
the gamma and Gaussian families, have horizon–independent NML priors. Is it possible
for an NML prior to be horizon–dependent and be optimal?

5.2 Notations and Definitions

In this chapter our set of experts are i.i.d natural exponential families defined in the following
way:

pθ(x) = h(x)eθ
ᵀx−A(θ), (5.1)

where h is a reference measure, and A is the cumulant generating function given by
A(θ) = log

∫
h(x)eθ

ᵀx dy. The parameter space also known as the natural parameter space
is the set

Θ = {θ ∈ Rd | A(θ) <∞}. (5.2)

An alternative way of representing the family is via the mean-value parameterization. The
mean of pθ( · ) is [9, chap. 19]

µ = ∇A(θ),
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hence
pµ(x) = h(x)e[(∇A)−1(µ)]ᵀx−A([(∇A)−1(µ)]), (5.3)

with the mean-value parameter space

Γ = {µ ∈ Rd | ∃ θ ∈ Θ s.t. ∇A(θ) = µ}. (5.4)

We need the following two definitions for our main results.

Definition 17 (Density of the Maximum Likelihood Estimator). Let X1, X2, · · · , Xn be
a sequence of i.i.d random variables associated with density pµ and probability distribution
Pµ, and let µ̂(Xn) be the random variable of this sequence’s maximum likelihood estimator.
Furthermore, let Qn

µ be the probability distribution of µ̂(Xn), meaning for any Γ0 ⊆ Γ

Qn
µ (Γ0) = P n

µ (µ̂(Xn) ∈ Γ0) ,

where P n
µ is the sequence’s probability distribution. We denote the density of the maximum

likelihood estimator by fnµ which is equal to

f (n)
µ =

dQn
µ

dλn
,

where λn is assumed to be either the counting measure, in the case of discrete data, or the
Lebesgue measure in the case of continuous data.

Note that in the mean-value parametrization of natural exponential families (Equa-
tion (5.3)), the maximum likelihood estimator of the mean parameter µ is the empirical

mean of the observations. Therefore f
(n)
µ (µ̄) is just the nth convolution of pµ( · ) at nµ̄. This

is because upon observing xn, the θ that maximizes the joint distribution is the same θ that
maximizes the following:

(x1 + x2 + · · ·+ xn)ᵀθ − nA(θ)

Therefore the maximum likelihood estimator of θ is a θ̂ that solves the equation

x1 + x2 + · · ·+ xn
n

= ∇A(θ̂) = µ̂.

Note that we used the one-to-one transformation ∇A(θ) = µ to go from natural parametriza-
tion to mean–value parametrization.

We are ready to define the NML prior . Let the set of all possible maximum likelihood
estimators for a fixed n be:

Γ̂n = {µ ∈ Γ | ∃ xn ∈ X n s.t µ̂(xn) = µ}.
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Definition 18 (NML prior). For a fixed n, the NML prior is a horizon–dependent prior
denoted by πn( · ) and defined over Γ̂n = {µ ∈ Γ | ∃ xn ∈ X n s.t µ̂(xn) = µ} as

πn(µ̄) =
f

(n)
µ̄ (µ̄)∫

Γ̂n
f

(n)
θ (µ) dλn(µ)

.

It is convenient to work in a parametrization that is slightly different from that of Equa-
tions (5.1) and (5.3). Our main results rely on properties of a parametrization of natural
exponential families called the exponential dispersion models. These models are parametrized
by θ and σ2 [13]. It will suffice to treat σ2 (called the dispersion parameter) as fixed. Hence
Jeffreys prior is a distribution over θ only (or, in the mean–value parameterization, over µ
only),

p(x; θ, σ2) = c(x, σ2) exp

(
1

σ2
[θy − κ(θ)]

)
(5.5)

Equation (5.5) can be easily reparametrized into Equation (5.1) by the change of variable
x = 1

σ2y which gives A(θ) = 1
σ2κ(θ) and h(x) = c(σ2x, σ2)σ2.

