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ABSTRACT OF THE DISSERTATION

Algorithms and Data Structures for de novo Sequence Assembly

by

Hind A. I. AL Hakami

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2017

Professor Stefano Lonardi, Chairperson

Despite the prodigious throughput of the sequencing instruments currently on the

market, the assembly problem remains computationally very challenging, mainly due to

the repetitive content of large genomes, uneven sequencing coverage, and the presence of

(non-uniform) sequencing errors and chimeric reads. As a consequence, the final assembly

is very rarely entirely finished, with one solid sequence per chromosome.

In this dissertation, we study (1) the problem of merging multiple genome-wide

assemblies produced using different assemblers and/or parameters, and (2) the problem of

stitching multiple overlapping local assemblies (e.g., assemblies generated by sequencing

BAC clones) to create a genome-wide assembly. Both assembly problem involves processing

very large set of strings, which in turns requires memory-efficient data structures that

allow for efficient comparison operations. In this context, we propose a data structure for

the compact encoding of finite sets of strings over a finite alphabet called sequence decision

diagrams (SeqDDs), which allows for efficient set operations. Next, we study and benchmark

several published methods to merge multiple genome-wide assemblies with the objective to
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produce a higher quality consensus assembly. Our comprehensive comparative study of

assembly reconciliation tools is the first of its kind. Finally, we develop, implement and test

novel algorithms to stitch locally overlapping assemblies based on the colored-positioned de

Bruijn graph, a variant of the classic de Bruijn graph.
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Chapter 1

Introduction

The sequencing instruments currently on the market have enabled the sequencing

of many large, complex genomes. Despite the tremendous throughput of these instruments,

the assembly problem is still very challenging, mainly due to the repetitive content of large

genomes, uneven sequencing coverage, and the presence of (non-uniform) sequencing errors

and chimeric reads. The third generation of sequencing technology, e.g., Pacific Biosciences

[27] and Oxford Nanopore [19], offers very long at a higher cost per base, but sequencing

error rate is much higher (summary in Table 1.1). As a consequence, long reads are more

commonly used for scaffolding contigs created from second generation data, rather than for

de novo assembly [28].

A significant number of de novo genome assemblers are available to the community.

The choice of the most appropriate assembler depends on the size and complexity (repeat

content, ploidy, etc.) of the genome to be assembled, the type of sequencing technology used

to produce the input reads (e.g., Sanger, 454, Illumina, PacBIO, Nanopore, etc.), and the

1



Table 1.1: Summary of sequencing technology platforms

availability of paired-end or long-insert mate-pair reads. Each assembler implements slightly

different heuristics to deal with repetitions in the genome, uneven coverage, sequencing

errors and chimeric reads. The final assembly is very rarely entirely finished, with one solid

sequence per chromosome. Instead, the typical output is an unordered/unoriented set of

contiguous regions called contigs. If paired-end/mate-pair reads are available, contigs can

be ordered and oriented by anchoring paired-end reads to contigs. The length of the gaps

between contigs are estimated, then contigs are then joined into scaffolds.

BAC-by-BAC vs. whole genome shotgun sequencing

BAC-by-BAC sequencing starts by constructing a physical map of overlapping

series of contigs each of which spans a large (150 Kbp on average) contiguous region of

the source genome. Each contig is inserted into a host vector as a medium for replication.

The host vector is a bacterium, hence the naming bacterial artificial chromosome (BAC).
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Figure 1.1: BAC cloning involves making copies of specific regions of the genome. Clones
are then fragmented and random DNA fragments (typically 2-5 kb in size) are sub-cloned.
Sequence reads are then generated from one or both ends of randomly selected sub-clones.
Reads are then assembled for each BAC individually. Figure reproduced from [30]

Cloned BACs are then fingerprinted, using restriction enzyme to find common markers and

order overlapping contigs. Next, a minimum tiling path is computed to select a minimal

number of BACs spanning the genome. Selected BACs are then sub-cloned into smaller-

insert libraries, from which sequence reads are randomly derived. Figure 1.1 illustrate this

process.

Whole genome shotgun sequencing skip the mapping, fingerprinting, and the se-

lection of a minimum tiling path phases and proceeds using sub-clone libraries prepared

from the entire genome. Figure 1.2 show a comparison between BAC-by-BAC and whole

3



Figure 1.2: In this figure we represent a genome as a large encyclopedia. In (a) BAC-by-
BAC sequencing, each page represents a BAC, each BAC is then sub-cloned and reads are
generated. In (b) whole genome shotgun sequencing, the entire genome is fragmented and
reads are generated from each DNA fragment. Figure reproduced from [30].

genome shotgun sequencing process.

Whole genome sequencing produces a base-by-base resolution, therefore allows for

a comprehensive analysis of a genome such as capturing small variants as well as large

variants. However, BAC-by-BAC sequencing approach is preferred when dealing with large

genome, complex repeated regions, or when the goal is analyzing targeted regions (selective

sequencing).
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De novo sequence assembly

De novo sequence assembly is the reconstruction of a genome sequence from a

large set of strings called reads without the help of a reference genome. The strategies used

by de novo sequence assemblers can be classified into three groups

Greedy methods always makes the choice with the greatest immediate benefit; greedy

assembler always joins the reads that overlap best, as long as they do not contradict the

already constructed assembly. The choices made by the assembler are inherently local and

do not take into account the global relationship between the reads. Most greedy assemblers

use heuristics designed to avoid misassembling repetitive sequences. Assemblies produced

by greedy paradigms are usually not of very quality because they do not take advantage

of global information to resolve repetitive regions of the genome. Some examples of greedy

assemblers are Phrap [31], SSAKE [77], and VCAKE [42].

Overlap-layout-consensus assemblers starts by identifying all pairs of reads that over-

lap sufficiently well; overlaps are represented into a graph (called overlap graph0, where

node represent reads and edges represents an overlaps. Several complex algorithms that

take into account the global relationship between the reads have been developed on the

overlap graph. This strategy was introduced by Celera [60], a very influential assembler for

Sanger sequencing reads. Other overlap-layout-consensus assemblers include, Celera As-

sembler with the Best Overlap Graph (CABOG) [57], Newbler [54], and Edena [39]. The

high throughput of second-generation instrument poses high computational demands on the

overlap-layout-consensus paradigm.

5



String graph. A variant of the OLC approach that simplifies the global overlap graph by

removing redundant information (transitive edges) introduced by SGA assembler [69] based

on FM-index, an efficient string indexing data structure.

de Bruijn graph represents input reads as a sequence of their subwords of length k (called

k-mers). Nodes in the graph represent kmers, and the edges indicate an overlap by exactly

k − 1 nucleotides. Most de Bruijn graph assemblers use the read information to refine the

graph structure and to remove graph patterns that are not consistent with the reads. De

Bruijn graphs for genome assembly were first introduced in the EULER assembler [15]. Since

then, they have the primary data structure for modern assemblers targeted at short-read

sequencing data, e.g., Velvet [84], SOAPdenovo [51] and ALLPATHS-LG [29].

The rest of this Dissertation is organized as follows. In Chapter 2, we introduce

Sequence Decision Diagrams (SeqDD), which are canonical decision diagrams that do not

suffer from ordering problem. SeqDD is a data structure designed to compactly store finite

sets of strings sharing substantial amount of common substrings. In that chapter, we present

efficient algorithms to carry out set operations using the memoization property, an intrinsic

feature of decision diagrams. In Chapter 3, we present a comparative analysis of assembly

reconciliation tools. The objective of these tools is to merge multiple draft assemblies to

obtain an assembly of higher quality. In Chapter 4 we introduce a novel method called

Sequence Overlap Identification and Assembly (SequOIA). The objective of SequOIA is

to merge overlapping local assemblies, like the ones generated by sequencing BAC clones

belonging to a minimum tiling path of a genome.

6



Chapter 2

Representation and manipulation

of large sets of finite sequences

The assembly problem requires memory-efficient data structures that store large

sets of strings and allow for efficient set operations on them. In this chapter we introduce

sequence decision diagrams (SeqDDs), which can encode arbitrary finite sets of strings over a

finite alphabet. SeqDDs are a variant of classic decision diagrams such as BDDs and MDDs.

Instead of having a fixed number of levels, SeqDDs require that the number of paths and

the lengths of these paths to be finite. While MDDs are suited to store and manipulate

large sets of constant-length tuples, SeqDDs can store arbitrary finite languages.

7



2.1 Background

2.1.1 Finite automata

A finite automaton consists of a finite number of states and labeled transitions

such that the next state is determined by the current state, the input symbol, and the

transition function. Finite automata can be categorized into deterministic finite automata

(DFA) and non-deterministic finite automata (NFA).

A DFA is formally defined by a 5-tuple (Q,Σ, δ, q0, F ) where,

• Q is a finite set of states

• Σ is a finite alphabet

• δ : Q× Σ→ Q is a transition function

• q0 ∈ Q is a start state

• F ⊆ Q is a set of accepting states

A NFA is defined similarly to a DFA; the 5-tuple (Q,Σ, δ, q0, F ) has the same

definition except for the transition function which is defined as δ : Q×Σ ∪ {ε} → 2Q, such

that, given a current state and a symbol, the transition function leads to a state chosen

from a set of states, rather than a unique state. Moreover, ε-transitions in NFA allow

advancement without reading an input symbol.

We also define a partial DFA, as in [10], to be a minimized DFA with partial

transition function δ ⊆ Q×Σ→ Q such that δ(q, a) = ∅ for q ∈ Q and a ∈ Σ is allowed. In

a partial DFA, the trap state and all transitions leading to it are omitted.
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2.1.2 Decision diagrams

A decision diagram is a directed acyclic graph where each node encodes a function.

Multi-valued decision diagrams (MDDs) are an extension of the better known binary deci-

sion diagram (BDD)1. BDDs provide a canonical representation of boolean functions, while

MDDs provide a canonical representation of discrete functions. Both decision diagrams

consist of

• Non-terminal nodes: each non-terminal node recursively encodes a composition of the

sub-functions encoded by its children.

• Terminal nodes: there exist two terminal nodes, terminal 1 and terminal 0. The

first indicates that assignments of variables along the path from the root to termi-

nal 1 satisfies the function encoded by the decision diagram, while terminal 0 denotes

unsatisfiability.

• Labeled directed edges correspond to all possible assignments of a variable.

Canonicity is ensured through ordering and reduction rules. For a function with k variables,

a global ordering xk ≺ xk−1 ≺ · · · ≺ x1 ≺ x0 of the variables should be preserved in all

paths. Reduction rules are applied repeatedly on the fly to maintain a canonical minimized

decision diagram at any stage of the construction.

• Node merging rule: no duplicates nodes are allowed; i.e., if two nodes are isomorphic,

1MDDs extend BDDs by allowing the outgoing edges from a node to describe choices that are not

necessarily binary. We simply use to “MDDs” from now on, with the understanding that they include BDDs

as a special case.
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then the two nodes are merged. In an MDD implementation a unique table is used to

enforce this rule.

• Node deletion rule: no redundant nodes are allowed; a node is considered redundant

if all its children are identical. Such node is interpreted as a “don’t care” node and is

skipped.

A quasi reduction rule applies node merging without node deletion at any levels, while full

reduction rule applies both node merging and node deletion (an example of BDDs after

applying each reduction rule is shown in Figure 2.1). In addition to reduction rules, a

sparse representation of a decision diagram is used. In sparse representation, terminal 0 is

not represented, nor any of the edges leading to it.

Another variation of ROBDD is Zero-Suppressed Binary Decision Diagrams (ZB-

DDs) [58], which is basically an ROBDD with a different deletion rule. In a ZBDD, a node

is bypassed if the one-child leads to the 0-terminal (refer to the example in Figure 2.1 (c)).

Decision diagrams are most efficient when encoding sets that share many subsets.

In addition, the recursive structure of decision diagrams makes the use of dynamic program-

ming cost effective. Decision diagram manipulation algorithms exploit this advantageous

feature by using an operation cache, which eliminate the need to repetitively recompute

sub-problems.

2.1.3 Related work

Many data structures have been introduced in the literature to compactly encode

finite sets of finite strings. Substring indices, such as tries, suffix trees [56], suffix arrays
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Figure 2.1: (a) Quasi-reduced BDD, (b) fully-reduced BDD, and (c) ZBDD representation
for the same function.

[53] , and DAWGs [11], exploit prefix sharing, suffix sharing, or both to achieve efficient

storage of large sets of strings. Beside compactness, the main purpose of substring indices

is to efficiently solve the substring matching problem in a fixed text. Exact matching, in

most cases, can be achieved in time complexity proportional to the pattern size, not the

whole text.

While exact matching on these data structures is very efficient, updating the data

structure by adding or deleting strings is hard [5]. Additionally, the lack of efficient set

manipulation algorithms or such data structures stimulates the need for data structures

that leverage the benefits of substring indices while enabling efficient set manipulation.

In 2009, Loekito et al. introduced a new data structure, sequence BDD [49], that

combines compact storage of finite languages of arbitrary finite strings and, at the same time,

provides for efficient set manipulation algorithms. Sequence BDD or SeqBDD, for short, is a

half-relaxed variation of ZBDDs; variables along zero-paths are ordered, while the variables

along one-paths have no order restrictions; moreover, variables can appear several times
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along such a path facilitates encoding languages composed of strings of different lengths.

SeqBDD inherits ZBDDs efficient set manipulation algorithms, in addition to other

well known techniques of decision diagrams, such as the use of a unique table and an

operation cache, to enable dynamic programming. Other algorithms have been introduced

to mine frequent substring. In [5] the authors introduced a reversed SeqBDD to match

suffixes and proposed SuffixDD, a SeqBDD that encode the set of all suffixes of a given

string. In [26], SeqBDD that encode all substrings of a strings in a given language L is

introduced, and named factor SDD. In fact, it has been proven in [25] that size of the

factor SDD is linear in the size of the SeqBDD encoding L.

Size complexity is a crucial issue in decision diagrams, and SeqBDDs are no ex-

ception. The importance stems from two factors; first, decision diagrams are usually used

to store efficiently an enormous amount of data; second, the time complexity of algorithms

applied to decision diagrams is proportional to the size of the arguments. As other re-

duced ordered decision diagrams, SeqBDDs are sensitive to variable ordering. Since opti-

mal variable ordering is an NP-complete problem [12], heuristics are required to achieve

good variable ordering. Sharing common suffixed as well as common prefixes contributes

to the compactness of the data structure. Nevertheless, adhering to binary representation

degrades compactness of SeqBDDs [64].

Decision diagrams are used extensively in the field of symbolic model checking.

One of the most important virtues of symbolic model checking is the generation of coun-

terexample in case a given model violates the tested property. Many heuristics were intro-

duced in the literature that aim at producing counterexamples that are more informative
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and understandable. A counterexample is simply a trace. Given the state space, starting

from a start state, the counterexample shows the sequence of states the system will end in a

reachable bad state. That trace, or path, can be finite or infinite (if it contains a cycle). For

instance, safety properties checked through finite trace, while liveness properties are checked

through infinite traces. However, traces do not always consist of one path. In the case of

probabilistic model checking, often a vast number of paths compose the counterexample.

One way that has been introduced to compactly store the latter type of counterexample is

regular expressions [23, 36].

In this chapter, we introduce sequence decision diagrams (SeqDDs), which can

encode arbitrary finite sets of strings over an alphabet. SeqDDs can be viewed as a multi-

valued variation of SeqBDDs. SeqDDs do not constrain a priori the number of levels, in

fact, they do not really have an inherent concept of levels (or variables associated to a node).

Instead, they simply require that, on any instance of the diagram, the number of paths and

the lengths of these paths be finite.

2.1.4 Notation

Given alphabet Σ = {s1, · · · , sm}, with m ∈ N, let Σ∗ be the set of strings over Σ,

i.e., Σ∗ = {a1 · · · ak : k ≥ 0, ∀h, 1 ≤ h ≤ k, ah ∈ Σ}. We introduce the following notation to

discuss SeqDDs encoding a finite language Y ⊂ Σ∗:

• If Y = ∅, then height(Y) = ⊥, “undefined”. Otherwise, the height of Y is the length

of the longest string in it, height(Y) = max{|σ| : σ ∈ Y}.

• lengths(Y) = {k∈N : ∃σ∈Y, |σ| = k}, the set of all string lengths in Y.
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• For k ∈ lengths(Y), Yk = {σ ∈ Y : |σ| = k}, the strings of length k in Y, and

Y<k = {σ ∈ Y : |σ| < k}, the strings of length less than k in Y.

• For a ∈ Σ, Y/a = {σ ∈ Σ∗ : a · σ ∈ Y}, the strings that, preceded by a, form a string

in Y.

• For k ∈ lengths(Y) and a ∈ Σ, Yk/a = {σ ∈ Σk−1 : a · σ ∈ Yk}, the strings that,

preceded by a, form a string of length k in Y.

• ||Y|| = ∑σ∈Y |σ|, the total number of symbols in Y, not to be confused with |Y|, the

number of strings in Y.

2.2 Sequence decision diagrams

2.2.1 Non-canonical SeqDDs

This section defines a class of decision diagrams that can encode any finite subset

of Σ∗, that is any set of the form

{σ1, · · · , σn : n ∈ N,∀j, 1 ≤ j ≤ n, σj ∈ Σ∗}.

Note that the empty set ∅ as well as {ε}, the set containing only the empty string, are two

of the the sets that we must be able to encode.

Definition 1 A sequence decision diagram (SeqDD) is a directed acyclic finite graph in

which

• there are two terminal nodes, with no outgoing edges, 0 and 1;
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• a nonterminal node p has m + 1 outgoing edges, each one labeled with a different

element from Σ∪{ε}; we write p[a] = q to indicate that the outgoing edge labeled with

a ∈ Σ ∪ {ε} points to node q, which can be terminal or nonterminal.

Definition 2 The set of strings X (p) encoded by a SeqDD node p is recursively defined as:

X (p) =



∅, the empty set if p = 0,

{ε}, the set containing only the empty string if p = 1,

⋃
a∈Σ∪{ε}{a · σ : σ ∈ X (p[a])} otherwise,

where “·” denotes the string concatenation operator.

We now prove that, given an arbitrary finite set of strings Y ⊂ Σ∗, we can encode

Y using a SeqDD. More precisely, we can build a SeqDD with a single root node r (i.e., a

node not having any incoming edges), such that X (r) = Y.

Theorem 1 Given a finite set of strings Y ⊂ Σ∗, there exists a single-root SeqDD whose

root p satisfies X (p) = Y.

Proof. The proof proceeds by induction on ‖Y‖, the total number of symbols in Y.

If ‖Y‖ = 0, then Y = ∅ or Y = {ε}. In the case of Y = ∅, we can let p be the 0-terminal.

In case of Y = {ε}, we can let p be the 1-terminal.

If ‖Y‖ = k > 0, assume the theorem holds for any set Y ′ with ‖Y ′‖ < k. Clearly, ‖Ya‖ < k

and, if ε ∈ Y, then Y = {ε} ∪ ⋃a∈Σ a · Ya, else Y =
⋃
a∈Σ a · Ya. Then, if ε ∈ Y, we can

define a node p, with p[ε] = 1 and p[a] = qa, where qa is a node that encodes Ya, which

exists, by induction, since ‖Ya‖ < k, for a ∈ Σ. The case where ε 6∈ Y is exactly analogous,

except that we set p[ε] = 0.
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Figure 2.2: A SeqDDB, a SeqDDT, and a SeqDDN encoding Y = {aa, aaa, aabaa, baa, c, ε}.
Indices in gray point to terminal 0 (not represented for clarity).

By definion SeqDDs are general non-canonical encoding of finite languages. Any

set Y ⊂ Σ∗ can be encoded by infinitely many SeqDDs because, if a node r encodes Y, any

node r′ with r′[a] = 0 for each a ∈ Σ and r′[ε] = r also encodes Y, and the “insertion” of

such “useless nodes” can be repeated at will (indeed, not just above the root, but anywhere

along any path in the SeqDD). Thus, we now describe possible sets of restrictions to ensure

canonicity, namely

• No duplicate nodes are allowed: the SeqDD cannot contain two nonterminal nodes p

and q such that p[a] = q[a] for every a ∈ Σ ∪ {ε}.

• No empty nodes are allowed: the SeqDD cannot contain a nonterminal node p such

that p[a] = 0 for every a ∈ Σ ∪ {ε}.

• No ε-nodes are allowed: the SeqDD cannot contain a nonterminal node p such that

p[a] = 0 iff a ∈ Σ.

Informally, canonicity is achieved by additionally “pushing” ε-edges (not pointing to 0)

toward the bottom, or toward the top, of the diagram (Figure 2.2).
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2.2.2 Canonical SeqDDs with ε at the bottom

Definition 3 A (canonical, ε-at-the-bottom) SeqDDB is a SeqDD with no duplicate nodes,

no empty nodes, no ε-nodes, and such that, for any nonterminal node p, either p[ε] = 0 or

p[ε] = 1.

Theorem 2 Given a finite set of strings Y ⊂ Σ∗, there is a unique single-root SeqDDB

whose root p satisfies X (p) = Y.

Proof. If height(Y) = ⊥, then Y = ∅, and the canonicity restrictions imply that p = 0

is the only SeqDDB node encoding Y. If height(Y) = 0, then Y = {ε}, and the same

restrictions imply that p = 1 is the only SeqDDB node encoding Y. If height(Y) = k > 0,

assume the theorem holds for any Y ′ with height(Y ′) < k. Clearly, height(Y/a) < k and,

if ε ∈ Y, then Y = {ε} ∪⋃a∈Σ a · Y/a, otherwise Y =
⋃
a∈Σ a · Y/a. Then, if ε ∈ Y, we can

define node p, with p[ε] = 1 and, for each a ∈ Σ, p[a] = qa, where qa is the unique node

encoding Y/a (by induction, qa exist since height(Y/a) < k). Note that we might have

Y/a = Y/b for a 6= b, this simply means that the two corresponding edges in p point to the

same SeqDDB node (indeed nodes are shared across any of the descendants of p, to avoid

duplicates). No other node q encoding Y can exist because it would have to differ from p

in at least one index a ∈ Σ, while we must have p[ε] = q[ε] = 1. By inductive assumption,

SeqDDB’s p[a] and q[a] cannot encode the same set, that is, X (p[a]) = Y/a 6= X (q[a]), thus

there is a string a · σ′ in X (p) and not in X (q), or vice versa. The case where ε 6∈ Y is

analogous, except that p[ε] = 0.
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2.2.3 Canonical SeqDDs with ε at the top

For the alternative definition where we allow “ε at the top”, it is easier to recast

the definition of quasi-reduced MDDs [18] as a special case of SeqDDs.

Definition 4 A (canonical, single-root) k-level MDD is the terminal node 1, if k = 0, or,

if k > 0, it is a single-root SeqDD with no duplicate nodes, no empty nodes, no ε-nodes, and

with root p such that p[ε] = 0 and, for a ∈ Σ, p[a] is a (k − 1)-level MDD or 0.

It is easy to see that the root p of a k-level MDD encodes a nonempty set of strings of fixed

length k, that is, X (p) ⊆ Σk.

Definition 5 A k-level SeqDDT is a SeqDD without duplicate, empty, or ε-nodes whose

root node p is such that, for a ∈ Σ, p[a] is 0 or the root of a (k−1)-level MDD, while p[ε]

is 0 or the root of an h-level SeqDDT, h < k.

Thus, it is easy to prove by induction that the root p of a k-level SeqDDT encodes a

nonempty set of strings of length k,
⋃
a∈ΣX (q[a]), plus a possibly empty set of strings of

length less than k, X (q[ε]).

Theorem 3 Given a finite language Y ⊂ Σ∗, there exists a unique single-root SeqDDT with

root p such that X (p) = Y.

Proof. If height(Y) = ⊥, then Y = ∅, and the canonicity restrictions imply that p = 0 is

the only SeqDDT encoding Y. If height(Y) = 0, then Y = {ε}, and the same restrictions

imply that p = 1 is the only SeqDDT encoding Y. If instead height(Y) = k > 0, assume

that the theorem holds for any set Y ′ with height(Y ′) < k. Since Y = Y<k ∪
⋃
a∈Σ a · Yk/a,

18



we can define node p such that, for a ∈ Σ, p[a] = qa with X (qa) = Yk/a, while p[ε] = qε

with X (qε) = Y<k. By inductive hypothesis, nodes qa and qε are unique, as they all encode

sets of height less than k and, since Yk/a contains only strings of length k − 1, qa is in

particular the root of an MDD, i.e., qa[ε] = 0. Then, node p is also the only node encoding

Y since any other node p′ would have to differ from p in at least one child. If p[ε] 6= p′[ε],

there must exists a string σ of length less than k in X (p[ε]), thus X (p), and not in X (p′[ε]),

thus X (p′), or vice versa. If there is an a ∈ Σ with p[a] 6= p′[a], there must exists a string σ

in X (p[a]) and not in X (p′[a]), so that a · σ is in X (p) and not in X (p′), or vice versa (a · σ

cannot possibly be in X (p′[ε]) as it is of length k). Either way, p′ cannot encode the same

set as p.

2.2.4 An alternative canonical definition without ε

Unlike SeqDDBs, SeqDDTs rely on some concept of level for the nodes of the

decision diagram. More specifically, the nodes in a SeqDDT encode all the maximum-

length strings using the children corresponding to the elements of Σ, and postpone the

encoding of the remaining, shorter, strings to the child corresponding to ε (Figure 2.2). An

almost equivalent encoding for a set Y is then one where the strings of Y are partitioned

according to their length, and the top node makes a decision based on the length of the

string σ being searched, not on the first symbol of σ. This leads us to a third, slightly

different in spirit but essentially equivalent, definition.

Definition 6 A SeqDDN is a set of “sparse” root nodes, each root r having a finite set R

of outgoing edges labeled with different elements k ∈ N, such that r[k] points to a k-level
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Figure 2.3: Canonicity of sequence decision diagrams.

MDD. The set encoded by r is
⋃
k∈R X (r[k]).

Note that sharing of nodes across various MDDs of a single-root SeqDDN, as for

those of the equivalent SeqDDT, is not only possible, but required, since we seek a canonical

form. If the sets X (r[k1]) ⊆ Σk1 and X (r[k2]) ⊆ Σk2 encoded by MDD nodes p1 and p2

satisfy

∃γ1, γ2, {σ∈Σk : γ1 ·σ∈X (r[k1])} = {σ∈Σk : γ2 ·σ∈X (r[k2])} =W 6= ∅,

then the node p encoding W is shared by the MDDs rooted at p1 and p2.

Theorem 4 Given a finite set of strings Y ⊂ Σ∗, there is a unique single-root SeqDDN

rooted at r such that X (r) = Y.

Proof. The proof is immediate. If Y = ∅, then only node r with R = ∅ encodes Y.

Otherwise, write Y =
⋃
k∈lengths(Y) Yk. Then, each Yk is canonically encoded by an MDD

rooted at a node pk, and the root node of the SeqDDN is simply r with a setR = lengths(Y),

and such that r[k] = pk, for each k ∈ lengths(Y). Of course, MDD nodes must be shared

across MDDs, not just within each MDD. It is obvious that this SeqDDN is the unique

encoding of Y.
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Figure 2.4: The structure of a SeqDDT and a SeqDDN encoding the same set.

2.2.5 Comparing compactness of SeqDDT and SeqDDN

We begin by comparing the size of the SeqDDT and SeqDDN encoding a set Y,

since both definitions rely on the length of the strings in Y.

Theorem 5 Given a finite set of strings Y ⊂ Σ∗, the numbers of edges in SeqDDT AT and

SeqDDN AN encoding Y satisfy

edges(AT ) + 1 ≥ edges(AN ) ≥ edges(AT )− (|lengths(Y)| − 2)|Σ|+ 1.

Proof. The proof is based on the common structure exhibited by AT and AN . Consider

first the case where ε ∈ Y, shown in Figure 2.4, where n + 1 = |lengths(Y)|, i.e., n is the

number of different string lengths in Y not counting the length 0 of the empty string. The

key observation is that AT and AN are largely the same. Namely, the MDDs encoding any

of the non-empty sets Ylk,ak , for lk ∈ lengths(Y) and ak ∈ Σ, are present in both AT and

AN , so we can simply let e be the number of edges needed to encode them as a whole, in

either representation. Then, edges(AT ) = e + (xn + 1) + · · · + (x1 + 1), where xk is the

number of edges leaving node pk not counting its ε-edge, thus it is also the number of edges
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leaving qk in AN . On the other hand, edges(AN ) = e+ (n+ 1) +xn+ δn−1xn−1 + · · ·+ δ1x1,

where the term (n + 1) counts the edges leaving the root r, while δk = 0 if qk is a node

already present in the encoding of the MDDs Ylm,am , for lm ∈ lengths(Y) with lm > lk

and ak ∈ Σ, and δk = 1 otherwise. In other words, the indicators δ′ks are needed because,

except for qn, any other qk might happen to duplicate an already existing node in the MDD

portion of AN , while this is not possible for any node pk, as having an ε-edge makes it for

sure different from any MDD node. Then, since xk can be as large as |Σ|, we can conclude

that

edges(AT ) + 1 ≥ edges(AN ) ≥ edges(AT ) + 1− (n− 1)|Σ|.

If instead ε 6∈ Y, the same approach is applicable, except that n = |lengths(Y)|, p1 in

AT does not contain an ε-edge, and r does not contain a 0-edge. We can then write

edges(AT ) = e + (xn + 1) + · · · + (x2 + 1) + δ1x1, since now q1 not only does not have

an ε-edge, but could be already present in the MDD portion of AT , and edges(AN ) =

e+n+xn + δn−1xn−1 + · · ·+ δ1x1, since r does not have the 0-edge (it is important to note

that q1 and p1 coincide when ε 6∈ Y, thus either they both coincide with an existing MDD

node, or neither of them does, that is, δ1 is the correct indicator for both). Then, we can

conclude that

edges(AT ) + 1 ≥ edges(AN ) ≥ edges(AT ) + 1− (n− 2)|Σ|.

Recalling that n = |lengths(Y)| − 1 when ε ∈ Y and n = |lengths(Y)| when ε 6∈ Y, we

conclude that the theorem always holds.

Figure 2.5 shows that both the lower and upper bounds on the size of AN with

respect to AT can actually be achieved. Specifically, the first two panels show how we
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Figure 2.5: Examples achieving the bounds of Theorem 5.

can have edges(AN ) = edges(AT ) − (|lengths(Y)| − 2)|Σ| + 1, assuming Σ = {a, b, c}, for

the cases ε ∈ Y and ε 6∈ Y, respectively, while the third panel shows how we can have

edges(AN ) = edges(AT ) + 1.

2.3 Compactness of canonical SeqDDs

We now discuss the size of our SeqDDs, where the size of a SeqDD A is the number

of edges it contains, edges(A), rather than the number of nodes. Given the structural

differences between a SeqDDB and a SeqDDT, we compare them by thinking of them as

finite automata. A closer look at a SeqDDB shows that it can be easily converted into a

DFA (Theorem 6). On the other hand, a SeqDDT can be converted into a restricted type

of NFA.

2.3.1 DFA representation of SeqDDB

Given a SeqDDB AB encoding a finite language Y ⊂ Σ∗, we can build an equivalent

DFA M = (Q,Σ, δ, q0, F ). If AB = 0 then M = ({q0},Σ, δ, q0, ∅). Otherwise, we first define
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the states Q in terms of the nodes in AB: every nonterminal node q in AB corresponds to

a state q ∈ Q, while node 1 in AB corresponds to new state f ∈ Q and node 0 corresponds

to a new trap state t ∈ Q.

The initial state q0 corresponds to AB’s root while the transition function δ :

Q×Σ→ Q is such that, for every a ∈ Σ and edge q[a] = p in AB, there is a corresponding

transition δ(q, a) = p and, if q[ε] = 1, no transition is added, but q is added to the accepting

states F . Lastly, state f is also added to F .

Theorem 6 Given a SeqDDB AB encoding a finite language Y ⊂ Σ∗, building an equivalent

minimized DFA M requires linear time in the size of AB.

Proof. The proof is direct from the translation algorithm above.

For memory efficiency, decision diagrams can be stored in a sparse form. In the

case of a sparse SeqDDB, this corresponds to a partial DFA, and the translation is analogous

to the non-sparse version just discussed. From now on, we consider sparse representations

for all canonical forms of SeqDD and for partial DFAs.

2.3.2 NFA representation of SeqDDT

To discuss the translation of a SeqDDT into an equivalent NFA, we first define

RNFAs, a restricted version of NFAs, keeping in mind that our goal is to facilitate size

comparisons between a SeqDDB and a SeqDDT. To that end, our RNFA definition resembles

the structure of SeqDDT while respecting the key characteristics of ordinary NFAs when

encoding a finite language.
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Definition 7 A restricted NFA (RNFA) is an acyclic NFA N = (Q,Σ, δ, QI , QF ), where

both QI and QF are singletons sets and, for each state q ∈ Q, the following condition holds:

at most one outgoing ε-transition is allowed, and if k = max(lengths(L(q))) then all strings

in
⋃
a∈Σ L(δ(q, a)) have length k− 1 and all strings in L(δ(q, ε)) have length at most k− 1.

This value k is called the level of q.

A minimized RNFA enforces the following restriction rules.

• No duplicate states are allowed: An RNFA cannot contain q and p such that L(q) =

L(p).

• No empty states are allowed: An RNFA cannot contain a state q ∈ Q \QI such that

L(q) = ∅.

• No ε-states are allowed: An RNFA cannot contain a state q ∈ Q \ QF such that

L(q) = {ε}.

Any RNFA can be converted to an equivalent minimized RNFA using Algorithm 2.1, an

adaptation of the bucket-sort based OBDD reduction algorithm proposed in [68]. The

minimized RNFA for a given language is unique.

The following lemma affirms that RNFAs, like DFAs, can recognize any finite

language (unlike DFAs, they obviously cannot accept any infinite language).

Lemma 7 If Y ⊂ Σ∗ is a finite language, there exists an RNFA N to accept Y.

Proof. The proof of existence is analogous to the one of Theorem 3.
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Algorithm 2.1 Algorithm to canonize a RNFA.

1: function Canonize( p : RNFA, q : SeqDDB)
2: declare local RNFA s, v
3: declare local vector t . sorted vector according to a predefined alphabet order

4: declare local list〈s, t〉 L
5: declare local list〈bucket〉 nonempty
6: devide p’s nodes by levels s.t. the final state f is at level-0 and a node n

recognizing strings of length k is at level-k.
7: for k = 1 to lengths(Y) do
8: create L containing nodes s of level-k and the associated vector of

successors v for each s in L.
9: create bucket0 containing all s in L . starting with all nodes in one bucket

10: add bucket0 to nonempty list
11: for a ∈ Σ do . run an |Σ|-phase bucket sort algorithm

12: for bucket U in the nonempty list do
13: create new bucket-a
14: for s ∈ U do . eventually divide into buckets of equivalent nodes

15: add s to bucket-a[v] s.t. (s[a] = v or (s[a] = t and R[t] = v)) .

v is the minimized representation of ti

16: add bucket-a[v] to nonempty list, if not added yet
17: delete bucket U from the nonempty list

18: create new list R or clear the old one, if exists.
19: for bucket U in the nonempty list do . merge equivalent nodes

20: let v be any s ∈ U
21: for s ∈ U do
22: add 〈s, v〉 to R . mark duplicate nodes by their new equivalent

23: clear lists and vectors except R

24: delete unreachable nodes

If SeqDDT AT with a single root node r encodes a finite language Y ⊂ Σ∗, the

equivalent RNFA T = (Q,Σ, δ, QI , QF ) is built as follows. Each nonterminal node q of AT

corresponds to a state q ∈ Q; terminal node 1 of AT corresponds to a new state 1 ∈ Q,

and F = {1}; finally, QI = {r} (note that, if r = 0, we also must add r to Q). The

transition function δ : Q × Σ ∪ {ε} → Q is such that, for every edge q[a] = p in AT with

a ∈ Σ ∪ {ε}, there is a corresponding transition δ(q, a) = p. Thus, in particular, if r= 0,

then T = ({0},Σ, ∅, {0}, {1}), and the encoded language is Y = ∅, while, if AT = 1, then
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Figure 2.6: Example of quadratic growth when translating SeqDDB into SeqDDT.

T =({1},Σ, ∅, {1}, {1}) and the encoded language is Y = {ε}.

From the conversion process, it is easy to see that the number of transitions in

the resulting DFA equals the number of edges in the equivalent SeqDDB excluding ε-edges.

Hence, we can define the DFA size to be equal to the number of transitions plus the number

of final states excluding the one corresponding to terminal 1, |M | = |δ| + |F | − 1. On the

other hand, since the number of transitions in the resulting RNFA equal the number of

edges in SeqDDN minus lengths(Y), we can define the size of an RNFA to be equals to the

number of transitions plus the number of initial states, |N | = |δ|+ |V0|.

2.3.3 SeqDD Compactness Comparison by Means of Finite Automata

To study the relative compactness of canonical SeqDDs, we first discussed bounds

on the number of states for equivalent DFAs and RNFAs; these are trivially reflected in sim-

ilar bounds for SeqDDB’s and SeqDDT’s. To obtain bounds on the number of transitions,

one could just multiply the state bounds by the alphabet size, but we are really interested

in the actual number of edges for equivalent SeqDDs, thus partial FAs. This section shows

that bounds similar to those for states hold also for edges.
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Theorem 8 Given a DFA M = (Q,Σ, δD, q0, F ) with n states encoding a finite language

Y ⊂ Σ∗, an equivalent minimized RNFA N has O(n2) states.

Proof. For each state q ∈ Q and k = 0, . . . , height(Y), let L(q, k) = L(q) ∩ Σk. Then, we

build an equivalent RNFA N with states organized by level:

• Level 0 of the RNFA contains a single accepting state f .

• Level k contains a state 〈q,k〉 for each nonempty L(q, k).

• The initial state of N is 〈q0,max lengths(Y)〉.

• The transition function δN of N satisfies

– For each state 〈q,k〉 with k > 0 in N and for each a ∈ Σ:

〈p,k − 1〉 ∈ δN (〈q,k〉, a) iff δD(q, a) = p.

– For each state 〈q,k〉 in N , let h be the largest integer less than k such that state

〈q,h〉 exists in N ; if such state exists, then 〈q,h〉 ∈ δN (〈q,k〉, ε).

Note that the resulting RNFA might not be minimized, in the sense that it is

possible that 〈q,k〉 and 〈p,k〉 encode the same language, in which case they should be

merged. In any case, however, the number of states of the RNFA is at most equal to the

number of states of the DFA times the maximum length of a string in Y, which, again, is at

most equal to the number of states. Thus the number of RNFA states is at most quadratic

the number of DFA states. As the two automata obviously accept the same language Y,

the proof is complete.

To show that the growth of Theorem 8 is indeed possible, consider the family of
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Figure 2.7: Example of exponential growth when translating SeqDDT into SeqDDB.

languages G = {Gk : k ∈ N} over {a, b}. Let Gk = {akbk, akbk−1, · · · , akb, ak}, so that

||Gk|| = 3(k+ 1)k/2. Then, the SeqDDT AkT encoding Gk contains k2 + 3k edges, while the

SeqDDB AkB encoding Gk contains 3k edges (see Figure 2.6).

Theorem 9 Given a minimized RNFA N with n states encoding a finite language Y ⊂ Σ∗,

an equivalent minimized DFA has at most O(2n) states.

Proof. The proof is immediate given the well known fact that an NFA-to-DFA conversion

may result in an exponential increase in the number of states.

Since RNFAs are a restricted form of NFAs, however, one may wonder whether an

exponential growth can actually occur. To show that this is the case, consider the family of

languages {Fk : k ∈ N} with Fk ={xay : x, y∈{a, b}∗, |x|≤k, |y|=k}. Then, the SeqDDT

AkT encoding Gk contains 7k − 1 edges while the SeqDDB AkB encoding Gk contains Ω(2k)

edges (see Figure 2.7). This is similar to the well-known construction that demonstrates

the proof of Theorem 9.
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Theorem 10 There exists a family of finite languages G = {Gk : k ∈ N} over {a, b} such

that the number of edges in the SeqDDN AkN encoding Gk is O(k2) while the number of edges

in the SeqDDB AkB encoding Gk is O(k).

Proof. We exhibit such a family. Let Gk = {akbk, akbk−1, · · · , akb, ak}, so that ||Gk|| =

3(k + 1)k/2. Then, the SeqDDN AkN encoding Gk contains k2 + 3k + 1 edges while the

SeqDDB AkB encoding Gk contains 3k edges (see Figure 2.8).

Theorem 11 There exists a family of finite languages F = {Fk : k ∈ N} over {a, b} such

that the number of edges in the SeqDDN AkN encoding any Fk is O(k) while the number of

edges in the SeqDDB AkB encoding Fk is O(2k).

Proof. Again, we exhibit such a family. Let Fk = {xay : x, y ∈ {a, b}∗, |x| ≤ k, |y| = k}.

Then, the SeqDDN AkN encoding Gk contains 5k+ 2 edges while the SeqDDB AkB encoding

Gk contains O(2k) edges (see Figure 2.9).
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F2 = {xay : x, y ∈ {a, b}∗, |x| ≤ 2, |y| = 2}.
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Figure 2.9: The family of languages demonstrating Theorem 11.

2.3.4 Summary

We showed in Theorem 5 that SeqDDTs and SeqDDNs are similar is size and

structure. Next, we selected SeqDDNs to compare their compactness with SeqDDBs. It

follows from Theorems 8 and 9 that there is no winner between SeqDDBs and SeqDDNs.

Rather, SeqDDBs are more compact for certain languages and SeqDDNs are more compact

for others. Thus, we need to design algorithms for both. The selection between the two

canonical forms is left to the user, depending on the language to be encoded.
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2.4 Algorithms on SeqDDs

We consider two types of algorithms: set manipulation algorithms and substring

manipulation algorithms. Those of the first type take two or more canonical SeqDDs with

the same canonicity rule and perform set operations such as union or intersection. Those

of the second type input a canonical SeqDD and a string, and select strings satisfying a

criterion for matching a substring, changing a substring into another, or shorten or lengthen

a string.

As with all decision diagram algorithms, we adopt a recursive style. SeqDD nodes

are stored in a unique table to ensure canonicity. An operation cache ensures efficiency by

virtually eliminating repeated computations. Each of the following set manipulation algo-

rithms has been developed for SeqDDB and SeqDDN representations: union, intersection,

set difference, symmetric set difference, and concatenation. For instance, the Intersection

algorithm for two SeqDDB’s traverses them top-down and builds the resulting SeqDDB

bottom-up (see the pseudo-code in Figure 2.2). SeqDDN set manipulation algorithms can

be considered as shared MDD algorithms, since a SeqDDN is organized by the length of the

strings encoded.

Various string manipulations can be performed. For example, the classical mem-

bership problem can be solved by a single trace, no longer than the query size + 1, starting
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Algorithm 2.2 Intersection operation on SeqDDBs.

1: function Intersection( p : SeqDDB, q : SeqDDB)
2: declare local SeqDDB r
3: declare local integer count
4: if p = 0 or q = 0 then return 0 . deal with the base cases

5: if p = q then return p

6: if p = 1 then
7: if q[ε] = 1 then return p
8: else return 0
9: if q = 1 then return Intersection(q, p)

10: if Cache contains 〈 Intersection, {p, q} : r〉 then return r

11: count← 0
12: for a ∈ Σ do . Otherwise, perform Intersection for each index a ∈ Σ

13: r[a]← Intersection(p[a], q[a])
14: if r[a] = 0 then count← count+ 1

15: if count = |Σ| then r ← 0

16: if p[ε] = 1 and q[ε] = 1 then . deal with ε case

17: if r = 0 or r = 1 then r ← 1
18: else r[ε]← 1

19: UniqueTableInsert(r)
20: Cache← 〈 Intersection, {p, q} : r〉
21: return r

from the root and ending in either terminal 1 or 0. Set manipulation algorithms can also

become handy in performing string manipulations; for instance, the membership problem

is solved by a set intersection, and string replacement can be solved using a combination

of set difference, intersection, and union. However, if we want to perform substring ma-

nipulations, the use of set manipulation algorithms becomes inefficient, hence we developed

specific substring manipulation algorithms.

The main advantage of using SeqDDs for substring manipulation lies in the ability

to search or modify a set of strings at once, thanks to node sharing and memoization. For

example, in a SeqDDB, replacing the first occurrence of a substring t with t′ is done once

for all strings sharing a prefix that contains t. Moreover, a shared suffix is processed the
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Algorithm 2.3 Union operation on SeqDDBs

1: function Union( p : SeqDDB, q : SeqDDB)
2: declare local SeqDDB r
3: declare local integer count . deal with the base cases

4: if p = 0 then return q

5: if q = 0 or p = q then return p

6: if p = 1 then
7: if q[ε] = 1 then return q
8: else
9: r ← NewNode(q) . create a node r equals to q

10: r[ε]← 1
11: r ← UniqueTableInsert(r)
12: return r
13: if q = 1 then return Union(q, p)

14: if Cache contains 〈 Union, {p, q} : r〉 then return r

15: count← 0
16: for a ∈ S do . Otherwise, perform Union for each index a ∈ S
17: r[a]← Union(p[a], q[a])
18: if r[a] = 0 then count← count+ 1

19: if count = |Σ| then r ← 0

20: if p[ε] = 1 or q[ε] = 1 then r[ε]← 1 . deal with ε case

21: UniqueTableInsert(r)
22: Cache← 〈 Union, {p, q} : r〉
23: return r

first time we explore it; for other strings sharing that suffix the algorithm simply checks the

operation cache for the result. A universal algorithm replace can replace, insert, or delete

a specific substring: replacing ε by a string t 6= ε performs an insertion, while replacing t

by ε performs a deletion. Of course, this can be refined by additionally providing to the

algorithm specific substrings that must be found before and after the replacement location.
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Algorithm 2.4 Difference operation on SeqDDBs

1: function Difference( p : SeqDDB, q : SeqDDB)
2: declare local SeqDDB r
3: declare local integer count . deal with the base cases.

4: if p = 0 or q = 0 then return p

5: if p = q then return 0

6: if p = 1 then
7: if q[ε] = 1 then return 0
8: else return p

9: if q = 0 then return p
10: if p[ε] = 0 then return p
11: else r ← NewNode(p) . create a node r equals to p

12: r[ε]← 0
13: r ← UniqueTableInsert(r)
14: return r
15: if Cache contains 〈 Difference, p, q : r〉 then return r

16: count← 0
17: for a ∈ S do . Otherwise, perform Difference for each index a ∈ S
18: r[a]← Difference(p[a], q[a])
19: if r[a] = 0 then count← count+ 1

20: if count = |Σ| then r ← 0

21: if p[ε] = 1 and not(q = 1 or q[ε] = 1) then . deal with ε case

22: if r = 0 or r = 1 then r ← 1
23: else r[ε]← 1

24: UniqueTableInsert(r)
25: Cache← 〈 Difference, p, q : r〉
26: return r

2.5 Applications of sequence decision diagrams

SeqDDs inherit the symbolic characteristics of decision diagrams, but with the

additional ability to encode a set of strings of different lengths. SeqDDs are useful for

applications that need to store and manipulate large sets of strings.
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Algorithm 2.5 Symmetric Difference operation on SeqDDBs

1: function Difference( p : SeqDDB, q : SeqDDB)
2: declare local SeqDDB r
3: declare local integer count . deal with the base cases.

4: if p = 0 then return q

5: if q = 0 then return p

6: if p = q then return 0

7: if p = 1 then
8: if q[ε] = 0 then return q

9: r ← NewNode(q) . create a node r equals to q

10: r[ε]← 0
11: UniqueTableInsert(r)
12: return r
13: if q = 1 then return Xor(q, p)

14: if Cache contains 〈 XOR, {p, q} : r〉 then return r

15: count← 0
16: for a ∈ S do . Otherwise, perform Xor for each index a ∈ S
17: r[a]← Xor(p[a], q[a])
18: if r[a] = 0 then count← count+ 1

19: if count = |Σ| then r ← 0

20: if
(
p[ε] = 1 and not(q = 1 or q[ε] = 1)

)
or
(
q[ε] = 1 and not(p = 1 or p[ε] = 1)

)
then . deal with ε case

21: if r = 0 or r = 1 then r ← 1
22: else r[ε]← 1

23: UniqueTableInsert(r)
24: Cache← 〈 XOR, {p, q} : r〉
25: return r

2.5.1 Probabilistic witness generation

Probabilistic model checking aims to verify whether a probabilistic model satisfies

a certain property [46]. We consider discrete states probabilistic models, namely, discrete-

time Markov chains (DTMCs). Formally, a DTMC is defined by a 4-tuple (Q, q0,P, L)

where,

• Q is a finite set of states.
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Algorithm 2.6 Concatenation operation on SeqDDBs

1: function Concatenate( p : SeqDDB, q : SeqDDB)
2: declare local SeqDDB r
3: declare local integer count . deal with the base cases.

