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ABSTRACT OF THE DISSERTATION

Algorithms and Data Structures for de novo Sequence Assembly
by
Hind A. I. AL Hakami

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2017
Professor Stefano Lonardi, Chairperson

Despite the prodigious throughput of the sequencing instruments currently on the
market, the assembly problem remains computationally very challenging, mainly due to
the repetitive content of large genomes, uneven sequencing coverage, and the presence of
(non-uniform) sequencing errors and chimeric reads. As a consequence, the final assembly
is very rarely entirely finished, with one solid sequence per chromosome.

In this dissertation, we study (1) the problem of merging multiple genome-wide
assemblies produced using different assemblers and/or parameters, and (2) the problem of
stitching multiple overlapping local assemblies (e.g., assemblies generated by sequencing
BAC clones) to create a genome-wide assembly. Both assembly problem involves processing
very large set of strings, which in turns requires memory-efficient data structures that
allow for efficient comparison operations. In this context, we propose a data structure for
the compact encoding of finite sets of strings over a finite alphabet called sequence decision
diagrams (SeqDDs), which allows for efficient set operations. Next, we study and benchmark

several published methods to merge multiple genome-wide assemblies with the objective to
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produce a higher quality consensus assembly. Our comprehensive comparative study of
assembly reconciliation tools is the first of its kind. Finally, we develop, implement and test
novel algorithms to stitch locally overlapping assemblies based on the colored-positioned de

Bruijn graph, a variant of the classic de Bruijn graph.
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Chapter 1

Introduction

The sequencing instruments currently on the market have enabled the sequencing
of many large, complex genomes. Despite the tremendous throughput of these instruments,
the assembly problem is still very challenging, mainly due to the repetitive content of large
genomes, uneven sequencing coverage, and the presence of (non-uniform) sequencing errors
and chimeric reads. The third generation of sequencing technology, e.g., Pacific Biosciences
[27] and Oxford Nanopore [19], offers very long at a higher cost per base, but sequencing
error rate is much higher (summary in Table . As a consequence, long reads are more
commonly used for scaffolding contigs created from second generation data, rather than for
de novo assembly [2§].

A significant number of de novo genome assemblers are available to the community.
The choice of the most appropriate assembler depends on the size and complexity (repeat
content, ploidy, etc.) of the genome to be assembled, the type of sequencing technology used

to produce the input reads (e.g., Sanger, 454, Illumina, PacBIO, Nanopore, etc.), and the



Platform Sequencer Maximal read Error rate Average run Cost per 1 Million

length duration bases (US dollars)
Sanger ABI 3730x1 1000 bp 0.01% 2-3 hours $2400
454 GS FLX 1000 bp 0.01% 24 hours $10
Ilumina HiSeq 3000 250 bp 0.01% 4 days
Ilumina NextSeq500 150 bp 0.01% 30 hours $0.05 - $0.15
INlumina MiSeq 300 bp 0.01% 24 hours
Ion Torrent PGM 318 400 bp 2% 7  hours $1
PacBio RS II 54 kbp 13% 3 hours $0.13-80.60
Nanopore MinION 150 kbp 3% - 8% n.a. n.a.

Table 1.1: Summary of sequencing technology platforms

availability of paired-end or long-insert mate-pair reads. Each assembler implements slightly
different heuristics to deal with repetitions in the genome, uneven coverage, sequencing
errors and chimeric reads. The final assembly is very rarely entirely finished, with one solid
sequence per chromosome. Instead, the typical output is an unordered/unoriented set of
contiguous regions called contigs. If paired-end/mate-pair reads are available, contigs can
be ordered and oriented by anchoring paired-end reads to contigs. The length of the gaps

between contigs are estimated, then contigs are then joined into scaffolds.

BAC-by-BAC vs. whole genome shotgun sequencing

BAC-by-BAC sequencing starts by constructing a physical map of overlapping
series of contigs each of which spans a large (150 Kbp on average) contiguous region of
the source genome. Each contig is inserted into a host vector as a medium for replication.

The host vector is a bacterium, hence the naming bacterial artificial chromosome (BAC).
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Figure 1.1: BAC cloning involves making copies of specific regions of the genome. Clones
are then fragmented and random DNA fragments (typically 2-5 kb in size) are sub-cloned.
Sequence reads are then generated from one or both ends of randomly selected sub-clones.
Reads are then assembled for each BAC individually. Figure reproduced from [30]

Cloned BACs are then fingerprinted, using restriction enzyme to find common markers and
order overlapping contigs. Next, a minimum tiling path is computed to select a minimal
number of BACs spanning the genome. Selected BACs are then sub-cloned into smaller-
insert libraries, from which sequence reads are randomly derived. Figure illustrate this
process.

Whole genome shotgun sequencing skip the mapping, fingerprinting, and the se-
lection of a minimum tiling path phases and proceeds using sub-clone libraries prepared

from the entire genome. Figure show a comparison between BAC-by-BAC and whole
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Figure 1.2: In this figure we represent a genome as a large encyclopedia. In (a) BAC-by-
BAC sequencing, each page represents a BAC, each BAC is then sub-cloned and reads are
generated. In (b) whole genome shotgun sequencing, the entire genome is fragmented and
reads are generated from each DNA fragment. Figure reproduced from [30].

genome shotgun sequencing process.

Whole genome sequencing produces a base-by-base resolution, therefore allows for
a comprehensive analysis of a genome such as capturing small variants as well as large
variants. However, BAC-by-BAC sequencing approach is preferred when dealing with large
genome, complex repeated regions, or when the goal is analyzing targeted regions (selective

sequencing).



De novo sequence assembly

De novo sequence assembly is the reconstruction of a genome sequence from a
large set of strings called reads without the help of a reference genome. The strategies used

by de novo sequence assemblers can be classified into three groups

Greedy methods always makes the choice with the greatest immediate benefit; greedy
assembler always joins the reads that overlap best, as long as they do not contradict the
already constructed assembly. The choices made by the assembler are inherently local and
do not take into account the global relationship between the reads. Most greedy assemblers
use heuristics designed to avoid misassembling repetitive sequences. Assemblies produced
by greedy paradigms are usually not of very quality because they do not take advantage
of global information to resolve repetitive regions of the genome. Some examples of greedy

assemblers are Phrap [31], SSAKE [77], and VCAKE [42].

Overlap-layout-consensus assemblers starts by identifying all pairs of reads that over-
lap sufficiently well; overlaps are represented into a graph (called overlap graph0O, where
node represent reads and edges represents an overlaps. Several complex algorithms that
take into account the global relationship between the reads have been developed on the
overlap graph. This strategy was introduced by Celera [60], a very influential assembler for
Sanger sequencing reads. Other overlap-layout-consensus assemblers include, Celera As-
sembler with the Best Overlap Graph (CABOG) [57], Newbler [54], and Edena [39]. The
high throughput of second-generation instrument poses high computational demands on the

overlap-layout-consensus paradigm.