The natural parameter θ and the mean parameter µ are related to each other via

Eθ[Y ] = µ =
∂κ(θ)

∂θ
= τ(θ). (5.6)

So we can reparameterize Equation (5.5) as

p(x;µ, σ2) = c(x, σ2) exp

(
1

σ2
[τ−1(µ)y − κ(τ−1(µ))]

)
. (5.7)

5.3 Main Result

Lemma 5.3.1. There exists a C, such that for all closed subsets Γ0 in the interior of Γ,

lim
n→∞

1√
n

∫
Γ0∩Γ̂n

f
(n)
µ (µ)dλn(µ)∫

Γ0

√
I(µ)dµ

= C,

where I(µ) is the Fisher information at µ.

Proof. We consider the constrained stochastic complexity over a closed subset of the mean–
value parameter space, defined as

log

∫
{xn∈Xn | µ̂(xn)∈Γ0}

sup
µ∈Θ

pµ(xn) dλn(xn).
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Grünwald [9, pp. 227, 302, 303] showed that the constrained stochastic complexity over Γ0

is

log

∫
Γ0∩Γ̂n

fnµ (µ)dλn(µ) = log

(
eo(1)

( n
2π

) 1
2

∫
Γ0

√
I(µ)dµ

)
,

hence

lim
n→∞

1√
n

∫
Γ0∩Γ̂n

f
(n)
µ (µ)dλn(µ)∫

Γ0

√
I(µ)dµ

=
1√
2π
.

Note that when the NML prior converges in distribution to Jeffreys prior, their Bayesian
posteriors also converge to each other for any sequence of data.

Theorem 5.3.2. In 1-dimensional natural exponential families, the NML prior is exactly
equal to Jeffreys prior for any number of observations, if and only if the family is gamma,
Gaussian or inverse Gaussian.

Proof. Fix σ2 > 0. We want to show that fnµ (µ) is proportional to
√
I(µ) for any n > 0

and µ ∈ Ω if and only if the distribution is Gaussian, inverse Gaussian or gamma. First
we restrict ourselves to n = 1 and look for distributions whose f 1

µ(µ) (which is the same as
pµ(µ)) is proportional to Jeffreys prior at µ. Then we show that for those families Jeffreys
prior is also proportional to fnµ (µ) for any n.

Define d(x, µ) = 2y{τ−1(x) − τ−1(µ)} − 2{κ(τ−1(x)) − κ(τ−1(µ))}. Then the density in
the mean-value parametrization (Equation (5.7)) becomes

p(x;µ, σ2) = c(x, σ2) exp

(
1

σ2
{yτ−1(x)− κ(τ−1(x))}

)
exp

(
− 1

2σ2
d(x, µ)

)
= a(x, σ2) exp

(
− 1

2σ2
d(x, µ)

)
, (5.8)

where we have defined a(x, σ2) = c(x, σ2) exp
(

1
σ2{yτ−1(x)− κ(τ−1(x))}

)
.

Define the unit variance function [13, p. 4] in the following way.

V (µ) =
2

∂2

∂µ2d(µ, µ)
.

It can be easily verified that the variance of Y is σ2V (µ), which gives a direct relationship
between the mean and the variance. Jeffreys prior in the mean-value parameterization is
proportional to the inverse of the square root of the variance, i.e., 1

σ
V (µ)−

1
2 . We are looking

for models for which p(µ;µ, σ2) in Equation (5.8) is proportional to Jeffreys prior, that is,

a(µ, σ2) exp

(
− 1

2σ2
d(µ, µ)

)
∝ V (µ)−

1
2 .
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Since d(µ, µ) is zero, we are looking for models where

a(µ, σ2) ∝ V (µ)−
1
2 ,

or, equivalently, models where

a(x, σ2) = h(σ2)V (x)−
1
2

for some function h of σ2. In other words we are looking for exponential dispersion models
of the form

p(x;µ, σ2) = h(σ2)V (x)−
1
2 exp

(
− 1

2σ2
d(x, µ)