4: if p = 0 or q = 0 then return 0

5: if p = 1 then return q

6: if q = 1 then return p

7: if Cache contains 〈 Concatenate, p, q : r〉 then return r

8: count← 0
9: for a ∈ S do . Otherwise, perform Concatenate for each index i ∈ S

10: r[a]← Concatenate(p[a], q)
11: if r[a] = 0 then count← count+ 1

12: if count = |Σ| then r ← 0

13: if p[ε] = 1 then
14: r[ε]← 0
15: r ← Union(r, q)

16: UniqueTableInsert(r)
17: Cache← 〈 Concatenate, p, q : r〉
18: return r

• q0 ∈ Q is a start state.

• P : Q×Q→ [0, 1] is a stochastic matrix.

• L : Q× → 2AP is a labeling function, where AP is a set of atomic propositions.

DTMCs admit probabilistic choices to resolve race conditions, which arise when multiple

events are enabled and ready to fire; in this case, which event fires next is determined by

a probabilistic choice. Moreover, DTMCs inherits the Markovian property, also known as

the memoryless property, where the next state after a state transition only depends on the

current state.

Probabilistic Computational Tree Logic(PCTL) is a variation of the well known

CTL formulas where path quantifiers are replaced by a probability operator of the form

P♦p(ϕ), where ♦ ∈ {≤, <,≥, >} is a relational operator, p ∈ [0, 1] is a probability, and ϕ is
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Algorithm 2.7 Union operation on SeqDDNs

1: function Union( p : SeqDDN, q : SeqDDN)
2: declare local SeqDDN r
3: for l ∈ Lengths(p) ∪ Lengths(q) do
4: if l /∈ Lengths(p) then r[l]← q[l]
5: else if l /∈ Lengths(q) then r[l]← p[l]
6: else r[l]← mddUnion(l, p[l], q[l])

7: UniqueTableInsert(r)
8: return r

1: function mddUnion(k : lvl, p : Mdd, q : Mdd)
2: declare local Mdd m . deal with the base cases.

3: if p = 0 then return q

4: if q = 0 or q = p then return p

5: if Cache contains 〈 Union, {p, q} : m〉 then return m

6: for a ∈ S do
7: m← mddUnion(k-1, p[a], q[a])

8: UniqueTableInsert(k,m)
9: Cache← 〈 Union, {p, q} : m〉

10: return m

a path formula of the form φ C♦t ψ, where C ∈ {X,U, F,G} is a CTL temporal operator

and t ∈ N∪ {∞} denotes a bound on the number of transitions, so that t =∞ corresponds

to unbounded model checking.

In CTL model checking, a witness to an existential formula, or a counterexample

to a universal formula, is simply a path in the state space of the system corresponding to

finite and legal evolution of the system starting from an initial state. In PCTL (CSL) model

checking, however, the system is modeled by a discrete- (continuous)-time Markov chain

and a “probabilistic witness” to a formula is a finite set of finite paths such that the sum

of their probabilities exceeds some bound. For example, to disprove that the probability of

reaching a deadlock is less than 10−8, we need to show enough paths from the initial state

to a deadlock state so that their cumulative probability is at least 10−8.
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Algorithm 2.8 Intersection operation on SeqDDNs

1: function Intersection( p : SeqDDN, q : SeqDDN)
2: declare local SeqDDN r
3: for l ∈ Lengths(p) ∩ Lengths(q) do
4: r[l]← mddIntersection(l, p[l], q[l])

5: UniqueTableInsert(r)
6: return r

1: function mddIntersection(k : lvl, p : Mdd, q : Mdd)
2: declare local Mdd m . deal with the base cases.

3: if p = 1 then return q

4: if q = 1 or q = p then return p

5: if Cache contains 〈 Intersection, {p, q} : m〉 then return m

6: for a ∈ S do
7: m← mddIntersection(k-1, p[a], q[a])

8: UniqueTableInsert(k,m)
9: Cache← 〈 Intersection, {p, q} : m〉

10: return m

In practice, such a set of paths might be quite large and will usually have paths of

different lengths. An experiment conducted by [36], shows that counterexamples can reach

double exponential growth in size with respect to the number of input variables. One way to

store counterexamples succinctly is via regular expressions [23, 36]. In this case, the proof of

correctness is achieved by recursive evaluation of the resulting regular expression to compute

its probability. However, converting a counterexample into a minimized regular expression

is a tedious process that requires converting the underlying DTMC model into a DFA and

incrementally eliminating variables to generate the corresponding regular expression. In

fact, the order of variable elimination affects the size of the resulting regular expression

and heuristics are needed to select a good ordering that will result in a succinct regular

expression.

Now, let us consider how counterexamples are generated in the first place. Aljazzar
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Algorithm 2.9 Difference operation on SeqDDNs

1: function Difference( p : SeqDDN, q : SeqDDN)
2: declare local SeqDDN r
3: for l ∈ Lengths(p) do
4: if l /∈ Lengths(q) then r[l]← p[l]
5: else r[l]← mddDifference(l, p[l], q[l])

6: UniqueTableInsert(r)
7: return r

1: function mddDifference(k : lvl, p : Mdd, q : Mdd)
2: declare local Mdd m . deal with the base cases

3: if p = 0 or q = 0 then return p

4: if p = q then return 0

5: if Cache contains 〈 Difference, p, q : m〉 then return m

6: for a ∈ S do
7: m← Difference(k − 1, p[a], q[a])

8: UniqueTableInsert(k,m)
9: Cache← 〈 Difference, p, q : m〉

10: return m

et al. in [3, 4] used A.I. techniques such as Best First Search (BFS) and Z*, a specialized

directed search algorithm, to incrementally generate a counterexample that consists of the

most probable paths. With the same goal of generating a smallest, most expressive coun-

terexample and under the assumption that the states refuting a given property are already

known, Han et al. [37, 36], showed that the strongest evidences could be generated via a sim-

ple single source shortest path algorithm such as Dijkstra’s algorithm for unbounded model

checking and by using either the Bellman-Ford or Viterbi algorithms for bounded model

checking. The strongest evidence is usually not enough to serve as a counterexample. The

next step is to construct a smallest counterexample by exploiting a recursive enumeration

algorithm for which the number of the needed paths to refute the property is determined

on the fly. All the mentioned algorithms are explicit, therefore do not scale well for large
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Algorithm 2.10 Symmetric Difference operation on SeqDDNs

1: function Xor( p : SeqDDN, q : SeqDDN)
2: declare local SeqDDN r
3: for l ∈ Lengths(p) ∪ Lengths(q) do
4: if l /∈ Lengths(p) then r[l]← q[l]
5: else if l /∈ Lengths(q) then r[l]← p[l]
6: else r[l]← mddXor(l, p[l], q[l])

7: UniqueTableInsert(r)
8: return r

1: function mddXor(k : lvl, p : Mdd, q : Mdd)
2: declare local Mdd m
3: if p = 0 then return q . deal with the base cases

4: if q = 0 then return p

5: if p = q then return 0

6: if Cache contains 〈 XOR, {p, q} : m〉 then return m

7: for a ∈ S do
8: m← mddXor(k − 1, p[a], q[a])

9: UniqueTableInsert(k,m)
10: Cache← 〈 XOR, {p, q} : m〉
11: return m

models. The need for a symbolic (e.g., decision-diagram based) approach for probabilistic

counterexample generation remains a challenge that we plan to address in future work.

2.5.2 Biological sequence analysis

Indexing

Advancements in sequencing instruments and lower cost associated with sequenc-

ing DNA, have resulted in an exponential increase in the amount of sequencing data and

the number of genomes stored in public databases. According to [79], genomic databases

are doubling in size every 15 to 16 months. Due to the size of these dataset, computation

is a bottleneck in the analysis pipeline.
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Algorithm 2.11 Concatenation operation on SeqDDNs

1: function Concatenate( p : SeqDDN, q : SeqDDN)
2: declare local SeqDDN r
3: declare local mdd m
4: for k ∈ Lengths(p) do
5: for l ∈ Lengths(q) do
6: m← mddConcatenate(p[k], q[l])
7: r[k + l]← mddUnion(k+l, r[k+l], m)

8: UniqueTableInsert(r)
9: return r

1: function mddConcatenate(k : lvl, p : Mdd, q : Mdd)
2: declare local m . deal with the base cases

3: if p = 0 or q = 0 then return 0

4: if p = 1 then return q

5: if q = 1 then return p

6: if Cache contains 〈 Concatenate, p, q : m〉 then return m

7: for a ∈ S do
8: m[a]← mddConcatenate(k-1,p[a],q)

9: UniqueTableInsert(k,m)
10: Cache← 〈 Concatenate, p, q : m〉
11: return m

A memory-efficient representation of these dataset that allows for efficient data

manipulation is needed. For instance, the suffix tree [53] is a memory-efficient data structure

in which common prefixes are represented in same paths along the tree. The suffix tree be

built in linear time [73], and allows one to answer to queries in time proportional to the size

of the pattern. Although the space required by the suffix tree is linear in the size of the

text, the number of bytes requires is 20-25 times the size of the input DNA string, making

the suffix impractical for large eukaryotic genomes.

Another indexing structure is the directed acyclic word graph (DAWGs), which

can be built online in linear time [10]. A DAWG is the DFA that recognizes the set of

all suffixes of a given string. By making all its states accepting, DAWG recognizes the
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set of all subwords of the encoded string. DAWG achieves similar query time complexity

as suffix trees with lower memory cost due to the fact that shared suffixes use common

paths in the DAWG. However, this comes at the cost of losing location information. While

insertion of a new word into an existing DAWG can be done in linear time in the size of

the data structure [67], set manipulation algorithms are not done efficiently. Since DAWGs

are DFAs, the result of set manipulation is not guaranteed to be minimal; therefore, an

additional minimization step should be performed separately. In general, substring indices

data structures lack efficient set manipulation algorithms [24].

Binary decision diagrams are instead designed for efficient set manipulation al-

gorithms. As mentioned earlier in Section 1.3, SeqBDDs inherit BDDs and ZBDDs set

manipulation algorithms, yet still have the ability to store any finite language of finite

strings; where a sequence is represented as a bit vector, each bit represents an alphabet

element per position. This representation requires lg |Σ| boolean variables per position,

given |Σ| > 1.

The authors of [64] adapt the Set Decision Diagrams (SDD) introduced in [20],

to overcome the drawback of binary representation used by SeqBDDs and achieve more

compact storage for large databases of biological sequences. The goal is to maximize sim-

ilarities between encoded sequences to maximize sharing and minimize branching. This is

done by global reordering of each sequence in the set to be encoded. Further reduction is

achieved by swapping, merging, and concatenating nodes to reduce the number of nodes

and edges in the resulting diagram. To ensure canonicity, these reduction rules are applied

iteratively in a predefined order. Their results show a 90% improvement, in the size of their
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data structure over SeqBDD in terms of the number of nodes. SeqBDDs encode bits, while

SDDs encode characters. However, this comparison ignores the number of edges and the

size of data associated with each edge. While the number of nodes and edges might be

smaller in the proposed data structure, the information associated with the edges is more

complicated since it consists of symbols, sequences, or sets. Moreover, since the sequences

are reordered, the permutation needs to be stored to recover the original data.

We have previously introduced SeqDDBs and SeqDDNs, which are multi-valued

(unlike SeqBDDs) yet still maintain a simpler structure than SDDs. Simple structures

promote a more comprehensible development of complex functions. In terms of SeqDDs

compactness in regards to sequence indexing, we will start by discussing SeqDDBs. When

encoding a set of suffixes or a set of subwords of a string w, the compactness of SeqDDBs is

comparable to that of DAWGs. Recall that a DAWG is defined as a minimal partial DFA

and the size of a SeqDDB, in terms of the number of edges, equals the size of a minimized

partial DFA plus the number of accepting states. Given the fact that the size of the smallest

automaton accepting the set of all suffixes of a string w is linear in the size of w [22]; more

specifically, the number of transition is at most 3n − 4, where n = |w| > 3 [21], we can

conclude that the size of a SeqDDB encoding w’s suffixes is bounded by 4n− 3, where the

number of accepting states is at most n + 1. As for the size of a SeqDDB encoding w’s

subwords, Blumer et al. proved in [10] that a partial minimized DFA recognizing the set

of all subwords consists of 2n − 2 states and 3n − 4 transitions; therefore, the size of a

SeqDDB encoding w’s subwords equals 5n − 6, given that all states are accepting. In the

case of encoding a set of prefixes, the size equals 2n (refer to the example in Figure 2.10(a)).

44



Encoded set SeqDDB size SeqDDN size

Suffixes 4n− 3 2n+ 1
Subwords 5n− 6 1

6(n3 + 3n2 + 8n+ 6)
Prefixes 2n n2 + 1

Table 2.1: Summary of the upper bound size of a SeqDDB/N encoding a set of all prefixes,
suffixes, or subwords of a certain string of size n.

On the other hand, the size of a SeqDDN encoding a set of suffixes is 2n + 1, where the

SeqDDN will consist of a MDD, with one node per level, of size n and n+1 handles pointing

to the corresponding suffix (refer to an example in Figure 2.10(b)). A SeqDDN encoding

a set of prefixes is of size up to n2 + 1, while the size of a SeqDDN encoding the set of

substrings, assuming no nodes are shared, equals n+ 1 +
n∑
j=1

j(n− j + 1), which simplifies

to 1
6(n3 + 3n2 + 8n + 6). In practice, the size is often smaller due to suffix sharing (Table

2.1 shows a summary of these results).

Using SeqDDBs and SeqDDNs for indexing sequences allows for efficient set ma-

nipulations. Moreover, the membership problem can be solved in a time proportional to

the size of the query. Future work will employ edge-valued SeqDDs to preserve information

about substring locations.

Sequence alignment

In molecular biology, similar DNA or protein sequences tend to carry the same

function. Sequence similarity allows one to detect homologies and to predict the function-

ality of novel genes or protein sequences. There are three kinds of sequence alignments:

global, local, and semi-global.
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Figure 2.10: Example shows a SeqDDB encoding the set of all prefixes and a SeqDDN
encoding the set of all suffixes of w = “actcgg”.

An alignment between two sequences is formed by inserting gaps, such that the

two sequences becomes of the same length. The similarity between two aligned sequences is

measured by the number of matches, mismatches, and gaps. A global alignment between two

sequences aims produce an alignment with the highest similarity score. A local alignment

between two sequences is a pair of aligned substrings with the highest similarity score among

all other substring pairs of the two sequences. A semi-global alignment is a variation of

global alignment that do not penalize gaps at the end of any of the two sequences.

Global alignment is used to check if two sequences are entirely homologous, i.e.,

entirely aligned. Local alignment is used to discover conserved regions. Semi-global align-

ment is usually used in the context of shotgun genome assembly, where the ends of the

sequences are matched.

The alignment between two sequences is called pairwise alignment; if it is carried

out among multiple sequences, it is called multiple sequence alignment [38, 79]. Next, we

46



show how we can take advantage of the SeqBDDs and their variants to solve two sequence

alignment problems.

First, we consider the case of a pairwise local/semi-global alignment under the

assumption that there is a single gap in the pattern that is known a priori. Given a query

of the form “s∗v”, where ∗ stands for zero or more extra characters, and a SeqBDD encoding

a set of sequences, the single wild card query method proposed in [5] can answer such a query

in time linear in the size of the query. The algorithm returns the intersection of sequences

having prefix s with the reverse of the sequences having a prefix v-reversed. However, the

algorithm does not take into account the time and memory complexity associated with

creating a reversed SeqBDD. This can be done efficiently by incrementally constructing a

reversed SeqBDD in time linear to the size of the original SeqBDD by visiting each node in

the topological ordering of the nodes. Since their fast method to build the reversed SeqBDD

requires an intermediate SeqBDD (representing visited paths) attached to each node of the

original SeqBDD, the memory requirement could be prohibitive for large SeqBDDs.

The more general case of multiple local sequence alignment is related to the fre-

quent subsequence mining problem addressed by [49]. In this chapter, where SeqBDD were

first introduced, a weighted variation was required to accomplish the mining process. The

purpose is to mine subsequences appear at frequency exceed a predefined minimum sup-

port. Given a weighted SeqBDD p encoding arbitrary set of finite strings, they construct

x-conditional databases, each as a SeqBDD, exploiting decision diagrams techniques, such

as a unique table to share nodes among different SeqBDDs and operation cache for efficient

manipulation.
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Biclustering for gene-expression analysis

Conventional clustering approaches compose coherent clusters of objects that are

grouped according to their weights regarding some attributes. In biclustering techniques,

however, objects and attributes are symmetric and the goal shift to clustering them simul-

taneously [35]. Biclustering gene expression aims to identify groups of genes that exhibit

similar reactions to different stimuli [82].

We consider the ZCluster algorithm [83], which uses symbolic manipulation to

discover all biclusters in a given microarray matrix without the need for exhaustive enu-

meration, thus, coping with the computational challenges of an NP-hard problem [82, 17].

The ZCluster algorithm inherits the pScore system from the PCluster algorithm to score

sub-matrices and generate pairwise maximal biclusters, which are divided into two types:

horizonal seeds for every two genes to show a maximal set of experiments to which they

responded similarly, and vertical seeds, analogously, for every two experiment conditions.

Considering that the number of experiments is much smaller than the number of genes,

usually 103 to 104 genes in a microarray and fewer than 100 experiments [17], ZCluster

starts with generating the vertical seeds and represents them as ZBDDs, then generates the

corresponding horizontal seeds represented as a trie, to generate the final biclusters.

In [82], Yoon et al. represented both vertical and horizontal seeds as ZBDDs. In

their follow-up paper [83] they represented horizontal seeds as a set of strings of different

length and encode them using trie. As future work, our goal is to explore the benefits of

storing both vertical and horizontal seeds as SeqDDs, and compare the ZCluster algorithm

efficiency with different combinations of representations.
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All-pair suffix-prefix overlap

Detecting suffix prefix overlap is a vital step in genome assembly, especially for

third generation sequencing where reads are long (but noisy). According to [34, 33], the

all-pair suffix-prefix overlap problem is defined as follows.

Definition 8 Given two strings Si and Sj, any suffix of Si that matches a prefix of Sj

is called a suffix-prefix match of Si, Sj. Given a set of strings = {S1, S2, · · · , Sk}, all-pair

suffix-prefix problem is the problem of finding, for each ordered pair (Si, Sj), the longest

suffix-prefix match.

To find all-pair suffix-prefix overlaps in DNA sequences using SeqDDB, we build

two shared SeqDDBs such that for a given finite set of DNA sequences S = {s1, s2, · · · , sk},

let Ŝ be a set composed of reverse complements ∀si ∈ S. And let u and v be two canonical

shared SeqDDBs, where u encodes S ∪ Ŝ and v encodes suffix≥τ (S). And let p and q be

two canonical SeqDDBs, where p encodes si ∪ ŝi and q encodes suffix≥τ (si), for all si ∈ S.

Algorithm 2.12 introduces a set operation Suffix Prefix overlap to find all pair suffix-

prefix overlaps of length ≥ τ .

The algorithm was tested on a set of simulated reads that for chromosome 1 of

Saccharomyces cerevisiae (yeast) genome (which is approximately 230 kbp). Simulated

reads were generated using ART [40], which generated 3,068 reads of length 150 bp each

(about 2x sequencing depth). For τ = 33, the result contained 1,992 overlaps.

To verify that detected overlaps are indeed the longest overlap, we conducted the

following test; assume that an overlap of length y is detected between a pair of sequences

(si, sj), where |si| = x and |sj | = z, then the test follows one of the three cases below.
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longest overlap =



true if |overlap| = min(|si|, |sj |),

true if suffix =z+1(sj) 6= prefix (si),

false otherwise

Note that our test detects false positives, while false negatives are not detected.

Running the test on out dataset shows that all detected overlaps are the longest.

2.6 Conclusion

We introduced SeqDDs, a multi-valued sequence decision diagrams, which can be

perceived as MDDs with no variable ordering but are still, nevertheless, canonical. In our

setting the notion of levels is not applicable, hence our representation is not sensitive to

variable ordering, therefore the “size explosion” depends merely on the encoded set. SeqDDs

are ideal for encoding a finite set of strings of arbitrary lengths. To ensure canonicity, we

proposed two canonical versions, with ε restricted towards the bottom or with ε restricted

towards the top. The latter version is analogous to a shared MDD, which we adapt into

what we called SeqDDN. The compactness of our representations were studied in relation

to finite automata. The results showed that there is no winner between the two versions;

therefore, we proposed algorithms for both SeqDDBs and SeqDDNs. SeqDDs are useful for

applications that require compact storage and efficient manipulation of large sets of strings

with high sharing rate.
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Algorithm 2.12 Suffix-Prefix overlap

1: function allPairSuffixPrefixOverlap( u : shared SeqDDB, v : shared SeqDDB)
2: declare local int len
3: for sj ∈ S do
4: q ← v[s− j] . SeqDDB q points to the root of SeqDDB encoding suffix≥τsj

5: for si ∈ S do
6: if si = sj then
7: continue
8: p← u[s− i] . SeqDDB p point to the root of SeqDDB encoding si ∪ ŝi
9: len← 0

10: len← SuffixPrefixOverlap(p,q, len)
11: if len > 0 then
12: output overlap info

13: return

1: function SuffixPrefixOverlap( p : SeqDDB, q : SeqDDB, len : int)
2: declare local SeqDDB r
3: declare local int count
4: if p=0 or q=0 then return 0 . base case: empty set

5: if q=1 then return 1

6: if p=1 then . base case:ε

7: if q[ε]=1 then return 1
8: else return 0
9: if Cache contains 〈SefPrefOverlap, (p, q):r〉 then return r . check if already

computed

10: count← 0 . initialize counter

11: for a ∈ Σ do . Compute by recursively call SefPrefOverlap for each a ∈ Σ

12: r[a]← SefPrefOverlap(p[a], q[a])
13: if r[a]=0 then count← count+ 1 . count edges pointing to terminal 0

14: len← len+ 1
15: if q[ε] = 1 and ( p[ε] = 1 or ∀a∈Σ p[a] 6= 0⇔ q[a] = 0) then
16: if count = |Σ| then return 1 . ε-node

17: else r[ε] = 1

18: else if count= |Σ| then r ← 0 len← 0 . empty-node

19: UniqueTableInsert(r) . insert to unique table to ensure canonicity

20: Cache ← 〈 SefPrefOverlap, (p, q):r〉 . cache result to avoid re-computation

21: return r
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Chapter 3

A Comparative Evaluation of

Assembly Reconciliation Tools

While the number of sequenced genome keeps increasing, the majority of eukaryotic

genomes are unfinished due to the algorithmic challenges of assembling them. A variety

of assembly and scaffolding tools are available, but it is not always obvious which tool or

parameters to use for a specific genome size and complexity. As a consequence, it is common

practice to produce multiple assemblies using different assemblers/parameters, then select

the best one for public release. A more compelling approach would allow one to merge

multiple assemblies with the intent to produce a higher quality consensus assembly, which

is the objective of assembly reconciliation.

Several assembly reconciliation tools have been proposed in the literature, but their

strengths and weaknesses have never been compared on a common dataset. We fill this need

with the work presented in this chapter, in which we report on an extensive comparative
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evaluation of CISA, GAA, GAM NGS, GARM, Metassembler, MIX, and ZORRO. Specif-

ically, we evaluate contiguity, correctness, coverage, and duplication ratio of the merged

assembly compared to the individual assemblies provided in input.

None of the tools we tested consistently improved the quality of the input GAGE

and synthetic assemblies. Our experiments show an increase in contiguity in the consensus

assembly only if the original assemblies already have high quality. In terms of correctness,

the quality of the results depends on the specific tool, as well as on the quality and the

ranking of the input assemblies. In general, the number of misassemblies range from being

comparable to the best of the input assembly to being comparable to the worst of the input

assembly.

3.1 Background

Despite the prodigious throughput of the sequencing instruments currently on

the market, the assembly problem remains very challenging, mainly due to the repetitive

content of large genomes, uneven sequencing coverage, and the presence of (non-uniform)

sequencing errors and chimeric reads. The third generation of sequencing technology, e.g.,

Pacific Biosciences [27] and Oxford Nanopore [19], offers very long reads at a higher cost

per base, but sequencing error rate is much higher.

A significant number of de novo genome assemblers are available to the community.

The choice of the most appropriate assembler depends on the size and complexity (repeat

content, ploidy, etc.) of the genome to be assembled, the type of sequencing technology used

to produce the input reads (e.g., Sanger, 454, Illumina, PacBio, Nanopore, etc.), and the
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availability of paired-end or long-insert mate-pair reads. Each assembler implements slightly

different heuristics to deal with repetitions in the genome, uneven coverage, sequencing

errors and chimeric reads. The final assembly is very rarely entirely finished, with one solid

sequence per chromosome. Instead, the typical output is an unordered/unoriented set of

contiguous regions called contigs. If paired-end or mate-pair reads are available, some of

contigs can be ordered and oriented by anchoring paired-end reads to contigs. In some

cases, the length of the gaps between contigs can be estimated and contigs can be joined

together to create scaffolds.

As said, selecting which assembler to use in order to produce the best quality

assembly is not a trivial task. Assembly competitions such as Genome Assembly Gold-

Standard Evaluation (GAGE) [66] and Assemblathon [13] have been held to evaluate mul-

tiple assemblers on common data sets. Such comparative evaluations can provide general

guidelines, but there is no systematic way to determine which assembler and what param-

eters settings to use to produce the “best” assembly for a specific genome and a specific

dataset. As a consequence, it is common practice to generate multiple genome assem-

blies from a few different assemblers and/or parameters (e.g., the k-mer size for the de

Bruijn graph), and then try to guess the “best” assembly based on assembly statistics,

spot-checking, homology analysis, etc.

In fact, the notion of “best” assembly is not well defined. Since it is unlikely to

obtain a “perfect” assembly that covers the entire genome with no assembly errors, one has

to decide whether it is more important to maximize contig/scaffold length (at the expense

of possibly introducing more mis-assemblies) or minimize the number of mis-assemblies
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(at the expense of possibly generating shorter contigs/scaffolds). Typically, the quality

assessment for draft assemblies is carried out via statistical measurements and alignment

to a reference genome (if one is available). N50 is a widely used metrics to assess the

contiguity of an assembly, which is defined by the length of the shortest contig for which

longer and equal length contigs cover at least 50% of the assembly. NG50 is similar to

N50 except the metrics relates to the genome size rather than the assembly size. NA50

and NGA50 are analogous to N50 and NG50 where the contigs are replaced by blocks that

can be aligned to the reference. Correctness is measured by detecting misassemblies such

as mismatches, indels, and misjoins. Misjoins are considered the least desirable type of

misassemblies [72], where loci that are far apart in the genome are improperly joined in the

assembly. Misjoins include inversions, relocations, and translocations. An inversion occurs

when the orientation of a contig is inverted with respect to the reference. A relocation

occurs when a contig is misplaced within the chromosome it belongs to, and a translocation

occurs when a contig is misplaced in a different chromosome.

Assembly reconciliation algorithms attempt to take one step further towards a

finished genome. Rather than arbitrarily try to guess the best assemblies among several

draft assemblies, assembly reconciliation tools offer a compelling alternative. These tools

promise to produce a higher quality consensus assembly by merging two or more draft

assemblies. The main goal of assembly reconciliation algorithms is to enhance contiguity of

the resulting assembly while at the same time, avoid introducing assembly errors. In this

chapter, we carry out the first comprehensive evaluation of assembly reconciliation tools by

measuring the quality of the consensus assembly on several common input datasets with
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different quality attributes.

3.1.1 Assembly reconciliation tools

The concept of assembly reconciliation was first introduced by Zimin et al. [88].

In that work, the authors also introduced an assembly reconciliation tool called Reconcil-

iator, which is no longer maintained (last updated in 2007). Other reconciliation tools in

the literature that are no longer maintained and/or have no documentation were excluded

from our evaluation. We also excluded GAM, because it was superseded by GAM NGS.

Other tools such as eRGA [74], MAIA [62], and Minimus2 [71] were also not included in our

comparative evaluation because these tools address different problems. Reference-guided

assembly (eRGA and MAIA) and hybrid assembly (Minimus2) are related to the problem of

assembly reconciliation, but not quite the same. The former uses a closely related reference

to assemble the conserved regions of the genome, which reduces the complexity of de novo

assembly to the non-conserved portions. Hybrid assembly allows users to incorporate reads

from different sequencing technologies (e.g., short Illumina reads with long PacBio reads).

MAIA has also the ability to merge de novo assemblies if several closely related reference

genomes are available. QuickMerge [16] is a tool that allows users to merge an assembly

obtained from Pacific Bioscience reads with another assembly based on second generation

reads. We excluded QuickMerge from our evaluations due the lack of publicly available

PacBio-based assemblies with a corresponding high quality reference genome that would

allow us to assess the results.

In this work we benchmarked seven assembly reconciliation tools, namely CISA,

GAA, GAM NGS, GARM, Metassembler, MIX, and ZORRO, which are briefly described

56



next. Table 3.1 summarizes the main goals and features of the seven assembly reconciliation

tools evaluated in this study. Several of these algorithms take advantage of compression-

expansion (CE) statistic, which allows them to detect assembly compression (due to an

incorrect deletion) or assembly expansion (due to an incorrect insertion) [88]. In order to

obtain the CE statistics, paired-end or mate-pair reads are mapped to the assembly to be

evaluated. The CE statistics is computed by comparing the distance between the mapped

mates and the expected insert size.

The objective of CISA is to reconcile bacterial genome assemblies [48]. Given

the contigs for each of the input draft assemblies, CISA selects representative contigs (i.e.,

longest contigs) and discards (nearly) contained contigs. CISA then tries to extend repre-

sentative contigs, and detects mis-assembly in the representative contigs by aligning them

to query contigs. Contigs that align to multiple positions are considered misassembled and

another representative contig is selected. Contig with an unaligned portion are split. Fi-

nally, the resulting contigs are iteratively merged. We should note that CISA’s objective is

to merge more than two assemblies, but we have also tested it on two inputs for consistency

with other tools.

Users of GAA have to specify a target and a query assembly [81] where the “target”

assembly is expected to be of higher quality. The objective of GAA is to close gaps in target

assemblies using the query assembly. Query contigs that are not anchored to at least two

contigs target are not utilized.

The input to GAM NGS is one or more alignments between each library of reads

and each assembly [75]. GAM NGS first identifies maximal portions of both input assem-
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bly (called blocks) that share the same set of uniquely mapped reads. GAM NGS then

constructs a weighted undirected graph where each vertex corresponds to a contig, and an

edge connects two contigs if (i) they belong to different assemblies and (ii) they share at

least one block. From this graph, GAM NGS computes a consistent ordering and orien-

tation of blocks with respect to both input assemblies. Then, GAM NGS builds another

directed weighted graph (called assembly graph) where each vertex represents a block, and

each edge connects two blocks if they belong to the same contig of at least one of the assem-

blies. After resolving conflicts in the assembly graph, GAM NGS computes a semi-global

alignment between any two contigs that share at least one block. If two contigs have at

least 95% identity, GAM NGS “merges” the assemblies by selecting the assembly with the

better compression-expansion statistics.

GARM [55] also manipulates assemblies asymmetrically, but users do not need

to know in advance which one is the better assembly. The tool decides which one is the

“reference” assembly based on a variety of assembly statistics. GARM then (i) aligns

the assemblies to each other to detect overlaps (using nucmer [45]), (ii) removes ambiguous

overlaps and contigs which are (nearly) completely contained in each another, (iii) generates

layout and consensus scores, (iv) merges contigs, (v) orders merged contigs to match the

order and the orientation of the original scaffolds (if scaffolds are available) – if a contig

that is a part of a scaffold is not merged, the contig is placed within the resulting scaffold

in a location that corresponds to the original scaffold and the gap length is recomputed.

Compression-expansion statistics on the two input assemblies are also used in

Metassembler [78]. First, Metassembler uses nucmer [45] to align the two input assemblies;
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the boundaries of these alignments are called break points. For each region between the

break points, one of two assemblies is selected based on its compression-expansion statistics.

Metassembler allows users to input more than two assemblies, but merges them in an

progressive pairwise fashion.

MIX [72] uses a directed weighted graph called extension graph which is annotated

with a variety of weights to represent prefix-suffix overlaps between contigs in the input

assemblies. MIX determines a set of non-overlapping maximal independent longest paths

on the extension graph to merge contigs. Contigs not included in any path are examined

for duplications, contigs that are contained or nearly contained are removed, and the rest

are added to the assembly. MIX does not performs error correction, but rather focuses on

enhancing contiguity.

ZORRO [6] starts by masking repetitive regions which are identified using k-mer

statistics. Once the repetitive regions are masked, the overlap between the two assemblies is

detected using Minimus [71]. ZORRO then unmasks the repetitive regions and merges the

overlapping contigs. Lastly, ZORRO uses the tool Bambus [63] to order and orient contigs

using paired-end reads.

3.2 Datasets and Experimental Results

Since the quality of the input assemblies is expected to directly affect the quality

of the final merged assembly, we explored the performance of assembly reconciliation tools

under different input quality.

To carry out a comparative evaluation of the seven assembly reconciliation tools
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Table 3.1: Features of the assembly reconciliation tools evaluated in this study.

CISA GAA GAM NGS GARM Metassembler MIX ZORRO

Inputs

Contigs allowed X X Xa X X X X
Scaffolds allowed X Xb Xa X X
Short reads allowed Xa

Paired-end reads allowed Xa X
Mate-pair reads allowed Xa X
Alignments allowed X X
Reads required Xa X X
Reference input assembly required X X
Input assemblies treaded symmetrically X X
Only two input assemblies X X X Xc X
More than two input assemblies X X
Can handle bacterial/small genomes X X X X X X X
Can handle large eukaryotic genomes X X X X X
Goals

To increase assembly contiguity X X X X X X X
To decrease number of assembly errors X X
Methods

Compression-expansion statistics X X X
Scaffolding information X X
Use single reads X
Use paired-end/mate-pair reads X X X X
Can split assembly misjoin X X
Can detect/avoid repetitive regions X X X
Output

Contigs X X X X X X X
Scaffolds Xd X

aOptional, GAM NGS requires alignment file.
bScaffolds should be broken into contigs. A gap file and contig naming conveys scaffolding information
cperforms iterative pairwise
dwhen input contains scaffolds

listed above, we used publicly-available assemblies for the GAGE competition [66] and we

created synthetic assemblies of Saccharomyces cerevisiae S288c [6] including structural vari-

ants. The choice of the GAGE assemblies was motivated by the fact that this dataset has

been the most commonly used for assembly reconciliation tools. The authors of GAM NGS

used this dataset in their experimental results, CISA was tested on assemblies of Staphylo-

coccus aureus and Rhodobacter sphaeroides, and MIX used GAGE B [52] which includes the

assemblies of Staphylococcus aureus and Rhodobacter sphaeroides. Other assembly reconcil-
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iation tools used the Assemblathon dataset [13], which was a similar assembly competition

to GAGE.

All assembly reconciliation tools were ran with default parameters, unless other-

wise noted. We explored how other parameter settings affected the experimental results in

section 3.2.6. Since some assembly reconciliation tools can take advantage of scaffold in-

formation, we carried out experiments on both contig-based assemblies and scaffold-based

assemblies.

Outputs of assembly reconciliation tools were processed by our scripts, then fed

into Quast [32] (GAGE option activated) to obtain assembly statistics. Quality scores

were also computed using Quast on the input assemblies. We first collected assembly

statistics related to contiguity, namely N50, number of contigs, longest contig, and total

assembly size. By comparing the assemblies to the reference genome we also collected

NGA50, number of misassemblies, the total length of contigs affected by misassemblies, the

number of mismatches and indels between the assembly and the reference, the percentage

of the reference genome covered by the assembly, and the duplication ratio. In addition to

genome-wide analyses, we also studied the ability of these tools to assemble the primary

sequence of annotated genes. Specifically, we computed the fraction of each gene sequence

covered by contigs, for both input and merged assemblies. Details about the procedure

used to compute gene coverage can be found in Subsection 3.2.4. A complete report on

these statistics is reported in Tables A.1–A.18. Here, we only summarize the results using a

graphical representation of the contiguity/correctness tradeoff (see Figures 3.2-3.7). Input

and output assemblies are represented as points on the scatter plot where the x-coordinate
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Figure 3.1: The performance of assembly reconciliation algorithms is summarized as points
on a 2D scatter-plot, in which the x-axis represents contiguity (NGA50) and the y-axis
represents the number of misassemblies.

represents the contiguity (NGA50), and their y-coordinate is the number of misassemblies.

Figure 3.1 illustrates how to interpret the plots. We want assembly reconciliation tools

to “move” the input points towards the bottom right corner of the plot, i.e., increase the

contiguity and reduce the number of assembly errors.

All experiments were performed on a Linux Ubuntu 12.10 server with a 20 cores

Intel Xeon CPU E5-2690v2 3GHz and 512GB of RAM. Multithreading was used when

available. A detailed analysis of run time, memory consumption, CPU utilization for all

the tools and genomes is reported in Subsection 3.2.7. A companion website http://

reconciliation.cs.ucr.edu/ provides links to the all the datasets and the scripts used

in this study.
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3.2.1 GAGE assemblies

The GAGE competition evaluated eight assemblers (ABySS [70], ALLPATHS-LG

[29], Bambus2 [63], Celera Assembler [60, 57], MaSuRCA [87], SGA [69], SOAPdenovo

[47], and Velvet [85]) on whole-genome shotgun sequence data of four genomes, namely

Staphylococcus aureus (genome size≈2.8 Mbp), Rhodobacter sphaeroides (≈4.6 Mbp), Homo

sapiens’ chromosome 14 (≈88 Mbp), and Bombus impatiens (≈250 Mbp). Staphylococcus

aureus has one main chromosome and a small plasmid, while Rhodobacter sphaeroides has

two chromosomes and five plasmids. In our experiments we mainly used the first hree

genomes, because at the time of writing Bombus impatiens did not have a high quality

reference genome. We only used the assemblies for Bombus impatiens to determine which

tools would be able to handle large inputs. Out of the 4 × 8 genome-assembler pairs, the

GAGE competition included 27 assemblies (available from http://gage.cbcb.umd.edu).

Running each assembly reconciliation tool on all pairs of assemblies (out of the

27 available) would generate several hundred merged assemblies and it would be difficult

to draw general conclusions. We decided instead to select input assembly pairs based on

six different criteria and compare the results on the selected pairs. To streamline the

presentation, we will not comment on tools that did not run successfully.

3.2.2 Limitations

Here are some practical limitations related to the execution of benchmarked tools.

MIX and CISA: we did not run these two tools on the Hg chr14 dataset because they

were designed for bacteria-sized genome and they would not handle such a large input.
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GARM: while GARM’s manual claims that the tool can accept two contigs, two scaffolds,

or contig/scaffold combination as an input, we were only successful to run the tool using

one contig and one scaffold; in most cases, running with two contigs produced an empty

FASTA file, while using two scaffolds produced FASTA files with all nucleotides set to N.

3.2.3 Usage of reads

Some of the tools can take advantage of the raw reads, in addition to the input

assemblies. For GAA, while the paper mentions using paired-end reads for error correction,

there is no option to provide them. Therefore, we didn’t use them for GAA. We used

reads in the following cases. For GAM NGS, we used paired-end reads with a 155-180bp

insert (Library 1 in GAGE). For Metassembler, in the case of bacterial genomes we used

the available short-jump library (insert size of 3500bp); for Hg chr14 we used the available

long-jump library (insert size is approximately 35 kbp), and for Bombus impatiens we used

the available short-jump library 2 (insert size is approximately 8 kbp). For ZORRO, we

used paired-end reads with a 155-180bp insert (Library 1 in GAGE)

3.2.4 Gene coverage analysis

We used the following reference genomes and their corresponding gene annotations

• Staphylococcus aureus subsp. aureus USA300 TCH1516 found at http://bacteria.

ensembl.org/staphylococcus_aureus_subsp_aureus_usa300_tch1516/Info/Index

(2844 Genes)

• Rhodobacter sphaeroides KD131
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http://bacteria.ensembl.org/rhodobacter_sphaeroides_kd131/Info/Index (4474

Genes)

• Homo sapiens, chromosome 14 GRCh38.p2

http://uswest.ensembl.org/Homo_sapiens/Info/Index (ftp release 80) (2289 Genes)

First, we created a BLAST database for each of the GAGE reference genome

assemblies and each of the merged output assemblies. Then, we used BLASTn to align the

primary sequence of each gene against each database (using default parameters). For each

hit reported in BLASTn output, we chose the best ranked alignment with 75% minimum

identity. The total gene coverage reported is the cumulative sum of the coverage of each

hit minus any overlaps between the hits.

3.2.5 Experimental results

High contiguity, high correctness inputs (GAGE)

In the first set of experiments, the objective was to explore the contiguity/correctness

tradeoff. Specifically, we wanted to test the ability of reconciliation tools to take advantage

of the contiguity of the first input assembly and the correctness of the second in order to

create a merged assembly with a number of misassemblies comparable to the second as-

sembly and a contiguity comparable to the first assembly. The two input assemblies to be

merged were chosen so that one has high N50 value (but possibly a relatively high number

of misassembly errors) and the other has few misassembly errors (and possibly a lower N50).

Figure 3.2 and Table A.1 reports the results of merging the SOAPdenovo assem-

bly (high N50) with the ABySS assembly (low misassembly errors) for the three chosen
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Figure 3.2: Contiguity-correctness experimental results when inputs are contigs (top row)
or scaffolds (bottom row); assembly reconciliation tools are given two assembled genomes to
merge (Homo sapiens, chromosome 14, Rhodobacter sphaeroides, Staphylococcus aureus),
in which the first assembly has high contiguity, the second has high correctness; tools were
ran using default parameters

genomes. Since the assembly produced by ABySS on the Rhodobacter sphaeroides genome

has more misassembly errors than the assembly generated by SOAPdenovo, we also reported

in Table A.5 the results produced by ALLPATHS-LG and SGA on Rhodobacter sphaeroides

assemblies. The SOAPdenovo assembly was used as the “master” assembly in all tools that

require a ranking of the inputs.

Observe in Figure 3.2 that on the Staphylococcus aureus genome, all tools increase

the contiguity marginally (in fact, by less than 3%). While none of the tools was able to

improve assembly errors compared to the ABySS assembly, GAA and MIX produced more

errors than SOAPdenovo. CISA produced the lowest number of misassemblies (13% less

than SOAPdenovo). Otherwise, GAM NGS and Metassembler maintained quality statistics

close to that of SOAPdenovo.

GAA created a merged assembly in which number of misassemblies was very close
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to the sum of those statistics for the input assemblies. In terms of NGA50 the contiguity

was at least as good as the most contiguous input assembly.

When the input was composed of scaffolds (bottom panel in Figure 3.2), all tools

improved contiguity marginally (in fact, by less than 5%). Table A.1 show that GARM’s

and MIX’s merged assemblies covered less than 50% of the reference sequence. None of the

tools was able to reduce the number of misassembly errors compared to ABySS; in fact,

CISA produced more errors than SOAPdenovo.

Despite the fact that ABySS’s assembly for Rhodobacter sphaeroides had a higher

number of misassembly errors than SOAPdenovo, none of the merged assemblies improved

on the number of misassemblies compared to SOAPdenovo. Except for GAA, the number

of misassembly errors produced by all tools were closer to the master (SOAPdenovo). As

expected, tools that rely on a master assembly had a lower number of misassemblies than

those that did not rank the inputs. With scaffolds as inputs, changes in NGA50 were

negligible for all tools except for CISA. With contigs as inputs, GAM NGS improved the

contiguity by at most by 11%, Metassembler and MIX increased it by 2%, and CISA

dropped it by 85%. MIX and Metassembler, and GARM maintained the same NGA50 as

SOAPdenovo.

In the majority of the cases, experimental results obtained with ALLPATHS-LG

(high N50) and SGA (low misassembly errors) on the Rhodobacter sphaeroides genome

(reported in Appendix A Table A.5) followed similar patterns to the ones we observed in

Figure 3.2. CISA decreased the contiguity (although the reduction was far less this time).

GAA followed the same general pattern mentioned earlier. GAM NGS did not increase
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contiguity but rather maintained it close to that of the master assembly. Metassembler

and MIX also did not increase contiguity. ZORRO worked for this experiment: although

it decreased contiguity by 10%, it produced a smaller number of misassembly errors than

ALLPATHS-LG (but still higher that SGA).

With scaffolds as input assemblies, GAM NGS retained the quality statistics of the

master assembly. Observe in Figure 3.2 that GARM retained NGA50 close to SOAPdenovo

(the master assembly). Also note that in Table A.5 that GARM maintained ALLPATHS-

LG’s contiguity statistics.

Experimental results on the Hg chr14 with contigs as input assemblies (Figure 3.2),

show that (i) GAM NGS slightly improved contiguity, (ii) Metassembler maintained con-

tiguity, (iii) GAA crashed, (iv) the number of misassemblies was closer to SOAPdenovo.

With scaffolds as inputs, GAM NGS and Metassembler produced assemblies with quality

statistics close to SOAPdenovo.

Reordering the inputs (GAGE)

As mentioned above, some of the assembly reconciliation tools assume that the

first input assembly is the master assembly, and should be trusted more (we call these tools

asymmetric). The goal of this set of experiments is determine how the quality of the merged

assembly depends on the specific order of the inputs.

To determine how the ranking affected the results, we repeated the same experi-

ments reported in the previous section but switched the order of the inputs. A comparative

analysis of Figure 3.3 and Table A.2 with the results discussed in the previous section
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Figure 3.3: Contiguity-correctness experimental results when inputs are contigs (top row)
or scaffolds (bottom row); compared to Figure 3.2, the order of the inputs was swapped.

prompts a few observations. First, we note that CISA, MIX, and GARM are symmetric

(i.e., they do not require users to rank the inputs, see Table 3.1), hence they are expected

to be unaffected by the reordering. Experimental results confirm that CISA and GARM

are indeed unaffected. The reordering however affected MIX results, albeit only slightly.

For Staphylococcus aureus, MIX’s contiguity statistics (N50 and NGA50) was not

affected by the reordering of the inputs. However, we observed a small change in the number

of misassemblies, although still higher than SOAPdenovo in both cases.

On Rhodobacter sphaeroides, all statistics remained unchanged except for the num-

ber of misassemblies that increased after reordering. In addition, with contigs as inputs we

did not observe an increase in NGA50 after the reordering.

Despite the fact that GAA requires input ranking, the results for Staphylococcus

aureus and Rhodobacter sphaeroides were similar. The output statistics of GAA followed

the general pattern mentioned in the previous section. For Hg chr14, GAA crashed in
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one ordering but not on the other. For all three genome, GAM NGS and Metassembler

produced consensus assemblies with quality statistics close to the master assembly.

Note that the merged assemblies have higher contiguity in Figure 3.2, in which the

master has higher N50. In contrast, the number of misassemblies were lower in Figure 3.3

for both Staphylococcus aureus and Hg chr14 in which the master had lower errors (with the

exception of MIX). Merged assemblies for Rhodobacter sphaeroides had higher contiguity

and lower number of misassemblies, in which the master had higher N50 and lower number

of misassemblies (see Figure 3.2).

High-quality inputs (GAGE)

In the third set of experiments we tested the ability of the reconciliation tools to

merge two high quality assemblies. We selected two highly contiguous assemblies (i.e., small

number of contigs and scaffolds, high N50 values) and low number of misassembly errors.

Figure 3.4 and Table A.3 show the result of merging assemblies produced by ALLPATHS-LG

as first input and either MSR-CA, SOAPdenovo, or CABOG as the second assembly.