String graph. A variant of the OLC approach that simplifies the global overlap graph by
removing redundant information (transitive edges) introduced by SGA assembler [69] based

on FM-index, an efficient string indexing data structure.

de Bruijn graph represents input reads as a sequence of their subwords of length & (called
k-mers). Nodes in the graph represent kmers, and the edges indicate an overlap by exactly
k — 1 nucleotides. Most de Bruijn graph assemblers use the read information to refine the
graph structure and to remove graph patterns that are not consistent with the reads. De
Bruijn graphs for genome assembly were first introduced in the EULER assembler [15]. Since
then, they have the primary data structure for modern assemblers targeted at short-read

sequencing data, e.g., Velvet [84], SOAPdenovo [51] and ALLPATHS-LG [29].

The rest of this Dissertation is organized as follows. In Chapter [2] we introduce
Sequence Decision Diagrams (SeqDD), which are canonical decision diagrams that do not
suffer from ordering problem. SeqDD is a data structure designed to compactly store finite
sets of strings sharing substantial amount of common substrings. In that chapter, we present
efficient algorithms to carry out set operations using the memoization property, an intrinsic
feature of decision diagrams. In Chapter [3) we present a comparative analysis of assembly
reconciliation tools. The objective of these tools is to merge multiple draft assemblies to
obtain an assembly of higher quality. In Chapter 4] we introduce a novel method called
Sequence Overlap Identification and Assembly (SequOIA). The objective of SequOlIA is
to merge overlapping local assemblies, like the ones generated by sequencing BAC clones

belonging to a minimum tiling path of a genome.



Chapter 2

Representation and manipulation

of large sets of finite sequences

The assembly problem requires memory-efficient data structures that store large
sets of strings and allow for efficient set operations on them. In this chapter we introduce
sequence decision diagrams (SeqDDs), which can encode arbitrary finite sets of strings over a
finite alphabet. SeqDDs are a variant of classic decision diagrams such as BDDs and MDDs.
Instead of having a fixed number of levels, SeqDDs require that the number of paths and
the lengths of these paths to be finite. While MDDs are suited to store and manipulate

large sets of constant-length tuples, SeqDDs can store arbitrary finite languages.



2.1 Background

2.1.1 Finite automata

A finite automaton consists of a finite number of states and labeled transitions
such that the next state is determined by the current state, the input symbol, and the
transition function. Finite automata can be categorized into deterministic finite automata
(DFA) and non-deterministic finite automata (NFA).

A DFA is formally defined by a 5-tuple (Q, %, 9, qo, F') where,

Q is a finite set of states

> is a finite alphabet

0:@Q x X — (@ is a transition function
e ¢p € @ is a start state
o ['C (Q is a set of accepting states

A NFA is defined similarly to a DFA; the 5-tuple (Q,3,0,qo, F') has the same
definition except for the transition function which is defined as ¢ : @ x ¥ U {e} — 29, such
that, given a current state and a symbol, the transition function leads to a state chosen
from a set of states, rather than a unique state. Moreover, e-transitions in NFA allow
advancement without reading an input symbol.

We also define a partial DFA, as in [10], to be a minimized DFA with partial
transition function § C Q x ¥ — @ such that §(q,a) = 0) for ¢ € Q and a € ¥ is allowed. In

a partial DFA the trap state and all transitions leading to it are omitted.



2.1.2 Decision diagrams

A decision diagram is a directed acyclic graph where each node encodes a function.
Multi-valued decision diagrams (MDDs) are an extension of the better known binary deci-
sion diagram (BDD)H BDDs provide a canonical representation of boolean functions, while
MDDs provide a canonical representation of discrete functions. Both decision diagrams

consist of

e Non-terminal nodes: each non-terminal node recursively encodes a composition of the

sub-functions encoded by its children.

e Terminal nodes: there exist two terminal nodes, terminal 1 and terminal 0. The
first indicates that assignments of variables along the path from the root to termi-
nal 1 satisfies the function encoded by the decision diagram, while terminal 0 denotes

unsatisfiability.
o Labeled directed edges correspond to all possible assignments of a variable.

Canonicity is ensured through ordering and reduction rules. For a function with k variables,
a global ordering = < xx_1 < -+ < 1 < zg of the variables should be preserved in all
paths. Reduction rules are applied repeatedly on the fly to maintain a canonical minimized

decision diagram at any stage of the construction.

e Node merging rule: no duplicates nodes are allowed; i.e., if two nodes are isomorphic,

'MDDs extend BDDs by allowing the outgoing edges from a node to describe choices that are not
necessarily binary. We simply use to “MDDs” from now on, with the understanding that they include BDDs

as a special case.



then the two nodes are merged. In an MDD implementation a unique table is used to

enforce this rule.

e Node deletion rule: no redundant nodes are allowed; a node is considered redundant
if all its children are identical. Such node is interpreted as a “don’t care” node and is

skipped.

A quasi reduction rule applies node merging without node deletion at any levels, while full
reduction rule applies both node merging and node deletion (an example of BDDs after
applying each reduction rule is shown in Figure . In addition to reduction rules, a
sparse representation of a decision diagram is used. In sparse representation, terminal O is
not represented, nor any of the edges leading to it.

Another variation of ROBDD is Zero-Suppressed Binary Decision Diagrams (ZB-
DDs) [58], which is basically an ROBDD with a different deletion rule. In a ZBDD, a node
is bypassed if the one-child leads to the O-terminal (refer to the example in Figure (0)).

Decision diagrams are most efficient when encoding sets that share many subsets.
In addition, the recursive structure of decision diagrams makes the use of dynamic program-
ming cost effective. Decision diagram manipulation algorithms exploit this advantageous
feature by using an operation cache, which eliminate the need to repetitively recompute

sub-problems.

2.1.3 Related work

Many data structures have been introduced in the literature to compactly encode

finite sets of finite strings. Substring indices, such as tries, suffix trees [56], suffix arrays

10



F = T3T2x1 + T3x2%1 + 2371

Figure 2.1: (a) Quasi-reduced BDD, (b) fully-reduced BDD, and (c¢) ZBDD representation
for the same function.

53] , and DAWGS [I1], exploit prefix sharing, suffix sharing, or both to achieve efficient
storage of large sets of strings. Beside compactness, the main purpose of substring indices
is to efficiently solve the substring matching problem in a fixed text. Exact matching, in
most cases, can be achieved in time complexity proportional to the pattern size, not the
whole text.

While exact matching on these data structures is very efficient, updating the data
structure by adding or deleting strings is hard [5]. Additionally, the lack of efficient set
manipulation algorithms or such data structures stimulates the need for data structures
that leverage the benefits of substring indices while enabling efficient set manipulation.

In 2009, Loekito et al. introduced a new data structure, sequence BDD [49], that
combines compact storage of finite languages of arbitrary finite strings and, at the same time,
provides for efficient set manipulation algorithms. Sequence BDD or SeqBDD, for short, is a
half-relaxed variation of ZBDDs; variables along zero-paths are ordered, while the variables

along one-paths have no order restrictions; moreover, variables can appear several times
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along such a path facilitates encoding languages composed of strings of different lengths.