)
. (5.9)

To complete our proof we use the renormalized saddle point approximation, which is an
approximation of the exponential dispersion model in Equation (5.7), defined in the following
way [13, p. 27].

p0(x;µ, σ2) = c0(µ, σ2)V (x)−
1
2 exp

(
− 1

2σ2
d(x, µ)

)
,

where the constant c0(µ, σ2) ensures that the approximation p0 is a density:

c0(µ, σ2) =

(∫
Ω

V (x)−
1
2 exp

(
− 1

2σ2
d(x, µ)

)
dy

)−1

.

Daniels [6] showed that the only exponential dispersion models (as defined in Equation (5.8))
that are exact in their renormalized saddle-point approximation are Gaussian, inverse Gaus-
sian, and gamma distributions. If the renormalized saddle point approximation is exact,
then the moment generating functions of the two distributions must match [13, p. 189],
meaning

exp

[
1

σ2
{κ
(
θ + σ2u

)
− κ(θ)}

]
= exp

[
1

σ2
{κ
(
θ + σ2u

)
− κ(θ)}

]
c0(τ(θ), σ2)

c0(τ (θ + σ2u) , σ2)

for all u with θ + uσ2 ∈ Θ. In this case, c0 does not depend on its first argument. Thus,
if the renormalized saddle-point approximation is exact, then the density is of the form of
Equation (5.9). The converse statement is clearly true. Since the only exponential dispersion
models for which this approximation is exact are the Gaussian, inverse Gaussian and gamma
distributions. We have proved our theorem for n = 1.

Next, we show the theorem holds for any n. Note that these three families are all in-
stances of Tweedie distributions with different indices. Tweedie distributions are exponential
dispersion models whose variance is proportional to µp for some real p outside the interval
(0, 1); p is called the index . Clearly, Jeffreys prior in a Tweedie model of index p is propor-
tional to µ−

p
2 . The inverse Gaussian has p = 3, the Gaussian has p = 0, and the gamma
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distribution has p = 2. Let X1, . . . , Xn be chosen i.i.d. from the Tweedie distribution with
index p, mean µ and dispersion parameter σ2 (written Xi ∼ Twp(µ, σ

2)). Then [13, p. 128]

X1 +X2 + · · ·+Xn ∼ Twp
(
nµ, n2−pσ2

)
Let fTw ( · ;nµ, p, n2−pσ2) denote the density of Twp (nµ, n2−pσ2) where p is either 0, 2, or
1. The NML prior for horizon n is proportional to:

fTw

(
X1 + · · ·+Xn

n
= µ;nµ, p, n2−pσ2

)
= fTw

(
X1 + · · ·+Xn = nµ;nµ, p, n2−pσ2

)
= h(n2−pσ2) ((nµ)p)

− 1
2 exp

(
− 1

2n2−pσ2
d(nµ, nµ)

)
= h(n2−pσ2) ((nµ)p)

− 1
2

This is proportional to µ−
p
2 and hence to Jeffreys prior, as desired.

Two of the three families in Theorem 5.3.2, namely the gamma and Gaussian families,
have optimal Bayesian strategies under Jeffreys prior [14], hence the NML prior is optimal
for these families. These are the only families that have horizon–independent optimal NML
priors. It is easy to show that the Jeffreys prior of inverse Gaussian is not optimal, therefore
the NML prior is not optimal for this family. This means that even though the NML prior
is asymptotically optimal, it is not necessarily optimal for arbitrary horizon. To show that
inverse Gaussian does not have an optimal Jeffreys prior we compute the regret for two
sequences of data under Jeffreys prior, and show that the two regrets differ. This implies
that the Bayesian strategy under Jeffreys prior is not optimal, since optimal strategies are
equalizers (see Theorem 1.3.1). We choose x3 = (100, 1, 1) and x3 = (100, 2, 2). Jeffreys

prior for the inverse Gaussian is proportional to µ−
3
2 which has a normalization factor of

infinity. As a result, the Bayesian strategy is not defined. However conditioning on the first
observation resolves the problem. An easy calculation shows that the regret of x3 conditioned
on x1 = 100 is 14.606240 and the regret of x3 conditioned on X1 = 100 is 13.025950.