Observe that for Staphylococcus aureus with contigs as inputs, GAM NGS pro-

duced an improved assembly that had no misassemblies, and was 66% more contiguous.

The next best assembly was by Metassembler with a 107% increase, but it had a slight

increase in the number of misassemblies compared to ALLPATHS-LG. MIX produced a

high number of misassemblies (higher than MSR-CA) but managed to increase contiguity

by 4%. CISA improved contiguity by 11%, but it produced a number of errors higher than

ALLPATHS-LG. ZORRO decreased contiguity by 30%.
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Figure 3.4: Experimental results on merging high-quality assemblies (top row for input
contigs, bottom row for input scaffolds); tools were ran using default parameters

With scaffolds as inputs, ALLPATHS-LG has no misassemblies and higher NGA50

than MSR-CA. In general, asymmetric tools produced a lower number of misassemblies and

decreased the N50. For instance, GAM NGS maintained quality statistics of ALLPATHS-

LG. Although ZORRO is asymmetric it decreased contiguity by more than 90%. On the

other hand, symmetric tools had a higher number of misassemblies. GARM achieved the

highest increase of NGA50 (16%).

The contiguity of the merged assemblies improved 11%−108% with the exception

of ZORRO, which decreased the contiguity by 30%. GARM increased contiguity the most

(108%) at the expense of a number of misassemblies close to MSR-CA. MIX introduced no

misassemblies, but covered only 25% of the genome sequence. Notably, both GAM NGS

and Metassembler improved contiguity by 66.5% and introduced no misassemblies, These

are two rare examples in which we observed an unquestionable improvement in the merged

assembly.
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On the Rhodobacter sphaeroides genome, the two input assemblies had almost the

same number of misassemblies but the assembly produced by SOAPdenovo was much less

fragmented. Only Metassembler increasing NGA50 significantly. All other tools decreased

the contiguity. In terms of correctness, ZORRO and CISA (using scaffolds as inputs)

reduced the number of misassemblies but also decreased the contiguity by 99% and 60%,

respectively. Other tools produced merged assemblies with a number of misassemblies not

better than the inputs.

GARM improved the contiguity by 38% while CISA increased it by less than 2%.

MIX is the only tool that reduced the number of misassemblies, but again its assembly

only covered about half of the genome. None of the tools improved both contiguity and the

number of misassemblies.

In Hg chr14, GAA improved the NGA50 by 76%, but it produced a number of mis-

assemblies equal to the sum of the number of misassemblies in the two inputs. GAM NGS

improved the contiguity (28% increase in NGA50) and slightly reduced the number of mis-

assemblies. Metassembler produced quality statistics that are very close to ALLPATHS-LG.

With scaffolds as inputs, GAM NGS and Metassembler maintained similar quality

statistics to ALLPATHS-LG. GARM decreased NGA50 by 9%. It also increased the number

of misassemblies.

Highly-fragmented inputs (GAGE)

The goal of this set of experiments was to evaluate the performance of assembly

reconciliation tools when provided with two highly fragmented input assemblies. Input

assemblies were selected to have a high percentage of contigs shorter than 200 bps, a high
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Figure 3.5: Experimental results on merging highly fragmented assemblies (top row for
input contigs, bottom row for input scaffolds); tools were ran using default parameters

number of contigs and scaffolds, and low N50.

Figure 3.5 and Table A.4 shows the results of merging ABySS assembly and SGA

assembly. Observe that when we used contigs as inputs, ABySS had a higher contiguity

than SGA (except in Hg chr14 ). The opposite, however, was observed when scaffolds were

provided in input. In Staphylococcus aureus and Rhodobacter sphaeroides with contigs as

inputs, only asymmetric tools maintained or improved over NGA50 of the better input

assembly (in Staphylococcus aureus we observed up to 8% increase, and up to 17% in

Rhodobacter sphaeroides). However, in Hg chr14 (with contigs as inputs) GAA produced

a 123% increase over SGA, while GAM NGS did not improve NGA50 over SGA, but it

increased it 33% over ABySS.

With scaffolds as inputs, we observed a decrease in NGA50 except for MIX and

GARM (when SGA inputs are scaffolds). MIX, GARM, and CISA are symmetric tools,

hence they are expected to perform better than other tools when the non-master input has
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Figure 3.6: Experimental results on merging assemblies produced by assemblers based on
the de Bruijn graph compared to string graph (top row for input contigs, bottom row for
input scaffolds); tools were ran using default parameters

better quality. CISA, however, produced inferior results with scaffolds as inputs in most

experiments. We discovered that CISA with default parameters break scaffolds into contigs

when a scaffold contains more than ten consecutive Ns. MIX maintained NGA50 of SGA,

while GARM slightly decreased it compared to SGA (yet still higher than ABySS).

De Bruijn vs. string graph assembly (GAGE)

Here we tested the effect of merging assemblies generated using different assembly

strategies. Specifically, we merged an assembly generated by an assembler that uses a

de Bruijn graphs with an assembly produced by an assembler based on the string graph.

Figure 3.6 and Table A.5 shows the result of merging an assembly produced by ALLPATHS-

LG (based on the de Bruijn graph) with an assembly produced by SGA (based on the string

graph). Overall, GAM NGS, Metassembler, and MIX maintained similar assembly statistics
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as ALLPATHS-LG.

Note that Staphylococcus aureus input assemblies (as contigs) had only one mis-

assembly. The merged assemblies also have one misassembly, with the exception of GAA

(two) and ZORRO (none). ZORRO corrected the assembly error without affecting NGA50.

CISA decreased NGA50 by 49%. With scaffolds as inputs, ALLPATHS-LG’s assembly has

no assembly errors. In fact, observe that all merged assemblies did not have any misassem-

blies. GARM kept NGA50 close to ALLPATHS-LG. CISA covered less than 40% of the

genome, while ZORRO decreased the contiguity by 99%.

On Rhodobacter sphaeroides with contigs as inputs, CISA and ZORRO decreased

the contiguity by 34% and 10%, respectively. GAM NGS and Metassembler maintained

ALLPATHS-LG’s quality statistics. All tools produced a relatively high number of mis-

assemblies (similar to ALLPATHS-LG). With scaffolds as inputs, CISA, ZORRO, and

GARM’s assembly statistics followed the same of statistics of Staphylococcus aureus. All

assemblies, with the exception of CISA and ZORRO, had a number of misassemblies closer

to ALLPATHS-LG. CISA again covered less than one fifth of the genome and ZORRO

decreased the contiguity by 99%. GAM NGS, Metassembler, and MIX produced consensus

assemblies with quality statistics comparable to ALLPATHS-LG.

In Hg chr14 (with contigs as inputs) GAM NGS increased NGA50 by 2%. With

scaffolds as inputs, GAM NGS and Metassembler maintained assembly statistics close

to ALLPATHS-LG. GARM increased the number of misassemblies by 9% (compared to

ALLPATHS-LG) and decreased NGA50 by 9%.

With scaffolds as inputs, GARM increased contiguity by 58%, while other tools
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improved it by less than 3%. GAM NGS and Metassembler produced about the same

number of misassembly errors as the higher of the two inputs. GARM improved NGA50

the most, but also increased the number of misassemblies by 42%.

Multiple inputs (GAGE)

In this set of experiments we tested the ability of the tools to merge more than

two assemblies. When an assembly reconciliation tool allowed no more than two assemblies

in input (see Table 3.1 for a list), we merged them in an iterative fashion. For instance,

to merge three assemblies, we first merged two assemblies, then merged the result to the

third assemblies. Metassembler uses a similar strategy: when the user provides multiple

assemblies the tool iteratively performs pairwise reconciliation, where the output of one

iteration is the input of the next. We ordered the input assemblies based on feature response

curve (FR curve), which is an assembly quality metric proposed in [61]. The FR curve

represents the dependency between contigs that contains no more than τ features and the

corresponding genome coverage. The x-axis represents τ and the y-axis represent genome

coverage: the “steeper” is the curve, the better is the assembly. We used the FR curves in

[75] to determine the merging order of the GAGE assemblies, starting with the assemblies

with highest quality. Results for an alternative ordering is discussed in Note A.1.7 and

corresponding Tables A.12-A.15. For tools that allowed to merge more than two assemblies

(e.g., CISA and MIX), the merging was done in one step from the original assemblies. Here

we were interested in measuring the contiguity and correctness of the resulting assemblies

as the number of input assemblies increases.
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Figure 3.7: Experimental results on merging multiple assemblies of Staphylococcus au-
reus(black diamonds); the input order was determined using the FRCurve score (see text
for details); integer labels indicates successive merging steps; tools were ran using default
parameters
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Figure 3.8: Experimental results on merging more than two assemblies (as scaffolds) ordered
by the FRCurve score (Staphylococcus aureus, genome size 2,903,081 bp). The Figure
reports on quality of merged assembly compared to the input assemblies. Tools were ran
using default parameters, unless otherwise noted

77



1

2 3 4
567

1 2 3 4 56
7

1

1

2 3 4
56 7

12

123
4

●

● ●
●●●●

●● ● ● ●●●

●
●

● ●
●●●●

●●

●●
●

●

1 MSR−SA

2 Allpaths−LG3 CABOG

4 BAMBUS2

5 SOAPdenovo

6 Velvet

7 SGA

8 ABySS

1

10

100

10 100
NGA50 (kbp)

N
um

be
r 

of
 m

is
as

se
m

bl
ie

s

Reconciler
a●

a●

a●

a●

a●

a●

CISA

GAM_NGS

GARM

Metassembler

MIX

ZORRO

Figure 3.9: Experimental results on merging more than two assemblies (as contigs) ordered
by the FRCurve score (Rhodobacter sphaeroides, genome size 4,603,060 bp). The Figure
reports on quality of merged assembly compared to the input assemblies. Tools were ran
using default parameters, unless otherwise noted
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Figure 3.10: Experimental results on merging more than two assemblies (as scaffolds) or-
dered by the FRCurve score (Rhodobacter sphaeroides, genome size 4,603,060 bp). The
Figure reports on quality of merged assembly compared to the input assemblies. Tools were
ran using default parameters, unless otherwise noted

78



1 2

3 4
5

67
1

1234

5 6
7

●●

●●●●●

●

●●●●
●●●

1 CABOG
2 Allpaths−LG

3 ABySS

4 SOAPdenovo

5 MSR−SA

6 BAMBUS

7 SGA

8 Velvet

10

1000

10 100
NGA50 (kbp)

N
um

be
r 

of
 m

is
as

se
m

bl
ie

s

Reconciler
a●

a●

a●

GAM_NGS

GARM

Metassembler

Figure 3.11: Experimental results on merging more than two assemblies (as contigs) ordered
by the FRCurve score (Hg chr14, genome size 107,349,540 bp). The Figure reports on
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Figure 3.12: Experimental results on merging more than two assemblies (as scaffolds) or-
dered by the FRCurve score (Hg chr14, genome size: 107,349,540). The Figure reports on
quality of merged assembly compared to the input assemblies. Tools were ran using default
parameters, unless otherwise noted
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Figure 3.13: Experimental results on merging more than two assemblies (as contigs) –
alternative ordering (Staphylococcus aureus, genome size 2,903,081 bp). The Figure reports
on quality of merged assembly compared to the input assemblies. Tools were ran using
default parameters, unless otherwise noted
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Figure 3.14: Experimental results on merging more than two assemblies (as contigs) – alter-
native ordering (Rhodobacter sphaeroides, genome size 4,603,060 bp). The Figure reports
on quality of merged assembly compared to the input assemblies. Tools were ran using
default parameters, unless otherwise noted
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Figure 3.15: Experimental results on merging more than two assemblies (as contigs) –
alternative ordering (Hg chr14, genome size 107,349,540 bp). The Figure reports on qual-
ity of merged assembly compared to the input assemblies. Tools were ran using default
parameters, unless otherwise noted

Figure 3.7, Figure 3.9, and Figure 3.11 show the experimental results for Staphylo-

coccus aureus, Rhodobacter sphaeroides and Hg chr14, respectively, when inputs are contigs.

First observe that in several cases, the process of iterative merging did not complete.

On Staphylococcus aureus and Rhodobacter sphaeroides, CISA generally improved

the contiguity as the number of merged assemblies increased. The number of errors fluc-

tuated over the iterations. GAA did not produce assembly files for the first iteration.

Although GAA did not work for this particular ordering it did produce results for the

alternative ordering reported in Appendix A Note A.1.7

In Staphylococcus aureus and Rhodobacter sphaeroides, GAM NGS’s contiguity

improved over successive iterations, but the number of misassemblies errors did not decrease

(it stayed close to the first master input in all iterations). For Hg chr14, the number

of misassemblies was also relatively high. GAM NGS increased NGA50 by at least 70%

compared to CABOG.
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In Staphylococcus aureus, Metassembler’s contiguity improved over successive it-

erations, but the number of misassemblies also increased. In Rhodobacter sphaeroides,

Metassembler’s assembly did not improve after the forth iteration. Note that NGA50 was

lower than BAMBUS2 and SOAPdenovo. Metassembler’s assembly had number of misas-

semblies about the average of the inputs. In Hg chr14, the number of misassembly errors

were low and decreased over successive iterations. Contiguity was high, but slightly de-

creased over successive iterations.

MIX maintained a low number of misassemblies in most iterations but suffered

from relatively poor NGA50. Since the genome coverage in most iterations was less than

50% of the reference, no NGA50 was reported for those iteration. On the Staphylococcus

aureus genome, the coverage was less than 50% in all iterations but it steadily improved

with increasing number of inputs. On Rhodobacter sphaeroides, the genome coverage was

below 50% with four or more inputs.

ZORRO frequently failed to produce results. When it worked, contiguity usually

started high, then fluctuated over successive iterations. ZORRO produced relatively high

number of misassemblies (somewhat in between the values of the inputs).

We repeated the same experiment but with scaffolds as inputs. Results are re-

ported in Tables A.9, A.10, and A.11 and Figures 3.8, 3.10, and 3.12. CISA’s results show

that after a certain number of input assemblies, increasing the number of inputs did not

affect the results significantly. From that point forward, it generally improved the contigu-

ity and reduced the number of contigs as the number of merged assemblies increased. The

number of misassemblies were with the range of input assemblies. CISA reached stability
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with four inputs on Staphylococcus aureus and three inputs on Rhodobacter sphaeroides).

MIX on Staphylococcus aureus, produced a high number of misassemblies which

generally increased as the number of inputs increased. It maintained high genome coverage.

It also maintained high contiguity except for the last iteration. On Rhodobacter sphaeroides,

the number of misassemblies were also relatively high but it fluctuated as the number of

inputs increased. It also maintained high contiguity, achieving the best NGA50 for less than

five inputs.

ZORRO produced low number of misassemblies on Staphylococcus aureus and

Rhodobacter sphaeroides. Contiguity was poor and generally decreased over successive iter-

ations.

GAM NGS maintained results very close to the first input throughout all iterations

on Staphylococcus aureus, Rhodobacter sphaeroides, and Hg chr14. In the latter genome,

GAM NGS contiguity generally improved in successive iterations but so did the number of

misassemblies.

Metassembler maintained similar quality statistics to CABOG on Hg chr14. On

Rhodobacter sphaeroides, Metassembler also maintained CABOG’s quality statistics with

a slight decrease of number of misassemblies, and contiguity as the number of iteration

increased. On Staphylococcus aureus, Metassembler also maintained quality statistics close

but not identical to MSR-CA. In general, as the number of inputs increased, the number of

misassemblies slightly decreased and the contiguity slightly improved.
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Table 3.2: Experiments on the Bombus impatiens assemblies. Notes: all reported statistics
are for contigs; tools were ran using default parameters, unless otherwise noted; the E-Size
is defined as the expected scaffold size of any arbitrary location in the reference genome.

Reconciliation Contigs N50 E-Size
Tool or Input # (bp) (bp)

Input 1 (CABOG) 18,918 23,515 34,227.94
Input 2 (MSR-CA) 18,501 32,431 46,890.24

GAA Did not produce an assembly file
GAM NGS 10,129 52,123 77,240.76
GARM (ctg scf) 10,572 70,577 98,189.44
Metassembler 17,694 25,317 36,774.11

Input 1 (ABySS) 35,112 14,383 20,904.98
Input 2 (SOAPdenovo) 11,556 57,117 78,228.65

GAA 46,668 63,941 99,133.63
GAM NGS Did not produce an assembly file
GARM (ctg scf) 9477 64,172 86,881.27
Metassembler 34,149 13,842 20,386.78

Input 1 (SOAPdenovo) 11,556 57,117 78,228.65
Input 2 (ABySS) 35,112 14,383 20,904.98

GAA 46,660 63,941 99,133.42
GAM NGS 10,971 63,152 87,930
GARM (ctg scf) 8042 101,115 133,528.41
Metassembler 9349 57,238 78,395.6

Input 1 (MSR-CA) 18,501 32,431 46,890.24
Input 2 (SOAPdenovo) 11,556 57,117 78,228.65

GAA Did not produce an assembly file
GAM NGS 12,559 59,549 89,960.46
GARM (ctg scf) 5984 117,986 148,549.55
Metassembler 16,234 35,077 50,156.59

Large genomes (GAGE)

To test the ability of these tools to scale to large eukaryotic genomes, we used

GAGE’s assemblies for Bombus impatiens. We selected the two input assemblies where

most of the tools were able to complete. A high quality reference genome is unavailable

for Bombus impatiens, so the statistics we reported were produced by the GAGE script. In

addition to the usual assembly statistics, GAGE computes the e-size, which is the expected

size of a contig (or scaffold). The e-size if computed as
∑

c L
2
c/G, where the sum is over all

contigs c, G is the expected genome length and Lc is the length of contig c [66].

Results are reported in Table 3.2, in which only contigs and scaffolds of 500bp or

longer were considered. Observe that GARM reduced the number of contigs, increased N50
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and the e-size for all experiments. GAM NGS did not work for one of the experiments. In

the others, it decreased the number of contigs in all but one experiment. GAM NGS always

improved N50, and increased the e-size in all but one experiment. GAA did not work for

two of the experiments. When it worked, it did not reduce the number of contigs, but it

increased both N50 and the e-size. Lastly, Metassembler decreased N50 and the e-size in

three out of four experiments. Metassembler reduced the number of contigs in half of the

experiments.

3.2.6 Parameter tuning

For the results in Appendix A Note A.1, all assembly reconciliation tools were

ran with default parameters. Here we explored how other parameter settings affected the

experimental results. Each tool has its own set of parameters, as briefly described next.

• CISA has three main parameter namely the minimum contig cutoff, the maximum

number of consecutive N’s, and the maximum unaligned gap (default values 100bp,

10bp, 0.95 quintile, respectively); we changed the minimum contig cutoff to 200bp and

500bp and the maximum gap size to 100 and 200; we also tried scaffolds as inputs.

• For GAA we focused on two parameters, namely the minimum contig cutoff and the

maximum tip size (default values of 100bp and 90 bp, respectively); we changed the

contig cutoff size to 200bp and 500 bp and the maximum tip size allowed to 15 bp

and 50bp.

• GAM NGS has three main parameters, namely the minimum number of reads to

build a block, the block coverage filtering, and the minimum block length; for these
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parameters the authors suggest using 10bp, 0.75, 200bp, respectively for bacterial

genomes, and 50bp, 0.75, 500bp for Hg chr14 ; since there was no option to change

the minimum block size, we explored the other two parameters; we used the default

values of at least 50 reads per block and 0.75 block coverage filter; we also tried setting

the read support to 10 and 30 with 0.75 block coverage filter, as well as read support

of 10 and 50 with 0.95 block coverage filter.

• GARM: we explored changing the minimum contig cutoff (default 200bp), minimum

overlap (default 200bp) and maximum tip thresholds (default 50bp); in addition to

the default values, we tried the following combinations (i) 500bp contig cutoff, 200bp

min overlap, and 50bp max tip, (ii) 200bp contig cutoff, 100 bp min overlap, and 50

bp max tip (iii) 200bp contig cutoff, 200bp min overlap, and 100bp max tip, and (iv)

100bp contig cutoff, 50bp min overlap, and 15bp max tip.

• MIX’s main parameters are the minimum length of alignment (default 0bp) and min-

imum contig cutoff (default 500bp); according to the documentation, if these two

parameters are not specified MIX is supposed to check thresholds from 0 to 2000 with

step of 50; we tried this option, but only got results with default settings; the author of

MIX recommend a minimum alignment of 500bp and a minimum contig cutoff of 0bp

for bacterial genomes (which is what we used); in addition we tried (i) minAlign=50

and minctg=100, (ii) minAlign=50 and minctg=200, and (iii) minAlign=100 and

minctg=500.

• Metassembler has several parameters. We explored the parameters controlling the

assembly merge phase, namely minimum read coverage (default 15), minimum overlap
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(default 60) and identity (default 60); Metassembler accepts identity in base pairs;

we tested (i) 60 bp min overlap, 51 bp 85% identity, and 15x coverage (ii) 100bp min

overlap, 95% identity, and 15x coverage (iii) 100bp min overlap, 85% identity, and 30x

coverage and (iv) 200bp min overlap, 170bp 85% identity, and 30x coverage.

• ZORRO’s parameters include the minimum overlap (default 40bp), the maximum tip

(default 15), and identity threshold (default 94%); in addition to the default values we

tested (i) 40bp min overlap, 100bp max tip, and 94% identity, (ii) 100bp min overlap,

15bp max tip, and 94% identity, (iii) 100bp min overlap, 15bp max tip, and 85%

identity, (iv) 100bp min overlap, 50bp max tip, and 85% identity.

Experimental results for all these parameter sets are reported in Appendix A

Table A.16, Appendix A Table A.17 and Appendix A Table A.18 for Staphylococcus aureus,

Rhodobacter sphaeroides and Hg chr14, respectively. For most experiments, the variations

due to changing parameters were small. Few observations are in order.

Observe that for Staphylococcus aureus, Metassembler and GAM NGS maintained

the same statistics for all parameters configurations, with the exception of a slight variation

in the size of the assembly. CISA produced changes only when the minimum contig cutoff

increased to 500 bp, with contigs as input. In this case, both genome and gene coverage

improved but the contiguity decreased with respect to other configurations. With scaffolds

as inputs, the contiguity increased but the genome fraction was lower than 50% in most

cases. In GARM we observed a small variation in the number of mismatches and indels

and an insignificant change in the genome coverage.
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3.2.7 Time and Space Analysis

As said, all experiments were performed on a Linux Ubuntu 12.10 server with a

20 cores Intel Xeon CPU E5-2690v2 3GHz and 512GB of RAM. Multithreading was used

when available.

First, we measured the usage of computational resources to merge two input as-

semblies. Graphs in Figure 3.16 illustrate the average (wall clock) run time, the average

percentage of processor utilization (where 100% indicates full utilization of one core), and

the average memory usage required by each tool to perform each experiments on the four

genomes. The average are over all the tested pairs of GAGE assemblies for that genome.

Error bars indicate the minimum and maximum.

Second, we measured the usage of computational resources as a function of the

number of input assemblies using CISA and MIX, which are the only tools that can merge

more than two input assemblies. Graphs in Figure 3.17 shows the (wall clock) run time,

processor utilization (where 100% indicates full utilization of one core), and memory usage

as the number of input assemblies increases.

3.2.8 Synthetic assemblies

In this set of experiments we tested assembly reconciliation tools on synthetic

assemblies generated using RSVSim [8]. We used RSVSim to introduce specific structural

variations into the reference genome of Saccharomyces cerevisiae [6]. For tools that required

reads, we generated synthetic reads using ART [40]. The output of the seven assembly

reconciliation tools was fed into Decipher [80]. Decipher detects synteny blocks between a

88



00:00

01:00

02:00

03:00

04:00

05:00

CISA−merge CISA−reconciliate GAA GAM_NGS−create GAM_NGS−merge GARM Metassembler MIX ZORRO

R
u

n
 T

im
e

 (
h

) Genome

Bombus impatiens

Homo sapien−chr14

Rhodobacter sphaeroides

Staphylococcus aureus

0%

200%

400%

600%

CISA−merge CISA−reconciliate GAA GAM_NGS−create GAM_NGS−merge GARM Metassembler MIX ZORRO

C
P

U
 (

%
)

Genome

Bombus impatiens

Homo sapien−chr14

Rhodobacter sphaeroides

Staphylococcus aureus

0

50

100

CISA−merge CISA−reconciliate GAA GAM_NGS−create GAM_NGS−merge GARM Metassembler MIX ZORRO

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

Genome

Bombus impatiens

Homo sapien−chr14

Rhodobacter sphaeroides

Staphylococcus aureus

Figure 3.16: Average (wall clock) run time, average percentage of processor utilization
(where 100% indicates full utilization of one core), and average memory usage required by
each tool to perform each experiments on the four genomes; averages are over all the tested
pairs of GAGE assemblies for that genome; error bars indicate the minimum and maximum

89



Rhodobacter sphaeroides Staphylococcus aureus

25%

50%

75%

100%

2 4 6 8 2 4 6 8

Number of input assemblies

C
P

U
 u

s
a

g
e

 (
%

)

Tool

CISA−merge

CISA−reconciliate

MIX

Rhodobacter sphaeroides Staphylococcus aureus

0

250

500

750

1,000

2 4 6 8 2 4 6 8

Number of input assemblies

M
e

m
o

ry
 u

s
a

g
e

 (
M

B
)

Tool

CISA−merge

CISA−reconciliate

MIX

Rhodobacter sphaeroides Staphylococcus aureus

00:00

00:05

00:10

00:15

00:20

00:25

2 4 6 8 2 4 6 8

Number of input assemblies

R
u

n
 t

im
e

 (
h

) Tool

CISA−merge

CISA−reconciliate

MIX

Figure 3.17: Wall clock run time, processor utilization (where 100% indicates full utilization
of one core), and memory usage as the number of input assemblies increases (for CISA and
MIX)

90



1Figure 3.18: The eight assembly reconciliation tools were given in input (A) chromosome
4 and 15 yeast genome and (B) a flawed version of (A) produced by RSVSim containing
either a deletion in chromosome 4 (top row), or an inversion in chromosome 4 (middle row)
or an translocation from chromosome 4 to chromosome 15 (bottom row); A and B are first
two rows in each plot; Decipher was used to detects synteny blocks between the reference
and the outputs and to generate synteny plots displayed as gradients: when reference and
output disagree, the gradients are interrupted; gray regions indicate blocks that do not
match the reference

reference and a query sequence, and generates synteny plots displayed as gradients. When

reference and query disagree, the gradients are interrupted. Gray regions indicate blocks

that do not match the reference.

In each experiment we merged two inputs, namely (1) chromosomes 4 and 15 of the

yeast genome and (2) a flawed version of (1) produced by RSVSim containing one structural

variation, i.e., either a deletion, an inversion (reversal), or a translocation. RSVSim does

not allow de novo insertions. For asymmetric tools, the flawed assemblies was used as

the master assemblies to model the worst case. We introduced deletions and inversions of
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various sizes (50 kbp, 100 kbp, 200 kbp, and 500 kbp) into chromosome 4, and generated

translocations from chromosome 4 into the chromosome 15 of various sizes (again, 50 kbp,

100 kbp, 200 kbp, and 500kbps).

Figure 3.18 (top row) show that CISA resolved the deletion but did not output

chromosome 15. GAA also resolved the deletions but it produced two extra sequences

that did not align to the reference. GARM did not output chromosome 4. GAM NGS,

Metassembler, and MIX produced assemblies similar to the flawed input assembly. ZORRO

broke the assembly at the position of the deletion, produced three individual contigs, and

omitted the deleted sequence.

Figure 3.18 (middle row) shows that only CISA resolved the inversion but did

not output chromosome 15. GAA did not correct the inversion, and generated a merged

assembly that was similar to the flawed input assembly with two additional sequences

that did not align to the reference. Again, GAM NGS, Metassembler, and MIX produced

assemblies similar to the flawed assembly. ZORRO broke the inversion by producing three

contigs for chromosome 4, and an additional contig representing chromosome 15.

For translocations, the behavior of reconciliation tools depended on the size of

the translocation, as shown in Figure 3.18 (bottom row). For translocations of 50, 100

and 200 kbps, CISA, GAA, and GAM NGS produced the correct version of chromosome 4.

CISA did not produce chromosome 15 and GAA and GAM NGS produced chromosome 15

with an unaligned sequence at the location of the insertion. As before, GAA produced two

additional sequences. GARM did produce any merged assembly. Metassembler and MIX’s

output was similar the flawed input assembly. ZORRO split the assembly over structural
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Figure 3.19: Assembly reconciliation results for difference choices of read coverage; (a,b)
are translocations; (c,d,e) are deletions; (f,g) are inversion

variation breaking points. For 200 and 500 kbps, ZORRO was stopped after allocating more

than 350 GB of RAM. None of the tools managed to correct the 500 kbps translocations.

CISA and GAA produced the flawed version of chromosome 15. Again, GAA produced the

correct version of chromosome 4, but two extraneous sequences. GAM NGS output was

very similar to the input flawed assembly. Metassembler and MIX’s produce chromosome

4 without the deleted fragment and a flawed version of chromosome 15.

To test whether read coverage had any impact on the quality of merged assemblies

for assembly reconciliation tools that requires reads as input, we ran several experiments on

the same synthetic assemblies with increasing reads fold coverage (15x to 75x). Figure 3.19

shows that read coverage did not have any affect on the quality of the results.
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3.3 Discussion and Conclusions

Given the practical challenges of de novo assembly assembly, the idea of assembly

reconciliation is very appealing. One could generate multiple assemblies on the same dataset

using various assembly tools and/or parameters, then use an assembly reconciliation tool

to merge all the assemblies and obtain a high quality consensus assembly. At the outcome,

the expectation is that the quality of the merged assembly should be at least as good as the

best assembly in input. In fact, if both input assemblies have some good quality assembly

statistics (e.g., one is more contiguous while the other has less misassemblies), one should

expect the consensus assembly to inherit the good qualities from both inputs. The reality

is that it seems very hard to produce a merged assembly which consistently better than (or

at least as good as) both input assemblies. The extensive set of experiments reported in

this manuscript showed that none of the tools we evaluated was able to consistently achieve

this goal. There were a few cases in which the consensus assembly was better that both

inputs, but for the vast majority of the inputs the merged assembly was not.

Despite the inability of these assembly tools to solve the general assembly recon-

ciliation problem, each tool demonstrated some strengths that could lead to algorithmic

advances on this problem. For instance, CISA generally was able to correct most structural

variations and to ignore duplications in the input assemblies (however, its duplication rate

increased as the number of merged assemblies increased); GAA and GARM often improved

the contiguity (but often introduced more misassembly errors and increased the duplication

ratio); GAM NGS typically produced consensus assemblies very close to the quality of the

reference (but not much better), and it was able to resolve translocations; MIX generally
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improved the contiguity modestly (but its number of misassemblies was usually close or

higher than the most erroneous input, and its genome coverage dropped in some cases);

Metassembler often produced consensus assembly with a very low number of misassembly

errors, sometimes even lower than both input assemblies (however it did not consistently

increase N50); finally, ZORRO generally maintained a high genome coverage (but it did not

significantly increase contiguity).
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Chapter 4

SequOIA: Sequence Overlap

Identification and Assembly

The problem of assembling BAC assemblies to obtain a genome-wide assembly

is not new. The public Human Genome Project relied on a tool called GigAssembler

[43] to assemble about 30,000 BAC clones using a genome-wide physical map as well as

BAC-end sequencing and other genetic markers. GigAssembler used the overlap-layout-

consensus approach: it detected prefix-suffix overlaps between BAC contigs to build an

overlap graph, it removed transitively-inferable edges, then it found paths in the graph to

generate contigs. Unfortunately, GigAssembler has not been maintained since 2001. To

the best of our knowledge the only other work in the literature that addresses this problem

is MegaWeaver [76], which solves it by computing overlaps between all pairs of BAC

assemblies via MegaBlast [86], detects and remove spurious overlaps, then generates a

consensus assembly. MegaWeaver is not maintained anymore as well. While most of
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the genome assemblies follow the whole-shotgun approach, in recent year, there has been

renewed interest in the BAC-by-BAC hierarchical sequencing approach (see Introduction

for more information about the BAC-by-BAC approach).

Let us first define precisely the BAC assembly problem. We are given in input a

set of BAC assemblies {B1,B2, · · · ,Bn}, n ≥ 2 for a genome G, where each BAC assembly

Bi is a set of unoriented contigs {c1, c2, · · · , cm}, m ≥ 1 (each contig is a string over the

DNA alphabet and ’N’). Let c be the fraction of G covered by the contigs in each BAC

assemblies. The objective is produce another set of BAC assemblies {C1, C2, · · · , Cl}, where

(i) l is the smallest possible and (ii) the genome coverage of the new set is also c, (iii) the

new assemblies do not contain any mis-assembly.

Observe that producing as output the input set is optimal when the BAC assem-

blies do not overlap. Also observe that producing an empty set as output (l = 0) would

satisfy (i) and (iii), but not (ii). In order to solve the problem we need to determine BAC

overlaps and reduce the redundancy. We propose to use colored positional de Bruijn graph

to solve the problem.

4.1 Colored positional de Bruijn graph

Several augmented de Bruijn graph have been introduced in the literature, to

address difficulties in finding Eulerian paths in regular de Bruijn graph when dealing with

noisy sequencing data for complex, repetitive genome. For instance, sequencing errors the

end of reads may result in tips, sequencing errors or mutations towards the middle of reads

may introduce in bubbles, and repeats induce a frayed rope structure as shown in Figure 4.1.
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Here we consider the positional de Bruijn graph and the colored de Bruijn graph.

Positional de Bruijn graph. Defined in SEQuel [65] as a variation of the classical de

Bruijn graph used in genome assembly, the positional de Bruijn graph is a variation of a

de Bruijn graph such that every edge is associated with kmer and its inferred positions in

contigs. The goal of the tool SEQuel is correct substitutions and small indels smaller than

50 bps.

Colored de Bruijn graph. Introduced in [1] to solve the halving problem. In a whole

genome duplication evolutionary event, the gene content is duplicated in the offspring and

rearranged within the genome. The halving problem requires one to reconstruct the pre-

duplication ancestral genome. Later the “Cortex” assembler (based on a colored de Bruijn

graph graph) was introduced in [41] to assemble multiple genomes simultaneously to detect

and genotype genetic variations. Each node in a colored de Bruijn graph is associated

with a kmer and a list of colors represents all the read sets (i.e., genomes after assembly)

containing that kmer.

Align Graph was introduced in [7] in order to extend and merge contigs of an existing

de novo assembly contigs using paired-end reads and guided by a closely related reference

genome. The authors align the contigs and paired-end reads to a related reference genome,

and exploits the positional information to build a graph that combines reads and contigs.

An align graph is a combination of a positional de Bruijn graph and a paired-end de Bruijn

graph, where the latter is a generalization of de Bruijn graph that incorporate mate-pair

reads distance information.
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(a) tip

(b) bubble

(c) repeat

Figure 4.1: de Bruijn graph structure

In our case we are merging assembled BACs to obtain a genome-wide assembly.

This problem is an assembly of assemblies, where the input assemblies are expected to have

a much lower error rates than reads. Furthermore, the input assemblies are much longer

sequences, and their positional information can help to resolve repeats. We propose an

algorithm that utilizes positional and color information, and does not require a reference

genome of closely related specie.

We assign each input assembly a distinct color. A colored positional de Bruijn

graph is an extension of a de Bruijn graph. It is a directed graph where each node p

represents a kmer and contains a set L of (color, pos) pairs where pos is the starting position

of the kmer in a sequence uniquely identified by color. For any two pairs (colori, posi) ∈ L

and (colorj , posj) ∈ L, colori 6= colorj . A labeled directed edge p
α−→ q exists in the graph

if pair (colori, posi) ∈ Lp and pair (colorj , posj) ∈ Lq are such that colori = colorj and
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TAA AAC TTA GTT TAA GTT TTA AAC
F
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B

G

I
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C

Figure 4.2: Edge orientation and labeling. Each node contains a k-mer (k = 3 in this
case). The annotation below the edge indicates the assigned direction (Forward, Backward,
Innie, Outie), while the annotation on top of the edge is transition nucleotide between the
corresponding kmers. Violet denotes forward nodes and light blue represent to backward
nodes.

|posi − posj | = 1. The label α ∈ {A,C,G, T} on the edge and direction ∆ ∈ {forward,

backward, innie, outie} are assigned based on kmer orientation of the source and destination

nodes. Forward (F) edge connects two forward nodes, backward (B) edge connects two

backward nodes, innie (I) edge connects a forward node to backward, and outie (O) connect

backward node to forward node. Figure 4.2 illustrates all possible combinations.

4.2 Methods

Our proposed method (called SequOIA) is articulated in four steps: overlap de-

tection, graph construction, graph compaction and graph traversal.

4.2.1 Overlap detection

In the first step, we identify potentially overlapping BAC assemblies. In order to do

so, BAC assemblies are clustered into groups based on the Jaccard distance calculated over

number of shared kmers between each pair of BACs. The Jaccard distance matrix was first

introduced in [14] to cluster webpages. The same approach was also used in locality-sensitive

hashing [9], which uses sampling to detect potential overlaps. Our approach generates a

k-spectrum for each BAC and calculate a Jaccard-like similarity score for each pair of BACs
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(i, j) using the following formula.

Jaccard score〈i, j〉 = max



|i<kmers> ∩ j<kmers>|/min(|i<kmers>|, |j<kmers>|)

|i′<kmers> ∩ j<kmers>|/min(|i<kmers>|, |j<kmers>|)

|i<kmers> ∩ j′<kmers>|/min(|i<kmers>|, |j<kmers>|)

where i′ and j′ are the DNA reverse complement of i and j, respectively. Note that the

BACs is given as a set of unoriented contigs. We do not consider all possible combination of

contigs orientation within a BAC, but rather assume that all the contigs in a BAC assembly

have the same orientation for the purpose of detecting potential overlaps.

The Jaccard score computes the percentage of shared kmers in relation to size of

the smaller BAC. A score above threshold τ indicates potential containment. Score greater

than another threshold γ < τ denotes potential overlap. Otherwise, no overlap is reported.

4.2.2 Construction of the colored positional de Bruijn graph

First, we assign each input BAC assembly a unique color. Sequences with the same

color are not considered for overlaps (since the belong to the same BAC). We break scaffolds

into contigs, then start from an arbitrary assembly from the input. For this arbitrary input

assembly, we build the graph by decomposing each contig into kmer and creating a node for

each kmer. We add a forward edge between every two consecutive nodes of the same contig,

sorted in ascending positions. For the remaining input assemblies, we process a kmer based

on following cases

• if @node〈kmer〉 ∈ G or ∀node〈kmer〉color ∈ Lnode then we create a new node

• if ∃ only one node〈kmer〉 such that color /∈ Lnode then add (color, position) to Lnode
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Figure 4.3: An illustration of different kinds of branch nodes

• when multiple nodes for kmer exist, we select the best node to merge with based

on anchored pairwise alignment between the current sequence and every sequence in

Lnode of a candidate node (see Algorithm 4.2).

Algorithm 4.1 describes the colored positional de Bruijn graph construction in more details.

4.2.3 Graph compression

We follow the conventional definition of unitigs that a compact node encoding a

unitig comprises nodes such that in-degree of all nodes except the first is one and out-

degree of all nodes except the last is one. In our algorithm, a normalized confidence score

is assigned to each unitig. The score is calculated using the following formula.

Confidence score =


0 if compact node is singleton,

∑
node∈compact node |Lnode|

|unitig| otherwise,

Assuming a relatively low number of colors and a large kmer size, short unitigs

will have lower scores. As the size of the unitigs increases, a higher coverage leads to a

higher confidence score.
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4.2.4 Graph traversal

Our graph traversal explores alternative paths and produces a string “contig”

corresponding to the path with the highest confident score. A node p is considered an

initial if in-degree(p) = 0 or ∀ (color, pos) ∈ Lp, pos = 1. A contig is a path in the graph

(or a node in a compact graph). Traversal starts at an initial node and extends to the

right and to the left until it generates a contig with zero unexplored incoming and outgoing

edges.

Given a compact de Bruijn graph, the path extension Algorithm 4.3 solves branches

as they appear along the path from the initial node by considering three cases based on

the type of the (merge, diverge) and the orientation of alternative branches. We start by

solving divergent branches of same orientation. Next, we solve merged branches. Lastly,

we solve any branch not addressed by the two previous cases.

Branches with same orientation represent alternative paths in the form of bubbles or

tips (Figure 4.5 shows an example). This case has straightforward solution presented in

Algorithm 4.4. We simply select a branch with the maximum confident score, and ties are

solved by branch length to achieve maximal extension. In the case of divergent branches

represent a bubble, selecting which branch to consider for extension depends only of the

fragments between endpoints of the bubble. In case of tips, selecting a branch requires

solving all subsequent bifurcations in these branches.

Merged branches can be a part of a bubble, for which the solution is to be deferred to

the previous case. Merged branches can also be tips, and therefore solved using the same

algorithm in the previous case. Otherwise, we merge branches if the merging node has no
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TGAAACG GCGTTTC AAACGCT TAGCGTT GTAGCGT
I O I F

Figure 4.4: Example contains different kinds of seq1: TGAAACGCTAC seq2:
GTAGCGTTTCA, merged sequence: GTAGCGTTTCA branch nodes

outgoing edges. In case the merging node has an outgoing edge, we recursively solve all

subsequent bifurcations using the Extend algorithm. We now solve for three branches, the

merged two branches and the newly acquired potential extension branch. Since two of the

three branches must be a part of alternative paths, we select the best alternative and merge

the third branch (see Algorithm 4.5).

Branches with different orientation are either extending the source in the same di-

rection (we call these branches alternative paths) or extend the source node in different

directions (we call these branches extension paths). Figures 4.4 and 4.6 illustrate extension

paths, while Figure 4.5b illustrates alternative paths. If two branches are parts of alterna-

tive paths, we select the most path with higher confidence as explained earlier. If the two

branches are extensions, if the branch node is singleton, we merge. Otherwise, the node

branches into alternative paths. In this case, we select the path with the highest confidence

score and merge afterwards (see Algorithm 4.6 for details).

4.3 Experimental Results

To test SequOIA, we used Vigna unguiculata (cowpea) assembled BACs, generated

at UC Riverside [59]. The datasets contains 4355 BACs, where each BAC assembly has on
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Figure 4.5: Examples illustrate solving bubble and tip branches

TGA

GACTC

CAA

F

O

TGA GACTCCAA

Figure 4.6: Examples illustrate solving extend branches

average of 29 scaffolds. Each BAC assembly has an average N50 of approximately 14 kbp

[50]. We excluded 97 BAC assemblies smaller than 5000 nucleotides from the dataset.

We detected overlaps between BACs using the Jaccard-distance matrix method

described above. BACs with similarity score greater than 90% typically indicate contain-

ment; similarity scores greater than 80% are considered potential overlaps. Our algorithm

generated 676 clusters containing on average of 2.67 BACs, with 292 BACs belonging to

more than one cluster, and 1444 BACs appearing in at least one cluster.

Each cluster of overlapping BACs was assembled using SequOIA with four kmer

105



Table 4.1: Quality statistics of merged cowpea BACs for SequOIA and CANU. All statistics
were generated with QUAST. Statistics below the double lines based on contigs of size ≥
500 bp. The reference assembly is 474,399,596bp.

Assembly Input BACs CANU SequOIA

# contigs (≥ 0 bp) 24,730 7 9550
# contigs (≥ 25,000 bp) 679 1 604
# contigs (≥ 50,000 bp) 105 0 99

Total length (≥ 0 bp) (bp) 94,386,917 60,976 75,504,631
Total length (≥ 25,000 bp) (bp) 26,287,750 31,437 23,429,428
Total length (≥ 50,000 bp) (bp) 6,854,907 0 6,521,556

# contigs 16,069 7 9356
Longest contig (bp) 141,058 31,437 141,104
Total length (bp) 91,591,924 60,976 75,442,096

N50 (bp) 14,602 31,437 16,169
N75 (bp) 6299 6067 7806
L50 1709 1 1318
L75 4086 3 2985

Genome fraction (%) 14.689% 0.011% 13.606%
Duplication ratio 1.297 1.132 1.154
# N’s per 100 kbp 23.50 0.00 0.00
Longest alignment (bp) 141,058 17,260 141,104
Total aligned length (bp) 90,135,040 60,974 74,335,415

NA50 (bp) 12,903 14,177 14,177
NA75 (bp) 5413 6067 6677
LA50 1943 2 1515
LA75 4675 4 3454

sizes ranging from 28 − 1 to 211 − 1. We select the merged assembly that maximizes the

decrease in number of contigs compared to the input. The resulting assembly aggregates sets

of contigs from all performed merges, in addition to BACs not identified to have potential

overlaps. We compared SequOIA to the long read assembler CANU [44]. SequOIA and

CANU were run on the same input. Table 4.1 shows the statistics of the input BACs,

CANU’s output assembly, and SequOIA output assembly. Statistics were generated using

QUAST [32].

CANU produced assembly with a higher N50 but only seven contigs that covered

less that 1% of the reference genome. The input assemblies covered around 14%. SequOIA

produced an assembly that covers 13% of the genome, while containing 62% fewer contigs.
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SequOIA also improved 10% the N50 value compared to the input. Both SequOIA and

CANU produced equal a similar NA50 value. SequOIA’s statistics showed better NA75

and N75 values (please refer to Section 3.1 for more information regarding the definitions

of N50 and NA50 values).

4.4 Conclusion

We introduced SequOIA, a new tool for the assembly of BAC assemblies. SequOIA

uses a Jaccard-like similarity-matrix clustering approach to detect overlaps between BACs

based on the number of shared kmers. To merge overlapping BAC assemblies, SequOIA uses

a new version of de Bruijn graph, which combines a colored de Bruijn graph and positional

de Bruijn graph. Our new de Bruijn graph utilizes the knowledge of kmer position within

the sequence to avoids collapsing repeats within the same sequence. Considering that a

BACs is an unordered unoriented set of sequences assumed to be non-overlapping, the color

information prevents collapsing repeats within a set of sequences sharing the same color.