SeqBDD inherits ZBDDs efficient set manipulation algorithms, in addition to other
well known techniques of decision diagrams, such as the use of a unique table and an
operation cache, to enable dynamic programming. Other algorithms have been introduced
to mine frequent substring. In [5] the authors introduced a reversed SeqBDD to match
suffixes and proposed SuffixDD, a SeqBDD that encode the set of all suffixes of a given
string. In [26], SeqBDD that encode all substrings of a strings in a given language L is
introduced, and named factor SDD. In fact, it has been proven in [25] that size of the
factor SDD is linear in the size of the SeqBDD encoding L.

Size complexity is a crucial issue in decision diagrams, and SeqBDDs are no ex-
ception. The importance stems from two factors; first, decision diagrams are usually used
to store efficiently an enormous amount of data; second, the time complexity of algorithms
applied to decision diagrams is proportional to the size of the arguments. As other re-
duced ordered decision diagrams, SeqBDDs are sensitive to variable ordering. Since opti-
mal variable ordering is an NP-complete problem [12], heuristics are required to achieve
good variable ordering. Sharing common suffixed as well as common prefixes contributes
to the compactness of the data structure. Nevertheless, adhering to binary representation
degrades compactness of SeqBDDs [64].

Decision diagrams are used extensively in the field of symbolic model checking.
One of the most important virtues of symbolic model checking is the generation of coun-
terexample in case a given model violates the tested property. Many heuristics were intro-

duced in the literature that aim at producing counterexamples that are more informative
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and understandable. A counterexample is simply a trace. Given the state space, starting
from a start state, the counterexample shows the sequence of states the system will end in a
reachable bad state. That trace, or path, can be finite or infinite (if it contains a cycle). For
instance, safety properties checked through finite trace, while liveness properties are checked
through infinite traces. However, traces do not always consist of one path. In the case of
probabilistic model checking, often a vast number of paths compose the counterexample.
One way that has been introduced to compactly store the latter type of counterexample is
regular expressions [23], [36].

In this chapter, we introduce sequence decision diagrams (SeqDDs), which can
encode arbitrary finite sets of strings over an alphabet. SeqDDs can be viewed as a multi-
valued variation of SeqBDDs. SeqDDs do not constrain a priori the number of levels, in
fact, they do not really have an inherent concept of levels (or variables associated to a node).
Instead, they simply require that, on any instance of the diagram, the number of paths and

the lengths of these paths be finite.

2.1.4 Notation

Given alphabet ¥ = {s1,--- , s}, with m € N, let £* be the set of strings over ¥,
ie, X ={a;---ax: k>0,Vh,1 < h<k,ay € ¥}. We introduce the following notation to

discuss SeqDDs encoding a finite language Y C ¥*:

e If Y = (), then height(Y) = L, “undefined”. Otherwise, the height of ) is the length

of the longest string in it, height()) = max{|o|: o € V}.

e lengths(Y) ={keN:3Joe),|o| =k}, the set of all string lengths in ).
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e For k € lengths()), Vi = {0 € YV : |o] = k}, the strings of length k£ in ), and

Ve ={0o €)Y :|o| <k}, the strings of length less than &k in ).

e Forae X, YV/a={o€¥*:a- 0 € Y}, the strings that, preceded by a, form a string

in Y.

e For k € lengths(Y) and a € ¥, Vy/a = {0 € ¥¥71 : a -0 € )}, the strings that,

preceded by a, form a string of length &k in ).

o [|V]| =2 ,cy o], the total number of symbols in ), not to be confused with [Y], the

number of strings in ).

2.2 Sequence decision diagrams

2.2.1 Non-canonical SeqDDs

This section defines a class of decision diagrams that can encode any finite subset

of ¥*, that is any set of the form
{o1,-+,0n,:mneN,Vj,1<j<n,o; € ¥}

Note that the empty set () as well as {€}, the set containing only the empty string, are two

of the the sets that we must be able to encode.

Definition 1 A sequence decision diagram (SeqDD) is a directed acyclic finite graph in

which

e there are two terminal nodes, with no outgoing edges, 0 and 1;
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e ¢ nonterminal node p has m + 1 outgoing edges, each one labeled with a different
element from X U{e}; we write pla] = q to indicate that the outgoing edge labeled with

a € ¥ U {e} points to node q, which can be terminal or nonterminal.

Definition 2 The set of strings X (p) encoded by a SeqDD node p is recursively defined as:

(0, the empty set ifp=0,
X(p) = {€}, the set containing only the empty string if p=1,
UQEEU{E}{CL o0 € X(pla])} otherwise,
where “.” denotes the string concatenation operator.

We now prove that, given an arbitrary finite set of strings Y C ¥*, we can encode
Y using a SeqDD. More precisely, we can build a SeqDD with a single root node r (i.e., a

node not having any incoming edges), such that X'(r) = ).

Theorem 1 Given a finite set of strings Y C X*, there exists a single-root SeqDD whose

root p satisfies X (p) = ).

Proof. The proof proceeds by induction on ||Y||, the total number of symbols in Y.

If | V|| =0, then Y =0 or Y = {e}. In the case of ¥ = ), we can let p be the O-terminal.
In case of Y = {e}, we can let p be the 1-terminal.

If | V|| = k > 0, assume the theorem holds for any set )’ with ||)’|| < k. Clearly, || V.| < k
and, if e € Y, then Y = {e} UU,exn 0 Va, else Y = Jyes @ - Voo Then, if € € Y, we can
define a node p, with ple] = 1 and p[a] = ¢4, where ¢, is a node that encodes },, which
exists, by induction, since ||V,|| < k, for a € ¥. The case where € ¢ ) is exactly analogous,

except that we set ple] =0. m
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Figure 2.2: A SeqDDB, a SeqDDT, and a SeqDDN encoding ) = {aa, aaa, aabaa, baa, c, €}.
Indices in gray point to terminal 0 (not represented for clarity).

By definion SeqDDs are general non-canonical encoding of finite languages. Any
set Y C ¥* can be encoded by infinitely many SeqDDs because, if a node r encodes ), any
node r’ with 7’[a] = 0 for each a € ¥ and r'[¢] = r also encodes ), and the “insertion” of
such “useless nodes” can be repeated at will (indeed, not just above the root, but anywhere
along any path in the SeqDD). Thus, we now describe possible sets of restrictions to ensure

canonicity, namely

e No duplicate nodes are allowed: the SeqDD cannot contain two nonterminal nodes p

and ¢ such that p[a] = g[a] for every a € ¥ U {¢}.

e No empty nodes are allowed: the SeqDD cannot contain a nonterminal node p such

that pla] = 0 for every a € ¥ U {¢}.

e No e-nodes are allowed: the SeqDD cannot contain a nonterminal node p such that

pla] =0iff a € X.

