UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Algorithms and Data Structures for de novo Sequence Assembly

Permalink
https://escholarship.org/uc/item/4h1312dg

Author
Alhakami, Hind

Publication Date
2017

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4h1312dp
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Algorithms and Data Structures for de novo Sequence Assembly

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in
Computer Science
by
Hind A. I. AL Hakami

June 2017

Dissertation Committee:

Professor Stefano Lonardi, Chairperson
Professor Giafranco Ciardo

Professor Marek Chrobak

Professor Timothy Close

Copyright by
Hind A. I. AL Hakami
2017

The Dissertation of Hind A. I. AL Hakami is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am so grateful to have had Dr. Stefano Lonardi and Dr. Giafranco Ciardo as my advisors.
Without their kind guidance I would not have made it here.

Many thanks to Dr. Giafranco Ciardo, for offering guidance that helped me de-
velop many skills ranging from constructing sound proofs to using IXTEX. To him I owe
everything I know about software verification.

I joined Dr. Lonardi’s lab with virtually no knowledge in Bioinformatics. He
encouraged me and supported me to take classes and build my background in Computational
Biology. I deeply appreciate the freedom he gave me in exploring a wide spectrum of topics,
and working on research topics that best suited my interests. To him I owe everything I
know in Bioinformatics. It has been a pleasure working with and under the guidance of
such a kind and supportive advisor, who constantly offered valuable advice in many aspects
from research to career development.

I also would like to thank Dr. Timothy Close and Dr. Maria Munoz-Amatriain
from (Department of Botany and Plant Sciences), for the valuable discussions in our weekly
meetings. I have learned a lot while working with them. I also value the hands-on experience
I gained while accompanying them in the field; and for that I am very grateful.

I am also thankful to Dr. Marek Chrobak for providing help with some proofs in
this thesis. I also appreciate the time and effort he and Dr. Timothy invested as committee
members.

Last but not least, I am grateful to all UCR professors who contributed to my

knowledge; especially, Dr. Tao Jiang, Dr. Thomas Girke, Dr. Rajeev Gupta, and Dr.

v

Harsha Madhyastha (now at University of Michigan).

Portions of Chapter [2| appeared in SPIRFE, in the paper titled ” Sequence Decision
Diagrams,” co-authored with Giafranco Ciardo and Marek Chrobak [2].

Materials appearing in Chapter [3| are the result of collaboration with Hamid Mire-
brahim and Stefano Lonardi. Materials in Chapter [4] are the results of collaboration with

Stefano Lonardi.

To my loving parents and brothers.

vi

ABSTRACT OF THE DISSERTATION

Algorithms and Data Structures for de novo Sequence Assembly
by
Hind A. I. AL Hakami

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2017
Professor Stefano Lonardi, Chairperson

Despite the prodigious throughput of the sequencing instruments currently on the
market, the assembly problem remains computationally very challenging, mainly due to
the repetitive content of large genomes, uneven sequencing coverage, and the presence of
(non-uniform) sequencing errors and chimeric reads. As a consequence, the final assembly
is very rarely entirely finished, with one solid sequence per chromosome.

In this dissertation, we study (1) the problem of merging multiple genome-wide
assemblies produced using different assemblers and/or parameters, and (2) the problem of
stitching multiple overlapping local assemblies (e.g., assemblies generated by sequencing
BAC clones) to create a genome-wide assembly. Both assembly problem involves processing
very large set of strings, which in turns requires memory-efficient data structures that
allow for efficient comparison operations. In this context, we propose a data structure for
the compact encoding of finite sets of strings over a finite alphabet called sequence decision
diagrams (SeqDDs), which allows for efficient set operations. Next, we study and benchmark

several published methods to merge multiple genome-wide assemblies with the objective to

vii

produce a higher quality consensus assembly. Our comprehensive comparative study of
assembly reconciliation tools is the first of its kind. Finally, we develop, implement and test
novel algorithms to stitch locally overlapping assemblies based on the colored-positioned de

Bruijn graph, a variant of the classic de Bruijn graph.

viii

Contents

[List of Figures|

[List of Tables
1__Introduction|
2 Representation and manipulation of large sets of finite sequences
2.1 Background|
2.1.1 Finite automatal oL
[2.1.2 Decision diagrams|
2.1.3 Relatedworkl oo
2.1.4 Notationl.
2.2 Sequence decision diagrams|o o e

[2.2.1 Non-canonical SeqgDDs|.o o000
[2.2.2 Canonical SeqDDs with € at the bottom|
[2.2.3 Canonical SeqDDs with e at thetop|
2.2.4 An alternative canonical definition withoute
[2.2.5 Comparing compactness of SeqDDT" and SeqgDDN|

2.3

Compactness of canonical SeqDDs| 0.

[2.3.1 DFA representation of SeqDDB|.
[2.3.2 NFA representation of SeqDDI}.

2.3.3 SeqDD Compactness Comparison by Means ot Finite Automata]

[2.3.4 Summary|o

pA

Algorithms on SeqDDs|.o oo

25

Applications of sequence decision diagrams|

[2.5.1 Probabilistic witness generation|.
[2.5.2 Biological sequence analysis| 0000

A Comparative Evaluation of Assembly Reconciliation Tools|

B1

Background|

[3.1.1 Assembly reconciliation tools|

B2

Datasets and Experimental Results|

3.2.1 GAGE assemblies 0.

X

xi

xiii

f—

S © o 0o N

14
14
17
18
19
21
23
23
24

31
32
35
36
41
50

8.2.3 Usageofreads 64

[3.2.4 Gene coverage analysis|. L oo 64

[3.2.5 Experimental results| oo Lo 65

[3.2.6 Parameter tuning|. oL 85

[3.2.7 Time and Space Analysis| 88

13.2.8 Synthetic assemblies| o o oo oo 88

3.3 _Discussion and Conclusions 94

[4 SequOlIA: Sequence Overlap Identification and Assembly | 96
4.1 Colored positional de Bruijn graph| 97
4.2 Methodsl 100
4.2.1 Overlap detection| 100

|4.2.2 Construction of the colored positional de Bruijn graph|. 101

[4.2.3 Graph compression|. 102

[4.2.4 Graph traversal|. o 103

4.3 Experimental Results|. o o o 104
44 Conclusionl 107
b__Conclusion| 113
(Bibliography| 115
[A A Comparative Evaluation of Assembly Reconciliation Tools: Supplemen- |
[tary Materiall 124
[A.1 Experimental results on GAGE assemblies: comments on Tables |[A.1THA.15| . 124
A.1.1 High contiguity, high correctness inputs (GAGE)| 124

A.1.2 Reordering the inputs @ 128

A.1.3 High-quality inputs (GAGE)| 130

A 1.4 Highly-fragmented inputs (GAGE)| 133

A.1.5 De Bruijn vs. string graph assembly (GAGE)| 134

A.1.6 Multiple inputs (GAGE)|. 136

A.1.7 Multiple inputs (alternative ordering)| 140

List of Figures

1.1 BAC-by-BAC sequencing and assembly| 3
1.2 BAC-by-BAC vs. whole genome shotgun sequencing strategy| 4
2.1 ROBDD and ZBDD Examples 11
2.2 SeqDDB, 5eqDDT, and SeqDDN Examplel. 16
2.3 Canonicity of sequence decision diagrams| 20
2.4 SeqDDT and SeqDDN Structures|. o000 21
2.5 5eqDDT vs SeqDDN sizes|o oo 23
2.6 Example of quadratic growth when translating SeqDDB into S5eqDDT| . . . 27
[2.7 Example of exponential growth when translating SeqDD'I" into SeqDDB.|. . 29
[2.8 The family of languages demonstrating Theorem |10} 30
2.9 The family of languages demonstrating Theorem |I1}| 31
[2.10 SeqDDB encoding prefixes and SeqDDN encoding suffixes example| 46
|3.1 Scatterplots interpretation guide]o o000 62
13.2 Contiguity-correctness experimental results] 66
[3.3 Contiguity-correctness experimental results (swapped)[. 69
[3.4 Experimental results on merging high-quality assemblies| 71
3.5 Experimental results on merging highly fragmented assemblies] 73
13.6 Experimental results on merging assemblies produced by different assembly |

methodl 74
3.7 Experimental results on merging multiple assemblies of Staphylococcus aureus| 77
[3.8 Experimental results on merging more than two assemblies (as scaffolds) |

ordered by the FRCurve score (Staphylococcus aureus)| 77
[3.9 Experimental results on merging more than two assemblies (as contigs) or- |

dered by the FRCurve score (Rhodobacter sphaeroides). 78
[3.10 Experimental results on merging more than two assemblies (as scaffolds) |

ordered by the FRCurve score (Rhodobacter sphaeroides)| 78
[3.11 Experimental results on merging more than two assemblies (as contigs) or- |

dered by the FRCurve score (Hg_chrif)| 79
[3.12 Experimental results on merging more than two assemblies (as scaffolds) |

ordered by the FRCurve score (Hg_chrij)| 79
[3.13 Experimental results on merging more than two assemblies (as contigs) — |

alternative ordering (Staphylococcus aureus)| 80

xi

[3.14 Experimental results on merging more than two assemblies (as contigs) — |

alternative ordering (Rhodobacter sphaeroides)| 80
[3.15 Experimental results on merging more than two assemblies (as contigs) — |

alternative ordering (Hg_chri/)l oo it 81
13.16 Time and apace analysis ot assembly reconciliation tools| 89
[3.17 Time and space analysis as number of input assemblies increases| 90
13.18 Results of merging synthetic assemblies] 91
13.19 Assembly reconciliation results for difterence choices of read coverage]. . . . 93
4.1 de Bruijn graph structure] o Lo 99
4.2 Edge orienting and labelingl oo 000000 100
4.3 SequOIA de Bruijn graph example| 00, 102
4.4 SequOlA de Bruijn graph example| 104
4.5 Examples illustrate solving bubble and tip branches| 105
4.6 Examples illustrate solving extend branches 105

xii

List of Tables

1.1 Summary of sequencing technology plattorms| 2
[2.1 Summary of the upper bound size of a SeqDDB/N encoding a set of all |
| prefixes, sutfixes, or subwords of a certain string of sizen. 45
|3.1 Features of the assembly reconciliation tools| 60
13.2 Experiments on the Bombus impatiens assemblies|. 84
4.1 SequOIA assembly of cowpea BACs quality statistics|. 106
[A.1 Contiguity-correctness experimental results] 143
[A.2 Contiguity-correctness experimental results (swapped input order)| 144
|IA.3 Experimental results on merging high-quality assemblies| 145
|[A.4 Experimental results on merging highly fragmented assemblies] 146
IA.5 Experimental results on merging assemblies produced by assemblers based |
| on the de Bruijn graph compared to string graph| 147
IA.6 Experimental results on merging more than two assemblies ordered by the |
| FRCurve score (Staphylococcus aureus)|. 148
[A.7 Experimental results on merging more than two assemblies (contigs) ordered |
| by the FRCurve score (Rhodobacter sphaeroides)| 149
[A.8 Experimental results on merging more than two assemblies (contigs) ordered |
| by the FRCurve score (Hg_chrl)|. 150
[A.9 Experimental results on merging more than two assemblies (scaffolds) ordered |
| by the FRCurve score (Staphylococcus aureus)|. 151

[A.10 Experimental results on merging more than two assemblies (scaffolds) ordered

by the FRCurve score (Rhodobacter sphaeroides)| 152

[A.11 Experimental results on merging more than two assemblies (scaffolds) ordered

by the FRCurve score (Hg_chrij)|. 153

[A.12 Experimental results on merging more than two assemblies (as contigs) with

an alternative ordering (Staphylococcus aureus)| 154

[A.13 Experimental results on merging more than two assemblies (as contigs) with

an alternative ordering (Rhodobacter sphaeroides)|. 155

[A.14 Experimental results on merging more than two assemblies (as contigs) with

an alternative ordering (Rhodobacter sphaeroides)|. 156

xiii

[A.15 Experimental results on merging more than two assemblies (as contigs) with

an alternative ordering (Hg_chri4)| 157
A.16 Experimental results on parameter tuning (Staphylococcus aureus)| 158
A.17 Experimental results on parameter tuning (Rhodobacter sphaeroides)| 159
A.18 Experimental results on parameter tuning (Hg_chrlj) 160

Xiv

List of Algorithms

2.1 Algorithm to canonize a RNFA.|. 26
2.2 Intersection operation on SeqDDBs.|o 000000000 33
2.3 Union operation on SeqDDBs|.o 34
2.4 Difference operation on SeqgDDBs|.o o000 35
2.5 Symmetric Difference operation on SeqDDBs| oo 0000 36
[2.6 Concatenation operation on SeqDDBs|o 00000 37
2.7 Union operation on SeqDDNs|.o o000 38
2.8 Intersection operation on SeqDDNs| 000000000 39
2.9 Difference operation on SegDDNg|o oo 40
[2.10 Symmetric Difference operation on SeqDDNs| 41
[2.11 Concatenation operation on SeqDDNs|00 000000 42
[2.12 Suffix-Prefix overlap| o oo o1
4.1 Build colored positional de Bruijn graph| 108
4.2 Insert repeated sequence to de Bruijn graph|00 . 109
4.3 SequOIA de Bruijn graph traversal algorithm| 109
4.4 SequOlA de Bruijn graph traversal algorithm — Solving Bubbles and Tips|. 110
4.5 SequOIA de Bruijn graph traversal algorithm — Solving combine| 111
4.6 SequOIA de Bruijn graph traversal algorithm — Solving branches|. 112

XV

Chapter 1

Introduction

The sequencing instruments currently on the market have enabled the sequencing
of many large, complex genomes. Despite the tremendous throughput of these instruments,
the assembly problem is still very challenging, mainly due to the repetitive content of large
genomes, uneven sequencing coverage, and the presence of (non-uniform) sequencing errors
and chimeric reads. The third generation of sequencing technology, e.g., Pacific Biosciences
[27] and Oxford Nanopore [19], offers very long at a higher cost per base, but sequencing
error rate is much higher (summary in Table . As a consequence, long reads are more
commonly used for scaffolding contigs created from second generation data, rather than for
de novo assembly [2§].

A significant number of de novo genome assemblers are available to the community.
The choice of the most appropriate assembler depends on the size and complexity (repeat
content, ploidy, etc.) of the genome to be assembled, the type of sequencing technology used

to produce the input reads (e.g., Sanger, 454, Illumina, PacBIO, Nanopore, etc.), and the

Platform Sequencer Maximal read Error rate Average run Cost per 1 Million

length duration bases (US dollars)
Sanger ABI 3730x1 1000 bp 0.01% 2-3 hours $2400
454 GS FLX 1000 bp 0.01% 24 hours $10
Ilumina HiSeq 3000 250 bp 0.01% 4 days
Ilumina NextSeq500 150 bp 0.01% 30 hours $0.05 - $0.15
INlumina MiSeq 300 bp 0.01% 24 hours
Ion Torrent PGM 318 400 bp 2% 7 hours $1
PacBio RS II 54 kbp 13% 3 hours $0.13-80.60
Nanopore MinION 150 kbp 3% - 8% n.a. n.a.

Table 1.1: Summary of sequencing technology platforms

availability of paired-end or long-insert mate-pair reads. Each assembler implements slightly
different heuristics to deal with repetitions in the genome, uneven coverage, sequencing
errors and chimeric reads. The final assembly is very rarely entirely finished, with one solid
sequence per chromosome. Instead, the typical output is an unordered/unoriented set of
contiguous regions called contigs. If paired-end/mate-pair reads are available, contigs can
be ordered and oriented by anchoring paired-end reads to contigs. The length of the gaps

between contigs are estimated, then contigs are then joined into scaffolds.

BAC-by-BAC vs. whole genome shotgun sequencing

BAC-by-BAC sequencing starts by constructing a physical map of overlapping
series of contigs each of which spans a large (150 Kbp on average) contiguous region of
the source genome. Each contig is inserted into a host vector as a medium for replication.

The host vector is a bacterium, hence the naming bacterial artificial chromosome (BAC).

‘ Prepare multiple copies

Purified
BAC DNA

‘ Physically fragment DNA

‘ Subclone random fragments

OOOOOOOOOOO

Generate reads from
random subclones

Prefinished sequence
‘ Sequence finishing

‘ Final assembly

Finished sequence

Nature Reviews | Genetics

Figure 1.1: BAC cloning involves making copies of specific regions of the genome. Clones
are then fragmented and random DNA fragments (typically 2-5 kb in size) are sub-cloned.
Sequence reads are then generated from one or both ends of randomly selected sub-clones.
Reads are then assembled for each BAC individually. Figure reproduced from [30]

Cloned BACs are then fingerprinted, using restriction enzyme to find common markers and
order overlapping contigs. Next, a minimum tiling path is computed to select a minimal
number of BACs spanning the genome. Selected BACs are then sub-cloned into smaller-
insert libraries, from which sequence reads are randomly derived. Figure illustrate this
process.

Whole genome shotgun sequencing skip the mapping, fingerprinting, and the se-
lection of a minimum tiling path phases and proceeds using sub-clone libraries prepared

from the entire genome. Figure show a comparison between BAC-by-BAC and whole

Generate tens of milions
of sequence reads

Construct
clone map
and select
mapped
clones

Generate
saveral
thousand
sequence
reads per
clone

Assemble

" 7/

Figure 1.2: In this figure we represent a genome as a large encyclopedia. In (a) BAC-by-
BAC sequencing, each page represents a BAC, each BAC is then sub-cloned and reads are
generated. In (b) whole genome shotgun sequencing, the entire genome is fragmented and
reads are generated from each DNA fragment. Figure reproduced from [30].

genome shotgun sequencing process.

Whole genome sequencing produces a base-by-base resolution, therefore allows for
a comprehensive analysis of a genome such as capturing small variants as well as large
variants. However, BAC-by-BAC sequencing approach is preferred when dealing with large
genome, complex repeated regions, or when the goal is analyzing targeted regions (selective

sequencing).

De novo sequence assembly

De novo sequence assembly is the reconstruction of a genome sequence from a
large set of strings called reads without the help of a reference genome. The strategies used

by de novo sequence assemblers can be classified into three groups

Greedy methods always makes the choice with the greatest immediate benefit; greedy
assembler always joins the reads that overlap best, as long as they do not contradict the
already constructed assembly. The choices made by the assembler are inherently local and
do not take into account the global relationship between the reads. Most greedy assemblers
use heuristics designed to avoid misassembling repetitive sequences. Assemblies produced
by greedy paradigms are usually not of very quality because they do not take advantage
of global information to resolve repetitive regions of the genome. Some examples of greedy

assemblers are Phrap [31], SSAKE [77], and VCAKE [42].

Overlap-layout-consensus assemblers starts by identifying all pairs of reads that over-
lap sufficiently well; overlaps are represented into a graph (called overlap graph0O, where
node represent reads and edges represents an overlaps. Several complex algorithms that
take into account the global relationship between the reads have been developed on the
overlap graph. This strategy was introduced by Celera [60], a very influential assembler for
Sanger sequencing reads. Other overlap-layout-consensus assemblers include, Celera As-
sembler with the Best Overlap Graph (CABOG) [57], Newbler [54], and Edena [39]. The
high throughput of second-generation instrument poses high computational demands on the

overlap-layout-consensus paradigm.

String graph. A variant of the OLC approach that simplifies the global overlap graph by
removing redundant information (transitive edges) introduced by SGA assembler [69] based

on FM-index, an efficient string indexing data structure.

de Bruijn graph represents input reads as a sequence of their subwords of length & (called
k-mers). Nodes in the graph represent kmers, and the edges indicate an overlap by exactly
k — 1 nucleotides. Most de Bruijn graph assemblers use the read information to refine the
graph structure and to remove graph patterns that are not consistent with the reads. De
Bruijn graphs for genome assembly were first introduced in the EULER assembler [15]. Since
then, they have the primary data structure for modern assemblers targeted at short-read

sequencing data, e.g., Velvet [84], SOAPdenovo [51] and ALLPATHS-LG [29].

The rest of this Dissertation is organized as follows. In Chapter [2] we introduce
Sequence Decision Diagrams (SeqDD), which are canonical decision diagrams that do not
suffer from ordering problem. SeqDD is a data structure designed to compactly store finite
sets of strings sharing substantial amount of common substrings. In that chapter, we present
efficient algorithms to carry out set operations using the memoization property, an intrinsic
feature of decision diagrams. In Chapter [3) we present a comparative analysis of assembly
reconciliation tools. The objective of these tools is to merge multiple draft assemblies to
obtain an assembly of higher quality. In Chapter 4] we introduce a novel method called
Sequence Overlap Identification and Assembly (SequOIA). The objective of SequOlIA is
to merge overlapping local assemblies, like the ones generated by sequencing BAC clones

belonging to a minimum tiling path of a genome.

Chapter 2

Representation and manipulation

of large sets of finite sequences

The assembly problem requires memory-efficient data structures that store large
sets of strings and allow for efficient set operations on them. In this chapter we introduce
sequence decision diagrams (SeqDDs), which can encode arbitrary finite sets of strings over a
finite alphabet. SeqDDs are a variant of classic decision diagrams such as BDDs and MDDs.
Instead of having a fixed number of levels, SeqDDs require that the number of paths and
the lengths of these paths to be finite. While MDDs are suited to store and manipulate

large sets of constant-length tuples, SeqDDs can store arbitrary finite languages.

2.1 Background

2.1.1 Finite automata

A finite automaton consists of a finite number of states and labeled transitions
such that the next state is determined by the current state, the input symbol, and the
transition function. Finite automata can be categorized into deterministic finite automata
(DFA) and non-deterministic finite automata (NFA).

A DFA is formally defined by a 5-tuple (Q, %, 9, qo, F') where,

Q is a finite set of states

> is a finite alphabet

0:@Q x X — (@ is a transition function
e ¢p € @ is a start state
o ['C (Q is a set of accepting states

A NFA is defined similarly to a DFA; the 5-tuple (Q,3,0,qo, F') has the same
definition except for the transition function which is defined as ¢ : @ x ¥ U {e} — 29, such
that, given a current state and a symbol, the transition function leads to a state chosen
from a set of states, rather than a unique state. Moreover, e-transitions in NFA allow
advancement without reading an input symbol.

We also define a partial DFA, as in [10], to be a minimized DFA with partial
transition function § C Q x ¥ — @ such that §(q,a) = 0) for ¢ € Q and a € ¥ is allowed. In

a partial DFA the trap state and all transitions leading to it are omitted.

2.1.2 Decision diagrams

A decision diagram is a directed acyclic graph where each node encodes a function.
Multi-valued decision diagrams (MDDs) are an extension of the better known binary deci-
sion diagram (BDD)H BDDs provide a canonical representation of boolean functions, while
MDDs provide a canonical representation of discrete functions. Both decision diagrams

consist of

e Non-terminal nodes: each non-terminal node recursively encodes a composition of the

sub-functions encoded by its children.

e Terminal nodes: there exist two terminal nodes, terminal 1 and terminal 0. The
first indicates that assignments of variables along the path from the root to termi-
nal 1 satisfies the function encoded by the decision diagram, while terminal 0 denotes

unsatisfiability.
o Labeled directed edges correspond to all possible assignments of a variable.

Canonicity is ensured through ordering and reduction rules. For a function with k variables,
a global ordering = < xx_1 < -+ < 1 < zg of the variables should be preserved in all
paths. Reduction rules are applied repeatedly on the fly to maintain a canonical minimized

decision diagram at any stage of the construction.

e Node merging rule: no duplicates nodes are allowed; i.e., if two nodes are isomorphic,

'MDDs extend BDDs by allowing the outgoing edges from a node to describe choices that are not
necessarily binary. We simply use to “MDDs” from now on, with the understanding that they include BDDs

as a special case.

then the two nodes are merged. In an MDD implementation a unique table is used to

enforce this rule.

e Node deletion rule: no redundant nodes are allowed; a node is considered redundant
if all its children are identical. Such node is interpreted as a “don’t care” node and is

skipped.

A quasi reduction rule applies node merging without node deletion at any levels, while full
reduction rule applies both node merging and node deletion (an example of BDDs after
applying each reduction rule is shown in Figure . In addition to reduction rules, a
sparse representation of a decision diagram is used. In sparse representation, terminal O is
not represented, nor any of the edges leading to it.

Another variation of ROBDD is Zero-Suppressed Binary Decision Diagrams (ZB-
DDs) [58], which is basically an ROBDD with a different deletion rule. In a ZBDD, a node
is bypassed if the one-child leads to the O-terminal (refer to the example in Figure (0)).

Decision diagrams are most efficient when encoding sets that share many subsets.
In addition, the recursive structure of decision diagrams makes the use of dynamic program-
ming cost effective. Decision diagram manipulation algorithms exploit this advantageous
feature by using an operation cache, which eliminate the need to repetitively recompute

sub-problems.

2.1.3 Related work

Many data structures have been introduced in the literature to compactly encode

finite sets of finite strings. Substring indices, such as tries, suffix trees [56], suffix arrays

10

F = T3T2x1 + T3x2%1 + 2371

Figure 2.1: (a) Quasi-reduced BDD, (b) fully-reduced BDD, and (c¢) ZBDD representation
for the same function.

53] , and DAWGS [I1], exploit prefix sharing, suffix sharing, or both to achieve efficient
storage of large sets of strings. Beside compactness, the main purpose of substring indices
is to efficiently solve the substring matching problem in a fixed text. Exact matching, in
most cases, can be achieved in time complexity proportional to the pattern size, not the
whole text.

While exact matching on these data structures is very efficient, updating the data
structure by adding or deleting strings is hard [5]. Additionally, the lack of efficient set
manipulation algorithms or such data structures stimulates the need for data structures
that leverage the benefits of substring indices while enabling efficient set manipulation.

In 2009, Loekito et al. introduced a new data structure, sequence BDD [49], that
combines compact storage of finite languages of arbitrary finite strings and, at the same time,
provides for efficient set manipulation algorithms. Sequence BDD or SeqBDD, for short, is a
half-relaxed variation of ZBDDs; variables along zero-paths are ordered, while the variables

along one-paths have no order restrictions; moreover, variables can appear several times

11

along such a path facilitates encoding languages composed of strings of different lengths.

SeqBDD inherits ZBDDs efficient set manipulation algorithms, in addition to other
well known techniques of decision diagrams, such as the use of a unique table and an
operation cache, to enable dynamic programming. Other algorithms have been introduced
to mine frequent substring. In [5] the authors introduced a reversed SeqBDD to match
suffixes and proposed SuffixDD, a SeqBDD that encode the set of all suffixes of a given
string. In [26], SeqBDD that encode all substrings of a strings in a given language L is
introduced, and named factor SDD. In fact, it has been proven in [25] that size of the
factor SDD is linear in the size of the SeqBDD encoding L.

Size complexity is a crucial issue in decision diagrams, and SeqBDDs are no ex-
ception. The importance stems from two factors; first, decision diagrams are usually used
to store efficiently an enormous amount of data; second, the time complexity of algorithms
applied to decision diagrams is proportional to the size of the arguments. As other re-
duced ordered decision diagrams, SeqBDDs are sensitive to variable ordering. Since opti-
mal variable ordering is an NP-complete problem [12], heuristics are required to achieve
good variable ordering. Sharing common suffixed as well as common prefixes contributes
to the compactness of the data structure. Nevertheless, adhering to binary representation
degrades compactness of SeqBDDs [64].

Decision diagrams are used extensively in the field of symbolic model checking.
One of the most important virtues of symbolic model checking is the generation of coun-
terexample in case a given model violates the tested property. Many heuristics were intro-

duced in the literature that aim at producing counterexamples that are more informative

12

and understandable. A counterexample is simply a trace. Given the state space, starting
from a start state, the counterexample shows the sequence of states the system will end in a
reachable bad state. That trace, or path, can be finite or infinite (if it contains a cycle). For
instance, safety properties checked through finite trace, while liveness properties are checked
through infinite traces. However, traces do not always consist of one path. In the case of
probabilistic model checking, often a vast number of paths compose the counterexample.
One way that has been introduced to compactly store the latter type of counterexample is
regular expressions [23], [36].

In this chapter, we introduce sequence decision diagrams (SeqDDs), which can
encode arbitrary finite sets of strings over an alphabet. SeqDDs can be viewed as a multi-
valued variation of SeqBDDs. SeqDDs do not constrain a priori the number of levels, in
fact, they do not really have an inherent concept of levels (or variables associated to a node).
Instead, they simply require that, on any instance of the diagram, the number of paths and

the lengths of these paths be finite.

2.1.4 Notation

Given alphabet ¥ = {s1,--- , s}, with m € N, let £* be the set of strings over ¥,
ie, X ={a;---ax: k>0,Vh,1 < h<k,ay € ¥}. We introduce the following notation to

discuss SeqDDs encoding a finite language Y C ¥*:

e If Y = (), then height(Y) = L, “undefined”. Otherwise, the height of) is the length

of the longest string in it, height()) = max{|o|: o € V}.

e lengths(Y) ={keN:3Joe),|o| =k}, the set of all string lengths in).

13

e For k € lengths()), Vi = {0 € YV : |o] = k}, the strings of length k£ in), and

Ve ={0o €)Y :|o| <k}, the strings of length less than &k in).

e Forae X, YV/a={o€¥*:a- 0 € Y}, the strings that, preceded by a, form a string

in Y.

e For k € lengths(Y) and a € ¥, Vy/a = {0 € ¥¥71 : a -0 €)}, the strings that,

preceded by a, form a string of length &k in).

o [|V]| =2 ,cy o], the total number of symbols in), not to be confused with [Y], the

number of strings in).

2.2 Sequence decision diagrams

2.2.1 Non-canonical SeqDDs

This section defines a class of decision diagrams that can encode any finite subset

of ¥*, that is any set of the form
{o1,-+,0n,:mneN,Vj,1<j<n,o; € ¥}

Note that the empty set () as well as {€}, the set containing only the empty string, are two

of the the sets that we must be able to encode.

Definition 1 A sequence decision diagram (SeqDD) is a directed acyclic finite graph in

which

e there are two terminal nodes, with no outgoing edges, 0 and 1;

14

e ¢ nonterminal node p has m + 1 outgoing edges, each one labeled with a different
element from X U{e}; we write pla] = q to indicate that the outgoing edge labeled with

a € ¥ U {e} points to node q, which can be terminal or nonterminal.

Definition 2 The set of strings X (p) encoded by a SeqDD node p is recursively defined as:

(0, the empty set ifp=0,
X(p) = {€}, the set containing only the empty string if p=1,
UQEEU{E}{CL o0 € X(pla])} otherwise,
where “.” denotes the string concatenation operator.

We now prove that, given an arbitrary finite set of strings Y C ¥*, we can encode
Y using a SeqDD. More precisely, we can build a SeqDD with a single root node r (i.e., a

node not having any incoming edges), such that X'(r) =).

Theorem 1 Given a finite set of strings Y C X*, there exists a single-root SeqDD whose

root p satisfies X (p) =).

Proof. The proof proceeds by induction on ||Y||, the total number of symbols in Y.

If | V|| =0, then Y =0 or Y = {e}. In the case of ¥ =), we can let p be the O-terminal.
In case of Y = {e}, we can let p be the 1-terminal.

If | V|| = k > 0, assume the theorem holds for any set)’ with ||)’|| < k. Clearly, || V.| < k
and, if e € Y, then Y = {e} UU,exn 0 Va, else Y = Jyes @ - Voo Then, if € € Y, we can
define a node p, with ple] = 1 and p[a] = ¢4, where ¢, is a node that encodes },, which
exists, by induction, since ||V,|| < k, for a € ¥. The case where € ¢) is exactly analogous,

except that we set ple] =0. m

15

Av [5]3J2]1Jo0]

Figure 2.2: A SeqDDB, a SeqDDT, and a SeqDDN encoding) = {aa, aaa, aabaa, baa, c, €}.
Indices in gray point to terminal 0 (not represented for clarity).

By definion SeqDDs are general non-canonical encoding of finite languages. Any
set Y C ¥* can be encoded by infinitely many SeqDDs because, if a node r encodes), any
node r’ with 7’[a] = 0 for each a € ¥ and r'[¢] = r also encodes), and the “insertion” of
such “useless nodes” can be repeated at will (indeed, not just above the root, but anywhere
along any path in the SeqDD). Thus, we now describe possible sets of restrictions to ensure

canonicity, namely

e No duplicate nodes are allowed: the SeqDD cannot contain two nonterminal nodes p

and ¢ such that p[a] = g[a] for every a € ¥ U {¢}.

e No empty nodes are allowed: the SeqDD cannot contain a nonterminal node p such

that pla] = 0 for every a € ¥ U {¢}.

e No e-nodes are allowed: the SeqDD cannot contain a nonterminal node p such that

pla] =0iff a € X.

Informally, canonicity is achieved by additionally “pushing” e-edges (not pointing to 0)

toward the bottom, or toward the top, of the diagram (Figure .

16

2.2.2 Canonical SeqDDs with ¢ at the bottom

Definition 3 A (canonical, e-at-the-bottom) SeqDDB is a SeqDD with no duplicate nodes,

no empty nodes, no e-nodes, and such that, for any nonterminal node p, either ple] = 0 or

ple] = 1.

eorem wen a finiie set o sitrings C) ere 1S a unique singre-roo eq
Th 2 Gi finite set of strings Y C $*, there i ique single-root SeqgDDB

whose root p satisfies X (p) =).

Proof. If height(yY) = L, then) = (), and the canonicity restrictions imply that p = 0
is the only SeqDDB node encoding Y. If height(Y) = 0, then J = {e}, and the same
restrictions imply that p = 1 is the only SeqDDB node encoding Y. If height(Y) =k > 0,
assume the theorem holds for any)’ with height()’) < k. Clearly, height(Y/a) < k and,
ifec), then Y = {e} UlU,ex @~ V/a, otherwise Y = |J,cxa - Y/a. Then, if e € Y, we can
define node p, with ple] = 1 and, for each a € ¥, pla] = ¢4, where ¢, is the unique node
encoding Y/a (by induction, ¢, exist since height()/a) < k). Note that we might have
Y/a = Y/b for a # b, this simply means that the two corresponding edges in p point to the
same SeqDDB node (indeed nodes are shared across any of the descendants of p, to avoid
duplicates). No other node ¢ encoding) can exist because it would have to differ from p
in at least one index a € X, while we must have ple] = g[¢] = 1. By inductive assumption,
SeqDDB’s pla] and g[a] cannot encode the same set, that is, X (p[a]) = V/a # X (q[a]), thus
there is a string a - ¢/ in X(p) and not in X(q), or vice versa. The case where € ¢) is

analogous, except that ple] = 0. m

17

2.2.3 Canonical SeqDDs with ¢ at the top

For the alternative definition where we allow “e at the top”, it is easier to recast

the definition of quasi-reduced MDDs [I8] as a special case of SeqDDs.

Definition 4 A (canonical, single-root) k-level MDD is the terminal node 1, if k =0, or,
if k > 0, it is a single-root SeqDD with no duplicate nodes, no empty nodes, no e-nodes, and

with oot p such that ple] = 0 and, for a € X, pla] is a (k — 1)-level MDD or 0.

It is easy to see that the root p of a k-level MDD encodes a nonempty set of strings of fixed

length k, that is, X (p) C ©F.

Definition 5 A k-level SeqDDT is a SeqDD without duplicate, empty, or e-nodes whose
root node p is such that, for a € ¥, pla] is 0 or the root of a (k—1)-level MDD, while ple]

is 0 or the root of an h-level SeqDDT, h < k.

Thus, it is easy to prove by induction that the root p of a k-level SeqDDT encodes a
nonempty set of strings of length k, | J o5, X' (¢[a]), plus a possibly empty set of strings of

length less than k, X'(qle]).

Theorem 3 Given a finite language Y C X%, there exists a unique single-root SeqDDT with

root p such that X(p) = Y.

Proof. If height(Y) = L, then Y = (), and the canonicity restrictions imply that p = 0 is
the only SeqDDT encoding Y. If height()) = 0, then) = {€}, and the same restrictions
imply that p = 1 is the only SeqDDT encoding Y. If instead height()) = k > 0, assume

that the theorem holds for any set)’ with height()') < k. Since Y = Ve, U, ex - Vi/a,

18

we can define node p such that, for a € X, pla] = ¢, with X(g.) = Vi/a, while ple] = g
with X(q.) = Y<k. By inductive hypothesis, nodes ¢, and ¢, are unique, as they all encode
sets of height less than k and, since) /a contains only strings of length k — 1, ¢, is in
particular the root of an MDD, i.e., 4[] = 0. Then, node p is also the only node encoding
Y since any other node p’ would have to differ from p in at least one child. If ple] # p'[e],
there must exists a string o of length less than k in X (ple]), thus X' (p), and not in X (p'[€]),
thus X (p’), or vice versa. If there is an a € ¥ with p[a] # p[a], there must exists a string o
in X(p[a]) and not in X (p'[a]), so that a- o is in X'(p) and not in X (p’), or vice versa (a - o
cannot possibly be in X (p[¢]) as it is of length k). Either way, p’ cannot encode the same

set as p. m

2.2.4 An alternative canonical definition without e

Unlike SeqDDBs, SeqDDTs rely on some concept of level for the nodes of the
decision diagram. More specifically, the nodes in a SeqDDT encode all the maximum-
length strings using the children corresponding to the elements of ¥, and postpone the
encoding of the remaining, shorter, strings to the child corresponding to € (Figure . An
almost equivalent encoding for a set) is then one where the strings of) are partitioned
according to their length, and the top node makes a decision based on the length of the
string o being searched, not on the first symbol of . This leads us to a third, slightly

different in spirit but essentially equivalent, definition.

Definition 6 A SeqDDN is a set of “sparse” root nodes, each root r having a finite set R

of outgoing edges labeled with different elements k € N, such that r[k] points to a k-level

19

Figure 2.3: Canonicity of sequence decision diagrams.

MDD. The set encoded by r is Jycp X(r[k]).

Note that sharing of nodes across various MDDs of a single-root SeqDDN, as for
those of the equivalent SeqDDT, is not only possible, but required, since we seek a canonical
form. If the sets X(r[ki]) € ¥ and X (r[ks]) € X*2 encoded by MDD nodes p; and py

satisfy
I, y2, {o ek iy oeX(rlk])} = {oeSF i a0 e X(r[ka])} = W £ 0,
then the node p encoding W is shared by the MDDs rooted at p; and pa.

Theorem 4 Given a finite set of strings Y C X%, there is a unique single-root SeqDDN

rooted at r such that X(r) =).

Proof. The proof is immediate. If J) = (), then only node r with R =) encodes).
Otherwise, write Y = Ukelengths(y) Y. Then, each) is canonically encoded by an MDD
rooted at a node pg, and the root node of the SeqDDN is simply r with a set R = lengths(}),
and such that r[k] = pg, for each k € lengths()). Of course, MDD nodes must be shared
across MDDs, not just within each MDD. It is obvious that this SeqDDN is the unique

encoding of). m

20

| q1

Figure 2.4: The structure of a SeqDDT and a SeqDDN encoding the same set.

2.2.5 Comparing compactness of SeqDDT and SeqDDN

We begin by comparing the size of the SeqDDT and SeqDDN encoding a set),

since both definitions rely on the length of the strings in).

Theorem 5 Given a finite set of strings Y C X, the numbers of edges in SeqDDT Ar and

SeqDDN Ay encoding Y satisfy
edges(Ar) + 1 > edges(An) > edges(Ar) — (|lengths(Y)| — 2)|X| + 1.

Proof. The proof is based on the common structure exhibited by Ay and Apy. Consider
first the case where € €), shown in Figure where n + 1 = |lengths(}))|, i.e., n is the
number of different string lengths in) not counting the length 0 of the empty string. The
key observation is that Ar and Ay are largely the same. Namely, the MDDs encoding any
of the non-empty sets Y, o, for I € lengths()) and aj € 3, are present in both Ap and
Ap, so we can simply let e be the number of edges needed to encode them as a whole, in
either representation. Then, edges(Ar) = e+ (x, + 1) + -+ + (z1 + 1), where zy, is the

number of edges leaving node p not counting its e-edge, thus it is also the number of edges

21

leaving gi in Anx. On the other hand, edges(Ax) = e+ (n+1)+zp +0p—1Tpn_1+ -+ 121,
where the term (n 4+ 1) counts the edges leaving the root r, while §; = 0 if g5 is a node

already present in the encoding of the MDDs) for I, € lengths()) with 1, > I

@m
and a, € X, and J; = 1 otherwise. In other words, the indicators d;s are needed because,
except for ¢, any other g, might happen to duplicate an already existing node in the MDD
portion of Ay, while this is not possible for any node pg, as having an e-edge makes it for
sure different from any MDD node. Then, since z; can be as large as |X|, we can conclude

that
edges(Ar) + 1 > edges(An) > edges(Ar) +1 — (n—1)|3].

If instead € ¢), the same approach is applicable, except that n = |lengths())|, p1 in
A7 does not contain an e-edge, and r does not contain a 0-edge. We can then write
edges(Ar) = e+ (vp + 1) + -+ + (x2 + 1) + d121, since now g; not only does not have
an e-edge, but could be already present in the MDD portion of Ap, and edges(Ayx) =
e+n—+x,+0p_1Tp—1+ -+ 0121, since r does not have the 0-edge (it is important to note
that ¢1 and p; coincide when € ¢ Y, thus either they both coincide with an existing MDD
node, or neither of them does, that is, d; is the correct indicator for both). Then, we can

conclude that
edges(Ar) + 1 > edges(An) > edges(Ar) + 1 — (n —2)|3.

Recalling that n = |lengths(Y)| — 1 when € € Y and n = |lengths(Y)| when € ¢ Y, we

conclude that the theorem always holds. =

Figure [2.5] shows that both the lower and upper bounds on the size of Ay with

respect to Ar can actually be achieved. Specifically, the first two panels show how we

22

Y = {{a,b, c}k 0<k <4} Y = {{a,b, c}k 1<k <4} Y = {abed, abe, ab, a, e}

Arlalblcle] Ax[4[3[2[1]0]] Ar[a]b]ce] Ax[4]3]2]1]

Figure 2.5: Examples achieving the bounds of Theorem

can have edges(An) = edges(Ar) — (|lengths(Y)| — 2)|3| + 1, assuming ¥ = {a, b, ¢}, for
the cases ¢ € Y and € ¢), respectively, while the third panel shows how we can have

edges(An) = edges(Ar) + 1.

2.3 Compactness of canonical SeqDDs

We now discuss the size of our SeqDDs, where the size of a SeqDD A is the number
of edges it contains, edges(A), rather than the number of nodes. Given the structural
differences between a SeqDDB and a SeqDDT, we compare them by thinking of them as
finite automata. A closer look at a SeqDDB shows that it can be easily converted into a
DFA (Theorem @ On the other hand, a SeqDDT can be converted into a restricted type

of NFA.

2.3.1 DFA representation of SeqDDB

Given a SeqDDB Ap encoding a finite language) C ¥*, we can build an equivalent

DFA M = (Q,%,6,q0, F). If Ag = 0 then M = ({qo},%,d, qo, D). Otherwise, we first define

23

the states @ in terms of the nodes in Ap: every nonterminal node ¢ in Ap corresponds to
a state ¢ € @@, while node 1 in Ap corresponds to new state f € () and node 0 corresponds
to a new trap state t € Q).

The initial state gg corresponds to Apg’s root while the transition function § :
Q@ x X — @ is such that, for every a € ¥ and edge gla] = p in Ap, there is a corresponding
transition §(q,a) = p and, if ¢[e] = 1, no transition is added, but ¢ is added to the accepting

states F'. Lastly, state f is also added to F.

Theorem 6 Given a SeqDDB Ap encoding a finite language Y C X*, building an equivalent

minimized DFA M requires linear time in the size of Ap.

Proof. The proof is direct from the translation algorithm above. m

For memory efficiency, decision diagrams can be stored in a sparse form. In the
case of a sparse SeqDDB, this corresponds to a partial DFA, and the translation is analogous
to the non-sparse version just discussed. From now on, we consider sparse representations

for all canonical forms of SeqDD and for partial DFAs.

2.3.2 NFA representation of SeqDDT

To discuss the translation of a SeqDDT into an equivalent NFA, we first define
RNFAs, a restricted version of NFAs, keeping in mind that our goal is to facilitate size
comparisons between a SeqDDB and a SeqDDT. To that end, our RNFA definition resembles
the structure of SeqDDT while respecting the key characteristics of ordinary NFAs when

encoding a finite language.

24

Definition 7 A restricted NFA (RNFA) is an acyclic NFA N = (Q,%,6,Qr,QF), where
both Q1 and Qr are singletons sets and, for each state q € Q, the following condition holds:
at most one outgoing e-transition is allowed, and if k = max(lengths(L(q))) then all strings

in Jges L(6(q, a)) have length k — 1 and all strings in L(d(q,€)) have length at most k — 1.

This value k is called the level of gq.
A minimized RNFA enforces the following restriction rules.

e No duplicate states are allowed: An RNFA cannot contain ¢ and p such that L(q) =

L(p).

e No empty states are allowed: An RNFA cannot contain a state ¢ € @ \ Q1 such that

L(q) = 0.

e No e-states are allowed: An RNFA cannot contain a state ¢ € @ \ Qp such that

L(q) = {e}.