For families where the NML prior is different from Jeffreys prior (families other than
those in Theorem 5.3.2), there are cases where Jeffreys prior is better than the NML prior
in terms of maximum regret and vice versa. Therefore no one is universally better than the
other. A Tweedie family of order 3

2
has an optimal Jeffreys prior [3], however the NML prior

in this case is different from Jeffreys prior, and hence is not optimal. On the other hand, our
experiments shows that the NML prior for Bernoulli is better than Jeffreys prior. Jeffreys
prior for Bernoulli is 1

π
β
(

1
2
, 1

2

)
, where β is the Beta function, and the maximum likelihood

upon seeing m ones out of n outcomes is
(
m
n

)m (n−m
n

)n−m
. Therefore the NML prior would

be:

πn

(m
n

)
=

pµ
(
µ̂ (Xn) = m

n

)∑n
k=0 pµ

(
µ̂ (Xn) = k

n

) =

(
n
m

) (
m
n

)m (n−m
n

)n−m∑n
k=0

(
n
k

) (
k
n

)k (n−k
n

)n−k .
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The Bayesian probability upon observingm ones under Jeffreys prior is 1
π
β
(
m+ 1

2
, n−m+ 1

2

)
whereas the Bayesian probability under the NML prior is:

n∑
i=0

(
i

n

)m(
n− i
n

)n−m
×

(
n
i

) (
i
n

)i (n−i
n

)n−i∑n
k=0

(
n
k

) (
k
n

)k (n−k
n

)n−k .
Our calculations show that the worst regret of Bernoulli’s Bayesian strategy under the NML
prior is always lower than the case where Jeffreys prior is used instead. The worst data
sequence for the case of NML prior is a sequence that has only one one and for the case of
Jeffreys prior it is a data sequence that has zero ones.

The two optimal NML priors that we found in this chapter, NML priors for gamma
and Gaussian families, are horizon–independent. The question whether there exist horizon–
dependent NML priors that are optimal still remains open.



59

Chapter 6

Attempts in Finding Optimal
Horizon–dependent Priors for Online
Binary Prediction

The Bayesian strategy under Jeffreys prior is not optimal for Bernoulli experts. In this
chapter, we investigate possible approaches to find horizon–dependent priors that makes the
Bayesian prediction for online binary prediction under Bernoulli experts minimax optimal,
i.e. equivalent to NML. Even though this chapter does not find such optimal horizon–
dependent priors, it shows different routes researchers can take to possibly tackle the problem.

6.1 Introduction

Online binary classification is the game between an adversary and a forecaster. At each
round the forecaster should reveal her belief about the binary outcome of an event in a
form of a probability distribution, simultaneously the adversary reveals the true value of the
event. The sample space could be thought of as the set {0,1}. At each round, there is no
assumption on how the event is generated. The binary outcome could even be generated in
a way to mislead the learner, i.e. in an adversarial way. More formally we let x1, x2, . . ., be
a sequence of binary outcomes, i.e. xi ∈ X = {0, 1} revealed one at a time. We use xt to
denote (x1, x2, · · · , xt). At round t, after observing xt−1, the learner assigns a probability
distribution on X , denoted qt ( · | xt−1). Then, after xt is revealed, the forecaster incurs the
log loss -ln qt (xt | xt−1).

We call any sequential probability assignment a strategy. The term is also used for joint
distributions when the horizon n is clear from context. The performance of a strategy is
measured relative to the best in a reference set of i.i.d Bernoulli experts, each parametrized
by a point θ in [0, 1] and denoted as pθ( · ). The joint probability of an arbitrary sequence
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xn under pθ( · ) is :

θ
∑n
t=1 xt (1− θ)n−

∑n
t=1 xt .