The new data structure also allows one to devise a voting scheme to find the path with the

highest confidence. We tested SequOIA assembler on cowpea BAC assemblies produced at

UC Riverside. SequOIA successfully increased the contiguity, while producing an assembly

containing 62% fewer contigs than the input covering similar genome portion.
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Algorithm 4.1 Build colored positional de Bruijn graph

1: function BuildGraph(assemblies, k: kmer size)
2: select an arbitrary assembly and assign unique color
3: for each contigs in assembly do
4: kmer← contig[pos : k] . pos = 1, substring of length k starting at position 1

5: node1 ← new node〈kmer, color, pos〉
6: for kmer in contig do . excluding the first

7: node2 ← new node〈kmer, color, pos〉
8: AddEdge(Forward, node1, node2)
9: node1 ← node2

10: for each assembly do . excluding the first

11: color ← new unique color
12: parse each contig ∈ assembly
13: Get node1 following cases in lines 15 to 24.
14: for kmer in contig do
15: if @ node〈kmer〉 then . If no node represents kmer in Graph

16: node2 ← new node〈kmer, color, pos〉
17: else if ∃ singleton node〈kmer〉 then
18: if color /∈ node〈colors〉 then
19: add color to node〈colors〉
20: node2 ← node
21: else node2 ← new node〈kmer, color, pos〉
22: else if node〈kmer〉 ∈ node1〈edges〉 and color /∈ node〈kmer〉 then . if the

previous node points to a node represent kmer, reuse that node

23: node2 ← node〈kmer〉
24: else node2 ← Insert Repeat(kmer, color, pos)

25: AddEdge(node1, node2)
26: node1← node2

27: end function
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Algorithm 4.2 Insert repeated sequence to de Bruijn graph

1: function Insert Repeat( kmer: sequence, color: ID, pos: integer)
2: declare local is merged← false
3: declare local max score← 0
4: for each node〈kmer〉 in Graph s.t. color /∈ node〈colors〉 do
5: for color ∈ node〈colors〉 do
6: sequence′ ← GetSequence(node, color)
7: score← pairwise alignment(sequence, pos, sequence′, node〈pos〉)
8: if score > max score then
9: max node← node

10: is merged← true
11: max score← score
12: if is merged = true then node← max node
13: else node← new node〈kmer, color, pos〉
14: return node

Algorithm 4.3 SequOIA de Bruijn graph traversal algorithm

1: function Extend( p: compact node, process path: set of compact nodes)
2: declare local in edges← GetIncomingEdges(p)
3: declare local out edges← GetOutgoingEdges(p)
4: if p ∈ process path then return Null

5: if all in edges are explored and all out edges are explored then return p

6: process path← Insert(p)
7: if p ∈ branch nodes then
8: for Edge Direction ∈ {forwards, backwards, innie, outie} do
9: if |unexplored edges| ∈ Edge Direction > 1 then

10: p← resolveBubbleOrTip(p, process path,EdgeDirection)

11: if p ∈ combine nodes then
12: p← resolveCombine(p, process path)

13: if |unexplored edges| > 0 then
14: p← resolveBranch(p, process path)

15: process path← Erase(p)
16: return p
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Algorithm 4.4 SequOIA de Bruijn graph traversal algorithm – Solving Bubbles and Tips

1: function resolveBubbleOrTip( p: compact node, process path: set of compact
nodes, EdgeDirection)

2: declare local out edges← GetOutgoingEdges(p,EdgeDirection)
3: declare local max score← 0
4: declare local best extension← Null
5: for e ∈ out edges do
6: q ← p[e]
7: MarkVisited(e)
8: q ← Extend(q, process path)
9: score← Score(p)

10: if score > max score then
11: max score← score
12: best extension← q

13: if score = max score then
14: if unitigLength(q) > unitigLength(best extension) then
15: best extension← q

16: p←Merge(p, best extension)
17: return p
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Algorithm 4.5 SequOIA de Bruijn graph traversal algorithm – Solving combine

1: function resolveCombine( p: compact node, process path: set of compact nodes)
2: declare local tip← false
3: declare local combined nodes← GetCombineBranches(p)
4: declare local edges← GetOutgoingEdges(p)
5: process path← Insert(combined nodes)
6: if combined nodes ⊆ start nodes or
7: combined nodes ⊆ end nodes then tip← true

Consider two combined nodes p and q
8: if sameDirection(p, q) then
9: if tip = true then . If tip, select the return best branch

10: p← resolveBubbleOrTip(p, q)

11: return p . if bubble, relegate resolving to the source of the bubble

12: if |out edges| = 0 then
13: p←Merge(p, q)
14: return p
15: else
16: s← p[e] . potential suffix

17: MarkVisited(e)
18: s← Extend(s, process path)
19: if sameDirection(p, s) then
20: s← resolveBubbleOrTip(p, s)
21: p←Merge(q, s)
22: else if sameDirection(q, s) then
23: s← resolveBubbleOrTip(q, s)
24: p←Merge(p, s)
25: else
26: p← resolveBubbleOrTip(p, q)
27: p←Merge(p, s)

28: return p
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Algorithm 4.6 SequOIA de Bruijn graph traversal algorithm – Solving branches

1: function resolveBranch( p: compact node, process path: set of compact nodes)
2: declare local edges← GetOutgoingEdges(p,EdgeDirection)
3: if (efwd ∈ edges and eoutie ∈ edges then
4: u← p[efwd]
5: v ← p[eoutie]
6: MarkVisited(efwd)
7: MarkVisited(eoutie)
8: p← resolveBubbleOrT ip(u, v)

9: if (ebck ∈ edges and einnie ∈ edges then
10: u← p[ebck]
11: v ← p[einnie]
12: p← resolveBubbleOrTip(u, v)

13: for e ∈ edges do
14: q ← p[e]
15: MarkVisited(e)
16: q ← Extend(q, process path)
17: p←Merge(p, q)

18: return p

112



Chapter 5

Conclusion

In this dissertation we presented novel data structures and computational methods

to detect sequence overlaps and assemble overlapped sequences. We introduced Sequence

Decision Diagrams which are data structures that can compactly store finite sets of strings

and presented algorithms to efficiently perform set operation on them via memoization a

natural feature of decision diagrams. We also provided an algorithm to solve the all-pair

suffix-prefix problem using Sequence Decision Diagrams. In practice, genomic sequences

contain many variations due to SNPs, sequencing errors, and misassemblies, among other

reasons.

As part of SequOIA, we developed a tool that detects overlaps between sequences

based on a Jaccard-like similarity score calculated over the number of shared kmers be-

tween the two sequences. The use of kmers allows for error resilience in detecting potential

overlaps. We used this approach to detect potential overlaps between BACs, represented

as contigs.
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The second component of SequOIA merges overlapping assemblies (represented as

sets of contigs) to create longer contigs. The algorithm is based on an augmented de Bruijn

graph that we developed. Our de Bruijn graph is a hybrid of the positional de Bruijn graph

and colored de Bruijn graph, that exploits the a priori knowledge of the kmer positioning

within a sequence and to which set that sequence belongs. We showed that our augmented

de Bruijn graph can resolve most repeats and produce a de Bruijn graph with fewer path

discrepancies. We used SequOIA to merge assembled cowpea BAC clones.

We also presented an extensive comparative analysis of the state-of-the-art assem-

bly reconciliation tools, to better understand the performance of these tools on this hard

problem. If assembly reconciliation was solved properly it would very useful. Since it is a

common practice to produce multiple assemblies using different assemblers, parameters, or

even sequencing technologies, the ability to reconcile multiple assemblies would allow one

to leverage the strengths of each assembler/parameters and obtain a higher quality merged

assembly.
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Appendix A

A Comparative Evaluation of

Assembly Reconciliation Tools:

Supplementary Material

A.1 Experimental results on GAGE assemblies: comments

on Tables A.1-A.15

A.1.1 High contiguity, high correctness inputs (GAGE)

In the first set of experiments, the objective was to explore the contiguity/correctness

tradeoff. Specifically, we wanted to test the ability of reconciliation tools to take advantage

of the contiguity of the first input assembly and the correctness of the second in order to

create a merged assembly with a number of misassemblies comparable to the second as-

sembly and a contiguity comparable to the first assembly. The two input assemblies to be
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merged were chosen so that one has high N50 value (but possibly a relatively high number

of misassembly errors) and the other has few misassembly errors (and possibly a lower N50).

Table A.1 reports the results of merging the SOAPdenovo assembly (high N50)

with the ABySS assembly (low misassembly errors) for the three chosen genomes. Since

the assembly produced by ABySS on the Rhodobacter sphaeroides genome has more misas-

sembly errors than the assembly generated by SOAPdenovo we also considered the results

on Rhodobacter sphaeroides reported in Table A.5 where the input assemblies were pro-

duced by ALLPATHS-LG and SGA. The SOAPdenovo assembly was used as the “master”

assembly in all tools that distinguish the assembly inputs.

Observe in Table A.1 that on the Staphylococcus aureus genome, all tools increase

the contiguity by less than 3%, although the number of contigs decreased by 7 − 30%

(except for GAA). While none of the tools was able to improve assembly errors compared

to the ABySS assembly, GAA and MIX produced more errors than SOAPdenovo. CISA

produced the lowest number of misassemblies (13% less than SOAPdenovo) at the cost of

a 4% decrease in genome and gene coverage. Otherwise, GAM NGS and Metassembler

maintained quality statistics close to that of SOAPdenovo.

In this and the rest of the experiments below, GAA consistently produced as-

semblies with predictable statistics. In the vast majority of the cases, GAA created a

merged assembly in which the number of contigs, the size of the resulting assembly, and

the number of misassemblies were very close to the sum of those statistics for the input as-

semblies. GAA’s gene coverage was typically low in Staphylococcus aureus and Rhodobacter

sphaeroides (not as much on Hg chr14, where the gene coverage was generally high in com-
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parison to other merged assemblies), while the percentage of covered genome was relatively

high. While GAA’s N50 was low, in terms of NGA50 the contiguity was at least as good

as the most contiguous input assembly. In fact for Hg chr14, GAA increased NGA50 by

19− 123% except for one case in which the increase was negligible.

When the input was composed of scaffolds, all tools improved contiguity by less

than 5%, and reduced the number of scaffolds by 12 − 92%, with GARM reporting the

highest decrease. GARM was the only tool that significantly increased N50 and produced

the lowest number of misassemblies; however, GARM’s merged assembly covered less than

40% of the reference sequence and less than one third of the genes. In contrast, MIX’s

merged assembly covered 94% of the genes despite (i) including only about 44% of the

reference genome and (ii) decreasing the contiguity by 48%. If we exclude the number

of contigs and NGA50, all the other assembly statistics for GAM NGS and Metassembler

are very similar to SOAPdenovo. None of the tools was able to reduce the number of

misassembly errors compared to ABySS; in fact, CISA and MIX produced more errors than

SOAPdenovo.

Despite the fact that ABySS’s assembly for Rhodobacter sphaeroides had a higher

number of misassembly errors than SOAPdenovo, none of the merged assemblies improved

on the number of misassemblies compared to SOAPdenovo. Except for GAA, the number

of misassembly errors produced by all tools were closer to the master (SOAPdenovo). As

expected, tools that rely on the master assembly had a lower number of misassemblies

than those that did not rank the inputs. With scaffolds as inputs, changes in NGA50 were

negligible for all tools except for CISA. With contigs as inputs, GAM NGS improved the
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contiguity by at most 11%, Metassembler and MIX increased it by 2%, and CISA dropped

it by 85%. CISA also increased the number of contigs by 18%, and decreased genome

and gene coverage by about 45%. GAM NGS’s assembly covered less than one quarter

of the genome and about one fifth of the genes sequences, but its output had quality

statistics similar to SOAPdenovo (with a 5% decrease in scaffolds). MIX and Metassembler

decreased the number of scaffolds by 30% and 39%, respectively; otherwise, they maintained

contiguity and coverage statistics within 1% of SOAPdenovo. GARM significantly improved

the contiguity in terms of N50 but maintained the same NGA50 as SOAPdenovo. GARM

decreased genome and gene coverage by 11%.

With contigs as inputs, GAM NGS maintained the same genome and gene coverage

as SOAPdenovo. MIX and Metassembler produced comparable results, namely (i) they

both reduced the number of contigs by nearly one quarter, (ii) increased N50 by 10%, (iii)

maintained the same genome coverage, and (iv) decreased gene coverage by less than 2%.

In the majority of the cases, experimental results obtained with ALLPATHS-LG

(high N50) and SGA (low misassembly errors) on the Rhodobacter sphaeroides genome

(reported in Table A.5) followed similar patterns to the ones we observed in Table A.1. CISA

increased the number of contigs, but decreased the contiguity, genome and gene coverage

(although the reduction was far less this time). GAA followed the same general pattern

mentioned earlier. GAM NGS did not increase contiguity but rather maintained it close to

that of the master assembly. Metassembler and MIX also did not increase contiguity, but

they reduced the number of contigs, as well as genome and gene coverage. ZORRO worked

for this experiment: it increased the number of contigs, decreased contiguity by 10%, but
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retained genome and gene coverage of ALLPATHS-LG. ZORRO’s merged assembly is the

only one that achieved a smaller number of misassembly errors than ALLPATHS-LG (but

still higher that SGA).

With scaffolds as input assemblies, CISA again reduced the number of contigs

and produced an assembly with low genome and gene coverage. GAM NGS reduced the

number of contigs slightly but retained the quality statistics of the master assembly. Ob-

serve in Table A.1 that GARM improved N50 by 57% although it retained NGA50 close

to SOAPdenovo (the master assembly). Observe in Table A.5 that GARM maintained

ALLPATHS-LG’s contiguity statistics. In both experiments GARM decreased genome and

gene coverage; on the positive side, the consensus assembly had about 85% less scaffolds

compared to the master.

Experimental results on the Hg chr14 with contigs as input assemblies (Table A.1),

show that (i) GAM NGS slightly improved contiguity, (ii) Metassembler maintained con-

tiguity with fewer contigs, (iii) GAA crashed, (iv) number of misassemblies were closer to

SOAPdenovo. With scaffolds as inputs, GARM drastically reduced the number of contigs,

but also decreased the genome coverage by 7%. GAM NGS and Metassembler produced

assemblies with quality statistics close to SOAPdenovo except for a 26% decrease in the

number of contigs for Metassembler.

A.1.2 Reordering the inputs (GAGE)

As mentioned above, some of the assembly reconciliation tools assume that the

first input assembly is the master assembly, and should be “trusted” more (we call these
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tools asymmetric). The goal of this set of experiments is determine how the quality of

the merged assembly depends on the specific order of the inputs.

To determine how the ranking affected the results, we repeated the same experi-

ments reported in the previous section but switched the order of the inputs. A comparative

analysis of the results in Table A.1 and Table A.2 prompts a few observations. First, we

note that CISA, MIX, and GARM are symmetric (i.e., they do not require users to rank

the inputs, see Table 3.1), hence they are expected to be unaffected by the reordering.

Experimental results confirm that CISA and GARM are indeed unaffected. The reordering

however affected MIX results, albeit only slightly.

For Staphylococcus aureus, MIX’s contiguity statistics (N50 and NGA50) and

genome coverage were not affected by the reordering of the inputs. However, we observed

(i) a 2% decrease in gene coverage, (ii) a small difference in the number of contigs (±1), and

(iii) a small change in the number of misassemblies, although still higher than SOAPdenovo

in both cases.

On the Rhodobacter sphaeroides genome, all statistics remained unchanged except

for the number of misassemblies that increased after reordering. In addition, with contigs

as inputs we did not observe an increase in NGA50 after the reordering.

Despite the fact that GAA requires input ranking, the results for Staphylococcus

aureus and Rhodobacter sphaeroides were similar. The output statistics of GAA followed

the general pattern mentioned in the previous section. For Hg chr14, GAA crashed in

one ordering but not on the other. For all three genome, GAM NGS and Metassembler

produced consensus assemblies with quality statistics close to the master assembly.
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Note that the merged assemblies have higher contiguity in Table A.1, in which the

master has higher N50. In contrast, the number of misassemblies were lower in Table A.2

for both Staphylococcus aureus and Hg chr14 in which the master had lower errors (with the

exception of MIX). Merged assemblies for Rhodobacter sphaeroides had higher contiguity

and lower number of misassemblies, in which the master had higher N50 and lower number

of misassemblies (see Table A.1).

A.1.3 High-quality inputs (GAGE)

In the third set of experiments we tested the ability of the reconciliation tools to

merge two high quality assemblies. We selected two highly contiguous assemblies (i.e., small

number of contigs and scaffolds, high N50 values) and low number of misassembly errors.

Table A.3 show the result of merging assemblies produced by ALLPATHS-LG as first input

and either MSR-CA, SOAPdenovo, or CABOG as the second assembly.

Observe that for Staphylococcus aureus with contigs as inputs, GAM NGS pro-

duced an improved assembly that (i) had no misassemblies, (ii) was 66% more contiguous,

and (iii) covered the same portions of the genome and the genes. The next best assembly

was by Metassembler with a 107% increase in contiguity and a 51% decrease in the num-

ber of contigs, but it had a slight increase in the number of misassemblies compared to

ALLPATHS-LG. MIX also improved the contiguity by 107% (N50), but due to the high

number of misassemblies (higher than MSR-CA) the increase in contiguity dropped to 4%

when aligned to the reference. MIX’s gene coverage also dropped by 37%. CISA improved

contiguity by 11%, and reduced the number of contigs by nearly a half, but it produced

a number of errors higher than ALLPATHS-LG. CISA also decreased genome and gene
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coverage. ZORRO decreased contiguity by 30% and increased the number of contigs by

22%, although it maintained genome and gene coverage.

With scaffolds as inputs, ALLPATHS-LG has no misassemblies, a lower N50 than

MSR-CA but higher NGA50. In general, asymmetric tools produced a lower number of

misassemblies and decreased the N50. For instance, GAM NGS maintained quality statistics

of ALLPATHS-LG. Although ZORRO is asymmetric it decreased contiguity by more than

90%. On the other hand, symmetric tools had a higher number of misassemblies. GARM

achieved the highest increase of NGA50 (16%).

The contiguity of the merged assemblies improved 11%−108% with the exception

of ZORRO, which decreased the contiguity by 30%. GARM increased contiguity the most

(108%) at the expense of (i) an additional 12% duplication rate, (ii) a number of misas-

semblies close to MSR-CA, and (iii) a 10% decrease in gene coverage. MIX introduced no

misassemblies, but covered only 25% of the genome and gene sequences. Notably, both

GAM NGS and Metassembler (i) improved contiguity by 66.5%, (ii) reduced the number

of contigs, (iii) introduced no misassemblies, (iv) and maintained gene coverage. These

are two rare examples in which we observed an unquestionable improvement in the merged

assembly.

On the Rhodobacter sphaeroides genome, the two input assemblies had almost

the same number of misassemblies but the assembly produced by SOAPdenovo was much

less fragmented. Only MIX, Metassembler and GARM increased N50 by 37%, 43%, and

69%, respectively (with only Metassembler increasing NGA50 significantly). All other tools

decreased the contiguity. In terms of correctness, ZORRO and CISA (using scaffolds as
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inputs) reduced the number of misassemblies but also decreased the contiguity by 99% and

60%, respectively. Other tools produced merged assemblies with a number of misassemblies

not better than the inputs.

GARM improved the contiguity by 38% while CISA increased it by less than 2%.

GARM, CISA, and MIX reduced the number of contigs by 48%, 51%, and 60%, respectively,

but also decreased genome and gene coverage. MIX is the only tool that reduced the number

of misassemblies, but again its assembly only covered about half of the genome. None of

the tools improved both contiguity and the number of misassemblies.

In Hg chr14, GAA decreased the contiguity by 8%, but it improved the NGA50

by 76%, and increased the gene coverage by 13%. Nevertheless, it had a 198% inflation

rate and produced a number of misassemblies equal to the sum of the number of misassem-

blies in the two inputs. GAM NGS reduced the number of contigs by 10%, improved the

contiguity (39% increase in N50, 28% increase in NGA50), slightly reduced the number of

misassemblies, but decreased the gene coverage by 11%. Metassembler produced quality

statistics that are very close to ALLPATHS-LG.

With scaffolds as inputs, GAM NGS and Metassembler maintained similar quality

statistics to ALLPATHS-LG, with the exception of the number of contigs (Metassembler de-

creased it by 33%) and gene coverage (GAM NGS and Metassembler decreased by 18% and

51%, respectively). GARM improved N50 but decreased NGA50 by 9%. It also increased

the number of misassemblies and decreased genome and gene coverage.

GARM improved the contiguity by 128% and reduced the number of contigs in

half at the cost of 14% inflation and about 41% increase in the number of misassemblies.
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GAA and GAM NGS improved the contiguity by 76% and 28%, but only GAA increased

the gene coverage.

A.1.4 Highly-fragmented inputs (GAGE)

The goal of this set of experiments was to evaluate the performance of assembly

reconciliation tools when provided with two highly fragmented input assemblies. Input

assemblies were selected to have a high percentage of contigs shorter than 200 bps, a high

number of contigs and scaffolds, and low N50.

Table A.4 shows the results of merging ABySS assembly and SGA assembly. Ob-

serve that when we used contigs as inputs, ABySS had a higher contiguity than SGA (except

in Hg chr14 ). The opposite, however, was observed when scaffolds were provided in input.

In Staphylococcus aureus and Rhodobacter sphaeroides with contigs as inputs, all tools in-

creased N50 except for GAA. In terms of NGA50, only asymmetric tools maintained or

improved over NGA50 of the better input assembly (in Staphylococcus aureus we observed

up to 8% increase, and up to 17% in Rhodobacter sphaeroides). However, in Hg chr14 (with

contigs as inputs) only GAM NGS improved the N50. In terms of NGA50, GAA produced

a 123% increase over SGA, while GAM NGS did not improve it over SGA, but it increased

it 33% over ABySS.

With scaffolds as inputs, we observed a decrease in N50 except for MIX and

GARM (when SGA inputs are scaffolds). MIX, GARM, and CISA are symmetric tools,

hence they are expected to perform better than other tools when the non-master input

has better quality. CISA, however, produced inferior results with scaffolds as inputs in

most experiments. It turns out that CISA with default parameters break scaffolds into
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contigs when a scaffold contains more than ten consecutive occurrences of Ns. MIX and

GARM enhanced or maintained N50 of SGA. In terms of NGA50, MIX maintained it, while

GARM slightly decreased it compared to SGA (yet still higher than ABySS). The number

of contigs decreased although it remained relatively high in the majority of the cases. CISA

had more than 80% decrease in the number of contigs with scaffolds as inputs, but the

genome coverage was poor. GARM reduced the number of contigs by 74− 91%, regardless

of the genome coverage.

A.1.5 De Bruijn vs. string graph assembly (GAGE)

Here we tested the effect of merging assemblies generated using different assembly

strategies. Specifically, we merged an assembly generated by an assembler that uses a de

Bruijn graphs with an assembly produced by an assembler based on the string graph. Ta-

ble A.5 shows the result of merging an assembly produced by ALLPATHS-LG (based on the

de Bruijn graph) with an assembly produced by SGA (based on the string graph). Overall,

GAM NGS, Metassembler, and MIX maintained similar assembly statistics as ALLPATHS-

LG.

Note that Staphylococcus aureus input assemblies (as contigs) had only one mis-

assembly. The merged assemblies also have one misassembly, with the exception of GAA

(two) and ZORRO (none). ZORRO corrected the assembly error without affecting N50 but

at the price of a 17% increase in the number of contigs. CISA also increased the number

of contigs, decreased NGA50 by 49%, and decreased the gene coverage by 15%. With scaf-

folds as inputs, ALLPATHS-LG’s assembly has no assembly errors. In fact, observe that

all merged assemblies did not have any misassemblies. GARM produced only 3 scaffolds
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and increased N50 by 31% but kept NGA50 close to ALLPATHS-LG, while decreasing less

than 6% of genome and gene coverage. CISA covered less than 40% of the genome, while

ZORRO decreased the contiguity by 99%.

On Rhodobacter sphaeroides with contigs as inputs, CISA and ZORRO decreased

the contiguity by 34% and 10%, respectively. CISA decreased genome and gene coverage

by 8%, while ZORRO maintained ALLPATHS-LG’s coverage. GAM NGS and Metassem-

bler slightly reduced the number of contigs; otherwise they maintained ALLPATHS-LG’s

quality statistics. All tools produced a relatively high number of misassemblies (similar to

ALLPATHS-LG). With scaffolds as inputs, CISA, ZORRO, and GARM’s assembly statistics

followed the same of statistics of Staphylococcus aureus. All assemblies, with the exception

of CISA and ZORRO, had a number of misassemblies closer to ALLPATHS-LG. CISA again

covered less than one fifth of the genome and ZORRO decreased the contiguity by 99%.

GARM produced only four contigs but decreased the genome coverage by less than 5%.

GAM NGS, Metassembler, and MIX produced consensus assemblies with quality statistics

comparable to ALLPATHS-LG.

In Hg chr14 (with contigs as inputs) GAM NGS and Metassembler reduced the

number of contigs by 4% and 2%, respectively. GAM NGS increased NGA50 by 2%. With

scaffolds as inputs, GAM NGS and Metassembler maintained assembly statistics close to

ALLPATHS-LG except for the fact that Metassembler reduced the number of contigs by

21%. GARM reduced the number of contigs by 83%, maintained genome and gene cover-

age but increased the number of misassemblies by 9% (compared to ALLPATHS-LG) and

decreased NGA50 by 9%.
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GARM increased contiguity by 58%, while other tools improved it by less than

3%. GAM NGS and Metassembler produced about the same number of misassembly errors

as the higher of the two inputs. GARM improved NGA50 the most, but also increased the

number of misassemblies by 42% and had 31% inflation rate.

A.1.6 Multiple inputs (GAGE)

In this set of experiments we tested the ability of the tools to merge more than

two assemblies. When an assembly reconciliation tool allowed no more than two assemblies

in input (see Table 3.1 for a list), we merged them in an iterative fashion. For instance,

to merge three assemblies, we first merged two assemblies, then merged the result to the

third assemblies. Metassembler uses a similar strategy: when the user provides multiple

assemblies the tool iteratively performs pairwise reconciliation, where the output of one

iteration is the input of the next. The ordering of the input assemblies was chosen based

on feature response curve (FR curve), which is an assembly quality metric proposed in [61].

The FR curve represents the dependency between contigs that contains no more than τ

features and the corresponding genome coverage. The x-axis represents τ and the y-axis

represent genome coverage: the “steeper” is the curve, the better is the assembly. We used

the FR curves in [75] to determine the merging order of the GAGE assemblies, starting

with the assemblies with highest quality. Results for an alternative ordering is discussed

in the next section. For tools that allowed to merge more than two assemblies (e.g., CISA

and MIX), the merging was done in one step from the original assemblies. Here we were

interested in measuring the contiguity and correctness of the resulting assemblies as the

number of input assemblies increases.
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Tables A.6, A.7, and A.8; in addition to Figure 3.7, and Figures 3.9 and 3.11, show

the experimental results for Staphylococcus aureus, Rhodobacter sphaeroides and Hg chr14,

respectively, when inputs are contigs. First observe that in several cases, the process of

iterative merging did not complete.

On Staphylococcus aureus and Rhodobacter sphaeroides, CISA generally improved

the contiguity and decreased the number of contigs as the number of merged assemblies

increased. The number of errors and the percentage of genome covered fluctuated over the

iterations. As the number of merged assemblies increased, CISA increased the duplication

rate and decreased the percentage of covered genes. GAA did not produce assembly files for

the first iteration. Although GAA did not work for this particular ordering it did produce

results for the alternative ordering reported in the next section.

In Staphylococcus aureus and Rhodobacter sphaeroides, GAM NGS’s contiguity

improved over successive iterations, but the number of misassemblies errors did not de-

crease (it stayed close to the first master input in all iterations). On the positive side, (i)

the number of contigs was relatively small and (ii) the percentage of genome covered was

relatively high, and (iii) gene coverage was relatively high, although slightly lower than the

best gene coverage in the input assemblies. In contrast, the percentage of gene coverage

decreased for Hg chr14. Although the genome coverage and contiguity were high, the num-

ber of misassemblies was also relatively high. GAM NGS increased NGA50 by at least 70%

compared to CABOG.

In Staphylococcus aureus, Metassembler’s contiguity improved and the number of

contigs decreased over successive iterations, but the number of misassemblies also increased.
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Metassembler maintained high genome and gene coverage, although slightly lower than the

best gene coverage in the input assemblies. In Rhodobacter sphaeroides, Metassembler’s

assembly did not improve after the forth iteration. Note that NGA50 was lower than BAM-

BUS2 and SOAPdenovo. Metassembler’s assembly had low genome and gene coverage and

number of misassemblies was about the average of the inputs. In Hg chr14, the number of

contigs and misassembly errors were low and decreased over successive iterations. Contigu-

ity, genome and gene coverage were high, but slightly decreased over successive iterations.

MIX maintained a low number of misassemblies in most iterations but suffered

from low genome and gene coverage. Also, NGA50 was relatively poor. Since the genome

coverage in most iterations was less than 50% of the reference, no NGA50 was reported for

those iteration. On the Staphylococcus aureus genome, the coverage was less than 50% in

all iterations but it steadily improved with increasing number of inputs. On Rhodobacter

sphaeroides, the genome coverage was below 50% with four or more inputs.

ZORRO frequently failed to produce results. When it worked, it increased genome

and gene coverage. Contiguity usually started high, then fluctuated over iterations. ZORRO

produced relatively high number of contigs and misassemblies (somewhat in between the

values of the inputs).

We repeated the same experiment but with scaffolds as inputs. Results are re-

ported in Tables A.9, A.10, and A.11 and Figures 3.8, 3.10, and 3.12. CISA’s results show

that after a certain number of input assemblies, increasing the number of inputs did not af-

fect the results significantly. From that point forward, it generally improved the contiguity

and reduced the number of contigs as the number of merged assemblies increased, at the

138



cost of decreased genome and gene coverage and about 25% inflation rate. The number of

misassemblies were with the range of input assemblies. CISA reached stability with four

inputs on Staphylococcus aureus and three inputs on Rhodobacter sphaeroides).

MIX maintained a low number of contigs albeit this number fluctuated in Rhodobac-

ter sphaeroides with increasing number of inputs. MIX also produced a high duplication

ratio. On Staphylococcus aureus, MIX produced a high number of misassemblies which

generally increased as the number of inputs increased. It maintained high genome coverage

but gene coverage was poor in comparison to the inputs. It also maintained high contiguity

except for the last iteration. On Rhodobacter sphaeroides, the number of misassemblies

were also relatively high but it fluctuated as the number of inputs increased. Genome cov-

erage increased steadily but gene coverage decreased. It also maintained high contiguity,

achieving the best NGA50 for less than five inputs.

ZORRO produced a high number of contigs and a low number of misassemblies on

Staphylococcus aureus and Rhodobacter sphaeroides. It maintained a high genome coverage

but it slightly decreased gene coverage. Contiguity was poor and generally decreased over

successive iterations.

GAM NGS maintained results very close to the first input throughout all iterations

on Staphylococcus aureus, Rhodobacter sphaeroides, and Hg chr14. In the latter genome,

GAM NGS contiguity generally improved in successive iterations but so did the number of

misassemblies.

Metassembler maintained similar quality statistics to CABOG on Hg chr14, al-

though the number of contigs slightly decreased over successive iteration. On Rhodobacter
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sphaeroides, Metassembler also maintained CABOG’s quality statistics with a slight de-

crease of (i) number of contigs, (ii) number of misassemblies, (iii) genome and gene cover-

age, and (iv) contiguity, as the number of iteration increased. On Staphylococcus aureus,

Metassembler also maintained quality statistics close but not identical to MSR-CA. In gen-

eral, Metassembler produced a small number of contigs. Also, as the number of inputs

increased, the number of misassemblies slightly decreased and the contiguity slightly im-

proved.

A.1.7 Multiple inputs (alternative ordering)

In this set of experiments we tested the ability of the tools to merge more than

two assemblies on an alternative ordering to the FR curves used in the main Text. Recall

that when an assembly reconciliation tool allowed no more than two assemblies in input

(see Table 1 in the main text for a list), we merged them in an iterative fashion starting

from the most contiguous assemblies (see main Text for more details)

Tables A.12, A.13, A.14, and A.15 show the experimental results for Staphylococcus

aureus, Rhodobacter sphaeroides (two tables) and Hg chr14, respectively on this alternative

ordering. Figures 3.8 – 3.12 summerize the results with respect to contiguity and correctness.

First observe that similar to what we observed for the ordering based on FR curves,

in many instances the process of iterative merging did not complete.

On Staphylococcus aureus and Rhodobacter sphaeroides, CISA generally increased

the contiguity and decreased the number of contigs as the number of merged assemblies

increased. The number of errors and the percentage of genome covered fluctuated over the

iterations. While the percentage of covered genes peaked with three input assemblies, CISA
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increased the duplication rate as the number of merged assemblies increased. GAA instead

increased contiguity, number of errors, and duplication rate and the percentage of covered

genome fraction, as the number of merged assemblies increased.

In Staphylococcus aureus, Rhodobacter sphaeroides, and Hg chr14, GAA produced

a monotonic increase in duplication rate at successive iterations, while misassemblies seemed

to be the union of those present in the input assemblies. GAA’s contiguity did not increase

over successive iterations, but the genome coverage was relatively high, while gene coverage

which was very low in both Staphylococcus aureus and Rhodobacter sphaeroides.

GAM NGS’s contiguity increased over successive iterations, but the number of

misassemblies did not decrease. On the positive side, the number of misassemblies was small

and the percentage of genome covered was high. In Staphylococcus aureus and Rhodobacter

sphaeroides, gene coverage was high, although slightly lower than the best gene coverage in

the input assemblies. In contrast, the percentage of gene coverage decreased for Hg chr14.

GARM increased the contiguity over successive iterations but also inflated the re-

sulting assembly. The number of misassemblies and the genome/gene coverage fluctuated.

The percentage of gene coverage decreased in Hg chr14. In Rhodobacter sphaeroides, GARM

crashed after the third iteration. Note that in the second iteration of Staphylococcus aureus

only 26 contigs covered nearly 93% of the genome with 91% gene coverage, no misassem-

blies, and no inflation. In Staphylococcus aureus, Metassembler maintained a low error rate

and NGA50 (with the exception of Hg chr14 ) over successive iterations (although NGA50

was consistently low). In Hg chr14, NGA50 was low and also decreasing over iterations.
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In Rhodobacter sphaeroides, genome and gene coverage for Metassembler was low with

respect to input assemblies.

MIX maintained a low number of misassemblies in most iterations but suffered

from low genome and gene coverage. Its NGA50 fluctuated over successive iteration, but it

was relatively poor. Since the genome coverage in some iterations is less than 50% of the

reference, no NGA50 was reported for those iteration.

ZORRO frequently failed to produce results. When it worked, it increased the

percentage of genome coverage and gene coverage and it did not increased duplication.

142



T
a
b

le
A

.1
:

C
o
n
ti

g
u

it
y
-c

o
rr

ec
tn

es
s

ex
p

er
im

en
ta

l
re

su
lt

s.
A

ss
em

b
ly

re
co

n
ci

li
a
ti

o
n

to
o
ls

a
re

g
iv

en
in

in
p

u
t

tw
o

a
ss

em
b

li
es

to
m

er
g
e,

in
w

h
ic

h
th

e
fi
rs

t
h

a
s

h
ig

h
co

n
ti

g
u

it
y,

th
e

se
co

n
d

h
a
s

h
ig

h
co

rr
ec

tn
es

s.
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
(c

)
in

d
ic

a
te

s
th

a
t

th
e

a
ss

em
b
ly

is
co

m
p

o
se

d
o
f

co
n
ti

g
s,

(s
)

in
d

ic
a
te

s
th

a
t

th
e

a
ss

em
b

ly
is

co
m

p
o
se

d
o
f

sc
a
ff

o
ld

s;
a
ll

re
p

o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b

ly
M

is
m

at
ch

es
In

d
el

s
N

’s
G

en
om

e
D

u
p

li
ca

ti
o
n

N
G

A
5
0

G
en

es
T

o
ol

or
In

p
u

t
(#

)
(b

p
)

(b
p

)
(b

p
)

(#
)

L
en

gt
h

(b
p

)
(#

)
(#

)
(#

)
co

v
er

ed
(%

)
ra

ti
o

(b
p

)
(%

)

S
ta

p
h
yl

oc
oc

cu
s

a
u

re
u

s
(g

en
om

e
si

ze
2,

90
3
,0

81
b

p
)

S
O

A
P

d
en

ov
o

(c
)

70
51

8,
71

0
2,

89
7
,4

32
28

8,
18

4
31

2
,0

27
,9

05
23
.0

0
2
.4

5
0.

07
98
.5

5
1
.0

1
1
5
0,

7
9
4

9
6.

4
2

A
B

y
S

S
(c

)
24

7
12

5,
04

9
3,

63
1
,2

45
25
,0

84
5

22
,3

99
12
.3

9
0
.8

5
7.

79
97
.2

7
1
.2

9
2
9,

1
9
8

7
7.

5
3

C
IS

A
49

48
3
,1

64
2,

79
4
,8

31
21

2,
75

5
27

1
,8

04
,0

73
22
.3

7
2
.6

5
7.

55
94
.7

2
1
.0

2
1
5
4,

5
0
3

9
2.

3
6

G
A

A
31

7
51

8
,7

10
6,

52
8
,6

77
48
,8

45
36

2
,0

50
,3

04
27
.1

4
2.

33
4.

37
98
.8

8
2
.2

8
1
5
0,

7
9
4

4.
3
2

G
A

M
N

G
S

65
54

5
,5

77
2,

90
1
,2

16
28

8,
18

4
31

2
,0

53
,1

93
26
.2

8
2
.5

9
0.

07
98
.5

8
1
.0

2
1
5
2,

7
9
5

9
6.

4
0

M
IX

56
54

0
,2

99
2,

94
4
,5

56
29

4,
92

7
36

2
,1

95
,3

78
24
.6

6
2.

62
0.

07
98
.6

1
1
.0

3
1
5
2,

7
9
5

9
4.

5
7

M
et

as
se

m
b

le
r

50
52

8
,5

61
2,

89
3
,3

44
28

8,
18

4
31

2
,0

80
,3

36
22
.4

1
2.

24
1.

11
9
8
.5

2
1
.0

1
1
5
4,

1
1
6

9
6.

0
0

S
O

A
P

d
en

ov
o

(s
)

64
51

8,
71

0
2,

90
2
,9

67
33

1,
59

8
32

2
,3

48
,7

56
24
.2

3
2
.7

6
16

7.
31

98
.5

5
1
.0

1
1
7
2,

5
7
5

9
6.

3
9

A
B

y
S

S
(s

)
20

6
13

0,
19

2
3,

69
2
,7

03
27
,6

95
10

17
8,

90
1

12
.2

2
1
.0

9
15

20
.9

7
97
.5

4
1
.3

0
3
1,

7
0
3

7
7.

5
6

C
IS

A
51

52
6
,0

00
3,

03
0
,3

47
33

1,
59

5
37

2
,5

02
,0

90
26
.0

3
2
.6

8
48

9.
71

97
.7

8
1
.0

7
1
7
2,

5
7
4

9
0.

8
7

G
A

M
N

G
S

56
52

6
,2

02
2,

90
4
,7

92
33

5,
06

0
32

2
,3

58
,5

82
25
.8

6
2
.7

6
17

4.
16

98
.6

1
1
.0

1
1
8
1,

7
7
9

9
6.

4
7

G
A

R
M

(c
tg

sc
f)

41
1,

05
5
,6

85
7,

56
2
,7

61
33

5,
61

1
10

5
7
,1

25
,5

30
28
.4

6
2
.3

4
18
,5

10
.3

7
72
.1

5
3
.6

1
2
1
7,

4
8
4

5.
0
7

G
A

R
M

(s
cf

ct
g)

5
42

3,
44

0
1,

48
5
,6

22
41

0,
62

2
14

1
,4

78
,6

52
27
.4

9
2
.3

4
12
,4

03
.7

6
38
.3

2
1
.3

3
N

A
3
3
.2

8
M

IX
45

54
2
,3

91
2,

97
4
,0

02
35

6,
57

0
35

2
,4

42
,6

87
27
.9

3
3.

11
19

1.
93

98
.6

9
1
.0

4
1
7
7,

8
8
0

9
3.

9
2

M
et

as
se

m
b

le
r

43
52

9
,5

35
2,

90
2
,2

61
33

1,
59

8
32

2
,3

58
,5

51
23
.2

9
2.

59
19

3.
95

9
8
.5

6
1
.0

1
1
8
1,

7
7
9

9
6.

0
1

R
h
od

o
ba

ct
er

sp
h
a
er

o
id

es
(g

en
om

e
si

ze
4,

60
3,

06
0

b
p

)

S
O

A
P

d
en

ov
o

(c
)

11
4

37
6,

58
5

4,
56

9
,3

40
13

1,
68

1
11

63
3,

16
3

21
.2

8
9
.5

1
0.

00
98
.7

2
1
.0

1
1
2
9,

6
1
3

9
2.

2
4

A
B

y
S

S
(c

)
15

09
54
,7

34
4,

83
0
,7

69
55

62
85

86
6
,2

18
22
.7

6
5
.8

4
2.

32
93
.7

5
1
.1

2
5
3
0
3

7
6
.1

2

C
IS

A
13

5
15

7
,1

13
2,

63
5
,8

36
60
,5

66
23

42
9,

49
3

45
.1

8
11
.0

6
0.

57
55
.4

0
1
.0

3
1
9,

0
6
0

4
9.

5
2

G
A

A
16

04
37

6
,5

85
9,

36
7
,8

10
23
,5

77
96

1
,4

99
,3

81
27
.7

8
10
.6

4
1.

20
99
.4

1
2
.0

5
1
2
9,

6
1
3

2
2.

2
7

G
A

M
N

G
S

11
0

37
6
,5

85
4,

56
9
,9

28
15

1,
40

4
11

61
2,

57
3

22
.1

1
9
.5

9
0.

04
98
.7

4
1
.0

1
1
4
4,

4
6
9

9
2.

1
9

M
IX

87
37

6
,5

85
4,

60
1
,2

57
14

4,
46

9
21

95
1,

06
9

25
.5

7
10
.1

2
0.

41
98
.9

6
1
.0

1
1
3
1,

6
0
1

9
0.

6
9

M
et

as
se

m
b

le
r

87
37

6
,5

85
4,

56
4
,0

73
14

4,
46

9
12

66
8,

77
0

21
.7

5
9.

61
4.

01
98
.7

9
1
.0

0
1
3
1,

6
0
1

9
1.

5
0

S
O

A
P

d
en

ov
o

(s
)

76
1,

15
4
,1

34
4,

57
9
,8

01
66

0,
16

4
13

1
,9

27
,9

59
21
.3

0
9
.8

1
22

8.
42

98
.7

3
1
.0

1
5
3
9,

7
7
0

9
2.

5
8

A
B

y
S

S
(s

)
13

52
87
,8

55
4,

96
8
,9

21
80

36
85

1
,0

12
,7

03
23
.3

8
8
.9

2
23

02
.4

7
94
.2

1
1
.1

4
7
1
3
6

7
6
.9

2

C
IS

A
43

11
8
,5

26
1,

27
1
,3

28
45
,1

99
25

58
4,

06
7

72
.3

2
12
.8

5
19

64
.8

7
23
.6

7
1
.1

7
N

A
1
9
.0

2
G

A
M

N
G

S
72

1,
15

4
,1

34
4,

58
0
,3

83
66

0,
16

4
13

1
,9

27
,9

59
21
.3

4
9
.8

1
22

2.
06

98
.7

5
1
.0

1
5
3
9,

7
7
0

9
2.

5
5

G
A

R
M

(c
tg

sc
f)

82
88

5,
08

9
14
,7

70
,5

52
34

0,
52

3
12

1
13
,3

55
,2

36
41
.3

4
30
.7

4
14
,6

20
.9

8
81
.6

1
3
.9

3
3
0
0,

2
3
2

1
8.

8
3

G
A

R
M

(s
cf

ct
g)

11
1,

16
0
,2

02
4,

08
6
,6

23
1,

03
5,

29
0

17
3
,3

79
,0

68
41
.1

4
31
.1

4
20

8.
88

87
.9

7
1
.0

1
5
4
0,

0
8
8

8
3.

3
4

M
IX

53
2,

18
9
,0

67
4,

62
2
,6

53
66

5,
69

5
20

3
,3

70
,3

73
23
.0

5
9
.9

3
26

3.
61

98
.8

6
1
.0

2
5
3
9,

7
7
0

9
1.

3
9

M
et

as
se

m
b

le
r

46
1
,1

58
,0

92
4,

58
0
,6

89
66

5,
62

2
15

1
,9

61
,0

85
21
.6

7
9.

95
28

0.
55

98
.7

3
1
.0

1
5
3
8,

7
8
3

9
1.

7
6

H
o
m

o
sa

p
ie

n
s,

ch
ro

m
o
so

m
e

1
4

(g
en

om
e

si
ze

10
7,

34
9,

54
0

b
p

)

S
O

A
P

d
en

ov
o

(c
)

15
,0

28
14

7,
49

4
90
,3

98
,7

34
16
,1

79
63

29
43
,7

13
,7

69
15

2
.3

4
24
.2

6
0.

02
77
.3

0
1
.0

9
8
1
5
5

6
4
.0

3
A

B
y
S

S
(c

)
32
,0

50
30
,0

53
67
,0

74
,1

40
31

82
24

12
8
,2

44
84
.4

8
9
.2

0
1.

31
61
.5

4
1
.0

1
1
3
1
9

8
3
.8

5

G
A

A
D

id
n

ot
p
ro

d
u

ce
ou

tp
u

t
fi

le
s

G
A

M
N

G
S

14
,7

55
14

7,
49

4
90
,3

99
,8

07
16
,6

49
62

81
44
,1

41
,2

93
15

2
.5

7
24
.4

3
0.

09
77
.3

6
1
.0

9
8
3
4
5

6
3
.6

0
M

et
as

se
m

b
le

r
12
,3

31
14

7,
49

4
87
,5

78
,7

79
16
,7

97
61

28
43
,4

11
,9

53
14

8
.1

8
23
.9

8
0.

02
76
.3

8
1
.0

7
8
1
5
5

6
3
.3

0

S
O

A
P

d
en

ov
o

(s
)

72
64

1,
84

9
,5

11
10

0,
88

0
,7

46
38

1,
28

6
81

71
89
,3

96
,6

25
15

2
.6

8
24
.5

2
10
,1

66
.3

9
77
.4

4
1
.2

0
1
7,

8
5
1

3
1.

7
3

A
B

y
S

S
(s

)
31
,5

82
30
,0

53
67
,7

24
,5

94
33

55
37

23
7
,7

38
84
.6

7
9
.3

7
85

9.
44

61
.6

1
1
.0

2
1
3
3
9

8
3
.1

0

G
A

M
N

G
S

71
66

1,
84

9
,5

11
10

0,
34

7
,5

39
36

8,
31

8
80

19
88
,8

44
,1

25
15

2
.8

1
24
.6

4
10
,1

51
.9

9
76
.8

9
1
.2

0
1
7,

9
0
3

2
9.

8
5

G
A

R
M

(c
tg

sc
f)

43
5

13
9,

25
3

7,
40

2
,1

30
27
,5

62
52

1
5
,3

62
,4

30
19

1
.2

9
31
.2

0
89

79
.0

9
5
.4

0
1
.2

5
N

A
1
1
.1

8
G

A
R

M
(s

cf
ct

g)
94

9
1,

85
3
,7

09
92
,9

80
,3

99
42

7,
95

2
79

58
89
,0

41
,6

39
15

9
.1

3
25
.8

5
10
,8

63
.8

6
72
.2

5
1
.1

8
1
7,

7
8
3

2
2.

9
5

M
et

as
se

m
b

le
r

53
58

1
,8

49
,5

11
98
,8

20
,8

40
38

7,
99

4
81

16
89
,2

80
,0

78
15

2
.7

5
24
.5

5
10
,2

27
.1

1
76
.9

8
1
.1

8
1
7,

8
5
1

2
8.

8
0

143



T
a
b

le
A

.2
:

C
o
n
ti

g
u

it
y
-c

o
rr

ec
tn

es
s

ex
p

er
im

en
ta

l
re

su
lt

s.
A

ss
em

b
ly

re
co

n
ci

li
a
ti

o
n

to
o
ls

a
re

g
iv

en
in

in
p

u
t

th
e

sa
m

e
tw

o
a
ss

em
b

li
es

in
T

a
b

le
A

.1
,

b
u

t
th

e
o
rd

er
is

sw
a
p

p
ed

.
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
(c

)
in

d
ic

a
te

s
th

a
t

th
e

a
ss

em
b

ly
is

co
m

p
o
se

d
o
f

co
n
ti

g
s,

(s
)

in
d

ic
a
te

s
th

a
t

th
e

a
ss

em
b

ly
is

co
m

p
o
se

d
o
f

sc
a
ff

o
ld

s;
a
ll

re
p

o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b
ly

M
is

m
at

ch
es

In
d
el

s
N

’s
G

en
o
m

e
D

u
p
li
ca

ti
on

N
G

A
5
0

G
en

es
T

o
ol

or
In

p
u
t

(#
)

(b
p
)

(b
p
)

(b
p
)

(#
)

L
en

gt
h

(b
p
)

(#
)

(#
)

(#
)

co
v
er

ed
(%

)
ra

ti
o

(b
p
)

(%
)

S
ta

p
h
yl

oc
oc

cu
s

a
u

re
u

s
(g

en
om

e
si

ze
2,

90
3,

08
1

b
p
)

A
B

y
S
S

(c
)

24
7

12
5,

04
9

3,
63

1,
24

5
25
,0

84
5

22
,3

99
12
.3

9
0.

85
7.

79
97
.2

7
1
.2

9
2
9,

1
98

77
S
O

A
P

d
en

ov
o

(c
)

70
51

8,
71

0
2,

89
7,

43
2

28
8,

18
4

31
2
,0

27
,9

05
23
.0

0
2.

45
0.

07
98
.5

5
1
.0

1
1
50
,7

94
96

C
IS

A
49

48
3
,1

64
2,

79
4,

83
1

21
2,

75
5

27
1
,8

04
,0

73
22
.3

7
2.

65
7.