Any RNFA can be converted to an equivalent minimized RNFA using Algorithm an
adaptation of the bucket-sort based OBDD reduction algorithm proposed in [68]. The
minimized RNFA for a given language is unique.

The following lemma affirms that RNFAs, like DFAs, can recognize any finite

language (unlike DFAs, they obviously cannot accept any infinite language).
Lemma 7 If Y C ¥* is a finite language, there exists an RNFA N to accept).

Proof. The proof of existence is analogous to the one of Theorem [

25

Algorithm 2.1 Algorithm to canonize a RNFA.

1: function CANONIZE(p : RNFA, ¢ : SeqDDB)

2: declare local RNFA s, v

3: declare local vector t > sorted vector according to a predefined alphabet order

4: declare local list(s,t) L

5: declare local list(bucket) nonempty

6: devide p’s nodes by levels s.t. the final state f is at level-0 and a node n
recognizing strings of length k is at level-k.

7 for £k =1 to lengths(Y) do

8: create L containing nodes s of level-k and the associated vector of
successors v for each s in L.

9: create buckety containing all s in L > starting with all nodes in one bucket

10: add bucketg to nonempty list

11: for a € ¥ do > run an |X|-phase bucket sort algorithm

12: for bucket U in the nonempty list do

13: create new bucket-a

14: for s € U do > eventually divide into buckets of equivalent nodes

15: add s to bucket-a[v] s.t. (s[a] =v or (s[a] =t and R[t] =v)) »
v is the minimized representation of ¢;

16: add bucket-a[v] to nonempty list, if not added yet

17: delete bucket U from the nonempty list

18: create new list R or clear the old one, if exists.

19: for bucket U in the nonempty list do > merge equivalent nodes

20: let v be any s €¢ U

21: for s €U do

22: add (s,v> to R > mark duplicate nodes by their new equivalent

23: clear lists and vectors except R

24: delete unreachable nodes

If SeqDDT Ar with a single root node r encodes a finite language Y C X*, the
equivalent RNFA T'=(Q, %, 4, Q,Qr) is built as follows. Each nonterminal node g of Ap
corresponds to a state ¢ € @); terminal node 1 of Ap corresponds to a new state 1 € @,
and F' = {1}; finally, Q; = {r} (note that, if » = 0, we also must add r to Q). The
transition function ¢ : @ x ¥ U {e} — @ is such that, for every edge ¢g[a] = p in Ap with
a € ¥ U {e}, there is a corresponding transition d(q,a) = p. Thus, in particular, if » =0,

then T'= ({0}, %,0,{0},{1}), and the encoded language is Y = (), while, if Ay =1, then

26

Figure 2.6: Example of quadratic growth when translating SeqDDB into SeqDDT.

T=({1},%,0,{1},{1}) and the encoded language is J = {€}.

From the conversion process, it is easy to see that the number of transitions in
the resulting DFA equals the number of edges in the equivalent SeqDDB excluding e-edges.
Hence, we can define the DFA size to be equal to the number of transitions plus the number
of final states excluding the one corresponding to terminal 1, |M| = |[§| + |F| — 1. On the
other hand, since the number of transitions in the resulting RNFA equal the number of
edges in SeqDDN minus lengths()), we can define the size of an RNFA to be equals to the

number of transitions plus the number of initial states, |[N| = 6] 4 |Vb].

2.3.3 SeqDD Compactness Comparison by Means of Finite Automata

To study the relative compactness of canonical SeqDDs, we first discussed bounds
on the number of states for equivalent DFAs and RNFAs; these are trivially reflected in sim-
ilar bounds for SeqDDB’s and SeqDDT’s. To obtain bounds on the number of transitions,
one could just multiply the state bounds by the alphabet size, but we are really interested
in the actual number of edges for equivalent SeqDDs, thus partial FAs. This section shows

that bounds similar to those for states hold also for edges.

27

Theorem 8 Given a DFA M = (Q,%,0p,qo, F') with n states encoding a finite language

Y C ¥, an equivalent minimized RNFA N has O(n?) states.

Proof. For each state ¢ € Q and k = 0, ..., height(), let L(q, k) = L(g) N X¥. Then, we

build an equivalent RNFA N with states organized by level:
e Level 0 of the RNFA contains a single accepting state f.
e Level k contains a state (g,k) for each nonempty L(q, k).
e The initial state of N is {go,max lengths())).
e The transition function d of N satisfies

— For each state (¢,k) with £ > 0 in IV and for each a € X:
— For each state (¢,k) in N, let h be the largest integer less than k& such that state

(q,h) exists in N; if such state exists, then (q,h) € dn((g,k),¢€).

Note that the resulting RNFA might not be minimized, in the sense that it is
possible that (g,k) and (p,k) encode the same language, in which case they should be
merged. In any case, however, the number of states of the RNFA is at most equal to the
number of states of the DFA times the maximum length of a string in)/, which, again, is at
most equal to the number of states. Thus the number of RNFA states is at most quadratic
the number of DFA states. As the two automata obviously accept the same language),

the proof is complete. m

To show that the growth of Theorem [8 is indeed possible, consider the family of

28

Figure 2.7: Example of exponential growth when translating SeqDDT into SeqDDB.

languages G = {Gi : k € N} over {a,b}. Let Gy = {a*bF, a*b*~1 ... aFb,a"}, so that
||Gk|| = 3(k + 1)k/2. Then, the SeqDDT A% encoding Gy, contains k? + 3k edges, while the

SeqDDB A% encoding Gy contains 3k edges (see Figure .

Theorem 9 Given a minimized RNFA N with n states encoding a finite language Y C 3%,

an equivalent minimized DFA has at most O(2") states.

Proof. The proof is immediate given the well known fact that an NFA-to-DFA conversion

may result in an exponential increase in the number of states. m

Since RNFAs are a restricted form of NFAs, however, one may wonder whether an
exponential growth can actually occur. To show that this is the case, consider the family of
languages {Fy : k € N} with Fi, ={zay : z,y € {a,b}*,|z| <k, |y|=Fk}. Then, the SeqDDT
Al% encoding Gy, contains 7k — 1 edges while the SeqDDB A% encoding G, contains (2%)
edges (see Figure . This is similar to the well-known construction that demonstrates

the proof of Theorem [9]

29

Ak Ak Dok 2k =1 T+ 1] & |

Figure 2.8: The family of languages demonstrating Theorem

Theorem 10 There exists a family of finite languages G = {Gy, : k € N} over {a,b} such
that the number of edges in the SeqDDN Aﬂ“\, encoding Gy is O(k?) while the number of edges

in the SeqDDB A% encoding Gy, is O(k).

Proof. We exhibit such a family. Let Gy = {a¥b¥,a*b*=1 ... [aFb,a*}, so that ||Gy|| =
3(k + 1)k/2. Then, the SeqDDN A%, encoding G, contains k2 + 3k + 1 edges while the

SeqDDB A% encoding Gy, contains 3k edges (see Figure . [

Theorem 11 There exists a family of finite languages F = {Fy : k € N} over {a,b} such
that the number of edges in the SeqDDN Alfv encoding any Fyi, is O(k) while the number of

edges in the SeqDDB A% encoding Fy, is O(2).

Proof. Again, we exhibit such a family. Let F = {zay : z,y € {a,b}*, |z| < k,|y| = k}.
Then, the SeqDDN A?V encoding Gy contains 5k + 2 edges while the SeqDDB A% encoding

Gr, contains O(2%) edges (see Figure 2.9). =

30

Fo ={xay : z,y € {a,b}*, |z] < 2,|y| = 2}.

Figure 2.9: The family of languages demonstrating Theorem
2.3.4 Summary

We showed in Theorem [5| that SeqDDTs and SeqDDNs are similar is size and
structure. Next, we selected SeqDDNs to compare their compactness with SeqDDBs. It
follows from Theorems [§ and [9] that there is no winner between SeqDDBs and SeqDDNS.
Rather, SeqDDBs are more compact for certain languages and SeqDDNs are more compact
for others. Thus, we need to design algorithms for both. The selection between the two

canonical forms is left to the user, depending on the language to be encoded.

31

2.4 Algorithms on SeqDDs

We consider two types of algorithms: set manipulation algorithms and substring
manipulation algorithms. Those of the first type take two or more canonical SeqDDs with
the same canonicity rule and perform set operations such as union or intersection. Those
of the second type input a canonical SeqDD and a string, and select strings satisfying a
criterion for matching a substring, changing a substring into another, or shorten or lengthen
a string.

As with all decision diagram algorithms, we adopt a recursive style. SeqDD nodes
are stored in a unique table to ensure canonicity. An operation cache ensures efficiency by
virtually eliminating repeated computations. Each of the following set manipulation algo-
rithms has been developed for SeqDDB and SeqDDN representations: union, intersection,
set difference, symmetric set difference, and concatenation. For instance, the Intersection
algorithm for two SeqDDB’s traverses them top-down and builds the resulting SeqDDB
bottom-up (see the pseudo-code in Figure . SeqDDN set manipulation algorithms can
be considered as shared MDD algorithms, since a SeqDDN is organized by the length of the
strings encoded.

Various string manipulations can be performed. For example, the classical mem-

bership problem can be solved by a single trace, no longer than the query size + 1, starting

32

Algorithm 2.2 Intersection operation on SeqDDBs.

1:
2
3
4
5:
6
7
8
9

10:

11:
12:
13:
14:

15:
16:

17:
18:
19:
20:
21:

function INTERSECTION(p : SeqDDB, ¢ : SeqDDB)

declare local SeqDDB r
declare local integer count
if p=0org=0 then return 0 > deal with the base cases
if p = ¢ then return p
if p=1 then
if g[¢] =1 then return p
else return 0
if ¢ =1 then return Intersection(q,p)

if Cache contains (Intersection, {p,q} : r) then return r

count < 0

for a € ¥ do > Otherwise, perform Intersection for each index a € X
rla] < Intersection(pla], ¢[a])
if r[a] = 0 then count < count + 1

if count = |X| then r + 0

if p[E] =1 and q[e] =1 then > deal with € case
if r=0orr=1thenr+1
else rle] « 1

UniqueT ableInsert(r)

Cache < (Intersection, {p,q} :r)
return r

from the root and ending in either terminal 1 or 0. Set manipulation algorithms can also

become handy in performing string manipulations; for instance, the membership problem

is solved by a set intersection, and string replacement can be solved using a combination

of set difference, intersection, and union. However, if we want to perform substring ma-

nipulations, the use of set manipulation algorithms becomes inefficient, hence we developed

specific substring manipulation algorithms.

The main advantage of using SeqDDs for substring manipulation lies in the ability

to search or modify a set of strings at once, thanks to node sharing and memoization. For

example, in a SeqDDB, replacing the first occurrence of a substring ¢ with ¢’ is done once

for all strings sharing a prefix that contains t. Moreover, a shared suffix is processed the

33

Algorithm 2.3 Union operation on SeqDDBs

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

14:

15:
16:
17:
18:

19:
20:

21:
22:
23:

function UNION(p : SeqDDB, ¢ : SeqDDB)

declare local SeqDDB r
declare local integer count > deal with the base cases
if p = 0 then return q
if ¢ =0 or p = g then return p
if p=1 then
if ¢le] = 1 then return ¢
else
T NEWNODE(q) > create a node r equals to ¢
rle] 1
r <= UNIQUETABLEINSERT(7)
return r
if ¢ = 1 then return UNION(q, p)

if Cache contains (Union, {p,q} :r) then return r

count < 0

for a € S do > Otherwise, perform Union for each index a € S
rla] <= UNION(plal, qa])
if r[a] = 0 then count < count + 1

if count = |X| then r < 0

if p[E] =1or q[e} =1 then T'[E] —1 > deal with € case

UNIQUETABLEINSERT(7)

Cache + (Union, {p,q} :)

return r

first time we explore it; for other strings sharing that suffix the algorithm simply checks the

operation cache for the result. A universal algorithm replace can replace, insert, or delete

a specific substring: replacing € by a string ¢ # € performs an insertion, while replacing ¢

by € performs a deletion. Of course, this can be refined by additionally providing to the

algorithm specific substrings that must be found before and after the replacement location.

34

Algorithm 2.4 Difference operation on SeqDDBs

1: function DIFFERENCE(p : SeqDDB, ¢ : SeqDDB)

2: declare local SeqDDB r

3 declare local integer count > deal with the base cases.

4 if p=0or ¢ =0 then return p

5: if p = ¢ then return 0

6 if p =1 then

7 if g[¢] =1 then return 0

8 else return p

9: if ¢ = 0 then return p

10: if ple] = 0 then return p

11: else r + NEWNODE(p) > create a node r equals to p
12: rle] «+ 0

13: r <= UNIQUETABLEINSERT(7)

14: return r

15: if Cache contains (Difference, p,q : r) then return r

16: count < 0

17: for a € S do > Otherwise, perform Difference for each index a € S
18: rla] < DIFFERENCE(p[al, q[a])

19: if r[a] = 0 then count < count + 1

20: if count = |X| then r <+ 0

21: if ple] =1 and not(q =1 or ¢[¢] = 1) then > deal with € case
22: ifr=0orr=1thenr<«+1

23: else rle] + 1

24: UNIQUETABLEINSERT(7)

25: Cache < (Difference, p,q:)

26: return r

2.5 Applications of sequence decision diagrams

SeqDDs inherit the symbolic characteristics of decision diagrams, but with the
additional ability to encode a set of strings of different lengths. SeqDDs are useful for

applications that need to store and manipulate large sets of strings.

35

Algorithm 2.5 Symmetric Difference operation on SeqDDBs

1: function DIFFERENCE(p : SeqDDB, ¢ : SeqDDB)
2: declare local SeqDDB r
3 declare local integer count > deal with the base cases.
4 if p = 0 then return q
5: if ¢ = 0 then return p
6 if p = ¢ then return 0
7 if p=1 then
8 if q[e] = 0 then return ¢
9: T NEWNODE(q) > create a node r equals to ¢
10: r[e] < 0
11: UNIQUETABLEINSERT(7)
12: return r
13: if ¢ =1 then return XoR(q,p)
14 if Cache contains (XOR, {p,q} : r) then return r
15: count < 0
16: for a € S do > Otherwise, perform Xor for each index a € S
17: rla] < XoOR(pl[al, q[a])
18: if r[a] = 0 then count < count + 1
19: if count = |X| then r < 0
20: if (ple] =1 and not(q =1 or g[e] = 1)) or (¢[e] = 1 and not(p = 1 or p[e] = 1))
then > deal with ¢ case
21: ifr=0orr=1thenr+1
22: else r[e] + 1
23: UNIQUETABLEINSERT(7)
24: Cache < (XOR, {p,q} : r)
25: return r
2.5.1 Probabilistic witness generation

Probabilistic model checking aims to verify whether a probabilistic model satisfies

a certain property [46]. We consider discrete states probabilistic models, namely, discrete-

time Markov chains (DTMCs). Formally, a DTMC is defined by a 4-tuple (Q, qo, P, L)

where,

e () is a finite set of states.

36

Algorithm 2.6 Concatenation operation on SeqDDBs

1: function CONCATENATE(p : SeqDDB, ¢ : SeqDDB)

2: declare local SeqDDB r

3 declare local integer count > deal with the base cases.
4 if p=0or ¢ =0 then return 0

5: if p =1 then return ¢

6 if ¢ =1 then return p

7 if Cache contains (Concatenate, p,q : r) then return r

8 count < 0

9: for a € S do > Otherwise, perform Concatenate for each index i € S
10: rla] <~ CONCATENATE(p[a], q)

11: if r[a] = 0 then count < count + 1

12: if count = |X| then r < 0

13: if ple] =1 then

14: rle] <+ 0

15: r < Union(r,q)

16: UNIQUETABLEINSERT(7)

17: Cache < (Concatenate, p,q : 1)

18: return r

e ¢y € () is a start state.
e P:Q xQ —[0,1] is a stochastic matrix.

o L:Qx — 247 is a labeling function, where AP is a set of atomic propositions.

DTMCs admit probabilistic choices to resolve race conditions, which arise when multiple
events are enabled and ready to fire; in this case, which event fires next is determined by
a probabilistic choice. Moreover, DTMCs inherits the Markovian property, also known as
the memoryless property, where the next state after a state transition only depends on the
current state.

Probabilistic Computational Tree Logic(PCTL) is a variation of the well known
CTL formulas where path quantifiers are replaced by a probability operator of the form

Pop(p), where ¢ € {<, <,>,>} is a relational operator, p € [0, 1] is a probability, and ¢ is

37

Algorithm 2.7 Union operation on SeqDDNs

1: function UNION(p : SeqDDN;, ¢ : SeqDDN)

2 declare local SeqDDN r

3 for | € LENGTHS(p) U LENGTHS(q) do

4 if [¢ LENGTHS(p) then r[l] « ql]

5 else if | ¢ LENGTHS(q) then r[l] < p[l]

6 else r[l] + MDDUNION(L, p[l], q[l])

7 UNIQUETABLEINSERT(7)

8 return r

1: function MDDUNION(: Ivl, p : Mdd, ¢ : Mdd)

2: declare local Mdd m > deal with the base cases.
3 if p =0 then return ¢

4 if =0 or ¢ = p then return p

5: if Cache contains (Union, {p,q} : m) then return m
6 forae S do

7 m < MDDUNION(k-1, p[al, q[a])

8 UniqueTableInsert(k,m)

9 Cache < (Union, {p,q} : m)

10: return m

a path formula of the form ¢ <% v, where < € {X,U,F,G} is a CTL temporal operator
and t € NU {oo} denotes a bound on the number of transitions, so that t = oo corresponds
to unbounded model checking.

In CTL model checking, a witness to an existential formula, or a counterexample
to a universal formula, is simply a path in the state space of the system corresponding to
finite and legal evolution of the system starting from an initial state. In PCTL (CSL) model
checking, however, the system is modeled by a discrete- (continuous)-time Markov chain
and a “probabilistic witness” to a formula is a finite set of finite paths such that the sum
of their probabilities exceeds some bound. For example, to disprove that the probability of
reaching a deadlock is less than 10™%, we need to show enough paths from the initial state

to a deadlock state so that their cumulative probability is at least 1075,

38

Algorithm 2.8 Intersection operation on SeqDDNs

1: function INTERSECTION(p : SeqDDN, ¢ : SeqDDN)
2 declare local SeqDDN r

3 for | € LENGTHS(p) N LENGTHS(q) do

4: r[l] + MDDINTERSECTION(], p[l], q[l])

5 UNIQUETABLEINSERT(7)

6 return r

: function MDDINTERSECTION(k : Ivl, p : Mdd, ¢ : Mdd)
: declare local Mdd m > deal with the base cases.
if p =1 then return q

if g=1 or ¢ = p then return p

for a € S do
m < MDDINTERSECTION(k-1, p[a], qla])

UNIQUETABLEINSERT(k, m)
Cache < (Intersection, {p,q} : m)
10: return m

1
2
3
4
5: if Cache contains (Intersection, {p,q} : m) then return m
6
7
3
9

In practice, such a set of paths might be quite large and will usually have paths of
different lengths. An experiment conducted by [36], shows that counterexamples can reach
double exponential growth in size with respect to the number of input variables. One way to
store counterexamples succinctly is via regular expressions [23][36]. In this case, the proof of
correctness is achieved by recursive evaluation of the resulting regular expression to compute
its probability. However, converting a counterexample into a minimized regular expression
is a tedious process that requires converting the underlying DTMC model into a DFA and
incrementally eliminating variables to generate the corresponding regular expression. In
fact, the order of variable elimination affects the size of the resulting regular expression
and heuristics are needed to select a good ordering that will result in a succinct regular
expression.

Now, let us consider how counterexamples are generated in the first place. Aljazzar

39

Algorithm 2.9 Difference operation on SeqDDNs

1: function DIFFERENCE(p : SeqDDN, ¢ : SeqDDN)
2 declare local SeqDDN r

3 for | € LENGTHS(p) do

4: if [¢ LENGTHS(q) then r[l] < p[l]

5 else r[l] +~ MDDDIFFERENCE(], p[l], q[l])

6 UNIQUETABLEINSERT(7)
7 return r

1: function MDDDIFFERENCE(K : Ivl, p : Mdd, ¢ : Mdd)

2: declare local Mdd m > deal with the base cases
3 if p=0 or ¢ =0 then return p

4 if p = g then return 0

5: if Cache contains (Difference, p,q : m) then return m

6 for a € S do

7 m <— DIFFERENCE(k — 1, pa], g[a])

8 UNIQUETABLEINSERT(k, m)

9 Cache < (Difference, p,q : m)

10: return m

et al. in [3, 4] used A.I. techniques such as Best First Search (BFS) and Z* a specialized
directed search algorithm, to incrementally generate a counterexample that consists of the
most probable paths. With the same goal of generating a smallest, most expressive coun-
terexample and under the assumption that the states refuting a given property are already
known, Han et al. [37,136], showed that the strongest evidences could be generated via a sim-
ple single source shortest path algorithm such as Dijkstra’s algorithm for unbounded model
checking and by using either the Bellman-Ford or Viterbi algorithms for bounded model
checking. The strongest evidence is usually not enough to serve as a counterexample. The
next step is to construct a smallest counterexample by exploiting a recursive enumeration
algorithm for which the number of the needed paths to refute the property is determined

on the fly. All the mentioned algorithms are explicit, therefore do not scale well for large

40

Algorithm 2.10 Symmetric Difference operation on SeqDDNs

1: function XoRr(p: SeqDDN, ¢ : SeqDDN)

2 declare local SeqDDN r

3 for | € LENGTHS(p) U LENGTHS(q) do

4 if [¢ LENGTHS(p) then r[l] + ql]

5: else if | ¢ LENGTHS(q) then r[l] < p[l]
6 else r[l] «+ MDDXOR(], p[l], q[l])

7 UNIQUETABLEINSERT(7)
8 return r

: function MDDXOR(k : Ivl, p: Mdd, ¢ : Mdd)
: declare local Mdd m
if p=20 then return q > deal with the base cases

if ¢ = 0 then return p

if Cache contains (XOR, {p,q} : m) then return m

for a € § do
m < MDDXOR(k — 1, pla], q[a])
: UNIQUETABLEINSERT(k, m)
10: Cache < (XOR, {p,q} :m)
11: return m

1
2
3
4
5: if p = ¢ then return 0
6
7
8
9

models. The need for a symbolic (e.g., decision-diagram based) approach for probabilistic

counterexample generation remains a challenge that we plan to address in future work.

2.5.2 Biological sequence analysis

Indexing

Advancements in sequencing instruments and lower cost associated with sequenc-
ing DNA, have resulted in an exponential increase in the amount of sequencing data and
the number of genomes stored in public databases. According to [79], genomic databases
are doubling in size every 15 to 16 months. Due to the size of these dataset, computation

is a bottleneck in the analysis pipeline.

41

Algorithm 2.11 Concatenation operation on SeqDDNs

1: function CONCATENATE(p : SeqDDN, ¢ : SeqDDN)
2 declare local SeqDDN r

3 declare local mdd m

4 for k € LENGTHS(p) do

5: for | € LENGTHS(q) do

6 m < MDDCONCATENATE(p[k], q[l])

7 r[k + 1] < MDDUNION(k+1, r[k+1], m)

8 UNIQUETABLEINSERT(7)

9 return r

: function MDDCONCATENATE(k : 1vl, p : Mdd, ¢ : Mdd)
: declare local m > deal with the base cases
if p=0 or ¢ =0 then return 0

if p =1 then return q

if Cache contains (Concatenate, p,q : m) then return m

1

2

3

4

5: if ¢ =1 then return p
6

7 for a € S do

8 mla] <~ MDDCONCATENATE(k-1,p[a],q)
9: UNIQUETABLEINSERT(k, m)

10: Cache < (Concatenate, p,q : m)

11: return m

A memory-efficient representation of these dataset that allows for efficient data
manipulation is needed. For instance, the suffiz tree [53] is a memory-efficient data structure
in which common prefixes are represented in same paths along the tree. The suffix tree be
built in linear time [73], and allows one to answer to queries in time proportional to the size
of the pattern. Although the space required by the suffix tree is linear in the size of the
text, the number of bytes requires is 20-25 times the size of the input DNA string, making
the suffix impractical for large eukaryotic genomes.

Another indexing structure is the directed acyclic word graph (DAWGSs), which
can be built online in linear time [I0]. A DAWG is the DFA that recognizes the set of

all suffixes of a given string. By making all its states accepting, DAWG recognizes the

42

set of all subwords of the encoded string. DAWG achieves similar query time complexity
as suffix trees with lower memory cost due to the fact that shared suffixes use common
paths in the DAWG. However, this comes at the cost of losing location information. While
insertion of a new word into an existing DAWG can be done in linear time in the size of
the data structure [67], set manipulation algorithms are not done efficiently. Since DAWGs
are DFAs, the result of set manipulation is not guaranteed to be minimal; therefore, an
additional minimization step should be performed separately. In general, substring indices
data structures lack efficient set manipulation algorithms [24].

Binary decision diagrams are instead designed for efficient set manipulation al-
gorithms. As mentioned earlier in Section 1.3, SeqBDDs inherit BDDs and ZBDDs set
manipulation algorithms, yet still have the ability to store any finite language of finite
strings; where a sequence is represented as a bit vector, each bit represents an alphabet
element per position. This representation requires lg|¥| boolean variables per position,
given |X| > 1.

The authors of [64] adapt the Set Decision Diagrams (SDD) introduced in [20],
to overcome the drawback of binary representation used by SeqBDDs and achieve more
compact storage for large databases of biological sequences. The goal is to maximize sim-
ilarities between encoded sequences to maximize sharing and minimize branching. This is
done by global reordering of each sequence in the set to be encoded. Further reduction is
achieved by swapping, merging, and concatenating nodes to reduce the number of nodes
and edges in the resulting diagram. To ensure canonicity, these reduction rules are applied

iteratively in a predefined order. Their results show a 90% improvement, in the size of their

43

data structure over SeqBDD in terms of the number of nodes. SeqBDDs encode bits, while
SDDs encode characters. However, this comparison ignores the number of edges and the
size of data associated with each edge. While the number of nodes and edges might be
smaller in the proposed data structure, the information associated with the edges is more
complicated since it consists of symbols, sequences, or sets. Moreover, since the sequences
are reordered, the permutation needs to be stored to recover the original data.

We have previously introduced SeqDDBs and SeqDDNs, which are multi-valued
(unlike SeqBDDs) yet still maintain a simpler structure than SDDs. Simple structures
promote a more comprehensible development of complex functions. In terms of SeqDDs
compactness in regards to sequence indexing, we will start by discussing SeqDDBs. When
encoding a set of suffixes or a set of subwords of a string w, the compactness of SeqDDBs is
comparable to that of DAWGs. Recall that a DAWG is defined as a minimal partial DFA
and the size of a SeqDDB, in terms of the number of edges, equals the size of a minimized
partial DFA plus the number of accepting states. Given the fact that the size of the smallest
automaton accepting the set of all suffixes of a string w is linear in the size of w [22]; more
specifically, the number of transition is at most 3n — 4, where n = |w| > 3 [21], we can
conclude that the size of a SeqDDB encoding w’s suffixes is bounded by 4n — 3, where the
number of accepting states is at most n + 1. As for the size of a SeqDDB encoding w’s
subwords, Blumer et al. proved in [I0] that a partial minimized DFA recognizing the set
of all subwords consists of 2n — 2 states and 3n — 4 transitions; therefore, the size of a
SeqDDB encoding w’s subwords equals 5n — 6, given that all states are accepting. In the

case of encoding a set of prefixes, the size equals 2n (refer to the example in Figure[2.10|(a)).

44

Encoded set ‘ SeqDDB size ‘ SeqDDN size

Suffixes 4n — 3 2n+1
Subwords 5n — 6 2(n® +3n? + 8n + 6)
Prefixes 2n n?+1

|

Table 2.1: Summary of the upper bound size of a SeqDDB/N encoding a set of all prefixes,
suffixes, or subwords of a certain string of size n.

On the other hand, the size of a SeqDDN encoding a set of suffixes is 2n + 1, where the
SeqDDN will consist of a MDD, with one node per level, of size n and n+ 1 handles pointing
to the corresponding suffix (refer to an example in Figure 2.10(b)). A SegDDN encoding
a set of prefixes is of size up to n? + 1, while the size of a SegDDN encoding the set of
substrings, assuming no nodes are shared, equals n + 1 + anl j(n —j+ 1), which simplifies
j=

to é(n?’ + 3n? + 8n + 6). In practice, the size is often smaller due to suffix sharing (Table
shows a summary of these results).

Using SeqDDBs and SeqDDNs for indexing sequences allows for efficient set ma-
nipulations. Moreover, the membership problem can be solved in a time proportional to

the size of the query. Future work will employ edge-valued SeqDDs to preserve information

about substring locations.

Sequence alignment

In molecular biology, similar DNA or protein sequences tend to carry the same
function. Sequence similarity allows one to detect homologies and to predict the function-
ality of novel genes or protein sequences. There are three kinds of sequence alignments:

global, local, and semi-global.

45

Ap Av|e6]s5]4f3]2]1]0]

(a) Prefiz(w) (b) Suffiz(w)

Figure 2.10: Example shows a SeqDDB encoding the set of all prefixes and a SeqDDN
encoding the set of all suffixes of w = “actcgg”.

An alignment between two sequences is formed by inserting gaps, such that the
two sequences becomes of the same length. The similarity between two aligned sequences is
measured by the number of matches, mismatches, and gaps. A global alignment between two
sequences aims produce an alignment with the highest similarity score. A local alignment
between two sequences is a pair of aligned substrings with the highest similarity score among
all other substring pairs of the two sequences. A semi-global alignment is a variation of
global alignment that do not penalize gaps at the end of any of the two sequences.

Global alignment is used to check if two sequences are entirely homologous, i.e.,
entirely aligned. Local alignment is used to discover conserved regions. Semi-global align-
ment is usually used in the context of shotgun genome assembly, where the ends of the
sequences are matched.

The alignment between two sequences is called pairwise alignment; if it is carried

out among multiple sequences, it is called multiple sequence alignment [38|, [79]. Next, we

46

show how we can take advantage of the SeqBDDs and their variants to solve two sequence
alignment problems.

First, we consider the case of a pairwise local/semi-global alignment under the
assumption that there is a single gap in the pattern that is known a priori. Given a query
of the form “sxv”, where * stands for zero or more extra characters, and a SeqBDD encoding
a set of sequences, the single wild card query method proposed in [5] can answer such a query
in time linear in the size of the query. The algorithm returns the intersection of sequences
having prefix s with the reverse of the sequences having a prefix v-reversed. However, the
algorithm does not take into account the time and memory complexity associated with
creating a reversed SeqBDD. This can be done efficiently by incrementally constructing a
reversed SeqBDD in time linear to the size of the original SeqBDD by visiting each node in
the topological ordering of the nodes. Since their fast method to build the reversed SeqBDD
requires an intermediate SeqBDD (representing visited paths) attached to each node of the
original SeqBDD, the memory requirement could be prohibitive for large SeqBDDs.

The more general case of multiple local sequence alignment is related to the fre-
quent subsequence mining problem addressed by [49]. In this chapter, where SeqBDD were
first introduced, a weighted variation was required to accomplish the mining process. The
purpose is to mine subsequences appear at frequency exceed a predefined minimum sup-
port. Given a weighted SeqBDD p encoding arbitrary set of finite strings, they construct
z-conditional databases, each as a SeqBDD, exploiting decision diagrams techniques, such
as a unique table to share nodes among different SeqBDDs and operation cache for efficient

manipulation.

47

Biclustering for gene-expression analysis

Conventional clustering approaches compose coherent clusters of objects that are
grouped according to their weights regarding some attributes. In biclustering techniques,
however, objects and attributes are symmetric and the goal shift to clustering them simul-
taneously [35]. Biclustering gene expression aims to identify groups of genes that exhibit
similar reactions to different stimuli [82].

We consider the ZCluster algorithm [83], which uses symbolic manipulation to
discover all biclusters in a given microarray matrix without the need for exhaustive enu-
meration, thus, coping with the computational challenges of an NP-hard problem [82, [17].
The ZCluster algorithm inherits the pScore system from the PCluster algorithm to score
sub-matrices and generate pairwise maximal biclusters, which are divided into two types:
horizonal seeds for every two genes to show a maximal set of experiments to which they
responded similarly, and wertical seeds, analogously, for every two experiment conditions.
Considering that the number of experiments is much smaller than the number of genes,
usually 10% to 10* genes in a microarray and fewer than 100 experiments [17], ZCluster
starts with generating the vertical seeds and represents them as ZBDDs, then generates the
corresponding horizontal seeds represented as a trie, to generate the final biclusters.

In [82], Yoon et al. represented both vertical and horizontal seeds as ZBDDs. In
their follow-up paper [83] they represented horizontal seeds as a set of strings of different
length and encode them using trie. As future work, our goal is to explore the benefits of
storing both vertical and horizontal seeds as SeqDDs, and compare the ZCluster algorithm

efficiency with different combinations of representations.

48

All-pair suffix-prefix overlap

Detecting suffix prefix overlap is a vital step in genome assembly, especially for
third generation sequencing where reads are long (but noisy). According to [34, 33], the

all-pair suffiz-prefix overlap problem is defined as follows.

Definition 8 Given two strings S; and S;, any suffix of S; that matches a prefiz of S;
is called a suffiz-prefic match of S;,Sj. Given a set of strings = {S1,S2,---, Sk}, all-pair
suffiz-prefiz problem is the problem of finding, for each ordered pair (S;,S;j), the longest

suffix-prefiz match.

To find all-pair suffix-prefix overlaps in DNA sequences using SeqDDB, we build
two shared SeqDDBs such that for a given finite set of DNA sequences S = {s1, s2, - , Sk},
let S be a set composed of reverse complements Vs; € S. And let u and v be two canonical
shared SeqDDBs, where u encodes S U S and v encodes suffiz.(S). And let p and ¢ be
two canonical SeqDDBs, where p encodes s; U $; and q encodes suffir-,(s;), for all s; € S.
Algorithm introduces a set operation SUFFIX_PREFIX_OVERLAP to find all pair suffix-
prefix overlaps of length > 7.

The algorithm was tested on a set of simulated reads that for chromosome 1 of
Saccharomyces cerevisiae (yeast) genome (which is approximately 230 kbp). Simulated
reads were generated using ART [40], which generated 3,068 reads of length 150 bp each
(about 2x sequencing depth). For 7 = 33, the result contained 1,992 overlaps.

To verify that detected overlaps are indeed the longest overlap, we conducted the
following test; assume that an overlap of length y is detected between a pair of sequences

(si, s5), where |s;| = x and |s;| = z, then the test follows one of the three cases below.

49

true if |overlap| = min(|sil,|s;|),

LONGEST OVERLAP =4 true if suffix_, (s;) # prefiz(s;),

false otherwise
Note that our test detects false positives, while false negatives are not detected.

Running the test on out dataset shows that all detected overlaps are the longest.

2.6 Conclusion

We introduced SeqDDs, a multi-valued sequence decision diagrams, which can be
perceived as MDDs with no variable ordering but are still, nevertheless, canonical. In our
setting the notion of levels is not applicable, hence our representation is not sensitive to
variable ordering, therefore the “size explosion” depends merely on the encoded set. SeqDDs
are ideal for encoding a finite set of strings of arbitrary lengths. To ensure canonicity, we
proposed two canonical versions, with e restricted towards the bottom or with e restricted
towards the top. The latter version is analogous to a shared MDD, which we adapt into
what we called SeqDDN. The compactness of our representations were studied in relation
to finite automata. The results showed that there is no winner between the two versions;
therefore, we proposed algorithms for both SeqDDBs and SeqDDNs. SeqDDs are useful for
applications that require compact storage and efficient manipulation of large sets of strings

with high sharing rate.

50

Algorithm 2.12 Suffix-Prefix overlap

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

13:

10:
11:
12:
13:

14:
15:
16:
17:

18:

19:
20:
21:

function ALLPAIRSUFFIXPREFIXOVERLAP(u : shared SeqDDB, v : shared SeqDDB)

declare local int len
for s; € S do
q < U[S —j] > SeqDDB q points to the root of SeqDDB encoding suffix- . .s;
for s; € S do -
if s; = s; then
continue
p < u[s — Z] > SeqDDB p point to the root of SeqDDB encoding s; U S;
len <0
len < SUFFIXPREFIXOVERLAP(p,q, len)
if len > 0 then
output overlap info

return

: function SUFFIXPREFIXOVERLAP(p : SeqDDB, ¢ : SeqDDB, len : int)

declare local SeqDDB r

declare local int count

if pZO or q:O then return 0 > base case: empty set

if g=1 then return 1

if p=1 then > base case:e
if g[e]=1 then return 1
else return 0

if Cache contains (SefPrefOverlap, (p,q):r) then return r > check if already

computed

count <— 0 > initialize counter
for a € ¥ do > Compute by recursively call SefPrefOverlap for each a € X
rla] <~ SEFPREFOVERLAP(plal, ¢[a])
if r[a]=0 then count + count + 1 > count edges pointing to terminal O
len < len+1
if gle] =1 and (ple] =1 or Veex pla] # 0 < ¢la] = 0) then
if count = |¥| then return 1 > e-node
else rle] =1

else if count=|X| then r < 0 len <0 > empty-node
UmqueTableInsert(r) > insert to unique table to ensure canonicity
Cache «+ < SefPrevaerlap, (p, q):T) > cache result to avoid re-computation
return r

51

Chapter 3

A Comparative Evaluation of

Assembly Reconciliation Tools

While the number of sequenced genome keeps increasing, the majority of eukaryotic
genomes are unfinished due to the algorithmic challenges of assembling them. A variety
of assembly and scaffolding tools are available, but it is not always obvious which tool or
parameters to use for a specific genome size and complexity. As a consequence, it is common
practice to produce multiple assemblies using different assemblers/parameters, then select
the best one for public release. A more compelling approach would allow one to merge
multiple assemblies with the intent to produce a higher quality consensus assembly, which
is the objective of assembly reconciliation.

Several assembly reconciliation tools have been proposed in the literature, but their
strengths and weaknesses have never been compared on a common dataset. We fill this need

with the work presented in this chapter, in which we report on an extensive comparative

52

evaluation of CISA, GAA, GAM_NGS, GARM, Metassembler, MIX, and ZORRO. Specif-
ically, we evaluate contiguity, correctness, coverage, and duplication ratio of the merged
assembly compared to the individual assemblies provided in input.

None of the tools we tested consistently improved the quality of the input GAGE
and synthetic assemblies. Our experiments show an increase in contiguity in the consensus
assembly only if the original assemblies already have high quality. In terms of correctness,
the quality of the results depends on the specific tool, as well as on the quality and the
ranking of the input assemblies. In general, the number of misassemblies range from being
comparable to the best of the input assembly to being comparable to the worst of the input

assembly.

3.1 Background

Despite the prodigious throughput of the sequencing instruments currently on
the market, the assembly problem remains very challenging, mainly due to the repetitive
content of large genomes, uneven sequencing coverage, and the presence of (non-uniform)
sequencing errors and chimeric reads. The third generation of sequencing technology, e.g.,
Pacific Biosciences [27] and Oxford Nanopore [19], offers very long reads at a higher cost
per base, but sequencing error rate is much higher.

A significant number of de novo genome assemblers are available to the community.
The choice of the most appropriate assembler depends on the size and complexity (repeat
content, ploidy, etc.) of the genome to be assembled, the type of sequencing technology used

to produce the input reads (e.g., Sanger, 454, Illumina, PacBio, Nanopore, etc.), and the

53

availability of paired-end or long-insert mate-pair reads. Each assembler implements slightly
different heuristics to deal with repetitions in the genome, uneven coverage, sequencing
errors and chimeric reads. The final assembly is very rarely entirely finished, with one solid
sequence per chromosome. Instead, the typical output is an unordered/unoriented set of
contiguous regions called contigs. If paired-end or mate-pair reads are available, some of
contigs can be ordered and oriented by anchoring paired-end reads to contigs. In some
cases, the length of the gaps between contigs can be estimated and contigs can be joined
together to create scaffolds.

As said, selecting which assembler to use in order to produce the best quality
assembly is not a trivial task. Assembly competitions such as Genome Assembly Gold-
Standard Evaluation (GAGE) [66] and Assemblathon [I3] have been held to evaluate mul-
tiple assemblers on common data sets. Such comparative evaluations can provide general
guidelines, but there is no systematic way to determine which assembler and what param-
eters settings to use to produce the “best” assembly for a specific genome and a specific
dataset. As a consequence, it is common practice to generate multiple genome assem-
blies from a few different assemblers and/or parameters (e.g., the k-mer size for the de
Bruijn graph), and then try to guess the “best” assembly based on assembly statistics,
spot-checking, homology analysis, etc.

In fact, the notion of “best” assembly is not well defined. Since it is unlikely to
obtain a “perfect” assembly that covers the entire genome with no assembly errors, one has
to decide whether it is more important to maximize contig/scaffold length (at the expense

of possibly introducing more mis-assemblies) or minimize the number of mis-assemblies

54

(at the expense of possibly generating shorter contigs/scaffolds). Typically, the quality
assessment for draft assemblies is carried out via statistical measurements and alignment
to a reference genome (if one is available). N50 is a widely used metrics to assess the
contiguity of an assembly, which is defined by the length of the shortest contig for which
longer and equal length contigs cover at least 50% of the assembly. NG50 is similar to
N50 except the metrics relates to the genome size rather than the assembly size. NAS50
and NGA50 are analogous to N50 and NG50 where the contigs are replaced by blocks that
can be aligned to the reference. Correctness is measured by detecting misassemblies such
as mismatches, indels, and misjoins. Misjoins are considered the least desirable type of
misassemblies [72], where loci that are far apart in the genome are improperly joined in the
assembly. Misjoins include inversions, relocations, and translocations. An inversion occurs
when the orientation of a contig is inverted with respect to the reference. A relocation
occurs when a contig is misplaced within the chromosome it belongs to, and a translocation
occurs when a contig is misplaced in a different chromosome.

Assembly reconciliation algorithms attempt to take one step further towards a
finished genome. Rather than arbitrarily try to guess the best assemblies among several
draft assemblies, assembly reconciliation tools offer a compelling alternative. These tools
promise to produce a higher quality consensus assembly by merging two or more draft
assemblies. The main goal of assembly reconciliation algorithms is to enhance contiguity of
the resulting assembly while at the same time, avoid introducing assembly errors. In this
chapter, we carry out the first comprehensive evaluation of assembly reconciliation tools by

measuring the quality of the consensus assembly on several common input datasets with

95

different quality attributes.

3.1.1 Assembly reconciliation tools

The concept of assembly reconciliation was first introduced by Zimin et al. [88].
In that work, the authors also introduced an assembly reconciliation tool called RECONCIL-
IATOR, which is no longer maintained (last updated in 2007). Other reconciliation tools in
the literature that are no longer maintained and/or have no documentation were excluded
from our evaluation. We also excluded GAM, because it was superseded by GAM_NGS.
Other tools such as eRGA [74], MAIA [62], and Minimus2 [71] were also not included in our
comparative evaluation because these tools address different problems. Reference-guided
assembly (eRGA and MAIA) and hybrid assembly (Minimus2) are related to the problem of
assembly reconciliation, but not quite the same. The former uses a closely related reference
to assemble the conserved regions of the genome, which reduces the complexity of de novo
assembly to the non-conserved portions. Hybrid assembly allows users to incorporate reads
from different sequencing technologies (e.g., short Illumina reads with long PacBio reads).
MATA has also the ability to merge de novo assemblies if several closely related reference
genomes are available. QuickMerge [16] is a tool that allows users to merge an assembly
obtained from Pacific Bioscience reads with another assembly based on second generation
reads. We excluded QuickMerge from our evaluations due the lack of publicly available
PacBio-based assemblies with a corresponding high quality reference genome that would
allow us to assess the results.

In this work we benchmarked seven assembly reconciliation tools, namely CISA,

GAA, GAM_NGS, GARM, Metassembler, MIX, and ZORRO, which are briefly described

56

next. Table|3.1]summarizes the main goals and features of the seven assembly reconciliation
tools evaluated in this study. Several of these algorithms take advantage of compression-
expansion (CE) statistic, which allows them to detect assembly compression (due to an
incorrect deletion) or assembly expansion (due to an incorrect insertion) [88]. In order to
obtain the CE statistics, paired-end or mate-pair reads are mapped to the assembly to be
evaluated. The CE statistics is computed by comparing the distance between the mapped
mates and the expected insert size.

The objective of CISA is to reconcile bacterial genome assemblies [48]. Given
the contigs for each of the input draft assemblies, CISA selects representative contigs (i.e.,
longest contigs) and discards (nearly) contained contigs. CISA then tries to extend repre-
sentative contigs, and detects mis-assembly in the representative contigs by aligning them
to query contigs. Contigs that align to multiple positions are considered misassembled and
another representative contig is selected. Contig with an unaligned portion are split. Fi-
nally, the resulting contigs are iteratively merged. We should note that CISA’s objective is
to merge more than two assemblies, but we have also tested it on two inputs for consistency
with other tools.

Users of GAA have to specify a target and a query assembly [81] where the “target”
assembly is expected to be of higher quality. The objective of GAA is to close gaps in target
assemblies using the query assembly. Query contigs that are not anchored to at least two
contigs target are not utilized.