Note that θ is the probability of observing a 1. The difference between the accumulated loss
of the prediction strategy and the best expert in the reference set is called the regret ; [4];
see Definition 3.

Let q(n)( · ) be such a distribution over n binary random variables. The regret as defined
in Definition 3, of q(n)( · ) upon observing xn is :

R[0,1](xn, q(n)) =
supθ∈ [0,1]

∏n
i=1 θ

xi (1− θ)1−xi

q(n)(xn)
=

(∑n
i=1 xi
n

)∑n
i=1 xi

(
1−

∑n
i=1 xi
n

)n−∑n
i=1 xi

q(n)(xn)

6.2 NML with i.i.d Bernoulli Distributions

Since there is no assumption on data, the interest lies in minimax strategies, strategies that
minimize the regret in the worst case over all possible data sequences. As it was shown in
Theorem 1.3.1, normalized maximum likelihood, Definition 6, is the unique joint distribution
that achieves minimax regret. More formally, for an arbitrary sequence xn, NML is the
maximum likelihood of the sequence normalized, which is the following:

p
(n)
nml(x

n) =

(∑n
t=1 xt
n

)∑n
t=1 xt

(
n−

∑n
t=1 xt
n

)n−∑n
t=1 xt

∑n
i=0

(
i
n

) (
i
n

)i (n−i
n

)n−i (6.1)

6.3 Bayesian Strategy with i.i.d Bernoulli Distributions

The drawback of NML is its marginalization cost. NML is naturally defined in terms of a
joint distribution. In order to compute conditionals at round t, 2n−t joint probabilities should
be summed up for marginalization. This makes the game extremely costly for the forecaster.
Bayesian strategies on the other hand are much easier to compute. A Bayesian strategy is
defined by a prior π( · ) on the parameter space [0, 1]; as more data are observed the posterior
is updated and the Bernoulli experts are mixed. At time t, the Bayesian conditional under
prior π( · ) is computed in the following way :

pπ(Xt = xt|xt−1) =

∫
[0,1]

θxt (1− θ)1−xt π
(
θ|xt−1

)
dθ

where π (θ|xt−1) is the posterior. The joint distribution over xn will be :

pπ(xn) =

∫
[0,1]

θ
∑n
t=1 xt (1− θ)n−

∑n
t=1 xt π (θ) dθ
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The Bayesian strategy with Jeffreys prior has very interesting properties and behaves
asymptotically optimally. It has been shown that as long as the maximum likelihood does
not lie on the boundary or gets arbitrarily close to it, the regret of the Bayesian strategy
under Jeffreys prior converges to that of the minimax regret, i.e. to the NML’s regret [see
9, chap. 8]. In the Bernoulli setup in case of observing all zeros or all ones, the regret
of the Bayesian strategy under Jeffreys prior is higher than NML by an additive factor of
1
2

ln 2. Bayesian updating under Jeffrey prior has the nice property that it corresponds to the
following simple process. Initially we put two balls, one black and one white, in an urn. At
each round the learner’s probability of observing a 1 corresponds to the proportion of black
balls in the urn and her probability of observing a 0 is the proportion of the white balls in
the urn. At each round two black balls are added to the urn if a 1 is observed and two white
balls is added to the urn if a 0 is observed. The proof that this process is indeed a Bayesian
updating under Jeffreys prior is very simple. First note that the process is exchangeable,
hence by de Finite’s theorem it should be a Bayesian mixture of i.i.d Bernoulli distributions.
The prior for this Bayesian mixture is determined by its moments. The tth moment is

µt =

∫
[0,1]

θtπ(θ) = p(x1 = x2 = · · · = xt = 1) =
t∏
i=1

2× i− 1

2× i
,

which is the probability of observing t ones in a row. These are the moments of a Beta
distribution with parameters 1

2
and 1

2
, i.e. β

(
1
2
, 1

2

)
which is exactly the Jeffreys prior :

πJ(θ) =
1

π
√
θ (1− θ)

As we showed in Chapters 2 and 3 if Jeffreys prior is not optimal, neither can other priors
be, except for horizon–dependent priors. In this chapter we investigates ways to find optimal
horizon–dependent priors for Bernoulli distributions. In Section 6.4 we investigate ways to
find a polynomial prior for this purpose and in Section 6.5 we look at this problem from the
perspective of a finite moment problem.