Informally, canonicity is achieved by additionally “pushing” e-edges (not pointing to 0)

toward the bottom, or toward the top, of the diagram (Figure .
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2.2.2 Canonical SeqDDs with ¢ at the bottom

Definition 3 A (canonical, e-at-the-bottom) SeqDDB is a SeqDD with no duplicate nodes,

no empty nodes, no e-nodes, and such that, for any nonterminal node p, either ple] = 0 or

ple] = 1.

eorem wen a finiie set o sitrings C ) ere 1S a unique singre-roo eq
Th 2 Gi finite set of strings Y C $*, there i ique single-root SeqgDDB

whose root p satisfies X (p) = ).

Proof. If height(yY) = L, then ) = (), and the canonicity restrictions imply that p = 0
is the only SeqDDB node encoding Y. If height(Y) = 0, then J = {e}, and the same
restrictions imply that p = 1 is the only SeqDDB node encoding Y. If height(Y) =k > 0,
assume the theorem holds for any )’ with height()’) < k. Clearly, height(Y/a) < k and,
ifec ), then Y = {e} UlU,ex @~ V/a, otherwise Y = |J,cxa - Y/a. Then, if e € Y, we can
define node p, with ple] = 1 and, for each a € ¥, pla] = ¢4, where ¢, is the unique node
encoding Y/a (by induction, ¢, exist since height()/a) < k). Note that we might have
Y/a = Y/b for a # b, this simply means that the two corresponding edges in p point to the
same SeqDDB node (indeed nodes are shared across any of the descendants of p, to avoid
duplicates). No other node ¢ encoding ) can exist because it would have to differ from p
in at least one index a € X, while we must have ple] = g[¢] = 1. By inductive assumption,
SeqDDB’s pla] and g[a] cannot encode the same set, that is, X (p[a]) = V/a # X (q[a]), thus
there is a string a - ¢/ in X(p) and not in X(q), or vice versa. The case where € ¢ ) is

analogous, except that ple] = 0. m
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2.2.3 Canonical SeqDDs with ¢ at the top

For the alternative definition where we allow “e at the top”, it is easier to recast

the definition of quasi-reduced MDDs [I8] as a special case of SeqDDs.

Definition 4 A (canonical, single-root) k-level MDD is the terminal node 1, if k =0, or,
if k > 0, it is a single-root SeqDD with no duplicate nodes, no empty nodes, no e-nodes, and

with oot p such that ple] = 0 and, for a € X, pla] is a (k — 1)-level MDD or 0.

It is easy to see that the root p of a k-level MDD encodes a nonempty set of strings of fixed

length k, that is, X (p) C ©F.

Definition 5 A k-level SeqDDT is a SeqDD without duplicate, empty, or e-nodes whose
root node p is such that, for a € ¥, pla] is 0 or the root of a (k—1)-level MDD, while ple]

is 0 or the root of an h-level SeqDDT, h < k.

Thus, it is easy to prove by induction that the root p of a k-level SeqDDT encodes a
nonempty set of strings of length k, | J o5, X' (¢[a]), plus a possibly empty set of strings of

length less than k, X'(qle]).

Theorem 3 Given a finite language Y C X%, there exists a unique single-root SeqDDT with

root p such that X(p) = Y.

Proof. If height(Y) = L, then Y = (), and the canonicity restrictions imply that p = 0 is
the only SeqDDT encoding Y. If height()) = 0, then ) = {€}, and the same restrictions
imply that p = 1 is the only SeqDDT encoding Y. If instead height()) = k > 0, assume

that the theorem holds for any set )’ with height()') < k. Since Y = Ve, U, ex - Vi/a,
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we can define node p such that, for a € X, pla] = ¢, with X(g.) = Vi/a, while ple] = g
with X(q.) = Y<k. By inductive hypothesis, nodes ¢, and ¢, are unique, as they all encode
sets of height less than k and, since ) /a contains only strings of length k — 1, ¢, is in
particular the root of an MDD, i.e., 4[] = 0. Then, node p is also the only node encoding
Y since any other node p’ would have to differ from p in at least one child. If ple] # p'[e],
there must exists a string o of length less than k in X (ple]), thus X' (p), and not in X (p'[€]),
thus X (p’), or vice versa. If there is an a € ¥ with p[a] # p[a], there must exists a string o
in X(p[a]) and not in X (p'[a]), so that a- o is in X'(p) and not in X (p’), or vice versa (a - o
cannot possibly be in X (p[¢]) as it is of length k). Either way, p’ cannot encode the same

set as p. m

2.2.4 An alternative canonical definition without e

Unlike SeqDDBs, SeqDDTs rely on some concept of level for the nodes of the
decision diagram. More specifically, the nodes in a SeqDDT encode all the maximum-
length strings using the children corresponding to the elements of ¥, and postpone the
encoding of the remaining, shorter, strings to the child corresponding to € (Figure . An
almost equivalent encoding for a set ) is then one where the strings of ) are partitioned
according to their length, and the top node makes a decision based on the length of the
string o being searched, not on the first symbol of . This leads us to a third, slightly

different in spirit but essentially equivalent, definition.

Definition 6 A SeqDDN is a set of “sparse” root nodes, each root r having a finite set R

of outgoing edges labeled with different elements k € N, such that r[k] points to a k-level
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Figure 2.3: Canonicity of sequence decision diagrams.

MDD. The set encoded by r is Jycp X(r[k]).

Note that sharing of nodes across various MDDs of a single-root SeqDDN, as for
those of the equivalent SeqDDT, is not only possible, but required, since we seek a canonical
form. If the sets X(r[ki]) € ¥ and X (r[ks]) € X*2 encoded by MDD nodes p; and py

satisfy
I, y2, {o ek iy oeX(rlk])} = {oeSF i a0 e X(r[ka])} = W £ 0,
then the node p encoding W is shared by the MDDs rooted at p; and pa.

Theorem 4 Given a finite set of strings Y C X%, there is a unique single-root SeqDDN

rooted at r such that X(r) = ).

Proof. The proof is immediate. If J) = (), then only node r with R = ) encodes ).
Otherwise, write Y = Ukelengths(y) Y. Then, each ) is canonically encoded by an MDD
rooted at a node pg, and the root node of the SeqDDN is simply r with a set R = lengths(}),
and such that r[k] = pg, for each k € lengths()). Of course, MDD nodes must be shared
across MDDs, not just within each MDD. It is obvious that this SeqDDN is the unique

encoding of ). m
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| q1

Figure 2.4: The structure of a SeqDDT and a SeqDDN encoding the same set.

2.2.5 Comparing compactness of SeqDDT and SeqDDN

We begin by comparing the size of the SeqDDT and SeqDDN encoding a set ),

since both definitions rely on the length of the strings in ).

Theorem 5 Given a finite set of strings Y C X, the numbers of edges in SeqDDT Ar and

SeqDDN Ay encoding Y satisfy
edges(Ar) + 1 > edges(An) > edges(Ar) — (|lengths(Y)| — 2)|X| + 1.