The input to GAM_NGS is one or more alignments between each library of reads

and each assembly [75]. GAM_NGS first identifies maximal portions of both input assem-

57

bly (called blocks) that share the same set of uniquely mapped reads. GAM_NGS then
constructs a weighted undirected graph where each vertex corresponds to a contig, and an
edge connects two contigs if (i) they belong to different assemblies and (ii) they share at
least one block. From this graph, GAM_NGS computes a consistent ordering and orien-
tation of blocks with respect to both input assemblies. Then, GAM_NGS builds another
directed weighted graph (called assembly graph) where each vertex represents a block, and
each edge connects two blocks if they belong to the same contig of at least one of the assem-
blies. After resolving conflicts in the assembly graph, GAM_NGS computes a semi-global
alignment between any two contigs that share at least one block. If two contigs have at
least 95% identity, GAM_NGS “merges” the assemblies by selecting the assembly with the
better compression-expansion statistics.

GARM [55] also manipulates assemblies asymmetrically, but users do not need
to know in advance which one is the better assembly. The tool decides which one is the
“reference” assembly based on a variety of assembly statistics. GARM then (i) aligns
the assemblies to each other to detect overlaps (using nucmer [45]), (ii) removes ambiguous
overlaps and contigs which are (nearly) completely contained in each another, (iii) generates
layout and consensus scores, (iv) merges contigs, (v) orders merged contigs to match the
order and the orientation of the original scaffolds (if scaffolds are available) — if a contig
that is a part of a scaffold is not merged, the contig is placed within the resulting scaffold
in a location that corresponds to the original scaffold and the gap length is recomputed.

Compression-expansion statistics on the two input assemblies are also used in

Metassembler [78]. First, Metassembler uses nucmer [45] to align the two input assemblies;

58

the boundaries of these alignments are called break points. For each region between the
break points, one of two assemblies is selected based on its compression-expansion statistics.
Metassembler allows users to input more than two assemblies, but merges them in an
progressive pairwise fashion.

MIX [72] uses a directed weighted graph called extension graph which is annotated
with a variety of weights to represent prefix-suffix overlaps between contigs in the input
assemblies. MIX determines a set of non-overlapping mazimal independent longest paths
on the extension graph to merge contigs. Contigs not included in any path are examined
for duplications, contigs that are contained or nearly contained are removed, and the rest
are added to the assembly. MIX does not performs error correction, but rather focuses on
enhancing contiguity.

ZORRO [6] starts by masking repetitive regions which are identified using k-mer
statistics. Once the repetitive regions are masked, the overlap between the two assemblies is
detected using Minimus [71]. ZORRO then unmasks the repetitive regions and merges the
overlapping contigs. Lastly, ZORRO uses the tool Bambus [63] to order and orient contigs

using paired-end reads.

3.2 Datasets and Experimental Results

Since the quality of the input assemblies is expected to directly affect the quality
of the final merged assembly, we explored the performance of assembly reconciliation tools
under different input quality.

To carry out a comparative evaluation of the seven assembly reconciliation tools

59

Table 3.1: Features of the assembly reconciliation tools evaluated in this study.

CISA GAA GAMNGS GARM Metassembler MIX ZORRO

Inputs

Contigs allowed v v \/[i] v v v v
Scaffolds allowed v il /e v v

Short reads allowed Ve

Paired-end reads allowed Ve v
Mate-pair reads allowed Ve v

Alignments allowed v v

Reads required Ve v v
Reference input assembly required v v

Input assemblies treaded symmetrically v v

Only two input assemblies v v v v
More than two input assemblies v v

Can handle bacterial /small genomes v v v v v v v
Can handle large eukaryotic genomes v v v v v
Goals

To increase assembly contiguity v v v v v v v
To decrease number of assembly errors v v

Methods

Compression-expansion statistics v v v

Scaffolding information v v

Use single reads v

Use paired-end/mate-pair reads v v v v
Can split assembly misjoin v v

Can detect/avoid repetitive regions v v v
Output

Contigs v v v v v v v
Scaffolds »/FI v

“Optional, GAM_NGS requires alignment file.

bScaffolds should be broken into contigs. A gap file and contig naming conveys scaffolding information
‘performs iterative pairwise

dwhen input contains scaffolds

listed above, we used publicly-available assemblies for the GAGE competition [66] and we
created synthetic assemblies of Saccharomyces cerevisiae S288c [6] including structural vari-
ants. The choice of the GAGE assemblies was motivated by the fact that this dataset has
been the most commonly used for assembly reconciliation tools. The authors of GAM_NGS
used this dataset in their experimental results, CISA was tested on assemblies of Staphylo-
coccus aureus and Rhodobacter sphaeroides, and MIX used GAGE_B [52] which includes the

assemblies of Staphylococcus aureus and Rhodobacter sphaeroides. Other assembly reconcil-

60

iation tools used the Assemblathon dataset [I3], which was a similar assembly competition
to GAGE.

All assembly reconciliation tools were ran with default parameters, unless other-
wise noted. We explored how other parameter settings affected the experimental results in
section Since some assembly reconciliation tools can take advantage of scaffold in-
formation, we carried out experiments on both contig-based assemblies and scaffold-based
assemblies.

Outputs of assembly reconciliation tools were processed by our scripts, then fed
into Quast [32] (GAGE option activated) to obtain assembly statistics. Quality scores
were also computed using Quast on the input assemblies. We first collected assembly
statistics related to contiguity, namely N50, number of contigs, longest contig, and total
assembly size. By comparing the assemblies to the reference genome we also collected
NGA50, number of misassemblies, the total length of contigs affected by misassemblies, the
number of mismatches and indels between the assembly and the reference, the percentage
of the reference genome covered by the assembly, and the duplication ratio. In addition to
genome-wide analyses, we also studied the ability of these tools to assemble the primary
sequence of annotated genes. Specifically, we computed the fraction of each gene sequence
covered by contigs, for both input and merged assemblies. Details about the procedure
used to compute gene coverage can be found in Subsection A complete report on
these statistics is reported in Tables Here, we only summarize the results using a
graphical representation of the contiguity/correctness tradeoff (see Figures . Input

and output assemblies are represented as points on the scatter plot where the x-coordinate

61

High

Number of misassemblies

Low =

Low High
NGAS50 (kbp)

Figure 3.1: The performance of assembly reconciliation algorithms is summarized as points
on a 2D scatter-plot, in which the z-axis represents contiguity (NGA50) and the y-axis
represents the number of misassemblies.

represents the contiguity (NGA50), and their y-coordinate is the number of misassemblies.
Figure [3.1] illustrates how to interpret the plots. We want assembly reconciliation tools
to “move” the input points towards the bottom right corner of the plot, i.e., increase the
contiguity and reduce the number of assembly errors.

All experiments were performed on a Linux Ubuntu 12.10 server with a 20 cores
Intel Xeon CPU E5-2690v2 3GHz and 512GB of RAM. Multithreading was used when
available. A detailed analysis of run time, memory consumption, CPU utilization for all
the tools and genomes is reported in Subsection [3.2.7 A companion website http://
reconciliation.cs.ucr.edu/ provides links to the all the datasets and the scripts used

in this study.

62

http://reconciliation.cs.ucr.edu/
http://reconciliation.cs.ucr.edu/

3.2.1 GAGE assemblies

The GAGE competition evaluated eight assemblers (ABySS [70], ALLPATHS-LG
[29], Bambus2 [63], Celera Assembler [60, 57], MaSuRCA [87], SGA [69], SOAPdenovo
[47], and Velvet [85]) on whole-genome shotgun sequence data of four genomes, namely
Staphylococcus aureus (genome size ~2.8 Mbp), Rhodobacter sphaeroides (~=4.6 Mbp), Homo
sapiens’ chromosome 14 (~88 Mbp), and Bombus impatiens (~250 Mbp). Staphylococcus
aureus has one main chromosome and a small plasmid, while Rhodobacter sphaeroides has
two chromosomes and five plasmids. In our experiments we mainly used the first hree
genomes, because at the time of writing Bombus impatiens did not have a high quality
reference genome. We only used the assemblies for Bombus impatiens to determine which
tools would be able to handle large inputs. Out of the 4 x 8 genome-assembler pairs, the
GAGE competition included 27 assemblies (available from http://gage.cbcb.umd.edu).

Running each assembly reconciliation tool on all pairs of assemblies (out of the
27 available) would generate several hundred merged assemblies and it would be difficult
to draw general conclusions. We decided instead to select input assembly pairs based on
six different criteria and compare the results on the selected pairs. To streamline the

presentation, we will not comment on tools that did not run successfully.

3.2.2 Limitations

Here are some practical limitations related to the execution of benchmarked tools.
MIX and CISA: we did not run these two tools on the Hg_chrij dataset because they

were designed for bacteria-sized genome and they would not handle such a large input.

63

http://gage.cbcb.umd.edu

GARM: while GARM’s manual claims that the tool can accept two contigs, two scaffolds,
or contig/scaffold combination as an input, we were only successful to run the tool using
one contig and one scaffold; in most cases, running with two contigs produced an empty

FASTA file, while using two scaffolds produced FASTA files with all nucleotides set to N.

3.2.3 Usage of reads

Some of the tools can take advantage of the raw reads, in addition to the input
assemblies. For GAA, while the paper mentions using paired-end reads for error correction,
there is no option to provide them. Therefore, we didn’t use them for GAA. We used
reads in the following cases. For GAM_NGS, we used paired-end reads with a 155-180bp
insert (Library 1 in GAGE). For Metassembler, in the case of bacterial genomes we used
the available short-jump library (insert size of 3500bp); for Hg_chr1j we used the available
long-jump library (insert size is approximately 35 kbp), and for Bombus impatiens we used
the available short-jump library 2 (insert size is approximately 8 kbp). For ZORRO, we

used paired-end reads with a 155-180bp insert (Library 1 in GAGE)

3.2.4 Gene coverage analysis

We used the following reference genomes and their corresponding gene annotations

e Staphylococcus aureus subsp. aureus USA300_.TCH1516 found at http://bacteria.
ensembl.org/staphylococcus_aureus_subsp_aureus_usa300_tch1516/Info/Index

(2844 Genes)

e Rhodobacter sphaeroides KD131

64

http://bacteria.ensembl.org/staphylococcus_aureus_subsp_aureus_usa300_tch1516/Info/Index
http://bacteria.ensembl.org/staphylococcus_aureus_subsp_aureus_usa300_tch1516/Info/Index

http://bacteria.ensembl.org/rhodobacter_sphaeroides_kd131/Info/Index| (4474

Genes)

e Homo sapiens, chromosome 14 GRCh38.p2

http://uswest.ensembl.org/Homo_sapiens/Info/Index (ftp release 80) (2289 Genes)

First, we created a BLAST database for each of the GAGE reference genome
assemblies and each of the merged output assemblies. Then, we used BLASTn to align the
primary sequence of each gene against each database (using default parameters). For each
hit reported in BLASTn output, we chose the best ranked alignment with 75% minimum
identity. The total gene coverage reported is the cumulative sum of the coverage of each

hit minus any overlaps between the hits.

3.2.5 Experimental results
High contiguity, high correctness inputs (GAGE)

In the first set of experiments, the objective was to explore the contiguity /correctness
tradeoff. Specifically, we wanted to test the ability of reconciliation tools to take advantage
of the contiguity of the first input assembly and the correctness of the second in order to
create a merged assembly with a number of misassemblies comparable to the second as-
sembly and a contiguity comparable to the first assembly. The two input assemblies to be
merged were chosen so that one has high N50 value (but possibly a relatively high number
of misassembly errors) and the other has few misassembly errors (and possibly a lower N50).

Figure and Table reports the results of merging the SOAPdenovo assem-

bly (high N50) with the ABySS assembly (low misassembly errors) for the three chosen

65

http://bacteria.ensembl.org/rhodobacter_sphaeroides_kd131/Info/Index
http://uswest.ensembl.org/Homo_sapiens/Info/Index

Homo sapiens, chromosome 14 Rhodobacter sphaeroides Staphylococcus aureus

1 SOAPdenovo

1000 4

(<]
2 ABySS 3
100 (] e e|a
° °
-
101 Q CISA
1 SOAPdenovo 9jGaa

@ GAM_NGS

10000 4
@ GARM
@ vix

@ Metassembler

Number of misassemblies

SPIoyBOS

1004

é 1.0 1.5 (.J 2(.30 4(.)0 5‘0 1(‘)0 1.‘;>0 2[.)0
NGAS50 (kbp)

Figure 3.2: Contiguity-correctness experimental results when inputs are contigs (top row)
or scaffolds (bottom row); assembly reconciliation tools are given two assembled genomes to
merge (Homo sapiens, chromosome 14, Rhodobacter sphaeroides, Staphylococcus aureus),
in which the first assembly has high contiguity, the second has high correctness; tools were
ran using default parameters

genomes. Since the assembly produced by ABySS on the Rhodobacter sphaeroides genome
has more misassembly errors than the assembly generated by SOAPdenovo, we also reported
in Table the results produced by ALLPATHS-LG and SGA on Rhodobacter sphaeroides
assemblies. The SOAPdenovo assembly was used as the “master” assembly in all tools that
require a ranking of the inputs.

Observe in Figure 3.2 that on the Staphylococcus aureus genome, all tools increase
the contiguity marginally (in fact, by less than 3%). While none of the tools was able to
improve assembly errors compared to the ABySS assembly, GAA and MIX produced more
errors than SOAPdenovo. CISA produced the lowest number of misassemblies (13% less
than SOAPdenovo). Otherwise, GAM_NGS and Metassembler maintained quality statistics
close to that of SOAPdenovo.

GAA created a merged assembly in which number of misassemblies was very close

66

to the sum of those statistics for the input assemblies. In terms of NGA50 the contiguity
was at least as good as the most contiguous input assembly.

When the input was composed of scaffolds (bottom panel in Figure , all tools
improved contiguity marginally (in fact, by less than 5%). Table show that GARM’s
and MIX’s merged assemblies covered less than 50% of the reference sequence. None of the
tools was able to reduce the number of misassembly errors compared to ABySS; in fact,
CISA produced more errors than SOAPdenovo.

Despite the fact that ABySS’s assembly for Rhodobacter sphaeroides had a higher
number of misassembly errors than SOAPdenovo, none of the merged assemblies improved
on the number of misassemblies compared to SOAPdenovo. Except for GAA, the number
of misassembly errors produced by all tools were closer to the master (SOAPdenovo). As
expected, tools that rely on a master assembly had a lower number of misassemblies than
those that did not rank the inputs. With scaffolds as inputs, changes in NGA50 were
negligible for all tools except for CISA. With contigs as inputs, GAM_NGS improved the
contiguity by at most by 11%, Metassembler and MIX increased it by 2%, and CISA
dropped it by 85%. MIX and Metassembler, and GARM maintained the same NGA50 as
SOAPdenovo.

In the majority of the cases, experimental results obtained with ALLPATHS-LG
(high N50) and SGA (low misassembly errors) on the Rhodobacter sphaeroides genome
(reported in Appendix [A| Table followed similar patterns to the ones we observed in
Figure CISA decreased the contiguity (although the reduction was far less this time).

GAA followed the same general pattern mentioned earlier. GAM_NGS did not increase

67

contiguity but rather maintained it close to that of the master assembly. Metassembler
and MIX also did not increase contiguity. ZORRO worked for this experiment: although
it decreased contiguity by 10%, it produced a smaller number of misassembly errors than
ALLPATHS-LG (but still higher that SGA).

With scaffolds as input assemblies, GAM_NGS retained the quality statistics of the
master assembly. Observe in Figure that GARM retained NGAS50 close to SOAPdenovo
(the master assembly). Also note that in Table that GARM maintained ALLPATHS-
LG’s contiguity statistics.

Experimental results on the Hg_chrij with contigs as input assemblies (Figure,
show that (i) GAM_NGS slightly improved contiguity, (ii) Metassembler maintained con-
tiguity, (iii) GAA crashed, (iv) the number of misassemblies was closer to SOAPdenovo.
With scaffolds as inputs, GAM_NGS and Metassembler produced assemblies with quality

statistics close to SOAPdenovo.

Reordering the inputs (GAGE)

As mentioned above, some of the assembly reconciliation tools assume that the
first input assembly is the master assembly, and should be trusted more (we call these tools
asymmetric). The goal of this set of experiments is determine how the quality of the merged
assembly depends on the specific order of the inputs.

To determine how the ranking affected the results, we repeated the same experi-
ments reported in the previous section but switched the order of the inputs. A comparative

analysis of Figure and Table with the results discussed in the previous section

68

Homo sapiens, chromosome 14 Rhodobacter sphaeroides Staphylococcus aureus

2 SOAPdenovo

1000 4

(<]
&
1 ABySS _ |2
1004 y ®) |G
L J 2 SOAPdenovo
1 ABySS r
[] e []

-
10+ - (1 AByss) CISA
GAA

=

@ GAM_NGS

10000 4
@ Mmix
_ SOAPdenovo @ Metassembler

o @ GARM

Number of misassemblies

SPIoyBOS

1ABYSS
1004 e
(1 AByss] ® 2 SOAPdenovo

(2.S0APdenovo) @ e e

.":: 1.0 1.5 (.J 2(.30 4(.)0 5‘0 1(‘)0 1.‘;>0 2[.)0
NGAS50 (kbp)

Figure 3.3: Contiguity-correctness experimental results when inputs are contigs (top row)
or scaffolds (bottom row); compared to Figure the order of the inputs was swapped.

prompts a few observations. First, we note that CISA, MIX, and GARM are symmetric
(i.e., they do not require users to rank the inputs, see Table , hence they are expected
to be unaffected by the reordering. Experimental results confirm that CISA and GARM
are indeed unaffected. The reordering however affected MIX results, albeit only slightly.

For Staphylococcus aureus, MIX’s contiguity statistics (N50 and NGA50) was not
affected by the reordering of the inputs. However, we observed a small change in the number
of misassemblies, although still higher than SOAPdenovo in both cases.

On Rhodobacter sphaeroides, all statistics remained unchanged except for the num-
ber of misassemblies that increased after reordering. In addition, with contigs as inputs we
did not observe an increase in NGA50 after the reordering.

Despite the fact that GAA requires input ranking, the results for Staphylococcus
aureus and Rhodobacter sphaeroides were similar. The output statistics of GAA followed

the general pattern mentioned in the previous section. For Hg_chrij, GAA crashed in

69

one ordering but not on the other. For all three genome, GAM_NGS and Metassembler
produced consensus assemblies with quality statistics close to the master assembly.

Note that the merged assemblies have higher contiguity in Figure[3.2] in which the
master has higher N50. In contrast, the number of misassemblies were lower in Figure [3.3]
for both Staphylococcus aureus and Hg_chr14 in which the master had lower errors (with the
exception of MIX). Merged assemblies for Rhodobacter sphaeroides had higher contiguity
and lower number of misassemblies, in which the master had higher N50 and lower number

of misassemblies (see Figure .

High-quality inputs (GAGE)

In the third set of experiments we tested the ability of the reconciliation tools to
merge two high quality assemblies. We selected two highly contiguous assemblies (i.e., small
number of contigs and scaffolds, high N50 values) and low number of misassembly errors.
Figure[3.4and Table[A 3]show the result of merging assemblies produced by ALLPATHS-LG
as first input and either MSR-CA, SOAPdenovo, or CABOG as the second assembly.

Observe that for Staphylococcus aureus with contigs as inputs, GAM_NGS pro-
duced an improved assembly that had no misassemblies, and was 66% more contiguous.
The next best assembly was by Metassembler with a 107% increase, but it had a slight
increase in the number of misassemblies compared to ALLPATHS-LG. MIX produced a
high number of misassemblies (higher than MSR-CA) but managed to increase contiguity
by 4%. CISA improved contiguity by 11%, but it produced a number of errors higher than

ALLPATHS-LG. ZORRO decreased contiguity by 30%.

70

Homo sapiens, chromosome 14 Rhodobacter sphaeroides Staphylococcus aureus

ry
1 Allpaths-LG

1001 2 CABOG

®
8

a® .(l
4 - _2 MSR-SA
10 2 SOAPdenovo @

o @ oisa
@ GAA
14 @ GAM_NGS

@ MIX

2 CABOG @ Metassembler

@ ZORRO

oy @ @ GARM
e

[

2 SOAPdenovo
) ¢

sbnuon

Number of misassemblies

SPIoyBOS

J ® ~
0
-
1 Allpaths—LG:
100 200 300 400 0 250 500 750 300 600 900
NGA50 (kbp)

Figure 3.4: Experimental results on merging high-quality assemblies (top row for input
contigs, bottom row for input scaffolds); tools were ran using default parameters

With scaffolds as inputs, ALLPATHS-LG has no misassemblies and higher NGA50
than MSR-CA. In general, asymmetric tools produced a lower number of misassemblies and
decreased the N50. For instance, GAM_NGS maintained quality statistics of ALLPATHS-
LG. Although ZORRO is asymmetric it decreased contiguity by more than 90%. On the
other hand, symmetric tools had a higher number of misassemblies. GARM achieved the
highest increase of NGA50 (16%).

The contiguity of the merged assemblies improved 11% — 108% with the exception
of ZORRO, which decreased the contiguity by 30%. GARM increased contiguity the most
(108%) at the expense of a number of misassemblies close to MSR-CA. MIX introduced no
misassemblies, but covered only 25% of the genome sequence. Notably, both GAM_NGS
and Metassembler improved contiguity by 66.5% and introduced no misassemblies, These
are two rare examples in which we observed an unquestionable improvement in the merged

assembly.

71

On the Rhodobacter sphaeroides genome, the two input assemblies had almost the
same number of misassemblies but the assembly produced by SOAPdenovo was much less
fragmented. Only Metassembler increasing NGA50 significantly. All other tools decreased
the contiguity. In terms of correctness, ZORRO and CISA (using scaffolds as inputs)
reduced the number of misassemblies but also decreased the contiguity by 99% and 60%,
respectively. Other tools produced merged assemblies with a number of misassemblies not
better than the inputs.

GARM improved the contiguity by 38% while CISA increased it by less than 2%.
MIX is the only tool that reduced the number of misassemblies, but again its assembly
only covered about half of the genome. None of the tools improved both contiguity and the
number of misassemblies.

In Hg_chr14, GAA improved the NGA50 by 76%, but it produced a number of mis-
assemblies equal to the sum of the number of misassemblies in the two inputs. GAM_NGS
improved the contiguity (28% increase in NGA50) and slightly reduced the number of mis-
assemblies. Metassembler produced quality statistics that are very close to ALLPATHS-LG.

With scaffolds as inputs, GAM_NGS and Metassembler maintained similar quality
statistics to ALLPATHS-LG. GARM decreased NGA50 by 9%. It also increased the number

of misassemblies.

Highly-fragmented inputs (GAGE)

The goal of this set of experiments was to evaluate the performance of assembly
reconciliation tools when provided with two highly fragmented input assemblies. Input

assemblies were selected to have a high percentage of contigs shorter than 200 bps, a high

72

1004

Number of misassemblies

Homo sapiens, chromosome 14

Rhodobacter sphaeroides

Staphylococcus aureus

.

[AByss)

°

[Vo

L
[',

sbnuon

.

@ cisA

@ GAA

@ GAM_NGS
@ MIX

@ Metassembler
@ GARM

SPIoyBOS

104 L @
R

0 10 20 30 5 10 15 20 0 50 100
NGAS50 (kbp)

Figure 3.5: Experimental results on merging highly fragmented assemblies (top row for

input contigs, bottom row for input scaffolds); tools were ran using default parameters

number of contigs and scaffolds, and low N50.

Figure and Table [A74] shows the results of merging ABySS assembly and SGA
assembly. Observe that when we used contigs as inputs, ABySS had a higher contiguity
than SGA (except in Hg_chr14). The opposite, however, was observed when scaffolds were
provided in input. In Staphylococcus aureus and Rhodobacter sphaeroides with contigs as
inputs, only asymmetric tools maintained or improved over NGA50 of the better input
assembly (in Staphylococcus aureus we observed up to 8% increase, and up to 17% in
Rhodobacter sphaeroides). However, in Hg_chrl/(with contigs as inputs) GAA produced
a 123% increase over SGA, while GAM_NGS did not improve NGA50 over SGA, but it
increased it 33% over ABySS.

With scaffolds as inputs, we observed a decrease in NGA50 except for MIX and
GARM (when SGA inputs are scaffolds). MIX, GARM, and CISA are symmetric tools,

hence they are expected to perform better than other tools when the non-master input has

73

Homo sapiens, chromosome 14 Rhodobacter sphaeroides Staphylococcus aureus
10001 e
1 ALLPATHS-LG
) °
S
2
b
g - ¢
o] e
g CISA
@ 1 ALLPATHS-LG @ GAA
< @ GAM_NGS
£ ® @ MIX
k)
. @ Metassembler
-E @ ZORRO
2 100+ @ GARM
@
<]
8
3
- o
&
10+ -
[]
' ' ' ' ' ' ' ' ' ™ ' ' '
0 100 200 300 400 0 250 500 750 0 300 600 900
NGA50 (kbp)

Figure 3.6: Experimental results on merging assemblies produced by assemblers based on
the de Bruijn graph compared to string graph (top row for input contigs, bottom row for
input scaffolds); tools were ran using default parameters

better quality. CISA, however, produced inferior results with scaffolds as inputs in most
experiments. We discovered that CISA with default parameters break scaffolds into contigs
when a scaffold contains more than ten consecutive Ns. MIX maintained NGA50 of SGA,

while GARM slightly decreased it compared to SGA (yet still higher than ABySS).

De Bruijn vs. string graph assembly (GAGE)

Here we tested the effect of merging assemblies generated using different assembly
strategies. Specifically, we merged an assembly generated by an assembler that uses a
de Bruijn graphs with an assembly produced by an assembler based on the string graph.
Figure and Table shows the result of merging an assembly produced by ALLPATHS-
LG (based on the de Bruijn graph) with an assembly produced by SGA (based on the string

graph). Overall, GAM_NGS, Metassembler, and MIX maintained similar assembly statistics

74

as ALLPATHS-LG.

Note that Staphylococcus aureus input assemblies (as contigs) had only one mis-
assembly. The merged assemblies also have one misassembly, with the exception of GAA
(two) and ZORRO (none). ZORRO corrected the assembly error without affecting NGA50.
CISA decreased NGA50 by 49%. With scaffolds as inputs, ALLPATHS-LG’s assembly has
no assembly errors. In fact, observe that all merged assemblies did not have any misassem-
blies. GARM kept NGAS50 close to ALLPATHS-LG. CISA covered less than 40% of the
genome, while ZORRO decreased the contiguity by 99%.

On Rhodobacter sphaeroides with contigs as inputs, CISA and ZORRO decreased
the contiguity by 34% and 10%, respectively. GAM_NGS and Metassembler maintained
ALLPATHS-LG’s quality statistics. All tools produced a relatively high number of mis-
assemblies (similar to ALLPATHS-LG). With scaffolds as inputs, CISA, ZORRO, and
GARM’s assembly statistics followed the same of statistics of Staphylococcus aureus. All
assemblies, with the exception of CISA and ZORRO, had a number of misassemblies closer
to ALLPATHS-LG. CISA again covered less than one fifth of the genome and ZORRO
decreased the contiguity by 99%. GAM_NGS, Metassembler, and MIX produced consensus
assemblies with quality statistics comparable to ALLPATHS-LG.

In Hg_chr1j(with contigs as inputs) GAM_NGS increased NGA50 by 2%. With
scaffolds as inputs, GAM_NGS and Metassembler maintained assembly statistics close
to ALLPATHS-LG. GARM increased the number of misassemblies by 9% (compared to
ALLPATHS-LG) and decreased NGA50 by 9%.

With scaffolds as inputs, GARM increased contiguity by 58%, while other tools

75

improved it by less than 3%. GAM_NGS and Metassembler produced about the same
number of misassembly errors as the higher of the two inputs. GARM improved NGA50

the most, but also increased the number of misassemblies by 42%.

Multiple inputs (GAGE)

In this set of experiments we tested the ability of the tools to merge more than
two assemblies. When an assembly reconciliation tool allowed no more than two assemblies
in input (see Table for a list), we merged them in an iterative fashion. For instance,
to merge three assemblies, we first merged two assemblies, then merged the result to the
third assemblies. Metassembler uses a similar strategy: when the user provides multiple
assemblies the tool iteratively performs pairwise reconciliation, where the output of one
iteration is the input of the next. We ordered the input assemblies based on feature response
curve (FR curve), which is an assembly quality metric proposed in [61]. The FR curve
represents the dependency between contigs that contains no more than 7 features and the
corresponding genome coverage. The x-axis represents 7 and the y-axis represent genome
coverage: the “steeper” is the curve, the better is the assembly. We used the FR curves in
[75] to determine the merging order of the GAGE assemblies, starting with the assemblies
with highest quality. Results for an alternative ordering is discussed in Note and
corresponding Tables For tools that allowed to merge more than two assemblies
(e.g., CISA and MIX), the merging was done in one step from the original assemblies. Here
we were interested in measuring the contiguity and correctness of the resulting assemblies

as the number of input assemblies increases.

76

26 ([~ }wl GuON .

1 T % GAM_NGS
o Lt e—5 1} & GARM
a Metassembler
8

Number of misassemblies
=

6 Velvet .
20RR0
N

NGA50 (kbp)

Figure 3.7: Experimental results on merging multiple assemblies of Staphylococcus au-
reus(black diamonds); the input order was determined using the FRCurve score (see text
for details); integer labels indicates successive merging steps; tools were ran using default
parameters

1]
@ - .
E Reconciler
: I CISA
2 « GAM_NGS
é’ o GARM
510 o Metassembler
9] o MIX
o ~,
£ ~ ZORRO
5

AN N

10 100 1000

NGA50 (kbp)

Figure 3.8: Experimental results on merging more than two assemblies (as scaffolds) ordered
by the FRCurve score (Staphylococcus aureus, genome size 2,903,081 bp). The Figure
reports on quality of merged assembly compared to the input assemblies. Tools were ran
using default parameters, unless otherwise noted

77

100 4

104

Number of misassemblies

10

G G- 5
g G
=
onvienoy

‘

N

4 BAMBUS2

1(‘)0
GA50 (kbp)

Reconciler
CISA
GAM_NGS
GARM
Metassembler
MIX

ZORRO

» s

Figure 3.9: Experimental results on merging more than two assemblies (as contigs) ordered
by the FRCurve score (Rhodobacter sphaeroides, genome size 4,603,060 bp). The Figure
reports on quality of merged assembly compared to the input assemblies. Tools were ran
using default parameters, unless otherwise noted

100

104

Number of misassemblies
/

10

N

T O =
\H, =) — @
egE Alol [

2 Allpaths-LG
AN

oL =
. P
R
/
| |
100 1000

NGA50 (kbp)

Reconciler
CISA
GAM_NGS
GARM
Metassembler
MIX

ZORRO

R RE)

Figure 3.10: Experimental results on merging more than two assemblies (as scaffolds) or-
dered by the FRCurve score (Rhodobacter sphaeroides, genome size 4,603,060 bp). The
Figure reports on quality of merged assembly compared to the input assemblies. Tools were
ran using default parameters, unless otherwise noted

78

6 BAMBUS 4 SOAPdenovo

1000- ——
e
(- Reconciler
|
7SGA 2 Allpaths-LG [g=~— 2 1) GAM_NGS

—

— o GARM

Metassembler

Number of misassemblies
=
o
T

NGAlgo (kbp) 10
Figure 3.11: Experimental results on merging more than two assemblies (as contigs) ordered
by the FRCurve score (Hg_chrlj, genome size 107,349,540 bp). The Figure reports on
quality of merged assembly compared to the input assemblies. Tools were ran using default
parameters, unless otherwise noted

[}
Q
5 1000~
g - \2 Allpaths-LG
- Reconciler

% 7SGA
g (7scrly] GAM_NGS
E o GARM
“ F-a ABySS
E Metassembler
[
£
S 10-
z

. \

10 100

NGA50 (kbp)

Figure 3.12: Experimental results on merging more than two assemblies (as scaffolds) or-
dered by the FRCurve score (Hg_chrij, genome size: 107,349,540). The Figure reports on
quality of merged assembly compared to the input assemblies. Tools were ran using default
parameters, unless otherwise noted

79

Reconciler
CISA

GAA
GAM_NGS
GARM
Metassembler
MIX

10+

Number of misassemblies
- - - - - -

-

1000

NGA50 (kbp)

Figure 3.13: Experimental results on merging more than two assemblies (as contigs) —
alternative ordering (Staphylococcus aureus, genome size 2,903,081 bp). The Figure reports
on quality of merged assembly compared to the input assemblies. Tools were ran using
default parameters, unless otherwise noted

100+
g Reconciler
g = CISA
7 6 o GAA
(0]
- * GAMNGS
5 (3] —— L o GARM
S - 3 velvet @ Metassembler
[-
E = 7 BAMBUS2 o Ivix
2 ' « ZORRO
o
Y T
10 100
NGA50 (kbp)

Figure 3.14: Experimental results on merging more than two assemblies (as contigs) — alter-
native ordering (Rhodobacter sphaeroides, genome size 4,603,060 bp). The Figure reports
on quality of merged assembly compared to the input assemblies. Tools were ran using
default parameters, unless otherwise noted

80

100001 (7 s0Apsencie) :
7 SOAPdenoo _—
.
2 S
5
£ Reconciler
@ 1000 GAA
é’ @ GAM_NGS
5 « GARM
9] Metassembler
-E 2SGA ~
E 100 1)
z
—
— o

1 10 100
NGAS0 (kbp)

Figure 3.15: Experimental results on merging more than two assemblies (as contigs) —
alternative ordering (Hg_chrl/, genome size 107,349,540 bp). The Figure reports on qual-
ity of merged assembly compared to the input assemblies. Tools were ran using default
parameters, unless otherwise noted

Figure Figure[3.9, and Figure [3.11]show the experimental results for Staphylo-
coccus aureus, Rhodobacter sphaeroides and Hg_chrly, respectively, when inputs are contigs.
First observe that in several cases, the process of iterative merging did not complete.

On Staphylococcus aureus and Rhodobacter sphaeroides, CISA generally improved
the contiguity as the number of merged assemblies increased. The number of errors fluc-
tuated over the iterations. GAA did not produce assembly files for the first iteration.
Although GAA did not work for this particular ordering it did produce results for the
alternative ordering reported in Appendix [A] Note

In Staphylococcus aureus and Rhodobacter sphaeroides, GAM_NGS’s contiguity
improved over successive iterations, but the number of misassemblies errors did not decrease
(it stayed close to the first master input in all iterations). For Hg_chrlj, the number
of misassemblies was also relatively high. GAM_NGS increased NGA50 by at least 70%

compared to CABOG.

81

In Staphylococcus aureus, Metassembler’s contiguity improved over successive it-
erations, but the number of misassemblies also increased. In Rhodobacter sphaeroides,
Metassembler’s assembly did not improve after the forth iteration. Note that NGA50 was
lower than BAMBUS2 and SOAPdenovo. Metassembler’s assembly had number of misas-
semblies about the average of the inputs. In Hg_chri1/, the number of misassembly errors
were low and decreased over successive iterations. Contiguity was high, but slightly de-
creased over successive iterations.

MIX maintained a low number of misassemblies in most iterations but suffered
from relatively poor NGA50. Since the genome coverage in most iterations was less than
50% of the reference, no NGA50 was reported for those iteration. On the Staphylococcus
aureus genome, the coverage was less than 50% in all iterations but it steadily improved
with increasing number of inputs. On Rhodobacter sphaeroides, the genome coverage was
below 50% with four or more inputs.

ZORRO frequently failed to produce results. When it worked, contiguity usually
started high, then fluctuated over successive iterations. ZORRO produced relatively high
number of misassemblies (somewhat in between the values of the inputs).

We repeated the same experiment but with scaffolds as inputs. Results are re-

ported in Tables [A.9] [A-10] and [AT1] and Figures [3.8] 3.10, and CISA’s results show

that after a certain number of input assemblies, increasing the number of inputs did not
affect the results significantly. From that point forward, it generally improved the contigu-
ity and reduced the number of contigs as the number of merged assemblies increased. The

number of misassemblies were with the range of input assemblies. CISA reached stability

82

with four inputs on Staphylococcus aureus and three inputs on Rhodobacter sphaeroides).

MIX on Staphylococcus aureus, produced a high number of misassemblies which
generally increased as the number of inputs increased. It maintained high genome coverage.
It also maintained high contiguity except for the last iteration. On Rhodobacter sphaeroides,
the number of misassemblies were also relatively high but it fluctuated as the number of
inputs increased. It also maintained high contiguity, achieving the best NGAS50 for less than
five inputs.

ZORRO produced low number of misassemblies on Staphylococcus aureus and
Rhodobacter sphaeroides. Contiguity was poor and generally decreased over successive iter-
ations.

GAM_NGS maintained results very close to the first input throughout all iterations
on Staphylococcus aureus, Rhodobacter sphaeroides, and Hg_chri4. In the latter genome,
GAM_NGS contiguity generally improved in successive iterations but so did the number of
misassemblies.

Metassembler maintained similar quality statistics to CABOG on Hg_chri4. On
Rhodobacter sphaeroides, Metassembler also maintained CABOG’s quality statistics with
a slight decrease of number of misassemblies, and contiguity as the number of iteration
increased. On Staphylococcus aureus, Metassembler also maintained quality statistics close
but not identical to MSR-CA. In general, as the number of inputs increased, the number of

misassemblies slightly decreased and the contiguity slightly improved.

83

Table 3.2: Experiments on the Bombus impatiens assemblies. Notes: all reported statistics
are for contigs; tools were ran using default parameters, unless otherwise noted; the E-Size
is defined as the expected scaffold size of any arbitrary location in the reference genome.

Reconciliation Contigs N50 E-Size
Tool or Input # (bp) (bp)
Input 1 (CABOG) 18,918 23,515 34,227.94
Input 2 (MSR-CA) 18,501 32,431 46,890.24

GAA Did not produce an assembly file
GAM_NGS 10,129 52,123 77,240.76
GARM (ctg_scf) 10,5672 70,577 98,189.44
Metassembler 17,694 25,317 36,774.11
Input 1 (ABySS) 35,112 14,383 20,904.98
Input 2 (SOAPdenovo) 11,556 57,117 78,228.65
GAA 46,668 63,941 99,133.63
GAM_NGS Did not produce an assembly file
GARM (ctg_scf) 9477 64,172 86,881.27
Metassembler 34,149 13,842 20,386.78
Input 1 (SOAPdenovo) 11,556 57,117 78,228.65
Input 2 (ABySS) 35,112 14,383 20,904.98
GAA 46,660 63,941 99,133.42
GAM_NGS 10,971 63,152 87,930
GARM (ctg_scf) 8042 101,115 133,528.41
Metassembler 9349 57,238 78,395.6
Input 1 (MSR-CA) 18,501 32,431 46,890.24
Input 2 (SOAPdenovo) 11,556 57,117 78,228.65

GAA Did not produce an assembly file
GAM_NGS 12,559 59,549 89,960.46
GARM (ctg-scf) 5984 117,986 148,549.55
Metassembler 16,234 35,077 50,156.59

Large genomes (GAGE)

To test the ability of these tools to scale to large eukaryotic genomes, we used
GAGE’s assemblies for Bombus impatiens. We selected the two input assemblies where
most of the tools were able to complete. A high quality reference genome is unavailable
for Bombus impatiens, so the statistics we reported were produced by the GAGE script. In
addition to the usual assembly statistics, GAGE computes the e-size, which is the expected
size of a contig (or scaffold). The e-size if computed as Y, L?/G, where the sum is over all
contigs ¢, G is the expected genome length and L. is the length of contig ¢ [66].

Results are reported in Table [3.2] in which only contigs and scaffolds of 500bp or

longer were considered. Observe that GARM reduced the number of contigs, increased N50

84

and the e-size for all experiments. GAM_NGS did not work for one of the experiments. In
the others, it decreased the number of contigs in all but one experiment. GAM_NGS always
improved N50, and increased the e-size in all but one experiment. GAA did not work for
two of the experiments. When it worked, it did not reduce the number of contigs, but it
increased both N50 and the e-size. Lastly, Metassembler decreased N50 and the e-size in
three out of four experiments. Metassembler reduced the number of contigs in half of the

experiments.

3.2.6 Parameter tuning

For the results in Appendix [A] Note all assembly reconciliation tools were
ran with default parameters. Here we explored how other parameter settings affected the

experimental results. Each tool has its own set of parameters, as briefly described next.

e CISA has three main parameter namely the minimum contig cutoff, the maximum
number of consecutive N’s; and the maximum unaligned gap (default values 100bp,
10bp, 0.95 quintile, respectively); we changed the minimum contig cutoff to 200bp and

500bp and the maximum gap size to 100 and 200; we also tried scaffolds as inputs.

e For GAA we focused on two parameters, namely the minimum contig cutoff and the
maximum tip size (default values of 100bp and 90 bp, respectively); we changed the
contig cutoff size to 200bp and 500 bp and the maximum tip size allowed to 15 bp

and 50bp.

e GAM_NGS has three main parameters, namely the minimum number of reads to

build a block, the block coverage filtering, and the minimum block length; for these

85

parameters the authors suggest using 10bp, 0.75, 200bp, respectively for bacterial
genomes, and 50bp, 0.75, 500bp for Hg_chrlj; since there was no option to change
the minimum block size, we explored the other two parameters; we used the default
values of at least 50 reads per block and 0.75 block coverage filter; we also tried setting
the read support to 10 and 30 with 0.75 block coverage filter, as well as read support

of 10 and 50 with 0.95 block coverage filter.

GARM: we explored changing the minimum contig cutoff (default 200bp), minimum
overlap (default 200bp) and maximum tip thresholds (default 50bp); in addition to
the default values, we tried the following combinations (i) 500bp contig cutoff, 200bp
min overlap, and 50bp max tip, (ii) 200bp contig cutoff, 100 bp min overlap, and 50
bp max tip (iii) 200bp contig cutoff, 200bp min overlap, and 100bp max tip, and (iv)

100bp contig cutoff, 50bp min overlap, and 15bp max tip.

MIX’s main parameters are the minimum length of alignment (default Obp) and min-
imum contig cutoff (default 500bp); according to the documentation, if these two
parameters are not specified MIX is supposed to check thresholds from 0 to 2000 with
step of 50; we tried this option, but only got results with default settings; the author of
MIX recommend a minimum alignment of 500bp and a minimum contig cutoff of Obp
for bacterial genomes (which is what we used); in addition we tried (i) minAlign=>50
and minctg=100, (ii) minAlign=>50 and minctg=200, and (iii) minAlign=100 and

minctg=500.

Metassembler has several parameters. We explored the parameters controlling the

assembly merge phase, namely minimum read coverage (default 15), minimum overlap

86

(default 60) and identity (default 60); Metassembler accepts identity in base pairs;
we tested (i) 60 bp min overlap, 51 bp 85% identity, and 15x coverage (ii) 100bp min
overlap, 95% identity, and 15x coverage (iii) 100bp min overlap, 85% identity, and 30x

coverage and (iv) 200bp min overlap, 170bp 85% identity, and 30x coverage.

e ZORRO’s parameters include the minimum overlap (default 40bp), the maximum tip
(default 15), and identity threshold (default 94%); in addition to the default values we
tested (i) 40bp min overlap, 100bp max tip, and 94% identity, (ii) 100bp min overlap,
15bp max tip, and 94% identity, (iii) 100bp min overlap, 15bp max tip, and 85%

identity, (iv) 100bp min overlap, 50bp max tip, and 85% identity.

Experimental results for all these parameter sets are reported in Appendix [A]
Table Appendix [A] Table and Appendix [A] Table for Staphylococcus aureus,
Rhodobacter sphaeroides and Hg_chrl4, respectively. For most experiments, the variations
due to changing parameters were small. Few observations are in order.

Observe that for Staphylococcus aureus, Metassembler and GAM_NGS maintained
the same statistics for all parameters configurations, with the exception of a slight variation
in the size of the assembly. CISA produced changes only when the minimum contig cutoff
increased to 500 bp, with contigs as input. In this case, both genome and gene coverage
improved but the contiguity decreased with respect to other configurations. With scaffolds
as inputs, the contiguity increased but the genome fraction was lower than 50% in most
cases. In GARM we observed a small variation in the number of mismatches and indels

and an insignificant change in the genome coverage.

87

3.2.7 Time and Space Analysis

As said, all experiments were performed on a Linux Ubuntu 12.10 server with a
20 cores Intel Xeon CPU E5-2690v2 3GHz and 512GB of RAM. Multithreading was used
when available.

First, we measured the usage of computational resources to merge two input as-
semblies. Graphs in Figure illustrate the average (wall clock) run time, the average
percentage of processor utilization (where 100% indicates full utilization of one core), and
the average memory usage required by each tool to perform each experiments on the four
genomes. The average are over all the tested pairs of GAGE assemblies for that genome.
Error bars indicate the minimum and maximum.

Second, we measured the usage of computational resources as a function of the
number of input assemblies using CISA and MIX, which are the only tools that can merge
more than two input assemblies. Graphs in Figure shows the (wall clock) run time,
processor utilization (where 100% indicates full utilization of one core), and memory usage

as the number of input assemblies increases.