55
94
.7

2
1
.0

2
15

4,
5
03

92
G

A
A

31
6

51
8
,7

10
6,

52
4,

76
6

48
,8

45
36

2
,0

50
,3

04
27
.2

1
2.

33
4.

37
98
.8

8
2
.2

7
1
50
,7

94
4

G
A

M
N

G
S

17
1

28
0
,3

41
3,

69
6,

36
1

39
,3

84
20

73
9,

37
2

15
.2

6
0.

99
6.

41
97
.7

3
1
.3

0
6
9,

2
39

78
M

IX
57

52
2
,7

77
2,

89
3,

31
4

29
4,

92
7

33
2
,0

86
,0

01
23
.6

5
2.

59
0.

10
98
.5

9
1
.0

1
1
52
,7

95
96

M
et

as
se

m
b
le

r
51

52
4
,3

35
2,

94
5,

34
8

17
9,

40
2

28
1
,6

42
,2

87
22
.9

0
2.

35
25
.0

9
9
8
.2

3
1
.0

3
1
54
,5

03
94

A
B

y
S
S

(s
)

20
6

13
0,

19
2

3,
69

2,
70

3
27
,6

95
10

17
8,

90
1

12
.2

2
1.

09
15

20
.9

7
97
.5

4
1
.3

0
3
1,

7
03

77
S
O

A
P

d
en

ov
o

(s
)

6
4

51
8,

71
0

2,
90

2,
96

7
33

1,
59

8
32

2
,3

48
,7

56
24
.2

3
2.

76
16

7.
31

98
.5

5
1
.0

1
1
72
,5

75
96

C
IS

A
51

52
6
,0

00
3,

03
0,

34
7

33
1,

59
5

37
2
,5

02
,0

90
26
.0

3
2.

68
48

9.
71

97
.7

8
1
.0

7
17

2,
5
74

90
G

A
M

N
G

S
90

47
4
,4

93
3,

62
6,

57
4

13
0,

19
2

28
1
,8

41
,2

89
21
.6

5
2.

14
14

16
.2

4
98
.1

8
1
.2

7
12

3,
7
83

78
G

A
R

M
(c

tg
sc

f)
41

1
,0

55
,6

85
7,

56
2,

76
1

33
5,

61
1

10
5

7
,1

25
,5

30
28
.4

6
2.

34
18
,5

10
.3

7
72
.1

5
3
.6

1
2
17
,4

84
5

G
A

R
M

(s
cf

ct
g)

5
41

0,
63

8
1,

44
5,

72
7

38
3,

62
5

14
1
,4

38
,7

57
23
.9

7
2.

43
99

91
.2

4
38
.3

2
1
.3

0
N

A
33

M
IX

44
52

4
,8

69
2,

92
3,

10
3

35
6,

57
0

37
2
,4

05
,8

08
26
.9

6
2.

93
20

9.
50

98
.6

6
1
.0

2
1
77
,8

80
95

M
et

as
se

m
b
le

r
63

41
0
,1

49
3,

39
5,

04
0

17
2,

46
2

28
1
,4

43
,5

78
24
.0

3
2.

52
95

1.
56

9
8
.3

4
1
.1

9
1
55
,9

25
84

R
h
od

o
ba

ct
er

sp
h
a
er

o
id

es
(g

en
om

e
si

ze
4,

60
3
,0

60
b
p
)

A
B

y
S
S

(c
)

15
09

54
,7

34
4,

83
0,

76
9

55
62

85
86

6
,2

18
22
.7

6
5.

84
2.

32
93
.7

5
1
.1

2
53

03
76

S
O

A
P

d
en

ov
o

(c
)

11
4

37
6,

58
5

4,
56

9,
34

0
13

1,
68

1
11

63
3,

16
3

21
.2

8
9.

51
0.

00
98
.7

2
1
.0

1
1
29
,6

13
92

C
IS

A
13

5
15

7
,1

13
2,

63
5,

83
6

60
,5

66
23

42
9,

49
3

45
.1

8
11
.0

6
0.

57
55
.4

0
1
.0

3
1
9,

0
60

49
G

A
A

16
22

37
6
,5

85
9,

39
8,

02
4

23
,1

15
96

1
,4

99
,3

81
27
.7

8
10
.6

4
1.

19
99
.4

1
2
.0

5
1
29
,6

13
22

G
A

M
N

G
S

70
4

15
8
,4

12
4,

95
3,

88
2

22
,2

44
86

99
1,

63
8

28
.8

2
10
.1

0
2.

28
96
.5

7
1
.1

1
2
2,

2
44

80
M

IX
87

38
2
,2

94
4,

60
6,

96
6

14
4,

46
9

26
1
,5

00
,9

09
26
.7

7
10
.0

4
0.

41
98
.8

6
1
.0

1
1
29
,6

13
90

M
et

as
se

m
b
le

r
19

6
19

0
,2

87
4,

84
1,

86
2

65
,5

53
77

2
,2

42
,6

83
28
.6

7
12
.2

2
42
.6

3
9
8
.2

7
1
.0

7
58
,7

69
88

A
B

y
S
S

(s
)

13
52

87
,8

55
4,

96
8,

92
1

80
36

85
1
,0

12
,7

03
23
.3

8
8.

92
23

02
.4

7
94
.2

1
1
.1

4
71

36
76

S
O

A
P

d
en

ov
o

(s
)

7
6

1,
15

4
,1

34
4,

57
9,

80
1

66
0,

16
4

13
1
,9

27
,9

59
21
.3

0
9.

81
22

8.
42

9
8
.7

3
1
.0

1
5
39
,7

70
92

C
IS

A
43

11
8
,5

26
1,

27
1,

32
8

45
,1

99
25

58
4,

06
7

72
.3

2
12
.8

5
19

64
.8

7
23
.6

7
1
.1

7
N

A
19

G
A

M
N

G
S

13
28

87
,8

55
4,

98
2,

71
9

82
40

85
1
,0

22
,3

01
22
.8

0
9.

49
23

26
.5

6
94
.4

8
1
.1

4
72

66
76

G
A

R
M

(s
cf

ct
g)

82
88

5,
08

9
14
,7

70
,5

52
34

0,
52

3
12

1
13
,3

55
,2

36
41
.3

4
30
.7

4
14
,6

20
.9

8
81
.6

1
3
.9

3
3
00
,2

32
18

G
A

R
M

(c
tg

sc
f)

11
1
,1

60
,1

45
4,

08
6,

02
0

1,
03

5
,3

09
17

3
,3

78
,4

35
38
.9

5
31
.1

0
20

7.
46

87
.9

5
1
.0

1
5
40
,0

75
83

M
IX

53
2,

19
4
,7

76
4,

62
8,

36
2

66
5,

69
5

22
4
,0

41
,7

77
22
.8

3
10
.0

6
26

3.
29

9
8
.8

6
1
.0

2
53

9,
76

5
9
1

M
et

as
se

m
b
le

r
18

3
20

6
,6

56
5,

02
5,

41
2

84
,1

39
86

2
,8

32
,2

28
25
.6

6
15
.2

8
16

64
.0

2
98
.2

2
1
.1

1
82
,1

0
1

8
6

H
o
m

o
sa

p
ie

n
s,

ch
ro

m
o
so

m
e

1
4

(g
en

om
e

si
ze

10
7,

34
9
,5

40
b
p
)

A
B

y
S
S

(c
)

32
,0

50
30
,0

53
67
,0

74
,1

40
31

82
24

12
8
,2

44
84
.4

8
9.

20
1.

31
61
.5

4
1
.0

1
13

19
83

S
O

A
P

d
en

ov
o

(c
)

15
,0

28
14

7,
49

4
90
,3

98
,7

34
16
,1

79
63

29
43
,7

13
,7

69
15

2
.3

4
24
.2

6
0.

02
77
.3

0
1
.0

9
81

55
64

G
A

A
41
,0

07
14

7,
49

4
15

0,
67

0,
12

3
78

65
63

29
43
,8

03
,4

15
15

5
.0

6
24
.6

1
0.

60
76
.1

0
1
.8

4
97

33
79

G
A

M
N

G
S

17
,5

79
14

6,
38

8
76
,6

17
,3

04
11
,2

18
28

53
24
,3

15
,4

03
11

0
.2

7
16
.8

7
1.

01
68
.8

3
1
.0

4
42

16
67

M
et

as
se

m
b
le

r
31
,9

09
30
,0

53
66
,6

62
,1

56
31

68
22

12
4
,3

38
84
.3

7
9.

20
1.

28
61
.5

2
1
.0

1
12

91
77

A
B

y
S
S

(s
)

31
,5

82
30
,0

53
67
,7

24
,5

94
33

55
37

23
7
,7

38
84
.6

7
9.

37
85

9.
44

61
.6

1
1
.0

2
13

39
83

S
O

A
P

d
en

ov
o

(s
)

72
6
4

1,
84

9
,5

11
10

0,
88

0,
74

6
38

1,
28

6
81

71
89
,3

96
,6

25
15

2
.6

8
24
.5

2
10
,1

66
.3

9
7
7
.4

4
1
.2

0
17
,8

51
3
1

G
A

M
N

G
S

24
,9

13
18

3,
07

9
76
,2

25
,8

40
52

05
14

25
11
,6

46
,5

50
10

2
.3

5
13
.5

4
43

23
.0

3
65
.9

4
1
.0

6
22

78
76

G
A

R
M

(c
tg

sc
f)

43
5

13
9,

25
3

7,
40

2,
13

0
27
,5

62
52

1
5
,3

62
,4

30
19

1
.2

9
31
.2

0
89

79
.0

9
5
.4

0
1
.2

5
N

A
11

M
et

as
se

m
b
le

r
31
,4

67
30
,0

53
67
,4

94
,4

12
33

59
36

23
2
,3

66
84
.4

9
9.

36
65

9.
65

61
.5

9
1
.0

2
13

34
76

144



T
a
b

le
A

.3
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
h

ig
h

-q
u

a
li
ty

a
ss

em
b

li
es

.
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li

ty
o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
(c

)
in

d
ic

a
te

s
th

a
t

th
e

a
ss

em
b

ly
is

co
m

p
o
se

d
o
f

co
n
ti

g
s,

(s
)

in
d

ic
a
te

s
th

a
t

th
e

a
ss

em
b

ly
is

co
m

p
o
se

d
o
f

sc
a
ff

o
ld

s;
a
ll

re
p

o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b

ly
M

is
m

at
ch

es
In

d
el

s
N

’s
G

en
om

e
D

u
p

li
ca

ti
o
n

N
G

A
5
0

G
en

es
T

o
ol

or
In

p
u

t
(#

)
(b

p
)

(b
p

)
(b

p
)

(#
)

L
en

gt
h

(b
p

)
(#

)
(#

)
(#

)
co

ve
re

d
(%

)
ra

ti
o

(b
p

)
(%

)

S
ta

p
h
yl

oc
oc

cu
s

a
u

re
u

s
(g

en
om

e
si

ze
2,

90
3,

08
1

b
p

)

A
L

L
P

A
T

H
S

-L
G

(c
)

59
23

4
,4

88
2,

86
9,

58
1

96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
96
,7

40
95
.7

2
M

S
R

-C
A

(c
)

89
13

9,
43

8
2,

86
0
,1

32
59
,1

52
20

64
1,

17
3

20
.6

7
1
.8

2
0.

0
0

9
8
.1

7
1
.0

0
55
,0

68
9
5.

1
6

C
IS

A
31

48
0
,8

50
2,

90
1,

69
0

10
7,

12
5

7
88

7,
86

5
9
.4

5
1.

09
1.

17
97
.7

1
1
.0

2
10

7,
1
25

93
.1

0
G

A
A

14
7

23
4
,4

88
5,

72
8
,4

34
69
,0

48
20

72
9,

52
8

11
.2

6
1
.6

6
0.

7
5

9
9
.4

1
1
.9

9
10

9,
3
25

3.
6
2

G
A

M
N

G
S

45
47

4
,9

96
2,

87
1,

13
3

16
1,

07
2

0
0

2.
65

0.
94

1.
43

98
.9

1
1
.0

0
16

1,
0
72

95
.9

1
M

IX
37

59
3
,7

09
3,

11
0
,1

76
20

0,
24

7
22

1,
91

0,
11

5
8
.2

7
1
.6

7
1.

22
99
.0

8
1
.0

8
1
01
,0

91
59
.8

6
M

et
as

se
m

b
le

r
29

48
1
,0

89
2,

85
3
,4

30
20

0,
24

7
2

34
,4

27
3
.0

5
0
.9

1
4.

6
6

98
.3

2
1
.0

0
2
00
,2

47
95
.3

8
Z

O
R

R
O

72
20

1
,5

29
2,

88
5
,4

56
70
,3

61
4

12
1,

29
6

5
.6

3
1
.3

9
0.

4
2

99
.1

3
1
.0

0
68
,0

0
6

96
.1

9

A
L

L
P

A
T

H
S

-L
G

(s
)

11
1,

43
5
,5

59
2,

87
9
,4

81
1,

09
1,

73
1

0
0

3.
97

2
.5

1
34

5.
31

98
.8

6
1
.0

0
1,

08
2
,6

16
96
.5

9
M

S
R

-C
A

(s
)

13
2
,4

11
,9

14
2,

87
1
,4

05
2,

41
1,

91
4

49
2,

80
6,

23
0

20
.9

0
3
.7

5
36

0.
5
6

9
8
.2

3
1
.0

1
22

0,
0
20

9
6.

6
5

C
IS

A
10

2
,4

11
,9

14
2,

86
5
,0

36
2,

41
1,

91
4

47
2,

85
7,

36
0

20
.8

7
3
.7

1
30

8.
93

98
.3

9
1
.0

0
2
20
,0

20
96
.8

2
G

A
M

N
G

S
11

1
,4

35
,5

59
2,

87
9,

48
1

1,
0
91
,7

31
0

0
3.

97
2
.5

1
34

5.
31

98
.8

6
1
.0

0
1,

08
2
,6

16
96
.5

9
G

A
R

M
(c

tg
sc

f)
4

2,
61

2
,6

40
3,

15
4
,3

42
2,

61
2,

64
0

44
3,

15
4,

34
2

13
.5

7
2
.7

8
16

8.
66

96
.4

9
1
.1

3
2
55
,1

11
91
.9

9
G

A
R

M
(s

cf
ct

g
)

3
1,

53
1
,9

87
2,

93
1
,5

36
1,

53
1,

98
7

12
2,

93
1,

53
6

14
.9

5
4
.1

5
11

8.
47

90
.5

8
1
.1

2
3
56
,9

37
89
.1

9
M

IX
10

3
,8

44
,3

59
5,

68
0
,1

69
3,

84
4,

35
9

54
5,

59
6,

86
2

15
.0

8
4
.5

7
33

6.
9
1

9
9
.3

9
1
.9

7
1,

07
7
,5

68
8
8.

0
8

M
et

a
ss

em
b

le
r

7
1
,4

35
,8

36
2,

86
0
,3

86
1,

43
5
,8

36
2

1
,4

35
,8

36
3
.4

0
1.

61
39

5.
0
2

98
.1

5
1
.0

0
1,

0
82
,0

8
9

96
.0

2
Z

O
R

R
O

12
4

17
8
,3

81
2,

94
3
,6

96
57
,4

02
6

48
,6

75
3
.8

3
1.

78
47

8.
82

98
.9

5
1
.0

2
60
,0

1
5

94
.2

6

R
h
od

o
ba

ct
er

sp
h
a
er

o
id

es
(g

en
om

e
si

ze
4,

60
3
,0

60
b

p
)

A
L

L
P

A
T

H
S

-L
G

(c
)

20
3

10
6
,4

67
4,

58
7,

35
4

42
,4

55
10

40
4,

18
5

6
.3

3
4.

77
2.

79
99
.2

0
1
.0

0
41
,4

87
92
.5

5
S

O
A

P
d

en
ov

o
(c

)
11

4
37

6
,5

85
4,

56
9
,3

40
13

1,
68

1
11

63
3,

16
3

21
.2

8
9
.5

1
0.

0
0

9
8
.7

2
1
.0

1
12

9,
6
13

9
2.

2
4

C
IS

A
56

42
3
,7

36
4,

82
6,

39
0

13
1,

68
1

13
82

4,
84

1
15
.7

8
8.

86
0.

79
97
.8

6
1
.0

7
13

1,
6
01

84
.8

9
G

A
A

31
6

37
6
,5

85
9,

15
2
,8

96
67
,2

08
21

1,
03

7,
34

8
14
.4

3
7
.0

3
1.

40
99
.5

3
2
.0

0
1
29
,6

13
6.

01
G

A
M

N
G

S
14

7
25

9
,8

55
4,

58
9,

11
6

65
,6

18
14

51
5,

68
9

12
.1

3
5.

73
2.

68
9
9
.2

6
1
.0

0
6
0,

50
2

92
.6

1
M

IX
79

40
0
,6

70
4,

96
2
,9

38
18

0,
22

2
29

2,
38

6,
11

0
24
.3

1
9
.2

1
0.

60
9
8
.8

6
1
.0

9
13

1,
6
01

85
.5

4
M

et
as

se
m

b
le

r
65

44
6
,0

66
4,

58
8
,8

76
18

7,
66

7
17

1,
35

8,
09

9
11
.7

5
6
.7

8
47
.2

4
99
.3

2
1
.0

0
1
87
,6

67
93
.0

3
Z

O
R

R
O

29
1

93
,9

96
4,

60
3
,0

56
27
,3

99
12

18
3,

41
7

11
.3

1
4
.6

3
1.

0
2

99
.0

9
1
.0

1
27
,2

33
91
.8

3

A
L

L
P

A
T

H
S

-L
G

(s
)

33
3,

19
2
,3

34
4,

60
8
,7

63
3,

19
2,

33
4

15
4,

44
7,

87
1

5
.9

1
6
.7

9
46

7.
31

99
.2

4
1
.0

1
9
28
,8

21
95
.0

2
S

O
A

P
d

en
ov

o
(s

)
76

1,
15

4
,1

34
4,

57
9
,8

01
66

0,
16

4
13

1,
92

7,
95

9
21
.3

0
9
.8

1
22

8.
4
2

9
8
.7

3
1
.0

1
53

9,
7
70

9
2.

5
8

C
IS

A
32

1
,3

31
,9

47
1,

82
4
,1

46
1,

33
1,

94
7

12
1,

66
0,

66
2

23
.7

4
6
.4

4
23

8.
36

39
.4

4
1
.0

1
N

A
37
.9

7
G

A
M

N
G

S
29

3
,1

92
,3

34
4,

60
9,

30
5

3,
1
92
,3

34
15

4,
44

9,
04

0
5
.9

1
6
.8

3
46

7.
14

99
.2

6
1
.0

1
92

8,
8
21

95
.1

3
G

A
R

M
(c

tg
sc

f)
11

1,
16

4
,4

08
4,

50
8
,9

78
1,

11
5,

52
8

23
4,

34
4,

82
6

21
.8

6
11
.5

9
19

6.
65

89
.2

5
1
.1

0
2
48
,2

91
82
.8

3
G

A
R

M
(s

cf
ct

g
)

4
4,

42
5
,9

80
6,

15
1
,5

05
4,

42
5,

98
0

34
6,

15
1,

50
5

12
.6

6
8
.3

4
21

28
.1

6
94
.5

3
1
.4

1
3
58
,6

82
91
.3

6
M

IX
28

3
,1

92
,3

34
4,

72
0
,1

29
3,

19
2,

33
4

14
4,

55
0,

51
8

6
.0

8
6
.8

7
45

6.
1
5

9
9
.2

7
1
.0

3
92

8,
8
21

9
5.

0
1

M
et

a
ss

em
b

le
r

30
3
,1

91
,6

37
4,

60
6
,4

69
3,

19
1,

63
7

16
4
,4

46
,9

54
6
.4

8
6
.8

3
42

1.
1
0

99
.2

9
1
.0

1
92

9,
41

8
95
.0

4
Z

O
R

R
O

27
2

11
7
,8

53
4,

62
6
,1

21
32
,4

47
10

13
4,

70
5

9
.0

8
5.

86
43

4.
79

99
.0

5
1
.0

1
32
,4

4
7

92
.3

0

H
o
m

o
sa

p
ie

n
s,

ch
ro

m
o
so

m
e

1
4

(g
en

om
e

si
ze

10
7,

34
9
,5

40
b

p
)

A
L

L
P

A
T

H
S

-L
G

(c
)

44
69

24
0
,7

73
84
,4

16
,1

02
38
,3

59
10

9
1,

38
4,

27
7

67
.7

1
21
.7

9
54
.6

0
78
.4

8
1
.0

0
27
,7

72
62
.8

0
C

A
B

O
G

(c
)

32
33

29
6,

90
4

86
,1

89
,9

19
46
,6

99
10

8
3,

69
4,

32
6

10
1
.5

2
23
.2

9
0.

00
79
.9

4
1
.0

0
35
,5

39
59
.3

7

G
A

A
76

87
29

6
,9

04
17

0,
59

3,
72

9
42
,8

72
21

7
5,

07
8,

60
3

94
.3

8
23
.8

2
27
.0

2
80
.3

6
1
.9

8
62
,6

47
70
.8

2
G

A
M

N
G

S
2
91

6
48

3
,6

03
84
,9

26
,9

58
65
,0

03
10

7
2,

71
5,

56
2

70
.7

1
22
.6

9
52
.7

0
78
.9

9
1
.0

0
45
,5

96
55
.9

8
M

et
as

se
m

b
le

r
43

62
24

0
,7

73
84
,2

41
,1

80
38
,4

73
10

9
1,

43
2,

98
3

67
.6

1
21
.8

0
54
.5

3
78
.3

7
1
.0

0
27
,8

30
62
.7

3

A
L

L
P

A
T

H
S

-L
G

(s
)

17
4

81
,6

46
,9

36
87
,6

46
,7

28
81
,6

46
,9

36
45

5
87
,2

19
,6

45
66
.8

5
22
.8

7
37

34
.6

3
78
.5

1
1
.0

4
3
97
,3

51
14
.0

0
C

A
B

O
G

(s
)

47
4

2
,2

60
,5

62
86
,4

81
,5

68
40

1,
27

9
26

9
43
,2

05
,9

05
10

1
.1

0
24
.6

8
26

7.
2
0

8
0
.0

1
1
.0

1
21

5,
6
99

2
9.

5
6

G
A

M
N

G
S

17
1

81
,6

46
,9

36
87
,6

51
,6

96
81
,6

46
,9

36
45

5
87
,2

19
,6

45
66
.8

9
22
.8

8
37

34
.4

2
78
.5

1
1
.0

4
39

7,
3
51

21
.4

3
G

A
R

M
(c

tg
sc

f)
29

7
2,

55
8
,4

70
96
,4

44
,7

63
50

1,
66

2
54

4
77
,1

92
,1

01
91
.3

8
24
.7

9
32

07
.8

4
76
.1

5
1
.1

8
1
95
,6

01
27
.0

5
G

A
R

M
(s

cf
ct

g
)

23
20

0,
90

5
,8

23
20

7,
73

0
,6

22
20

0,
90

5,
82

3
10

6
6,

71
1,

41
1

16
4
.0

8
37
.1

2
55
,5

99
.2

0
78
.6

7
1
.0

9
74
,7

09
18
.4

8
M

et
as

se
m

b
le

r
11

7
81
,6

46
,9

36
87
,5

30
,4

59
81
,6

46
,9

36
45

4
87
,2

13
,9

26
66
.8

0
22
.8

6
37

31
.0

3
7
8
.4

6
1
.0

4
39

7,
3
51

1
4.

3
7

145



T
a
b

le
A

.4
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
h

ig
h

ly
fr

a
g
m

en
te

d
a
ss

em
b

li
es

.
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
(c

)
in

d
ic

a
te

s
th

a
t

th
e

a
ss

em
b

ly
is

co
m

p
o
se

d
o
f

co
n
ti

g
s,

(s
)

in
d

ic
a
te

s
th

a
t

th
e

a
ss

em
b

ly
is

co
m

p
o
se

d
o
f

sc
a
ff

o
ld

s;
a
ll

re
p

o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b
ly

M
is

m
at

ch
es

In
d
el

s
N

’s
G

en
o
m

e
D

u
p
li
ca

ti
o
n

N
G

A
50

G
en

es
T

o
ol

or
In

p
u
t

(#
)

(b
p
)

(b
p
)

(b
p
)

(#
)

L
en

gt
h

(b
p
)

(#
)

(#
)

(#
)

co
ve

re
d

(%
)

ra
ti

o
(b

p
)

(%
)

S
ta

p
h
yl

oc
oc

cu
s

a
u

re
u

s
(g

en
om

e
si

ze
2,

90
3
,0

81
b
p
)

A
B

y
S
S

(c
)

24
7

12
5,

04
9

3,
63

1,
24

5
25
,0

84
5

22
,3

99
12
.3

9
0
.8

5
7.

79
97
.2

7
1
.2

9
29
,1

98
77
.5

3
S
G

A
(c

)
98

5
16
,8

70
2,

74
8
,6

64
41

78
1

24
31

1.
02

0
.1

1
0.

00
94
.4

4
1
.0

0
4
00

5
81
.5

8

C
IS

A
18

3
12

5
,0

49
2,

77
5,

03
5

25
,5

85
6

44
,2

57
14
.8

6
1
.2

3
4.

58
95
.0

7
1
.0

0
23
,6

10
92
.5

2
G

A
A

12
25

12
5
,0

49
6,

36
1
,5

89
10
,5

44
6

24
,8

30
11
.8

2
0
.7

7
4.

45
97
.9

3
2
.2

4
29
,1

9
8

2
7.

2
7

G
A

M
N

G
S

22
3

12
5
,3

83
3,

63
4,

13
3

27
,9

31
5

22
,3

99
13
.1

9
0.

92
7.

79
97
.3

8
1
.2

8
31
,3

93
77
.4

5
M

IX
17

6
12

5
,0

49
2,

92
2
,2

39
27
,9

31
14

21
7,

75
3

12
.5

7
1
.6

0
9.

68
97
.0

3
1
.0

4
27
,6

6
6

9
2.

6
9

M
et

as
se

m
b
le

r
20

3
12

5
,0

49
3,

48
0
,5

29
28
,1

48
4

19
,1

26
11
.5

5
0
.8

2
11
.5

8
9
7
.1

9
1
.2

3
3
1,

1
80

7
7.

7
2

A
B

y
S
S

(s
)

20
6

13
0,

19
2

3,
69

2,
70

3
27
,6

95
10

17
8,

90
1

12
.2

2
1
.0

9
15

20
.9

7
97
.5

4
1
.3

0
31
,7

03
77
.5

6
S
G

A
(s

)
29

9
28

6,
53

4
3,

05
1
,0

05
14

9,
42

1
3

11
3,

62
2

1
.0

9
11
.4

7
98

52
.7

2
94
.8

7
1
.1

1
13

4,
84

9
8
2.

6
7

C
IS

A
31

13
0
,1

92
1,

93
7,

03
1

81
,0

84
4

19
2,

27
5

6
.3

0
7
.6

8
63

07
.7

5
54
.7

2
1
.2

2
42
,7

52
45
.9

1
G

A
M

N
G

S
20

3
13

0
,1

92
3,

66
7,

52
1

27
,9

17
10

17
8,

90
1

12
.2

2
1.

09
15

18
.2

2
97
.5

6
1
.2

9
31
,7

03
77
.5

3
G

A
R

M
(c

tg
sc

f)
24

34
8,

78
0

3,
28

6,
10

3
23

0,
71

5
26

2,
28

7,
32

5
10
.4

8
2
.5

2
51

61
.6

8
93
.0

0
1
.1

5
12

4,
1
86

86
.5

0
G

A
R

M
(s

cf
ct

g)
53

24
8,

98
6

1,
60

3,
25

8
46
,0

33
25

73
6,

25
7

32
.1

7
6
.4

8
42

70
.4

9
30
.8

6
1
.7

8
7
13

2
1
9
.5

0
M

IX
27

8
31

6
,1

06
3,

16
7
,0

23
14

9,
42

1
10

80
1,

22
9

3
.5

5
11
.3

1
94

01
.9

2
95
.0

6
1
.1

5
13

4,
84

9
8
0.

7
0

M
et

as
se

m
b
le

r
11

6
23

3
,4

65
3,

61
3
,5

34
63
,4

33
10

19
5,

41
0

11
.6

9
1
.9

1
15

87
.6

7
9
7
.2

8
1
.2

8
8
7,

8
46

7
6.

7
1

R
h

od
o
ba

ct
er

sp
h
a
er

o
id

es
(g

en
om

e
si

ze
4,

60
3,

06
0

b
p
)

A
B

y
S
S

(c
)

15
09

54
,7

34
4,

83
0,

76
9

55
62

85
86

6
,2

18
22
.7

6
5
.8

4
2.

32
93
.7

5
1
.1

2
5
30

3
7
6
.1

2
S
G

A
(c

)
21

73
29
,5

20
4,

18
8
,4

32
25

30
1

40
48

5.
70

2
.4

7
0.

00
90
.7

0
1
.0

0
2
28

0
77
.9

9

C
IS

A
13

43
54
,7

34
4,

58
6,

14
1

56
31

62
65

5
,9

71
23
.4

0
5
.7

9
1.

98
94
.5

1
1
.0

5
5
08

2
8
0
.0

7
G

A
A

36
52

54
,7

34
8,

97
5
,2

27
35

15
86

87
0
,2

66
22
.4

1
5
.4

1
1.

25
95
.9

6
2
.0

3
67

1
2

33
.0

5
G

A
M

N
G

S
13

94
54
,7

34
4,

84
3,

13
8

58
23

82
87

0
,2

77
22
.8

6
5.

98
2.

31
94
.0

8
1
.1

2
5
62

6
7
7
.0

3
M

IX
14

42
54
,7

34
4,

67
0
,9

01
56

38
11

1
96

4
,7

49
19
.8

7
7
.2

8
2.

21
93
.7

2
1
.0

8
48

4
5

77
.3

7
M

et
a
ss

em
b
le

r
1
46

6
54
,7

34
4,

79
2
,9

00
57

05
81

87
6
,6

69
22
.8

8
5
.8

4
2.

34
9
3
.7

0
1
.1

1
54

35
75
.4

3

A
B

y
S
S

(s
)

13
5
2

87
,8

55
4,

96
8,

92
1

80
36

85
1,

01
2,

70
3

23
.3

8
8
.9

2
23

02
.4

7
94
.2

1
1
.1

4
71

36
7
6
.9

2
S
G

A
(s

)
12

08
14

8,
75

6
5,

32
8
,3

87
44
,2

05
3

31
,7

64
5
.8

6
7
.2

2
21
,4

99
.9

4
90
.7

7
1
.2

6
17
,6

9
5

77
.9

0

C
IS

A
15

4
96
,9

41
3,

87
8,

07
9

28
,6

15
28

53
5,

93
0

17
.6

5
11
.6

4
19
,4

13
.3

0
59
.6

2
1
.4

1
15
,3

32
49
.8

0
G

A
M

N
G

S
12

27
87
,8

55
5,

08
8,

76
2

90
76

85
1,

02
9,

16
8

22
.2

8
9.

29
42

48
.8

7
94
.4

6
1
.1

6
80

29
7
7
.0

9
G

A
R

M
(c

tg
sc

f)
10

6
16

6,
59

9
4,

63
2,

34
6

68
,8

24
18

6
4,

11
0,

63
2

20
.0

5
12
.4

8
18
,4

14
.9

5
73
.9

1
1
.3

6
1
7,

1
33

65
.8

9
G

A
R

M
(s

cf
ct

g)
17

8
87
,8

70
1,

91
2,

21
0

15
,3

50
52

63
4,

59
1

30
.7

8
17
.4

7
56

30
.6

6
34
.1

2
1
.2

1
N

A
2
9
.6

5
M

IX
11

36
14

8
,7

56
5,

56
8
,9

50
50
,5

49
29

80
1,

32
4

6
.9

8
8
.5

7
20
,6

54
.3

8
91
.0

9
1
.3

1
21
,0

9
6

7
4.

6
1

M
et

as
se

m
b
le

r
94

5
87
,8

55
5,

24
7
,3

77
13
,2

89
80

1
,1

60
,9

77
22
.9

2
10
.0

8
80

78
.8

6
9
4
.3

7
1
.2

0
1
1,

6
57

77
.5

5

H
o
m

o
sa

p
ie

n
s,

ch
ro

m
o
so

m
e

1
4

(g
en

om
e

si
ze

10
7,

34
9,

54
0

b
p
)

A
B

y
S
S

(c
)

32
,0

5
0

30
,0

53
67
,0

74
,1

40
31

82
24

12
8
,2

44
84
.4

8
9
.2

0
1.

31
61
.5

4
1
.0

1
1
31

9
8
3
.8

5
S
G

A
(c

)
33
,6

95
30
,3

50
75
,4

92
,8

07
33

17
10

7
24

9
,9

73
87
.5

1
12
.5

7
0.

00
69
.8

9
1
.0

1
19

4
5

88
.9

6

G
A

A
65
,7

3
7

30
,3

50
14

2,
55

2,
34

8
32

55
13

1
37

8
,2

17
90
.3

6
13
.7

1
0.

62
70
.5

2
1
.8

8
4
33

6
8
3
.6

0
G

A
M

N
G

S
28
,2

91
52
,6

08
69
,3

20
,6

50
37

57
29

16
1
,8

51
85
.2

5
9.

96
1.

18
63
.7

4
1
.0

1
1
75

3
8
2
.7

0
M

et
as

se
m

b
le

r
31
,8

53
30
,0

53
66
,6

46
,1

60
31

74
22

12
4
,3

38
84
.1

3
9
.1

8
1.

28
61
.4

8
1
.0

1
12

9
3

76
.8

7

A
B

y
S
S

(s
)

31
,5

8
2

30
,0

53
67
,7

24
,5

94
33

55
37

23
7
,7

38
84
.6

7
9
.3

7
85

9.
44

61
.6

1
1
.0

2
1
33

9
8
3
.1

0
S
G

A
(s

)
95

86
55

1,
62

2
88
,5

57
,6

45
82
,6

16
17

0
8,

81
1,

45
7

87
.7

7
18
.3

4
14
,4

99
.3

8
70
.4

7
1
.1

6
35
,3

1
7

34
.9

7

G
A

M
N

G
S

16
,0

84
16

8,
74

8
80
,2

12
,4

74
15
,8

69
11

5
1,

94
5,

05
8

86
.4

3
14
.3

1
10
,0

09
.7

1
66
.5

8
1
.1

1
42

13
5
7
.7

9
G

A
R

M
(c

tg
sc

f)
17

51
55

5,
42

6
82
,8

19
,6

23
91
,7

59
27

7
18
,2

42
,7

78
88
.5

0
17
.6

4
15
,0

41
.6

6
64
.9

8
1
.1

7
3
4,

7
25

26
.6

3
G

A
R

M
(s

cf
ct

g)
62

7
30
,1

27
4,

11
4,

21
6

81
95

53
47

1
,0

71
12

6
.0

0
21
.4

1
12
,0

30
.1

2
3
.0

9
1
.1

8
N

A
N

A
M

et
as

se
m

b
le

r
31
,4

01
30
,0

53
67
,4

10
,7

22
33

59
34

20
9
,1

72
84
.3

0
9
.3

4
64

9.
81

61
.5

5
1
.0

2
13

3
1

76
.1

2

146



T
a
b

le
A

.5
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
a
ss

em
b

li
es

p
ro

d
u

ce
d

b
y

a
ss

em
b

le
rs

b
a
se

d
o
n

th
e

d
e

B
ru

ij
n

g
ra

p
h

co
m

p
a
re

d
to

st
ri

n
g

g
ra

p
h

.
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
(c

)
in

d
ic

a
te

s
th

a
t

th
e

a
ss

em
b

ly
is

co
m

p
o
se

d
o
f

co
n
ti

g
s,

(s
)

in
d

ic
a
te

s
th

a
t

th
e

a
ss

em
b

ly
is

co
m

p
o
se

d
o
f

sc
a
ff

o
ld

s;
a
ll

re
p

o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d

R
ec

on
ci

li
a
ti

on
C

o
n
ti

gs
L

ar
ge

st
S

iz
e

N
50

M
is

as
se

m
b

ly
M

is
as

se
m

b
ly

M
is

m
a
tc

h
es

In
d

el
s

N
’s

G
en

o
m

e
D

u
p

li
ca

ti
on

N
G

A
5
0

G
en

es
T

o
ol

or
In

p
u

t
(#

)
(b

p
)

(b
p

)
(b

p
)

(#
)

L
en

gt
h

(b
p

)
(#

)
(#

)
(#

)
co

ve
re

d
(%

)
ra

ti
o

(b
p

)
(%

)

S
ta

p
h
yl

oc
oc

cu
s

a
u

re
u

s
(g

en
om

e
si

ze
2,

90
3
,0

81
b

p
)

A
L

L
P

A
T

H
S

-L
G

(c
)

59
2
34
,4

88
2,

86
9,

58
1

96
,7

40
1

89
,6

34
1
.5

7
0
.7

3
1.

5
0

9
8
.8

3
1
.0

0
9
6,

7
4
0

9
5

S
G

A
(c

)
98

5
16
,8

70
2,

74
8,

66
4

41
7
8

1
24

31
1
.0

2
0
.1

1
0.

0
0

9
4
.4

4
1
.0

0
40

05
8
1

C
IS

A
65

20
8,

21
0

2,
43

8,
73

6
69
,9

08
1

30
,0

03
3
.1

9
0
.7

8
1.

4
4

8
4
.1

4
1
.0

0
4
9,

3
5
7

8
1

G
A

A
10

37
23

4
,4

88
5,

59
9,

93
5

16
,1

31
2

92
,0

65
1
.6

3
0
.7

3
0.

7
7

9
9
.1

1
1
.9

5
9
6,

7
4
0

26
G

A
M

N
G

S
59

23
4
,4

88
2,

86
9
,5

81
96
,7

40
1

89
,6

34
1
.5

7
0
.7

3
1.

5
0

9
8
.8

3
1
.0

0
9
6,

7
4
0

95
M

IX
59

23
4
,4

8
8

2,
86

9,
58

1
96
,7

4
0

1
89
,6

3
4

1
.5

7
0
.7

3
1.

5
0

9
8
.8

3
1
.0

0
9
6,

74
0

95
M

et
as

se
m

b
le

r
59

23
4,

4
88

2,
8
69
,7

80
96
,7

40
1

89
,6

3
4

1
.5

7
0
.7

3
1.

5
0

9
8
.8

3
1
.0

0
9
6,

74
0

95
Z

O
R

R
O

6
9

23
4
,5

48
2,

87
3,

54
6

96
,6

57
0

0
1.

99
0
.5

9
0.

9
0

9
8
.9

0
1
.0

0
9
6,

65
7

96

A
L

L
P

A
T

H
S

-L
G

(s
)

11
1,

43
5,

55
9

2,
87

9,
48

1
1,

09
1,

73
1

0
0

3.
9
7

2
.5

1
34

5.
3
1

9
8
.8

6
1
.0

0
1,

0
8
2
,6

1
6

9
6

S
G

A
(s

)
29

9
28

6
,5

34
3,

05
1,

00
5

14
9,

42
1

3
11

3,
62

2
1
.0

9
11
.4

7
98

52
.7

2
9
4
.8

7
1
.1

1
1
3
4,

8
4
9

82

C
IS

A
4

46
1,

61
7

1,
28

6,
21

4
28

6,
53

4
0

0
0.

9
8

8
.4

6
72

40
.2

4
3
8
.6

9
1
.1

5
N

A
3
5

G
A

M
N

G
S

11
1,

43
5,

55
9

2,
87

9,
48

1
1,

09
1,

73
1

0
0

3.
9
7

2
.5

1
34

5.
3
1

9
8
.8

6
1
.0

0
1,

0
8
2
,6

1
6

9
6

G
A

R
M

(c
tg

sc
f)

1
9

65
7,

19
5

4,
25

5,
32

6
24

6,
15

3
13

2,
64

0,
79

4
3
.5

8
1
.5

2
12
,6

87
.1

8
9
7
.2

5
1
.5

1
2
3
1,

2
2
1

6
4

G
A

R
M

(s
cf

ct
g)

3
1,

43
5,

56
9

2,
70

7
,0

66
1,

43
5,

56
9

0
0

3.
6
0

2
.8

5
36

6.
0
4

9
2
.9

2
1
.0

0
1,

0
8
2
,8

7
4

9
1

M
IX

11
1
,4

3
5,

55
9

2,
87

9,
48

1
1,

09
1,

73
1

0
0

3.
9
7

2
.5

1
34

5.
3
1

9
8
.8

6
1
.0

0
1,

0
8
2
,6

1
6

9
6

M
et

a
ss

em
b

le
r

11
1
,4

35
,6

19
2,

87
9,

84
3

1,
0
92
,0

9
3

0
0

3.
59

1.
92

50
3.

2
2

9
8
.7

1
1
.0

0
1,

08
0
,4

0
4

96
Z

O
R

R
O

75
9

48
,2

29
3,

11
6,

39
2

1
0,

3
51

0
0

1.
06

0.
7
0

86
84
.1

1
9
7
.7

3
1
.0

0
1
0,

76
8

87

R
h
od

o
ba

ct
er

sp
h
a
er

o
id

es
(g

en
o
m

e
si

ze
4,

60
3,

06
0

b
p

)

A
L

L
P

A
T

H
S

-L
G

(c
)

20
3

10
6
,4

67
4,

58
7,

35
4

42
,4

55
10

4
04
,1

85
6
.3

3
4
.7

7
2.

7
9

9
9
.2

0
1
.0

0
4
1,

4
8
7

9
2

S
G

A
(c

)
21

7
3

29
,5

20
4,

18
8,

43
2

25
3
0

1
40

48
5
.7

0
2
.4

7
0.

0
0

9
0
.7

0
1
.0

0
22

80
7
7

C
IS

A
23

3
10

6,
46

7
4,

23
9,

82
2

31
,5

49
10

3
73
,2

75
6
.6

1
4
.7

9
2.

8
1

9
1
.6

7
1
.0

0
2
7,

2
6
2

8
5

G
A

A
23

48
10

6
,4

67
8,

73
0,

70
4

10
,4

51
11

4
08
,2

33
6
.7

4
4
.7

9
1.

4
7

9
9
.3

2
1
.9

1
4
1,

4
8
7

29
G

A
M

N
G

S
2
01

10
6
,4

67
4,

58
8
,1

58
42
,4

55
10

40
8,

63
6

6
.6

1
4
.7

7
2.

7
9

9
9
.2

2
1
.0

0
4
1,

4
8
7

92
M

IX
20

2
10

6
,4

6
7

4,
59

2,
49

7
42
,4

5
5

12
46

4,
51

5
6
.6

6
4
.8

0
2.

7
4

9
9
.2

2
1
.0

1
4
1,

48
7

92
M

et
as

se
m

b
le

r
20

0
10

6,
4
67

4,
5
87
,0

10
42
,4

55
10

40
8,

63
6

6
.6

1
4
.7

7
2.

7
9

9
9
.2

2
1
.0

0
4
1,

48
7

92
Z

O
R

R
O

23
1

10
5
,3

15
4,

59
6,

34
4

37
,3

12
8

21
5,

90
2

6
.9

6
4
.6

8
1.

4
6

9
9
.2

9
1
.0

1
3
7,

19
5

92

A
L

L
P

A
T

H
S

-L
G

(s
)

33
3,

19
2,

33
4

4,
60

8,
76

3
3,

19
2,

33
4

15
4,

44
7,

87
1

5
.9

1
6
.7

9
46

7.
3
1

9
9
.2

4
1
.0

1
9
2
8,

8
2
1

9
5

S
G

A
(s

)
12

0
8

14
8
,7

56
5,

32
8,

38
7

44
,2

05
3

31
,7

64
5
.8

6
7
.2

2
21
,4

99
.9

4
9
0
.7

7
1
.2

6
1
7,

6
9
5

77

C
IS

A
10

14
8,

92
2

1,
02

1,
67

4
11

3,
53

9
2

22
7,

00
7

3
.4

5
9
.2

8
17
,8

54
.3

3
1
8
.2

7
1
.2

2
N

A
1
7

G
A

M
N

G
S

31
3,

19
2,

33
4

4,
60

9,
56

7
3,

19
2,

33
4

15
4,

45
2,

32
2

6
.1

9
6
.7

8
46

7.
2
2

9
9
.2

6
1
.0

1
9
2
8,

8
2
1

9
5

G
A

R
M

(c
tg

sc
f)

6
5

23
8,

95
7

6,
69

0,
62

1
13

4,
42

6
71

5,
27

5,
83

5
9
.4

4
7
.4

0
16
,0

50
.8

0
8
6
.2

7
1
.6

9
7
3,

4
4
9

5
1

G
A

R
M

(s
cf

ct
g)

4
3
,1

92
,7

49
4,

37
1,

41
1

3,
19

2,
74

9
12

4,
37

1,
41

1
8
.4

8
8
.8

7
47

9.
9
8

9
4
.2

9
1
.0

1
9
2
9,

0
4
5

9
1

M
IX

32
3
,1

92
,3

34
4,

78
3,

48
5

3,
1
92
,3

3
4

16
4
,4

96
,0

01
6
.3

0
6.

8
1

13
83
.8

9
9
9
.2

6
1
.0

5
92

8,
82

1
92

M
et

as
se

m
b

le
r

30
3
,1

92
,1

72
4,

60
8,

0
43

3,
19

2
,1

72
15

4
,4

51
,9

46
6
.0

5
6.

88
54

7.
3
7

9
9
.1

7
1
.0

1
92

8,
7
2
2

94
Z

O
R

R
O

19
70

10
5
,3

19
5,

70
6
,6

83
32

75
7

95
,9

30
6
.3

9
5.

05
19
,8

59
.8

9
98
.6

1
1
.0

1
4
94

4
82

H
o
m

o
sa

p
ie

n
s,

ch
ro

m
o
so

m
e

1
4

(g
en

om
e

si
ze

10
7,

34
9
,5

40
b

p
)

A
L

L
P

A
T

H
S

-L
G

(c
)

44
6
9

24
0
,7

73
84
,4

16
,1

02
38
,3

59
10

9
1,

38
4,

27
7

6
7
.7

1
21
.7

9
54
.6

0
7
8
.4

8
1
.0

0
2
7,

7
7
2

6
2

S
G

A
(c

)
33
,6

95
30
,3

50
75
,4

92
,8

07
33

17
10

7
24

9
,9

73
87
.5

1
12
.5

7
0.