Proof. The proof is based on the common structure exhibited by Ay and Apy. Consider
first the case where € € ), shown in Figure where n + 1 = |lengths(}))|, i.e., n is the
number of different string lengths in ) not counting the length 0 of the empty string. The
key observation is that Ar and Ay are largely the same. Namely, the MDDs encoding any
of the non-empty sets Y, o, for I € lengths()) and aj € 3, are present in both Ap and
Ap, so we can simply let e be the number of edges needed to encode them as a whole, in
either representation. Then, edges(Ar) = e+ (x, + 1) + -+ + (z1 + 1), where zy, is the

number of edges leaving node p not counting its e-edge, thus it is also the number of edges
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leaving gi in Anx. On the other hand, edges(Ax) = e+ (n+1)+zp +0p—1Tpn_1+ -+ 121,
where the term (n 4+ 1) counts the edges leaving the root r, while §; = 0 if g5 is a node

already present in the encoding of the MDDs ) for I, € lengths()) with 1, > I

@m
and a, € X, and J; = 1 otherwise. In other words, the indicators d;s are needed because,
except for ¢, any other g, might happen to duplicate an already existing node in the MDD
portion of Ay, while this is not possible for any node pg, as having an e-edge makes it for
sure different from any MDD node. Then, since z; can be as large as |X|, we can conclude

that
edges(Ar) + 1 > edges(An) > edges(Ar) +1 — (n—1)|3].

If instead € ¢ ), the same approach is applicable, except that n = |lengths())|, p1 in
A7 does not contain an e-edge, and r does not contain a 0-edge. We can then write
edges(Ar) = e+ (vp + 1) + -+ + (x2 + 1) + d121, since now g; not only does not have
an e-edge, but could be already present in the MDD portion of Ap, and edges(Ayx) =
e+n—+x,+0p_1Tp—1+ -+ 0121, since r does not have the 0-edge (it is important to note
that ¢1 and p; coincide when € ¢ Y, thus either they both coincide with an existing MDD
node, or neither of them does, that is, d; is the correct indicator for both). Then, we can

conclude that
edges(Ar) + 1 > edges(An) > edges(Ar) + 1 — (n —2)|3.

Recalling that n = |lengths(Y)| — 1 when € € Y and n = |lengths(Y)| when € ¢ Y, we

conclude that the theorem always holds. =

Figure [2.5] shows that both the lower and upper bounds on the size of Ay with

respect to Ar can actually be achieved. Specifically, the first two panels show how we
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Y = {{a,b, c}k 0<k <4} Y = {{a,b, c}k 1<k <4} Y = {abed, abe, ab, a, e}

Arlalblcle] Ax[4[3[2[1]0]] Ar[a]b]ce] Ax[4]3]2]1]

Figure 2.5: Examples achieving the bounds of Theorem

can have edges(An) = edges(Ar) — (|lengths(Y)| — 2)|3| + 1, assuming ¥ = {a, b, ¢}, for
the cases ¢ € Y and € ¢ ), respectively, while the third panel shows how we can have

edges(An) = edges(Ar) + 1.

2.3 Compactness of canonical SeqDDs

We now discuss the size of our SeqDDs, where the size of a SeqDD A is the number
of edges it contains, edges(A), rather than the number of nodes. Given the structural
differences between a SeqDDB and a SeqDDT, we compare them by thinking of them as
finite automata. A closer look at a SeqDDB shows that it can be easily converted into a
DFA (Theorem @ On the other hand, a SeqDDT can be converted into a restricted type

of NFA.

2.3.1 DFA representation of SeqDDB

Given a SeqDDB Ap encoding a finite language ) C ¥*, we can build an equivalent

DFA M = (Q,%,6,q0, F). If Ag = 0 then M = ({qo},%,d, qo, D). Otherwise, we first define
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the states @ in terms of the nodes in Ap: every nonterminal node ¢ in Ap corresponds to
a state ¢ € @@, while node 1 in Ap corresponds to new state f € () and node 0 corresponds
to a new trap state t € Q).

The initial state gg corresponds to Apg’s root while the transition function § :
Q@ x X — @ is such that, for every a € ¥ and edge gla] = p in Ap, there is a corresponding
transition §(q,a) = p and, if ¢[e] = 1, no transition is added, but ¢ is added to the accepting

states F'. Lastly, state f is also added to F.

Theorem 6 Given a SeqDDB Ap encoding a finite language Y C X*, building an equivalent

minimized DFA M requires linear time in the size of Ap.

Proof. The proof is direct from the translation algorithm above. m

For memory efficiency, decision diagrams can be stored in a sparse form. In the
case of a sparse SeqDDB, this corresponds to a partial DFA, and the translation is analogous
to the non-sparse version just discussed. From now on, we consider sparse representations

for all canonical forms of SeqDD and for partial DFAs.

2.3.2 NFA representation of SeqDDT

To discuss the translation of a SeqDDT into an equivalent NFA, we first define
RNFAs, a restricted version of NFAs, keeping in mind that our goal is to facilitate size
comparisons between a SeqDDB and a SeqDDT. To that end, our RNFA definition resembles
the structure of SeqDDT while respecting the key characteristics of ordinary NFAs when

encoding a finite language.
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Definition 7 A restricted NFA (RNFA) is an acyclic NFA N = (Q,%,6,Qr,QF), where
both Q1 and Qr are singletons sets and, for each state q € Q, the following condition holds:
at most one outgoing e-transition is allowed, and if k = max(lengths(L(q))) then all strings

in Jges L(6(q, a)) have length k — 1 and all strings in L(d(q,€)) have length at most k — 1.

This value k is called the level of gq.
A minimized RNFA enforces the following restriction rules.

e No duplicate states are allowed: An RNFA cannot contain ¢ and p such that L(q) =

L(p).

e No empty states are allowed: An RNFA cannot contain a state ¢ € @ \ Q1 such that

L(q) = 0.

e No e-states are allowed: An RNFA cannot contain a state ¢ € @ \ Qp such that

L(q) = {e}.

Any RNFA can be converted to an equivalent minimized RNFA using Algorithm an
adaptation of the bucket-sort based OBDD reduction algorithm proposed in [68]. The
minimized RNFA for a given language is unique.

The following lemma affirms that RNFAs, like DFAs, can recognize any finite

language (unlike DFAs, they obviously cannot accept any infinite language).
Lemma 7 If Y C ¥* is a finite language, there exists an RNFA N to accept ).

Proof. The proof of existence is analogous to the one of Theorem [
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Algorithm 2.1 Algorithm to canonize a RNFA.

1: function CANONIZE( p : RNFA, ¢ : SeqDDB)

2: declare local RNFA s, v

3: declare local vector t > sorted vector according to a predefined alphabet order

4: declare local list(s,t) L

5: declare local list(bucket) nonempty

6: devide p’s nodes by levels s.t. the final state f is at level-0 and a node n
recognizing strings of length k is at level-k.

7 for £k =1 to lengths(Y) do

8: create L containing nodes s of level-k and the associated vector of
successors v for each s in L.

9: create buckety containing all s in L > starting with all nodes in one bucket

10: add bucketg to nonempty list

11: for a € ¥ do > run an |X|-phase bucket sort algorithm

12: for bucket U in the nonempty list do

13: create new bucket-a

14: for s € U do > eventually divide into buckets of equivalent nodes

15: add s to bucket-a[v] s.t. (s[a] =v or (s[a] =t and R[t] =v)) »
v is the minimized representation of ¢;

16: add bucket-a[v] to nonempty list, if not added yet

17: delete bucket U from the nonempty list

18: create new list R or clear the old one, if exists.