3.2.8 Synthetic assemblies

In this set of experiments we tested assembly reconciliation tools on synthetic
assemblies generated using RSVSim [§]. We used RSVSim to introduce specific structural
variations into the reference genome of Saccharomyces cerevisiae [6]. For tools that required
reads, we generated synthetic reads using ART [40]. The output of the seven assembly

reconciliation tools was fed into Decipher [80]. Decipher detects synteny blocks between a

88

05:00+
04:004
= Genome
o 03:004 Bombus impatiens
E o~ Homo sapien-chr14
S 02:00 o Rhodobacter sphaeroides
o Staphylococcus aureus
01:004 l
00:00 - = ke -, A = = ey =
CISA-merge CISA-reconciliate GAA GAM_NGS-create GAM_NGS-merge GARM Metassembler MIX ZORRO
600% -
Genome
’o\? Bombus impatiens
5’400%- ~- Homo sapien—chr14
23 ~»- Rhodobacter sphaeroides
Staphylococcus aureus
200%
e —— oo oo = —ole =
0%
CISA-merge CISA-reconciliate GAA GAM_NGS-create GAM_NGS-merge GARM Metassembler MIX ZORRO
o 100+
= Genome
% Bombus impatiens
3 o~ Homo sapien-chr14
g ~»- Rhodobacter sphaeroides
E 501 Staphylococcus aureus
=
04 —— —oe oo oo Save oo oo =
CISA-merge CISA-reconciliate GAA GAM_NGS-create GAM_NGS-merge GARM Metassembler MiX ZORRO

Figure 3.16: Average (wall clock) run time, average percentage of processor utilization
(where 100% indicates full utilization of one core), and average memory usage required by
each tool to perform each experiments on the four genomes; averages are over all the tested
pairs of GAGE assemblies for that genome; error bars indicate the minimum and maximum

89

100%

75%+

CPU usage (%)
g
X

25%+

1,000

Memory usage (MB)
@ ~
3 a
< <

N
a
3

00:25

00:204

Run time (h)

00:05

00:004

Rhodobacter sphaeroides

Staphylococcus aureus

Rhodobacter sphaeroides

8 2
Number of input assemblies

Staphylococcus aureus

\/

8 2
Number of input assemblies

Rhodobacter sphaeroides

Staphylococcus aureus

00:154

00:10

8 2
Number of input assemblies

Tool

— CISA-merge

— CISA-reconciliate
— MIX

Tool

—— CISA-merge

— CISA-reconciliate
— MIX

Tool

—— CISA-merge

— CISA-reconciliate
— MIX

Figure 3.17: Wall clock run time, processor utilization (where 100% indicates full utilization
of one core), and memory usage as the number of input assemblies increases (for CISA and

MIX)

90

5 p— C o O s (IR
Deletion 50,000 bp [TH | T ooeton 1000000p Deletion 200,000 bp
an [|| [- [.
—— E mom
T = W | G =
I [erson soccoe R [T oo oocobe inversion 200,000 bp
N—= - e e W -
e B e
T ~
- | | am
B [GO e W | = S [G e
vsscsimsosoor | [N [T e 50000t rarmomsonmoomte | (I TR ot 00t
o [. ol | [[[|
GARM |
e W)

Figure 3.18: The eight assembly reconciliation tools were given in input (A) chromosome
4 and 15 yeast genome and (B) a flawed version of (A) produced by RSVSim containing
either a deletion in chromosome 4 (top row), or an inversion in chromosome 4 (middle row)
or an translocation from chromosome 4 to chromosome 15 (bottom row); A and B are first
two rows in each plot; Decipher was used to detects synteny blocks between the reference
and the outputs and to generate synteny plots displayed as gradients: when reference and
output disagree, the gradients are interrupted; gray regions indicate blocks that do not
match the reference

reference and a query sequence, and generates synteny plots displayed as gradients. When
reference and query disagree, the gradients are interrupted. Gray regions indicate blocks
that do not match the reference.

In each experiment we merged two inputs, namely (1) chromosomes 4 and 15 of the
yeast genome and (2) a flawed version of (1) produced by RSVSim containing one structural
variation, i.e., either a deletion, an inversion (reversal), or a translocation. RSVSim does
not allow de nowvo insertions. For asymmetric tools, the flawed assemblies was used as

the master assemblies to model the worst case. We introduced deletions and inversions of

91

various sizes (50 kbp, 100 kbp, 200 kbp, and 500 kbp) into chromosome 4, and generated
translocations from chromosome 4 into the chromosome 15 of various sizes (again, 50 kbp,
100 kbp, 200 kbp, and 500kbps).

Figure (top row) show that CISA resolved the deletion but did not output
chromosome 15. GAA also resolved the deletions but it produced two extra sequences
that did not align to the reference. GARM did not output chromosome 4. GAM_NGS,
Metassembler, and MIX produced assemblies similar to the flawed input assembly. ZORRO
broke the assembly at the position of the deletion, produced three individual contigs, and
omitted the deleted sequence.

Figure (middle row) shows that only CISA resolved the inversion but did
not output chromosome 15. GAA did not correct the inversion, and generated a merged
assembly that was similar to the flawed input assembly with two additional sequences
that did not align to the reference. Again, GAM_NGS, Metassembler, and MIX produced
assemblies similar to the flawed assembly. ZORRO broke the inversion by producing three
contigs for chromosome 4, and an additional contig representing chromosome 15.

For translocations, the behavior of reconciliation tools depended on the size of
the translocation, as shown in Figure (bottom row). For translocations of 50, 100
and 200 kbps, CISA, GAA, and GAM_NGS produced the correct version of chromosome 4.
CISA did not produce chromosome 15 and GAA and GAM_NGS produced chromosome 15
with an unaligned sequence at the location of the insertion. As before, GAA produced two
additional sequences. GARM did produce any merged assembly. Metassembler and MIX’s

output was similar the flawed input assembly. ZORRO split the assembly over structural

92

mmmmmmmmmmmmm I”
- 1
- I
- 1

Referanco Reference
I] o 00000 Detet 200000)
| ‘ GAMLNGS 15 Missmor 15x
I] oowreso NN | | e
I | o] | NN | | e
| ‘ GAM_NGS 60x Missmblr 60x
I | camnas s Missmolr 75x

=
H

ZORRO 75x

(e) ZORRO (f) GAM_NGS (g) Metassembler (h) ZORRO

Figure 3.19: Assembly reconciliation results for difference choices of read coverage; (a,b)
are translocations; (c,d,e) are deletions; (f,g) are inversion

variation breaking points. For 200 and 500 kbps, ZORRO was stopped after allocating more
than 350 GB of RAM. None of the tools managed to correct the 500 kbps translocations.
CISA and GAA produced the flawed version of chromosome 15. Again, GAA produced the
correct version of chromosome 4, but two extraneous sequences. GAM_NGS output was
very similar to the input flawed assembly. Metassembler and MIX’s produce chromosome
4 without the deleted fragment and a flawed version of chromosome 15.

To test whether read coverage had any impact on the quality of merged assemblies
for assembly reconciliation tools that requires reads as input, we ran several experiments on
the same synthetic assemblies with increasing reads fold coverage (15x to 75x). Figure

shows that read coverage did not have any affect on the quality of the results.

93

3.3 Discussion and Conclusions

Given the practical challenges of de novo assembly assembly, the idea of assembly
reconciliation is very appealing. One could generate multiple assemblies on the same dataset
using various assembly tools and/or parameters, then use an assembly reconciliation tool
to merge all the assemblies and obtain a high quality consensus assembly. At the outcome,
the expectation is that the quality of the merged assembly should be at least as good as the
best assembly in input. In fact, if both input assemblies have some good quality assembly
statistics (e.g., one is more contiguous while the other has less misassemblies), one should
expect the consensus assembly to inherit the good qualities from both inputs. The reality
is that it seems very hard to produce a merged assembly which consistently better than (or
at least as good as) both input assemblies. The extensive set of experiments reported in
this manuscript showed that none of the tools we evaluated was able to consistently achieve
this goal. There were a few cases in which the consensus assembly was better that both
inputs, but for the vast majority of the inputs the merged assembly was not.

Despite the inability of these assembly tools to solve the general assembly recon-
ciliation problem, each tool demonstrated some strengths that could lead to algorithmic
advances on this problem. For instance, CISA generally was able to correct most structural
variations and to ignore duplications in the input assemblies (however, its duplication rate
increased as the number of merged assemblies increased); GAA and GARM often improved
the contiguity (but often introduced more misassembly errors and increased the duplication
ratio); GAM_NGS typically produced consensus assemblies very close to the quality of the

reference (but not much better), and it was able to resolve translocations; MIX generally

94

improved the contiguity modestly (but its number of misassemblies was usually close or
higher than the most erroneous input, and its genome coverage dropped in some cases);
Metassembler often produced consensus assembly with a very low number of misassembly
errors, sometimes even lower than both input assemblies (however it did not consistently
increase N50); finally, ZORRO generally maintained a high genome coverage (but it did not

significantly increase contiguity).

95

Chapter 4

SequOIA: Sequence Overlap

Identification and Assembly

The problem of assembling BAC assemblies to obtain a genome-wide assembly
is not new. The public Human Genome Project relied on a tool called GIGASSEMBLER
[43] to assemble about 30,000 BAC clones using a genome-wide physical map as well as
BAC-end sequencing and other genetic markers. GIGASSEMBLER used the overlap-layout-
consensus approach: it detected prefix-suffix overlaps between BAC contigs to build an
overlap graph, it removed transitively-inferable edges, then it found paths in the graph to
generate contigs. Unfortunately, GIGASSEMBLER has not been maintained since 2001. To
the best of our knowledge the only other work in the literature that addresses this problem
is MEGAWEAVER [76], which solves it by computing overlaps between all pairs of BAC
assemblies via MEGABLAST [86], detects and remove spurious overlaps, then generates a

consensus assembly. MEGAWEAVER is not maintained anymore as well. While most of

96

the genome assemblies follow the whole-shotgun approach, in recent year, there has been
renewed interest in the BAC-by-BAC hierarchical sequencing approach (see Introduction
for more information about the BAC-by-BAC approach).

Let us first define precisely the BAC assembly problem. We are given in input a
set of BAC assemblies {By,Ba, -, By}, n > 2 for a genome G, where each BAC assembly
B; is a set of unoriented contigs {c1,co, - ,cm}, m > 1 (each contig is a string over the
DNA alphabet and 'N’). Let ¢ be the fraction of G covered by the contigs in each BAC
assemblies. The objective is produce another set of BAC assemblies {C1,Ca,- - ,C;}, where
(i) I is the smallest possible and (ii) the genome coverage of the new set is also ¢, (iii) the
new assemblies do not contain any mis-assembly.

Observe that producing as output the input set is optimal when the BAC assem-
blies do not overlap. Also observe that producing an empty set as output (I = 0) would
satisfy (i) and (iii), but not (ii). In order to solve the problem we need to determine BAC
overlaps and reduce the redundancy. We propose to use colored positional de Bruijn graph

to solve the problem.

4.1 Colored positional de Bruijn graph

Several augmented de Bruijn graph have been introduced in the literature, to
address difficulties in finding Eulerian paths in regular de Bruijn graph when dealing with
noisy sequencing data for complex, repetitive genome. For instance, sequencing errors the
end of reads may result in tips, sequencing errors or mutations towards the middle of reads

may introduce in bubbles, and repeats induce a frayed rope structure as shown in Figure 4.1

97

Here we consider the positional de Bruijn graph and the colored de Bruijn graph.

Positional de Bruijn graph. Defined in SEQuel [65] as a variation of the classical de
Bruijn graph used in genome assembly, the positional de Bruijn graph is a variation of a
de Bruijn graph such that every edge is associated with kmer and its inferred positions in
contigs. The goal of the tool SEQuel is correct substitutions and small indels smaller than

50 bps.

Colored de Bruijn graph. Introduced in [I] to solve the halving problem. In a whole
genome duplication evolutionary event, the gene content is duplicated in the offspring and
rearranged within the genome. The halving problem requires one to reconstruct the pre-
duplication ancestral genome. Later the “Cortex” assembler (based on a colored de Bruijn
graph graph) was introduced in [41] to assemble multiple genomes simultaneously to detect
and genotype genetic variations. Each node in a colored de Bruijn graph is associated
with a kmer and a list of colors represents all the read sets (i.e., genomes after assembly)

containing that kmer.

Align Graph was introduced in [7] in order to extend and merge contigs of an existing
de novo assembly contigs using paired-end reads and guided by a closely related reference
genome. The authors align the contigs and paired-end reads to a related reference genome,
and exploits the positional information to build a graph that combines reads and contigs.
An align graph is a combination of a positional de Bruijn graph and a paired-end de Bruijn
graph, where the latter is a generalization of de Bruijn graph that incorporate mate-pair

reads distance information.

98

(a) tip

- — /C?—'E\E

e

(c) repeat Eﬁ)—\:
=

Figure 4.1: de Bruijn graph structure

In our case we are merging assembled BACs to obtain a genome-wide assembly.
This problem is an assembly of assemblies, where the input assemblies are expected to have
a much lower error rates than reads. Furthermore, the input assemblies are much longer
sequences, and their positional information can help to resolve repeats. We propose an
algorithm that utilizes positional and color information, and does not require a reference
genome of closely related specie.

We assign each input assembly a distinct color. A colored positional de Bruijn
graph is an extension of a de Bruijn graph. It is a directed graph where each node p
represents a kmer and contains a set £ of (color, pos) pairs where pos is the starting position
of the kmer in a sequence uniquely identified by color. For any two pairs (color;, pos;) € L
and (color;, posj) € L,color; # colorj. A labeled directed edge p 2 ¢ exists in the graph

if pair (color;,pos;) € L, and pair (colorj,pos;) € L4 are such that color; = color; and

99

c] e \ G \] e
TAA H AAC TTA H GTT W GTT ‘ ’ TTA }‘—‘M
F B I O

Figure 4.2: Edge orientation and labeling. Each node contains a k-mer (kK = 3 in this
case). The annotation below the edge indicates the assigned direction (Forward, Backward,
Innie, Outie), while the annotation on top of the edge is transition nucleotide between the
corresponding kmers. Violet denotes forward nodes and light blue represent to backward
nodes.

|pos; — pos;j| = 1. The label o € {A,C,G,T} on the edge and direction A € {forward,
backward, innie, outie} are assigned based on kmer orientation of the source and destination
nodes. Forward (F) edge connects two forward nodes, backward (B) edge connects two
backward nodes, innie (I) edge connects a forward node to backward, and outie (O) connect

backward node to forward node. Figure [£.2]illustrates all possible combinations.

4.2 Methods

Our proposed method (called SequOIA) is articulated in four steps: overlap de-

tection, graph construction, graph compaction and graph traversal.

4.2.1 Overlap detection

In the first step, we identify potentially overlapping BAC assemblies. In order to do
so, BAC assemblies are clustered into groups based on the Jaccard distance calculated over
number of shared kmers between each pair of BACs. The Jaccard distance matrix was first
introduced in [I4] to cluster webpages. The same approach was also used in locality-sensitive
hashing [9], which uses sampling to detect potential overlaps. Our approach generates a

k-spectrum for each BAC and calculate a Jaccard-like similarity score for each pair of BACs

100

(i,7) using the following formula.
(

|i<kmers> N j<kmers>’/min(|i<kmers>’7 U<kmers>|)

Jaccard*560r€<i’ ‘7> = max |i/<kmers> N j<kmers> |/ min(|i<kmers> ’7 |j<l~cme7’s>|)

i <kmers> 0 I pmerss |/ MIN(li<kmers> |, [<kmers>)
where i’ and j’ are the DNA reverse complement of i and j, respectively. Note that the
BACs is given as a set of unoriented contigs. We do not consider all possible combination of
contigs orientation within a BAC, but rather assume that all the contigs in a BAC assembly
have the same orientation for the purpose of detecting potential overlaps.

The Jaccard score computes the percentage of shared kmers in relation to size of
the smaller BAC. A score above threshold 7 indicates potential containment. Score greater

than another threshold v < 7 denotes potential overlap. Otherwise, no overlap is reported.

4.2.2 Construction of the colored positional de Bruijn graph

First, we assign each input BAC assembly a unique color. Sequences with the same
color are not considered for overlaps (since the belong to the same BAC). We break scaffolds
into contigs, then start from an arbitrary assembly from the input. For this arbitrary input
assembly, we build the graph by decomposing each contig into kmer and creating a node for
each kmer. We add a forward edge between every two consecutive nodes of the same contig,
sorted in ascending positions. For the remaining input assemblies, we process a kmer based

on following cases
e if Anode(kmer) € G or Y node (kmerycolor € Lyoge then we create a new node

e if 3 only one node(kmer) such that color ¢ L,,4. then add (color, position) to Lyge

101

CAA 0 F s GACTC _F F s CTAGG KN_F F a AATCCGGTC

TGA (e)—F4 ccr | [TGoa L TTGACTCCTGGAA |

F

W FX CTT1GG 7 F o GTT

Figure 4.3: An illustration of different kinds of branch nodes

e when multiple nodes for kmer exist, we select the best node to merge with based

on anchored pairwise alignment between the current sequence and every sequence in

Lnode of a candidate node (see Algorithm .

Algorithm describes the colored positional de Bruijn graph construction in more details.

4.2.3 Graph compression

We follow the conventional definition of unitigs that a compact node encoding a
unitig comprises nodes such that in-degree of all nodes except the first is one and out-
degree of all nodes except the last is one. In our algorithm, a normalized confidence score

is assigned to each unitig. The score is calculated using the following formula.

0 if compact node is singleton,
Confidence_score =

Znode€compact,node ‘E’ﬂode |
|unitig|

otherwise,
Assuming a relatively low number of colors and a large kmer size, short unitigs
will have lower scores. As the size of the unitigs increases, a higher coverage leads to a

higher confidence score.

102

4.2.4 Graph traversal

Our graph traversal explores alternative paths and produces a string “contig”
corresponding to the path with the highest confident score. A node p is considered an
initial if in-degree(p) = 0 or V (color,pos) € L,, pos = 1. A contig is a path in the graph
(or a node in a compact graph). Traversal starts at an initial node and extends to the
right and to the left until it generates a contig with zero unexplored incoming and outgoing
edges.

Given a compact de Bruijn graph, the path extension Algorithm [.3]solves branches
as they appear along the path from the initial node by considering three cases based on
the type of the (merge, diverge) and the orientation of alternative branches. We start by
solving divergent branches of same orientation. Next, we solve merged branches. Lastly,

we solve any branch not addressed by the two previous cases.

Branches with same orientation represent alternative paths in the form of bubbles or
tips (Figure shows an example). This case has straightforward solution presented in
Algorithm We simply select a branch with the maximum confident score, and ties are
solved by branch length to achieve maximal extension. In the case of divergent branches
represent a bubble, selecting which branch to consider for extension depends only of the
fragments between endpoints of the bubble. In case of tips, selecting a branch requires

solving all subsequent bifurcations in these branches.

Merged branches can be a part of a bubble, for which the solution is to be deferred to
the previous case. Merged branches can also be tips, and therefore solved using the same

algorithm in the previous case. Otherwise, we merge branches if the merging node has no

103

TGAAACG 7 GCGTTTC 5 AAACGCT 7 TAGCGTT = GTAGCGT

Figure 4.4: Example contains different kinds of sEQl: TGAAACGCTAC SsEQ2:
GTAGCGTTTCA, MERGED SEQUENCE: GTAGCGTTTCA branch nodes

outgoing edges. In case the merging node has an outgoing edge, we recursively solve all
subsequent bifurcations using the EXTEND algorithm. We now solve for three branches, the
merged two branches and the newly acquired potential extension branch. Since two of the
three branches must be a part of alternative paths, we select the best alternative and merge

the third branch (see Algorithm [4.5)).

Branches with different orientation are either extending the source in the same di-
rection (we call these branches alternative paths) or extend the source node in different
directions (we call these branches extension paths). Figures and illustrate extension
paths, while Figure illustrates alternative paths. If two branches are parts of alterna-
tive paths, we select the most path with higher confidence as explained earlier. If the two
branches are extensions, if the branch node is singleton, we merge. Otherwise, the node
branches into alternative paths. In this case, we select the path with the highest confidence

score and merge afterwards (see Algorithm for details).

4.3 Experimental Results

To test SequOIA, we used Vigna unguiculata (cowpea) assembled BACs, generated

at UC Riverside [59]. The datasets contains 4355 BACs, where each BAC assembly has on

104

r TCGCA F = AAT
ATC CAA TGGAA

N TCCCA F © G

"'00' TCGCA ‘."~~’ '," AAT
ATC CAA TGGAA | .-°

TCCCA G1TT

S
S
,
.
Ay

(a) Bubble branch (b) Tip branch

Figure 4.5: Examples illustrate solving bubble and tip branches

GACTC

CAA TGA GACTC

TGA

/\

CAA

Figure 4.6: Examples illustrate solving extend branches

average of 29 scaffolds. Each BAC assembly has an average N50 of approximately 14 kbp
[50]. We excluded 97 BAC assemblies smaller than 5000 nucleotides from the dataset.

We detected overlaps between BACs using the Jaccard-distance matrix method
described above. BACs with similarity score greater than 90% typically indicate contain-
ment; similarity scores greater than 80% are considered potential overlaps. Our algorithm
generated 676 clusters containing on average of 2.67 BACs, with 292 BACs belonging to
more than one cluster, and 1444 BACs appearing in at least one cluster.

Each cluster of overlapping BACs was assembled using SequOIA with four kmer

105

Table 4.1: Quality statistics of merged cowpea BACs for SequOIA and CANU. All statistics
were generated with QUAST. Statistics below the double lines based on contigs of size >
500 bp. The reference assembly is 474,399,596bp.

Assembly Input BACs | CANU | SequOIA
contigs (> 0 bp) 24,730 7 9550
contigs (> 25,000 bp) 679 1 604
contigs (> 50,000 bp) 105 0 99
Total length (> 0 bp) (bp) 94,386,917 | 60,976 | 75,504,631
Total length (> 25,000 bp) (bp) 26,287,750 | 31,437 | 23,429,428
Total length (> 50,000 bp) (bp) 6,854,907 0] 6,521,556
contigs 16,069 7 9356
Longest contig (bp) 141,058 | 31,437 141,104
Total length (bp) 91,591,924 | 60,976 | 75,442,096
N50 (bp) 14,602 | 31,437 16,169
N75 (bp) 6299 6067 7806
L50 1709 1 1318
L75 4086 3 2985
Genome fraction (%) 14.689% | 0.011% 13.606%
Duplication ratio 1.297 1.132 1.154
N’s per 100 kbp 9350 | 0.00 0.00
Longest alignment (bp) 141,058 | 17,260 141,104
Total aligned length (bp) 90,135,040 | 60,974 | 74,335,415
NAS50 (bp) 12,903 | 14,177 14,177
NAT75 (bp) 5413 6067 6677
LA50 1943 2 1515
LAT75 4675 4 3454

sizes ranging from 2% — 1 to 2! — 1. We select the merged assembly that maximizes the
decrease in number of contigs compared to the input. The resulting assembly aggregates sets
of contigs from all performed merges, in addition to BACs not identified to have potential
overlaps. We compared SequOIA to the long read assembler CANU [44]. SequOIA and
CANU were run on the same input. Table shows the statistics of the input BACs,
CANU’s output assembly, and SequOIA output assembly. Statistics were generated using
QUAST [32].

CANU produced assembly with a higher N50 but only seven contigs that covered
less that 1% of the reference genome. The input assemblies covered around 14%. SequOIA

produced an assembly that covers 13% of the genome, while containing 62% fewer contigs.

106

SequOIA also improved 10% the N50 value compared to the input. Both SequOIA and
CANU produced equal a similar NA50 value. SequOIA’s statistics showed better NAT5
and N75 values (please refer to Section for more information regarding the definitions

of N50 and NA50 values).

4.4 Conclusion

We introduced SequOIA, a new tool for the assembly of BAC assemblies. SequOIA
uses a Jaccard-like similarity-matrix clustering approach to detect overlaps between BACs
based on the number of shared kmers. To merge overlapping BAC assemblies, SequOIA uses
a new version of de Bruijn graph, which combines a colored de Bruijn graph and positional
de Bruijn graph. Our new de Bruijn graph utilizes the knowledge of kmer position within
the sequence to avoids collapsing repeats within the same sequence. Considering that a
BACs is an unordered unoriented set of sequences assumed to be non-overlapping, the color
information prevents collapsing repeats within a set of sequences sharing the same color.
The new data structure also allows one to devise a voting scheme to find the path with the
highest confidence. We tested SequOIA assembler on cowpea BAC assemblies produced at
UC Riverside. SequOTA successfully increased the contiguity, while producing an assembly

containing 62% fewer contigs than the input covering similar genome portion.

107

Algorithm 4.1 Build colored positional de Bruijn graph

1: function BUILDGRAPH(assemblies, k: kmer_size)

2 select an arbitrary assembly and assign unique color

3 for each contigs in assembly do

4 kmer < contig[pos : /{] > pos =1, substring of length k starting at position 1
5: node; <— new node(kmer, color, pos)

6 for kmer in contig do > excluding the first
7 nodes < new node({kmer, color, pos)

8 ADDEDGE(Forward, node;, nodes)

9 nodey < nodes

10: for each assembly do > excluding the first
11: color <+ new unique color

12: parse each contig € assembly

13: Get node; following cases in lines [15] to

14: for kmer in contig do

15: if ﬂ node(kmer) then > If no node represents kmer in Graph
16: nodes <— new node(kmer, color, pos)

17: else if 3 singleton node(kmer) then

18: if color ¢ node(colors) then

19: add color to node(colors)
20: nodey <— node
21: else nodey < new node(kmer, color, pos)
22: else if node(kmer) € node;(edges) and color ¢ node(kmer) then > if the

previous node points to a node represent kmer, reuse that node

23: nodes <— node(kmer)
24: else nodey < INSERT_REPEAT(kmer, color, pos)
25: ADDEDGE(nodey, nodes)
26: nodel < nodes
27: end function

108

Algorithm 4.2 Insert repeated sequence to de Bruijn graph

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

14:

function INSERT_REPEAT(kmer: sequence, color: ID, pos: integer)

declare local is_merged <+ false
declare local max_score < 0
for each node(kmer) in Graph s.t. color ¢ node(colors) do
for color € node(colors) do
sequence’ < GETSEQUENCE(node, color)
score < PAIRWISE_ALIGNMENT (sequence, pos, sequence’, node(pos))
if score > max_score then
max_node < node
is_merged < true
max_score <— score
if is_merged = true then node < max_node
else node < new node({kmer, color, pos)

return node

Algorithm 4.3 SequOIA de Bruijn graph traversal algorithm

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

13:
14:

15:
16:

function EXTEND(p: compact node, process_path: set of compact nodes)

declare local in_edges < GETINCOMINGEDGES(p)
declare local out_edges < GETOUTGOINGEDGES(p)
if p € process_path then return NULL
if all in_edges are explored and all out_edges are explored then return p
process_path < INSERT(p)
if p € branch nodes then
for Edge Direction € {forwards, backwards, innie, outie} do
if |unexplored edges| € Edge Direction > 1 then
p < RESOLVEBUBBLEORTIP(p, process_path, Edge Direction)

if p € combine nodes then

p < RESOLVECOMBINE(p, process_path)
if |unexplored edges| > 0 then

P < RESOLVEBRANCH(p, process_path)

process_path < ERASE(p)
return p

109

Algorithm 4.4 SequOIA de Bruijn graph traversal algorithm — Solving Bubbles and Tips

1: function RESOLVEBUBBLEORTIP(p: compact node, process_path: set of compact
nodes, EdgeDirection)

2: declare local out_edges + GETOUTGOINGEDGES(p, EdgeDirection)
3: declare local max_score < 0

4: declare local best_extension < NULL

5: for e € out_edges do

6: q < ple]

7 MARKVISITED(e)

8: q <+ EXTEND(q, process_path)

9: score < SCORE(p)

10: if score > max_score then

11: MaxT_score < score

12: best_extension < q

13: if score = max_score then

14 if UNITIGLENGTH(q) > UNITIGLENGTH(best_extension) then
15: best_extension < q

16: p <+ MERGE(p, best_extension)

17: return p

110

Algorithm 4.5 SequOIA de Bruijn graph traversal algorithm — Solving combine

1: function RESOLVECOMBINE(p: compact node, process_path: set of compact nodes)
2 declare local tip < false

3: declare local combined_nodes <~ GETCOMBINEBRANCHES(p)

4: declare local edges < GETOUTGOINGEDGES(p)

5 process_path < INSERT(combined_nodes)

6 if combined_nodes C start_nodes or

7 combined_nodes C end_nodes then tip < true

Consider two combined nodes p and ¢

8: if SAMEDIRECTION(p, ¢) then

9: if tip = true then > If tip, select the return best branch
10: P < RESOLVEBUBBLEORTIP(p, q)

11: return p > if bubble, relegate resolving to the source of the bubble
12: if |out_edges| = 0 then

13: p + MERGE(p, q)

14: return p

15: else

16: S p[e] > potential suffix
17: MARKVISITED(e)

18: s < EXTEND(s, process_path)

19: if SAMEDIRECTION(p, s) then

20: s <= RESOLVEBUBBLEORTIP(p, s)

21: p < MERGE(q,)

22: else if SAMEDIRECTION(q, s) then

23: s <— RESOLVEBUBBLEORTP(q, s)

24: p + MERGE(p, s)

25: else

26: P < RESOLVEBUBBLEORTIP(p, q)

27 p < MERGE(p, s)

28: return p

111

Algorithm 4.6 SequOIA de Bruijn graph traversal algorithm — Solving branches

1: function RESOLVEBRANCH(p: compact node, process_path: set of compact nodes)
2 declare local edges + GETOUTGOINGEDGES(p, EdgeDirection)
3 if (efya € edges and eqyuiie € edges then

4 U £ p[efwd]

5: [p[eoutie]

6: MARKVISITED(€ f4yq)

7 MARKVISITED (€outic)

8 p < resolve BubbleOrTip(u,v)

9 if (eper € edges and e € edges then
10: U <— p[ebck]
11: V< p[einnie]
12: p < RESOLVEBUBBLEORTIP(u, v)
13: for e € edges do
14: q <+ ple]
15: MARKVISITED(e)
16: q <+ EXTEND(q, process_path)
17: p < MERGE(p, q)
18: return p

112

Chapter 5

Conclusion

In this dissertation we presented novel data structures and computational methods
to detect sequence overlaps and assemble overlapped sequences. We introduced Sequence
Decision Diagrams which are data structures that can compactly store finite sets of strings
and presented algorithms to efficiently perform set operation on them via memoization a
natural feature of decision diagrams. We also provided an algorithm to solve the all-pair
suffix-prefix problem using Sequence Decision Diagrams. In practice, genomic sequences
contain many variations due to SNPs, sequencing errors, and misassemblies, among other
reasons.

As part of SequOTIA, we developed a tool that detects overlaps between sequences
based on a Jaccard-like similarity score calculated over the number of shared kmers be-
tween the two sequences. The use of kmers allows for error resilience in detecting potential
overlaps. We used this approach to detect potential overlaps between BACs, represented

as contigs.

113

The second component of SequOIA merges overlapping assemblies (represented as
sets of contigs) to create longer contigs. The algorithm is based on an augmented de Bruijn
graph that we developed. Our de Bruijn graph is a hybrid of the positional de Bruijn graph
and colored de Bruijn graph, that exploits the a priori knowledge of the kmer positioning
within a sequence and to which set that sequence belongs. We showed that our augmented
de Bruijn graph can resolve most repeats and produce a de Bruijn graph with fewer path
discrepancies. We used SequOIA to merge assembled cowpea BAC clones.

We also presented an extensive comparative analysis of the state-of-the-art assem-
bly reconciliation tools, to better understand the performance of these tools on this hard
problem. If assembly reconciliation was solved properly it would very useful. Since it is a
common practice to produce multiple assemblies using different assemblers, parameters, or
even sequencing technologies, the ability to reconcile multiple assemblies would allow one
to leverage the strengths of each assembler/parameters and obtain a higher quality merged

assembly.

114

Bibliography

[1]

M.A. Alekseyev and P.A. Pevzner. Colored de Bruijn Graphs and the Genome Halving
Problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
4(1):98-107, January 2007.

Hind Alhakami, Gianfranco Ciardo, and Marek Chrobak. Sequence Decision Diagrams.
In String Processing and Information Retrieval, pages 149-160. Springer, Cham, Oc-
tober 2014.

Husain Aljazzar, Holger Hermanns, and Stefan Leue. Counterexamples for timed prob-
abilistic reachability. In Formal Modeling and Analysis of Timed Systems, number 3829
in Lecture Notes in Computer Science, pages 177-195. Springer Berlin Heidelberg, Jan-
uary 2005.

Husain Aljazzar and Stefan Leue. Extended directed search for probabilistic timed
reachability. In Formal Modeling and Analysis of Timed Systems, number 4202 in
Lecture Notes in Computer Science, pages 33-51. Springer Berlin Heidelberg, January
2006.

H. Aoki, S. Yamashita, and S. Minato. An efficient algorithm for constructing a se-
quence binary decision diagram representing a set of reversed sequences. In 2011 IEEE
International Conference on Granular Computing (GrC), pages 54-59, 2011.

Juan Lucas Argueso, Marcelo F. Carazzolle, Piotr A. Mieczkowski, Fabiana M. Duarte,
Osmar V.C. Netto, Silvia K. Missawa, Felipe Galzerani, Gustavo G.L. Costa, Ramon O.
Vidal, Melline F. Noronha, Margaret Dominska, Maria G.S. Andrietta, Silvio R. An-
drietta, Anderson F. Cunha, Luiz H. Gomes, Flavio C.A. Tavares, Andre R. Alcarde,
Fred S. Dietrich, John H. McCusker, Thomas D. Petes, and Goncalo A.G. Pereira.
Genome structure of a Saccharomyces cerevisiae strain widely used in bioethanol pro-
duction. Genome Res, 19(12):2258-2270, December 2009.

E. Bao, T. Jiang, and T. Girke. AlignGraph: algorithm for secondary de novo genome
assembly guided by closely related references. Bioinformatics, 30(12):1319-i328, June
2014.

Christoph Bartenhagen and Martin Dugas. RSVSim: an R/Bioconductor package for
the simulation of structural variations. Bioinformatics, 29(13):1679-1681, July 2013.

115

[9]

[10]

[11]

[12]

[13]

Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P. Drake, Jane M. Landolin,
and Adam M. Phillippy. Assembling large genomes with single-molecule sequencing
and locality-sensitive hashing. Nat Biotech, 33(6):623-630, June 2015.

A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnell. Building the
minimal DFA for the set of all subwords of a word on-line in linear time. In Automata,
Languages and Programming, number 172 in Lecture Notes in Computer Science, pages
109-118. Springer Berlin Heidelberg, January 1984.

A. Blumer, J. Blumer, D. Haussler, A. Ehrenfeucht, M. T. Chen, and J. Seiferas. The
smallest automation recognizing the subwords of a text. Theoretical Computer Science,
40:31-55, January 1985.

Beate Bollig and Ingo Wegener. Improving the variable ordering of OBDDs is NP-
complete. IEEE Transactions on Computers, 45(9):993-1002, September 1996.

Keith R. Bradnam, Joseph N. Fass, Anton Alexandrov, Paul Baranay, Michael Bechner,
Inan Birol, Sbastien Boisvert, Jarrod A. Chapman, Guillaume Chapuis, Rayan Chikhi,
Hamidreza Chitsaz, Wen-Chi Chou, Jacques Corbeil, Cristian Del Fabbro, T. Roderick
Docking, Richard Durbin, Dent Earl, Scott Emrich, Pavel Fedotov, Nuno A. Fonseca,
Ganeshkumar Ganapathy, Richard A. Gibbs, Sante Gnerre, Inie Godzaridis, Steve
Goldstein, Matthias Haimel, Giles Hall, David Haussler, Joseph B. Hiatt, Isaac Y.
Ho, Jason Howard, Martin Hunt, Shaun D. Jackman, David B. Jaffe, Erich D. Jarvis,
Huaiyang Jiang, Sergey Kazakov, Paul J. Kersey, Jacob O. Kitzman, James R. Knight,
Sergey Koren, Tak-Wah Lam, Dominique Lavenier, Franois Laviolette, Yingrui Li,
Zhenyu Li, Binghang Liu, Yue Liu, Ruibang Luo, Iain MacCallum, Matthew D. Mac-
Manes, Nicolas Maillet, Sergey Melnikov, Delphine Naquin, Zemin Ning, Thomas D.
Otto, Benedict Paten, Octvio S. Paulo, Adam M. Phillippy, Francisco Pina-Martins,
Michael Place, Dariusz Przybylski, Xiang Qin, Carson Qu, Filipe J. Ribeiro, Stephen
Richards, Daniel S. Rokhsar, J. Graham Ruby, Simone Scalabrin, Michael C. Schatz,
David C. Schwartz, Alexey Sergushichev, Ted Sharpe, Timothy I. Shaw, Jay Shendure,
Yujian Shi, Jared T. Simpson, Henry Song, Fedor Tsarev, Francesco Vezzi, Riccardo
Vicedomini, Bruno M. Vieira, Jun Wang, Kim C. Worley, Shuangye Yin, Siu-Ming
Yiu, Jianying Yuan, Guojie Zhang, Hao Zhang, Shiguo Zhou, and Ian F. Korf. Assem-
blathon 2: evaluating de novo methods of genome assembly in three vertebrate species.
GigaSci, 2(1):1-31, December 2013.

Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntac-
tic clustering of the Web. Computer Networks and ISDN Systems, 29(813):1157-1166,
1997.

Mark J. Chaisson, Dumitru Brinza, and Pavel A. Pevzner. De novo fragment assembly
with short mate-paired reads: Does the read length matter? Genome Res., 19(2):336—
346, February 2009.

Mahul Chakraborty, James G. Baldwin-Brown, Anthony D. Long, and J. J. Emerson.
Contiguous and accurate de novo assembly of metazoan genomes with modest long
read coverage. Nucleic Acids Research, page gkw654, July 2016.

116

[17]

[18]

[24]

[25]

Ye-In Chang, Jiun-Rung Chen, and Yueh-Chi Tsai. Mining subspace clusters from
DNA microarray data using large itemset techniques. Journal of Computational Biol-
ogy, 16(5):745-768, May 2009.

Gianfranco Ciardo, Gerald Liittgen, and Radu Siminiceanu. Saturation: An efficient
iteration strategy for symbolic state space generation. In Proc. TACAS, pages 328-342,
2001.

James Clarke, Hai-Chen Wu, Lakmal Jayasinghe, Alpesh Patel, Stuart Reid, and Ha-
gan Bayley. Continuous base identification for single-molecule nanopore DNA sequenc-
ing. Nature Nanotechnology, 4(4):265-270, April 2009.

Jean-Michel Couvreur and Yann Thierry-Mieg. Hierarchical decision diagrams to ex-
ploit model structure. In Proc. Formal Description Techniques, FORTFE95, volume
3731 of LNCS, pages 443-4572, 2005.

Maxime Crochemore. Transducers and repetitions. Theoretical Computer Science,
45:63-86, 1986.

Maxime Crochemore and Renaud Vérin. On compact directed acyclic word graphs. In
Structures in Logic and Computer Science, number 1261 in Lecture Notes in Computer
Science, pages 192-211. Springer Berlin Heidelberg, January 1997.

B. Damman, Tingting Han, and J. Katoen. Regular expressions for PCTL counterex-
amples. In Fifth International Conference on Quantitative Evaluation of Systems, 2008.
QEST 08, pages 179-188, 2008.

Shuhei Denzumi, Hiroki Arimura, and Shin-ichi Minato. Substring indices based on
bdds. TCS technical Reports, TCS-TR-A-10, 42, 2010.

Shuhei Denzumi, Ryo Yoshinaka, Hiroki Arimura, and Shin ichi Minato. Notes on
sequence binary decision diagrams: Relationship to acyclic automata and complexities
of binary set operations. In Proceedings of the Prague Stringology Conference 2011,
pages 147-161, Czech Technical University in Prague, Czech Republic, 2011.

Shuhei Denzumi, Ryo Yoshinaka, Shin-ichi Minato, and Hiroki Arimura. Efficient algo-
rithms on sequence binary decision diagrams for manipulating sets of strings. Technical
report, Technical Report, DCS, Hokkaido U., TCS-TR-A-11-53, 2011.

John Eid, Adrian Fehr, Jeremy Gray, Khai Luong, John Lyle, Geoff Otto, Paul Peluso,
David Rank, Primo Baybayan, Brad Bettman, Arkadiusz Bibillo, Keith Bjornson, Bid-
han Chaudhuri, Frederick Christians, Ronald Cicero, Sonya Clark, Ravindra Dalal,
Alex deWinter, John Dixon, Mathieu Foquet, Alfred Gaertner, Paul Hardenbol, Cheryl
Heiner, Kevin Hester, David Holden, Gregory Kearns, Xiangxu Kong, Ronald Kuse,
Yves Lacroix, Steven Lin, Paul Lundquist, Congcong Ma, Patrick Marks, Mark Max-
ham, Devon Murphy, Insil Park, Thang Pham, Michael Phillips, Joy Roy, Robert
Sebra, Gene Shen, Jon Sorenson, Austin Tomaney, Kevin Travers, Mark Trulson, John
Vieceli, Jeffrey Wegener, Dawn Wu, Alicia Yang, Denis Zaccarin, Peter Zhao, Frank

117

[28]

[30]

[31]

[36]

[37]

[38]

[39]

Zhong, Jonas Korlach, and Stephen Turner. Real-Time DNA Sequencing from Single
Polymerase Molecules. Science, 323(5910):133-138, January 2009.

Adam C. English, Stephen Richards, Yi Han, Min Wang, Vanesa Vee, Jiaxin Qu,
Xiang Qin, Donna M. Muzny, Jeffrey G. Reid, Kim C. Worley, and Richard A. Gibbs.
Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read Sequencing
Technology. PLoS One, 7(11), November 2012.

Sante Gnerre, lain MacCallum, Dariusz Przybylski, Filipe J. Ribeiro, Joshua N. Bur-
ton, Bruce J. Walker, Ted Sharpe, Giles Hall, Terrance P. Shea, Sean Sykes, Aaron M.
Berlin, Daniel Aird, Maura Costello, Riza Daza, Louise Williams, Robert Nicol, An-
dreas Gnirke, Chad Nusbaum, Eric S. Lander, and David B. Jaffe. High-quality draft
assemblies of mammalian genomes from massively parallel sequence data. PNAS,
108(4):1513-1518, January 2011.

Eric D. Green. Strategies for the systematic sequencing of complex genomes. Nature
Reviews Genetics, 2(8):573-583, August 2001.

Stuart J. Green, Reigh P. Monreal, Alan T. White, Thomas G. Bayer, Stuart J. Green,
Reigh P. Monreal, Alan T. White, Thomas G. Bayer, Yasmin D. Arquiza, Alan T.
White, Stuart J. Green, R. Buenaflor, and Jr. Nd Y. D. Arquiza. Phrap documentation,
1999.

A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler. QUAST: quality assessment tool
for genome assemblies. Bioinformatics, 29(8):1072-1075, April 2013.

Dan Gusfield. Algorithms on strings, trees and sequences: computer science and com-
putational biology. Cambridge University Press, 1997.

Dan Gusfield, Gad M. Landau, and Baruch Schieber. An efficient algorithm for the
All Pairs Suffix-Prefix Problem. Information Processing Letters, 41(4):181-185, March
1992.

Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining: Concepts and Techniques:
Concepts and Techniques. Elsevier, June 2011.

Tingting Han, J. Katoen, and D. Berteun. Counterexample generation in probabilistic
model checking. IEEE Transactions on Software Engineering, 35(2):241-257, 20009.

Tingting Han and Joost-Pieter Katoen. Counterexamples in probabilistic model check-
ing. In Tools and Algorithms for the Construction and Analysis of Systems, number
4424 in Lecture Notes in Computer Science, pages 72-86. Springer Berlin Heidelberg,
January 2007.

Bernhard Haubold and Thomas Wiehe. Introduction to Computational Biology: An
Evolutionary Approach. Springer, January 2006.

David Hernandez, Patrice Franois, Laurent Farinelli, Magne sters, and Jacques Schren-
zel. De novo bacterial genome sequencing: Millions of very short reads assembled on a
desktop computer. Genome Research, 18(5):802-809, May 2008.

118

[40]

[41]

[42]

[51]

Weichun Huang, Leping Li, Jason R. Myers, and Gabor T. Marth. ART: a next-
generation sequencing read simulator. Bioinformatics, 28(4):593-594, February 2012.

Zamin Igbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De novo
assembly and genotyping of variants using colored de Bruijn graphs. Nat Genet,
44(2):226-232, February 2012.

William R. Jeck, Josephine A. Reinhardt, David A. Baltrus, Matthew T. Hicken-
botham, Vincent Magrini, Elaine R. Mardis, Jeffery L. Dangl, and Corbin D. Jones.

Extending assembly of short DNA sequences to handle error. Bioinformatics (Oxford,
England), 23(21):2942-2944, November 2007.

W. James Kent and David Haussler. Assembly of the Working Draft of the Human
Genome with GigAssembler. Genome Res., 11(9):1541-1548, September 2001.