6.4 Attempt I : Polynomial Priors

For a fixed horizon n we want to find a prior that takes a polynomial form of degree n and
achieves the minimax bound.

π(θ) =
n∑
i=0

aiθ
i (6.2)

For a given sequence of outcomes xn let m be the number of ones and n − m be the
number of zeros, and let θ be the probability of observing a one and 1− θ be the probability
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of observing a zero. Using Equation (6.1), we write n+ 1 equations (for m = 0, · · · ,m = n)
to find coefficients of our polynomial.∫ 1

0

(
n∑
i=0

aiθ
i

)
θm (1− θ)n−m dθ =

n∑
i=0

(∫ 1

0

aiθ
i

)
θm (1− θ)n−m dθ =

n∑
i=0

aiθ
i+m (1− θ)n−m dθ =

n∑
i=0

aiβ(i+m− 1, n−m+ 1) =

n∑
i=0

ai
(m+ i)! (n−m)!

(n+ i+ 1)!
=

(
m
n

)m (n−m
n

)n−m∑n
i=0

(
i
n

) (
i
n

)i (n−i
n

)n−i .
Now we let A,B,C and D be n+ 1 by n+ 1 matrices defined in the following way:

Am,i =
(m+ i)! (n−m)!

(n+ i+ 1)!

Dm,i = (m+ i)!

Cm,i =

{ 1
(n+i+1)!

if m = i

0 otherwise

Bm,i =

{
(n−m)! if m = i
0 otherwise

We let b and a be n+ 1 by 1 vectors defined in the following way:

am,1 = am,

bm,1 =

(
m
n

)m (n−m
n

)n−m∑n
i=0

(
i
n

) (
i
n

)i (n−i
n

)n−i .
It could be easily shown that A = BDC and a = A−1b, hence we have to find the inverse
of A. A−1 = C−1D−1B−1. C and B are diagonal matrices, therefore their inverses are as
follows.

C−1
m,i =

{
(n+ i+ 1)! if m = i
0 otherwise

B−1
m,i =

{ 1
(n−m)!

if m = i

0 otherwise

The only hard part is the inverse of D. The following lemma shows that D is invertible and
gives an explicit formula for its inverse.
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Lemma 6.4.1.

Det(D) =
n∏
i=0

i!2

And

D−1
m,i =

(−1)m+i

m!2i!2

n∑
k=max(m,i)

k!2

(k −m)!(k − i)!
.

Proof. A Hankel matrix H is any square matrix such that Hi,j = Hi−1,j+1. Hence an n by
n Hankel matrix can be represented by 2n − 1 numbers called the Hankel series. These
numbers are the first row, except for the last entry, and the transpose of the last column
of the matrix concatenated. The binomial transform of a Hankel matrix H is another
Hankel Matrix Ĥ whose Hankel numbers are defined in the following way: ĥi =

∑i
k=0

(
i
k

)
hk,

where {h0 ≡ H0,0, h1 ≡ H1,1, h2 ≡ H2,2, · · · , h2n−2 ≡ H2n−2,2n−2} is the Hankel series. The
determinant of a Hankel matrix equals the determinant of the binomial transform of the
matrix. D is obviously a Hankel matrix and its Hankel series is {i!}. Let V be a Hankel

matrix whose Hankel series is the derangement series, i.e. {i!
∑i

k=0
(−1)k

k!
}. It could be easily

shown that the binomial transform of V is D. Hence their determinants coincide. Radoux
[17] showed that the determinant of V is

∏n
i=0 i!