19: for bucket U in the nonempty list do > merge equivalent nodes

20: let v be any s €¢ U

21: for s €U do

22: add (s,v> to R > mark duplicate nodes by their new equivalent

23: clear lists and vectors except R

24: delete unreachable nodes

If SeqDDT Ar with a single root node r encodes a finite language Y C X*, the
equivalent RNFA T'=(Q, %, 4, Q,Qr) is built as follows. Each nonterminal node g of Ap
corresponds to a state ¢ € @); terminal node 1 of Ap corresponds to a new state 1 € @,
and F' = {1}; finally, Q; = {r} (note that, if » = 0, we also must add r to Q). The
transition function ¢ : @ x ¥ U {e} — @ is such that, for every edge ¢g[a] = p in Ap with
a € ¥ U {e}, there is a corresponding transition d(q,a) = p. Thus, in particular, if » =0,

then T'= ({0}, %,0,{0},{1}), and the encoded language is Y = (), while, if Ay =1, then
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Figure 2.6: Example of quadratic growth when translating SeqDDB into SeqDDT.

T=({1},%,0,{1},{1}) and the encoded language is J = {€}.

From the conversion process, it is easy to see that the number of transitions in
the resulting DFA equals the number of edges in the equivalent SeqDDB excluding e-edges.
Hence, we can define the DFA size to be equal to the number of transitions plus the number
of final states excluding the one corresponding to terminal 1, |M| = |[§| + |F| — 1. On the
other hand, since the number of transitions in the resulting RNFA equal the number of
edges in SeqDDN minus lengths()), we can define the size of an RNFA to be equals to the

number of transitions plus the number of initial states, |[N| = 6] 4 |Vb].

2.3.3 SeqDD Compactness Comparison by Means of Finite Automata

To study the relative compactness of canonical SeqDDs, we first discussed bounds
on the number of states for equivalent DFAs and RNFAs; these are trivially reflected in sim-
ilar bounds for SeqDDB’s and SeqDDT’s. To obtain bounds on the number of transitions,
one could just multiply the state bounds by the alphabet size, but we are really interested
in the actual number of edges for equivalent SeqDDs, thus partial FAs. This section shows

that bounds similar to those for states hold also for edges.
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Theorem 8 Given a DFA M = (Q,%,0p,qo, F') with n states encoding a finite language

Y C ¥, an equivalent minimized RNFA N has O(n?) states.

Proof. For each state ¢ € Q and k = 0, ..., height(), let L(q, k) = L(g) N X¥. Then, we

build an equivalent RNFA N with states organized by level:
e Level 0 of the RNFA contains a single accepting state f.
e Level k contains a state (g,k) for each nonempty L(q, k).
e The initial state of N is {go,max lengths())).
e The transition function d of N satisfies

— For each state (¢,k) with £ > 0 in IV and for each a € X:
— For each state (¢,k) in N, let h be the largest integer less than k& such that state

(q,h) exists in N; if such state exists, then (q,h) € dn((g,k),¢€).

Note that the resulting RNFA might not be minimized, in the sense that it is
possible that (g,k) and (p,k) encode the same language, in which case they should be
merged. In any case, however, the number of states of the RNFA is at most equal to the
number of states of the DFA times the maximum length of a string in )/, which, again, is at
most equal to the number of states. Thus the number of RNFA states is at most quadratic
the number of DFA states. As the two automata obviously accept the same language ),

the proof is complete. m

To show that the growth of Theorem [8 is indeed possible, consider the family of
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Figure 2.7: Example of exponential growth when translating SeqDDT into SeqDDB.

languages G = {Gi : k € N} over {a,b}. Let Gy = {a*bF, a*b*~1 ... aFb,a"}, so that
||Gk|| = 3(k + 1)k/2. Then, the SeqDDT A% encoding Gy, contains k? + 3k edges, while the

SeqDDB A% encoding Gy contains 3k edges (see Figure .

Theorem 9 Given a minimized RNFA N with n states encoding a finite language Y C 3%,

an equivalent minimized DFA has at most O(2") states.

Proof. The proof is immediate given the well known fact that an NFA-to-DFA conversion

may result in an exponential increase in the number of states. m

Since RNFAs are a restricted form of NFAs, however, one may wonder whether an
exponential growth can actually occur. To show that this is the case, consider the family of
languages {Fy : k € N} with Fi, ={zay : z,y € {a,b}*,|z| <k, |y|=Fk}. Then, the SeqDDT
Al% encoding Gy, contains 7k — 1 edges while the SeqDDB A% encoding G, contains (2%)
edges (see Figure . This is similar to the well-known construction that demonstrates

the proof of Theorem [9]
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Figure 2.8: The family of languages demonstrating Theorem

Theorem 10 There exists a family of finite languages G = {Gy, : k € N} over {a,b} such
that the number of edges in the SeqDDN Aﬂ“\, encoding Gy is O(k?) while the number of edges

in the SeqDDB A% encoding Gy, is O(k).

Proof. We exhibit such a family. Let Gy = {a¥b¥,a*b*=1 ... [aFb,a*}, so that ||Gy|| =
3(k + 1)k/2. Then, the SeqDDN A%, encoding G, contains k2 + 3k + 1 edges while the

SeqDDB A% encoding Gy, contains 3k edges (see Figure . [

Theorem 11 There exists a family of finite languages F = {Fy : k € N} over {a,b} such
that the number of edges in the SeqDDN Alfv encoding any Fyi, is O(k) while the number of

edges in the SeqDDB A% encoding Fy, is O(2).

Proof. Again, we exhibit such a family. Let F = {zay : z,y € {a,b}*, |z| < k,|y| = k}.
Then, the SeqDDN A?V encoding Gy contains 5k + 2 edges while the SeqDDB A% encoding

Gr, contains O(2%) edges (see Figure 2.9). =
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Fo ={xay : z,y € {a,b}*, |z] < 2,|y| = 2}.

Figure 2.9: The family of languages demonstrating Theorem
2.3.4 Summary

We showed in Theorem [5| that SeqDDTs and SeqDDNs are similar is size and
structure. Next, we selected SeqDDNs to compare their compactness with SeqDDBs. It
follows from Theorems [§ and [9] that there is no winner between SeqDDBs and SeqDDNS.
Rather, SeqDDBs are more compact for certain languages and SeqDDNs are more compact
for others. Thus, we need to design algorithms for both. The selection between the two

canonical forms is left to the user, depending on the language to be encoded.
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2.4 Algorithms on SeqDDs

We consider two types of algorithms: set manipulation algorithms and substring
manipulation algorithms. Those of the first type take two or more canonical SeqDDs with
the same canonicity rule and perform set operations such as union or intersection. Those
of the second type input a canonical SeqDD and a string, and select strings satisfying a
criterion for matching a substring, changing a substring into another, or shorten or lengthen
a string.