Sergey Koren, Brian P. Walenz, Konstantin Berlin, Jason R. Miller, Nicholas H.
Bergman, and Adam M. Phillippy. Canu: scalable and accurate long-read assembly
via adaptive k-mer weighting and repeat separation. bioRxiv, page 071282, January
2017.

Stefan Kurtz, Adam Phillippy, Arthur L. Delcher, Michael Smoot, Martin Shumway,
Corina Antonescu, and Steven L. Salzberg. Versatile and open software for comparing
large genomes. Genome Biology, 5(2):R12, January 2004.

M. Kwiatkowska. Model checking for probability and time: from theory to practice.
In 18th Annual IEEE Symposium on Logic in Computer Science, 2003. Proceedings,
pages 351-360, 2003.

Ruigiang Li, Hongmei Zhu, Jue Ruan, Wubin Qian, Xiaodong Fang, Zhongbin Shi,
Yingrui Li, Shengting Li, Gao Shan, Karsten Kristiansen, Songgang Li, Huanming
Yang, Jian Wang, and Jun Wang. De novo assembly of human genomes with massively
parallel short read sequencing. Genome Res., 20(2):265-272, February 2010.

Shin-Hung Lin and Yu-Chieh Liao. CISA: Contig Integrator for Sequence Assembly of
Bacterial Genomes. PLoS ONE, 8(3):e60843, 2013.

Elsa Loekito, James Bailey, and Jian Pei. A binary decision diagram based approach
for mining frequent subsequences. Knowledge and Information Systems, 24(2):235-268,
August 2010.

Stefano Lonardi, Hamid Mirebrahim, Steve Wanamaker, Matthew Alpert, Gianfranco
Ciardo, Denisa Duma, and Timothy J. Close. When less is more: ’slicing’ sequencing
data improves read decoding accuracy and de novo assembly quality. Bioinformatics,
31(18):2972-2980, September 2015.

Ruibang Luo, Binghang Liu, Yinlong Xie, Zhenyu Li, Weihua Huang, Jianying Yuan,
Guangzhu He, Yanxiang Chen, Qi Pan, Yunjie Liu, Jingbo Tang, Gengxiong Wu, Hao
Zhang, Yujian Shi, Yong Liu, Chang Yu, Bo Wang, Yao Lu, Changlei Han, David W

119

Cheung, Siu-Ming Yiu, Shaoliang Peng, Zhu Xiaogian, Guangming Liu, Xiangke Liao,
Yingrui Li, Huanming Yang, Jian Wang, Tak-Wah Lam, and Jun Wang. SOAPdenovo?2:
an empirically improved memory-efficient short-read de novo assembler. Gigascience,
1:18, December 2012.

Tanja Magoc, Stephan Pabinger, Stefan Canzar, Xinyue Liu, Qi Su, Daniela Puiu,
Luke J. Tallon, and Steven L. Salzberg. GAGE-B: an evaluation of genome assemblers
for bacterial organisms. Bioinformatics, 29(14):1718-1725, July 2013.

U. Manber and G. Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM J. Comput., 22(5):935-948, October 1993.

Marcel Margulies, Michael Egholm, William E. Altman, Said Attiya, Joel S. Bader,
Lisa A. Bemben, Jan Berka, Michael S. Braverman, Yi-Ju Chen, Zhoutao Chen,
Scott B. Dewell, Lei Du, Joseph M. Fierro, Xavier V. Gomes, Brian C. Goodwin, Wen
He, Scott Helgesen, Chun He Ho, Gerard P. Irzyk, Szilveszter C. Jando, Maria L.I.
Alenquer, Thomas P. Jarvie, Kshama B. Jirage, Jong-Bum Kim, James R. Knight,
Janna R. Lanza, John H. Leamon, Steven M. Lefkowitz, Ming Lei, Jing Li, Kenton L.
Lohman, Hong Lu, Vinod B. Makhijani, Keith E. McDade, Michael P. McKenna, Eu-
gene W. Myers, Elizabeth Nickerson, John R. Nobile, Ramona Plant, Bernard P. Puc,
Michael T. Ronan, George T. Roth, Gary J. Sarkis, Jan Fredrik Simons, John W.
Simpson, Maithreyan Srinivasan, Karrie R. Tartaro, Alexander Tomasz, Kari A. Vogt,
Greg A. Volkmer, Shally H. Wang, Yong Wang, Michael P. Weiner, Pengguang Yu,
Richard F. Begley, and Jonathan M. Rothberg. Genome Sequencing in Open Mi-
crofabricated High Density Picoliter Reactors. Nature, 437(7057):376-380, September
2005.

Luz Mayela Soto-Jimenez, Karel Estrada, and Alejandro Sanchez-Flores. GARM:
Genome Assembly, Reconciliation and Merging Pipeline. Current Topics in Medic-
inal Chemistry, 14(3):418-424, February 2014.

Edward M. McCreight. A Space-Economical Suffix Tree Construction Algorithm. J.
ACM, 23(2):262-272, April 1976.

Jason R. Miller, Arthur L. Delcher, Sergey Koren, Eli Venter, Brian P. Walenz, Anushka
Brownley, Justin Johnson, Kelvin Li, Clark Mobarry, and Granger Sutton. Aggressive
assembly of pyrosequencing reads with mates. Bioinformatics, 24(24):2818-2824, De-
cember 2008.

S. Minato. Zero-suppressed BDDs for set manipulation in combinatorial problems. In
30th Conference on Design Automation, 1993, pages 272277, 1993.

Mara Muoz-Amatrian, Hamid Mirebrahim, Pei Xu, Steve I. Wanamaker, MingCheng
Luo, Hind Alhakami, Matthew Alpert, Ibrahim Atokple, Benoit J. Batieno, Ousmane
Boukar, Serdar Bozdag, Ndiaga Cisse, Issa Drabo, Jeffrey D. Ehlers, Andrew Farmer,
Christian Fatokun, Yong Q. Gu, Yi-Ning Guo, Bao-Lam Huynh, Scott A. Jackson,
Francis Kusi, Cynthia T. Lawley, Mitchell R. Lucas, Yaqin Ma, Michael P. Timko,

120

[60]

[63]

[64]

Jiajie Wu, Frank You, Noelle A. Barkley, Philip A. Roberts, Stefano Lonardi, and
Timothy J. Close. Genome resources for climate-resilient cowpea, an essential crop for
food security. The Plant Journal, 89(5):1042-1054, March 2017.

Eugene W. Myers, Granger G. Sutton, Art L. Delcher, Tan M. Dew, Dan P. Fasulo,
Michael J. Flanigan, Saul A. Kravitz, Clark M. Mobarry, Knut H. J. Reinert, Karin A.
Remington, Eric L. Anson, Randall A. Bolanos, Hui-Hsien Chou, Catherine M. Jordan,
Aaron L. Halpern, Stefano Lonardi, Ellen M. Beasley, Rhonda C. Brandon, Lin Chen,
Patrick J. Dunn, Zhongwu Lai, Yong Liang, Deborah R. Nusskern, Ming Zhan, Qing
Zhang, Xiangqun Zheng, Gerald M. Rubin, Mark D. Adams, and J. Craig Venter. A
Whole-Genome Assembly of Drosophila. Science, 287(5461):2196-2204, March 2000.

Giuseppe Narzisi and Bud Mishra. Comparing De Novo Genome Assembly: The Long
and Short of It. PLOS ONE, 6(4):e19175, April 2011.

Jurgen Nijkamp, Wynand Winterbach, Marcel van den Broek, Jean-Marc Daran, Mar-
cel Reinders, and Dick de Ridder. Integrating genome assemblies with MATA. Bioin-
formatics, 26(18):1433-1439, September 2010.

Mihai Pop, Daniel S. Kosack, and Steven L. Salzberg. Hierarchical Scaffolding With
Bambus. Genome Res., 14(1):149-159, January 2004.

José Ignacio Requeno and José Manuel Colom. Compact representation of biological
sequences using set decision diagrams. In 6th International Conference on Practical
Applications of Computational Biology € Bioinformatics, number 154 in Advances in
Intelligent and Soft Computing, pages 231-239. Springer Berlin Heidelberg, January
2012.

Roy Ronen, Christina Boucher, Hamidreza Chitsaz, and Pavel Pevzner. SEQuel: im-
proving the accuracy of genome assemblies. Bioinformatics, 28(12):1188-i196, June
2012.

Steven L. Salzberg, Adam M. Phillippy, Aleksey Zimin, Daniela Puiu, Tanja Magoc,
Sergey Koren, Todd J. Treangen, Michael C. Schatz, Arthur L. Delcher, Michael
Roberts, Guillaume Marais, Mihai Pop, and James A. Yorke. GAGE: A critical eval-
uation of genome assemblies and assembly algorithms. Genome Res., 22(3):557-567,
March 2012.

Kyriakos N. Sgarbas, Nikos D. Fakotakis, and George K. Kokkinakis. Optimal insertion
in deterministic DAWGs. Theoretical Computer Science, 301:103-117, May 2003.

Detlef Sieling and Ingo Wegener. Reduction of OBDDs in linear time. Information
Processing Letters, 48(3):139-144, November 1993.

Jared T. Simpson and Richard Durbin. Efficient de novo assembly of large genomes
using compressed data structures. Genome Res., 22(3):549-556, March 2012.

121

[70]

[71]

[72]

73]

[74]

[75]

[76]

Jared T. Simpson, Kim Wong, Shaun D. Jackman, Jacqueline E. Schein, Steven J. M.
Jones, and nan Birol. ABySS: A parallel assembler for short read sequence data.
Genome Res., 19(6):1117-1123, June 2009.

Daniel D. Sommer, Arthur L. Delcher, Steven L. Salzberg, and Mihai Pop. Minimus:
a fast, lightweight genome assembler. BMC' Bioinformatics, 8(1):64, February 2007.

Hayssam Soueidan, Florence Maurier, Alexis Groppi, Pascal Sirand-Pugnet, Florence
Tardy, Christine Citti, Virginie Dupuy, and Macha Nikolski. Finishing bacterial genome
assemblies with Mix. BMC' Bioinformatics, 14(15):1-11, October 2013.

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, Septem-
ber 1995.

Francesco Vezzi, Federica Cattonaro, and Alberto Policriti. e-RGA: enhanced Reference
Guided Assembly of Complex Genomes. EMBnet.journal, 17(1):pp. 46-54, August
2011.

Riccardo Vicedomini, Francesco Vezzi, Simone Scalabrin, Lars Arvestad, and Alberto
Policriti. GAM-NGS: genomic assemblies merger for next generation sequencing. BMC
Bioinformatics, 14(Suppl 7):S6, April 2013.

Daolong Wang, Mario Lauria, Bo Yuan, and Fred A. Wright. Mega Weaver: A Sim-
ple Iterative Approach for BAC Consensus Assembly. In Proceedings of the Second
Conference on Asia-Pacific Bioinformatics - Volume 29, APBC ’04, pages 145-153,
Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.

Ren L. Warren, Granger G. Sutton, Steven J. M. Jones, and Robert A. Holt. Assem-
bling millions of short DNA sequences using SSAKE. Bioinformatics, 23(4):500-501,
February 2007.

Alejandro H. Wences and Michael C. Schatz. Metassembler: merging and optimizing
de novo genome assemblies. Genome Biology, 16(1):207, September 2015.

H.E. Williams and J. Zobel. Indexing and retrieval for genomic databases. IEEE
Transactions on Knowledge and Data Engineering, 14(1):63-78, 2002.

Erik S. Wright. DECIPHER: harnessing local sequence context to improve protein
multiple sequence alignment. BMC' Bioinformatics, 16:322, 2015.

Guohui Yao, Liang Ye, Hongyu Gao, Patrick Minx, Wesley C. Warren, and George M.
Weinstock. Graph accordance of next-generation sequence assemblies. Bioinformatics,
28(1):13-16, January 2012.

Sungroh Yoon and G. De Micheli. An application of zero-suppressed binary decision
diagrams to clustering analysis of DNA microarray data. In 26th Annual International
Conference of the IEEE Engineering in Medicine € Biology Society, 2004. IEMBS 0/,
volume 2, pages 2925-2928, 2004.

122

[83]

[84]

[85]

[86]

Sungroh Yoon, Christine Nardini, Luca Benini, and Giovanni De Micheli. Discovering
coherent biclusters from gene expression data using zero-suppressed binary decision
diagrams. [EEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB), 2(4):339-354, 2005.

Daniel R. Zerbino. Using the Velvet de novo assembler for short-read sequencing
technologies. Curr Protoc Bioinformatics, CHAPTER:Unit-11.5, September 2010.

Daniel R. Zerbino and Ewan Birney. Velvet: Algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res., 18(5):821-829, May 2008.

Zheng Zhang, Scott Schwartz, Lukas Wagner, and Webb Miller. A Greedy Algorithm
for Aligning DNA Sequences. Journal of Computational Biology, 7(1-2):203-214, Febru-
ary 2000.

Aleksey V. Zimin, Guillaume Marais, Daniela Puiu, Michael Roberts, Steven L.
Salzberg, and James A. Yorke. The MaSuRCA genome assembler. Bioinformatics,
29(21):2669-2677, November 2013.

Aleksey V. Zimin, Douglas R. Smith, Granger Sutton, and James A. Yorke. Assembly
reconciliation. Bioinformatics, 24(1):42-45, January 2008.

123

Appendix A

A Comparative Evaluation of
Assembly Reconciliation Tools:

Supplementary Material

A.1 Experimental results on GAGE assemblies: comments
on Tables [A.THA 15|

A.1.1 High contiguity, high correctness inputs (GAGE)

In the first set of experiments, the objective was to explore the contiguity /correctness
tradeoff. Specifically, we wanted to test the ability of reconciliation tools to take advantage
of the contiguity of the first input assembly and the correctness of the second in order to
create a merged assembly with a number of misassemblies comparable to the second as-

sembly and a contiguity comparable to the first assembly. The two input assemblies to be

124

merged were chosen so that one has high N50 value (but possibly a relatively high number
of misassembly errors) and the other has few misassembly errors (and possibly a lower N50).

Table reports the results of merging the SOAPdenovo assembly (high N50)
with the ABySS assembly (low misassembly errors) for the three chosen genomes. Since
the assembly produced by ABySS on the Rhodobacter sphaeroides genome has more misas-
sembly errors than the assembly generated by SOAPdenovo we also considered the results
on Rhodobacter sphaeroides reported in Table [A5] where the input assemblies were pro-
duced by ALLPATHS-LG and SGA. The SOAPdenovo assembly was used as the “master”
assembly in all tools that distinguish the assembly inputs.

Observe in Table that on the Staphylococcus aureus genome, all tools increase
the contiguity by less than 3%, although the number of contigs decreased by 7 — 30%
(except for GAA). While none of the tools was able to improve assembly errors compared
to the ABySS assembly, GAA and MIX produced more errors than SOAPdenovo. CISA
produced the lowest number of misassemblies (13% less than SOAPdenovo) at the cost of
a 4% decrease in genome and gene coverage. Otherwise, GAM_NGS and Metassembler
maintained quality statistics close to that of SOAPdenovo.

In this and the rest of the experiments below, GAA consistently produced as-
semblies with predictable statistics. In the vast majority of the cases, GAA created a
merged assembly in which the number of contigs, the size of the resulting assembly, and
the number of misassemblies were very close to the sum of those statistics for the input as-
semblies. GAA’s gene coverage was typically low in Staphylococcus aureus and Rhodobacter

sphaeroides (not as much on Hg_chr14, where the gene coverage was generally high in com-

125

parison to other merged assemblies), while the percentage of covered genome was relatively
high. While GAA’s N50 was low, in terms of NGA50 the contiguity was at least as good
as the most contiguous input assembly. In fact for Hg_chrij, GAA increased NGA50 by
19 — 123% except for one case in which the increase was negligible.

When the input was composed of scaffolds, all tools improved contiguity by less
than 5%, and reduced the number of scaffolds by 12 — 92%, with GARM reporting the
highest decrease. GARM was the only tool that significantly increased N50 and produced
the lowest number of misassemblies; however, GARM’s merged assembly covered less than
40% of the reference sequence and less than one third of the genes. In contrast, MIX’s
merged assembly covered 94% of the genes despite (i) including only about 44% of the
reference genome and (ii) decreasing the contiguity by 48%. If we exclude the number
of contigs and NGAJ50, all the other assembly statistics for GAM_NGS and Metassembler
are very similar to SOAPdenovo. None of the tools was able to reduce the number of
misassembly errors compared to ABySS; in fact, CISA and MIX produced more errors than
SOAPdenovo.

Despite the fact that ABySS’s assembly for Rhodobacter sphaeroides had a higher
number of misassembly errors than SOAPdenovo, none of the merged assemblies improved
on the number of misassemblies compared to SOAPdenovo. Except for GAA, the number
of misassembly errors produced by all tools were closer to the master (SOAPdenovo). As
expected, tools that rely on the master assembly had a lower number of misassemblies
than those that did not rank the inputs. With scaffolds as inputs, changes in NGA50 were

negligible for all tools except for CISA. With contigs as inputs, GAM_NGS improved the

126

contiguity by at most 11%, Metassembler and MIX increased it by 2%, and CISA dropped
it by 85%. CISA also increased the number of contigs by 18%, and decreased genome
and gene coverage by about 45%. GAM_NGS’s assembly covered less than one quarter
of the genome and about one fifth of the genes sequences, but its output had quality
statistics similar to SOAPdenovo (with a 5% decrease in scaffolds). MIX and Metassembler
decreased the number of scaffolds by 30% and 39%, respectively; otherwise, they maintained
contiguity and coverage statistics within 1% of SOAPdenovo. GARM significantly improved
the contiguity in terms of N50 but maintained the same NGA50 as SOAPdenovo. GARM
decreased genome and gene coverage by 11%.

With contigs as inputs, GAM_NGS maintained the same genome and gene coverage
as SOAPdenovo. MIX and Metassembler produced comparable results, namely (i) they
both reduced the number of contigs by nearly one quarter, (ii) increased N50 by 10%, (iii)
maintained the same genome coverage, and (iv) decreased gene coverage by less than 2%.

In the majority of the cases, experimental results obtained with ALLPATHS-LG
(high N50) and SGA (low misassembly errors) on the Rhodobacter sphaeroides genome
(reported in Table followed similar patterns to the ones we observed in Table CISA
increased the number of contigs, but decreased the contiguity, genome and gene coverage
(although the reduction was far less this time). GAA followed the same general pattern
mentioned earlier. GAM_NGS did not increase contiguity but rather maintained it close to
that of the master assembly. Metassembler and MIX also did not increase contiguity, but
they reduced the number of contigs, as well as genome and gene coverage. ZORRO worked

for this experiment: it increased the number of contigs, decreased contiguity by 10%, but

127

retained genome and gene coverage of ALLPATHS-LG. ZORRO’s merged assembly is the
only one that achieved a smaller number of misassembly errors than ALLPATHS-LG (but
still higher that SGA).

With scaffolds as input assemblies, CISA again reduced the number of contigs
and produced an assembly with low genome and gene coverage. GAM_NGS reduced the
number of contigs slightly but retained the quality statistics of the master assembly. Ob-
serve in Table that GARM improved N50 by 57% although it retained NGA50 close
to SOAPdenovo (the master assembly). Observe in Table that GARM maintained
ALLPATHS-LG’s contiguity statistics. In both experiments GARM decreased genome and
gene coverage; on the positive side, the consensus assembly had about 85% less scaffolds
compared to the master.

Experimental results on the Hg_chri4 with contigs as input assemblies (Table,
show that (i) GAM_NGS slightly improved contiguity, (ii) Metassembler maintained con-
tiguity with fewer contigs, (iii) GAA crashed, (iv) number of misassemblies were closer to
SOAPdenovo. With scaffolds as inputs, GARM drastically reduced the number of contigs,
but also decreased the genome coverage by 7%. GAM_NGS and Metassembler produced
assemblies with quality statistics close to SOAPdenovo except for a 26% decrease in the

number of contigs for Metassembler.

A.1.2 Reordering the inputs (GAGE)

As mentioned above, some of the assembly reconciliation tools assume that the

first input assembly is the master assembly, and should be “trusted” more (we call these

128

tools asymmetric). The goal of this set of experiments is determine how the quality of
the merged assembly depends on the specific order of the inputs.

To determine how the ranking affected the results, we repeated the same experi-
ments reported in the previous section but switched the order of the inputs. A comparative
analysis of the results in Table and Table prompts a few observations. First, we
note that CISA, MIX, and GARM are symmetric (i.e., they do not require users to rank
the inputs, see Table , hence they are expected to be unaffected by the reordering.
Experimental results confirm that CISA and GARM are indeed unaffected. The reordering
however affected MIX results, albeit only slightly.

For Staphylococcus aureus, MIX’s contiguity statistics (N50 and NGA50) and
genome coverage were not affected by the reordering of the inputs. However, we observed
(i) a 2% decrease in gene coverage, (ii) a small difference in the number of contigs (+1), and
(iii) a small change in the number of misassemblies, although still higher than SOAPdenovo
in both cases.

On the Rhodobacter sphaeroides genome, all statistics remained unchanged except
for the number of misassemblies that increased after reordering. In addition, with contigs
as inputs we did not observe an increase in NGA50 after the reordering.

Despite the fact that GAA requires input ranking, the results for Staphylococcus
aureus and Rhodobacter sphaeroides were similar. The output statistics of GAA followed
the general pattern mentioned in the previous section. For Hg_chrij, GAA crashed in
one ordering but not on the other. For all three genome, GAM_NGS and Metassembler

produced consensus assemblies with quality statistics close to the master assembly.

129

Note that the merged assemblies have higher contiguity in Table[A 1] in which the
master has higher N50. In contrast, the number of misassemblies were lower in Table
for both Staphylococcus aureus and Hg_chr1/ in which the master had lower errors (with the
exception of MIX). Merged assemblies for Rhodobacter sphaeroides had higher contiguity
and lower number of misassemblies, in which the master had higher N50 and lower number

of misassemblies (see Table |A.1]).

A.1.3 High-quality inputs (GAGE)

In the third set of experiments we tested the ability of the reconciliation tools to
merge two high quality assemblies. We selected two highly contiguous assemblies (i.e., small
number of contigs and scaffolds, high N50 values) and low number of misassembly errors.
Table show the result of merging assemblies produced by ALLPATHS-LG as first input
and either MSR-CA, SOAPdenovo, or CABOG as the second assembly.

Observe that for Staphylococcus aureus with contigs as inputs, GAM_NGS pro-
duced an improved assembly that (i) had no misassemblies, (ii) was 66% more contiguous,
and (iii) covered the same portions of the genome and the genes. The next best assembly
was by Metassembler with a 107% increase in contiguity and a 51% decrease in the num-
ber of contigs, but it had a slight increase in the number of misassemblies compared to
ALLPATHS-LG. MIX also improved the contiguity by 107% (N50), but due to the high
number of misassemblies (higher than MSR-CA) the increase in contiguity dropped to 4%
when aligned to the reference. MIX’s gene coverage also dropped by 37%. CISA improved
contiguity by 11%, and reduced the number of contigs by nearly a half, but it produced

a number of errors higher than ALLPATHS-LG. CISA also decreased genome and gene

130

coverage. ZORRO decreased contiguity by 30% and increased the number of contigs by
22%, although it maintained genome and gene coverage.

With scaffolds as inputs, ALLPATHS-LG has no misassemblies, a lower N50 than
MSR-CA but higher NGA50. In general, asymmetric tools produced a lower number of
misassemblies and decreased the N50. For instance, GAM_NGS maintained quality statistics
of ALLPATHS-LG. Although ZORRO is asymmetric it decreased contiguity by more than
90%. On the other hand, symmetric tools had a higher number of misassemblies. GARM
achieved the highest increase of NGA50 (16%).

The contiguity of the merged assemblies improved 11% — 108% with the exception
of ZORRO, which decreased the contiguity by 30%. GARM increased contiguity the most
(108%) at the expense of (i) an additional 12% duplication rate, (ii) a number of misas-
semblies close to MSR-CA, and (iii) a 10% decrease in gene coverage. MIX introduced no
misassemblies, but covered only 25% of the genome and gene sequences. Notably, both
GAM_NGS and Metassembler (i) improved contiguity by 66.5%, (ii) reduced the number
of contigs, (iii) introduced no misassemblies, (iv) and maintained gene coverage. These
are two rare examples in which we observed an unquestionable improvement in the merged
assembly.

On the Rhodobacter sphaeroides genome, the two input assemblies had almost
the same number of misassemblies but the assembly produced by SOAPdenovo was much
less fragmented. Only MIX, Metassembler and GARM increased N50 by 37%, 43%, and
69%, respectively (with only Metassembler increasing NGA50 significantly). All other tools

decreased the contiguity. In terms of correctness, ZORRO and CISA (using scaffolds as

131

inputs) reduced the number of misassemblies but also decreased the contiguity by 99% and
60%, respectively. Other tools produced merged assemblies with a number of misassemblies
not better than the inputs.

GARM improved the contiguity by 38% while CISA increased it by less than 2%.
GARM, CISA, and MIX reduced the number of contigs by 48%, 51%, and 60%, respectively,
but also decreased genome and gene coverage. MIX is the only tool that reduced the number
of misassemblies, but again its assembly only covered about half of the genome. None of
the tools improved both contiguity and the number of misassemblies.

In Hg_chrlj, GAA decreased the contiguity by 8%, but it improved the NGA50
by 76%, and increased the gene coverage by 13%. Nevertheless, it had a 198% inflation
rate and produced a number of misassemblies equal to the sum of the number of misassem-
blies in the two inputs. GAM_NGS reduced the number of contigs by 10%, improved the
contiguity (39% increase in N50, 28% increase in NGA50), slightly reduced the number of
misassemblies, but decreased the gene coverage by 11%. Metassembler produced quality
statistics that are very close to ALLPATHS-LG.

With scaffolds as inputs, GAM_NGS and Metassembler maintained similar quality
statistics to ALLPATHS-LG, with the exception of the number of contigs (Metassembler de-
creased it by 33%) and gene coverage (GAM_NGS and Metassembler decreased by 18% and
51%, respectively). GARM improved N50 but decreased NGA50 by 9%. It also increased
the number of misassemblies and decreased genome and gene coverage.

GARM improved the contiguity by 128% and reduced the number of contigs in

half at the cost of 14% inflation and about 41% increase in the number of misassemblies.

132

GAA and GAM_NGS improved the contiguity by 76% and 28%, but only GAA increased

the gene coverage.

A.1.4 Highly-fragmented inputs (GAGE)

The goal of this set of experiments was to evaluate the performance of assembly
reconciliation tools when provided with two highly fragmented input assemblies. Input
assemblies were selected to have a high percentage of contigs shorter than 200 bps, a high
number of contigs and scaffolds, and low N50.

Table [A-4] shows the results of merging ABySS assembly and SGA assembly. Ob-
serve that when we used contigs as inputs, ABySS had a higher contiguity than SGA (except
in Hg_chr14). The opposite, however, was observed when scaffolds were provided in input.
In Staphylococcus aureus and Rhodobacter sphaeroides with contigs as inputs, all tools in-
creased N50 except for GAA. In terms of NGA50, only asymmetric tools maintained or
improved over NGA50 of the better input assembly (in Staphylococcus aureus we observed
up to 8% increase, and up to 17% in Rhodobacter sphaeroides). However, in Hg_chr1/(with
contigs as inputs) only GAM_NGS improved the N50. In terms of NGA50, GAA produced
a 123% increase over SGA, while GAM_NGS did not improve it over SGA, but it increased
it 33% over ABySS.

With scaffolds as inputs, we observed a decrease in N50 except for MIX and
GARM (when SGA inputs are scaffolds). MIX, GARM, and CISA are symmetric tools,
hence they are expected to perform better than other tools when the non-master input
has better quality. CISA, however, produced inferior results with scaffolds as inputs in

most experiments. It turns out that CISA with default parameters break scaffolds into

133

contigs when a scaffold contains more than ten consecutive occurrences of Ns. MIX and
GARM enhanced or maintained N50 of SGA. In terms of NGA50, MIX maintained it, while
GARM slightly decreased it compared to SGA (yet still higher than ABySS). The number
of contigs decreased although it remained relatively high in the majority of the cases. CISA
had more than 80% decrease in the number of contigs with scaffolds as inputs, but the
genome coverage was poor. GARM reduced the number of contigs by 74 — 91%, regardless

of the genome coverage.

A.1.5 De Bruijn vs. string graph assembly (GAGE)

Here we tested the effect of merging assemblies generated using different assembly
strategies. Specifically, we merged an assembly generated by an assembler that uses a de
Bruijn graphs with an assembly produced by an assembler based on the string graph. Ta-
ble shows the result of merging an assembly produced by ALLPATHS-LG (based on the
de Bruijn graph) with an assembly produced by SGA (based on the string graph). Overall,
GAM_NGS, Metassembler, and MIX maintained similar assembly statistics as ALLPATHS-
LG.

Note that Staphylococcus aureus input assemblies (as contigs) had only one mis-
assembly. The merged assemblies also have one misassembly, with the exception of GAA
(two) and ZORRO (none). ZORRO corrected the assembly error without affecting N50 but
at the price of a 17% increase in the number of contigs. CISA also increased the number
of contigs, decreased NGA50 by 49%, and decreased the gene coverage by 15%. With scaf-
folds as inputs, ALLPATHS-LG’s assembly has no assembly errors. In fact, observe that

all merged assemblies did not have any misassemblies. GARM produced only 3 scaffolds

134

and increased N50 by 31% but kept NGA50 close to ALLPATHS-LG, while decreasing less
than 6% of genome and gene coverage. CISA covered less than 40% of the genome, while
ZORRO decreased the contiguity by 99%.

On Rhodobacter sphaeroides with contigs as inputs, CISA and ZORRO decreased
the contiguity by 34% and 10%, respectively. CISA decreased genome and gene coverage
by 8%, while ZORRO maintained ALLPATHS-LG’s coverage. GAM_NGS and Metassem-
bler slightly reduced the number of contigs; otherwise they maintained ALLPATHS-LG’s
quality statistics. All tools produced a relatively high number of misassemblies (similar to
ALLPATHS-LG). With scaffolds as inputs, CISA, ZORRO, and GARM’s assembly statistics
followed the same of statistics of Staphylococcus aureus. All assemblies, with the exception
of CISA and ZORRO, had a number of misassemblies closer to ALLPATHS-LG. CISA again
covered less than one fifth of the genome and ZORRO decreased the contiguity by 99%.
GARM produced only four contigs but decreased the genome coverage by less than 5%.
GAM_NGS, Metassembler, and MIX produced consensus assemblies with quality statistics
comparable to ALLPATHS-LG.

In Hg_chri4(with contigs as inputs) GAM_NGS and Metassembler reduced the
number of contigs by 4% and 2%, respectively. GAM_NGS increased NGA50 by 2%. With
scaffolds as inputs, GAM_NGS and Metassembler maintained assembly statistics close to
ALLPATHS-LG except for the fact that Metassembler reduced the number of contigs by
21%. GARM reduced the number of contigs by 83%, maintained genome and gene cover-
age but increased the number of misassemblies by 9% (compared to ALLPATHS-LG) and

decreased NGA50 by 9%.

135

GARM increased contiguity by 58%, while other tools improved it by less than
3%. GAM_NGS and Metassembler produced about the same number of misassembly errors
as the higher of the two inputs. GARM improved NGA50 the most, but also increased the

number of misassemblies by 42% and had 31% inflation rate.

A.1.6 Multiple inputs (GAGE)

In this set of experiments we tested the ability of the tools to merge more than
two assemblies. When an assembly reconciliation tool allowed no more than two assemblies
in input (see Table for a list), we merged them in an iterative fashion. For instance,
to merge three assemblies, we first merged two assemblies, then merged the result to the
third assemblies. Metassembler uses a similar strategy: when the user provides multiple
assemblies the tool iteratively performs pairwise reconciliation, where the output of one
iteration is the input of the next. The ordering of the input assemblies was chosen based
on feature response curve (FR curve), which is an assembly quality metric proposed in [61].
The FR curve represents the dependency between contigs that contains no more than 7
features and the corresponding genome coverage. The z-axis represents 7 and the y-axis
represent genome coverage: the “steeper” is the curve, the better is the assembly. We used
the FR curves in [75] to determine the merging order of the GAGE assemblies, starting
with the assemblies with highest quality. Results for an alternative ordering is discussed
in the next section. For tools that allowed to merge more than two assemblies (e.g., CISA
and MIX), the merging was done in one step from the original assemblies. Here we were
interested in measuring the contiguity and correctness of the resulting assemblies as the

number of input assemblies increases.

136

Tables[A.6], [A.7], and [A_§} in addition to Figure and Figures[3.9 and show

the experimental results for Staphylococcus aureus, Rhodobacter sphaeroides and Hg_chri4,
respectively, when inputs are contigs. First observe that in several cases, the process of
iterative merging did not complete.

On Staphylococcus aureus and Rhodobacter sphaeroides, CISA generally improved
the contiguity and decreased the number of contigs as the number of merged assemblies
increased. The number of errors and the percentage of genome covered fluctuated over the
iterations. As the number of merged assemblies increased, CISA increased the duplication
rate and decreased the percentage of covered genes. GAA did not produce assembly files for
the first iteration. Although GAA did not work for this particular ordering it did produce
results for the alternative ordering reported in the next section.

In Staphylococcus aureus and Rhodobacter sphaeroides, GAM_NGS’s contiguity
improved over successive iterations, but the number of misassemblies errors did not de-
crease (it stayed close to the first master input in all iterations). On the positive side, (i)
the number of contigs was relatively small and (ii) the percentage of genome covered was
relatively high, and (iii) gene coverage was relatively high, although slightly lower than the
best gene coverage in the input assemblies. In contrast, the percentage of gene coverage
decreased for Hg_chr1j. Although the genome coverage and contiguity were high, the num-
ber of misassemblies was also relatively high. GAM_NGS increased NGA50 by at least 70%
compared to CABOG.

In Staphylococcus aureus, Metassembler’s contiguity improved and the number of

contigs decreased over successive iterations, but the number of misassemblies also increased.

137

Metassembler maintained high genome and gene coverage, although slightly lower than the
best gene coverage in the input assemblies. In Rhodobacter sphaeroides, Metassembler’s
assembly did not improve after the forth iteration. Note that NGA50 was lower than BAM-
BUS2 and SOAPdenovo. Metassembler’s assembly had low genome and gene coverage and
number of misassemblies was about the average of the inputs. In Hg_chri4, the number of
contigs and misassembly errors were low and decreased over successive iterations. Contigu-
ity, genome and gene coverage were high, but slightly decreased over successive iterations.

MIX maintained a low number of misassemblies in most iterations but suffered
from low genome and gene coverage. Also, NGA50 was relatively poor. Since the genome
coverage in most iterations was less than 50% of the reference, no NGA50 was reported for
those iteration. On the Staphylococcus aureus genome, the coverage was less than 50% in
all iterations but it steadily improved with increasing number of inputs. On Rhodobacter
sphaeroides, the genome coverage was below 50% with four or more inputs.

ZORRO frequently failed to produce results. When it worked, it increased genome
and gene coverage. Contiguity usually started high, then fluctuated over iterations. ZORRO
produced relatively high number of contigs and misassemblies (somewhat in between the
values of the inputs).

We repeated the same experiment but with scaffolds as inputs. Results are re-

ported in Tables[A.9] [A.10], and [A.11] and Figures and CISA’s results show

that after a certain number of input assemblies, increasing the number of inputs did not af-
fect the results significantly. From that point forward, it generally improved the contiguity

and reduced the number of contigs as the number of merged assemblies increased, at the

138

cost of decreased genome and gene coverage and about 25% inflation rate. The number of
misassemblies were with the range of input assemblies. CISA reached stability with four
inputs on Staphylococcus aureus and three inputs on Rhodobacter sphaeroides).

MIX maintained a low number of contigs albeit this number fluctuated in Rhodobac-
ter sphaeroides with increasing number of inputs. MIX also produced a high duplication
ratio. On Staphylococcus aureus, MIX produced a high number of misassemblies which
generally increased as the number of inputs increased. It maintained high genome coverage
but gene coverage was poor in comparison to the inputs. It also maintained high contiguity
except for the last iteration. On Rhodobacter sphaeroides, the number of misassemblies
were also relatively high but it fluctuated as the number of inputs increased. Genome cov-
erage increased steadily but gene coverage decreased. It also maintained high contiguity,
achieving the best NGA50 for less than five inputs.

ZORRO produced a high number of contigs and a low number of misassemblies on
Staphylococcus aureus and Rhodobacter sphaeroides. It maintained a high genome coverage
but it slightly decreased gene coverage. Contiguity was poor and generally decreased over
successive iterations.

GAM_NGS maintained results very close to the first input throughout all iterations
on Staphylococcus aureus, Rhodobacter sphaeroides, and Hg_chri4. In the latter genome,
GAM_NGS contiguity generally improved in successive iterations but so did the number of
misassemblies.

Metassembler maintained similar quality statistics to CABOG on Hg_chril/, al-

though the number of contigs slightly decreased over successive iteration. On Rhodobacter

139

sphaeroides, Metassembler also maintained CABOG’s quality statistics with a slight de-
crease of (i) number of contigs, (ii) number of misassemblies, (iii) genome and gene cover-
age, and (iv) contiguity, as the number of iteration increased. On Staphylococcus aureus,
Metassembler also maintained quality statistics close but not identical to MSR-CA. In gen-
eral, Metassembler produced a small number of contigs. Also, as the number of inputs
increased, the number of misassemblies slightly decreased and the contiguity slightly im-

proved.

A.1.7 Multiple inputs (alternative ordering)

In this set of experiments we tested the ability of the tools to merge more than
two assemblies on an alternative ordering to the FR curves used in the main Text. Recall
that when an assembly reconciliation tool allowed no more than two assemblies in input
(see Table 1 in the main text for a list), we merged them in an iterative fashion starting
from the most contiguous assemblies (see main Text for more details)

Tables[A 12 [A.T3] [A14] and [A15|show the experimental results for Staphylococcus

aureus, Rhodobacter sphaeroides (two tables) and Hg_chr14, respectively on this alternative
ordering. Figures[3.8]-[3.12]summerize the results with respect to contiguity and correctness.
First observe that similar to what we observed for the ordering based on FR curves,
in many instances the process of iterative merging did not complete.
On Staphylococcus aureus and Rhodobacter sphaeroides, CISA generally increased
the contiguity and decreased the number of contigs as the number of merged assemblies
increased. The number of errors and the percentage of genome covered fluctuated over the

iterations. While the percentage of covered genes peaked with three input assemblies, CISA

140

increased the duplication rate as the number of merged assemblies increased. GAA instead
increased contiguity, number of errors, and duplication rate and the percentage of covered
genome fraction, as the number of merged assemblies increased.

In Staphylococcus aureus, Rhodobacter sphaeroides, and Hg_chr1lj, GAA produced
a monotonic increase in duplication rate at successive iterations, while misassemblies seemed
to be the union of those present in the input assemblies. GAA’s contiguity did not increase
over successive iterations, but the genome coverage was relatively high, while gene coverage
which was very low in both Staphylococcus aureus and Rhodobacter sphaeroides.

GAM_NGS’s contiguity increased over successive iterations, but the number of
misassemblies did not decrease. On the positive side, the number of misassemblies was small
and the percentage of genome covered was high. In Staphylococcus aureus and Rhodobacter
sphaeroides, gene coverage was high, although slightly lower than the best gene coverage in
the input assemblies. In contrast, the percentage of gene coverage decreased for Hg_chrlj.

GARM increased the contiguity over successive iterations but also inflated the re-
sulting assembly. The number of misassemblies and the genome/gene coverage fluctuated.
The percentage of gene coverage decreased in Hg_chr14. In Rhodobacter sphaeroides, GARM
crashed after the third iteration. Note that in the second iteration of Staphylococcus aureus
only 26 contigs covered nearly 93% of the genome with 91% gene coverage, no misassem-
blies, and no inflation. In Staphylococcus aureus, Metassembler maintained a low error rate
and NGA50 (with the exception of Hg_chrl4) over successive iterations (although NGA50

was consistently low). In Hg_chr1j, NGA50 was low and also decreasing over iterations.

141

In Rhodobacter sphaeroides, genome and gene coverage for Metassembler was low with
respect to input assemblies.

MIX maintained a low number of misassemblies in most iterations but suffered
from low genome and gene coverage. Its NGA50 fluctuated over successive iteration, but it
was relatively poor. Since the genome coverage in some iterations is less than 50% of the
reference, no NGA50 was reported for those iteration.

ZORRO frequently failed to produce results. When it worked, it increased the

percentage of genome coverage and gene coverage and it did not increased duplication.