2. This should be the determinant of D as
well. Furthermore, Slavnov [23] showed that the inverse of D equals:

(−1)m+i

m!2i!2

n∑
k=max(m,i)

k!2

(k −m)!(k − i)!

The next theorem uses Lemma 6.4.1 and finds the coefficients in Equation (6.2).

Theorem 6.4.2. The inverse of A is the following:

(n+m+ 1)!

(n− i)!
(−1)m+i

m!2i!2

n∑
k=max(m,i)

k!2

(k −m)!(k − i)!

And the coefficients of our polynomial prior in Equation (6.2) are:

am =
n∑
i=0

(−1)m+i

m!2i!2

n∑
k=max(m,i)

k!2

(k −m)!(k − i)!

 (
i
n

)i (n−i
n

)(n−i)∑n
j=0

(
n
j

) (
j
n

)j (n−j
n

)(n−j) (n+i+1)!
(n−m)!

Proof.
A−1 = C−1D−1B−1

And
a = A−1b = C−1D−1B−1b
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The only problem with the polynomial prior in Equation (6.2) is the lack of a guarantee
for its positivity. It seems that for horizons up to 11 the prior is positive. However the
polynomial slightly goes negative in the vicinity of 0 and 1 for horizons larger than 11 (see
Figure 6.1).

Figure 6.1: Polynomial prior for n = 9 (left), and for n = 12 (right).

6.5 Attempt II : Finite Hausdorff Moment Problem

In this section, we show that a well-known problem -called Finite Hausdorff moment problem–
is a very natural approach to tackle the problem of finding optimal horizon–dependent priors.
Note that for a fixed horizon n, if there exists a prior πn( · ) that makes Bayesian strategy
equivalent to the NML strategy, then the first n+ 1 moments of this prior would be:

µ0 = 1, µ1 = p
(n)
nml(1), µ2 = p

(n)
nml(1

2), · · · , µn = p
(n)
nml(1

n)

This is because for any i ≤ n, and xi = 1i,

p
(n)
nml(x

i) =

∫
[0,1]

θ
∑i
k=1 xk (1− θ)i−

∑i
k=1 xk πn(θ) dθ =

∫
[0,1]

θiπn(θ) dθ = µi = p
(n)
nml(1

i).

Thus, the problem of finding an optimal horizon–dependent prior boils down to finding a dis-
tribution πn( · ), such that its first n+1 moments coincide with 1, p

(n)
nml(1), p

(n)
nml(1

2), · · · , p(n)
nml(1

n).
This is a well-known problem called the finite Hausdorff moment problem: What properties
should a sequence of n+1 numbers µ0, µ1, · · · , µn have to make them the first n+1 moments
of some distribution? In other words does there exist a distribution with first n+1 moments
µ0, µ1, · · · , µn? Such a distribution exists if a series of Hankel matrices defined below are
positive definite [8].

If n is even we let

∆l0 = µ0,
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∆l2 =

(
µ0 µ1

µ1 µ2

)
,

∆l4 =

µ0 µ1 µ2

µ1 µ2 µ3

µ2 µ3 µ4

 ,

· · · ,

∆ln =


µ0 µ1 · · · µn

2

µ1 µ2 · · · µn
2

+1

...
...

. . .
...

µn
2

µn
2

+1 · · · µn

 .

and let

∆u0 = µ1 − µ2,

∆u2 =

(
µ1 − µ2 µ2 − µ3

µ2 − µ3 µ3 − µ4

)
,

∆u4 =

µ1 − µ2 µ2 − µ3 µ3 − µ4

µ2 − µ3 µ3 − µ4 µ4 − µ5

µ3 − µ4 µ4 − µ5 µ5 − µ6

 ,

· · · ,

∆un =


µ1 − µ2 µ2 − µ3 · · · µn

2
− µn

2
+1

µ2 − µ3 µ3 − µ4 · · · µn
2

+1 − µn
2

+2

...
...