As with all decision diagram algorithms, we adopt a recursive style. SeqDD nodes
are stored in a unique table to ensure canonicity. An operation cache ensures efficiency by
virtually eliminating repeated computations. Each of the following set manipulation algo-
rithms has been developed for SeqDDB and SeqDDN representations: union, intersection,
set difference, symmetric set difference, and concatenation. For instance, the Intersection
algorithm for two SeqDDB’s traverses them top-down and builds the resulting SeqDDB
bottom-up (see the pseudo-code in Figure . SeqDDN set manipulation algorithms can
be considered as shared MDD algorithms, since a SeqDDN is organized by the length of the
strings encoded.

Various string manipulations can be performed. For example, the classical mem-

bership problem can be solved by a single trace, no longer than the query size + 1, starting
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Algorithm 2.2 Intersection operation on SeqDDBs.

1:
2
3
4
5:
6
7
8
9

10:

11:
12:
13:
14:

15:
16:

17:
18:
19:
20:
21:

function INTERSECTION( p : SeqDDB, ¢ : SeqDDB)

declare local SeqDDB r
declare local integer count
if p=0org=0 then return 0 > deal with the base cases
if p = ¢ then return p
if p=1 then
if g[¢] =1 then return p
else return 0
if ¢ =1 then return Intersection(q,p)

if Cache contains ( Intersection, {p,q} : r) then return r

count < 0

for a € ¥ do > Otherwise, perform Intersection for each index a € X
rla] < Intersection(pla], ¢[a])
if r[a] = 0 then count < count + 1

if count = |X| then r + 0

if p[E] =1 and q[e] =1 then > deal with € case
if r=0orr=1thenr+1
else rle] « 1

UniqueT ableInsert(r)

Cache < ( Intersection, {p,q} :r)
return r

from the root and ending in either terminal 1 or 0. Set manipulation algorithms can also

become handy in performing string manipulations; for instance, the membership problem

is solved by a set intersection, and string replacement can be solved using a combination

of set difference, intersection, and union. However, if we want to perform substring ma-

nipulations, the use of set manipulation algorithms becomes inefficient, hence we developed

specific substring manipulation algorithms.

The main advantage of using SeqDDs for substring manipulation lies in the ability

to search or modify a set of strings at once, thanks to node sharing and memoization. For

example, in a SeqDDB, replacing the first occurrence of a substring ¢ with ¢’ is done once

for all strings sharing a prefix that contains t. Moreover, a shared suffix is processed the
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Algorithm 2.3 Union operation on SeqDDBs

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

14:

15:
16:
17:
18:

19:
20:

21:
22:
23:

function UNION( p : SeqDDB, ¢ : SeqDDB)

declare local SeqDDB r
declare local integer count > deal with the base cases
if p = 0 then return q
if ¢ =0 or p = g then return p
if p=1 then
if ¢le] = 1 then return ¢
else
T NEWNODE(q) > create a node r equals to ¢
rle] 1
r <= UNIQUETABLEINSERT(7)
return r
if ¢ = 1 then return UNION(q, p)

if Cache contains ( Union, {p,q} :r) then return r

count < 0

for a € S do > Otherwise, perform Union for each index a € S
rla] <= UNION(plal, qa])
if r[a] = 0 then count < count + 1

if count = |X| then r < 0

if p[E] =1or q[e} =1 then T'[E] —1 > deal with € case

UNIQUETABLEINSERT(7)

Cache + ( Union, {p,q} : )

return r

first time we explore it; for other strings sharing that suffix the algorithm simply checks the

operation cache for the result. A universal algorithm replace can replace, insert, or delete

a specific substring: replacing € by a string ¢ # € performs an insertion, while replacing ¢

by € performs a deletion. Of course, this can be refined by additionally providing to the

algorithm specific substrings that must be found before and after the replacement location.
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Algorithm 2.4 Difference operation on SeqDDBs

1: function DIFFERENCE( p : SeqDDB, ¢ : SeqDDB)

2: declare local SeqDDB r

3 declare local integer count > deal with the base cases.

4 if p=0or ¢ =0 then return p

5: if p = ¢ then return 0

6 if p =1 then

7 if g[¢] =1 then return 0

8 else return p

9: if ¢ = 0 then return p

10: if ple] = 0 then return p

11: else r + NEWNODE(p) > create a node r equals to p
12: rle] «+ 0

13: r <= UNIQUETABLEINSERT(7)

14: return r

15: if Cache contains ( Difference, p,q : r) then return r

16: count < 0

17: for a € S do > Otherwise, perform Difference for each index a € S
18: rla] < DIFFERENCE(p[al, q[a])

19: if r[a] = 0 then count < count + 1

20: if count = |X| then r <+ 0

21: if ple] =1 and not(q =1 or ¢[¢] = 1) then > deal with € case
22: ifr=0orr=1thenr<«+1

23: else rle] + 1

24: UNIQUETABLEINSERT(7)

25: Cache < ( Difference, p,q: )

26: return r

2.5 Applications of sequence decision diagrams

SeqDDs inherit the symbolic characteristics of decision diagrams, but with the
additional ability to encode a set of strings of different lengths. SeqDDs are useful for

applications that need to store and manipulate large sets of strings.
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Algorithm 2.5 Symmetric Difference operation on SeqDDBs

1: function DIFFERENCE( p : SeqDDB, ¢ : SeqDDB)
2: declare local SeqDDB r
3 declare local integer count > deal with the base cases.
4 if p = 0 then return q
5: if ¢ = 0 then return p
6 if p = ¢ then return 0
7 if p=1 then
8 if q[e] = 0 then return ¢
9: T NEWNODE(q) > create a node r equals to ¢
10: r[e] < 0
11: UNIQUETABLEINSERT(7)
12: return r
13: if ¢ =1 then return XoR(q,p)
14 if Cache contains ( XOR, {p,q} : r) then return r
15: count < 0
16: for a € S do > Otherwise, perform Xor for each index a € S
17: rla] < XoOR(pl[al, q[a])
18: if r[a] = 0 then count < count + 1
19: if count = |X| then r < 0
20: if (ple] =1 and not(q =1 or g[e] = 1)) or (¢[e] = 1 and not(p = 1 or p[e] = 1))
then > deal with ¢ case
21: ifr=0orr=1thenr+1
22: else r[e] + 1
23: UNIQUETABLEINSERT(7)
24: Cache < ( XOR, {p,q} : r)
25: return r
2.5.1 Probabilistic witness generation

Probabilistic model checking aims to verify whether a probabilistic model satisfies

a certain property [46]. We consider discrete states probabilistic models, namely, discrete-

time Markov chains (DTMCs). Formally, a DTMC is defined by a 4-tuple (Q, qo, P, L)

where,

e () is a finite set of states.
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Algorithm 2.6 Concatenation operation on SeqDDBs

1: function CONCATENATE( p : SeqDDB, ¢ : SeqDDB)

2: declare local SeqDDB r

3 declare local integer count > deal with the base cases.
4 if p=0or ¢ =0 then return 0

5: if p =1 then return ¢

6 if ¢ =1 then return p

7 if Cache contains ( Concatenate, p,q : r) then return r

8 count < 0

9: for a € S do > Otherwise, perform Concatenate for each index i € S
10: rla] <~ CONCATENATE(p[a], q)

11: if r[a] = 0 then count < count + 1

12: if count = |X| then r < 0

13: if ple] =1 then

14: rle] <+ 0

15: r < Union(r,q)

16: UNIQUETABLEINSERT(7)

17: Cache < ( Concatenate, p,q : 1)

18: return r

e ¢y € () is a start state.
e P:Q xQ —[0,1] is a stochastic matrix.

o L:Qx — 247 is a labeling function, where AP is a set of atomic propositions.