142

088 TG8'LT 8T'T 86°9L 1TLee'0T G976 GLeST 8L0°08¢'68 9118 V66°L8¢ 0F8°078'86 TIS'6V8'T 8GES TOqUIdSSRION
660 €8L°LT 8T'T STTL 98°€98°0T G8'GT €T°6ST 6€9°TPO'68 8G6L TS6°LC7 66£°086'C6 GOL'€S8'T 676 (8197108) WYVD
SU'TT VN qT'T or'g 606268 0TT€ 6C'T6T 0€7'29¢'G 125 294°L¢C 0€T'T0V'L €SC'6ET GEV (3057819) WUVD
G865 €06'LT 0T'T 68°9L 66'TST'0T P9FE I8°@ST STI'TP8'88 6108 8T€'89¢ 6€GLVE'00T TIS'6¥8'T 99TL SONINVD
0T'€8 6EET 20’1 1919 77698 186 L9718 8EL'LET L8 agee V6STEL LY €50°0€ 84'1¢ (s) sshay
€L1E IS8T 0T'1 PrLL 6€°99T°0T ¢G7e 89°¢ST GT9'96£'68 TLI8 98C°I8¢ 9¥L'088°00T TIS'6¥8'T ¥9CL (s) 0A0WPIVOS
0£'€9 G918 20T 8€°9L 200 86'€C 8T'8VT €96°TIV'EY 8TT9 L6L°9T 6LL'8LG°L8 VOVLVT TEELTT TO[qUILSSRIDIAL
09'€¢9 Gres 60T 9€°LL 60°0 £VVe LGTST €6C TVT T 1829 679°91 L08°66£°06 6V LVT GGLTT SONTINYD

mﬂ@ u:r::c wUZCCuQ jou prq <<U
G8'E8 GIET 01 PST9 €T 026 8FF8 775861 &4 a81¢ OPTFL0°LY €S0°0€ 090°g€ (®) ssday
€079 G618 60'T 08" LL 200 9TV VETST 69L'ETL'EY 65€9 6L1°9T PEL'86E06 POV'LPT 8T0'GT () 0A0WOPIVOS

(dq opg'6pE’L0T 971 dwouas) 1 2wosowo.nd ‘suaidvs owofy
9L'T6 €8L°8€S 10T €186 69088 G666 L9TT G80°T96'T [229'999 689°08¢°F 260'8ST'T 9F TO[qUILSSRIDIAL
6616 0LL°68¢ 20T 98°86 19°€92 €66 S0°€C €Le'0Le'e 0% G69°G99 €99'CT9T L90'68IC €S XIN
FE'E8 880°0FS 10T 1628 88'80C vUIE YUY 890°6LE'€ L1 062'G60°'T €29°980°F 20z 09T'T TT (8y07p08) WaVD
€8'8T TET00E €6'€ 1918 86'089FT TLOE FETV 9€2°9GE eT 121 €CS07E CSG'0LLTT 680°G88 T8 (3o57810) INUVD
6g'e6 0LL°68S T0°T GL'86 90388 186 ¥E€'1C 696°L26'T €1 791099 €8€'084F PETTCT'T Tl SONTINYD
2061 VN LT'T L9'€C L8'796T 98'CT TETL 290785 44 661°SP 8TE' LT T 9TG'8IT €F VSID
T69L 9LTL (4N 1276 LV'C0eC T6'8 8E'€T €0L°210°T a8 9€08 126'896'F GS8‘L8 eset (s) sshav
8926 0LL6ES 10T €186 T¥'8%C 186 0€°71% 696°226'T €1 791099 T08'6LSF PETFSTT 9L (s) orowdpIyOS
0¢'T6 TO9TET 00T 6186 107 96 SLI¢C 0LL°899 43 6OV FPT €LOPOST G8G9LE L8 IO[QUIDSSRION
69°06 T09TE€T T0°T 9686 170 cror LSGT 690°16 |14 6OV FPT 2621097 G8G9LE L8 XIN
6126 69V FFT 10°T 72'86 700 656 11C% €L6°T19 It POPIST 866997 98G'9LE 0TI SONTINYD
132 €19°651 S0°C 1766 0¢'T 90T 8LLT 18€°667'1 96 LL8'€T 018°29¢°6 G8G'0LE F09T vVD
TS'6F 09061 €0'L 0F'SS 1670 90°TT 8I'GH £67°68¥ £ 99509 968'GE9'C EIT'LGT GEI VSID
Tr9L €0€s [4N GL'€6 44 G 9LTT 812'998 [296¢ 69L°068F VEL'FC 6091 (0) sshav
¥606 €19°621 101 21’86 000 166 8¢'I¢ £91°6€9 1 I89°TET OFE'69SF G8G'0.6 FII (9) or0umPIYOS
Anﬂ 090°€09‘y 9Z1s on:wmv §apL0.LavYds 4239DQOPOYY

10096 6LLI8T 10T 9586 G6°E6T 65 60°€C 16G8G€°T o€ 86 1EE 192°C06'C Ges'6es e IOqUIdSSRIOIN
T6°¢6 088'LLT VO'L 6986 €6'161 e €628 L89°TH'T ge 0L5'96€ T00'PL6T 6eere o XIN
8C'€E VN ee'l 2e'8¢ L' e0V'el V€T 6VLC TS9'8LY'T VI 2e90TF TT9'GsP'l orv'eer ¢ (8107308) INYVD
L06 ¥8¥LIT 19°€ [LE0TS'8T ¥€C 9V'SC 0€5°6eT'L S0T 1196ee 19L°C9¢'L G89°GSO'T ¥ (3957810) WUVD
796 6LLT8T 10°T 19°86 OTvLT 9L 98°GT 78G'8GE'T 44 090°GEE T6LT06'C c0e'9ee 9 SONINYD
1806 ¥LG'TLL LO'T 8L'L6 1L°68F 89 €09 060°20S°C L8 G6GTEE LPE0E0'E 00092 1§ VSID
09¢'LL €OLTE 0T 7S'L6 L6°08ST 60T TETl T06'8LT 0t G69°L¢ £0L269'¢ T6T'0eT 90C (s) ssdav
6896 GLGCLT 10T 6586 1€°L91 9L €TVT 9GL'8VE'T 43 86GTEE 296'C06'C OIL8IS ¥9 (s) 0r0WPIVOS
0096 9TTFST 10T 2986 1T XA <4 9€€°080°C 1€ PRI'88C THE'E68'T 194'8¢¢ 09 IO[qUIdsSLI
LSV6 G6LEST €0°T 19°86 L0°0 9% 9978 8LE'GHT'T 9¢ L2676 9SSPF6'T 66T°0F¢ 99 XIN
0796 S6LTST 20T 8486 L0°0 69 8%'9% €61°€50°C 1€ V81’88 912°106'c LLS'GPS €9 SONINVD
TEV V6L'0ST 8T 8886 LEV €8T VILT 70€'050°C 9¢ STR'SY 119'82C'9 OTL'QIS LI€ YVO
9€C6 €0STST 20T TLv6 <) G9C LETT €L0'708'T 1z GGL'TIC TE8'P6LT FIT'E’Y 6F VSID
€9°LL 8616 6T 1526 6L°L @0 6£7Tl 66€°28 4 780'6C SPETE9'E 6V0'SCT LiT (0) sshay
er96 ¥6L°0ST T0°T G986 L0°0 P 00€T S06°220°C € VSI'88C TEV'L68'C OILBIS 0L (9) 0201PIVOS

Amm TR0°€06°C 9Z1s wEogmwv snauny sn22000]fiydnig
(%) (dq) orjer (%) po1er0d (#) (#) (#) (dq) m8ue (#) (dq) (dq) (dq) (#) jnduy 10 1007,
Souar) (GYHN uoneordng ewouar) SN S[OpU] SoYPYRWSI[Y A[UIOSSBSI[N A[qUI9SSesI)N (OGN 971§ 1so81e] s3uo) TOTYRI[IDU0IIY

Pajou 9SIMILYJ0 sso[un ‘siajeurered jnejep Suisn url alem s[0o} sdqs 00T 1od are
SN/S[OPUI/S9YD)eWISIW JO IoquuNu 97} ‘S819U0D 10] oIe s013s11e)s pajIodal [[e splojeds Jo pesoduwod st A[quuesse 91 1R[] $91BIIPUL (S) ‘s819u00 Jo pasoduwrod st A[quiosse
9} ey} sejedIpul (D) :$9j0N ‘sorjquesse jndul om) oY) 03 poredurod A[quuosse paSiow jo Aenb uo sjrodor o[qe) oY, "SSOUJAILI0D YSIY SY PU0IS oY) ‘ANNS1Huod
Y31y sey 9SIy oY) YoIym ul ‘98I1ewr 09 serquiesse om} jndul Ul ULAIS oIe S[00] UOIJRI[IOUO0IDI A[qUISSSY "SNSal [RjUsWLIOdXe SSoUI01I00-A)NSIIU0)) 'y S[qe],

143

9L VeetT 01 6919 G9'699 9€'6 6778 99€°2€2 9¢ 69€€ CIVV6V'L9 €50°0¢ LIV'TE ID[qUIDSSLIIN

1T VN 6z'1 07’ 60°6L68 0T'TIE 6T 16T 0€7°29¢€'S 128 299°LT 0€T°207'L €9T6ET GET (3957890) IWHVD
9L 8L0% 90T ¥6°99 €0°€CEY FSET GET0T 08G°9F9°TT Gev1 G02S 0¥8°Ge6'9L GLO'E’T €16'%C SONINVD
1€ 168°LT 081 Vi LL 6€°991°0T 29¥e 89°CSL G29°'96€'68 TL18 98C'18¢ 9FL'088°00T TIC'6FRT ¥92L (s) orowPIYOS
€8 66€T 20’1 1919 7¥'6S8 266 L9T8 8EL°LET L€ agee P68 TTLL9 €008 786'1E (s) ss4gv
LL 1621 10T 2919 8C'T 0T'6 LET8 8€CTTT 44 89T¢ 961°299'99 €20°0€ 606'T€ I9[qUIASSRIS
19 91C¥ 70T £8'89 10T L1891 LTOTT €OV'CTETT €48¢ 8TC'TT VOELTIOOL S8E'OVT 6LG°LT SONINVD
6L £6L6 P81 0T°9L 090 1972 90°6ST GIP'E08'Cy 6TE9 G98L €C1°0L9'0ST ¥6¥'LFT L00'TH AU
79 6g18 60T 0€°LL 200 9TVe veest 69L°€TL'EY 629 6L1°0T PEL'R6E'06 FOVLFT 8G0'CT (9) 0A0WPIVOS
€8 6I€T 10T 719 €T 056 8V'¥8 TP 801 (4 781¢ OFPTPL0°L9 €S0°0€ 050°z¢ (0) ssdgv
En_ 0FC 67E L0T 2218 wﬁonmmv 71 2wosowoys ‘sua1dns owofy
98 10128 11T 7T'86 207991 8TET 99°GT 8CC'TER'T 98 66178 TIv'ee0°'s 969'90c €81 TOUIDSSRIIN
16 692'68¢ ¢0'T 98'86 62°€9% 9001 €8°C% LLLTVO'Y €4 29€'829'% 9LLV61°C €S XIN
€8 GL0°0FE T0°T G6°L8 9%°20% 0r'Te 96'8¢ cer'sLE'e L1 080°980°F SPT09T'T 1T (3o57830) NHVD
8T TeC008 €6°€ 1918 86'0C9'FT TLOE VETV 9€3°65e'eT o1 TGS0LLTT 680°G88 T8 (8307308) INHVD
9L 99¢L vIT 8776 94°926¢ 67’6 08'CT 10£'520°T 68 612867 GG8'L8 8TeT SONINVD
61 VN 211 L9'€T 87961 G8°C1 TETL L9089 4 8CE1LE'T 9gG'8IT €F VSID
26 0LL6€S 10T €L°86 [AR 144 86 0€'1¢ 696°226°T €l 108°6L5'7 PETFST'T 9L (s) or0wPIYOS
9L 9e1L PI'T 1576 LV'08s T6'8 8€'€T €0LTI0'T a8 156'896'F GG8'L8 oSel (s) ss4gv
88 69L°8¢ L0'T 12'86 £9°Ch 7eel 98T €89°CVC'C LL £48°¢9 298 TV8'Y L8T06T 96T I9[qUIASSRIS
06 €1965T 10°T 98'86 70 00T LL9T 606°00¢°T 9% 697 FFT 996°909°F ¥65°C8¢ 18 XIN
08 we'ee 111 1996 8C'C 0T'0T @8'8% 8€9°166 98 ¥¥3'0T 788°€56'Y TIV'8ST ¥0L SONAVD
4d €19'68T G0°C 17°66 61T V90T 8LLT 186671 96 GIT'ee 720'86€'6 68G'9LE TLIL VvV
67 09067 €0°T 0768 2670 90'TT 8T'GP £67°65F {54 995°09 968°6E9°'g EITLST Q€T VSID
6 €19°65T 10°T TL'86 000 166 8¢'TC €9T°€€9 1 T89°TET 0FE'695'F 68696 TIT (9) 0r0mPIYVOS
9L £0€S [N} GL'E6 €T 78S 9LCT 817°998 a8 298G 69L°0£8'F VELVS 6051 (0) ssdgv
(dq 090°€09‘F 071s awoual) saprosanyds 121oDqOPOYT
78 GT6'GST 6T°T 7€°86 96'1G6 4 A (s ¢4 8LGETI'T 8% TOVCLT 00'G6E'E 6PT0TF €9 IO[UIOSSRIOIN
6 088°LLT TO'T 9986 09°60% €6'C 96'9¢ 808°G0T'C 1€ 0L8°9G¢ €0T'€T6'C 698'72¢ V¥ XIN
€e VN 0e'T ze'8¢ Ve’ 1666 €V'C L6'€T LGLREV'T 71 GTO'E8E LTL'GTV'T 8€9°0TY ¢ (8307308) INHVD
g V8V LIC 19°€ [9%4) LE0TS'8T V€T 9V'ST 0€G°GTT'L G0T T19°6EE T9LC9G°L 689'6G0'T T¥ (3957890) WUVD
8L €8L°€CT LT1 81°86 veoIvt ¥I'T 99°1% 682 TP8'T 8% T6T°08T 729929 €6V'VLY 06 SON VD
06 PLGTLT L0'T 81,6 1,687 89'C €0°9% 060'20S°C L€ G6STEE LPE'080'E 000'9%¢ 1S VSID
96 GLGTLT T0'T G486 1€°L91 9Lt €TTe 9GL]TE'C 49 86S°TEE L96'C06'C 0TL'8T¢ 79 OAOIPIVOS
LL €0LTE 0€'T 7526 260281 60T TE'el T06'S8LT 01 G69°L% €0L°269°¢ C6T0ET 90% (s) ssfgqv
76 €0GPST €0'T €286 60°5C €T 06'CT L8T°TV9'T 8% 0V'6LT SVE'GH6T GeeFes 1¢ IO[UIOSSRIOIN
96 G6LTST 10'T 69°86 010 69 99°€C 100°980°C €e LT6'76C VIE'€68'C LLL'TTS LS XIN
8L 66569 0T €LL6 79 660 9%°GT TLE'6EL 0¢ 78€°6¢ 19€°969°¢ T7€°08¢ TLT SONINVD
i V6L0ST LT'T 8886 L8V (SN t VK4 70£050°C 9¢ GPR'8Y 99L785'9 0TL8T¢ 91¢ VVD
%6 €0S°7ST 20T TLY6) 99c LE7TC €L0'708'T L2 GGL°CIC TE€8'T6LT PIT'E8Y 6% VSID
96 ¥6L°0¢T 10'T €G'86 2070 7 00°€T G06°L80°C 1€ FRI'88C TEV'L68'T 0TL'8T¢ 0L (9) 0s0umPg YOS
LL 86166 651 15°L6 6L°L G680 68l 6620 ¢ 780°Gg SFE1e9'e 670'6eT L¥T (o) ss4gv
(dq 180°€06‘g 071 awouaS) snainv sno2020)fiydlg
(%) (dq) oryer (%) Po10r0d (#) (#) (#) (dq) maSuery (#) (dq) (dq) (dq) (#) juduy 10 007,
souer) (OGYOHN uoneordn euwousr) SN S[opu] SoYDJRWSI]N A[qUIOSSeSIN A[qUIOSSeSI[N (SN 71§ 1598 s31yu0)) UOTYRI[IOU0DDY]

Pajou 9sIMILY30 sso[un ‘siajeurered jnejep Sursn
uel o1om s[009 ‘sdqyf 00T 1od ore sN/S[opUl/sOYDIRWISIUL JO IOQUINU 9Y) ‘SSIIU0D I0] oIe sOIPsije)s partodal [[e ‘sp[ojeds Jo pesodwiod sI A[quiesse o9y} ey} $91edIpul
(s) ‘sS19u00 Jo pasodwrod st A[qurasse oy Jer) sayedIpul (d) :s9j0N ‘sotjquuasse jndur omy oYy oy paredwod A[qurasse pagiouwr jo Ajrrenb uo syrodax ojqe) oy], ‘poddems
SI IopI10 oy} nq [[°V|O[qe], Ul sorjquuosse omj} oures o3 jndul Ul USGALS oIe S[00} UOIJRI[IDU0RI A[qUIOSSY S}NSOI [RIUSWILIOdXe $SoUD0LI00-A}NBIIU0)) 7'y 9[-,

144

LEVT TGEL6E V0T 97'8L €0TELE 98T 08'99 9T6'EIT'LS TSV 9€6'079'TS 6GF0€SL8 9€6'9¥9°'T8 LTI TOUIOSSRIIN

SV'ST GOLTL 60T L9°8L 02°66%°9¢ ¢I'L& 80791 TIP'TIL9 90T €28'G06°00¢ TCY'0EL'LOT €T8'G06°00C €T (8107p08) WAVD
G0°'LC 109661 SI'T qT9L ¥8°L0T¢ 6LVe 8E€'16 101°261°LL 42 299°109 COLPIF'06 OLV'89S'T L62 (305780) INUVD
EV'IC TGE°L6E 70’1 168 TV yELE 88'Cc 68'99 G79°61¢°L8 14 966'979'T8 969°T99°L8 9€6°'9¥9°'T8 TLT SON'INVD
99°62 669°GT1¢T 10T 10°08 02°L9¢ 897¢ OT'TOT 606902 €V 69¢ 6L2° 107 89G°T8F'08 €95°092°C Ly (s) DOgavD
0071 TSE€L6E Y01 16°8L €9TELE L8CC 9899 S79'615°L8 qs7 9€6'9V9°'T18 8CTL'OF9'L8 9£6'0F918 PLI (s) DT-SHLYATIV
€LT9 0€8°LT 00T LE°8L €9re 08°'1¢ 19°L9 €86°CEV'T 60T €LV'8¢ OST°TVE' P8 €LL'OVE 4si9g IS[qUISSSeIdIN
86'CG 96G'GT 00T 66'8L 0L°cS 69'cc TL0L 795°G1LT L0T €00°99 8G6'0C6'78 £09°'€ST 9168 SONINVD
28°0L 1929 86°T 9€°08 c0'Le C8'€C 8EV6 €09'8L0°G L1 TL8'Th 6CL'€6S 0LT T06°968 289 vvD
LE6G 6£G°GE 00T ¥6°6L 00°0 62°€C TS'T0T 92ET69'C 80T 669°91 6I6°681°98 106'96C () DOgVD
0829 TLLLT 00T 87'8L 0974 6T TL'L9 LLTTSE'T 60T 65E8¢ COT'OTF'¥8 €LLOVT () DT-SHIVATIV
(dq 0pg‘67€ LOT 971s owouas) F dwosowoyo ‘suaidns oulofy
0€26 L¥pce 10T G0°66 6LVEY 98°G 80°6 GOLTET 0t Lyvv'ee 121°929°'% €9R'LTT OHYv0Z
7096 STV'626 10T 65°66 0T’ 15V €8°9 879 P96 9VT' T 9T LE9'T6TE 697'909°'% LE9'T6T'E IO[qUISSSLIOIN
10°66 T128'8C6 €0'T LT°66 qr'9gy 189 809 8TG09S' TV Vi VEE'TOT'E 621°02LY VEE'TOT'E XIN
9¢'16 T89'8%e TV'T €576 9I'8eIc ¥e€'s 99Tl G0S°TGT'9 ye 086'Geh'y G0S'TST9 086'STh'y (8307§08) NUVD

€8°¢8 16C'8¥C OT'T G768 G9°96T 98°1¢ 9T TVET € 8TG'GTT'T 8L6'R0ST SOF'FIT'T (3957810) WU VD
€1°¢6 1e8'8¢6 10°T 9266 VLIV 16°¢ 0F0'67F' a1 VEETEI'E C0E'609F PEE'T6I'E SONTINYD
L6'LE VN 0T jadis 9€'8€T VL€T 299'099'T 41 LV6'TEE T [ANZANY LV6'1EE'T VSID
86¢6 0LL'6ES T0'T €186 4144 0€'1% 696°LT6°T €1 POT 099 T08'6L8 T FETFCT'T (s) orouOpPgvOS
20°¢6 168866 10'T V2 66 1€°29% 16°¢ L8 LVV'Y 98 VEE'TEI'E €9L°809°V VEET6I'E () DT-SHLYATIV
€816 €6C°LC 0T 60°66 20T 1611 LIP'E8T r 66€°LT 950°€09'F 966'€6 09407
€0°€6 299281 00'T 2€°66 veLy GLTT 660°85E'T LT 928°88G°F 990°97F TOUIASSRIIN
7Ge8 TO9TET 60T 98'86 09°0 1€ 0TT'98€C 62 8E6'CT96'F 0L9°00% XIIN
1926 20S'09 00T 9266 89°C €rel 689°G1¢C it OIT'68C'Y 99865 LyT SONTINVD
109 €19'6eT 00T £5°66 07’1 [9aa: STE'LEO'T jt4 968°C9T'6 989°9LE 91€ vVD
6878 T09TET LO'T 98°L6 6.0 8LCT 178728 €1 06€'9¢8'7 98L'€el 99 VSID
vee6 €19'6el 10°T 2L86 000 8214 £91°6€9 It 0FE'69¢' Y 98G'9LE VIL (9) orouspgyOS
GGT6 L8V'TE 00T 0% 66 6L°C €69 G8T'70% 01 asv'ey PGE'L8S'T L9F'90T €08 () DT-SHIVATIV
AQQ O@C,mowvﬂ 9ZIS mA:Oﬁmwv mmEe&wGQ&w 4279DQOPOYYY
96 S10°09 201 G686 T8°8LY 8LT €8¢ GL9'8F 9 207 LS 969'€76'C 18€'8LT 48 09407
2096 680°T80°T 00T GT'86 20°G6¢ 9T 0ve 9€8°GET'T 4 9E8'GEF'T 98€'098°C 9¢8'GEV'T L TOUIdSSRIIN
80°88 89G°LLOT L6'T 6£°66 16°9€€ L97 80°CT 298°06¢°G 7S 6GETPR'E 69T°089°C 6SETISE 0T XIN
6168 L8699 CI'T 8606 Ly'STT ary G6VI 9€S'TE6'C 43 L86°T€S T 9€G'TE6'C LSG'TES'T € (8197908) WYVD
66’16 TIT'G%C €T'T 6796 99°89T 8LC Lg€T TrETST'E 11 079'219'c CrersT'e 0v9°eI9C ¥ (3957810) INUVD
6596 919T80°T 00°T 98°86 1€°6vE 1cc L6€ 0 0 T€L160°T ISP'6L8C 69G'GEV‘T 1 SONTINVD
2896 08008 00'T 6586 £6'80¢ Le L80¢ 09€°L98°C Ly VIGTIV'G 9€0°698'C ¥I6'T1¥'e 0T VSID
G996 020'0e 10°T £2°86 96°09¢ GLe 06°0% 0€2'908°C 67 VI6TIV'G COV'IL8C PI6TIIVE €1 (s) VO-4SIN
6596 919°80°T 00°T 98°86 16 L6€ 0 0 1€4°160°T 187'6.8'C 69G°GET 11 () DT-SHLYATIV
61°96 900°89 00T €166 v o 68T €9°C 968 1T T iz T9€°0L 061’88 625°10C oL 0¥907Z
8€'G6 LVC'00C 00T 2€°86 997 60 G0€ LTr've 4 L¥2 002 0E7'€98'C 680°18F 62 TOqUIDSSBIOIN
98°6¢ T60°TOT 80'T 80°66 2T 1 L9T LT GIT'0T6'T €4 L¥2'008 OLT'OTT'E 60L°€6G L€ XIIN
166 ¢LOT9T 00°T 1686 vl 60 99T 0 0 2L0'191 €T IL8T 966'TLY 94 SONTINYD
9¢ Gee'60T 66'T 17°66 GLo 99T 9TTT 8TS'6TL 0% 87069 VEV'STL'G 88FTET LyT VVO
01'€6 G120 20T 1L°26 LTT 60T SV'6 G98'.88 L GTI'L0T 069°T06'c 0S8°08F 1€ VSID
91°¢6 890°GS 00T L1°86 000 W1 L90% ELT'TPY 02 28169 TET'098°C 8EV'6El 68 () VO-9SIN
TLG6 OFL'96 00T £8'86 0g'1 €L0 L9T 7£9°'68 T 072°96 18G°698'C 88¥'7E€C 69 () DT-SHIVATIV
(dq 180°€06'G 971s dwOULs) snauny sn22020)fiydIg
(%) (dq) oyyel (%) powroo (#) #) (dq) misuop (#) (dq) (dq) (dq) (#) ynduy 10 [oog,
SOURY) OSVON uoneordn(owouor) SN orewsiy Ajqu TN Aquossesty - OGN 9ZIg 1s081e] s3nuo)) TOTJRI[IOUOINY

pojou ostmIat 1o ssefun ‘siojewurered jnejop Sursn uel orom s[oo} ‘sdqy] QT Iod are sN/s[Epul/seyojeUISIUI
Jo Taquunu o7} ‘SS1JU0D 10 aIe SO1SIIe)s pajriodal [e ‘sp[ojjeds Jo pasodwod ST A[quiesse a1} 1R} $81edIpUI () ‘s81Yu0d Jo pasodurod ST A[quiesse oY) ey} sojedIpul ()
:$9j0N ‘serjquresse ndur om) a1} 0} pareduwod A[quesse padiow Jo Ayrenb uo syrodar aiqe) o1, 'serjquuesse ATenb-ySiy SurSiewr wo synsal rejuswtedxy ¢y 9[qe],

145

cr9L T€€T 01 Ga'19 18679 V€6 0€78 CL1'60C Ve 65€€ TTL0TV'L9 €50°08 TOV'TE IIUIDSSLIDN

VN VN 8T'T 60°¢ croe0ct 171 00921 120°1L¥ €5 G618 IgVITY LET'0E 129 (810708) WU VD
€99 SoLVE LT 8679 99'TPO'ST F9°LT 0G°88 8LLTVE'ST LLT 6SL'T6 €09°618'C8 9TF'GSS TGLT (3os7810) WUVD
6L°LG €1ev 1T 84'99 1L600°0T T€FT €798 8G0'GT6'T GIT 698°CT TLV'TIG08 8FL'RIT F80'9T SON INVD
L67E L1€GE 9T'T Lv'0L 8E'66V'VT FEST LLLS LGVTI8'] 0L1 91978 GP9°LGG°88 CTY'TSS 98G6 (s) vos
0r'€8 6EET 201 19°19 T 698 186 L9¥8 86L°LET L€ agee P6GPTLL9 €60°08 T8SIE (s) ssfav
L89L €631 10T 8719 8C'T 816 €I'78 8EETTT 44 TLIE 09T°979°99 €50°0& €98'TE IOqUISSSLII
0L'28 €9LT 10T VL'€9 8T'T 96'6 GT'G8 168°191 6 L62€ 099°0%€°69 809'CS 16G'ST SONINVD
09'¢8 9gey 88'T 25°0L 29°0 ILET 9806 L1T'8LE €1 jqe149 8VE'TGSEYT 0%€°08 L€L°G9 AU
96'88 GT6T 10T 68°69 000 19T T9°L8 €L6°67¢ 20T L1€€ L08'T6F'GL 0GE'0E 969°€e () vDs
G8'E8 6IET 1071 7419 161 0c6 8V'¥8 jaxaias VT 781¢ OPTPL0°L9 €S0°0€ 0S0°TE (5) ssdgv
(dq opg‘6vE‘L0T 021 owoudl) /1 awosowoyd ‘suardns owof]
GeLL LSOTT 0C'T 98'8L08 800T 26'C LL6°09T'T 08 685°€T Geg'L8 GT6 IO[UIOSSRIOIN
T197L 960°Tc 1€T 8E'TEY°05 LS8 869 ¥EET08 6 67509 9GL'SVT 9€TT XIIN
G9'6¢ VN 12T 99'0£9S L¥LT 8L°0€ 1657€9 44 05€'eT 0.8°L8 8LT (8107308) INUVD
6869 €ETLT 9¢'1 S6FIV'QT SVl 00T 2E90TTY 981 $28'89 665991 90T (3os7810) WUVD
60°LL 6208 9T'T LR'8VCY 606 8TTL 891°650'T a8 9206 GeR'L8 LTTT SONINVD
08'67 2EE'ST IvV'T 0€€IV'61 V91T G9°LT 0£6°G€S 8¢ G19'8C 6L0'8.8°¢ 176°96 ¥S1 VSID
06'LL S69°LT 9C'T ¥6'667° 1 TEL 98°G v9L°1€ € COTTy L8€'8eE'S 9GL'8FT 80TT (s) vOs
T6'9L 9ETL 711 LV'g0ee 68 8E'€T €0LCI0'T a8 9€08 156'896'F Geg'L8 ggel (s) sségv
€7'GL GEPS 1T ¥€°C 8¢ 88'CT 699°9.8 18 G0LS 006°C6LT vELYS 9971 TOTUIDSSRIIN
LE7LL GV8Y 80°T 8¢ 8¢'L 1861 672796 NS 8695 106°0L9°F7 VLS el XIN
€0°LL 929% ort €T 86'¢ 98°CT LLT°0L8 o8 £28¢ SET'ETRY TELYS T6ET SONTNVD
G0'€e TIL9 €0 GT'T e 1Vee 992°0L8 98 9144 LTT'GL6'S VEL'YS ©99¢ VD
2008 280% S0'T 86T 6.9 0V'ET 1L6°G99 29 1699 TP1°98G% VEL'YS EvEl VSID
66'LL 08C% 00T 0L°06 000 e 0LS 8T0F 1 0€S% CEV'88TY 0886 €L1C () vDs
TI'9L €0€S [N} GL'E6 [45%4 7RG 9LTT 812°998 a8 295G 69L°0£8'F TELPS 60T (5) ssdgv
(dq 090°€09‘F 9z1s dwouas) saprLo.LaVYds 423IDQOPOYY
1L9L 9¥8°L8 8T'1 8%°L6 L97L8GT 16T 6911 017661 01 €EV'E9 FEGEI9'E sov'ees 911 IO[UIOSSRIOIN
0L°08 678FET CT'T 9066 261076 TE€TT 49 682°108 01 TeV'6PT €20°LOTE 90191 8LC XIIN
0961 CETL 8L'T 98°0€ 67°0L5F 8¥9 LTCE 285°9€L 4 €609 8GE'E09'T 98687 €5 (8107p05) WU VD
0998 98I'Fgl CI'L 00°€6 89'T9IC 29T 8¥0I GTE'L8C'C 9% GIL'08C €01°98%'€ 08L8¥E 7T (3os7890) WUVD
€¢LL €0LTE 6T 9626 Ce'8IST 60T 2oal T06°8LT 0t L16'LT 185°299°€ T6T0ET €0 SONINVD
16'GF GGL'Gh Tel oL7s GLL0E9 89'L 0£'9 GLT'T6T v 780'T8 TE0'LE6'T T6T'06T T€ VSID
19°¢8 6V8VET TIT'T 1876 TL'T986 LVIT 60T TT9'ETT € 12F'6VT G00‘TS0°E 7€9°98¢ 668 (s) vos
9¢°LL €0LTE 081 7526 L16'02ST 60T %gal 106°8LT 01 G69'LT £0LT69'E 261°08T 902 (s) ssfav
cLLL 0ST'TE €21 61°L6 8G'TT e80 99T 921°61 v SPI'8C 62S°08P'E 6V0'GET €0C 1O]qUIOSSBIOTN
69°¢6 999°Lc FO'T €0°L6 89'6 09T L9CT €CLLTT 71 1€6°'LC 6€3'CE6'C 670°GCT 911 XIN
SYLL €6E'TE ST 8¢°L6 6LL 260 6IET 66€'2C G 1€6°LC €€1've9'e €86'6T €2T SONINVD
LTl 8616C 10T €6°L6 a7 LU0 28T 06875 9 FPGOT 68G°T9E'9 670°GeT <TTl VVD
296 0196 00T 20°96 89'¥ €CT 9871 2887V 9 G8G'CT GE0'GLLT 670°GeT €8T VSID
8G'I8 SO0¥ 00T 7776 00°0 o 201 1678 1 8LV 799'8VL'C 0L8°9T G86 (®) vDs
€9°LL 8616 6T LT°L6 6L°L 680 6€CI 66£'2 g 780'Ct CrE'Ie9'e 670'STT L¥G () sségy
(dq 180°€06°g o71s dwouas) snanD §122020)fiydn)g
(%) (dq) oryer (%) potor0d (#) (#) (#) (dq) yaSuoy (#) (dq) (dq) (dq) (#) induy 10 {007,
souor) (GYHN uoneordn(owousr) SN S[Ppu] soyDjewSI\ A[quiossesijy A[quiossesiN OGN 9Z1g yse8rer] sSruo)) TOTJRI[IOUOINY]

PojoU 9SIMILTI0 Sso[un ‘siojewrered jnejop Suisn uel olom s[oo} ‘sdqy] QT Iod ore sN/S[EPUL/SOUDIRWSIW JO IoquUUNU
o} s81yu0d 10§ oI S$O1IsTIR)S pajlodal (e ‘splogeds Jo pasodurod st Ajquiesse oYy jeysl sejedrpul (s) ‘sS1yuod jo pesodurod st A[qurasse o9y} jey) $91edIpur (d) :S9J0N
‘sorpquuesse jndur omy a3 03 pareduwros A[quuesse paSiowr Jo Ajrenb wo syrodax a[qe) oY, 'serjquuesse pajuswSelj ATYSTy Suidiowr wo sjmsal [ejuswadxXy Y 9[qe],

146

4! 166" L6E 0G'8L 0g'LELE L8°CT G899 GV9'612°L8 i 9£6'979° T8 908'F8G'L8 9€6'0F9'T8 ID[qUUSSSBISN
VN LT°8L GE69TE €6'1€ €8°16 0LE°T9V'L8 967 £6G'TE]' T8 80E'T6G'L8 €9G'TERTS (837308) INAYD
L€ GG'GL LGTO6'ET CITE 1026 675°028'98 0911 019°8¥1 07G'G89°€CT 8ELTLY (305°89) WUVD
4! 168L €9TELE L8TC ¢899 S19'612°L8 514 9£6'979° 18 8TLOV9'L8 9€6'0F9'I8 SONINVD
Ve L¥°0L 8E'66V' VT PE'ST LLL8 LGPTI8'8 0LT 919°z8 GP9'LGG'88 TTITSS (s) vDS
4! 16°8L €9VELE L8TC G899 SY9'61C°L8 i1 4 9£6'979° 18 8ZLOV9'L8 9E6'0F9'I8 (s) DIT-SHLVITIV
29 9€'8L 0574 18°1¢ ¥4'L9 LLTVSET 60T €LV'8¢ CIE°69C T8 €LLOVT Io[quIosseIdN
29 €G'8L 1674 6L €0'89 970°€99'T 01T 6V7°6¢ CEV'OIV TR €LLOVT SONINVD
8 881 LT°6L £€8'8C 50%c €91 0927€9'T 91¢ 629°01 6VS 168651 €LL°0VT YVD
88 Sr61 101 68°69 000 L9CT 19°L8 €L6'6¥C L0T L1ee LOS'T6V'GL 0SE°0€ () vos
29 TLLLT 001 8V'8L 0974 6,715 1719 LLTRE'T 60T 65€'8¢ 20L9TP' P8 €LL°0VT (®) DT-SHIVATIV
(dq opG'6E L0T 221s awouas) #J auiosowonys ‘suaidns OuLOf]
z8 L0 10T 19°86 68°698°6T S0'S 6€°9 0€6°56 L qLee €89°90L°G 0,61 04407
76 2TL'8T6 10T LT°66 L8776 88°9 <09 96 TS <t TLI'TOT'E €F0'809'F 0€ I[qUUAsSeIdN
c6 128°826 0T 9266 68°€8¢ET 189 09 100°967'¥ 9T VEE'TOT'E G8T'ESLT PEETOT'E € XIN
16 G70°626 10T 6276 866LY 1878 i TV 1LEY a5 6VLT6T'E TIPILET 6VLT6T'E T (8107508) WU VD
14 67T €L 69T L2798 08°090°9T 0F'L 76 GER'GLT'S 1L 9Tr'reT 129°069°9 LG6'8€T <9 (3957810) WUVD
G6 128°826 10T 9266 T L9Y 8L°9 6T°9 TTET'Y S PEE'TOT'E L9G'609'F yee'eer'e 1€ SONINVD
L1 VN [4aas 281 8¢°6 r'e 200°22% 14 6ES'ETT ¥L9°120°T 2T6'SV1 (1] VSID
LL G69°LT 90T L2706 ToL 98¢ V9.1 € S0T' Ty L8€'82E°G 9GL8VT 8021 (s) VDS
G6 128°826 10T 7366 6.9 16°¢ 1L8LVV'Y 8 PEE'TOI'E €9L°809'F VEETOT'E €€ (s) DT-SHLVATIV
c6 G6T'LE 10T 6266 9% 96°9 206°G1C 8 TIeLe FPE9657 GTEG0T 162 OYy0Z
c6 LSV'TY 00T GG66 LUy 199 9£9'80¥ 0t GSTTy 0T0°L85F L97°90T 002 ID[qUUSSSBIDN
c6 L8V'TY 10T 3366 08'% 99°9 STGT9V a8 GST'Ty L6¥'565F L97°90T a0z XIN
T6 L8V'TY 00T 3366 6LC Ly 199 9€9'80F 0t asr'ey 8GT'88GF L97°901 102 SONINVD
62 L8V'TY 16T GE66 L1 6L TL9 €620V at 16701 F0L°0€L°8 L97°90T1 8TET vvD
a8 298 LT 00T L9'T6 18°C 6LF 199 GLT'ELE 0t 67S'1E TTR'6ECT L97°90T €E€T VSID
LL 08¢¢% 00T 0L°06 000 Lr'e 0L°¢ iU 1 [1I844 TEV'SSTY 02568 €L1C () vos
a6 L8V'TY 00T 0366 6LC LLY €€9 S81'70V 0t ssv'ey PGE'L8SY L91°901 €02 (®) DT-SHIVATIV
(dq 090°¢09'y oz1s woual) $2p10420YdS L23IDGOPOYY
L8 89L0T 00T €L°L6 117898 0L°0 90T 0 0 16€°01 26E91T'E 6228V 65 04407z
96 FOP'080°T 00°T 1L°86 35609 6l 65°¢ 0 0 €60'T60°'T €78°6L8'T 619°GeV'T 11 19[UIISSLIDN.
96 919'280°T 00'T 98'86 16°6ve 16°C L6°¢ 0 0 TELT60'T TSV'6L8'T 68g'GeV’T 11 XIN
16 PL8Z80'T 00T 09°¢ 0 0 69G°GEV' T 990°20L°C 69G'GEV'T € (397308) VD
79 132162 16T 8¢°¢ P6L079T €1 £ST9VT 92€'65e'y G61°L99 61 (3057812) WVD
96 919°Z80'T 00°T 9886 L6°¢ 0 0 TELT60'T I8F'618°C 69G'GeV'T 11 SONINVD
g€ VN ST'T 69°8¢ 86°0 0 0 PES98C V129821 L1919V ¥ VSID
c8 6787ET T L1876 60T TT9eTT € Jraiiae S00°TS0°¢ PEC98C 66C (s) vDs
96 919'Z80'T_ 00'T 98'86 T6°Gve 162 L6°€ 0 0 TEL'T60'T TI8F'6.8'C 6eS'GEr'T 11 (s) DT-SHIVATIV
96 189°96 00T 0686 060 65°0 66T 0 0 L99°06 9PG€L8'T |8YEVeT 69 049407z
G6 07L'96 00T £8'86 09’1 €L0 28T 7€9°68 T 07L'96 08L°698°C 88V VET 64 IO[QUIDSSLIDN
G6 07L'96 00T £8'86 09’1 €L0 28T 968 T 07L96 T8G°698°C 88V VET 64 XIN
G6 07L'96 00T €886 09’1 €L0 28T 7€9°68 T 07496 T8G°698°C 88V VET 64 SONIAVD
92 072'96 G6'T 11°66 LL0 €L0 €91 $90°26 4 TET9T GE6'66S'S 887 7ET LE0T VVD
18 L8€°67 00T jdNg jaa! 8L°0 6T'¢ £00°0€ T 806°69 9EL'8EV'T 0TZ'80% <9 VSID
18 <007 00T 7776 000 70 0T T€7C T 8LI¥ ¥99'87.°C 0L8°9T 686 () vos
G6 072'96 00T £8'86 09’1 €L°0 L87T 7£9'68 T 072'96 T8G°698°C 88V 7ET 64 (®) DT-SHIVATIV
(dq 180°€06°z 971 dwouaSg) snaunv sn22000)fiydvig

(%) (dq) oryer (%) paoroo (#) (#) (#) (dq) m8uery (#) (dq) (dq) (dq) (#) qnduj 10 [00],
SOUOY) (GVHN uonjeordn dwouex) SN sjepul seypjewsy A[quiossesijy A[qUIOSSRSIN OGN ozIS jse81e] sSryuop

970U 9STMIST)O
sso[un ‘s1ojowrered jynejop Suisn uer aram s[ooy ‘sdqyy 00T Iod ore SN /S[EPUL/SOUDRUWSIW JO Ioquinu dYyj (SS1PU0D I0] are so13s1ye)s pajrodal [[e ‘sployeds Jo pasoduwod
ST A[quuasse o1} 1eY} S99eIIPUI (S) ‘s819U0D Jo pasodwod ST A[quiesse o1} 1LY} Se9eIIPUI () :$9j0N "serjquuesse jndur om) oY) 0} pareduwod A[quiesse pagiour Jo Ajrenb
uo syrodar ayqey) oy, ‘ydeid Suriys oy paredwoo ydeid ulmig ap oY) uo paseq siv[quasse Aq paonpoid serjquuesse SuiSiow uo synsal [eyuawWLIadXy Gy 9[qE],

147

oy A[quiosse £)duro ue poonpord (¢+(+(z+1)) 0490z
96 29€9%r 00'T €0°66 650 IS8T G801 1L5°L8 i4 T9€9F 8T0°L8]'C 6899ET 601 (¥ @imié OYyu0Z
96 97'er 001 10°66 Ge'0 61 LPOT 28%'L¢ i TOV'e C96'1S8'C TPV96 BIT (e+(z+1)) 0990Z
96 90089 00T v1°66 67’0 ¢TIz T6IL V6131 v 19€°0L TTP'C88'C 9£9°10G 1L (c+1) 09907
41 VN 00T 86°¢¥ 000 99T LLT1G 990°7T0°T 91 2ee91e LE9'0STT OIL'SIS GG 2+ +(E+1) XIN
4 VN 10T 167 000 IT'¢ ¥L'9C LOT'6T0°T L1 7Te9Te €I6T6C°T OILQIS 4T 9+ +5+1) XIN
a1 VN 00T 0ZvT L9 18T V61 0 0 16€°'69 ¢8¢'cIy L¥g'00c ¢l (g+ " +g+1) XIN
0¢g VN 00T 6261 96'T 680 GL'¢ 0 0 €I8°08 0T€09¢ L¥C'00C 8T (r+e+e+1) XIN
0¢g VN 00T 8L'8T 20 LE0 98¢ 0 0 €I808 P9EerS L¥E00C 9T (g+a+1) XIN
9g VN 00T 6€°92 0LT LT'T T8¢ 7£9°68 1 08299 ¥0T'99L L¥T00C €¢ (2+1) XIN
6 0£8'¢0z 10°T £6'86 Ge'0 98T 0L'GE CPLOS'T L F09'€9G 0LE'898°C 109°9SE 6T (L+(+(@+1))) wrquvsselpy
66 0€8°€0% 00'T £6'86 Ge'0 98T 0LTT GPLOFR'T L1 F09'€9% ¥L8'C98°C 109°99¢ 61 (9+(" +(g+1))) wIquvsselpy
66 6SG°67T 00T 72’86 800 FS'T 6661 G9T1°80C°T €1 FP9'O8T FCF'9S8'C T09°9SE 6T (¢+(+(g+1))) wrqudsselp]y
a6 6SG°6FT 00T 7586 80 ST 6661 116°L02°T €1 #9981 002°998'c 109°9S€ 6T (7+(e+(g+1))) w[quossesopy
66 6SG°6¥T 00T 72’86 800 PS'T 6661 116°L08'T €1 FP9'08T 00T'9¢8°C 109°9SE 6T (e+(g+1)) mrquuossed|y
6 8EV'6ET 00'T 65’86 800 VT 0£0% 768°960°T 41 008°CLT G06°CS8'C eg'Sle €€ (g+1) 1oquuossedy
91 L18°2ST L1°C €6°€Y P8V ¢lLT EIIE orv9CLT iz4 FP6'66c 00T'89L°C 6VS'OIE 6L L+ +(2+1)) WavD
6¢ VN 10°T qr'se 000 ¥T £€96¢ 15LF6L 0t G6LTGT 900°LTTT ©es'91e 11 (9+(" +(z+1))) WavD
f4d VN 10°T 7L 000 206 06T 18679 ¢ 926'G39 L86'FEY 9LG'GT9 © (e+(+(z+1))) WaVD
€C VN 10T VL1T ol 697 0T'FL G667€9 i4 G66'7E9 S667E9 C66TE9 T (F+(e+(a+1))) WavD
79 0gL'0ee 0€'T 11°€6 €0 o6'e 0811 dezdend 8 €9G°GT9 869PCCE 8eL'€E’ 9T (e+(2+1)) WYVD
g9 GG6'G8E 8T'T 8€'€6 600 69¢ €97 63L695'C L 299'G89 61S'697'E GEL'EE8 9T (+1) WYVD
96 G66°0TT 00'T 67’86 160 €61 170T L08°86S°T 61 66L89T 1S6T98°C €06°09& ¥ L+ +(@+1))) SONNYD
96 G660TT 00'T 67’86 160 €61 S50T 167986 T 81 T90'68T 888°T98C €06°09¢ G (9+(+(@+1))) SONNYD
96 186001 00T 72'86 160 €61 080T 026‘€9T°T LT 190661 108198 €06°09¢ 6F (¢+(+(@+1))) SONNYD
96 10128 00T 72'86 160 €61 080T OPFLLTT 61 6,706 0T8'T98'C €06°09¢ &S (p+(e+(2+1))) SODN'INYD
96 10128 00T 72'86 160 €61 080T OPFLLTT 61 6,706 0T8'T98'C €06°09¢ &S (e+(z+1)) SON'INYD
6 6€0°LL 00T 15'86 120 681 €805 GTL'918 61 8ET'E8 999°T98'C 6LLTSE LS (+1) SON'INYD

9y A[quiesse we sonpoid jou prq (z+1) VVD
L2 FPE6LT ST'T 8726 180 TLT GTLI €03°982°C 12 F0T'88% €66'760'C 66£'18S LT L+ +5+1) VSID
LL FPE6LT ST'T 9726 690 89C ITLI 60€°GLT'T 14 F03'88% 91S'T60'E 66£'18S LT 9+ +5+1) VSID
18 628671 60'T 6€°06 €T L8T 9C¢ 329°9L6 8 TLTLT CIL'698°C 980°068 TG (G+ " +5+1) VSID
€8 8EV'6ET 80T €726 ST 91T 089 GEL'00T T 0t 8EV6ET GEG'R6]'C 68V'T8E 4T (P+e+2+1) VSID
78 8EV'6ET 80T €726 [WA A 4] 9e7' 9011 6 8EV'6ET 105'888°C T0V'¥8€ 9% (g+2+1) VSIO
€6 GgIL0T 0L 1L°L6 LT 60T SV6 G98°L88 L GEIL0T 069106 0S8°08F 1€ (+1) VSID
8. 8616z 6¢'T 1316 6L°L 980 6€¢l 66€°CT G $80°Ge SPT'I1€9'€ 6V0'GCT LiG (ss4gv) L wmdug
96 $6L°0ST 10°T GG'86 200 SV 00°€C G06°L80'C 1€ FRI°88C TEF'L68'C OIL'8IG 0L (0r0uepgyQs) 9 ynduy
16 6V19F 00'T €L°L6 000 69T 16°€1 6LE78C 6 T6LTS 980°Le8'C VIT69T 8Tl GE@C nduy
8 G00% 00T V6 000 TIT0 0T 1675 1 8LTY 799'8VL°C 0L8°9T 486 Ds) ¥ mdug
66 26109 00T 99°L6 Ge'0 969 IV 1176 1 T61°0S €59°'Ce8'C 08881 901 @@Dm_imvfiﬁ
96 0vL'96 00T £8'86 06T €L0 L9T 7€9°68 1 07L'96 18S'698°C 88F'7EC 6% (DT-SHLVATTVY) g yndug
6 890'GS 00T L1°86 000 28T L9°0¢C €LT'TV9 0% TS1°6S TET098'C 8EV6ET 68 (VvO-¥SI) 1 mdug
(%) (dq) oryer (%) pomaod (#) (#) (#) (dq) wySuoy (#) (dq) (dq) (dq) (#) juduy 10 (00,
seuer) (GYHN uonedrdng ewousr) SN S[EPU] Soypjewisi[y A[qUIdsSesT]\ A[qUIOSSeSI[N (OGN 9ZIS 15981RT SS1IU0)) TUOTFRI[IOU0DIY