. . .
...

µn
2
− µn

2
+1 µn

2
+1 − µn

2
+2 · · · µn−1 − µn

 .

And if n is odd we let

∆l1 = µ1,

∆l3 =

(
µ1 µ2

µ2 µ3

)
,

∆l5 =

µ1 µ2 µ3

µ2 µ3 µ4

µ3 µ4 µ5

 ,
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· · · ,

∆ln =


µ1 µ2 · · · µn

2
+1

µ2 µ3 · · · µn
2

+2

...
...

. . .
...

µn
2

+1 µn
2

+2 · · · µn

 ,

and let

∆u1 = µ0 − µ1,

∆u3 =

(
µ0 − µ1 µ1 − µ2

µ1 − µ2 µ2 − µ3

)
,

∆u5 =

µ0 − µ1 µ1 − µ2 µ2 − µ3

µ1 − µ2 µ2 − µ3 µ3 − µ4

µ2 − µ3 µ3 − µ4 µ4 − µ5

 ,

· · · ,

∆un =


µ0 − µ1 µ1 − µ2 · · · µn

2
− µn

2
+1

µ1 − µ2 µ2 − µ3 · · · µn
2

+1 − µn
2

+2

...
...

. . .
...

µn
2
− µn

2
+1 µn

2
+1 − µn

2
+2 · · · µn−1 − µn

 .

If |∆li| > 0 and |∆ui| > 0 for all i’s defined above, then there exists some distribution
with its first n+ 1 moments equal to µ0, µ1, · · · , µn.

If such a distribution exists there are recipes for reconstruction, given the moments. One
of these methods is the maximum entropy method. For further details refer to [8].
For different values of n, we constructed the ∆l and ∆u matrices on the NML moments :

1 , p
(n)
nml(1) , p

(n)
nml(1

2) , p
(n)
nml(1

3) , · · · , p(n)
nml(1

n)

and all of them turned out positive definite. The question whether this is true for all n and
how to reconstruct such a prior in an efficient manner remains still open.
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Chapter 7

Conclusion

7.1 Overview

We have shown that NML, the unique minimax optimal strategy for online learning under
logarithmic loss, is equivalent to Bayesian updating under Jeffreys prior and the SNML
strategy if and only if the latter is exchangeable. This result holds for exponential families
and more generally for any parametric family for which the maximum likelihood estimator
is asymptotically normal. Moreover we showed if there is any optimal prior it must be
Jeffreys prior, and optimality of this prior implies optimality of SNML and vice versa. In
1-dimensional exponential families this phenomenon holds only for three families and any 1-
to-1 transformations of any of them. These families are: Gaussian, gamma, and the Tweedie
families of order 3/2. We further showed that for two of these families, i.e. the Gaussian and
gamma families, the NML prior is equal to Jeffreys prior. The only other family that has
this property is inverse Gaussian.

7.2 Open Problems

One general question which still remains open is the relationship between SNML and Bayesian
updating with Jeffreys prior. Our results show that if either strategy is optimal so is the
other one. This raises the performance comparison question: How does the regret of SNML
compare to that of the Bayesian strategy under Jeffreys prior in non-optimal scenarios?

Optimal Bayesian strategies with horizon–dependent priors is another interesting direc-
tion that our research can take. The possibility of priors other than Jeffreys being optimal
is non-existent. The only possible priors that can be optimal are those that are horizon–
dependent, priors that depend on the number of outcomes that the forecaster will eventually
see. For instance in online 0–1 prediction with Bernoulli experts, Jeffreys prior and con-
sequently SNML are not optimal. Does there exist a horizon–dependent prior that makes
the corresponding Bayesian strategy optimal? Does such a prior exists for all families with
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non-optimal Bayesian strategies under Jeffreys prior?
Finally, for what multi-dimensional exponential families is SNML exchangeable?
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