0
0

6
9
.8

9
1
.0

1
19

45
8
8

G
A

A
38
,1

55
24

0,
77

3
15

9,
89

1,
54

9
10
,6

79
21

6
1,

63
4,

25
0

7
1
.6

3
22
.0

2
28
.8

3
7
9
.1

7
1
.8

8
2
7,

8
9
5

8
1

G
A

M
N

G
S

42
83

24
0
,7

73
84
,4

66
,4

33
39
,4

49
11

0
1,

66
3,

04
6

68
.0

5
2
1
.7

9
54
.5

1
7
8
.5

3
1
.0

0
2
8,

4
5
8

6
2

M
et

a
ss

em
b

le
r

43
59

24
0,

77
3

8
4,

25
9,

31
3

38
,4

73
10

9
1
,3

84
,2

77
67
.5

4
21
.8

1
54
.5

0
7
8
.3

6
1
.0

0
2
7,

7
7
2

62

A
L

L
P

A
T

H
S

-L
G

(s
)

17
4

81
,6

46
,9

36
87
,6

46
,7

28
81
,6

46
,9

36
45

5
87
,2

19
,6

45
6
6
.8

5
22
.8

7
37

34
.6

3
7
8
.5

1
1
.0

4
3
9
7,

3
5
1

1
4

S
G

A
(s

)
95

8
6

55
1
,6

22
8
8,

55
7,

64
5

82
,6

16
17

0
8
,8

11
,4

57
87
.7

7
18
.3

4
14
,4

99
.3

8
7
0
.4

7
1
.1

6
3
5,

31
7

34

G
A

M
N

G
S

1
74

81
,6

46
,9

36
87
,6

46
,7

28
81
,6

46
,9

36
45

5
87
,2

19
,6

45
6
6
.8

5
22
.8

7
37

34
.6

3
7
8
.5

1
1
.0

4
3
9
7,

3
5
1

1
4

G
A

R
M

(c
tg

sc
f)

11
86

6
71
,7

38
12

3,
68

5,
54

0
14

8,
61

0
11

60
86
,8

20
,5

49
9
2
.0

1
31
.1

2
13
,9

01
.5

7
7
5
.5

5
1
.5

2
8
4,

5
2
6

3
7

G
A

R
M

(s
cf

ct
g)

30
81
,8

32
,5

53
87
,5

91
,3

08
81
,8

32
,5

53
49

6
87
,4

61
,3

70
91
.8

3
3
1
.9

3
34

59
.3

5
7
8
.1

7
1
.0

4
3
5
9,

8
4
0

N
A

M
et

a
ss

em
b

le
r

13
7

81
,6

4
6,

93
6

87
,5

84
,8

06
81
,6

46
,9

36
45

5
87
,2

19
,6

45
66
.8

5
22
.8

7
37

37
.2

0
7
8
.5

0
1
.0

4
3
9
7,

3
5
1

14

147



T
a
b

le
A

.6
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
m

o
re

th
a
n

tw
o

a
ss

em
b

li
es

o
rd

er
ed

b
y

th
e

F
R

C
u

rv
e

sc
o
re

(S
ta
p
h
y
lo
co
cc
u
s
a
u
re
u
s,

g
en

o
m

e
si

ze
:

2
,9

0
3
,0

8
1

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
a
ll

re
p

o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d
;

(1
+

2
)+

3
m

ea
n

s
th

a
t

a
ss

em
b

ly
1

a
n

d
2

w
er

e
m

er
g
ed

fi
rs

t,
th

e
re

su
lt

o
f

w
h

ic
h

w
a
s

th
en

m
er

g
ed

to
a
ss

em
b

ly
3

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b
ly

M
is

m
at

ch
es

In
d
el

s
N

’s
G

en
om

e
D

u
p
li
ca

ti
on

N
G

A
5
0

G
en

es
T

o
ol

or
In

p
u
t

(#
)

(b
p
)

(b
p
)

(b
p
)

(#
)

L
en

gt
h

(b
p
)

(#
)

(#
)

(#
)

co
ve

re
d

(%
)

ra
ti

o
(b

p
)

(%
)

In
p
u
t

1
(M

S
R

-C
A

)
89

13
9
,4

38
2,

86
0,

13
2

59
,1

52
20

64
1,

17
3

20
.6

7
1.

82
0.

00
98
.1

7
1
.0

0
5
5,

0
68

95
In

p
u
t

2
(A

L
L

P
A

T
H

S
-L

G
)

59
23

4,
48

8
2,

86
9,

58
1

96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
9
8
.8

3
1
.0

0
96
,7

40
96

In
p
u
t

3
(B

A
M

B
U

S
2)

10
6

15
8
,3

30
2,

83
2,

62
3

50
,1

92
1

94
11

1.
41

6.
95

0.
35

9
7
.6

6
1
.0

0
50
,1

92
95

In
p
u
t

4
(S

G
A

)
98

5
16
,8

70
2,

74
8,

66
4

41
78

1
24

31
1.

02
0.

11
0.

00
94
.4

4
1
.0

0
4
00

5
82

In
p
u
t

5
(V

el
ve

t)
12

8
16

9,
21

4
2,

83
7,

03
6

52
,7

92
9

28
4,

37
9

13
.5

1
1.

69
0.

00
97
.7

3
1
.0

0
4
8,

14
9

97
In

p
u
t

6
(S

O
A

P
d
en

ov
o)

70
51

8,
71

0
2,

89
7,

43
2

28
8,

18
4

31
2,

02
7,

90
5

23
.0

0
2.

45
0.

07
98
.5

5
1
.0

1
1
50
,7

94
96

In
p
u
t

7
(A

B
y
S
S
)

24
7

12
5,

04
9

3,
63

1,
24

5
25
,0

84
5

22
,3

99
12
.3

9
0
.8

5
7.

79
9
7
.2

7
1
.2

9
29
,1

98
78

C
IS

A
(1

+
2)

31
48

0
,8

50
2,

90
1,

69
0

10
7,

12
5

7
88

7,
86

5
9
.4

5
1.

09
1.

17
97
.7

1
1
.0

2
10

7,
1
25

93
C

IS
A

(1
+

2+
3)

26
38

4
,4

01
2,

88
8,

22
1

13
9,

43
8

9
1
,1

06
,4

26
6
.2

2
2.

12
1.

45
9
2
.4

3
1
.0

8
1
39
,4

38
84

C
IS

A
(1

+
2+

3+
4)

25
38

4
,4

89
2,

89
8,

53
5

13
9,

43
8

10
1
,2

00
,7

35
6
.3

0
2.

16
1.

45
9
2
.4

3
1
.0

8
13

9,
43

8
83

C
IS

A
(1

+
2+

..
.+

5)
24

39
0
,0

86
2,

86
9,

76
2

17
1,

87
1

8
97

6,
62

2
5
.2

6
1.

87
1.

43
90
.3

9
1
.0

9
14

9,
82

9
8
1

C
IS

A
(1

+
2+

..
.+

6)
17

52
1
,3

99
3,

09
4,

51
6

28
8,

20
4

25
2
,1

75
,3

09
17
.2

1
2.

68
0.

65
92
.4

6
1
.1

5
17

9,
34

4
77

C
IS

A
(1

+
2+

..
.+

7)
17

52
1
,3

99
3,

09
4,

99
3

28
8,

20
4

27
2,

28
6,

20
3

17
.2

5
2.

72
0.

87
92
.4

8
1
.1

5
1
79
,3

44
77

G
A

A
(1

+
2)

D
id

n
ot

p
ro

d
u
ce

an
as

se
m

b
ly

fi
le

G
A

M
N

G
S

(1
+

2)
57

25
4
,7

79
2,

86
2,

66
6

83
,1

38
19

81
6,

71
5

20
.3

3
1.

82
0.

21
98
.2

7
1
.0

0
7
7,

0
39

95
G

A
M

N
G

S
((

1+
2)

+
3)

52
36

0,
90

3
2,

86
1,

82
0

90
,4

79
19

1
,1

77
,4

40
20
.2

0
1.

93
0.

21
98
.2

4
1
.0

0
8
2,

1
01

96
G

A
M

N
G

S
((

(1
+

2)
+

3)
+

4)
52

36
0
,9

03
2,

86
1,

82
0

90
,4

79
19

1
,1

77
,4

40
20
.2

0
1.

93
0.

21
98
.2

4
1
.0

0
8
2,

1
01

96
G

A
M

N
G

S
((

(1
+

2)
+

..
.)

+
5
)

49
36

0,
90

3
2,

86
1,

80
1

13
9,

06
1

17
1
,1

63
,9

20
20
.2

0
1.

93
0.

21
98
.2

4
1
.0

0
10

0,
3
81

96
G

A
M

N
G

S
((

(1
+

2)
+

..
.)

+
6
)

45
36

0,
90

3
2,

86
1,

88
8

13
9,

06
1

18
1
,2

84
,4

51
20
.5

5
1.

93
0.

21
98
.2

5
1
.0

0
11

0,
9
95

96
G

A
M

N
G

S
((

(1
+

2)
+

..
.)

+
7
)

44
36

0,
90

3
2,

86
1,

95
1

16
8,

73
9

19
1
,5

38
,8

07
20
.4

1
1.

93
0.

21
98
.2

5
1
.0

0
11

0,
9
95

96

G
A

R
M

(1
+

2)
16

83
3
,7

32
3,

46
9,

51
9

62
5,

56
2

7
2
,5

59
,7

29
14
.5

3
3.

69
0.

09
93
.3

8
1
.2

8
32

5,
9
55

65
G

A
R

M
((

1+
2)

+
3)

16
83

3,
73

8
3,

55
4,

69
8

62
5,

56
3

8
2
,5

24
,5

23
11
.8

0
3.

92
0.

23
9
3
.1

1
1
.3

0
3
30
,7

20
64

G
A

R
M

((
(1

+
2)

+
3)

+
4)

1
63

4
,9

95
63

4,
99

5
63

4,
99

5
4

63
4,

99
5

14
.1

0
4.

59
1.

42
2
1
.7

4
1
.0

1
N

A
23

G
A

R
M

((
(1

+
2)

+
..

.)
+

5)
2

62
5,

57
6

63
4,

98
7

62
5,

57
6

3
63

4,
98

7
17
.9

0
5.

07
0.

00
21
.7

4
1
.0

1
N

A
2
2

G
A

R
M

((
(1

+
2)

+
..

.)
+

6)
11

31
6,

52
2

1,
11

7,
00

6
15

2,
79

5
10

79
4,

72
1

29
.5

3
2
.4

4
0.

00
38
.1

5
1
.0

1
N

A
39

G
A

R
M

((
(1

+
2)

+
..

.)
+

7)
79

31
6,

54
9

2,
76

8
,2

00
23

9,
94

4
24

1,
75

6,
44

2
31
.1

3
1
.7

2
4.

84
43
.9

3
2
.1

7
1
52
,8

17
1
6

M
et

as
se

m
b
le

r
(1

+
2)

33
31

5,
23

2
2,

85
5,

90
5

17
2,

80
0

12
1
,0

96
,8

94
20
.3

0
1.

47
0.

28
98
.2

5
1
.0

0
13

9,
4
38

95
M

et
as

se
m

b
le

r
((

1+
2)

+
3)

29
35

6
,6

01
2,

85
6,

20
0

18
6,

64
4

13
1
,2

07
,9

11
19
.9

9
1.

54
0.

28
9
8
.2

4
1
.0

0
1
49
,5

59
95

M
et

as
se

m
b
le

r
((

(1
+

2)
+

3)
+

4)
29

35
6,

60
1

2,
85

6,
20

0
18

6,
64

4
13

1
,2

07
,9

11
19
.9

9
1.

54
0.

28
9
8
.2

4
1
.0

0
14

9,
55

9
95

M
et

as
se

m
b
le

r
((

(1
+

2
)+

..
.)

+
5)

29
35

6
,6

01
2,

85
6,

45
4

18
6,

64
4

13
1,

20
8,

16
5

19
.9

9
1.

54
0.

28
98
.2

4
1
.0

0
14

9,
55

9
9
5

M
et

as
se

m
b
le

r
((

(1
+

2)
+

..
.)

+
6)

19
35

6
,6

01
2,

86
2,

87
4

26
3,

60
4

17
1,

84
6,

74
5

22
.7

0
1
.8

6
0.

35
98
.3

3
1
.0

0
20

3,
83

0
95

M
et

as
se

m
b
le

r
((

(1
+

2)
+

..
.)

+
7)

19
35

6
,6

01
2,

86
8
,3

70
26

3,
60

4
17

1,
84

6,
74

5
22
.7

0
1
.8

6
0.

35
98
.3

3
1
.0

1
2
03
,8

30
9
5

M
IX

(1
+

2)
23

20
0
,2

47
76

6,
20

4
66
,2

30
1

89
,6

34
3
.5

2
1.

17
1.

70
26
.3

9
1
.0

0
N

A
26

M
IX

(1
+

2+
3)

16
20

0
,2

47
54

5,
36

4
80
,8

13
0

0
3.

85
0.

37
2.

02
1
8
.7

8
1
.0

0
N

A
20

M
IX

(1
+

2+
3+

4)
18

20
0,

24
7

56
0,

31
0

80
,8

13
0

0
3.

75
0.

89
1.

96
1
9
.2

9
1
.0

0
N

A
20

M
IX

(1
+

2+
..

.+
5)

12
20

0
,2

47
41

2,
28

2
69
,3

91
0

0
1.

94
1.

21
2.

67
14
.2

0
1
.0

0
N

A
1
5

M
IX

(1
+

2+
..

.+
6)

25
51

8
,7

10
1,

29
2,

51
3

31
6,

52
2

17
1,

01
9,

10
7

26
.7

4
3.

11
0.

00
44
.3

1
1
.0

1
N

A
44

M
IX

(1
+

2)
+

..
.+

7)
22

51
8
,7

10
1,

28
0
,6

37
31

6,
52

2
16

1,
01

4,
06

6
21
.7

7
2
.6

6
0.

00
43
.9

8
1
.0

0
N

A
44

Z
O

R
R

O
(1

+
2)

71
20

1
,6

36
2,

88
5,

41
1

70
,3

61
4

12
1,

39
4

11
.9

2
2.

12
0.

49
99
.1

4
1
.0

0
6
8,

0
06

96
Z

O
R

R
O

((
1+

2)
+

3)
11

4
96
,4

42
2,

88
1,

96
5

43
,4

62
4

37
,2

82
10
.4

7
2.

19
0.

35
9
9
.0

1
1
.0

0
43
,4

61
96

Z
O

R
R

O
((

(1
+

2)
+

3)
+

4)
10

9
13

6,
62

9
2,

88
7,

02
8

46
,3

62
4

37
,2

71
10
.8

5
1.

81
0.

59
9
9
.0

3
1
.0

0
46
,3

62
96

Z
O

R
R

O
((

(1
+

2)
+

..
.)

+
5)

P
ro

d
u
ce

d
an

em
p
ty

as
se

m
b
ly

fi
le

148



T
a
b

le
A

.7
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
m

o
re

th
a
n

tw
o

a
ss

em
b

li
es

(c
o
n
ti

g
s)

o
rd

er
ed

b
y

th
e

F
R

C
u

rv
e

sc
o
re

(R
h
od

o
ba
ct
er

sp
h
a
er
o
id
es

,
g
en

o
m

e
si

ze
4
,6

0
3
,0

6
0

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
a
ll

re
p

o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

-
m

a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d
;

(1
+

2
)+

3
m

ea
n

s
th

a
t

a
ss

em
b

ly
1

a
n

d
2

w
er

e
m

er
g
ed

fi
rs

t,
th

e
re

su
lt

o
f

w
h

ic
h

w
a
s

th
en

m
er

g
ed

to
a
ss

em
b

ly
3

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b
ly

M
is

m
a
tc

h
es

In
d
el

s
N

’s
G

en
o
m

e
D

u
p
li
ca

ti
o
n

N
G

A
5
0

G
en

es
T

o
ol

or
In

p
u
t

(#
)

(b
p
)

(b
p
)

(b
p
)

(#
)

L
en

gt
h

(b
p
)

(#
)

(#
)

(#
)

co
ve

re
d

(%
)

ra
ti

o
(b

p
)

(%
)

In
p
u
t

1
(M

S
R

-C
A

)
37

7
83
,7

26
4,

45
8
,9

52
23
,5

75
18

15
1,

79
0

2
3
.4

3
4.

90
0.

00
9
6
.1

4
1
.0

1
2
1,

2
3
6

8
9

In
p
u
t

2
(A

L
L

P
A

T
H

S
-L

G
)

20
3

10
6,

46
7

4,
58

7
,3

54
42
,4

55
10

40
4,

18
5

6
.3

3
4.

77
2.

7
9

99
.2

0
1
.0

0
4
1,

4
8
7

9
3

In
p
u
t

3
(C

A
B

O
G

)
31

8
88
,5

19
4,

23
6
,6

63
22
,0

44
11

27
6,

92
9

29
.0

7
5.

4
8

0.
0
0

9
1
.9

1
1
.0

0
1
9,

0
76

8
7

In
p
u
t

4
(B

A
M

B
U

S
2)

17
0

27
9
,1

25
4,

36
9
,3

57
97
,3

31
4

12
3,

41
7

5
.8

2
5.

84
0.

00
9
4
.8

9
1
.0

0
9
3,

1
9
8

9
0

In
p
u
t

5
(S

O
A

P
d
en

ov
o)

11
4

37
6,

58
5

4,
56

9
,3

40
13

1,
68

1
11

63
3,

16
3

21
.2

8
9.

51
0.

00
9
8
.7

2
1
.0

1
1
2
9,

6
1
3

9
2

In
p
u
t

6
(V

el
ve

t)
48

2
60
,7

14
4,

47
0
,2

15
16
,0

33
6

12
7,

24
7

8
.5

8
4.

0
6

0.
0
0

96
.9

4
1
.0

0
1
5,

4
39

9
2

In
p
u
t

7
(S

G
A

)
21

73
29
,5

20
4,

18
8
,4

32
25

30
1

40
48

5.
70

2.
4
7

0.
0
0

9
0
.7

0
1
.0

0
2
2
8
0

7
8

In
p
u
t

8
(A

B
y
S
S
)

15
09

54
,7

34
4,

83
0
,7

69
55

62
85

86
6
,2

18
22
.7

6
5.

84
2.

32
9
3
.7

5
1
.1

2
5
3
0
3

76

C
IS

A
(1

+
2)

17
8

11
9
,4

61
4,

61
3
,6

81
48
,3

92
10

29
9,

92
1

1
2
.5

0
5.

52
2.

08
9
7
.6

9
1
.0

3
4
7,

6
8
9

9
0

C
IS

A
((

1+
2)

+
3)

14
7

11
9,

46
1

4,
67

7
,8

81
50
,8

89
16

40
8,

91
8

22
.7

4
5.

45
1.

7
3

97
.3

3
1
.0

5
4
8,

3
8
9

8
9

C
IS

A
((

(1
+

2)
+

3)
+

4)
68

27
9,

12
5

4,
99

7
,8

64
97
,4

54
16

58
8,

10
0

29
.6

8
7.

5
8

0.
5
6

9
2
.3

1
1
.1

8
1
0
4,

5
09

7
3

C
IS

A
((

(1
+

2)
+

..
.)

+
5
)

39
37

7,
51

4
5,

07
2
,3

79
15

4,
47

7
18

1
,2

24
,2

27
32
.5

8
1
0.

6
3

0.
30

8
9
.9

5
1
.2

3
1
5
4,

4
7
7

6
7

C
IS

A
((

(1
+

2)
+

..
.)

+
6)

38
37

7,
51

4
5,

00
8
,3

89
15

4,
47

7
18

1
,2

24
,2

27
3
2
.4

8
10
.7

2
0.

30
8
9
.9

5
1
.2

1
1
5
4,

4
7
7

6
8

C
IS

A
((

(1
+

2)
+

..
.)

+
7)

38
37

7,
56

7
5,

00
8
,4

74
15

4,
50

9
18

1
,2

24
,2

27
32
.4

8
10
.7

2
0.

3
0

89
.9

5
1
.2

1
15

4,
5
09

6
8

C
IS

A
((

(1
+

2)
+

..
.)

+
8)

38
37

7,
56

7
5,

00
9
,1

92
15

4,
50

9
18

1
,2

24
,2

27
32
.4

8
1
0.

7
2

0.
30

8
9
.9

6
1
.2

1
1
5
4,

5
0
9

68

G
A

A
(1

+
2)

D
id

n
ot

p
ro

d
u
ce

an
a
ss

em
b
ly

fi
le

G
A

M
N

G
S

(1
+

2)
18

7
20

1
,1

20
4,

46
6
,8

57
49
,6

12
20

26
6,

62
0

2
3
.3

3
6.

54
0.

18
9
6
.2

7
1
.0

1
4
4,

8
2
2

9
1

G
A

M
N

G
S

((
1+

2)
+

3)
18

2
20

1,
12

0
4,

46
6
,7

12
49
,6

12
20

26
6,

62
0

2
3
.2

7
6.

54
0.

18
9
6
.2

7
1
.0

1
4
4,

8
2
2

9
0

G
A

M
N

G
S

((
(1

+
2)

+
3
)+

4)
17

7
20

1
,1

20
4,

47
0
,0

93
49
,6

12
21

31
5,

09
2

2
3
.3

1
6.

52
0.

18
9
6
.3

6
1
.0

1
4
7,

8
6
9

9
1

G
A

M
N

G
S

((
(1

+
2)

+
..

.)
+

5)
13

5
20

1,
12

0
4,

47
0
,3

66
74
,5

45
21

31
8,

13
7

2
3
.4

7
7.

06
0.

18
9
6
.3

6
1
.0

1
7
3,

4
4
1

9
1

G
A

M
N

G
S

((
(1

+
2)

+
..

.)
+

6)
13

2
20

1,
12

0
4,

47
1
,6

53
81
,5

70
21

36
2,

06
8

2
4
.0

7
7.

14
0.

18
9
6
.3

9
1
.0

1
7
7,

2
2
9

9
0

G
A

M
N

G
S

((
(1

+
2)

+
..

.)
+

7)
13

2
20

1,
12

0
4,

47
1
,9

57
81
,5

70
21

36
2,

06
8

2
4
.0

7
7.

12
0.

18
9
6
.4

0
1
.0

1
7
7,

2
2
9

9
0

G
A

M
N

G
S

((
(1

+
2)

+
..

.)
+

8)
13

1
20

1,
12

0
4,

47
1
,9

60
81
,5

70
21

39
0,

90
7

2
4
.1

6
7.

12
0.

18
9
6
.4

0
1
.0

1
7
5,

8
9
8

9
0

G
A

R
M

(1
+

2)
63

28
7,

16
4

4,
33

0
,6

97
11

0,
06

7
12

75
4,

37
2

1
0
.3

3
7.

41
1.

18
9
0
.8

5
1
.0

2
1
0
4,

5
3
9

8
6

G
A

R
M

((
1+

2)
+

3)
6

22
2,

84
3

68
2,

21
8

19
1,

00
1

2
19

1,
00

1
9
.2

6
6.

8
3

3.
52

1
4
.3

1
1
.0

4
N

A
1
4

M
et

as
se

m
b
le

r
(1

+
2
)

15
8

20
1,

12
9

4,
45

6
,8

82
50
,9

89
14

25
1,

64
7

2
4
.3

1
5.

60
0.

56
9
6
.5

9
1
.0

0
4
8,

9
1
1

9
1

M
et

as
se

m
b
le

r
((

1+
2)

+
3)

14
8

20
1
,1

29
4,

29
6
,0

41
50
,9

89
10

19
6,

26
0

23
.0

0
5.

65
0.

3
3

93
.1

2
1
.0

0
4
5,

4
1
5

8
8

M
et

as
se

m
b
le

r
((

(1
+

2)
+

3)
+

4)
13

9
20

1,
12

9
4,

29
2
,6

24
53
,8

25
10

19
6,

26
0

22
.6

9
5.

7
0

0.
3
3

9
3
.0

5
1
.0

0
4
7,

8
69

8
8

M
et

as
se

m
b
le

r
((

(1
+

2)
+

..
.)

+
5)

94
21

3
,4

06
4,

31
8
,5

07
74
,5

45
11

26
5,

26
8

2
2
.2

6
6.

29
0.

32
9
3
.5

8
1
.0

0
6
7,

1
4
9

8
9

M
et

as
se

m
b
le

r
((

(1
+

2)
+

..
.)

+
6)

94
21

3
,4

06
4,

31
8
,5

07
74
,5

45
11

26
5,

26
8

22
.2

6
6.

29
0.

32
9
3
.5

8
1
.0

0
6
7,

1
4
9

8
9

M
et

as
se

m
b
le

r
((

(1
+

2)
+

..
.)

+
7)

94
21

3
,4

06
4,

31
8
,5

07
74
,5

45
11

26
5,

26
8

22
.2

6
6.

2
9

0.
3
2

93
.5

8
1
.0

0
6
7,

1
49

8
9

M
et

as
se

m
b
le

r
((

(1
+

2)
+

..
.)

+
8)

94
21

3
,3

07
4,

31
7
,7

39
74
,5

45
11

26
5,

26
8

2
2
.2

7
6.

29
0.

32
9
3
.5

6
1
.0

0
6
7,

1
4
9

89

M
IX

(1
+

2)
15

0
10

6
,4

67
3,

05
9
,4

87
41
,9

25
7

28
6,

99
0

7
.1

0
5.

04
2.

55
6
6
.4

2
1
.0

0
2
0,

5
5
0

6
4

M
IX

((
1+

2)
+

3)
13

3
10

6,
46

7
2,

82
3
,0

64
41
,9

25
7

28
6,

99
0

7
.3

7
5.

25
2.

2
7

61
.2

9
1
.0

0
1
8,

4
0
8

5
9

M
IX

((
(1

+
2)

+
3)

+
4)

92
16

7,
49

0
2,

08
3
,3

09
93
,1

98
2

31
,4

69
5
.1

4
5.

1
9

0.
0
0

4
5
.2

4
1
.0

0
N

A
4
3

M
IX

((
(1

+
2)

+
..

.)
+

5)
38

37
6,

58
5

1,
72

7
,0

15
16

2,
01

5
4

17
6,

14
5

1
8
.1

0
7.

98
0.

00
3
7
.5

7
1
.0

0
N

A
3
6

M
IX

((
(1

+
2)

+
..

.)
+

6)
43

37
6,

58
5

1,
61

2
,4

24
13

1,
68

1
4

17
6,

14
5

24
.3

2
8.

19
0.

00
3
5
.0

1
1
.0

0
N

A
34

M
IX

((
(1

+
2)

+
..

.)
+

7)
44

37
6,

58
5

1,
81

3
,8

98
16

2,
01

5
4

17
6,

14
5

21
.8

9
7.

9
4

0.
0
0

39
.4

0
1
.0

0
N

A
3
8

M
IX

((
(1

+
2)

+
..

.)
+

8)
40

37
6,

58
5

1,
87

0
,8

82
16

2,
01

5
3

15
4,

48
8

2
1
.6

5
8.

18
0.

00
4
0
.6

4
1
.0

0
N

A
3
9

Z
O

R
R

O
(1

+
2)

20
2

20
1
,1

29
4,

64
7
,6

02
47
,8

69
15

27
7,

32
9

2
1
.6

1
5.

81
1.

12
9
9
.5

2
1
.0

1
4
3,

6
3
0

9
3

Z
O

R
R

O
((

1+
2)

+
3)

19
7

16
4,

95
9

4,
64

7
,4

57
44
,6

33
15

27
7,

03
2

22
.2

5
5.

87
1.

2
0

99
.5

0
1
.0

1
4
2,

4
7
6

9
3

Z
O

R
R

O
((

(1
+

2)
+

3)
+

4)
40

1
10

5,
28

9
4,

57
5
,7

21
18
,9

53
13

22
1,

58
7

20
.8

4
5.

3
8

0.
4
6

9
7
.7

7
1
.0

2
1
8,

7
19

9
0

Z
O

R
R

O
((

(1
+

2)
+

..
.)

+
5)

39
0

88
,4

74
4,

71
6
,3

86
21
,3

69
15

25
8,

78
3

2
2
.9

5
5.

77
0.

81
9
9
.1

1
1
.0

3
2
1,

3
6
9

8
9

Z
O

R
R

O
((

(1
+

2)
+

..
.)

+
6)

P
ro

d
u
ce

d
an

em
p
ty

a
ss

em
b
ly

fi
le

149



T
a
b

le
A

.8
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
m

o
re

th
a
n

tw
o

a
ss

em
b

li
es

(c
o
n
ti

g
s)

o
rd

er
ed

b
y

th
e

F
R

C
u

rv
e

sc
o
re

(H
g
ch

r1
4
,

g
en

o
m

e
si

ze
1
0
7
,3

4
9
,5

4
0

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
a
ll

re
p

o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d
;

(1
+

2
)+

3
m

ea
n

s
th

a
t

a
ss

em
b

ly
1

a
n

d
2

w
er

e
m

er
g
ed

fi
rs

t,
th

e
re

su
lt

o
f

w
h

ic
h

w
a
s

th
en

m
er

g
ed

to
a
ss

em
b

ly
3

R
ec

on
ci

li
a
ti

o
n

C
on

ti
gs

L
ar

g
es

t
S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b
ly

M
is

m
at

ch
es

In
d
el

s
N

’s
G

en
o
m

e
D

u
p
li
ca

ti
o
n

N
G

A
5
0

G
en

es
T

o
ol

or
In

p
u
t

(#
)

(b
p
)

(b
p
)

(b
p
)

(#
)

L
en

g
th

(b
p
)

(#
)

(#
)

(#
)

co
v
er

ed
(%

)
ra

ti
o

(b
p
)

(%
)

In
p
u
t

1
(C

A
B

O
G

)
3
23

3
29

6,
90

4
86
,1

89
,9

19
46
,6

99
10

8
3
,6

94
,3

26
10

1
.5

2
23
.2

9
0.

00
79
.9

4
1
.0

0
3
5,

5
3
9

59
In

p
u
t

2
(A

L
L

P
A

T
H

S
-L

G
)

44
69

2
40
,7

73
84
,4

16
,1

02
38
,3

59
10

9
1
,3

84
,2

77
67
.7

1
21
.7

9
5
4.

60
78
.4

8
1
.0

0
2
7,

7
7
2

63
In

p
u
t

3
(A

B
y
S
S
)

32
,0

5
0

3
0,

05
3

67
,0

74
,1

40
3
18

2
24

1
28
,2

44
84
.4

8
9.

20
1.

31
61
.5

4
1
.0

1
1
3
1
9

8
4

In
p
u
t

4
(S

O
A

P
d
en

ov
o
)

15
,0

28
14

7,
49

4
90
,3

98
,7

34
16
,1

79
63

2
9

4
3
,7

13
,7

69
1
52
.3

4
2
4.

26
0.

02
77
.3

0
1
.0

9
8
1
5
5

6
4

In
p
u
t

5
(M

S
R

-C
A

)
25
,0

22
53
,9

25
81
,4

85
,1

44
54

70
20

38
6,

58
9
,7

12
22

0
.8

7
24
.6

6
0.

00
74
.2

1
1
.0

2
34

2
7

83
In

p
u
t

6
(B

A
M

B
U

S
)

1
2
,3

9
6

7
36
,6

57
67
,8

14
,0

16
85

00
29

7
3

12
,2

11
,2

65
10

4
.2

3
22
.1

8
0.

01
62
.5

2
1
.0

1
3
21

8
6
2

In
p
u
t

7
(S

G
A

)
33
,6

9
5

3
0,

35
0

75
,4

92
,8

07
3
31

7
10

7
24

9,
9
73

87
.5

1
1
2.

57
0.

00
69
.8

9
1
.0

1
1
9
4
5

8
9

In
p
u
t

8
(V

el
ve

t)
3
2,

84
2

27
,8

72
70
,5

75
,2

15
30

8
7

23
2

60
2
,9

1
0

10
4
.5

1
21
.4

1
0.

00
6
5
.3

3
1
.0

0
1
5
8
0

8
2

G
A

A
(1

+
2)

D
id

n
ot

p
ro

d
u
ce

an
as

se
m

b
ly

fi
le

G
A

M
N

G
S

(1
+

2)
18

28
48

3
,6

22
86
,0

48
,1

6
2

8
5,

88
6

1
14

5
,0

37
,2

4
3

97
.8

1
24
.0

7
7.

99
80
.0

4
1
.0

0
6
4,

2
7
6

5
0

G
A

M
N

G
S

((
1+

2
)+

3)
18

07
48

3,
62

2
86
,1

37
,4

2
5

8
6,

94
0

1
13

5
,3

69
,5

7
8

98
.0

2
24
.1

0
8.

00
80
.0

4
1
.0

0
6
6,

2
6
2

5
0

G
A

M
N

G
S

((
(1

+
2
)+

3
)+

4)
17

62
4
84
,0

18
87
,2

63
,5

1
5

8
9,

70
5

6
51

20
,7

48
,2

7
9

10
0
.9

2
24
.4

5
7.

46
79
.6

2
1
.0

2
6
0,

2
4
9

4
7

G
A

M
N

G
S

((
(1

+
2
)+

..
.)

+
5)

17
55

48
4,

01
8

87
,2

36
,2

5
5

9
0,

19
8

6
20

20
,4

56
,3

4
5

10
1
.3

2
24
.5

1
7.

46
79
.6

2
1
.0

2
6
0,

5
7
3

4
7

G
A

M
N

G
S

((
(1

+
2
)+

..
.)

+
6)

17
32

48
4,

01
8

87
,1

52
,2

9
7

9
1,

22
3

5
91

20
,5

89
,8

0
9

10
1
.3

1
24
.6

3
7.

42
79
.5

7
1
.0

2
6
1,

6
4
3

4
7

G
A

M
N

G
S

((
(1

+
2
)+

..
.)

+
7)

17
31

48
4,

01
8

87
,1

47
,0

3
5

9
1,

25
9

5
89

20
,7

70
,1

2
1

10
1
.8

0
24
.6

8
7.

40
79
.5

8
1
.0

2
6
1,

1
8
4

4
7

G
A

M
N

G
S

((
(1

+
2
)+

..
.)

+
8)

17
42

48
4,

01
8

87
,2

76
,6

3
8

9
1,

16
2

5
77

20
,8

90
,6

4
9

10
1
.8

6
25
.1

8
7.

41
79
.5

6
1
.0

2
6
0,

9
6
8

4
7

G
A

R
M

(1
+

2
)

15
2
8

67
5
,8

98
91
,9

34
,9

31
10

4,
63

3
26

7
1
5
,8

06
,1

90
9
7
.4

8
27
.9

7
1.

37
78
.9

8
1
.0

8
8
3,

3
7
5

46
G

A
R

M
((

1
+

2)
+

3
)

11
26

4,
70

8
1,

04
2
,1

79
14

4,
05

5
2

20
9,

6
47

78
.6

8
22
.1

8
3.

74
0
.9

3
1
.0

5
N

A
2

G
A

R
M

((
(1

+
2
)+

3)
+

4
)

6
2
64
,7

25
58

7,
15

1
14

5,
23

9
1

72
,9

10
12

0
.1

3
29
.7

8
5.

28
0
.5

5
1
.0

0
N

A
1

G
A

R
M

((
(1

+
2
)+

..
.)

+
5)

5
2
65
,5

2
8

50
6,

17
4

26
5,

5
28

2
33

8,
43

9
13

2
.8

7
30
.4

1
3.

5
6

0
.4

7
1
.0

0
N

A
1

G
A

R
M

((
(1

+
2)

+
..

.)
+

6)
4

61
,3

36
95
,5

35
61
,3

3
6

1
11
,6

08
1
45
.6

5
4
4.

01
0.

00
0
.0

9
1
.0

0
N

A
1

G
A

R
M

((
(1

+
2
)+

..
.)

+
7
)

4
61
,3

40
95
,5

3
9

6
1,

34
0

1
11
,6

08
14

6
.7

0
44
.0

1
0.

00
0
.0

9
1
.0

0
N

A
1

G
A

R
M

((
(1

+
2
)+

..
.)

+
8
)

1
0

6
1,

3
49

35
8,

52
8

61
,3

49
2

2
3,

21
8

17
5
.3

2
59
.4

8
0.

0
0

0
.0

9
3
.7

5
N

A
1

M
et

a
ss

em
b
le

r
(1

+
2
)

3
14

8
29

6,
90

4
86
,0

92
,1

49
46
,7

80
10

7
3
,6

93
,3

84
10

1
.1

2
23
.2

4
0.

00
79
.8

7
1
.0

0
3
5,

5
3
9

59
M

et
a
ss

em
b
le

r
((

1
+

2)
+

3
)

31
07

29
6
,9

04
86
,0

35
,0

88
46
,7

80
10

5
3
,6

87
,1

58
10

1
.0

4
23
.2

2
0.

00
79
.8

2
1
.0

0
3
5,

5
3
9

59
M

et
a
ss

em
b
le

r(
((

1+
2)

+
..

.)
+

4
)

31
07

29
6
,9

04
86
,0

35
,0

88
46
,7

80
10

5
3
,6

87
,1

5
8

10
1
.0

4
23
.2

2
0.

0
0

79
.8

2
1
.0

0
3
5,

53
9

5
9

M
et

a
ss

em
b
le

r(
((

1+
2)

+
..

.)
+

5)
3
10

6
29

6
,9

04
8
6,

03
2
,9

9
8

46
,7

80
10

6
3
,7

26
,3

5
4

10
1
.0

4
23
.2

2
0.

0
0

79
.8

2
1
.0

0
3
5,

5
06

5
9

M
et

a
ss

em
b
le

r
((

(1
+

2)
+

..
.)

+
6)

28
4
9

29
6
,9

0
4

8
3,

91
9
,7

7
3

4
8,

12
9

86
3
,6

55
,9

3
1

10
1
.2

7
22
.8

1
0.

0
0

77
.8

9
1
.0

0
3
5,

2
9
9

5
7

M
et

a
ss

em
b
le

r(
((

1
+

2)
+

..
.)

+
7)

2
84

9
29

6
,9

0
4

8
3,

91
9
,7

7
3

4
8,

12
9

86
3
,6

55
,9

31
10

1
.2

7
22
.8

1
0.

00
7
7
.8

9
1
.0

0
3
5,

2
9
9

5
7

M
et

as
se

m
b
le

r(
((

1
+

2
)+

..
.)

+
8)

28
33

29
6
,9

0
4

83
,8

87
,1

39
48
,1

29
86

3
,6

5
5
,9

31
10

1
.2

4
22
.8

1
0.

00
7
7
.8

6
1
.0

0
3
5,

2
9
9

5
7

150



T
a
b

le
A

.9
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
m

o
re

th
a
n

tw
o

a
ss

em
b

li
es

(s
ca

ff
o
ld

s)
o
rd

er
ed

b
y

th
e

F
R

C
u

rv
e

sc
o
re

(S
ta
p
h
y
lo
co
cc
u
s
a
u
re
u
s,

g
en

o
m

e
si

ze
2
,9

0
3
,0

8
1

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li

ty
o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
a
ll

re
p

o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

sc
a
ff

o
ld

s;
th

e
n
u

m
b

er
o
f

m
is

-
m

a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d
;

(1
+

2
)+

3
m

ea
n

s
th

a
t

a
ss

em
b

ly
1

a
n

d
2

w
er

e
m

er
g
ed

fi
rs

t,
th

e
re

su
lt

o
f

w
h

ic
h

w
a
s

th
en

m
er

g
ed

to
a
ss

em
b

ly
3

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b

ly
M

is
m

at
ch

es
In

d
el

s
N

’s
G

en
o
m

e
D

u
p

li
ca

ti
o
n

N
G

A
5
0

G
en

es
T

o
ol

or
In

p
u

t
(#

)
(b

p
)

(b
p

)
(b

p
)

(#
)

L
en

gt
h

(b
p

)
(#

)
(#

)
(#

)
co

v
er

ed
(%

)
ra

ti
o

(b
p

)
(%

)

In
p

u
t

1
(M

S
R

-C
A

)
13

2,
41

1
,9

14
2,

87
1,

40
5

2,
41

1
,9

14
49

2
,8

06
,2

30
20
.9

0
3.

75
3
60
.5

6
9
8
.2

3
1
.0

1
2
2
0,

0
2
0

9
6

In
p

u
t

2
(A

L
L

P
A

T
H

S
-L

G
)

11
1
,4

35
,5

59
2,

87
9,

48
1

1,
09

1
,7

31
0

0
3.

9
7

2.
51

3
45
.3

1
9
8
.8

6
1
.0

0
1,

0
8
2
,6

1
6

9
6

In
p

u
t

3
(B

A
M

B
U

S
2)

16
1,

42
6
,2

93
2,

86
2,

46
5

1,
08

3
,7

92
5

2
,6

82
,2

8
3

1
.4

8
7.

8
6

10
20
.2

7
9
7
.7

2
1
.0

1
6
7
5,

9
3
1

9
6

In
p

u
t

4
(S

G
A

)
29

9
28

6
,5

34
3,

05
1,

00
5

14
9,

42
1

3
11

3,
62

2
1
.0

9
11
.4

7
98

52
.7

2
9
4
.8

7
1
.1

1
1
3
4,

8
4
9

8
2

In
p

u
t

5
(V

el
ve

t)
26

98
9
,7

18
2,

86
0,

88
3

76
2,

33
3

38
2
,5

18
,0

79
14
.7

8
2.

92
6
18
.2

7
9
7
.9

0
1
.0

1
1
4
2,

3
9
9

9
6

In
p

u
t

6
(S

O
A

P
d

en
ov

o)
64

51
8
,7

10
2,

90
2,

96
7

33
1,

59
8

32
2
,3

48
,7

5
6

24
.2

3
2.

7
6

16
7.

3
1

9
8
.5

5
1
.0

1
1
7
2,

5
7
5

9
6

In
p

u
t

7
(A

B
y
S

S
)

20
6

13
0
,1

92
3,

69
2,

70
3

27
,6

95
10

17
8,

90
1

12
.2

2
1.

09
15

20
.9

7
9
7
.5

4
1
.3

0
3
1,

7
0
3

7
7

C
IS

A
(1

+
2)

10
2,

41
1
,9

14
2,

86
5,

03
6

2,
41

1
,9

14
47

2
,8

57
,3

60
20
.8

7
3.

71
3
08
.9

3
9
8
.3

9
1
.0

0
2
2
0,

0
2
0

9
6

C
IS

A
(1

+
2+

3)
14

1,
79

6
,2

33
2,

88
4,

04
1

1,
79

6
,2

33
47

2
,8

56
,6

73
20
.7

2
3.

7
9

2
83
.0

8
9
9
.0

7
1
.0

0
2
2
0,

0
2
0

9
6

C
IS

A
(1

+
2+

3+
4
)

5
2
,4

11
,9

14
3,

00
5,

75
9

2,
41

1
,9

14
33

2
,4

11
,9

14
2
2
.2

6
3.

16
21

86
.3

4
8
2
.9

4
1
.2

5
2
2
0,

0
2
0

6
4

C
IS

A
(1

+
2+

..
.+

5)
5

2,
41

1
,9

14
3,

00
5,

75
9

2,
41

1
,9

14
33

2
,4

11
,9

14
22
.2

6
3.

1
6

21
8
6.

3
4

8
2
.9

4
1
.2

5
2
2
0,

0
2
0

6
4

C
IS

A
(1

+
2+

..
.+

6)
5

2,
41

1
,9

14
3,

00
5,

75
9

2,
41

1
,9

14
33

2
,4

11
,9

14
2
2
.2

6
3.

16
2
18

6.
34

8
2
.9

4
1
.2

5
2
2
0,

0
2
0

6
4

C
IS

A
(1

+
2+

..
.+

7)
5

2,
41

1
,9

14
3,

00
5,

75
9

2,
41

1
,9

14
33

2
,4

11
,9

14
22
.2

6
3.

1
6

21
86
.3

4
8
2
.9

4
1
.2

5
2
2
0,

0
2
0

6
4

G
A

A
(1

+
2)

D
id

n
ot

p
ro

d
u

ce
an

as
se

m
b

ly
fi
le

G
A

M
N

G
S

(1
+

2)
13

2,
41

1
,9

14
2,

87
1,

40
5

2,
41

1
,9

14
49

2
,8

06
,2

3
0

20
.9

0
3.

75
3
60
.5

6
9
8
.2

3
1
.0

1
2
2
0,

0
2
0

9
6

G
A

M
N

G
S

((
1+

2)
+

3)
13

2
,4

11
,9

14
2,

87
1,

40
5

2,
41

1
,9

14
49

2
,8

06
,2

3
0

20
.9

0
3.

75
3
60
.5

6
9
8
.2

3
1
.0

1
2
2
0,

0
2
0

9
6

G
A

M
N

G
S

((
(1

+
2)

+
3)

+
4)

13
2,

41
1
,9

14
2,

87
1,

40
5

2,
41

1
,9

14
49

2
,8

06
,2

3
0

20
.9

0
3.

75
3
60
.5

6
9
8
.2

3
1
.0

1
2
2
0,

0
2
0

9
6

G
A

M
N

G
S

((
(1

+
2)

+
..

.)
+

5)
13

2
,4

11
,9

14
2,

87
1,

40
5

2,
41

1
,9

14
49

2
,8

06
,2

3
0

20
.9

0
3.

75
3
60
.5

6
9
8
.2

3
1
.0

1
2
2
0,

0
2
0

9
6

G
A

M
N

G
S

((
(1

+
2)

+
..

.)
+

6)
13

2
,4

11
,9

14
2,

87
1,

40
5

2,
41

1
,9

14
49

2
,8

06
,2

3
0

20
.9

0
3.

75
3
60
.5

6
9
8
.2

3
1
.0

1
2
2
0,

0
2
0

9
6

G
A

M
N

G
S

((
(1

+
2)

+
..

.)
+

7)
13

2
,4

11
,9

14
2,

87
1,

40
5

2,
41

1
,9

14
49

2
,8

06
,2

3
0

20
.9

0
3.

75
3
60
.5

6
9
8
.2

3
1
.0

1
2
2
0,

0
2
0

9
6

G
A

R
M

(1
+

2)
16

83
3,

73
2

3,
46

9,
51

9
62

5,
56

2
7

2
,5

59
,7

2
9

14
.5

3
3.

6
9

0.
09

9
3
.3

8
1
.2

8
3
2
5,

9
5
5

6
5

G
A

R
M

((
1+

2)
+

3)
16

83
3
,7

38
3,

55
4,

69
8

62
5,

56
3

8
2
,5

24
,5

23
1
1
.8

0
3.

92
0.

2
3

9
3
.1

1
1
.3

0
3
3
0,

7
2
0

6
4

G
A

R
M

((
(1

+
2)

+
3)

+
4)

1
63

4,
99

5
63

4,
99

5
63

4,
99

5
4

63
4,

99
5

1
4
.1

0
4.

59
1.

4
2

2
1
.7

4
1
.0

1
N

A
2
3

G
A

R
M

((
(1

+
2)

+
..

.)
+

5)
2

62
5
,5

76
63

4,
98

7
62

5,
57

6
3

63
4,

98
7

1
7
.9

0
5.

07
0.

0
0

2
1
.7

4
1
.0

1
N

A
2
2

G
A

R
M

((
(1

+
2)

+
..

.)
+

6)
11

31
6
,5

22
1,

11
7,

00
6

15
2,

79
5

10
79

4,
72

1
29
.5

3
2.

44
0.

0
0

3
8
.1

5
1
.0

1
N

A
3
9

G
A

R
M

((
(1

+
2)

+
..

.)
+

7
)

79
31

6
,5

49
2,

76
8,

20
0

23
9,

94
4

24
1
,7

56
,4

42
3
1
.1

3
1.

72
4.

8
4

4
3
.9

3
2
.1

7
1
5
2,

8
1
7

1
6

M
et

as
se

m
b

le
r(

1+
2)

6
2,

41
1
,9

00
2,

86
4,

55
4

2,
41

1
,9

00
41

2
,7

47
,5

62
21
.2

9
4.

03
3
26
.7

5
9
8
.1

9
1
.0

1
2
5
4,

3
0
4

9
6

M
et

as
se

m
b

le
r(

(1
+

2
)+

3
)

5
2
,4

11
,9

00
2,

86
3,

84
8

2,
41

1
,9

00
41

2
,7

47
,5

62
21
.1

2
4.

0
4

3
26
.8

3
9
8
.1

7
1
.0

1
2
5
4,

3
0
4

9
6

M
et

as
se

m
b

le
r(

((
1+

2)
+

3)
+

4)
5

2
,4

12
,2

69
2,

86
4,

11
3

2,
41

2
,2

69
38

2
,7

47
,7

76
2
0
.9

3
4.

04
42

8.
40

9
8
.0

8
1
.0

1
2
5
4,

2
3
5

9
6

M
et

as
se

m
b

le
r(

((
1+

2)
+

..
.)

+
5)

5
2
,4

12
,1

91
2,

86
4,

01
1

2,
41

2
,1

91
38

2
,7

47
,6

74
21
.0

7
4.

0
7

41
3.

8
3

9
8
.1

0
1
.0

1
2
5
4,

2
3
5

9
6

M
et

as
se

m
b

le
r(

((
1
+

2)
+

..
.)

+
6)

5
2
,4

12
,3

71
2,

86
4,

19
1

2,
41

2
,3

71
38

2
,7

47
,8

54
2
1
.3

4
4.

11
3
85
.3

4
9
8
.1

3
1
.0

1
2
5
4,

8
6
9

9
6

M
et

as
se

m
b

le
r(

((
1+

2
)+

..
.)

+
7
)

5
2
,4

12
,5

57
2,

86
9,

87
3

2,
41

2
,5

57
37

2
,7

48
,0

40
21
.3

4
4.

1
1

38
3.

6
4

9
8
.1

4
1
.0

1
2
5
7,

8
1
2

9
6

M
IX

(1
+

2)
8

3,
84

4
,3

59
5,

65
8,

87
9

3,
84

4
,3

59
54

5
,5

96
,8

62
14
.8

1
3.