¢ A[quiesse 0} paSIowl ULy}
sem UOIYM JO J[NSaI oY) ‘)SIY PoSIowr olom g pue [A[quiasse jey) sueowl ¢+(g+1) ‘pojou asimIayjo sso[un ‘siojourered jnejop Sursn uel arom s[ooy ‘sdqyy Q1 1od
aIe SN /S[@PUI/SOYDIBWSIW JO IoqUUNU o1} ‘SSIJU0D 10] dIe so19s1pe)s pajiodal [[e :s9joN ‘serjquuasse jndur omy a1} 09 paredurod A[qussse padiowt Jo Ajenb uo sjprodax
o[qe) oy T, *(dq 180°C06‘C :0%ZIs owoUaS ‘smaUnp sM00000)fiydnig) 91008 dAINY] oY) A POIOPIO SSI[(UIOSS'® OM) URT} dI0W SUISIOW UO SHNSAI [ejuowLIodxy 9y 9[qR],

148

o[y Afquuesse Ajduwe we poonporg +Am+3vv OYYM0Z
68 6967 €0'T 1166 180 LLG 6T £81'86 o1 698'Tc 98€'9TLT TLV'SS 06€ (g+(+(@+1))) ONH0Z
06 6IL'8T 20T LL°26 90 8¢ T80T 186128 €1 €96'9T TTL'GLE'T 68G°GOT 10 (F+(e+(2+1))) ONHOZ
€6 9L¥'Gr 10°T 09°66 02T 18¢ SGTe 3€0°LLG 91 CEOTP LSPLVOT 6S6TIT L6T (e+(z+1)) 0w¥0Z
€6 0£9'€y 10°1 2566 ST I8¢ 19°1¢ 65E°LLT 98 6982V 209°LV9'V 61106 ©0T (¢+1) 094907
6¢ VN 001 790 000 8I'% S9°1¢ 88T TSI € GT0'CIT GR]'OLRT GRG'9LE OF (8+(+(z+1))) XIN
8¢ VN 001 07°6¢ 000 ¥6L 68°1¢ GPT9LT i GT0'CIT 868°CI8T G8C‘9LE ¥F L+ +HE+1))) XIN
ve VN 00'T 10°6¢ 000 618 GETe SPT'9LT iz I89'TET FoF'EI9T C8C'9Le €F (9+(+(z+1))) XIIN
98 VN 00T 19728 000 86'L OT'ST SPT'9LT i GT0'GIT CT0°LGLT G8G'9LE 8€ (6+(+(+1))) XIIN
i VN 00T veer 000 6T'¢ FTG 697°1€ 14 86T°66 60£°€80°C 067°L9T 6 (F+(e+(E+1))) XIN
6 80V'8T 00°T 6219 18 ST LEL 066°98% L GT6'TP PI0°€T8'T L9P90T €€T (e+(z+1)) XIN
79 09606 00°T 2799 68z V0S¢ 0T'L 066985 L GT6'TP L8V'650°C L9¥°90T 0T (2+1) XIN
68 6VTL9 00T 96°66 30 669 LGTT 89%°¢9¢C 1 SPSPL BELLIET LOS'ETC V6 (8+("+ (g+1))) wquusssedy
68 6VTL9 00T 84°¢6 20 659 95TT 89%°¢9¢C 1 SPSPL LOS'SIET 90F'EIC V6 (2+(" +(2+1))) wquessedy
68 6VTL9 00T 86°€6 2€0 639 93TT 89%°¢9¢ 11 SPEFL L0G'SIET 90V'EIE T6 (9+(" +(z+1))) wquessedy
68 6V1L9 00T 86°€6 2€0 639 93TT 89%°¢9¢ 11 SPEFL L0G'SIET 90V'EIE T6 (¢+(" +(z+1))) wquuossedy
88 69827 00'T G0°€6 €60 0LG 69CC 092961 01 Ge8'eS ¥E9'T6cy 621106 68T (p+(e+(e+1))) wrquosseiopy
88 SIF'eF 00T [AK4 €60 99¢ 00°€T 092961 01 686'0 1709657 65110z SFI (e+(g+T1)) Torquosseloly
16 11687 00'T 6596 950 09G I€7% L9158 71 686°0S 788'9%F'F 6TI'10¢ 8ST (g+1) worquidsseloy
I VN 70T €71 Tee €39 9T6 T00°T61 [4 T00'T6T 816289 €¥8'Tee 9 (e+(+1)) WwavD
98 6EST0T 20T ¢8°06 8T'T TI¥L €€0T TLETGL 43 L90°0TT L69'0EET ¥9T°L8C €9 (G+1) WavD
06 868°cL 10'T 0796 810 oI'L 9I7% L06°06€ 1G 0LS'T8 096'TLF'F 0c1'T0¢ T€T (8+(" +(&+1))) SONINVD
06 625LL 10T 0796 810 oI'L L0T% 890°G9¢ 1C 0L8'T8 LS6'ILV'Y 0GI'T0C o€l (L+(+(E+1))) SONTINYD
06 625'LL 10T 6€°96 810 FI'L L0T% 890°G9¢ 12 0L6'T8 €S9'ILF'V 0GI'T0C o€l (9+(+(2+1))) SONTINVD
16 wh'eL 10T 9€°96 810 90, LV'€e LET'STE 12 SPSPL 998°0LFT 0T110T Gel (e+(+(2+1))) SONTINVD
16 69827 10°T 9€°96 810 ¢S99 I€€C 360°c1E 12 21967 €60°0LFF 021106 LLT (p+(e+(2+1))) SONINVD
06 a8 Ty 1071 L3796 80 ¥9'9 LG'€T 029992 02 Z19'6F GIL'99FF 021‘10¢ &ST (e+(z+1)) SONTINVD
16 2e8 Ty 101 1396 810 ¥9'9 €E'€e 029992 0% C19'6F LG8'09F‘F 021‘T0G LST (6+1) SONTINVD

9y Ajquuesse ue sonpoad jou pi (z+1) VVD
89 60S7ST 1E'T 96'68 0€°0 ¢LO0T 8¥'ee LTV’ 1 81 60SFST T6T1°600°G L9G°LLE 8€ ’ ¢+1))) VSID
89 60S7ST 18T G668 00 TLOT 8¥'ce LTE87eT' 1 81 60SFST PLP'00°G 8¢ ¢+1))) VSID
89 LLVTET 18T G668 00 TLOT 8¥'ce Jréagaan 8T LLVTST 68€'800°G 8¢ ¢+1))) VSIO
L9 LLFPCT €51 66°68 080 €901 89TE LTTVEE T 8T LLFPST 6LETLO'C 6¢ 2+1))) VSID
€L 605701 ST'T 1€726 960 8GL 89°6T 00T°88¢ 91 PSPL6 1982667 89 2+1))) VSID
68 68€'8F G0'T £€°L6 €LT SFS TLTT 816807 91 688°0¢ 188°LL9F L¥T (e+(2+1)) VSIO
06 68927 €0'T 69°26 80c GS'S 0STL 166663 01 36'8F I89'E19‘F 8.1 (c+1) VSID
9L €08 [481 aLe6 °€T ¥8G 9LTT 812998 g 296 69,0687 60ST (ssdgy) g mduy
8L 0822 00'T 0L°06 000 LFz 0L¢ STOF T 0£ST TEV'SSTY €L1C (vos) L mduy
26 6€F'CT 00T 7696 000 907 898 175 el 9 €€0°9T CTT'0LF'T 87 (10a10A) 9 dug
6 €19°62T 10°T TL'86 000 196 8C'T% €9T°€€9 1T 189'TET 0VE'69ST s (orouopgyQg) ¢ mdug
06 861°€6 00T 6876 000 ¥8¢ &8¢ LTV'ETT i T€E°L6 LGE'69ET 0L1 (esnamve) ¥ mdug
18 9L0°6T 00T 16°'16 000 87 L0°6T 686'9L A 0T £99°9€T°T STE (bogvp) ¢ mdug
€6 LSV'TV 00°T 0866 6LC LLV €€9 G8T'TOV 01 GGV'Ty PSE'LSST L9P90T €0C (OT-SHLYATTV) ¢ mduy
68 965’1 10°T 7196 000 067 €r'ee 064161 81 GLG'ET GS6'SSHT 9gLe8 LLE (VO-4SIV) T yndug
(%) (dq) oyer (%) pownod (#) (#) (#) (dq) w3Buwor (#) (dq) (dq) (dq) (#) juduf 10 00,
souar) (GYHN uoneordn(ouwousr) SN S[EPU] SOUDIRWSI[\ A[qUIOSSBSIJN A[qUIOSSeSIN (OGN 971§ 1se8re] s8nuop UOIYRI[[OU0INY

¢ A[quiesse 0} PoSIowr USY} Sem UDIYM JO J[NSOI oY) ‘ISIg
poSiowr orom g pue [A[quesse jey) sueow g¢+(g+71) ‘Pajou osimIoylo ssoun ‘siojourered jnejop Suisn uel orom s[oo} ‘sdqy 00T Iod oxe sN/s[opur/soydjewr
-SIW JO Ioquunu oy} (STI1JU0D I0J oIe soIIsije)s porrodal [[e :s9jON “seljquuesse indul om) o9y} 03 paredwod A[jquiesse paSiowr jo Ajenb uo sjrodar a[qe} oy,
"(dq 090°€09‘Y 9z1s owouas ‘s9p10.42DYds 4270DQOPOYY) 91008 SAIMYY] oY) £q poIopio (sS11U0D) soI[quIesse om) Ue() dI0owl SUISIOW U0 SYNsod [ejuswilodxy @)y 9[qR],

149

18 662's¢ 00T 98°LL 000 182 VT 10T 1€6°G59°¢ 98 60187 6EI'LS8'E8 T06'96C £€8G @i.: (2+1)))we[quuesseja]y
Xe 662GE 00T 68°LL 000 182 LTT0T 1€6°G59°E 98 6218V €LL'616'€8 T06'96C 678G L+ +(g+1)))wrquuvssedy
18 662's¢ 00T 68°LL 000 T8¢ LTT0T 1€6°G59°C 98 60187 €LL'616'€8 T06'96T 678G (9+(" " +(g+1))) Trquiesseja]y
65 90g'se 00'T 78°6L 000 2T€c VOTO0T $eeioTLe 90T 08L°9F 866'CE0°98 T06'96T 90TE (e+(+(g+1)))wrquuvssedy
65 6£5'se 00T T8°6L 000 2g'€c FOTOT 8GT'L89‘C coT 08L'9F 880°CE0°98 F0696% LOTE Qi “+H(g+1)))1quuIessedpy
65 6£g'se 00°T T8°6L 000 2T€c VOTO0T 8GT‘L89‘C coT 08L°9F 880°GE0°98 T06'96T LOTE €+(g+1)) wiquessedy
6¢ 66S°6E 00T 18°6L 000 ¥5'€¢ GI'T0T 78€'669°'¢ 20T 08L°9¥ 6¥I1'¢6098 T06'96C SVIE (g+1) TorquIossesdy
i VN qLe 600 000 SF6S TEGLT 81T'€T z 6VE'T9 875'8GE 6¥€'19 0T (8+(+(g+1))) WUVD
1 VN 00T 60°0 000 TOFF 0LOFT 809°TT 1 OVET9 6£5G6 oFET9 ¥ L+ +(2+1))) IWIVD
1 VN 00T 60°0 000 T0F¥F C9GFT 809°'TT 1 9eE'T9 GES'GH 9¢8'19 ¥ (9+(" +(z+1))) WHVD
1 VN 00T L¥°0 9¢'¢ TF0S L8'TET 6£7SEE 4 82G‘COT TLT'90G 826‘69z ¢ @i..imi)) WHVD
T VN 00T G50 8T'G 8L6c €10zl 016°CL 1 6€C'GPT TST'L8S QTLFIT 9 (F+(e+(g+1))) WaVD
4 VN c0'T €6°0 vLe 81°CG 89'8L 179°60G 4 GGO'PPT 6LI'GVO'T SOLF9Z 1T (e+(2+1)) WUVD
oF gLe'e8 80'T 86°8L 18T L6'LC SV'L6 061'908°GT 297 €E9'F0T TE6'TE6°T6 868°CL9 8TST (g+1) WavVD
v 89609 ¢0'T 9¢°6L 7L 81°Sc 98°10T 679°068°0¢ LL8 CIT'T6 8€9°9LT'L8 8TIOTSY GPLT (8+(+(@+1))) SODNTNVD
Ly ¥8I‘T9 20T 8G°6L OF'L 897 08101 12T°0LL°0C 68G 6SC'T6 GEO'LFI‘L8 STOFSY TELT (L+(+(2+1))) SONTNYD
Lv €79'T9 20T L8762 vL €97 167101 608°685°0¢ 16¢ €CC'T6 L6G'CST'L8 8TOT8Y GELT (9+(+(z+1))) SONTIVD
Ly €609 T0'T T9°6L oF'L 19V ET0T are'ocroz 029 86T°06 GST'9£T'L8 STO‘FSF GGLT (6+(" +(z+1))) SONTNYD
v 67509 ¢0'T 29°6L 9L S¥¥e 6001 6.5°87L0¢ 159 G0L'68 GTG'€9C'L8 8TOT8Y GILT (F+(e+(2+1))) SONTIVD
0 29299 00°T 7008 008 0T¥Z G086 815'69¢‘S erT 076'08 GTF'LET'98 TTY'€SF LOST (e+(z+1)) SONINVD
0% 9L579 00T ¥0°08 66'L L0FC 1816 €75 LE0°S 48! 088°G8 gIT'8V0'98 ©c9'esy 868l (+1) SONINVD

o[y Ajquuesse we oonpoid jou prq (z+1) VVD
8 08GT 00T €€°99 000 T¥Ic 1S70T 016°209 €0 L80€ GIC'GLG'0L TL8'LT TF8'CE (19a2A) 8 dug
68 aF6T 10T 68°69 000 L1821 1S.L8 €L6'67C 10T L1€€ L0S‘T6FCL 0506 C69°'€E (vDS) L mduy
29 812¢ 10T 2929 100 81°¢¢ €¢¥0T G9C'11C'cT €L6C 0058 9T0FIR'L9 L999EL 96E'CT (snawve) 9 mdug
€8 1Tv€ z0'T 127L 000 99Fc L80%C TTL'685°9 8€0¢ 0L¥S PRI'GSP IS GT6'€S T0'Ga (VO-4SIN) ¢ mdug
79 GeI8 601 08°LL 200 9TVe VETST 69LCTL'EY 629 6LT°9T PEL'B6E06 ¥6V'LPT 830'CT (0r0m0pdyQS) ¥ 1dug
78 6T€T 10°T 7S 19 €T 026 SP¥S PPE'8el jzé zsTE OFT'FL0'L9 €50°0€ 090°TE (ss4qv) ¢ mdug
€9 TLLlT 00T A 09%¢ 6L1¢ TLL9 LLTV8ET 601 658 TOT'OTF'PS €LL0VT 69FF (OT-SHLVATIV) ¢ mduy
65 6£5°6e 00T 76°6. 000 6%€c &ST10T 97£'769'¢ 80T 669'9F 616'681'98 706963 €£TE (pogvp) 1 mdug
(%) (dq) oryer (%) potonoo (#) (#) (#) (dq) g3sue (#) (dq) (dq) (dq) (#) mdug 10 1007,
SoURY) (GYHN uwoneordn(euwousr) SN SPpu] soydjewsI[N A[qUIOSSesI[y A[qUIOSSesI[N (OGN 971§ 1se8re] sSrpuo)) UOIIRI[IOU0IIY

¢ A[quiesse 0} pa3Iawl ULy}
sem UOIYM JO J[NSaI oY) ‘)SIY PoSIow olom g pue [A[quiasse ey} sueowl ¢+ (g+1) ‘pojou asimIayjo sso[un ‘siojourered jnejop Suisn uel arom s[ooy ‘sdqyf Q1 1od
aIe SN[/S[PUl/SaYDJeWSIW JO IDqUINU 9Y) ‘SS1U0D I0] oI SO1YsIpe)s pajiodol [:sejoN ‘serjquuesse ndur omy oY) 03 paredwod A[qurasse pagiouwr Jo Ajrpenb uo syrodax
a[qel oy T, "(dq O¥S‘67E LOT 921s owouad ‘¥ ruyo bFr) 9100s dAIN)Y] 92 Aq poIoplo (sS19U00) soI[quIasse Om) ey} aIow JurSIoW U0 s3NSal [RyuowliodXy :8'Y 9[qR],

150

06 vELT9 80'T V1°66 LLTL6R 9L'E 9€'9C GG6°07S 1% 9077 GOV'RCT'E 89LCIC GLE (9+(" +(z+1))) OHNHOZ
€6 eVITY €01 8786 SUIeH6 ¥6e IT€l VIPL 9 698'9€¢ TEL'6VE'E 0TLThT LT (¢+(-+(z+1))) OHHOZ
98 GO0‘TT 20T £4°L6 087686 F6T 65T 1111 i 82001 GT0'96T'E 635'8F 66 (r+(e+(c+1))) 0990z
€6 66L°L€ 201 95°86 eUTvel €L ST9 760°69 L 6GL°L€ LE'8G6'C LEVOPT 08T (e+(e+1)) 09¥OZ
26 820°09 701 £6°86 £S06F 99 1L 916°'Ge 4 [4X P€C'666'c V6E'8LT VTl (¢+1) 0¥¥0Z
oS 96g'e6e LT 16'96 LRETL 19 89'6T 1250907 0¢ T€9°0VL'C Geg'0CT'y 1€S°0VL'C 0T (L++e+1) XIN
18 89G°LL0'T 0V 19°86 PET6S 19F LLPT 268'668'9 6 66C°9P8‘C TLI'RGR9 66G'9V8'E 8 (94 +z+1) XIN
L8 89G°LL0°T 0F'C 99°86 PST6S 89T 6SVI T16'6SR'9 L8 6CETIRE TEC'9G8'9 6GETIRE 8 (g+ " +e+1) XIN
LS 6EP'LLOT 8ET 99'86 0TL6S 19F% LLPI 096°G6L°9 9g 6SETFR'E 08C'86L9 6SETH 8 (F+e+a+1) XIN
6 6E7°LL0T 98T 99°86 €e86F 19F OLVI 729°089°9 99 6CETHRE 9TIThL'9 6GEFIRE 8 (e+g+1) XIN
69 6EV°LLO'T 86T 09'86 8I'SEE 16'€ I87I 298°964'S 24 6SETPR'E 6.8°899°C 6SETIRE 8 (e+1) XIN
96 oI8'L8c 10T 71°86 ¥9€8¢ 1TV ¥EIC 0V0'SVL'T 18 LGGTIV'G €L8°698'C LSSTIVE ¢ (L+(" +(g+1)))o1quuosseloy
96 69875¢ 10T £1'86 ve'e’e 1TV PETC VR LVL'T 8¢ TLETIV'G T6T'T98C TLECTY g (9+("*+(g+1)))wIqudsseropy
96 Geeree 101 01°86 €¢Iy L0F LO'TT VL9'LVL'C 8¢ 161217 [10798°C 161°CIF'C ¢ (g+("+(g+1)))wrqudsseipn
96 GeTvse 10T 8086 07'8ey ¥V €6°0T 0LLLVL'T 8¢ 692°CTV'e €IT'798C 695°0IV'e ¢ (P+(e+(g+1)))To1quussseso]y
96 y0e'vse 10T L1°86 €8'92¢ ¥OV CI'IT 299°LVLT i 006‘TT¥'C 8¥8‘€98'C 006'TT¥'C ¢ (e+(z+1))w01quuassepy
96 P0EFee 101 61°86 GL9ze 0% 651G 29G'LVLG 17 006°T17'c PSCF98°C 006°T1F'G 9 aivszaﬁmﬁaz
91 L18G¢T LTG £6°ey 78T Tl eTIE TITi9CLT %4 PP6'66T 00T°89LC 67S9TE 6L L+ +(@+1))) Wavo
6¢ VN 10T qI'8e 000 Ve o €9°6C 1EL V6L 0t G6LTST 900°LTIT'T ges'ote 11 (9+(+(z+1))) WavoD
ted VN 10T VL1G 000 L0°¢ 06°L1 L867€9 € 926°G59 L86'FEY 9.6'6E9 T (g+(" +(z+1))) WavD
€ VN 01 VL1 (48 657 OLFL G66'7€9 i4 G66'7€9 S66'TE9 G66'PE9 T (F+(e+(e+1))) Wavo
79 0zL'0ee 0€'T 11°¢6 €20 o6'¢ 08T i 8 €96°639 869'FSCE 8eL'eE’ 9T (e+(z+1)) WavD
g9 696'Gee 8C'T 8666 600 69¢ €971 6CL655°C L 299'609 6IS69V'E TEL'EER 9T (6+1) WUVD
96 02006 10°T €786 9¢°09¢ 6L’ 06°0T 0£2'908°C 6% PI6TIV'G SOV 1L8C FIETIVG €1 Z+1)))SONNYD
96 0g0'05c 10°T €386 9¢°09¢ GL'€ 060 0€2°908°C 67 VI6TIV'G SOV'1L8C PIGTIVG €1 Z+1)))SHONINVD
96 020°06¢ 10°T €286 9¢°09¢ GL'E€ 06°0% 0€2'908°C 67 VI6TIV'G SOV 1.8C VIETIVE €1 ZH1)))SHNTINYD
96 02006 T10°T £2°86 9¢°09¢ 6L 0603 0£2'908°C 6% PI6TIVG SOP'1L8C PIETIVG €1 (¥ ? Z+1)))SONINYD
96 0z0'05c 10°T €386 99°09¢ GL'€ 060 0€2°908°C 6 FI6TIV'G SOV'1L8'C PIGTIVG €1 (6+(2+1))SONTINVD
96 0%0'06_ 10°T £2°86 96°09¢ GL'E 060T 0£3'908'G 67 FI6TIP'G SOV 1.8C FI6'TIVG €1 (Z+DSONINYD

o[y Ajquuesse we sonpoad jou piq (z+1) VVD
79 020'06 ST'1 7628 VEO8IC 9T'E 97°CC VI6'TIV'S €€ VI6TIV'G 69L°600°€ VI6'TIV'E G L+ +2+1) VSID
79 0g0'05c ST'T 7628 VE'98TE 9T'€ 93°CT VI6TTV'T €€ FI6'TIV'G 6GL°G00°€ PIG'TIVEG ¢ (9+""+z+1) VSIO
79 0g0'0%c ST'T 7628 VE'98IC 9T°€ 97°CT PI6‘TIV'C €€ FI6TIV'C 6GL°G00°C PIGTIVE ¢ (¢+"+2+1) VSID
79 020'06 So'1 7628 PE98IC 91't 9%°CC VI6' TIPS et PI6TIPG 66L'600°C FI6TIVG & (p+e+z+1) VSID
96 0z0'05c 00'T 2066 80°€8¢ 6L'€ CLOT €L9°998°C Ly €ET96LT TPO'TS8'C €ET'O6L'T VI (e+5+1) VSIO
96 020'06¢ 00°T 6586 €6'808 IL'E€ 180T 09€°268'C Ly FI6TIF'G 920°G98°C FIG'TIF'C 0L (e+1) VSID
1L €0LTE 0e'T 74'L6 L6'02ST 60T 25Tl T06°8LT ot G69°L% €0L°T69°¢ TOT'0ET 90T (ss4gy) 2 mdug
96 GL8'TLT 10T G986 1€L9T 9L €8T 9GL]VE'T e 86G‘TEE L96'C06'C OTL'8IG 79 (onouapgyOS) 9 mdug
96 668FT 10T 06°L6 LT819 T6'T /LI 6L0°816°C 8¢ €ee'T9L €88'098°C 8IL686 9% (10a9A) ¢ mduy
8 678FET 11T 1876 7L'T986 LVIT 60T TT9'ETT € TCV'6¥T G00'TS0'E ¥ES'98C 66T (vDS) ¥ mdur
96 1€6'6L9 10°T oL L6 130201 98°L SPL €8G'789°C 9 T6L'E80'T GIF'TI8T €65°9THT 91 (esnamve) ¢ mdug
96 919°280°T 00°T 98'86 1eere 1¢T L6€ 0 0 TELT60'T 187618 6SG'GEF'T 11 (DT-SHIVATIV) ¢ mdug
96 0z0'0%¢ 10'T £2'86 99°09¢ GL'€ 060% 0€2°908°C 67 FI6 TIPS SOP'1.8'C FIGTIVE €1 (vD-us) 1 mdug
(%) (dq) oryer (%) patonco (#) G (3 (dq) mBuey (#) (dq) (dq) (dq) () juduy 10 [00f,
SOUDY) (IGYVON uorjeordn(] — owWIOUdK) SN S[PpU] SOYDJRWISI] A[qUIdSSBSI[N A[qUIOSSBSI[N (CN 71§)so8rer s31yuo)) TUOTYRI[IOUODY]

¢ A[quiesse 0] po3Iow USY) SeM [OIYm JO J Nsal
oY) ‘98I poSIoul olom g pue | A[qUISSSE 1RY) sueow ¢+ (g+1) ‘PoIou asimIay)o sso[un ‘siojourered jnejop 3uisn uel a1om s[ool fsdqyf QT Iod are sN/s[opur/soyojewr
-STW JO I9qUUINU oY) ‘SP[OJeIs I0J ole sdIjs1je)s pojrodel [[e :s9joN ‘soljquiosse jndul omy oyg o} pareduod Ajquiesse pediowr jo Ajenb uo sjproder o[qe) oY,
(dq 180°'c06°g 971s owoULS ‘smaUny sN22020)fiydn1g) 91008 oA 9 AQ POI9PIO (SPIOJELIS) SAI[UISSS'® OM]) URY) 910U SUISIOW UO $3NSAI [RIuewlIodXy 6y 9[qR],

151

08 106 701 16°L6 99°LLLTG €09 9070 6L0°TH1 A cele 688°6L6'C PE6LY 2088
06 118'9¢ 70T 0886 L9688 €001 €T'1% Ge'LET 61 1€2°9¢ TLGF06'F 089'8ST €67
88 9€L'ST 70T 0686 ore9ee LS8 80°GC 160258 1% T70°8T GESTIRT 019’88 6cS
88 6LG°LT F0'T 8€'L6 €6'€15C 66 CI'8L 690°99¢ 9 160°LT TGT°CEL'T 088°06 £7e
26 18909 €01 92°66 €8702T OU'IT ¥6'2% c01'sah 91 22539 LIF09LY 2IH'6S1 60
26 68709 201 1866 9€°898 L9TT LE6T 988°'18C 43 77509 VEC'60LT TLI'ELT ¥4 (+1) 0¥¥0Z
9 16€'80%°'T 8¢'C 78'86 69°'T68T 189 GL0T 1LET1T6 9L LETCLG'9 OLT'GPE'0T LET'GLE9 1€ (8+ " +z+1) XIN
8¢ 16€'80¢'T 8G'C 09°L6 00¢E0T 899 TI'0T €LT181°6 09 LTT'GLE'9 T60°0VT 0T LTG'GLS9 LT L+ +2+1) XIN
6 16£°80¢'T 92°C ov'L6 [gera] 799 1661 TLT'00T'6 9 LTE'GLE'9 SIL'6TTOT LTG'GLS'9 7T 9+ "+2+1) XIN
0L 16€80C°'T ¢1'C 12°L6 €L°129 W9 €661 9€2°061°6 tid LETCLS'9 9GF'667'6 L8T'GLE9 0T (g+ " +z+1) XIN
oL POSEPP T 08 05°L6 6699S ce9 Te0T G00peecl g PST'RELOT 6FC'9LG'GT PST'RELOT 91 (r+e+2+1) XIN
8L POSEPP T L9T 26°96 G089 PT9 PR6L GTG'ce’' I L PST'REL0T T8F'988‘TT PST'REL'OT €1 (e+2+1) XIN
16 TESETT'T GG 1T°0SS 78G €€TI TGLTEE 1T 9P 7GT8EL0T 0SEFCE'TT FST'8EL0T LT (+1) XIN
06 980°TFG 10T 16878 6ol 8E'SI 765°929°¢ LT 869°CL6'C PIFPPET 869°€L6'C 11 (8+(" " +(g+1)))wiquvsseiopy
06 980°TFS 10T 16°678 L6°TT T€'8T 790°289'¢ 61 EPOVL6'C €SSGPET €P0PL6'C TT (L+(" +(g+1)))wIqussseidpy
06 WIers 101 95°€6 01°88¢ OT'TT L97LT €80°L29'¢ 61 SPIFL6'C CGO'GPET EPITL6T TT (9+(" " +(z+1)))wIquissseidy
06 Wiehe 101 95°66 £L°685 LTI L9°LT TIT°L29'E 61 TLI'PL6'C €89'GPET TLI'FL6C 1T (e+("+(g+1)))wiqussselopy
68 QIE‘GhS 10°T T566 97°86% 9Tl &E'8T 166°019°€ 81 L8C'CL6'G PLV'6CET L8T'GL6'C 1T (p+(g+(g+1)))wrqusseropy
68 8IETVE 10T €2°€6 L€°864 9T'TT TE'8T 165°019°¢ 8T 18C'GL6'C 680°0€EV L8G'GL6'C TT (6+2+1)w0[quuesseidy
6 8I€CYS 10T £9°96 78'€29 601 SV61 709°'L9L°€ 4 L8C'CL6'T 906'G8F'F L8G'GL6'T 8T (g+1)01quosseio
! VN 701 1€%1 23 €89 936 100°T61 4 100°T61 815289 £V8°33e 9 (e+(@+1)) WuvD
98 6€S V0T 20T ¢8°06 8T'T WL €€l 41 L90°0TT L69°08E'V F9T'L8T €9 (g+1) WHVD
6 6cv'ges 10T 7296 GL'GTL FCIT €961 Gee'gIL'e 62 F0G'GL6'T €LL'GEV'T F0G'GL6'T € (8+("+(z+1)))SONINYD
26 6er'ees 10T 2296 GL'CTL VZIl €961 6T q9L'E 62 POG'GL6'C €LL'GOVT POG'GL6'G & (L+(" +(2+1)))SONTINVD
26 1071 3596 GL'GTL VCIT €561 GET'G9L'E 62 POS'GL6'C €LL'G6VT POS'GL6'T gE (9+(" +(2+1)))SONINVD
26 071 3596 GL°GTL PCIT €561 G G9L'E 62 F0G'GL6'C €LLG6FT FOS'GL6T GE (¢+(+(z+1)))SONTINVD
26 65v'ges 10T 2296 €L°62L 1T 9761 Gee'gIL'e 6¢ F0G'GL6'T G88'GET'T F0G'GL6'C 9€ (F+(e+(e+1)))SONINVD
26 6Sh'Ges 10T 2596 9L°GTL 9¢° 1T 01°0% GeTigoL'e 62 POS'GL6'C 9TL'G6VT POS'GL6'E 98 (e+2+T)SONINVD
26 6S7'GeS T10°T 2396 9268 9¢'TT 01°08 GET'G9L'E 6 P0G'GL6'C 9TLG6V'V T0S'GL6'T 9% (Z+D)SONNYD
o[y A[quuesse ue sonpoid jou prq (z+1) vyVD
c9 GTe'G98 VTl 89°88 29°L6¢ oL €8 160 F81'F 1 610°6S6'c S0EPS0'C 610°€S6c & (“+2+1) VSIO
€9 c0T'698 VT'T 89'88 79°L6€ L8°L €08 €90'78T'Y €1 166'296'c PSO'PS0'S 166'T96'C ¢ (+2+1) VSIO
69 201°698 C'T 89'88 79°L6€ LEL €T8 €90 78T €1 166'096'c ¥90'7S0°S 166'TS6'C G (+g+1) VSIO
c9 201698 ¥T'l 89°88 L9°26€ oL €8 £20°9¥6'¢ A ¥88°CS6'C PTL'ES0'C P88‘TS6T ¢ (+2+1) VSID
c9 201698 VTl 89'88 L9°26€ oL €C8 £20°9¥6°¢ 4 788'CS6'c PEL'€S0'c ¥88'CS6T ¢ (p+e+e+1) VSID
g9 201698 C'T 89'88 L9°L6€ oL €8 £20°916'¢ 4 788°CG6'C ¥TL'€S0'G ¥88'CW6T & (e+5+1) VSIO
28 138'866 €1'1 6.6 256G 9z, 6001 02G‘818'F 0% PEETOI'E €T8'TI6T PEE'ThIE 8 (e+1) VSIO
9L 9€TL PIT 1276 LV'g08e 068 8E'€T €0L210'T 43 9€08 126'896'F7 ¢98°L8 ogeT (ssgy) g mdug
L2 G69°LT 9z'T LL°06 V6'667'1¢ ToL 98¢ FILTE € G0T 7y 18€'8CE'G 9GL'8VT 802 T (vDS) L mdug
€6 68v'€cc 10T €7'L6 07’8681 9€°0T 798 2ER'0V8'T 14 L20°€S¢ OPGTLST 8G6'0LL GIT (10a10A) 9 mdug
26 0LL66¢ 10°T €L°86 TV'83% 186 0618 6962361 €1 $91°099 T08°6L8F PETFCIT 9L (oaowapgvOS§) ¢ mduy
06 I8T°€PE 10T 7676 108851 029 G6'G €VS'TL6'T 1 804'8EV'C TIV'SCV'P 80G'8EV'T 6 (esnamve) v mdug
88 o1€'es 10T G6'16 78°60% 6L 61'ST 0G€°LTV'T 02 €L0°SVT 6,965’y 61S°TSE'T 0€T (pogavD) ¢ mdug
<6 128'866 10°1 ¥366 16°L9¥% 6L9 16'G TL8'L¥V'Y 91 PEETOT'E €9L'R09F PeE'T6Ie €e (OT-SHIVATIV) ¢ mdug
26 6S7'6eS 10T 2596 9L°GTL 9¢° 1T 01°0% GeTg9L'e 62 POS'GL6'C 9TL'G6VT POS'GL6'E 98 (VD-¥SIN) T mdug
(%) (dq) onper (%) potonod (#) #) @ (dq) wBuo (#) (dq) (dq) (dq) (#) judu 10 007,
SOURY) (CVOHN uoryedrdn(eurousx) SN S[OpPU] SOUDJRWISI[N A[qUIOsSesI[y A[quiossesiy (OGN oz1g 150818 s3rpuop)

152

¢ A[quesse 0} PodIow UsY) Sem [DIYM JO }[Nsal
oY) ‘4811 poSiouwt o1om g pue | A[qUIdSSE JeY) sueowl ¢+ (g+1) {Polou asimIayjo sso[un ‘siojourered jnejop Suisn uel a1em s[ooy fsdqyf QT Iod are sN/s[opur/soydjewr
-SIW JO IoquuNu oY) ‘SP[OJROS I0J oIe soIIs1Ie)s pojroder [[e :s9joN soljquesse ndul om} oY) 01 paredwod A[quesse peSiowt Jo Ajenb uo sjproder o[qe) oy,
"(dq 090°‘€09‘F 921s awouas ‘s9p10.42DYdS 4230DQOPOYY) 91008 OAINYY 9} A POIOPIO (SP[OJJeds) SII[(UIOSS' OM]) TR} dI0W SUISIOUT UO $3[NSal [Ruowiliodxs 01"V 9[qR],

62 669°CTz 10T 1676 8€°99% 97 €6°001 G06C0z‘Cy 69 6,210V 6£9°617'98 795093 95 (8+(+(g+1)))wIquossed|y
6¢ 669°GT¢ 10°T L6°6L 9€°99¢ Y97 €6°001 G06°C0C € 692 6,5 107 680°LT7'98 ©95'09%'c LGF (L+(" 4(g+T1)))01qUIssseio)y
60 669°GTc T0°T L6°6. 9€°99% ¥9Ve €6°00T G06°C0G € 695 6.5 T0F 680,798 ©95°09%'c LGF (9+(.imi:v TO[UIASSEIIN
6 6691z 10T 66°6L 1€°29¢ ¥97C 267001 G06C0z‘Cy 69 615107 T8L'OFF'98 T9S09%T 19 (g+(+(g+1)))oIquossedy
62 6691z 10T 66°6L 16298 Y9Fe ©6°00T G06‘G0T‘CY 69T 6,210V TSLOVP98 T9S'09%T T9F (F+(+(g+1)))Lrquossesdy
6¢ 669°GTc T0°T 66°6. 1€°29¢ ¥9Ve 36001 G06°C0G € 69% 6.5 T0F T8LOFT98 ©95'09%c T9F (e+(z+1)) TqUIvSsSEION
65 6691 10T 66°6L 83°L9% ¥97C €6°001 G06C0T‘Cy 693 6,5 107 EP8TCP98 ©95'093'C 9V (G+1) 0]quuosseja]y
0 VN aLe 60°0 000 8F'6S TE'GLT 81G'6T z 67E19 826°8¢E 67E'19 01 (8+(" +(z+1)) WavD
0 VN 00T 60°0 000 1077 0L°9%1 809°TT 1 0FETY 6£5°66 0FETY i L+ +(5+1)) Wwavd
0 VN 00T 60°0 000 1077 G9°GPT 809°TT 1 96619 GE8G6 96€'T9 i (9+("+(z+1))) WIVD
0 VN 00T 170 96°¢ W0 L872eT 667°3¢€ z 825GOT VLT'90G 82569 g (g i “+(g+1)) WavD
0 VN 00T Gg0 827G 8L6% €1°0gT 016°zL 1 6£G'SHT TGT 8% GTLTIT 9 v+(e+(c+1))) WavD
0 VN Q0'T €6°0 vLE 81°GG 89'SL L¥960a z GCOTHT 6LTGVOT 80L79% T (e+(c+1)) WavD
0 cle'es 801 86°8L 181 L6'LT SV'L6 061°908‘GT L9% £€9°701 1€6'7E6°T6 868°GLY 8281 (c+1) IWIVD
8¢ GR9°€5C ¢0'T 18°6L GT°LEL 89V¢ 1ST10T 98'T80° LY 1€€ 686°'60% G6C°LLG LS ©9S'09GC GGF L+ +(2+1))) SONTINVD
8% 68962 GO'T 18°6 LEVEL 89F¢ GG T0T IFSIS0LY 1€€ 686607 96T9LEL8 ©9C'093'C SSP (9 i “+(2+1))) SONNVD
62 6691z 10T 10°08 2T 19T 89F¢ 01'T0T G06‘G0T‘Cy 69 6,210V 669°6L7°98 79093 €LV (g+(+(z+1))) SONTNYD
6¢ €81°92¢ ¢0'T 0008 20'¥8¢ L9Ve 6101 097'766'€¥ 9.3 686°60F VTL0LELS ©9S'098C TIF (7+(e+(z+1))) SONINVD
VN 8192 @01 10°08 LG°LT L% 9€'T0T sreerLer 1L 686607 ICP'98'L8 295°09%°C 99 (e+(g+1)) SONTNYD
62 6691 10T 10°08 25 L9% 89F%¢ 01'T0T G06‘G0T‘Cy 693 6,210V 669°6L7'98 ©95'093' €LV (c+1) SODN'INVD

o[y Ajqurasse ue vonpoxd jou prq (z+1) VvV
8% veee 161 6e'89 OV L6L'SY LV'ST &€ L0T L0S6LS'66 9£8°CT 9£8°7¢8 TOT'TLLSET TTL'STYV €9vl (10812) 8 dug
Ve Lig'ee OT'T L¥°0L SE66VFT VEST LLLS LGFTIS'S 0LT 91928 GP9LGE'88 TTYTSS 9866 (VvDs) £ mdug
61 IET°eT 9T'T 65729 9C°LVE'ET S6'T1C 69°C0T POLL6T'TL 0109 16LTLE 960°€8¢'8L 186'1L9'C L¥8 (snamve) 9 mdug
€ 8Le1e 01T 89°GL 260189 LLTV L9°9GG 99626698 8€69 8T €68 IS9°TES'68 G96'S0TF 9S0T (VD-SIN) ¢ mdug
1€ T68LT 0T'T VhLL 6€99T°01 2SFe 89°GST 62996868 TLIS 982°18¢ 9PL08800T TIC'6FS'T ¥9aL (0r0u0pgyOS) ¥ mdug
€8 6€€T 20'T 19'19 77648 186 L9T8 8€LLET L8 Geee P6GTELL) €50°0€ G86'1¢ (ssfgv) ¢ mdug
i 168068 FO'T 16°8L €OTELE L8TT G899 GP9‘6TE'L8 CST 9€6°079‘TS STL'OPY'LS 9E6°OF9TS TLI (OT-SHLVATIV) ¢ mmdug
63 6691z 10T 10°08 0%°L9% 89F%¢ 01'T0T G06G0T‘Cy 693 6,2 107 896 I8V'98 ©95'093'C TV (podvp) 1 mdug
(%) (dq) oner (%) potonc () # (dq) ySueT (#) (dq) (dq) (dq) (#) juduf 10 {00,
souer) (GYHN wonpeordn(ouwouor) SN S[PpuU SoYDYRWSI[N A[qUIoSSesI[y A[qUIOSSBSI[N (GN o719 1s931e] sSruo)) UOTPRI[IOUOIDY

¢ A[quiesse 0} paJIawl ULy}

sem UOIYM JO J[NSaI oY) ‘)SIY PoSIowt olom g pue [A[quiasse ey} sueowl ¢+(g+1) ‘pojou asimIayjo sso[un ‘siojourered jnejop Suisn uel arom s[ooy ‘sdqyf Q1 1od
aIe SN[/S[PUI/SaYDJeWSIW JO IdqUINU 9Y) ‘SS1IU0D I0] oI SO1YsIpe)s pajiodol [:sejoN ‘serjquuasse ndurl omy oY) 03 paredwod A[qurasse pagiouwr Jo Ajrpenb uo syrodax
a[qes oy T, "(dq OFG‘6¥E‘L0T 921s owoua8 ‘Fruyo b) 9100 oAINYY] 9Y) AQ POIOPIO (SP[OJRIS) SAI[(UIOSS'® OM) URY[} SIOW SUISIOW UO $9[Nsal [eyuowiIodxy T1°V 9[qR],

153

Ay Ajquasse £jdwo we paonporg (z+1) 09907

v VN 1071 66°€Y 000 €I 93°9% 990F10°T 91 TTS'9TE 0GG'€8c'T OIL'SIC GG (L4 +e+1) XIN
ag 06£'97 T10°T e 000 6T SP'ST 799°CrET iZé 865°TeE SSTPI9T OIL'SIC T3 (94 +g+1) XIN
Ve VN 00T T9°€T GLT €10 90€ 0 0 0£2'99 €L6°G89 L¥500C 8T (¢t +g+1) XIN
fd VN 00T 69°2C 16T 160 V€€ 0 0 T6°69 S76°8S9 175002 61 (p+e+e+1) XIN
79 FOE'8F 00T €0°L9 06T T80 00%¢ 7€9°68 T 169°L6 9T0OF6'T 88¥'VEC V¥ (e+2+1) XIN
6L 78065 €0'T ¥€08 €89 TI'T 16°GT 444l € 669, 20C'00F'c 670°Gel 9ST (+1) XIN
76 G609 10T 98°L6 9L'C SVT €T¢l L9LTT9 4l €C0'79 TT6L98'C S06'Cee 10T (LH+(9+(" +(g+1)))) wrquesseldpy
76 Gr6'09 10°T 98°L6 9Lc FFT ETEl L9LTHY 4 €079 €06'L98'C ©06'CGe T0T (9+(g+(-+(g+1)))) wIquesseIdNy
76 6VT'eS 10°T 65°L6 0Lc ¥o1 I8 PF8LIT ¢ STG'0S T6V'LFS'C LVI'SIG FIT (G+(m+(mimiév ID[qUIBSSBIOTN
76 6YT'eS 10°T 86°L6 0Le 05T 0%L GLET i STG'0S 8G0'LFS'C LVPI'SIG SIT (7+(e+(2+1))

76 c98'8F 10°T 98°'L6 LLG T60 6TV L€3°9€ € GOR'8F 6€L°GE8'C TOT'GLT 6ET (e+(z+1))