91
3
38
.1

8
9
8
.6

0
1
.9

8
1,

0
7
7
,4

3
9

5
9

M
IX

(1
+

2+
3)

8
3
,8

44
,3

59
6,

74
2,

12
6

3,
84

4
,3

59
55

6
,6

80
,6

54
14
.7

0
4.

6
1

4
98
.3

3
9
8
.6

6
2
.3

6
1,

0
7
7
,4

3
9

5
9

M
IX

(1
+

2+
3+

4)
8

3
,8

44
,3

59
6,

79
8,

28
0

3,
84

4
,3

59
56

6
,7

95
,9

60
1
4
.7

7
4.

61
59

7.
20

9
8
.6

6
2
.3

8
1,

0
7
7
,4

3
9

5
7

M
IX

(1
+

2+
..

.+
5)

8
3,

84
4
,3

59
6,

85
6,

23
2

3,
84

4
,3

59
57

6
,8

53
,9

12
14
.5

9
4.

6
8

59
2.

5
4

9
8
.6

6
2
.4

0
1,

0
7
7
,5

6
8

5
7

M
IX

(1
+

2+
..

.+
6)

8
3,

84
6
,2

99
6,

85
8,

17
2

3,
84

6
,2

99
59

6
,8

55
,8

52
1
4
.7

7
4.

61
5
92
.3

4
9
8
.6

7
2
.4

0
1,

0
7
7
,5

6
8

5
7

M
IX

(1
+

2+
..

.+
7)

10
2,

74
0
,5

31
4,

12
0,

22
5

2,
74

0
,5

31
50

4
,0

60
,5

21
19
.6

8
5.

5
1

71
3.

8
7

9
6
.9

7
1
.4

7
3
9
3,

5
5
6

5
2

Z
O

R
R

O
(1

+
2)

12
4

17
8,

39
4

2,
99

9,
23

4
57
,4

12
4

35
,9

16
8
.7

7
3.

66
4
90
.5

3
9
8
.9

3
1
.0

4
6
0,

0
2
8

9
2

Z
O

R
R

O
((

1+
2)

+
3)

18
0

14
0,

43
7

2,
95

8,
83

7
37
,7

59
7

69
,0

94
6
.1

5
2.

73
1
24

1.
1
3

9
8
.5

6
1
.0

2
3
7,

7
5
9

9
3

Z
O

R
R

O
((

(1
+

2
)+

3
)+

4)
79

9
48
,2

29
3,

19
6,

02
5

10
,0

28
4

11
,2

11
4
.5

9
1.

9
4

9
39

4.
80

9
7
.5

3
1
.0

2
1
1,

0
0
5

8
6

Z
O

R
R

O
((

(1
+

2)
+

..
.)

+
5)

42
7

14
2,

72
0

3,
24

9,
73

2
36
,8

69
6

74
64

1
3.

1
1

2.
2
4

94
21
.1

5
9
8
.2

8
1
.0

3
4
1,

1
4
3

9
3

Z
O

R
R

O
((

(1
+

2)
+

..
.)

+
6)

37
5

21
2,

76
8

3,
42

8,
46

5
54
,4

06
21

54
0,

95
5

2
6
.3

6
3.

76
89

71
.7

7
9
9
.1

4
1
.0

8
6
2,

7
3
4

9
0

151



T
a
b

le
A

.1
0
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
m

o
re

th
a
n

tw
o

a
ss

em
b

li
es

(s
ca

ff
o
ld

s)
o
rd

er
ed

b
y

th
e

F
R

C
u

rv
e

sc
o
re

(R
h
od

o
ba
ct
er

sp
h
a
er
o
id
es

,
g
en

o
m

e
si

ze
4
,6

0
3
,0

6
0

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li

ty
o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
a
ll

re
p

o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

sc
a
ff

o
ld

s;
th

e
n
u

m
b

er
o
f

m
is

-
m

a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d
;

(1
+

2
)+

3
m

ea
n

s
th

a
t

a
ss

em
b

ly
1

a
n

d
2

w
er

e
m

er
g
ed

fi
rs

t,
th

e
re

su
lt

o
f

w
h

ic
h

w
a
s

th
en

m
er

g
ed

to
a
ss

em
b

ly
3

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b
ly

M
is

m
at

ch
es

In
d
el

s
N

’s
G

en
om

e
D

u
p
li
ca

ti
on

N
G

A
50

G
en

es
T

o
ol

or
In

p
u
t

(#
)

(b
p
)

(b
p
)

(b
p
)

(#
)

L
en

gt
h

(b
p
)

(#
)

(#
)

(#
)

co
ve

re
d

(%
)

ra
ti

o
(b

p
)

(%
)

In
p
u
t

1
(M

S
R

-C
A

)
36

2,
97

5,
50

4
4,

49
5
,7

26
2,

97
5
,5

04
29

3
,7

65
,2

35
20
.1

0
11
.3

6
72

5.
7
6

96
.2

2
1
.0

1
5
35
,4

59
92

In
p
u
t

2
(A

L
L

P
A

T
H

S
-L

G
)

33
3
,1

92
,3

34
4,

60
8
,7

63
3,

19
2
,3

34
15

4
,4

47
,8

71
5
.9

1
6.

79
46

7.
3
1

9
9
.2

4
1
.0

1
9
28
,8

2
1

9
5

In
p
u
t

3
(C

A
B

O
G

)
13

0
1,

35
2
,5

19
4,

2
59
,6

79
24

5,
07

3
20

2
,4

27
,3

50
28
.1

9
7.

91
5
05
.8

4
91
.9

5
1
.0

1
55
,3

12
88

In
p
u
t

4
(B

A
M

B
U

S
2)

92
2,

43
8
,5

08
4,

42
8
,6

12
2,

43
8
,5

08
11

2
,9

71
,5

43
5
.9

5
6.

20
12

8
8.

0
1

9
4
.9

4
1
.0

1
3
43
,1

87
9
0

In
p
u
t

5
(S

O
A

P
d
en

ov
o)

76
1
,1

54
,1

34
4,

5
79
,8

01
66

0,
16

4
13

1
,9

27
,9

59
21
.3

0
9.

81
2
28
.4

2
98
.7

3
1
.0

1
53

9,
77

0
92

In
p
u
t

6
(V

el
ve

t)
11

5
77

0
,9

58
4,

57
2
,5

46
35

3,
02

7
41

1
,8

40
,8

32
8
.6

4
10
.3

6
18

9
8.

40
9
7
.4

3
1
.0

1
22

3,
48

9
9
3

In
p
u
t

7
(S

G
A

)
12

08
14

8
,7

56
5,

32
8
,3

87
44
,2

05
3

31
,7

64
5
.8

6
7.

22
21
,4

99
.9

4
90
.7

7
1
.2

6
17
,6

95
77

In
p
u
t

8
(A

B
y
S
S
)

13
52

87
,8

55
4,

96
8
,9

21
80

36
85

1
,0

12
,7

03
23
.3

8
8.

92
23

02
.4

7
94
.2

1
1
.1

4
71

36
76

C
IS

A
(1

+
2)

8
3,

19
2,

33
4

4,
96

2
,8

23
3,

19
2
,3

34
20

4
,8

18
,5

20
10
.0

9
7.

26
55

9.
5
2

95
.7

9
1
.1

3
9
28
,8

21
82

C
IS

A
(1

+
2+

3)
5

2
,9

52
,8

84
5,

05
3
,7

24
2,

95
2
,8

84
12

3
,9

46
,0

23
8
.2

3
7.

40
39

7.
6
7

8
8
.6

8
1
.2

4
8
65
,1

0
2

6
5

C
IS

A
(1

+
2+

3+
4)

5
2
,9

52
,8

84
5,

0
53
,7

24
2,

95
2
,8

84
12

3
,9

46
,0

23
8
.2

3
7.

40
3
97
.6

7
88
.6

8
1
.2

4
86

5,
10

2
65

C
IS

A
(1

+
2+

..
.+

5)
5

2,
95

2
,8

84
5,

05
3
,7

24
2,

95
2
,8

84
12

3
,9

46
,0

23
8
.2

3
7.

40
3
97
.6

7
88
.6

8
1
.2

4
8
65
,1

02
6
5

C
IS

A
(1

+
2+

..
.+

6)
5

2,
95

2
,9

91
5,

05
4
,0

54
2,

95
2
,9

91
13

4
,1

84
,0

63
8
.2

3
7.

37
39

7.
64

88
.6

8
1
.2

4
86

5,
10

2
65

C
IS

A
(1

+
2+

..
.+

7)
5

2,
95

2
,9

91
5,

05
4
,0

54
2,

95
2,

99
1

13
4
,1

84
,0

63
8
.2

3
7.

37
39

7.
6
4

88
.6

8
1
.2

4
8
65
,1

02
65

C
IS

A
(1

+
2+

..
.+

8
)

5
2,

95
3
,0

19
5,

0
54
,3

05
2,

95
3,

01
9

13
4,

18
4,

09
1

8
.2

3
7
.4

0
3
97
.6

2
88
.6

8
1
.2

4
86

5,
32

5
65

G
A

A
(1

+
2)

D
id

n
ot

p
ro

d
u
ce

an
as

se
m

b
ly

fi
le

G
A

M
N

G
S
(1

+
2)

36
2,

97
5,

50
4

4,
49

5
,7

26
2,

97
5
,5

04
29

3
,7

65
,2

35
20
.1

0
11
.3

6
72

5.
7
6

96
.2

2
1
.0

1
5
35
,4

59
92

G
A

M
N

G
S
(1

+
2+

3)
36

2
,9

75
,5

04
4,

49
5
,7

26
2,

97
5
,5

04
29

3
,7

65
,2

35
20
.1

0
11
.3

6
72

5.
7
6

96
.2

2
1
.0

1
5
35
,4

59
92

G
A

M
N

G
S
((

(1
+

2)
+

3)
+

4)
36

2,
97

5,
50

4
4,

49
5
,8

85
2,

97
5
,5

04
29

3
,7

65
,2

35
19
.4

6
11
.2

4
72

5.
7
3

96
.2

2
1
.0

1
5
35
,4

59
92

G
A

M
N

G
S
((

(1
+

2)
+

..
.)

+
5)

35
2
,9

75
,5

04
4,

49
5
,7

73
2,

97
5
,5

04
29

3
,7

65
,2

35
19
.5

3
11
.2

4
72

5.
7
5

96
.2

2
1
.0

1
5
35
,4

59
92

G
A

M
N

G
S
((

(1
+

2)
+

..
.)

+
6)

35
2
,9

75
,5

04
4,

49
5
,7

73
2,

97
5
,5

04
29

3
,7

65
,2

35
19
.5

3
11
.2

4
72

5.
7
5

96
.2

2
1
.0

1
5
35
,4

59
92

G
A

M
N

G
S
((

(1
+

2)
+

..
.)

+
7)

35
2
,9

75
,5

04
4,

49
5
,7

73
2,

97
5
,5

04
29

3
,7

65
,2

35
19
.5

3
11
.2

4
72

5.
7
5

96
.2

2
1
.0

1
5
35
,4

59
92

G
A

M
N

G
S
((

(1
+

2)
+

..
.)

+
8)

35
2
,9

75
,5

04
4,

49
5
,7

73
2,

97
5
,5

04
29

3
,7

65
,2

35
19
.5

3
11
.2

4
72

5.
7
5

96
.2

2
1
.0

1
5
35
,4

59
92

G
A

R
M

(1
+

2)
63

28
7,

16
4

4,
33

0
,6

97
11

0,
06

7
12

75
4,

37
2

10
.3

3
7.

41
1.

1
8

90
.8

5
1
.0

2
1
04
,5

39
86

G
A

R
M

((
1+

2)
+

3)
6

22
2
,8

43
6
82
,2

18
19

1,
00

1
2

19
1,

00
1

9
.2

6
6.

83
3.

52
14
.3

1
1
.0

4
N

A
14

M
et

as
se

m
b
le

r(
1+

2)
18

2,
97

5,
28

7
4,

48
5
,9

06
2,

97
5
,2

87
23

3
,7

67
,6

04
19
.4

5
10
.9

4
62

3.
8
4

96
.5

3
1
.0

1
5
42
,3

18
92

M
et

as
se

m
b
le

r(
1+

2+
3)

12
2,

97
5
,2

87
4,

33
0
,0

89
2,

97
5
,2

87
18

3
,6

10
,5

51
18
.2

2
11
.1

6
59

8.
3
7

9
3
.2

3
1
.0

1
5
42
,3

1
8

8
9

M
et

as
se

m
b
le

r(
((

1+
2)

+
3)

+
4)

11
2
,9

75
,2

87
4,

3
29
,4

74
2,

97
5
,2

87
18

3
,6

10
,5

51
18
.2

2
11
.1

6
5
98
.4

6
93
.2

2
1
.0

1
54

2,
31

8
89

M
et

as
se

m
b
le

r(
((

1+
2)

+
..

.)
+

5)
11

2
,9

74
,1

71
4,

34
5
,6

83
2,

97
4
,1

71
19

3
,6

27
,1

11
17
.6

7
11
.1

7
5
89
.7

3
93
.5

6
1
.0

1
5
42
,1

41
9
0

M
et

as
se

m
b
le

r(
((

1+
2)

+
..

.)
+

6
)

11
2
,9

74
,1

43
4,

34
5
,6

55
2,

97
4
,1

43
19

3
,6

27
,0

83
17
.6

7
11
.1

0
58

8.
10

93
.5

6
1
.0

1
54

2,
14

1
90

M
et

as
se

m
b
le

r(
((

1+
2)

+
..

.)
+

7)
11

2
,9

74
,0

43
4,

34
5
,5

53
2,

97
4,

04
3

19
3
,6

27
,0

64
18
.3

2
11
.5

7
84

9.
2
1

93
.3

2
1
.0

1
5
41
,0

86
90

M
et

as
se

m
b
le

r(
((

1+
2)

+
..

.)
+

8)
11

2
,9

73
,6

98
4,

3
44
,4

14
2,

97
3,

69
8

17
3,

62
6,

59
4

18
.2

8
11
.5

5
8
48
.5

1
93
.2

9
1
.0

1
54

1,
08

6
90

M
IX

(1
+

2
)

17
10
,7

38
,2

54
11
,3

54
,2

50
10
,7

38
,2

54
46

11
,3

24
,7

51
11
.3

3
5.

84
55

0.
1
1

96
.6

5
2
.5

5
1,

44
3,

5
94

91
M

IX
(1

+
2+

3)
13

10
,7

38
,2

54
11
,8

86
,4

82
10
,7

38
,2

54
47

11
,8

32
,5

25
19
.8

4
6.

14
56

8.
0
5

9
6
.9

2
2
.6

7
1,

4
43
,5

9
4

7
8

M
IX

(1
+

2+
3+

4)
16

10
,7

38
,2

54
12
,5

76
,2

49
10
,7

38
,2

54
55

12
,3

34
,0

05
20
.3

2
6.

35
5
66
.9

9
97
.5

0
2
.8

0
1,

44
3
,5

9
4

72
M

IX
(1

+
2+

..
.+

5)
20

6,
57

5
,2

27
9,

49
9
,4

56
6,

57
5
,2

27
46

9
,1

90
,2

36
19
.9

3
6.

41
62

1.
7
3

9
7
.2

1
2
.1

2
1,

2
08
,3

91
7
0

M
IX

(1
+

2+
..

.+
6)

24
6,

57
5
,2

27
10
,1

29
,7

18
6,

57
5,

22
7

56
9,

10
0,

17
1

19
.9

1
6.

62
8
25
.4

5
97
.4

2
2
.2

6
1,

20
8
,3

91
59

M
IX

(1
+

2+
..

.+
7)

27
6,

57
5
,2

27
10
,2

40
,0

91
6,

57
5,

22
7

60
9,

18
1,

27
3

20
.1

2
6
.6

8
10

35
.0

0
9
7
.6

0
2
.2

8
1,

20
8
,3

9
1

58
M

IX
(1

+
2+

..
.+

8)
31

6,
57

5
,2

27
10
,3

45
,1

76
6,

57
5,

22
7

76
9,

21
4,

37
1

20
.7

5
6
.8

1
18

9
1.

6
9

98
.8

4
2
.2

8
1,

2
08
,3

91
5
6

Z
O

R
R

O
(1

+
2)

21
3

22
3,

17
2

4,
70

9
,2

34
60
,5

44
12

28
1,

88
6

19
.3

7
11
.6

7
86

8.
3
6

99
.2

7
1
.0

2
60
,4

89
92

Z
O

R
R

O
(1

+
2+

3)
20

9
15

9,
41

2
4,

76
0
,4

17
62
,2

22
15

42
5,

10
2

22
.9

4
11
.1

0
12

04
.8

3
99
.2

6
1
.0

3
6
0,

68
7

92
Z

O
R

R
O

((
(1

+
2)

+
3)

+
4)

54
3

90
,8

80
4,

73
5
,1

52
17
,0

51
15

25
6,

06
5

18
.1

2
7.

99
22

1
3.

9
3

9
7
.3

8
1
.0

4
17
,5

7
9

8
8

Z
O

R
R

O
((

(1
+

2)
+

..
.)

+
5)

52
9

88
,6

10
4,

84
4
,5

35
18
,0

41
21

25
2,

09
7

25
.0

8
8.

57
22

62
.1

2
98
.9

0
1
.0

4
18
,7

36
88

Z
O

R
R

O
((

(1
+

2
)+

..
.)

+
6)

49
3

15
8,

62
0

4,
90

4
,5

71
26
,2

31
19

23
7,

32
5

21
.1

3
10
.0

3
38

36
.7

7
98
.8

0
1
.0

4
2
6,

81
1

90
Z

O
R

R
O

((
(1

+
2)

+
..

.)
+

7
)

22
07

87
,9

34
5,

9
79
,8

89
31

25
14

14
1
,0

79
20
.0

6
6.

03
21
,7

77
.6

6
9
7
.9

1
1
.0

4
4
50

1
80

152



T
a
b

le
A

.1
1
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
m

o
re

th
a
n

tw
o

a
ss

em
b

li
es

(s
ca

ff
o
ld

s)
o
rd

er
ed

b
y

th
e

F
R

C
u

rv
e

sc
o
re

(H
g
ch

r1
4
,

g
en

o
m

e
si

ze
1
0
7
,3

4
9
,5

4
0

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
a
ll

re
p

o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d
;

(1
+

2
)+

3
m

ea
n

s
th

a
t

a
ss

em
b

ly
1

a
n

d
2

w
er

e
m

er
g
ed

fi
rs

t,
th

e
re

su
lt

o
f

w
h

ic
h

w
a
s

th
en

m
er

g
ed

to
a
ss

em
b

ly
3

R
ec

o
n

ci
li

a
ti

o
n

C
on

ti
g
s

L
a
rg

es
t

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b

ly
M

is
m

a
tc

h
es

In
d

el
s

N
’s

G
en

o
m

e
D

u
p

li
ca

ti
o
n

N
G

A
5
0

G
en

es
T

o
ol

or
In

p
u

t
(#

)
(b

p
)

(b
p

)
(b

p
)

(#
)

L
en

gt
h

(b
p

)
(#

)
(#

)
(#

)
co

ve
re

d
(%

)
ra

ti
o

(b
p

)
(%

)

In
p

u
t

1
(C

A
B

O
G

)
47

4
2,

26
0,

56
2

86
,4

81
,5

6
8

40
1,

27
9

26
9

43
,2

05
,9

05
10

1
.1

0
24
.6

8
2
67
.2

0
8
0
.0

1
1
.0

1
2
1
5,

6
9
9

2
9

In
p

u
t

2
(A

L
L

P
A

T
H

S
-L

G
)

17
4

81
,6

46
,9

36
87
,6

46
,7

28
81
,6

46
,9

36
4
55

87
,2

19
,6

4
5

66
.8

5
2
2
.8

7
37

34
.6

3
7
8
.5

1
1
.0

4
3
9
7,

3
5
1

1
4

In
p

u
t

3
(A

B
y
S

S
)

31
,5

82
3
0,

05
3

6
7,

72
4,

5
94

33
55

37
23

7
,7

38
84
.6

7
9
.3

7
8
59
.4

4
6
1
.6

1
1
.0

2
1
3
3
9

8
3

In
p

u
t

4
(S

O
A

P
d

en
ov

o
)

7
26

4
1,

84
9
,5

11
1
00
,8

80
,7

4
6

38
1,

28
6

8
17

1
89
,3

96
,6

25
1
52
.6

8
2
4.

5
2

1
0,

16
6
.3

9
7
7
.4

4
1
.2

0
1
7,

8
5
1

3
1

In
p

u
t

5
(M

S
R

-C
A

)
10

5
6

4
,2

08
,9

6
5

89
,5

31
,6

81
8
93
,4

28
69

38
8
6
,5

37
,5

66
22

6
.6

7
41
.7

7
68

1
0.

9
2

7
5
.6

8
1
.1

0
31
,3

7
8

23
In

p
u

t
6

(B
A

M
B

U
S

)
8
47

2
,6

71
,9

81
78
,2

83
,0

56
37

2,
75

7
50

1
0

74
,1

97
,7

6
4

10
2
.6

9
21
.9

5
13
,2

47
.2

6
6
2
.5

9
1
.1

6
1
3,

1
3
1

1
9

In
p

u
t

7
(S

G
A

)
9
58

6
55

1
,6

2
2

88
,5

57
,6

45
82
,6

16
1
70

8
,8

11
,4

57
87
.7

7
18
.3

4
14
,4

99
.3

8
7
0
.4

7
1
.1

6
3
5,

3
1
7

3
4

In
p

u
t

8
(V

el
ve

t)
14

63
4,

62
8
,7

22
13

8,
77

1
,1

9
2

85
4,

8
36

12
,8

3
6

99
,5

7
9
,3

07
1
07
.3

2
28
.4

7
4
5,

79
7
.4

6
6
8
.5

5
1
.5

7
3
3
3
4

2
8

G
A

A
(1

+
2)

D
id

n
o
t

p
ro

d
u

ce
an

as
se

m
b

ly
fi

le

G
A

M
N

G
S

(1
+

2
)

47
3

2
,2

60
,5

62
86
,4

79
,6

9
9

40
1,

27
9

26
9

43
,2

05
,9

05
10

1
.1

0
24
.6

8
2
67
.2

2
8
0
.0

1
1
.0

1
2
1
5,

6
9
9

2
9

G
A

M
N

G
S

((
1
+

2
)+

3)
46

6
2,

26
0,

56
2

87
,3

63
,4

5
1

40
9,

98
9

27
1

43
,7

45
,3

48
10

1
.3

6
24
.7

1
2
72
.5

7
8
0
.0

1
1
.0

2
2
2
6,

1
8
3

N
A

G
A

M
N

G
S

((
(1

+
2
)+

3)
+

4)
46

2
2,

26
0,

56
2

87
,3

70
,7

2
4

40
9,

98
9

27
6

43
,9

94
,4

60
10

1
.3

9
24
.6

7
2
84
.0

2
8
0
.0

0
1
.0

2
2
2
6,

1
8
3

2
9

G
A

M
N

G
S

((
(1

+
2
)+

..
.)

+
5)

47
3

2,
26

0,
56

2
86
,4

79
,6

9
9

40
1,

27
9

26
9

43
,2

05
,9

05
10

1
.1

0
24
.6

8
2
67
.2

2
8
0
.0

1
1
.0

1
2
1
5,

6
9
9

2
9

G
A

M
N

G
S

((
(1

+
2
)+

..
.)

+
6)

45
5

2,
26

0,
56

2
87
,5

76
,1

9
6

40
9,

98
9

33
1

47
,0

81
,8

46
10

1
.5

2
24
.6

8
7
34
.3

7
7
9
.8

1
1
.0

2
2
2
3,

6
8
5

2
8

G
A

M
N

G
S

((
(1

+
2
)+

..
.)

+
7)

45
5

2,
26

0,
56

2
87
,5

77
,2

9
5

40
9,

98
9

33
1

47
,0

81
,8

46
10

1
.5

1
24
.6

8
7
37
.1

5
7
9
.8

1
1
.0

2
2
2
3,

6
8
5

2
8

G
A

R
M

(1
+

2)
15

28
67

5
,8

98
91
,9

34
,9

3
1

10
4,

63
3

26
7

15
,8

06
,1

90
97
.4

8
27
.9

7
1.

3
7

7
8
.9

8
1
.0

8
8
3,

3
7
5

0
G

A
R

M
((

1
+

2)
+

3)
1
1

26
4,

70
8

1,
04

2
,1

79
14

4,
05

5
2

20
9,

64
7

7
8
.6

8
22
.1

8
3.

7
4

0
.9

3
1
.0

5
N

A
0

G
A

R
M

((
(1

+
2)

+
3)

+
4)

6
26

4,
72

5
58

7,
15

1
1
45
,2

39
1

7
2,

91
0

12
0
.1

3
2
9
.7

8
5.

2
8

0
.5

5
1
.0

0
N

A
0

G
A

R
M

((
(1

+
2)

+
..

.)
+

5)
5

26
5,

52
8

50
6,

17
4

26
5,

52
8

2
3
38
,4

39
13

2
.8

7
30
.4

1
3.

5
6

0
.4

7
1
.0

0
N

A
0

G
A

R
M

((
(1

+
2
)+

..
.)

+
6)

4
6
1,

33
6

95
,5

3
5

61
,3

36
1

11
,6

08
1
45
.6

5
44
.0

1
0.

0
0

0
.0

9
1
.0

0
N

A
0

G
A

R
M

((
(1

+
2)

+
..

.)
+

7
)

4
61
,3

40
95
,5

39
61
,3

4
0

1
11
,6

08
14

6
.7

0
4
4
.0

1
0.

0
0

0
.0

9
1
.0

0
N

A
0

G
A

R
M

((
(1

+
2)

+
..

.)
+

8)
10

61
,3

49
35

8,
52

8
61
,3

49
2

2
3,

21
8

17
5
.3

2
59
.4

8
0.

0
0

0
.0

9
3
.7

5
N

A
0

M
et

as
se

m
b

le
r

(1
+

2)
46

5
2,

26
0,

56
2

86
,4

54
,8

4
3

40
1,

27
9

26
9

43
,2

05
,9

05
10

0
.9

3
24
.6

4
2
67
.2

8
7
9
.9

9
1
.0

1
2
1
5,

6
9
9

2
9

M
et

as
se

m
b

le
r

((
1
+

2)
+

3)
46

1
2
,2

60
,5

62
86
,4

46
,7

82
40

1,
2
79

2
69

43
,2

05
,9

0
5

10
0
.9

2
2
4
.6

4
2
67
.3

1
7
9
.9

9
1
.0

1
2
1
5,

6
9
9

2
9

M
et

as
se

m
b

le
r(

((
1+

2)
+

..
.)

+
4)

4
61

2
,2

60
,5

62
86
,4

46
,7

82
40

1,
27

9
26

9
43
,2

05
,9

05
1
00
.9

2
24
.6

4
26

7.
3
1

7
9
.9

9
1
.0

1
2
1
5,

6
9
9

2
9

M
et

as
se

m
b

le
r(

((
1
+

2
)+

..
.)

+
5)

46
1

2
,2

60
,5

62
86
,4

46
,7

82
40

1,
2
79

2
69

43
,2

05
,9

05
10

0
.9

2
24
.6

4
26

7.
3
1

7
9
.9

9
1
.0

1
2
1
5,

6
9
9

2
9

M
et

a
ss

em
b

le
r

((
(1

+
2)

+
..

.)
+

6
)

45
7

2
,2

60
,5

6
2

86
,4

27
,0

89
4
01
,2

79
26

9
4
3
,2

05
,9

05
10

0
.9

3
24
.6

4
26

6.
3
6

7
9
.9

7
1
.0

1
2
15
,6

9
9

29
M

et
as

se
m

b
le

r(
((

1+
2)

+
..

.)
+

7
)

45
7

2
,2

60
,5

62
86
,4

27
,0

89
40

1,
27

9
26

9
43
,2

05
,9

0
5

10
0
.9

3
24
.6

4
2
66
.3

6
7
9
.9

7
1
.0

1
2
1
5,

6
9
9

2
9

M
et

as
se

m
b

le
r(

((
1
+

2)
+

..
.)

+
8)

45
6

2
,2

6
0
,5

62
86
,4

19
,6

3
9

40
1,

27
9

26
9

43
,2

05
,9

05
1
00
.9

3
2
4.

6
4

26
6.

3
8

7
9
.9

7
1
.0

1
2
1
5,

6
9
9

2
9

153



T
a
b

le
A

.1
2
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
m

o
re

th
a
n

tw
o

a
ss

em
b

li
es

(a
s

co
n
ti

g
s)

w
it

h
a
n

a
lt

er
n

a
ti

v
e

o
rd

er
in

g
(S

ta
p
h
y
lo
co
cc
u
s
a
u
re
u
s,

g
en

o
m

e
si

ze
2
,9

0
3
,0

8
1

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f
m

er
g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
S

ta
ti

st
ic

s
re

p
o
rt

ed
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f
m

is
m

a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b
ly

M
is

m
at

ch
es

In
d
el

s
N

’s
G

en
om

e
D

u
p
li
ca

ti
on

N
G

A
5
0

G
en

es
T

o
ol

(#
)

(b
p
)

(b
p
)

(b
p
)

(#
)

L
en

gt
h

(b
p
)

(#
)

(#
)

(#
)

co
ve

re
d

(%
)

ra
ti

o
(b

p
)

(%
)

In
p
u
t

1
(S

G
A

)
9
85

1
6
,8

70
2,

74
8,

66
4

41
78

1
24

31
1.

02
0.

11
0.

00
9
4
.4

4
1
.0

0
4
0
05

8
2

In
p
u
t

2
(A

B
y
S
S
)

24
7

12
5
,0

4
9

3,
63

1,
24

5
25
,0

84
5

2
2,

39
9

12
.3

9
0.

8
5

7.
7
9

97
.2

7
1
.2

9
29
,1

98
7
8

In
p
u
t

3
(A

L
L

P
A

T
H

S
-L

G
)

59
23

4
,4

88
2,

86
9
,5

81
9
6,

7
40

1
89
,6

34
1
.5

7
0
.7

3
1.

50
9
8
.8

3
1
.0

0
96
,7

40
9
6

In
p
u
t

4
(M

S
R

-C
A

)
89

13
9,

43
8

2,
86

0
,1

3
2

59
,1

5
2

2
0

64
1,

17
3

20
.6

7
1
.8

2
0.

00
9
8
.1

7
1
.0

0
55
,0

6
8

9
5

In
p
u
t

5
(V

el
ve

t)
12

8
1
69
,2

14
2,

83
7
,0

36
5
2,

7
92

9
28

4,
37

9
13
.5

1
1
.6

9
0.

00
9
7
.7

3
1
.0

0
4
8,

1
4
9

97
In

p
u
t

6
(S

O
A

P
d
en

ov
o)

7
0

51
8
,7

10
2,

89
7
,4

32
28

8,
18

4
31

2
,0

27
,9

05
23
.0

0
2
.4

5
0.

07
9
8
.5

5
1
.0

1
15

0,
79

4
9
6

In
p
u
t

7
(B

A
M

B
U

S
2
)

10
6

1
58
,3

30
2,

83
2
,6

23
50
,1

92
1

9
41

1
1.

4
1

6
.9

5
0.

35
9
7
.6

6
1
.0

0
50
,1

92
9
5

C
IS

A
(1

+
2)

18
3

1
25
,0

49
2,

77
5,

03
5

2
5,

58
5

6
44
,2

57
14
.8

6
1.

23
4.

58
9
5
.0

7
1
.0

0
2
3,

61
0

9
3

C
IS

A
(1

+
2
+

3
)

52
24

5,
87

5
2,

87
7,

78
2

13
1,

78
1

2
25

1,
08

0
5
.1

5
1.

0
8

4.
6
6

98
.9

7
1
.0

0
1
31
,7

81
9
6

C
IS

A
(1

+
2+

3
+

4
)

27
48

1
,0

08
2,

86
7,

99
4

1
14
,9

3
8

1
0

1,
20

4,
08

0
8
.7

3
1
.0

9
1.

2
6

95
.0

4
1
.0

4
1
14
,8

73
9
0

C
IS

A
(1

+
2+

..
.+

5)
22

39
0,

08
6

2,
73

0
,4

06
20

1,
6
18

8
1,

10
1,

1
55

6
.8

7
1
.0

2
1.

28
9
0
.7

8
1
.0

4
11

4,
87

3
8
6

C
IS

A
(1

+
2+

..
.+

6
)

18
5
21
,3

99
3,

03
3
,6

07
28

8,
20

4
28

2
,3

29
,5

72
16
.7

0
2
.1

8
0.

86
9
4
.8

5
1
.1

0
1
79
,3

4
4

8
4

C
IS

A
(1

+
2
+

..
.+

7)
18

52
1,

39
9

3,
03

3
,6

07
28

8,
2
04

28
2
,3

29
,5

72
16
.7

0
2
.1

8
0.

8
6

94
.8

5
1
.1

0
1
7
9,

34
4

8
4

G
A

A
(1

+
2)

12
32

12
5,

04
9

6,
37

9,
90

9
1
0,

53
5

6
24
,8

30
11
.0

4
0.

70
4.

44
9
7
.9

3
2
.2

4
2
9,

19
8

2
7

G
A

A
((

1+
2
)+

3
)

12
90

23
4
,4

8
8

9,
24

6,
59

4
24
,5

26
7

11
4,

46
4

5
.0

6
0.

8
7

3.
5
3

99
.3

0
3
.2

1
1
07
,1

25
2
7

G
A

A
((

(1
+

2)
+

3)
+

4)
13

78
2
34
,4

88
12
,1

05
,4

4
7

32
,1

8
0

2
6

75
4,

35
8

11
.2

4
1.

66
2.

69
9
9
.6

3
4
.1

9
1
23
,4

1
4

27
G

A
A

((
((

1
+

2
)+

3
)+

4)
+

5)
15

02
23

4,
48

8
14
,9

3
1
,9

98
35
,2

75
35

1,
03

8,
73

7
14
.2

3
2
.6

3
2.

18
9
9
.7

3
5
.1

6
1
32
,3

20
2
7

G
A

A
((

((
1
+

2)
+

..
.)

+
5
)+

6)
15

70
51

8,
71

0
17
,8

23
,4

5
4

46
,5

6
5

6
6

3
,0

66
,6

42
18
.3

6
2
.5

9
1.

84
9
9
.8

0
6
.1

6
2
00
,2

4
7

2
7

G
A

A
((

((
1
+

2)
+

..
.)

+
6
)+

7
)

16
6
5

5
18
,7

10
20
,6

22
,6

04
4
8,

3
04

67
3
,0

76
,0

53
18
.0

2
2
.8

0
1.

6
4

99
.8

0
7
.1

2
2
0
0,

24
7

2
7

G
A

M
N

G
S

(1
+

2
)

5
45

77
,4

30
2,

78
4,

89
8

1
0,

3
28

1
24

31
2.

19
0.

36
0.

36
9
5
.7

8
1
.0

0
9
3
71

8
9

G
A

M
N

G
S

((
1+

2
)+

3
)

19
3

23
4
,5

71
2,

83
5,

52
3

6
9,

7
69

1
24

31
2.

51
0.

60
1.

23
9
7
.6

1
1
.0

0
6
8,

64
8

9
2

G
A

M
N

G
S

((
(1

+
2)

+
3
)+

4
)

12
0

38
6,

76
9

2,
84

6,
59

7
9
7,

6
55

2
38

6,
65

1
4
.4

3
0.

60
1.

23
9
8
.0

2
1
.0

0
9
7,

65
5

9
3

G
A

M
N

G
S

((
((

1+
2)

+
3)

+
4)

+
5
)

89
38

6,
76

9
2,

85
2,

15
1

9
8,

1
93

3
48

4,
84

4
6
.1

4
0.

70
1.

23
9
8
.2

2
1
.0

0
9
7,

65
5

9
4

G
A

M
N

G
S

((
((

1+
2)

+
..

.)
+

5)
+

6)
65

47
5,

52
8

2,
85

7,
73

3
17

2,
6
03

3
57

6,
15

2
6
.9

7
0.

74
1.

22
9
8
.3

7
1
.0

0
14

9,
87

0
9
4

G
A

M
N

G
S

((
((

1+
2)

+
..

.)
+

6)
+

7)
50

49
3,

28
2

2,
85

8,
54

6
21

6,
4
71

3
57

6,
15

2
7
.0

4
0.

88
1.

29
9
8
.4

1
1
.0

0
17

2,
59

6
9
4

G
A

R
M

(1
+

2
)

96
12

5
,4

77
1,

48
6,

96
2

2
8,

88
2

6
32
,6

84
24
.1

9
4.

73
8.

14
3
0
.6

1
1
.6

7
3
1
15

2
0

G
A

R
M

((
1+

2)
+

3)
26

75
1
,1

9
7

2,
69

7,
21

9
23

4,
53

3
0

0
8.

08
3.

30
0.

15
9
2
.9

1
1
.0

0
20

0,
24

8
9
1

G
A

R
M

((
(1

+
2)

+
3)

+
4)

27
83

3,
73

5
3,

13
2,

58
5

43
0,

27
5

14
1,

96
0,

87
8

19
.3

0
5
.0

0
0.

0
0

98
.5

4
1
.1

0
3
3
1,

02
6

8
8

G
A

R
M

((
((

1+
2)

+
3)

+
4
)+

5
)

2
8

8
85
,2

61
5,

43
9
,1

74
48

0,
86

2
21

4,
28

9,
84

1
19
.8

5
5
.1

9
0.

00
9
8
.0

3
1
.9

1
83

3,
52

8
1
9

G
A

R
M

((
((

1
+

2)
+

..
.)

+
5
)+

6)
12

8
85
,2

61
2,

98
3
,9

60
88

5,
26

1
18

2
,8

10
,5

29
24
.0

5
3
.2

6
0.

00
5
6
.0

0
1
.8

4
8
33
,5

2
9

2
2

G
A

R
M

((
((

1+
2
)+

..
.)

+
6)

+
7
)

53
88

5,
27

3
3,

34
6
,3

58
15

8,
3
30

14
1
,7

15
,1

06
14
.3

8
5
.5

1
0.

0
9

95
.5

9
1
.2

1
1
9
5,

10
0

7
5

M
et

as
se

m
b
le

r
(1

+
2)

40
1

77
,4

30
2,

82
5,

60
5

1
9,

00
8

3
11
,5

72
5
.4

2
0.

54
1.

91
9
6
.5

4
1
.0

1
1
8,

20
8

9
1

M
et

as
se

m
b
le

r
((

1
+

2)
+

3)
13

9
17

2,
10

2
2,

85
5,

73
9

48
,8

65
3

3
6,

23
7

4
.1

9
0.

9
2

2.
7
7

97
.8

6
1
.0

1
48
,8

62
9
4

M
et

as
se

m
b
le

r
((

(1
+

2
)+

3
)+

4
)

11
5

21
8
,1

47
2,

84
7,

05
8

56
,5

1
8

4
61
,3

75
7
.2

0
1.

20
2.

70
9
7
.5

8
1
.0

1
53
,1

4
9

94
M

et
a
ss

em
b
le

r
((

((
1+

2)
+

3)
+

4)
+

5)
11

4
21

8,
14

7
2,

84
7
,4

92
56
,5

18
5

16
7,

84
4

8
.1

2
1
.2

4
2.

70
9
7
.5

9
1
.0

1
53
,1

4
9

9
4

M
et

a
ss

em
b
le

r
((

((
1+

2
)+

..
.)

+
5
)+

6)
10

2
22

2
,9

05
2,

85
7
,9

03
6
4,

0
23

12
64

1,
7
67

13
.1

3
1
.4

4
2.

76
9
7
.8

6
1
.0

1
6
0,

9
4
5

94
M

et
a
ss

em
b
le

r
((

((
1+

2)
+

..
.)

+
6)

+
7)

10
1

22
2
,9

05
2,

85
7
,9

21
64
,0

23
12

64
1,

76
7

13
.1

3
1
.4

8
2.

7
6

97
.8

6
1
.0

1
6
0,

94
5

9
4

M
IX

(1
+

2
)

15
6

12
5,

04
9

2,
40

0,
20

2
2
7,

69
5

3
12
,3

22
15
.9

1
1.

11
6.

83
8
0
.3

4
1
.0

3
2
3,

08
2

7
9

M
IX

(1
+

2+
3)

44
23

4,
48

8
1,

94
6,

01
6

97
,6

97
1

8
9,

63
4

2
.0

0
0.

8
2

1.
9
0

67
.0

3
1
.0

0
48
,3

04
6
4

M
IX

(1
+

2
+

3+
4)

19
20

0
,2

47
65

8,
94

5
69
,3

9
1

0
0

3.
34

0.
91

1.
9
7

22
.6

9
1
.0

0
N

A
2
3

M
IX

(1
+

2
+

..
.+

5
)

18
20

0,
24

7
68

5,
97

3
66
,2

3
0

0
0

3.
06

0
.7

3
1.

7
5

23
.6

2
1
.0

0
N

A
2
4

M
IX

(1
+

2+
..

.+
6)

22
51

8,
71

0
1,

61
4
,1

88
33

1,
59

8
24

1,
34

5,
66

4
25
.4

5
2
.9

2
0.

00
5
5
.3

5
1
.0

1
4
6,

39
0

5
5

M
IX

(1
+

2+
..

.+
7)

22
51

8,
71

0
1,

28
3
,2

50
31

6,
52

2
16

1
,0

14
,0

66
26
.8

6
3
.1

3
0.

00
4
3
.9

9
1
.0

1
N

A
44

Z
O

R
R

O
(1

+
2
)

P
ro

d
u
ce

d
an

em
p
ty

a
ss

em
b
ly

fi
le

154



T
a
b

le
A

.1
3
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
m

o
re

th
a
n

tw
o

a
ss

em
b

li
es

(a
s

co
n
ti

g
s)

w
it

h
a
n

a
lt

er
n

a
ti

v
e

o
rd

er
in

g
(R

h
od

o
ba
ct
er

sp
h
a
er
o
id
es

,
g
en

o
m

e
si

ze
4
,6

0
3
,0

6
0

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f
m

er
g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
S

ta
ti

st
ic

s
re

p
o
rt

ed
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f
m

is
m

a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d
;

(1
+

2
)+

3
m

ea
n

s
th

a
t

a
ss

em
b

ly
1

a
n

d
2

w
er

e
m

er
g
ed

fi
rs

t,
th

e
re

su
lt

o
f

w
h

ic
h

w
a
s

th
en

m
er

g
ed

to
a
ss

em
b

ly
3

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b

ly
M

is
m

at
ch

es
In

d
el

s
N

’s
G

en
om

e
D

u
p

li
ca

ti
on

N
G

A
50

G
en

es
T

o
ol

(#
)

(b
p

)
(b

p
)

(b
p

)
(#

)
L

en
gt

h
(b

p
)

(#
)

(#
)

(#
)

co
ve

re
d

(%
)

ra
ti

o
(b

p
)

(%
)

In
p

u
t

1
(S

G
A

)
21

73
29
,5

20
4,

18
8,

43
2

25
30

1
40

48
5.

70
2.

47
0.

00
90
.7

0
1
.0

0
2
28

0
7
8

In
p

u
t

2
(C

A
B

O
G

)
31

8
8
8,

51
9

4,
2
36
,6

63
22
,0

44
11

27
6,

92
9

29
.0

7
5.

48
0.

00
9
1
.9

1
1
.0

0
19
,0

7
6

8
7

In
p

u
t

3
(V

el
ve

t)
48

2
6
0,

71
4

4,
47

0,
21

5
16
,0

33
6

12
7,

24
7

8
.5

8
4.

06
0.

00
96
.9

4
1
.0

0
1
5,

4
39

9
2

In
p

u
t

4
(M

S
R

-C
A

)
37

7
83
,7

26
4,

45
8,

95
2

23
,5

75
18

15
1,

79
0

23
.4

3
4.

90
0.

00
96
.1

4
1
.0

1
21
,2

36
8
9

In
p

u
t

5
(A

L
L

P
A

T
H

S
-L

G
)

2
03

10
6
,4

67
4,

58
7,

35
4

42
,4

55
10

40
4,

18
5

6
.3

3
4.

77
2.

79
9
9
.2

0
1
.0

0
41
,4

87
9
3

In
p

u
t

6
(A

B
y
S

S
)

15
09

5
4,

73
4

4,
83

0,
76

9
55

62
85

86
6
,2

18
22
.7

6
5.

84
2.

32
93
.7

5
1
.1

2
53

03
7
6

In
p

u
t

7
(B

A
M

B
U

S
2
)

17
0

2
79
,1

25
4,

36
9,

35
7

97
,3

31
4

12
3,

41
7

5
.8

2
5.

84
0.

00
94
.8

9
1
.0

0
93
,1

9
8

9
0

In
p

u
t

8
(S

O
A

P
d

en
ov

o)
11

4
37

6
,5

85
4,

56
9,

34
0

13
1,

68
1

11
63

3,
16

3
21
.2

8
9.

51
0.

00
9
8
.7

2
1
.0

1
12

9,
6
13

9
2

C
IS

A
(1

+
2)

36
1

88
,5

09
4,

22
7,

47
0

20
,3

03
11

28
6,

36
6

29
.0

0
5.

27
0.

00
91
.8

4
1
.0

0
17
,5

90
8
6

C
IS

A
(1

+
2+

3)
3
51

88
,5

16
4,

5
50
,2

94
22
,6

83
12

31
1,

96
3

29
.4

2
5.

28
0.

00
9
8
.2

8
1
.0

1
21
,4

3
5

9
2

C
IS

A
(1

+
2+

3
+

4)
20

7
88
,5

19
4,

63
2,

65
0

32
,5

48
13

27
7,

28
8

35
.3

1
6.

57
0.

00
97
.2

1
1
.0

4
3
1,

7
68

8
8

C
IS

A
(1

+
2+

..
.+

5
)

14
5

11
9,

46
1

4,
71

6,
60

7
50
,9

37
20

56
3,

58
6

23
.5

0
5.

56
1.

78
98
.0

8
1
.0

5
47
,8

59
8
9

C
IS

A
(1

+
2+

..
.+

6)
12

0
11

9,
46

1
4,

62
3,

27
6

51
,7

10
24

71
4,

57
5

23
.8

8
6.

39
1.

93
9
5
.6

1
1
.0

5
50
,8

89
8
7

C
IS

A
(1

+
2+

..
.+

7)
66

27
9,

12
5

4,
98

3,
88

0
10

1,
27

0
20

78
0,

42
7

29
.2

5
8.

45
0.

72
92
.0

3
1
.1

8
10

5,
29

3
7
3

C
IS

A
(1

+
2+

..
.+

8
)

38
3
77
,5

67
5,

00
9,

19
2

15
4,

50
9

18
1
,2

24
,2

27
32
.4

8
10
.7

2
0.

30
8
9
.9

6
1
.2

1
15

4,
5
09

6
8

G
A

A
(1

+
2)

24
89

88
,5

19
8,

42
2,

95
3

68
71

12
28

0
,9

77
28
.5

1
5.

16
0.

00
98
.4

4
1
.8

6
19
,2

78
3
3

G
A

A
((

1+
2
)+

3)
29

71
88
,5

19
12
,8

93
,1

68
11
,2

95
18

40
8,

22
4

29
.4

1
5.

26
0.

00
9
8
.6

9
2
.8

4
26
,9

2
7

2
9

G
A

A
((

(1
+

2)
+

3)
+

4
)

33
48

88
,5

19
17
,3

52
,1

20
13
,8

97
36

56
0,

01
4

35
.6

8
5.

66
0.

00
99
.4

8
3
.7

9
3
6,

8
99

3
0

G
A

A
((

((
1
+

2)
+

3
)+

4)
+

5)
35

42
10

6
,4

67
2
1,

92
9,

26
9

18
,0

74
46

96
4,

19
9

23
.3

2
5.

54
0.

58
99
.6

9
4
.7

8
58
,6

87
3
0

G
A

A
((

((
1+

2)
+

..
.)

+
5
)+

6)
50

32
10

6,
46

7
26
,7

27
,7

56
14
,5

34
13

1
1
,8

30
,4

17
24
.7

1
6.

14
0.

90
99
.7

9
5
.8

2
5
8,

68
7

3
3

G
A

A
((

((
1
+

2)
+

..
.)

+
6)

+
7
)

51
26

2
79
,1

25
3
0,

81
4,

25
7

18
,1

86
13

4
1
,9

48
,5

17
24
.7

3
6.

31
0.

78
9
9
.7

9
6
.7

1
97
,3

60
3
4

G
A

A
((

((
(1

+
2
)+

..
.)

+
6)

+
7)

+
8
)

52
39

37
6
,5

85
35
,3

79
,7

99
22
,5

11
14

5
2
,5

81
,6

80
27
.6

6
7.

92
0.

68
99
.8

4
7
.7

0
16

2,
98

6
3
4

G
A

M
N

G
S

(1
+

2)
7
72

88
,3

14
4,

3
86
,8

40
15
,2

68
8

17
7,

69
6

32
.6

2
5.

36
0.

00
95
.3

0
1
.0

0
13
,4

19
8
5

G
A

M
N

G
S

((
1+

2)
+

3)
53

8
88
,3

14
4,

4
25
,7

12
20
,2

10
8

17
7,

80
3

32
.6

5
5.

81
0.

00
96
.1

6
1
.0

0
18
,6

19
8
6

G
A

M
N

G
S

((
(1

+
2
)+

3)
+

4)
41

2
10

3,
66

8
4,

4
68
,8

94
26
,2

94
8

15
2,

01
1

35
.5

5
6.

22
0.

00
97
.0

4
1
.0

0
24
,4

20
8
6

G
A

M
N

G
S

((
((

1+
2
)+

3)
+

4)
+

5)
31

4
12

9
,2

31
4,

4
96
,0

17
39
,5

65
12

31
1,

93
9

36
.8

1
6.

57
0.

24
97
.5

6
1
.0

0
35
,7

67
8
7

G
A

M
N

G
S

((
((

1+
2
)+

..
.)

+
5)

+
6)

30
4

13
6,

77
3

4,
4
98
,1

85
40
,3

97
12

41
0,

76
8

37
.4

8
6.

57
0.

24
97
.6

0
1
.0

0
37
,5

91
8
7

G
A

M
N

G
S

((
((

1+
2
)+

..
.)

+
6)

+
7)

28
1

13
6,

77
3

4,
5
02
,3

88
40
,8

39
12

41
0,

81
1

37
.5

4
6.

65
0.

24
97
.6

9
1
.0

0
40
,3

97
8
7

G
A

M
N

G
S

((
((

1+
2
)+

..
.)

+
7)

+
8)

22
0

22
7,

33
1

4,
5
17
,0

30
51
,9

76
13

49
3,

51
8

42
.3

2
7.

40
0.

24
98
.0

0
1
.0

0
47
,3

44
8
7

G
A

R
M

(1
+

2
)

22
6

88
,5

21
2,

97
2,

27
4

22
,7

54
7

21
8,

12
5

39
.8

3
7.

72
0.

13
64
.4

7
1
.0

0
11
,6

05
6
2

G
A

R
M

((
1
+

2)
+

3)
31

7
88
,5

21
4,

4
39
,6

43
23
,4

04
15

44
9,

94
2

29
.7

0
6.

36
0.

59
8
8
.1

5
1
.1

0
21
,7

6
8

7
8

G
A

R
M

((
(1

+
2)

+
3
)+

4)
19

6
10

2
,1

79
4,

70
3,

72
5

41
,5

50
21

46
8,

00
1

35
.7

5
7.

08
0.

40
93
.9

5
1
.0

9
4
0,

6
60

8
4

G
A

R
M

((
((

1+
2
)+

3)
+

4)
+

5
)

D
id

n
ot

p
ro

d
u

ce
as

se
m

b
ly

fi
le

s

155



T
a
b

le
A

.1
4
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
m

o
re

th
a
n

tw
o

a
ss

em
b

li
es

(a
s

co
n
ti

g
s)

w
it

h
a
n

a
lt

er
n

a
ti

v
e

o
rd

er
in

g
(R

h
od

o
ba
ct
er

sp
h
a
er
o
id
es

,
g
en

o
m

e
si

ze
4
,6

0
3
,0

6
0

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f
m

er
g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
S

ta
ti

st
ic

s
re

p
o
rt

ed
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f
m

is
m

a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d
;

(1
+

2
)+

3
m

ea
n

s
th

a
t

a
ss

em
b

ly
1

a
n

d
2

w
er

e
m

er
g
ed

fi
rs

t,
th

e
re

su
lt

o
f

w
h

ic
h

w
a
s

th
en

m
er

g
ed

to
a
ss

em
b

ly
3

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b
ly

M
is

m
at

ch
es

In
d
el

s
N

’s
G

en
om

e
D

u
p
li
ca

ti
o
n

N
G

A
50

G
en

es
T

o
ol

(#
)

(b
p
)

(b
p
)

(b
p
)

(#
)

L
en

gt
h

(b
p
)

(#
)

(#
)

(#
)

co
ve

re
d

(%
)

ra
ti

o
(b

p
)

(%
)

In
p
u
t

1
(S

G
A

)
21

73
29
,5

20
4,

18
8
,4

32
25

30
1

4
04

8
5.

70
2.

4
7

0.
00

90
.7

0
1
.0

0
2
2
80

78
In

p
u
t

2
(C

A
B

O
G

)
31

8
88
,5

19
4,

23
6
,6

63
22
,0

44
11

27
6,

9
29

29
.0

7
5.

48
0.

00
9
1
.9

1
1
.0

0
19
,0

7
6

8
7

In
p
u
t

3
(V

el
ve

t)
48

2
60
,7

14
4,

47
0
,2

15
16
,0

33
6

12
7,

24
7

8
.5

8
4.

06
0.

00
9
6
.9

4
1
.0

0
1
5,

4
39

92
In

p
u
t

4
(M

S
R

-C
A

)
37

7
83
,7

2
6

4,
45

8
,9

52
23
,5

75
18

15
1,

79
0

23
.4

3
4.

90
0.

00
96
.1

4
1
.0

1
2
1,

2
3
6

8
9

In
p
u
t

5
(A

L
L

P
A

T
H

S
-L

G
)

20
3

10
6
,4

67
4,

58
7
,3

54
42
,4

55
10

40
4,

18
5

6
.3

3
4.

77
2.

79
9
9
.2

0
1
.0

0
41
,4

8
7

9
3

In
p
u
t

6
(A

B
y
S
S
)

15
09

54
,7

34
4,

83
0
,7

69
55

62
85

86
6
,2

18
22
.7

6
5.

84
2.

32
9
3
.7

5
1
.1

2
5
30

3
76

In
p
u
t

7
(B

A
M

B
U

S
2)

17
0

27
9,

12
5

4,
36

9
,3

57
97
,3

31
4

12
3,

41
7

5
.8

2
5.

84
0.

00
94
.8

9
1
.0

0
9
3,

1
9
8

9
0

In
p
u
t

8
(S

O
A

P
d
en

ov
o)

11
4

37
6
,5

85
4,

56
9
,3

40
13

1,
68

1
11

63
3,

16
3

21
.2

8
9.

51
0.

00
9
8
.7

2
1
.0

1
1
29
,6

13
92

M
et

a
ss

em
b
le

r
(1

+
2)

65
4

85
,7

65
4,

10
4
,6

84
14
,2

48
3

98
,3

43
17
.1

5
4.

5
1

0.
00

89
.0

7
1
.0

0
1
3,

0
7
2

8
4

M
et

a
ss

em
b
le

r
((

1+
2)

+
3)

61
1

85
,7

65
4,

11
0
,5

64
15
,6

22
2

46
,0

73
17
.1

0
4.

72
0.

00
8
9
.2

1
1
.0

0
13
,9

6
0

8
4

M
et

as
se

m
b
le

r
((

(1
+

2)
+

3)
+

4)
44

7
10

1
,3

56
4,

12
7
,4

10
20
,6

14
3

69
,8

41
21
.9

1
5.

65
0.

00
8
9
.6

2
1
.0

0
1
8,

7
50

85
M

et
a
ss

em
b
le

r
((

((
1
+

2
)+

3)
+

4)
+

5)
37

5
12

5,
37

5
4,

16
1
,5

95
25
,3

81
3

69
,8

41
22
.7

4
6.

30
0.

17
90
.3

6
1
.0

0
2
2,

0
3
7

8
6

M
et

a
ss

em
b
le

r
((

((
1+

2)
+

..
.)

+
5)

+
6
)

37
3

12
5
,3

75
4,

17
0
,3

84
25
,5

36
3

69
,8

41
22
.7

0
6.

32
0.

17
9
0
.4

4
1
.0

0
22
,0

4
6

8
6

M
et

as
se

m
b
le

r
((

((
1+

2)
+

..
.)

+
6)

+
7)

24
4

12
5
,3

75
4,

21
8
,2

14
37
,7

01
5

10
2,

12
8

22
.8

7
7.

50
0.

17
9
1
.5

0
1
.0

0
3
3,

0
0
4

8
6

M
et

a
ss

em
b
le

r
((

((
1
+

2
)+

..
.)

+
7
)+

8)
37

5
12

5
,3

75
4,

16
1
,5

95
25
,3

81
3

69
,8

41
22
.7

4
6.

30
0.

17
90
.3

6
1
.0

0
2
2,

0
3
7

8
6

M
IX

(1
+

2)
31

1
88
,5

19
4,

13
0
,0

25
21
,7

82
9

22
0,

44
5

12
.8

0
4.

6
8

0.
00

89
.6

1
1
.0

0
1
8,

3
3
1

8
5

M
IX

(1
+

2+
3)

29
9

88
,5

19
3,

94
2
,9

79
22
,0

24
9

18
3,

2
72

30
.2

4
5.

60
0.

00
8
5
.7

1
1
.0

0
17
,8

6
8

8
1

M
IX

(1
+

2
+

3
+

4
)

19
0

88
,5

19
2,

42
5
,0

32
22
,0

24
7

12
6,

78
8

16
.6

6
4.

41
0.

00
5
2
.6

7
1
.0

0
37

8
0

5
2

M
IX

(1
+

2+
..

.+
5)

14
6

10
6,

46
7

3,
02

8
,7

11
40
,5

55
4

23
5,

86
8

5
.2

8
4.

79
2.

05
65
.7

8
1
.0

0
2
0,

3
8
0

6
3

M
IX

(1
+

2+
..

.+
6
)

14
2

10
6,

46
7

2,
87

3
,4

98
38
,1

62
4

23
5,

86
8

5
.0

8
4.

32
1.

95
6
2
.4

1
1
.0

0
18
,0

8
1

6
0

M
IX

(1
+

2
+

..
.+

7)
78

27
9,

12
5

2,
66

8
,7

47
10

7,
96

3
2

31
,4

69
6
.7

4
7.

01
0.

00
5
7
.9

8
1
.0

0
2
8,

2
6
0

5
6

M
IX

(1
+

2+
..

.+
8
)

42
37

6,
58

5
1,

90
5
,1

19
16

2,
01

5
4

17
6,

14
5

20
.3

2
7.

88
0.

00
41
.3

8
1
.0

0
N

A
40

Z
O

R
R

O
(1

+
2)

41
9

7
0,

51
7

4,
53

4
,3

09
19
,1

61
10

19
9,

85
3

37
.4

7
5.

6
7

0.
04

98
.3

9
1
.0

0
1
8,

0
2
8

9
2

Z
O

R
R

O
((

1+
2)

+
3
)

P
ro

d
u
ce

d
an

em
p
ty

as
se

m
b
ly

fi
le

156



T
a
b

le
A

.1
5
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

m
er

g
in

g
m

o
re

th
a
n

tw
o

a
ss

em
b

li
es

(a
s

co
n
ti

g
s)

w
it

h
a
n

a
lt

er
n

a
ti

v
e

o
rd

er
in

g
(H

g
ch

r1
4
,

g
en

o
m

e
si

ze
1
0
7
,3

4
9
,5

4
0

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
R

ep
o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

to
o
ls

w
er

e
ra

n
u

si
n

g
d

ef
a
u

lt
p

a
ra

m
et

er
s,

u
n

le
ss

o
th

er
w

is
e

n
o
te

d
;

(1
+

2
)+

3
m

ea
n

s
th

a
t

a
ss

em
b

ly
1

a
n

d
2

w
er

e
m

er
g
ed

fi
rs

t,
th

e
re

su
lt

o
f

w
h

ic
h

w
a
s

th
en

m
er

g
ed

to
a
ss

em
b

ly
3

R
ec

on
ci

li
a
ti

o
n

C
on

ti
gs

L
ar

ge
st

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b
ly

M
is

m
at

ch
es

In
d
el

s
N

’s
G

en
o
m

e
D

u
p
li
ca

ti
o
n

N
G

A
50

G
en

es
T

o
ol

(#
)

(b
p
)

(b
p
)

(b
p
)

(#
)

L
en

gt
h

(b
p
)

(#
)

(#
)

(#
)

co
ve

re
d

(%
)

ra
ti

o
(b

p
)

(%
)

In
p
u
t

1
(A

B
y
S
S
)

32
,0

50
30
,0

53
67
,0

74
,1

40
31

82
24

12
8
,2

44
84
.4

8
9.

20
1.

31
6
1
.5

4
1
.0

1
1
31

9
8
4

In
p
u
t

2
(S

G
A

)
33
,6

95
30
,3

50
75
,4

92
,8

07
33

17
10

7
24

9
,9

73
87
.5

1
12
.5

7
0.

00
69
.8

9
1
.0

1
19

45
8
9

In
p
u
t

3
(A

L
L

P
A

T
H

S
-L

G
)

44
69

24
0
,7

73
84
,4

16
,1

02
38
,3

59
10

9
1
,3

84
,2

77
67
.7

1
21
.7

9
54
.6

0
7
8
.4

8
1
.0

0
27
,7

72
6
3

In
p
u
t

4
(C

A
B

O
G

)
32

33
29

6,
90

4
86
,1

89
,9

19
46
,6

99
10

8
3
,6

94
,3

26
10

1
.5

2
23
.2

9
0.

00
7
9
.9

4
1
.0

0
35
,5

3
9

59
In

p
u
t

5
(M

S
R

-C
A

)
25
,0

22
53
,9

25
81
,4

85
,1

44
54

70
20

38
6,

58
9
,7

12
22

0
.8

7
24
.6

6
0.

00
7
4
.2

1
1
.0

2
34

27
8
3

In
p
u
t

6
(V

el
ve

t)
32
,8

42
27
,8

72
70
,5

75
,2

15
30

87
23

2
60

2
,9

10
10

4
.5

1
21
.4

1
0.

00
6
5
.3

3
1
.0

0
1
58

0
82

In
p
u
t

7
(S

O
A

P
d
en

ov
o)

15
,0

28
14

7,
49

4
90
,3

98
,7

34
16
,1

79
63

29
43
,7

13
,7

69
15

2
.3

4
24
.2

6
0.

02
7
7
.3

0
1
.0

9
8
15

5
64

In
p
u
t

8
(B

A
M

B
U

S
)

12
,3

96
73

6,
65

7
67
,8

14
,0

16
85

00
29

73
12
,2

11
,2

65
10

4
.2

3
22
.1

8
0.

01
6
2
.5

2
1
.0

1
3
21

8
62

G
A

A
(1

+
2)

65
,7

37
30
,3

50
14

2,
55

2
,3

48
32

55
13

1
37

8
,2

17
90
.3

8
13
.7

0
0.

62
7
0
.5

2
1
.8

8
4
33

6
8
4

G
A

A
((

1
+

2)
+

3
)

70
,2

04
24

0,
77

3
22

6,
96

6
,6

64
61

19
24

0
1,

76
2
,4

94
72
.4

7
22
.0

5
20
.7

0
7
9
.3

3
2
.6

7
2
7,

96
0

79
G

A
A

((
(1

+
2)

+
3)

+
4
)

73
,4

16
29

6,
90

4
31

3,
13

9
,7

60
12
,7

80
34

8
5
,4

56
,9

15
95
.1

3
23
.8

6
15
.0

0
80
.6

6
3
.6

2
62
,6

47
7
8

G
A

A
((

((
1+

2)
+

3)
+

4)
+

5
)

98
,4

21
29

6,
90

4
39

4,
59

9
,1

85
90

54
23

83
12
,0

43
,3

68
99
.3

0
24
.4

5
11
.9

0
8
0
.8

0
4
.5

5
62
,6

4
7

81
G

A
A

((
((

1+
2)

+
..

.)
+

5)
+

6)
13

1,
26

2
29

6,
90

4
46

5,
17

3
,6

20
69

93
26

15
12
,6

46
,2

78
99
.6

6
24
.4

7
10
.1

0
8
0
.8

7
5
.3

5
62
,6

4
7

81
G

A
A

((
((

1+
2)

+
..

.)
+

6)
+

7)
14

0,
21

9
29

6,
90

4
54

8,
76

9
,6

03
84

83
89

20
56
,3

21
,4

49
10

6
.1

3
25
.0

7
8.

56
8
0
.9

8
6
.3

1
63
,1

0
7

83
G

A
A

((
((

1+
2)

+
..

.)
+

7)
+

8)
15

2,
49

2
73

6,
65

7
61

6,
39

0
,9

60
84

92
11
,8

93
68
,5

32
,7

14
10

5
.9

9
25
.0

7
7.

63
81
.0

0
7
.0

8
6
3,

10
7

8
4

G
A

M
N

G
S

(1
+

2)
28
,2

97
52
,6

08
69
,3

34
,7

40
37

55
30

16
3
,7

62
85
.2

0
9.

95
1.

18
6
3
.7

4
1
.0

1
17

55
8
3

G
A

M
N

G
S

((
1+

2)
+

3)
97

36
21

5
,5

03
79
,5

81
,8

06
34
,6

73
45

74
4,

03
0

85
.2

3
18
.3

8
10
.5

2
7
3
.5

2
1
.0

1
1
5,

73
0

60
G

A
M

N
G

S
((

(1
+

2)
+

3)
+

4
)

44
81

39
7,

75
1

83
,2

19
,9

62
69
,9

51
74

3
,2

63
,3

38
92
.1

8
21
.6

8
9.

94
7
7
.0

0
1
.0

1
46
,6

51
52

G
A

M
N

G
S

((
((

1+
2)

+
3)

+
4)

+
5)

41
92

39
7,

75
1

83
,3

68
,5

07
70
,6

04
82

3
,5

49
,9

98
94
.0

3
22
.0

2
9.

90
7
7
.1

7
1
.0

1
46
,9

64
51

G
A

M
N

G
S

((
((

1+
2)

+
..

.)
+

5)
+

6)
41

38
39

7,
75

1
83
,4

03
,6

80
70
,9

31
86

3
,8

89
,9

38
94
.6

3
22
.4

8
9.

86
7
7
.1

9
1
.0

1
47
,0

47
51

G
A

M
N

G
S

((
((

1+
2)

+
..

.)
+

6)
+

7)
36

97
39

7,
75

1
84
,1

76
,7

51
75
,5

81
86

6
19
,6

10
,7

02
99
.4

1
23
.1

3
9.

31
7
7
.4

2
1
.0

1
43
,2

97
47

G
A

M
N

G
S

((
((

1+
2)

+
..

.)
+

7)
+

8)
35

54
39

7,
75

1
84
,2

27
,3

64
77
,3

56
80

7
19
,4

77
,1

92
99
.4

8
23
.2

6
9.

26
7
7
.4

5
1
.0

1
44
,1

68
47

G
A

R
M

(1
+

2)
20
,8

66
55
,0

72
70
,0

26
,3

20
51

97
81

34
0
,1

95
88
.7

1
13
.8

7
0.

19
6
4
.5

9
1
.0

0
2
42

0
7
7

G
A

R
M

((
1+

2)
+

3)
33

52
43

0
,2

90
84
,6

28
,1

92
51
,0

97
25

8
6
,8

61
,4

04
90
.5

6
34
.3

8
0.

62
78
.4

5
1
.0

0
3
5,

79
4

57
G

A
R

M
((

(1
+

2)
+

3)
+

4)
16

26
62

1,
59

9
98
,3

29
,5

10
10

9,
22

8
26

1
16
,1

96
,2

16
10

0
.2

4
25
.8

1
0.

04
7
5
.8

0
1
.2

0
93
,1

29
4
6

G
A

R
M

((
((

1+
2)

+
3)

+
4)

+
5)

35
19

70
0
,7

15
15

2,
82

7
,9

73
12

5,
79

1
79

9
38
,3

58
,2

83
14

3
.9

8
29
.8

4
0.

02
7
7
.0

2
1
.8

4
1
45
,1

7
6

46
G

A
R

M
((

((
1
+

2)
+

..
.)

+
5
)+

6
)

50
91

81
4,

18
8

40
4,

13
6
,0

67
16

9,
38

4
12

50
10

8
,7

23
,0

14
14

3
.3

5
33
.8

6
0.

00
74
.6

6
5
.0

4
31

4,
77

4
4
3

G
A

R
M

((
((

1+
2)

+
..

.)
+

6)
+

7)
1

95
0

95
0

95
0

0
0

10
5.

26
0.

00
0.

00
0
.0

0
1
.0

0
N

A
0

G
A

R
M

((
((

1+
2)

+
..

.)
+

7)
+

8)
D

id
n
ot

p
ro

d
u
ce

as
se

m
b
ly

fi
le

s

M
et

as
se

m
b
le

r
(1

+
2)

31
,8

53
30
,0

53
66
,6

46
,1

60
31

74
22

12
4
,3

38
84
.1

1
9.

18
1.

28
6
1
.4

8
1
.0

1
1
29

3
7
7

M
et

as
se

m
b
le

r
((

1+
2)

+
3)

31
,4

74
30
,0

53
66
,2

30
,5

47
31

93
20

11
7
,5

82
83
.5

1
9.

13
1.

26
61
.1

8
1
.0

1
12

80
7
6

M
et

a
ss

em
b
le

r
((

(1
+

2)
+

3)
+

4)
31
,3

92
30
,0

53
66
,1

40
,5

93
31

98
20

11
7
,5

82
83
.4

6
9.

14
1.

16
6
1
.1

0
1
.0

1
1
27

6
76

M
et

as
se

m
b
le

r
((

((
1+

2)
+

3)
+

4)
+

5)
31
,3

17
30
,0

53
66
,0

80
,7

16
32

02
20

11
7
,5

82
83
.4

2
9.

13
1.

16
6
1
.0

5
1
.0

1
1
27

5
7
6

M
et

as
se

m
b
le

r
((

((
1+

2)
+

..
.)

+
5)

+
6)

31
,1

89
30
,0

53
65
,9

36
,7

87
32

06
20

11
7
,5

82
83
.1

5
9.

08
1.

16
60
.9

4
1
.0

1
12

71
7
5

M
et

a
ss

em
b
le

r
((

((
1+

2)
+

..
.)

+
6)

+
7)

31
,1

87
30
,0

53
65
,9

35
,5

48
32

08
20

11
7
,5

82
83
.1

4
9.

08
1.

16
6
0
.9

4
1
.0

1
1
27

1
75

M
et

as
se

m
b
le

r
((

((
1+

2)
+

..
.)

+
7)

+
8)

24
,6

82
30
,0

53
56
,8

50
,6

90
35

65
19

11
2
,4

49
84
.5

2
9.

19
1.

26
5
2
.5

7
1
.0

1
7
77

6
4

157



T
a
b

le
A

.1
6
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

p
a
ra

m
et

er
tu

n
in

g
(S

ta
p
h
y
lo
co
cc
u
s
a
u
re
u
s,

g
en

o
m

e
si

ze
2
,8

7
2
,9

1
5

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
R

ep
o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
a
rg

es
t

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b
ly

M
is

m
at

ch
es

In
d
el

s
N

’s
G

en
om

e
D

u
p
li
ca

ti
o
n

N
G

A
5
0

G
en

es
T

o
o
l

(#
)

(b
p
)

(b
p
)

(b
p
)

(#
)

L
en

gt
h

(b
p
)

(#
)

(#
)

(#
)

co
ve

re
d

(%
)

ra
ti

o
(b

p
)

(%
)

S
ta

p
h
yl

oc
oc

cu
s

a
u

re
u

s
(g

en
om

e
si

ze
2,

87
2
,9

15
b
p
)

A
L

L
P

A
T

H
S
-L

G
59

2
34
,4

88
2,

86
9,

58
1

96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
9
6,

7
40

96
S
G

A
9
85

16
,8

70
2,

74
8,

66
4

41
78

1
24

31
1.

02
0.

11
0.

00
94
.4

4
1
.0

0
4
0
05

8
2

C
IS

A
41

2
34
,4

88
1,

86
8,

64
0

86
,5

88
2

17
0,

23
2

2
.3

0
0.

96
1.

34
64
.5

3
1
.0

0
4
6,

0
21

63
C

IS
A

41
2
34
,4

88
1,

86
8,

64
0

86
,5

88
2

17
0,

23
2

2
.3

0
0.

96
1.

34
64
.5

3
1
.0

0
4
6,

0
2
1

6
3

C
IS

A
6
6

12
7,

88
8

2,
19

9,
24

4
62
,3

98
1

80
,5

98
1
.4

5
0.

68
0.

77
75
.9

1
1
.0

0
42
,9

63
74

C
IS

A
4

46
1,

6
17

1,
28

6,
21

4
28

6,
53

4
0

0
0.

98
8.

46
72

40
.2

4
38
.6

9
1
.1

5
N

A
3
5

C
IS

A
1
0

92
4,

84
6

1,
86

0,
00

9
61

4,
59

3
1

92
4,

84
6

3
.9

3
2.

75
52

0.
70

63
.9

1
1
.0

1
1
90
,4

0
1

6
4

G
A

M
N

G
S

5
9

23
4,

48
8

2,
86

9,
58

1
96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
9
6,

7
40

96
G

A
M

N
G

S
5
9

23
4,

48
8

2,
86

9,
72

5
96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
9
6,

7
40

96
G

A
M

N
G

S
5
9

23
4,

48
8

2,
86

9,
69

6
96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
9
6,

7
40

96
G

A
M

N
G

S
5
9

23
4,

48
8

2,
86

9,
72

5
96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
9
6,

7
40

96
G

A
M

N
G

S
5
9

23
4,

48
8

2,
86

9,
58

1
96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
9
6,

7
40

96

G
A

R
M

5
4

23
4
,5

77
3,

71
6,

04
0

10
1,

09
1

1
89
,6

33
1
.7

0
1.

49
0.

13
97
.2

5
1
.3

2
1
3
7,

4
50

64
G

A
R

M
54

2
34
,5

77
3,

71
6,

50
5

10
1,

09
1

1
89
,6

33
1
.8

8
1.

45
0.

13
97
.2

5
1
.3

2
13

7,
4
5
0

6
4

G
A

R
M

5
4

23
4
,5

8
1

3,
71

5,
08

9
10

1,
09

1
1

89
,6

33
1
.9

5
1.

35
0.

13
97
.2

1
1
.3

2
1
37
,4

50
64

G
A

R
M

54
2
34
,5

81
3,

71
5,

09
2

10
1,

09
1

1
89
,6

33
1
.8

4
1.

35
0.

13
97
.2

1
1
.3

2
13

7,
4
5
0

6
4

G
A

R
M

5
4

23
4
,5

8
1

3,
71

5,
11

0
10

1,
09

1
1

89
,6

33
2
.2

7
1.

35
0.

13
97
.2

1
1
.3

2
1
37
,4

5
0

6
4

M
IX

53
2
34
,4

88
2,

73
9,

01
6

97
,6

97
1

89
,6

34
1
.4

6
0.

69
1.

50
94
.3

4
1
.0

0
9
6,

7
40

92
M

IX
5
6

23
4,

4
88

2,
76

0,
91

9
97
,6

97
1

89
,6

34
1
.4

5
0.

69
1.

49
95
.0

9
1
.0

0
9
6,

7
4
0

9
2

M
IX

58
2
34
,4

8
8

2,
82

1,
27

7
97
,6

97
1

89
,6

34
1
.6

0
0.

74
1.

52
97
.1

6
1
.0

0
96
,7

40
94

M
IX

5
9

23
4,

4
88

2,
86

9,
58

1
96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
9
6,

7
4
0

9
6

M
IX

59
2
34
,4

8
8

2,
86

9,
58

1
96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
96
,7

4
0

9
6

M
et

a
ss

em
b
le

r
5
9

23
4,

48
8

2,
86

9,
58

1
96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
9
6,

7
40

96
M

et
as

se
m

b
le

r
59

2
34
,4

88
2,

86
9,

58
1

96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
9
6,

7
4
0

9
6

M
et

a
ss

em
b
le

r
5
9

23
4,

48
8

2,
86

9,
58

1
96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
96
,7

40
96

M
et

as
se

m
b
le

r
59

2
34
,4

88
2,

86
9,

58
1

96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
9
6,

7
4
0

9
6

M
et

a
ss

em
b
le

r
5
9

23
4,

48
8

2,
86

9,
58

1
96
,7

40
1

89
,6

34
1
.5

7
0.

73
1.

50
98
.8

3
1
.0

0
96
,7

4
0

9
6

Z
O

R
R

O
6
6

23
4,

54
8

2,
87

3,
03

7
96
,6

74
0

0
1.

88
0.

66
0.

80
98
.9

1
1
.0

0
9
6,

6
74

96
Z

O
R

R
O

66
23

4,
5
48

2,
87

3,
10

1
96
,6

74
0

0
1.

85
0.

66
0.

77
98
.9

1
1
.0

0
9
6,

6
7
4

9
6

Z
O

R
R

O
67

23
4,

54
8

2,
87

5,
95

8
96
,6

74
0

0
1.

81
0.

66
0.

80
98
.9

1
1
.0

0
96
,6

74
96

Z
O

R
R

O
69

23
4,

5
48

2,
87

3,
54

6
96
,6

57
0

0
1.

99
0.

59
0.

90
98
.9

0
1
.0

0
9
6,

6
5
7

9
7

Z
O

R
R

O
69

23
4,

54
8

2,
87

7,
59

7
96
,6

74
0

0
1.

92
0.

63
1.

22
98
.9

1
1
.0

0
96
,6

7
4

9
6

158



T
a
b

le
A

.1
7
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

p
a
ra

m
et

er
tu

n
in

g
(R

h
od

o
ba
ct
er

sp
h
a
er
o
id
es

,
g
en

o
m

e
si

ze
4
,6

0
3
,0

6
0

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
S

ta
ti

st
ic

s
re

p
o
rt

ed
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

R
ec

on
ci

li
a
ti

on
C

on
ti

gs
L

ar
ge

st
S

iz
e

N
50

M
is

as
se

m
b

ly
M

is
as

se
m

b
ly

M
is

m
at

ch
es

In
d

el
s

N
’s

G
en

om
e

D
u

p
li

ca
ti

o
n

N
G

A
5
0

G
en

es
T

o
ol

(#
)

(b
p

)
(b

p
)

(b
p

)
(#

)
L

en
gt

h
(b

p
)

(#
)

(#
)

(#
)

co
ve

re
d

(%
)

ra
ti

o
(b

p
)

(%
)

A
L

L
P

A
T

H
S

-L
G

20
3

10
6
,4

67
4,

58
7
,3

54
42
,4

55
10

40
4,

18
5

6
.3

3
4
.7

7
2.

79
99
.2

0
1
.0

0
41
,4

8
7

9
3

S
G

A
21

73
2
9
,5

20
4,

18
8
,4

32
25

30
1

40
48

5.
70

2
.4

7
0.

00
90
.7

0
1
.0

0
2
28

0
78

C
IS

A
17

3
10

6,
46

7
3,

91
2
,7

27
42
,4

55
5

26
0,

43
2

7
.1

6
4
.8

0
2.

68
84
.6

0
1
.0

0
35
,0

5
8

8
0

C
IS

A
17

3
10

6,
4
67

3,
91

2
,7

27
42
,4

55
5

26
0,

43
2

7
.1

6
4
.8

0
2.

68
84
.6

0
1
.0

0
35
,0

5
8

8
0

C
IS

A
17

3
10

6,
46

7
3,

91
2
,7

27
42
,4

55
5

26
0,

43
2

7
.1

6
4
.8

0
2.

68
84
.6

0
1
.0

0
3
5,

0
58

80
C

IS
A

21
9
13
,8

37
1,

32
8
,1

58
91

3,
83

7
6

1
,2

28
,3

49
8
.6

5
5
.9

0
71

4.
30

84
.6

0
1
.0

2
N

A
2
8

C
IS

A
21

91
3,

83
7

1,
32

8
,1

58
91

3,
83

7
6

1
,2

28
,3

49
8
.6

5
5
.9

0
71

4.
30

84
.6

0
1
.0

2
N

A
2
8

G
A

A
23

48
10

6,
46

7
8,

73
0
,7

04
10
,4

51
11

40
8,

23
3

6
.7

4
4
.7

9
1.

47
99
.3

2
1
.9

1
41
,4

8
7

2
5

G
A

A
23

48
10

6,
4
67

8,
73

0
,7

04
10
,4

51
11

40
8,

23
3

6
.7

4
4
.7

9
1.

47
99
.3

2
1
.9

1
41
,4

8
7

2
8

G
A

A
23

48
10

6,
46

7
8,

73
0
,7

04
10
,4

51
11

40
8,

23
3

6
.7

4
4
.7

9
1.

47
99
.3

2
1
.9

1
4
1,

4
87

29
G

A
A

23
48

1
06
,4

67
8,

73
0
,7

04
10
,4

51
11

40
8,

23
3

6
.7

4
4
.7

9
1.

47
99
.3

2
1
.9

1
4
1,

4
87

29
G

A
A

2
34

8
10

6,
46

7
8,

73
0
,7

04
10
,4

51
11

40
8,

23
3

6
.7

4
4
.7

9
1.

47
99
.3

2
1
.9

1
41
,4

8
7

29

G
A

M
N

G
S

20
1

10
6,

46
7

4,
58

8
,1

58
42
,4

55
10

40
8,

63
6

6
.6

1
4
.7

7
2.

79
99
.2

2
1
.0

0
41
,4

8
7

9
3

G
A

M
N

G
S

20
1

10
6,

46
7

4,
58

8
,1

58
42
,4

55
10

40
8,

63
6

6
.6

1
4
.7

7
2.

79
99
.2

2
1
.0

0
41
,4

8
7

9
3

G
A

M
N

G
S

20
2

10
6,

46
7

4,
58

8
,1

19
42
,4

55
10

40
4,

18
5

6
.6

1
4
.7

7
2.

79
99
.2

2
1
.0

0
41
,4

8
7

9
3

G
A

M
N

G
S

20
2

10
6,

46
7

4,
58

8
,1

19
42
,4

55
10

40
4,

18
5

6
.6

1
4
.7

7
2.

79
99
.2

2
1
.0

0
41
,4

8
7

9
3

G
A

M
N

G
S

20
3

10
6,

46
7

4,
71

1
,6

89
42
,8

02
11

51
5,

10
3

6
.6

1
4
.7

7
2.

74
99
.2

2
1
.0

3
42
,8

0
2

9
1

G
A

R
M

19
7

9
7
,4

74
5,

61
5
,0

46
47
,6

96
3

80
,9

24
9
.5

2
6
.4

2
0.

00
86
.2

3
1
.4

2
53
,5

2
5

0
G

A
R

M
19

9
9
7
,4

80
5,

51
8
,6

31
47
,6

76
3

80
,9

24
9
.5

5
6
.4

0
0.

00
86
.2

6
1
.3

9
52
,0

6
1

5
2

G
A

R
M

20
1

97
,4

74
5,

61
6
,7

23
47
,6

96
3

80
,9

24
9
.4

7
6
.4

0
0.

00
86
.2

6
1
.4

2
5
3,

5
25

52
G

A
R

M
2
01

97
,4

76
5,

61
6
,6

76
47
,6

96
3

80
,9

24
9
.5

5
6
.3

0
0.

00
86
.2

6
1
.4

2
5
3,

5
25

52
G

A
R

M
20

5
97
,4

56
5,

74
9
,2

14
47
,6

96
4

14
2,

75
4

8
.3

6
6
.1

7
0.

00
86
.2

8
1
.4

5
59
,3

7
2

50

M
IX

19
4

10
6,

46
7

4,
35

1
,9

09
42
,4

55
7

35
3,

06
3

5
.2

8
4
.6

2
2.

73
94
.1

4
1
.0

0
40
,5

5
5

8
8

M
IX

19
6

1
06
,4

67
4,

42
3
,1

68
42
,4

55
7

35
3,

06
3

5
.2

0
4
.5

9
2.

74
95
.6

9
1
.0

0
41
,4

8
7

9
0

M
IX

19
7

10
6,

46
7

4,
46

6
,7

81
42
,4

55
7

35
3,

06
3

5
.3

3
4
.6

3
2.

71
96
.6

4
1
.0

0
4
1,

4
87

91
M

IX
1
99

10
6,

46
7

4,
48

1
,0

45
42
,4

55
7

35
3,

06
3

5
.1

3
4
.6

8
2.

70
96
.9

5
1
.0

0
4
1,

4
87

91
M

IX
20

1
10

6,
46

7
4,

53
5
,0

84
42
,4

44
7

35
3,

06
3

5
.2

5
4
.7

2
2.

67
98
.1

2
1
.0

0
41
,4

8
7

92

M
et

as
se

m
b

le
r

20
0

1
06
,4

67
4,

58
7
,0

10
42
,4

55
10

40
8,

63
6

6
.6

1
4
.7

7
2.

79
99
.2

2
1
.0

0
41
,4

8
7

9
3

M
et

as
se

m
b

le
r

20
0

1
06
,4

67
4,

58
7
,0

10
42
,4

55
10

40
8,

63
6

6
.6

1
4
.7

7
2.

79
99
.2

2
1
.0

0
41
,4

8
7

9
3

M
et

as
se

m
b

le
r

20
0

10
6,

46
7

4,
58

7
,0

10
42
,4

55
10

40
8,

63
6

6
.6

1
4
.7

7
2.

79
99
.2

2
1
.0

0
4
1,

4
87

93
M

et
as

se
m

b
le

r
20

0
10

6,
46

7
4,

58
7
,0

10
42
,4

55
10

40
8,

63
6

6
.6

1
4
.7

7
2.

79
99
.2

2
1
.0

0
4
1,

4
87

93
M

et
as

se
m

b
le

r
2
00

10
6,

46
7

4,
58

7
,0

10
42
,4

55
10

40
8,

63
6

6
.6

1
4
.7

7
2.

79
99
.2

2
1
.0

0
41
,4

8
7

93

Z
O

R
R

O
22

2
1
06
,4

70
4,

60
9
,0

96
41
,9

18
9

38
8,

58
9

7
.0

9
4
.8

1
1.

41
99
.2

8
1
.0

1
41
,2

3
5

9
3

Z
O

R
R

O
22

4
1
05
,3

19
4,

61
6
,0

66
42
,4

44
8

29
6,

20
8

7
.1

6
4
.8

4
1.

54
99
.2

8
1
.0

1
41
,4

8
7

9
2

Z
O

R
R

O
23

1
10

5,
26

9
4,

59
4
,5

05
37
,3

12
8

21
5,

80
2

6
.9

8
4
.7

0
1.

41
99
.3

0
1
.0

0
3
7,

1
95

93
Z

O
R

R
O

23
1

10
5,

26
9

4,
59

5
,2

63
37
,3

12
8

21
5,

79
9

6
.9

4
4
.7

0
1.

46
99
.3

0
1
.0

0
3
7,

1
95

93
Z

O
R

R
O

2
31

10
5,

31
5

4,
59

6
,3

44
37
,3

12
8

21
5,

90
2

6
.9

6
4
.6

8
1.

46
99
.2

9
1
.0

1
37
,1

9
5

93

159



T
a
b

le
A

.1
8
:

E
x
p

er
im

en
ta

l
re

su
lt

s
o
n

p
a
ra

m
et

er
tu

n
in

g
(H

g
ch

r1
4
,

g
en

o
m

e
si

ze
8
8
,2

8
9
,5

4
0

b
p

).
T

h
e

ta
b

le
re

p
o
rt

s
o
n

q
u

a
li
ty

o
f

m
er

g
ed

a
ss

em
b

ly
co

m
p

a
re

d
to

th
e

tw
o

in
p

u
t

a
ss

em
b

li
es

.
N

o
te

s:
R

ep
o
rt

ed
st

a
ti

st
ic

s
a
re

fo
r

co
n
ti

g
s;

th
e

n
u

m
b

er
o
f

m
is

m
a
tc

h
es

/
in

d
el

s/
N

s
a
re

p
er

1
0
0

K
b

p
s;

R
ec

on
ci

li
at

io
n

C
on

ti
gs

L
a
rg

es
t

S
iz

e
N

50
M

is
as

se
m

b
ly

M
is

as
se

m
b

ly
M

is
m

at
ch

es
In

d
el

s
N

’s
G

en
om

e
D

u
p

li
ca

ti
on

N
G

A
5
0

G
en

es
T

o
ol

(#
)

(b
p

)
(b

p
)

(b
p

)
(#

)
L

en
gt

h
(b

p
)

(#
)

(#
)

(#
)

co
ve

re
d

(%
)

ra
ti

o
(b

p
)

(%
)

A
L

L
P

A
T

H
S

-L
G

44
69

24
0
,7

73
84
,4

16
,1

02
38
,3

59
10

9
1
,3

84
,2

77
67
.7

1
21
.7

9
54
.6

0
78
.4

8
1
.0

0
27
,7

72
63

S
G

A
33
,6

95
30
,3

50
75
,4

92
,8

07
33

17
10

7
24

9
,9

73
87
.5

1
12
.5

7
0.

00
69
.8

9
1
.0

1
19

45
89

G
A

A
38
,1

55
24

0,
77

3
15

9,
89

1,
54

9
10
,6

79
21

6
1
,6

34
,2

50
71
.6

1
22
.0

1
28
.8

3
79
.1

7
1
.8

8
27
,8

95
82

G
A

A
38
,1

55
24

0,
77

3
15

9,
89

1,
54

9
10
,6

79
21

6
1
,6

34
,2

50
71
.6

1
22
.0

1
28
.8

3
79
.1

7
1
.8

8
27
,8

95
82

G
A

A
38
,1

55
24

0,
77

3
15

9,
89

1
,5

49
10
,6

79
21

6
1
,6

34
,2

50
71
.6

2
22
.0

1
28
.8

3
79
.1

7
1
.8

8
27
,8

95
80

G
A

A
38
,1

55
24

0,
77

3
15

9,
89

1
,5

49
10
,6

79
21

6
1
,6

34
,2

50
71
.6

2
22
.0

1
28
.8

3
79
.1

7
1
.8

8
2
7,

89
5

82
G

A
A

38
,1

55
24

0,
77

3
15

9,
89

1
,5

49
10
,6

79
21

6
1
,6

34
,2

50
71
.6

2
22
.0

1
28
.8

3
79
.1

7
1
.8

8
27
,8

95
8
2

G
A

M
N

G
S

42
28

24
0,

77
3

84
,4

88
,9

19
39
,5

89
11

1
1
,5

79
,2

15
68
.1

9
21
.8

0
54
.5

0
78
.5

5
1
.0

0
28
,5

18
63

G
A

M
N

G
S

42
29

24
0,

77
3

84
,4

88
,7

20
39
,4

93
11

1
1
,5

79
,2

15
68
.1

9
21
.8

0
54
.4

8
78
.5

5
1
.0

0
28
,6

13
63

G
A

M
N

G
S

42
58

24
0,

77
3

84
,4

76
,4

09
39
,1

18
10

9
1
,5

45
,6

56
68
.0

9
21
.7

8
54
.5

1
78
.5

5
1
.0

0
28
,2

11
63

G
A

M
N

G
S

43
18

24
0,

77
3

84
,4

68
,9

87
39
,4

42
11

0
1
,4

85
,4

35
67
.9

4
21
.7

9
54
.5

4
78
.5

3
1
.0

0
28
,4

12
63

G
A

M
N

G
S

43
45

24
0,

77
3

84
,4

63
,7

42
38
,8

28
11

0
1
,4

70
,1

17
67
.9

7
21
.7

9
54
.5

6
78
.5

3
1
.0

0
28
,1

29
63

G
A

R
M

44
44

24
0
,7

62
10

6,
63

2,
69

8
44
,8

30
16

9
3
,1

31
,4

54
94
.7

2
30
.4

0
0.

06
75
.6

0
1
.3

1
44
,1

40
61

G
A

R
M

44
45

24
0
,7

62
10

8,
29

8,
28

1
45
,2

34
23

2
5
,9

69
,7

42
95
.3

7
30
.3

0
0.

06
75
.6

7
1
.3

3
45
,0

10
61

G
A

R
M

44
59

24
0
,7

62
10

6,
21

0
,8

05
44
,5

44
14

4
2
,7

87
,0

20
93
.8

2
31
.3

2
0.

06
75
.4

5
1
.3

1
43
,9

18
61

G
A

R
M

44
95

24
0
,7

6
7

10
6,

33
4
,2

07
44
,4

86
15

4
2
,7

74
,7

08
93
.2

4
31
.7

4
0.

06
75
.4

8
1
.3

1
4
3,

83
9

61
G

A
R

M
44

98
24

0
,7

62
10

6,
46

5
,9

91
44
,5

15
15

4
2
,7

74
,7

73
93
.6

2
31
.1

1
0.

06
75
.5

2
1
.3

1
43
,9

18
6
1

M
et

as
se

m
b

le
r

43
59

24
0,

77
3

84
,2

59
,3

13
38
,4

73
10

9
1
,3

84
,2

77
67
.5

4
21
.8

1
54
.5

0
78
.3

6
1
.0

0
27
,7

72
63

M
et

as
se

m
b

le
r

43
59

24
0,

77
3

84
,2

59
,3

13
38
,4

73
10

9
1
,3

84
,2

77
67
.5

4
21
.8

1
54
.5

0
78
.3

6
1
.0

0
27
,7

72
63

M
et

as
se

m
b

le
r

43
59

2
40
,7

73
84
,2

59
,3

13
38
,4

73
10

9
1
,3

84
,2

77
67
.5

4
21
.8

1
54
.5

0
78
.3

6
1
.0

0
27
,7

72
63

M
et

as
se

m
b

le
r

43
59

24
0,

77
3

84
,2

59
,3

13
38
,4

73
10

9
1
,3

84
,2

77
67
.5

4
21
.8

1
54
.5

0
78
.3

6
1
.0

0
2
7,

77
2

63
M

et
as

se
m

b
le

r
43

59
24

0,
77

3
84
,2

59
,3

13
38
,4

73
10

9
1
,3

84
,2

77
67
.5

4
21
.8

1
54
.5

0
78
.3

6
1
.0

0
27
,7

72
6
3

160


	List of Figures
	List of Tables
	Introduction
	Representation and manipulation of large sets of finite sequences
	Background
	Finite automata
	Decision diagrams
	Related work
	Notation

	Sequence decision diagrams
	Non-canonical SeqDDs
	Canonical SeqDDs with  at the bottom
	Canonical SeqDDs with  at the top
	An alternative canonical definition without 
	Comparing compactness of SeqDDT and SeqDDN

	Compactness of canonical SeqDDs
	DFA representation of SeqDDB
	NFA representation of SeqDDT
	SeqDD Compactness Comparison by Means of Finite Automata
	Summary

	Algorithms on SeqDDs
	Applications of sequence decision diagrams
	Probabilistic witness generation
	Biological sequence analysis

	Conclusion

	A Comparative Evaluation of Assembly Reconciliation Tools
	Background
	Assembly reconciliation tools

	Datasets and Experimental Results
	GAGE assemblies
	Limitations
	Usage of reads
	Gene coverage analysis
	Experimental results
	Parameter tuning
	Time and Space Analysis
	Synthetic assemblies

	Discussion and Conclusions

	SequOIA: Sequence Overlap Identification and Assembly 
	Colored positional de Bruijn graph
	Methods
	Overlap detection
	Construction of the colored positional de Bruijn graph
	Graph compression
	Graph traversal

	Experimental Results
	Conclusion

	Conclusion
	Bibliography
	A Comparative Evaluation of Assembly Reconciliation Tools: Supplementary Material
	Experimental results on GAGE assemblies: comments on Tables A.1-A.15
	High contiguity, high correctness inputs (GAGE)
	Reordering the inputs (GAGE)
	High-quality inputs (GAGE)
	Highly-fragmented inputs (GAGE)
	De Bruijn vs. string graph assembly (GAGE)
	Multiple inputs (GAGE)
	Multiple inputs (alternative ordering)