16 80¢'8T 10°T 75'96 16T 790 Th§ TLETT € 800°6T G09°'Ge8'C 0€¥'LL 10V aiv I9[qUIOSSRIDIN
Gl 00T°G6T 12T 6566 600 146G SETPI 90T'GTLT V1 0£€'SGT SCE'OTE'E €LT'GSS €8 (L4+(9+(+(z+1)))) WHVD
fed 628'ces 18T 00°9S 000 95€ SO0TT 625°018'C ST 192°G88 096'€86'c 195°G88 &1 (9+(g+(+(z+1))) WavD
61 8za'ees 16T £0'86 000 6T GS6T TP8'685°7 c T98°08F TLI6EV'C T9G'G88 8T Sii@ii%: INUVD
88 9z0°1€E OT'T 79’86 000 00¢ 0E6T 88096°T 71 GLT0SF GRG'GEI'E GEL'EES LT (r+(e+(@+1))) Wwavo
16 87C00¢ 00T 1626 S0 0£€ 808 0 0 €ES'VET 61C°L69T LBT'TSL 9T (e+(@+1)) WavD
0% GIIE 191 19°0€ VIS €LV 61T 789°C€ 9 788'8C T96'98F'T LLV'STT 96 (6+1) Wavo
76 968°cLT 00T 786 62T 880 TOL TeT'9Le € ILV'91C 9FG'8G8'C G8T'e6F 0¢ (L+H(9+(+(z+1)))) SONINVD
76 0L8°6VT 00°T 1€°86 T L0 L69 ceT'9Le € €09°CLT €ELLS8'C 8BEGLY 99 (9+(g+(+(z+1)))) SONINVD
76 Gg9°L6 001 22’86 €T 0.0 V19 TIPS TSy € €61°86 IST'CS8'C 69L98E 68 (g+(F+(e+(c+1)))) SONTINVD
€6 Gg9‘L6 00T 20'86 €T 090 €VF 19°98¢ 4 GGO'L6 L6SOP8'C 69L°98¢ 0TL (p+(e+(2+1))) SONTNVD
26 87989 00T 19'L6 €T 090 19T 1€7G 1 6969 €2S‘ce8'T TLCTET €61 (e+(z+1)) SONTNVD
68 1286 00'T 8L°66 980 980 61C 1€7G I 82E0T 868F8LT 0SF'LL GFS (e+1) SONTNVD
1T L¥5'00C Tl'L 08°66 $9T 08T O8I £809L0°E L9 F0E'8F $09°C29°0 01LSIS G991 (LH(9+(+(2+1))) vvD
1T L¥500C 91°9 08°66 ¥8T 69T 98'8T Tr9'990's 99 GOG'9F PCP'ET8'LT OIL'SIC 0LST (9+(¢+(+(2+1))) vvO
1T 0z€GET 9T°C £L°66 81'C €9C €GVI LEL'RE0'T qg GLT'SE S66'TE6'VT 88FTEC 20ST (e+F+H(e+(E+1))) VVD
13 PIF'eel 617 £9°66 69c 99T FGII 8GETGL 9 081°GE LPP'COT'TT 88F'PET SLET (F+(e+(@+1)) vvD
13 GzI‘L01 1T 0£°66 €8°E 180 90°G POV VIT L 925Ve V6SOVG'6 SSPPET 06GT (e+(2+1)) VVD
13 86165 V2 £6°L6 VPF 0.0 VOII 0£8'7G 9 GEC'0l 606'6LE'9 670'CET 28Tl (e+1) vVD
78 PPE6LT OT'T a6 980 8T 0L9T TLE'6TE'T 8% 70T'83C L09€E0'E 668°T8S ST (L4 +g+1) VSID
78 PPE6LT OT'T a6 980 S8T'C 0L9T TLG'62E'T 8% 70T'88C L09€E0'E 668'T2S ST (94 +g+1) VSID
98 CLRFIT V0T 8L°06 82T @01 189 GGTT0T'T 8 8T9°T0¢ 90F'0€L'T 980°068 T (¢t +g+1) VSID
06 CLRFIT V0T 70°56 92T 60T €L8 080F0G'T o1 8E6PTT 766298 800'I8F LT (p+e+e+1) VSID
96 T8LTET 00T 16'86 997 80T SIS 080°TS z TSLIET T8L'LL8'G GLY'GHG &S (e+2+1) VSIO
€6 019°€3 00T L0°66 8CV €T 98FI 1557 9 GRG'GE GE0'CLL'T 670°Gel €81 (z+1) VSID
c6 T6T'0C 00T 99°L6 ce0 969 IV 1176 T T6T'0C €29'TE8'C 0€E'8ST 90T (esnamve) 2 mdug
96 T6L0ST T0°T ¢e'86 100 SV 00°€T G06°L20'C 1€ TST'S8C TEV'L68'C OTL'SIC 0L (0a0udpgyOs) 9 mdug
L6 67187 00T €L°L6 000 69T 16°¢T 6LEV8E 6 T6LCS 980°L€8°C TIE69T 8Tl (302127) ¢ duy
66 890°G6S 00'T L1°86 000 8T L90% ELT'TT9 02 TST'6S CET'098°C 8EF'6ET 68 (VO-dSN) ¥ mdug
96 07L'96 00T £8'86 0T €10 LG 7€9°68 i 0PL'96 TSG‘698'C SSV'TET 6S (DT-SHIVATIV) € mdug
8L 86165 65T LT°L6 6L, 980 6£7CT 66£CC g 780'Gc SPCIE9E 670°GTT L¥T (ss4qv) ¢ mdug
28 G007 00'T TIT6 000 TT0 gOT 167% 1 SLTY 799‘SPL'T 0L8'OT G86 (vDs) 1 mdug
(%) (dq) oryex (%) potonoo (#) (#) (#) (dq) mBue (#) (dq) (dq) (dq) (#) 1007,
seuer) (GYOHN uwoneordn(ewouer) SN S[EPU] SOUDJRWSI]\ A[qUUOSSESI[\ A[qUIOSSSTN (OGN 971§ 18981RT SSTU0)) TOTYRI[IOU0DIY

pojou 9sIMIaY30 sso[un ‘siojourered jnejop Sursn uel alem s[0o} ‘sdqy[00T Iod aIe
SN[/S[PPUI/S9YD)eUWSTI JO IdqUINU 1]} ‘SS13U0D 10 o1e pajrodar so1ys1ye)g :s9joN sorjquesse jndur omy ay) 03 paredurod A[qurasse padiour jo £311enb uo syrodax o[qe) oy J,
(dq T80°c06°z 9z1s owoua3 ‘snounp s102000)fiydn1g) SULILDPIO SATIRUISI[R UR 1M (SS1IU0D SB) SOI[qUIdSSE OM] URY[) 210w SULSIOW UO SHMSAI [RIuowIodXy g1V 9[qRl,

154

so[y A[quosse vonpoid jou piq (e+(F+(e+(z+1)))) WIVD
78 09907 60T G6°€6 0v'0 80L GLGE 100°89% 1% 0SC'TF GTL'€0LFT 6LT°COT 96T (F+(e+(z+1))) WavD
8L 89.1c 0TI G1°88 690 9¢9 0L6C o667 61 YOP'ec €F9'6eF'T T1cG'88 LIE (e+(g+1)) WavD
29 C09'IT 00T Lvv9 €10 ¢LL €868 rqtine L VGL'TG ¥LG'TL6'C 189’88 95T aiv WUVD
18 ELr 00T 00°86 ¥e0 0L el STC‘C6T 9 9L6‘1S 080°LICT T1€€L8C 0CT (8+(L+(+(z+1)))) SONNYVD
18 L6S0F 00T 69°L6 ¥20 G99 PeLE T18°01¥ al 68807 88€TOST €LLOET 18T (L+(9+(+(z+1)))) SONTNYVD
18 165°26 00°T 09°26 Vo0 189 SPAE 89L0TF 4 L6SOV GST'S6V'F €LL'OET FOE (9+(c+("+(z+1)))) SONINVD
18 192°6¢ 00'T 95°L6 ¥30 LS89 T8°9¢ 6€6°TTE a1 G9G'6e LI0'OGV'F 1€G'6CT 1€ (6+(r+(e+(c+1)))) SONAVD
98 0Z7'%e 00'T 70°L6 000 TZ9 SoSE 1102ST 3 V629 ¥68'89VT 899601 GI¥ (r+(e+(2+1))) SONTINYD
98 61987 00T 91°96 000 I8¢ 99%E €08°LLT 8 01’0z ¢IL'Geh'y TIE'Ss8 8€¢ (e+(m+)) SONTIAVD
a8 6IF'CT 00T 0£°66 000 9¢°¢ 39°Ge 969°LLT 3 89Z'GT OV8'98EV FIE'SS GLL +1) SONTAVD
e 986'29T 0L' 78°66 800 6L 99°LC 089°T8G'C 9 T1SGC 66L'6LE°GE G8G9LE 6£TS (8+(2+(9 A.: (@+1)))) VVD
ve 09€'46 1.9 6166 8L0 T€9 €LFT LTG'ST6'T ver 981°ST LGT'FIS0E GGI'6LE 9TIC A +(O+(+(2+1))) VVD
€€ 189°8¢ ¢8°¢ 666 060 ¥1'9 1L7¢ LT9°0€8°T 1€1 PECHT 9GL°LEL'9T L9V'O0T GE0S 9+(¢+(+(@+1))) VVD
0€ 189°8¢ 8LT 6966 800 7SS CEET 661796 9 TLO'ST 69C°626'Tc L9P'O0T hee A (F+(g+(z+1)))) VVD
0¢ 668'9¢ 6L°C 8766 000 99¢ 89 PT0°09S 9¢ L68°€T 0TT'TSE'LT 61888 8FEE (F+(e+(c+1)) VVD
62 1369¢ ¥8°C 6986 000 93¢ T¥'6C v3a‘80¥ ST G6C'TT 89T'€68'CT 61G'88 TL6¢ (e+(2+1)) VVD
€ 8LT'6T 981 77'86 000 9T'¢ 16'8% LL6°08C 4 1189 €G6'CCF'8 61S'88 687C (c+1) VVD
89 60S7CT TG'T 96'68 080 ¢L0T 87ce LETVET' T 8T 60SFST G6I'600°C L9G°LLE 8€ (84 +z+1) VSID
€L €65°G0T ST'T £0°¢6 TL0 S¥'8 ST6C L7082 0¢ 0L%'TOT 088°€86'F STT'6L 99 (L4 42+1) VSID
18 68808 <0'T 1966 6T 689 88°€T GLETTL Ve 0TLIS 9LT'€39V TOV'6IT 0al (94" +z+1) VSID
68 69827 <01 80°86 SLT 996 0S°€T 986°€9G 0% 160§ L09°9TLV TOV6TT GPT (g+ " +z+1) VSIO
88 89.°1¢ T0'T 12°L6 000 299 16°¢e 88%°LLT €1 87C'ce 099°Ce9'F 6IS'88 L0T (P+e+2+1) VSIO
6 cer'Ic 10T 8286 000 8¢S TV6C €96'T1€ 4 €89°CC ¥6C0SCT 91S'88 1¢€ (¢+5+1) VSID
98 06521 00T 7816 000 23S 006G 99¢°98% 11 €080 0LF'L3ET 60588 19¢ (g+1) VSID
@6 €19°6T 10T TL'86 000 196 8CIC €97°€9 11 189°TET 0FE'69S T G8S'9LE FIIT (oa0wepgy(g) 8 mduy
06 861°¢6 00T 6876 000 78S 8¢ LIV'€CT 4 T€E°L6 L8€°698F GTI'6LC OLT (esnamvd) L mdug
9. €0€¢S ort GL'E6 €T VRS 9L°CT 815998 s 298¢ 69,0687 VELTS 60ST (Ssdgy) 9 mdug
€6 L8717 00°T 0266 6LT LLY €€9 G81%0F 01 GGh'Th PGEL8CT LIV90T €0T (OT-SHLVATTV) ¢ mdug
68 9¢c'1c 10T v1°96 000 06F% €7'€C 06L°TGT 81 GLG'€C ©S6'8ST'T 9Tl'e8 LLE (VO-4SIN) ¥ mdug
6 687°CT 00T ¥6'96 000 90F% 8G'8 PizaXan 9 €e0°9T STC0LF'F TIL09 G8F (30a10A) € mduy
18 9L0'61 00°T 16'16 000 8%'S L0'6G 656925 11 TW0'ce €99°9€c’y 619’88 8IE (Hoavn) ¢ mdug
8L 0825 00T 0L°06 000 Vg 0LG 8F0¥ I 0£55 TEV'SST'F 085'65 €L1G (vDs) 1 mdug
(%) (dq) oryex (%) peoaod (#) (#) (#) (dq) giSuo (#) (dg) (dq) (dq) (#) [00T,
souer) (QYOHN uoneordn(ewouer) SN S[PPU] SoUDjRWSIN A[qUIDSSRSI[N A[qUIOSSesIN (SN 971§ 1s081e sS81u0)) TOTIRI[IOUOIY

¢ A[quuesse 0} paSIouw ULy}

sem UDTUM JO JINSAI 9} ‘)SIY PaSIaW o19M g pue T A[quIasse jer) sueall ¢+ (g+1) {Pajou astmIarjo ssofun ‘siojourered jnejop Sursn uer a1em s[ooy ‘sdqyf 00T 1od oxe
SN[/S[OPUI/S9YD)RUWISIW JO IoqUINU 917 S17U0D 10] o1e partodal so13s19e1g (S990N sorjquiosse ndut omy o) 09 paredurod A[qurasse padiour Jo A11enb uo syrodar o[qe) oY J,
*(dq 090°€09‘F 9z1s owousS ‘sap1oLanYds 4230DqOPOYY) SULIOPIO SATIRUII[E Ue YIIM (SSIIU0D Se) SOI[qUIdsse OM) TRy} dI0W SUISIoW Uo s)nsol [ejuawtIodxsy :¢1 Yy 9[qR],

155

o[y A[quuesse Ajdwe ue peonpoid

(e+(2+1)) OH™OZ

26 820'ST 00'T 6£°86 700 L9°G L¥LE £98°661 01 T9T'6T 60£7ES'T LIS0L 6T (6+1) 09Y0Z
ov VN 00T 8¢ TP 000 88L 2€0T CPT'OLT v GT0'Z9T 6TT'G06°T S8S'9LE ¥ (8+ " +z+1) XTI
9g 09z'8c 00'T 86°L8 000 TOL TL9 697'1€ 4 €96°L0T LPL899°C STI‘6LT 8L (L+ " +2+T) XTI
09 180'ST 00°T 19°39 G661 TeF 80°¢ 898°GET id TOT'SE S6V'EL8T LIF'90T THI (9+ " +z+1) XIIN
€9 08¢0 00'T 8L°G9 G0z 6LF 8TC 898°GET i GeS0F TTL'8T0‘C L9F'90T 9FT (g+ " +z+T1) XIIN
s 08¢ 00T 19728 000 TFF 9991 88L°97T L 72056 Tg0‘Seh'e 61488 06T (F+e+e+1) XIN
18 898°LT 00T 1L°¢8 000 09 7508 TLTe8T 6 72056 6L6GP6'C 61988 663 (e+z+T1) XIIN
8 T€8'8T 00T 19°68 000 89F 08%I CPF 055 6 Z8L1T ST0'0LTF 61S'88 TIE (2+1) XIN
98 L8056 00'T 9¢°06 LT0 089 FLTT 17869 ¢ 1866 G6S‘TIT'F GLE'GTT GLE (8+(L+(" +(z+T1)))) Terquessels |\
98 F00‘'€E 00'T 0516 LT0 0SL 187T% 8TT'Z0T q TOLLE VIG'STG'T GLE'STT ¥¥a (LH(9+(+(z+T1)))) Terquessels |\
98 9F0'cc 00'T 7706 LT0 €9 0LTT 17869 e 966'ec FSE0LTT GLE'SET €LE (9+(g+(" " +(z+T1)))) Terquessels |\
98 L8056 00'T 9¢°06 LT0 089 FLTo 17869 € 1866 G6S‘TIT'F GLE'GTT GLE (+(r+(e+(c+1)))) Torquesselpy
a8 0SL'8T 00'T 29°68 000 S9S 1671 17869 ¢ P19°0c OTP'LGTT 9SE‘TOT LFP (+(e+(g+1))) To[quusssesd
78 096°€T 00'T 12°68 000 TLF OTLI €LO'9Y 4 TT9'ST FIS0TTF G9L'G8 TI9 (g+(g+1)) Terquesseloy
78 TLO'ET 00T L0638 000 T9F CTLT £7£'86 4 SFCFT FSOFOTT G9L°G8 FS9 (g+1) Torquusssels |\
26 €19'65T T0'T TL86 000 196 ST1C £9T'6€9 11 IS9°TET OPE'69ST G85°9L8 TIT (0r0uapgy(OS) § mdug
06 86166 00'T 6876 000 ¥8'G e8¢ LTP'€TT i TEEL6 LSE'69EF CTT'6LC OLT (esndavd) L sdug
) £0€g er1 6L €6 €T ¥R 9LTT 812998 a8 398 69L°0€8'F PELTS 60ST (ss4ay) 9 mdug
€6 87T 00T 02°66 6LC LLV €€9 GRT'T0F 01 GCT'Th PGE'L8ST LOF90T €0% (OT-SHLVATIY) ¢ mdug
68 9¢¢‘'1c 10T ¥1°96 000 067 €V'€e 06L°TGT 81 GLG'€C TS6'SSFT 9cL'e’ LLE (VD-USIN) ¥ mduy
%6 68F'ST 00T ¥6°96 000 90F% 898 Pizaxa 9 €20°9T STG'OLV'T FIL09 &8V (30107) ¢ ynduy
18 9L0'6T 00T 16'16 000 8¥V'S L06C 626'9LC 11 P0G €99°9€Cy 61G'88 SIE (vogvD) ¢ mdug
8. 08¢z 00T 0L06 000 L¥G 0LG Cidlii I 0£Sz TEF'SST'T 0256 £L1T (vDs§) 1 mdug
(%) (dq) orjel (%) poronod (#) (#) (#) (dq) p8uoT (#) (dq) (dq) (dq) (#) Toor,
sousr) (CYHN uoneordng owouer) SN S[epuUl SoydjRwSI[N A[quiossesiN A[quossesiiN OGN 971§ 18981 SS1U0)) UOTYRI[IOUOIY

¢ A[quiesse 0} pa3Iouwl ULy}

sem UDTYM JO JINSAI 9} ‘)SIY PaSIaW d19m g pue T A[quIasse Jer) sueall ¢+ (g+1) {Pojou astmIarlo ssofun ‘siojourered jinejop Sursn uer arem s[ooy sdqyf 00T 1od oxe
SN[/S[OPUI/S9YD)RUWISIW JO IoquInu 917 ‘s8197U00 10 o1e partodal so1s19e1g (S990N sorjquiesse ndut omy o) 09 paredurod A[qurasse padiour Jo A11enb uo syrodar oa[qes oY J,
*(dq 090°€09‘F 9z1s owousS ‘sap1o4aDYds 4230DQOPOYY) SULIOPIO SATIRUIDIE UR Y)IM (SSIIU0D Se) SOI[qUIasse OM) TRy} 210w SUISIoW Uo s)nsol [ejuawIodxs] §1 Y 9[qR],

156

79) 10T 16°T8 9zT 616 IS8 67F'CIT 61 G9gE 0690989 €¢0‘0¢ 2897 (8+(2+(" +(g+1)))) Torquesseso]y
9 1221 101 7609 9T'T 806 TI'€S T8GLIT 0z 802 8veee6'co eco'oe L8T'TE (L4(9+(+(g+1)))) Terquesseso]y
) 1221 10T 76709 9T'T 806 ST'€S 78S LIT 0z 902 18L°9€669 €¢0'0¢ 68T°T€ (9+(g+(+(g+1)))) Iquuesseloly
9., GLTT 10T S0'T9 9T'T €16 TFeS T8GLIT 0z z0ze 9TL080°99 €20°0€ LTE‘TE (6+(F+(e+(z+1)))) Wwiquuesseloly
9., 931 10T 0T'19 9T'T FI'6 9V'ES T8GLIT 0z 861¢ €65°0PT°99 €20°0€ T6ETE (F+(e+(g+1))) Torquiessed
) 0821 10T ST'T9 9zT €T6 19°€8 78S LTT 0z £61¢ LPG08T99 €80°08 FLVIE (6+(z+T1)) Torquuossesopy
LL €651 10T 8719 8¢’T 8T6 IT'¥8 8EE'TET 44 vLIE 09T°979°09 €60°0¢ €98'1¢ (g+1) mWiquidssejopy

so[y A[quesse sonpoid jou piq (8+(L+(.+AN+CVVV INYVD
0 VN 00T 00°0 000 000 92°¢0T 0 0 06 06 056 T L9+ +(2+1)))) WavD
o FLLTIE VO'C 997 L 000 98¢ GeerT PI0‘€CL'S0T 0GTT PRE69T L90°9€TF0F SST'FI8 160S (9+(g+(+(+1)))) WavD
o 9LT'GPT 8T 0L T0'0 ¥8'6T S6'EVT £87°8G€'8¢ 66. T6L°GCT €L6°LT8°TST GIL'00L 61SE (g+(F+(e+(z+1)))) IWIVD
o 62166 0C'T 08°¢L $00 189 $T00T 9TZ‘96T'9T 19¢ 82C'60T 0TS‘63€86 665169 9291 ¥ Qimié NYVD
28 76L'GE 00'T GF'8L 90 8€TE 9906 P07 198°9 8¢ L60°TS ©6I'89F8 06508F TSee (e+(@+1)) WHVD
L1 02F% 00'T 6579 610 LS'€T TL8S S6T0FE 18 L1616 02£'920°0L TL0'GS 998°0T (z+1) Wavo
Ly 89T'FY 10T SLL 96 97°€C SV'66 TETLLY6T L08 96e'LL T9ELTTTS TGL'L6E TESE (8+(L+(+(z+1)))) SONTNVD
Ly L6€y 10°T avLL 1€°6 €1'¢c 1766 20L0T96T 998 185°GL TGLOLT'FS TCLL6E L69€ (LH+H(9+(" +(z+1)))) SONTINVD
15 LF0'LF T0'T 6T°LL 986 SF'TC €976 8€6°688°¢ 98 T€6°0L 089°COV‘ES TGL'L6E SETF (9+(g+(+(z+1)))) SONTINVD
15 ¥96'0F 10'T LTLL 066 20eC €06 866°67S‘E 28 709°0L L0G'S9E'€8 TGLL6E TEIV (¢+(F+(e+(c+1)))) SONTNYD
44 169°9% 10°T 00°LL 766 89T ST'T6 8£€€9T‘E i 166'69 T96°615°€8 T1GL'L6E TSTF (F+H(e+(+1))) SONTINVD
09 0€L'ST TO'T X) TG0T SE8T €TS8 0£0FFL o €L9°7€ 90S‘T8C'6L €0S°GTE 9216 (e+(+T1)) SONTAYD
€8 GGLT 10T 7L€9 ST'T G66 0T°S8 29691 0g GGLE OPLPEE'69 809'TS L6T'ST in SONNYD
78 L0T'€9 80°L 00°T8 €9, 09T 66°G0T PILZES'89 €68TT 678 096°068°9T9 L89°9€L T6V'TST (8+(L+(+(g+1))) VVD
€8 L01°€9 1€°9 8608 94'8 L0°GT €1°90T 6FFT3E9¢ 0368 €818 £09°69L'87S 706'96¢ 615°0F1 (LH(9+(+(2+1))) VVD
18 17909 GG 1808 0T°0T LF¥Z 99°66 8LT'OF9‘CT G19% £669 029'€L1°GOV T06'96¢ ¢9T'TET (9+(g+(" +(@+1))) VVD
18 17959 S8V 08°08 06'TT SF¥Pe 0£66 89€€V0'CT €8¢ 7506 G8I‘66S76E F06'96C 1¢H'S6 (e+(F+(e+(E+1)))) VVD
8L 1v9'09 ¢9'€ 99°08 00GT 98°€c €1°S6 GT6°9ST'G /7€ 08L°cT 09L6ET'ETE T06'96C 9TF'EL ¥ Amimiv: VVD
6. 096'2C 29T £€°6. 0L0¢ S0CC L¥'TL P6FTILT 07 6119 $99°096°0¢¢ €LL'0VZ FOT'0L (e+(z+1)) VVD
78 9geF 88'1 3g'0L 290 0LET 8€06 L15'8L¢ €1 s SVE‘GSS‘GPT 0GE'08 LEL‘GY (z+1) VVD
29 81c¢ 10T 28'c9 100 8T €6T0T G9T 115651 €168 0038 9TO'PI8L9 289°9€L 96€°CT (sngmvg) 8 mduy
79 gy 60'T 0€°LL g0 9TTT vegel 69LCTL'ET 6T£9 6LT°OT TEL'86£'06 F6V'LFT STOGT (0s0u0pgyOS) L mduy
43 08¢T 00T €669 000 I¥IZ TISF0T 016209 454 180¢ GTT'GLC0L TL8'LG T¥R'CE (30a10A) 9 dug
€8 1eve 20T 157 000 997 L8°0CT TTL'68S°9 8€0¢ 0.7 PPT'G8T'I8 CT6'€S ©T0'GT (VO-¥SIN) ¢ yndug
69 6£5'6e 00T 7676 000 67'€C TSTOT 97£769°¢ 80T 669°9F 61668198 T06'06C €€ (pogavD) ¥ mduy
€9 TLLLT 00T 87'8. 097S 6L1C TLL9 LLTTSE'T 60T 69E'8E TOT'OTP'FS €LL'OFC 69FF (OT-SHLVJATTV) € mduy
68 ar6T 10T 68°69 000 18T 19°2L8 €166V 20T Lieg L08'26F°CL 0S€08 S69'EE (vDS) ¢ mdug
78 61€T 10T 7S¢ 19 16T 026 SV'¥8 jaaqs jie z81¢ OPT'7L0°L9 €S0°0€ 090'CE Amm%mﬁ 1 juduy
(%) (dq) oryer (%) pamaoo (#) (#) (#) (dq) mSuo (#) (dq) (dq) (dq) (#) [ooL,
souer) (GYOHN uoneordng ouwousx) SN S[PPU] SOUDJRWSI]N A[(UIDSSeST]\ A[UIOSSeSTN (OGN 9Z1G 1s081e] SS1U0)) UOT)RI[IOU0IY]

¢ A[quesse 0} paSiawl uay)

Sem UOIYM JO 4INSaI oY) ‘)SIY PoSIowt oIom g pue [A[quiasse jey) sueowl ¢+ (g+1) ‘pojou asimIayjo ssofun ‘siojourered jnejop Sursn uel axom sjooy ‘sdqyf Q1 1od
aIe SN /S[opUl/soyojRISIW JO IoqUINU 9Y) ‘S31U0D 10] dIe so1Is1Ie)s pajiodey :s990N ‘serjquiesse ndur om) oY) o} pareduwod Ajquesse padiowr jo Ajpenb uo syrodax
arqes oy L, “(dq 01G‘67E L0T o2ZIs owouas ‘¥ 7.yo-6f) SULIOPIO dATjeUIo[R UR YIIM (SSIIU0D SB) SOI[qUIdSSE OM] URY) dI0W SUISIOW UO SINSAI [RjUdWLIddXF GT"Y 9[qR],

157

96 7,996 00°T 16'86 4a €90 G611 0 0 7,996 L6G°LL8'C S¥STEC 69 04940z
16 18996 00°T 06°86 06°0 650 66T 0 0 18906 9¥G°€L8'C 8FSFEC 69 OYYv07Z
96 72906 00T 16°86 08°0 990 18T 0 0 7L9°96 8G6°GL8'C 8FSTET L9 OYYv07Z
96 7,996 00'T 16'86 LL0 990 S8 0 0 7L9°96 TOT‘€L8'C 8¥S‘FEC 99 0440z
96 72996 00°T 16°86 08°0 990 881 0 0 72996 L£0°€L8'C 8PSTET 99 OYY0Z
96 0PL96 00T £8°86 08T L0 29T 7£9°68 1 07L°96 T185°698'c 8SVT7EC 69 IO[qUILSSEIDN
96 07496 00T £8°86 0g'T €L0 L91 7£9°68 1 07L'96 185°698'c 88F'T7EC 69 IO[UIOSSRIDA]
96 07L'96 00T £8'86 0g'1 €L0 LGT 7£9°68 1 07L'96 185°698°c 88F'T7EC 69 Io[qUIassea]\
96 0rL96 00T £8°86 08T L0 29T 7£9°68 T 07L°96 T185°698'c 8ST'¥7EC 69 IO[qUILSSEIDN
96 07L96 00T £8'86 0g'T L0 L91 7£9°68 1 07L'96 185°698'c 88F7'T7Ec 69 I9[UIDSSRIDA]
96 07L96 00T £8°86 0g'T €L0 L91 7£9°68 1 07L'96 185°698°c 88F'T7EC 69 XIN
96 0vL'96 00T £8'86 0G'1 €L0 L9T 7£9°68 1 07L'96 18S'698°c 88F'T7EC 69 XIN
76 0vL'96 00T 916 [7,0 09T 7€9°68 T L169°26 LL3'TG8'C 88F'TET 8% XIIN
6 07L96 00T 60°G6 671 690 SV 7£9°68 1 169°L6 616°09L°C 887'FEC 95 XIN
6 07L'96 00T V€76 0g'1 690 9%'I 7£9'68 1 69,6 910°6E£L°Cc 887'FEC €S XIN
79 0GP LET TE'T 12°L6 €10 ge'1 raré £€9°68 T 160°T0T OTT'CILE 18SFeC V¢ WNYVD
79 0SF'LET TE'T 15°L6 €10 eeT 81 £€9°68 T 160°TOT G60°STL'E T8SFET TS WNYVD
79 0GP LET TE'T 15°26 €10 Ge'T G6'T ££9°68 I 160°T0T 680°GILE 18G‘FEC ¥S WYV
79 0SF'LeT g1 ST L6 e1°0 ST 881 ££9°68 1 160°T0T GOS'OTL'S LLS'PET ¥S INUVD
79 0SF'LET TE'T GG L6 €10 6V'T 0LT ££9°68 1 160°TOT OF0'9TL'E LLS'FEC TS NYVD
96 07L96 00T £8°86 0g'T L0 29T 7£9°68 T 07L'96 185°698°c 88FV'T7EC 69 SONINVD
96 07L96 00T £8'86 0g'T €L0 LGT 7£9°68 1 07L'96 GCL'698°C 88F'TEC 69 SONINVD
96 0PL96 00T £8°86 08T eL0 29T 7£9°68 1 07L°96 969°698°c 8STTET 69 SON INVD
96 07L96 00T £8'86 0g'T L0 29T 7£9°68 T 07L'96 GCL'698°C 88F'TEC 69 SONINVD
96 07L96 00T £8'86 0g'T €L0 LGT 7£9'68 1 07L'96 185°698'c 887'T7EC 69 SONINVD
79 107061 10T 16°€9 0L08¢ GLC €6€ 98756 1 €6ST7T9 600°098°T 9¥8Fc6 0T VSIO
Ge VN ST'T 69°8¢ o 0veL 97’8 86°0 0 0 7€5°08¢ ¥1g98¢'T LI9°T9V ¥ VSID
i €96°cF 00T 16°C2 LL0 890 S¥'I 86508 1 86£C9 TIG'66T'c 888°LGT 99 VSID
€9 150°97 00°'T €879 2 960 0€%C TETOLT 4 88G°98 0F9'898°'T 88F'T7Ec 1¥ VSID
€9 15097 00T €579 7e1 960 08¢ GEC0LT 4 88G°08 079°'898‘'T 88V'¥€C I¥ VSID
4 G00T 00T 716 00°0 11°0 01 1€7¢ 1 8LIV ¥99°8FL°c 0.8°9T 686 VDS
96 07L96 00T £8°86 0g'T €L0 LS1 7£9°68 I 07L'96 185°698'c 887'T7Ec 69 DT-SHLVATIV
(dq GT6‘CLY‘T 921S dWOUS) SnaUny $N22020)fiydnIg
(%) (dq) oryer (%) pazoaod (#) # @ (dq) p8ueT (#) (dq) (dq) (da) (#) [00L
souor) (GYOHN uonpeordn(owouor) SN S[EpU] SoUDJRWSI[N A[qUIOSSBSI[A[qUIOSSeSIN (SN 9Z1IS)so8Ie] SSruo)) TOTRI[IOUOIY

sdq31 00T Tod a1e SN /S[EPUI/SSYDIRWSIW JO ISQUINT dY) ¢SSIIU0D I0] oTe SO1ISIPR)s partodey] :S910N "sol[quiasse ndutr om) oY) 0
poreduod A[quuesse pagiow jo Ayirenb uo sprodax o[qes oy T, "(dq G16‘GLY T 921s owouas ‘smaunp sn02000)fiydpig) Sutuny 1ejourered Uo s3Nsal [ejuewILIOdXY 91"V O[qR],

158

€6 G6T'LE 10T 6566 9%’ 1 897 96'9 206°'S1g 8 oIe'Le FPE'96ST CIE'C0T 168 OYYv0Z
€6 G6TLE 00T 0€°66 97’1 0Ly 769 66L°G1g 8 TIELE €90'G6S'T 69T°C0T 16T OYYv0Z
€6 G6T'LE 00T 0€°66 7T 0Ly 869 208°CTe 8 CIE'LE SOST6ST 69C°G0T TEC 0940z
@6 187 TV 10T 8766 ¥G'1 78y 9T°L 802'96¢ 8 ViV 990°919'F 6TE'G0T ¥0g 0940z
€6 GEC'Ty 10°T 8266 171 187 604 685°88¢ 6 816'TF 9606097 0L¥'901 &0g 04940z
€6 18717V 00T 3466 6L°C LUV 199 9€9°80% 01 Gey'ey 0T0°L8S'% L97°90T 00% To[qUIassea\
€6 18717 00T 3566 6L°C LLY 199 9€9°80% 01 GGH'ch 0T0°A8S'F L9%°90T 00% To[qUIasse)aI\
€6 8% TV 00°T 3566 6L°C LY 199 9€9°80¥ 01 Geh'eh 0T0°28S'F L9F'90T 00% IO[qUIOSSLIdIN
€6 L8V TV 00'T 3566 6L°C LY 199 9€9°80¥ 01 GeP'eh 0T0°L8S'F L9F'90T 00% IO[qUIOSSRIDN
€6 L8F' TV 00'T 3566 6L°C LY 199 9€9°'80¥ 01 GCP'Gr 0T0°L8S'F L9%'90T 00% IO[qUIaSSEIDN
%6 L8F' TV 00'T o1'86 19°C [N A A €90°€Ge L VPP'eh ¥80°GEST L9901 108 XIN
16 187V 00T G696 0LT 89F €T'G £90°€5€) GS¥'eh SPO'IST'T L97°90T 661 XIN
16 187 TV 00T ¥9°96 1L°C €9y €8¢ £90°€5¢ p) GST'ey I8L'997'F L97°90T L61 XIN
06 18717V 00T 69°G6 VLT 687 0T'G £90°€5e L GS¥'eh 89T'EC¥' ¥ L97°90T 961 XIN
88 GSS'0F 00T FIV6 €Lg 97 8TS £90°eGe L GeP'eh 606'1SEF L9F'90T ¥6T XIN
0¢ oLe'6e SvI 8298 000 LT9 9¢8 ¥CLTVT id 969°L7 FIG'6¥L'G 9SF°L6 S0C INYVD
4 qes'es ob'l 92°98 000 0€'9 €96 ¥26°08 € 969°L7 9L9°9T9°C 9LV'L6 10C WUVD
s qes'es ob'l 92°98 000 09 L¥6 72608 € 969°L7 €TL9T9C FLVL6 10C WUVD
s 190'¢¢ 6€'T 92°98 000 079 S¢6 72608 € 9L9°L7 T€9'S8IG'C 087'L6 661 WUVD
0 GeS'es vl €098 000 9 TS6 73608 ¢ 969°L7 9V0°GT9'G FLVL6 L6I INYVD
16 08¢y €0'T 3066 ¥L'C LY 199 €0T'CTS 11 c08'ch 689°TTLT L97°90T €0C SONINVD
€6 18717 00T 3066 6LC LUV 199 GRT' 707 01 GGT'eF 6IT'88S'T L97°90T 0T SONNVD
€6 18717 00T 3466 6L°C LUV 19'9 GRT' 70V 01 GGH'eh 6IT'88S'T L97'90T 40T SONINVD
€6 187 TV 00T 3566 6L°C LY 199 9€9°'80¥ 01 Geh'eh 8GI'88S'T L9F'90T 10G SONINVD
€6 8% TV 00'T 3566 6L°C LY 199 9€9°'80¥ 01 GCP'oh 8GT'88S'T L9F'90T 10% SON INVD
68 87TV 16°T €66 vl 6LV WL9 £ET'80F 11 ISP0T POL'0EL'S L9V'90T 8FET YVD
68 L8V TV 16°T €66 vl 6LV TL9 €E5'80F 1T ISP0T POL'0EL'S L9V'90T 8FET VVD
68 L8V TV 16°T €66 vl 6L TL9 €€3'80¥ 1T IGP'0T POL'0EL'8 L9F'90T 8¥ET VVD
8¢ I8V TV 16T 7866 LT 6LV TL9 £€5'807 11 IS7'0T FOL'0EL'8 L97°90T 8¥ET VVO
g 87TV 16T 7866 VT 6LY ¥L9 £€5'807 11 ISP'0T POL'0EL'8 L9F'90T 87T VVD
8¢ VN 01 0978 0€FIL 06C G998 676820 T 9 LER'ET6 8STI'8CE'T LER'E€I6 1T VSIO
8¢ VN 01 0978 0€FIL 06C 998 6768201 9 LE8°€T6 8GTI'8CE'T LES'EI6 1C VSIO
08 860'Ge 00'T 0978 89°C 087 9T ev'09g G Geh'eh LoL'TI6'E L9F'90T €LT VSID
08 8¢0'¢e 00'T 0978 89°C 08¥v 9T'L 2E7'09% G Geh'eh LTL'TI6'E L9F'90T €LT VSID
08 850°GE 00T 0978 89'¢ 087 9T'L eV 095 S GCP'Gy LTL'TI6'S L9F'90T €LT VSID
8L 0863 00'T 0L°06 000 Ve 0L¢ 8F0F 1 0€5% TEV'S8T'Y 00S'6G €L1G VDS
€6 L8V TV 00T 0266 6LC LUV €89 G8T' 707 01 GST'eh PSE'A8S'F L9F°90T €0% DT-SHLVdTIV
(%) (dq) oryer (%) potorod (#) # (#) (dq) 8w (#) (dq) (da) (dq) (#) [00L,
souer) (GYON uwoneordn(owoudx) SN S[PpU] SoYDJRWSI[N A[qUISSSeSI[A[qUIdSSesI[N (OGN 971§ 1s981e] S31IU0)) TOIPRI[IOU0INY]

sdqyf 001 1od are sN/s[opur/seysjewusiua Jo Joqunu ayj (sS1U0d 10] are pajrodar sorysiyels :$9j0N ‘sorquuesse yndur omg oY) o} paredurod
Alquiesse peliow Jo Apenb uo sjroder o[qel oy], ‘(dq (90‘€09‘F 9zls ewousld ‘sapr0.4avYyds 4239Dqopoyy) Suruny Iejeuwrered Uo synsel [ejueWIIOdXH LTV 9[qR],

159

€9 cLl'lt 00T 9¢'8L 0% 1I8°1¢ %929 11T 78ET 601 €LY'8C ETE'6GC'F8 €LL'OVE 6SEV IO[([UIASSRIDN]

€9 clLl'lt 00T 9¢'8L 0S%S 1I81C 929 LLT78€T 601 €LY'8C ETE'6SC'F8 €LL'OVE 6SEV I9[(UIASSRIDN]
€9 cLLl'lt 00T 9¢'8L 0% 1I81C 929 LLTV8ET 601 €LY'8E ETE'6SCF8 €LL'0VE 6SEV I9[(UIASSRIDN]
€9 cLL'lt 00T 9¢'8L 0878 1I8°1¢ 7929 LLT'VRET 601 €LY'8E ETE'6SC'F8 €LL'0VE 6SEV I9[(UIASS LI
€9 cLL'LT 00T 9¢'8L 0878 I8°1¢ ¥S'L9 LLT'V8E'T 60T €LY'8E ETE'6SC'F8 ELL'0VE 6SEV I9[(UIAsSRID]
19 816'¢y T1€'T %)) 900 IT'IE ©9'€6 €LLTLLG ¥S1 SISTF 166°G9T°90T GIL'OVE 86FF NUVD
19 668'¢y T€'T 8¥°GL 900 VLIS TTE6 80LVLLG ¥S1 98F' 7 L0G'FEE'90T L9L'OVE S6FV NYVD
19 816'¢y T€'T S 900 CEIE T8E6 020°L8L°C 44 PSPy G08°0TC'90T C9L'0VE 6STY NUVD
19 010°'¢y €€'T L9°GL 900 0£0¢& L£S6 TvL'696°C 444 VEC'SY 18G'86C'80T ¢IL'0VE STV NYVD
19 ovIvy 1T 09°GL 900 0F'0€ gLT6 POV IET'E 691 0687 869°CE9°00T CIL'OVE VIV NYVD
€9 6218 00T R 9GFS 6L1C L6729 LIT0LY'T 011 8T8'8E TVL'EIV'T8 €LLOVG SVEV SONINVD
€9 eI¥'8c 00T €G'8L VGPS 6L1C ¥6'L9 GEV'G8T'T 011 TYY'6E L86'89TF8 €LL'OVE 8TV SONINVD
€9 116'8c 00'T GG'8. 167G 8L 1¢ 60'89 989°GYS T 601 8IT'6E 60V'9LV'F8 €LL'0VE 8STV SONNVD
€9 €19'8¢ 00'T X 877G 081 61'89 GTG'6LG°T 111 €67'68 0TL'SST'F8 €LL'0VE 68TV SONNVD
€9 81682 00T GG 8L 087G 08°'1¢ 61'89 GIG6LS'T 111 68568 616'SSV'F8 €LL'0VE 8ToV SONINVD
a8 G68°LC 88T LT°6L €8'8¢ 100c ¢9'1L 08e'7€9°'T 91% 6L9°0T 6FG'T68°6ST €LL'OVG GST'8E VVD
a8 G68°LC 88T LT°6L €8'8¢ 100c ¢9'1L 08e'7€9°'T 91% 6L9°0T 67G'T68°6ST €LL'OVG GST'8E VVD
08 G68°LC 88T LT6L €8'8¢ 100¢ ¢9'1L 08e'7E9°'T 91% 6L9°0T 6FG'T68°6ST €LL'OVE GST'8E VVD
a8 G68°LC 88T LT6L €8'8¢ 100c 19'1L 082 7E9°'T 91% 6L9°0T 67G'T68°6ST €LL'OVE GST'8E VVD
43 G68°LC 88T LT6L €8'8¢ 100¢ 191 0SG'7€9°'T 91¢ 6L9°0T 6FSI68°6ST €LL°0VC GSI‘SE VVD
68 CF6T 10T 68°69 000 L8eT TGL8 £L6'6¥¢ 20T L1€E L08'T6F'GL 0S808 C69°ee VoS
€9 cLL'LT 00T 87'8L 0978 6L1¢ TL°L9 LLT'VRE'T 60T 69686 COT'9TV'P8 €LL'OVE 697V DT-SHLVdTIV
(%) (dq) oryer (%) pamnaod (#) (#) (#) (dq) mSue (#) (dq) (dq) (dq) (#) [oo,
SeuRr) (GYHN uorneordn(Swousr) SN S[OpPU] SOUDIRWISI[N A[QUIOSSRSI[\ A[qUIOSSeSI[N (OGN 971§ 1s08re] s31puo)) UOTPRI[IOU0INY

sdq3y] 00T 1od ore sN/s[opul/soyojewisiuu Jo Joquinu a9y} ‘S31U0D 10] o1e SO19sIIe)s pojIodoy :s9j0N "soljquiesse jndur omj)
a1} 07 paredwod Ajquesse paSiow jo Ajrrenb uo syrodar aqey oy, “(dq 03G‘68¢‘88 9zIs awousS ‘¥ r.yo-6fy) Suruny 1ojourered uo synsal rejuewitladxy 1Y O[qR],

160

	List of Figures
	List of Tables
	Introduction
	Representation and manipulation of large sets of finite sequences
	Background
	Finite automata
	Decision diagrams
	Related work
	Notation

	Sequence decision diagrams
	Non-canonical SeqDDs
	Canonical SeqDDs with at the bottom
	Canonical SeqDDs with at the top
	An alternative canonical definition without
	Comparing compactness of SeqDDT and SeqDDN

	Compactness of canonical SeqDDs
	DFA representation of SeqDDB
	NFA representation of SeqDDT
	SeqDD Compactness Comparison by Means of Finite Automata
	Summary

	Algorithms on SeqDDs
	Applications of sequence decision diagrams
	Probabilistic witness generation
	Biological sequence analysis

	Conclusion

	A Comparative Evaluation of Assembly Reconciliation Tools
	Background
	Assembly reconciliation tools

	Datasets and Experimental Results
	GAGE assemblies
	Limitations
	Usage of reads
	Gene coverage analysis
	Experimental results
	Parameter tuning
	Time and Space Analysis
	Synthetic assemblies

	Discussion and Conclusions

	SequOIA: Sequence Overlap Identification and Assembly
	Colored positional de Bruijn graph
	Methods
	Overlap detection
	Construction of the colored positional de Bruijn graph
	Graph compression
	Graph traversal

	Experimental Results
	Conclusion

	Conclusion
	Bibliography
	A Comparative Evaluation of Assembly Reconciliation Tools: Supplementary Material
	Experimental results on GAGE assemblies: comments on Tables A.1-A.15
	High contiguity, high correctness inputs (GAGE)
	Reordering the inputs (GAGE)
	High-quality inputs (GAGE)
	Highly-fragmented inputs (GAGE)
	De Bruijn vs. string graph assembly (GAGE)
	Multiple inputs (GAGE)
	Multiple inputs (alternative ordering)