DTMCs admit probabilistic choices to resolve race conditions, which arise when multiple
events are enabled and ready to fire; in this case, which event fires next is determined by
a probabilistic choice. Moreover, DTMCs inherits the Markovian property, also known as
the memoryless property, where the next state after a state transition only depends on the
current state.

Probabilistic Computational Tree Logic(PCTL) is a variation of the well known
CTL formulas where path quantifiers are replaced by a probability operator of the form

Pop(p), where ¢ € {<, <,>,>} is a relational operator, p € [0, 1] is a probability, and ¢ is
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Algorithm 2.7 Union operation on SeqDDNs

1: function UNION( p : SeqDDN;, ¢ : SeqDDN)

2 declare local SeqDDN r

3 for | € LENGTHS(p) U LENGTHS(q) do

4 if [ ¢ LENGTHS(p) then r[l] « ql]

5 else if | ¢ LENGTHS(q) then r[l] < p[l]

6 else r[l] + MDDUNION(L, p[l], q[l])

7 UNIQUETABLEINSERT(7)

8 return r

1: function MDDUNION( : Ivl, p : Mdd, ¢ : Mdd)

2: declare local Mdd m > deal with the base cases.
3 if p =0 then return ¢

4 if =0 or ¢ = p then return p

5: if Cache contains ( Union, {p,q} : m) then return m
6 forae S do

7 m < MDDUNION(k-1, p[al, q[a])

8 UniqueTableInsert(k,m)

9 Cache < ( Union, {p,q} : m)

10: return m

a path formula of the form ¢ <% v, where < € {X,U,F,G} is a CTL temporal operator
and t € NU {oo} denotes a bound on the number of transitions, so that t = oo corresponds
to unbounded model checking.

In CTL model checking, a witness to an existential formula, or a counterexample
to a universal formula, is simply a path in the state space of the system corresponding to
finite and legal evolution of the system starting from an initial state. In PCTL (CSL) model
checking, however, the system is modeled by a discrete- (continuous)-time Markov chain
and a “probabilistic witness” to a formula is a finite set of finite paths such that the sum
of their probabilities exceeds some bound. For example, to disprove that the probability of
reaching a deadlock is less than 10™%, we need to show enough paths from the initial state

to a deadlock state so that their cumulative probability is at least 1075,
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Algorithm 2.8 Intersection operation on SeqDDNs

1: function INTERSECTION( p : SeqDDN, ¢ : SeqDDN)
2 declare local SeqDDN r

3 for | € LENGTHS(p) N LENGTHS(q) do

4: r[l] + MDDINTERSECTION(], p[l], q[l])

5 UNIQUETABLEINSERT(7)

6 return r

: function MDDINTERSECTION(k : Ivl, p : Mdd, ¢ : Mdd)
: declare local Mdd m > deal with the base cases.
if p =1 then return q

if g=1 or ¢ = p then return p

for a € S do
m < MDDINTERSECTION(k-1, p[a], qla])

UNIQUETABLEINSERT(k, m)
Cache < ( Intersection, {p,q} : m)
10: return m

1
2
3
4
5: if Cache contains ( Intersection, {p,q} : m) then return m
6
7
3
9

In practice, such a set of paths might be quite large and will usually have paths of
different lengths. An experiment conducted by [36], shows that counterexamples can reach
double exponential growth in size with respect to the number of input variables. One way to
store counterexamples succinctly is via regular expressions [23][36]. In this case, the proof of
correctness is achieved by recursive evaluation of the resulting regular expression to compute
its probability. However, converting a counterexample into a minimized regular expression
is a tedious process that requires converting the underlying DTMC model into a DFA and
incrementally eliminating variables to generate the corresponding regular expression. In
fact, the order of variable elimination affects the size of the resulting regular expression
and heuristics are needed to select a good ordering that will result in a succinct regular
expression.

Now, let us consider how counterexamples are generated in the first place. Aljazzar
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Algorithm 2.9 Difference operation on SeqDDNs

1: function DIFFERENCE( p : SeqDDN, ¢ : SeqDDN)
2 declare local SeqDDN r

3 for | € LENGTHS(p) do

4: if [ ¢ LENGTHS(q) then r[l] < p[l]

5 else r[l] +~ MDDDIFFERENCE(], p[l], q[l])

6 UNIQUETABLEINSERT(7)
7 return r

1: function MDDDIFFERENCE(K : Ivl, p : Mdd, ¢ : Mdd)

2: declare local Mdd m > deal with the base cases
3 if p=0 or ¢ =0 then return p

4 if p = g then return 0

5: if Cache contains ( Difference, p,q : m) then return m

6 for a € S do

7 m <— DIFFERENCE(k — 1, pa], g[a])

8 UNIQUETABLEINSERT(k, m)

9 Cache < ( Difference, p,q : m)

10: return m

et al. in [3, 4] used A.I. techniques such as Best First Search (BFS) and Z* a specialized
directed search algorithm, to incrementally generate a counterexample that consists of the
most probable paths. With the same goal of generating a smallest, most expressive coun-
terexample and under the assumption that the states refuting a given property are already
known, Han et al. [37,136], showed that the strongest evidences could be generated via a sim-
ple single source shortest path algorithm such as Dijkstra’s algorithm for unbounded model
checking and by using either the Bellman-Ford or Viterbi algorithms for bounded model
checking. The strongest evidence is usually not enough to serve as a counterexample. The
next step is to construct a smallest counterexample by exploiting a recursive enumeration
algorithm for which the number of the needed paths to refute the property is determined

on the fly. All the mentioned algorithms are explicit, therefore do not scale well for large
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Algorithm 2.10 Symmetric Difference operation on SeqDDNs

1: function XoRr( p: SeqDDN, ¢ : SeqDDN)

2 declare local SeqDDN r

3 for | € LENGTHS(p) U LENGTHS(q) do

4 if [ ¢ LENGTHS(p) then r[l] + ql]

5: else if | ¢ LENGTHS(q) then r[l] < p[l]
6 else r[l] «+ MDDXOR(], p[l], q[l])

7 UNIQUETABLEINSERT(7)
8 return r

: function MDDXOR(k : Ivl, p: Mdd, ¢ : Mdd)
: declare local Mdd m
if p=20 then return q > deal with the base cases

if ¢ = 0 then return p

if Cache contains ( XOR, {p,q} : m) then return m

for a € § do
m < MDDXOR(k — 1, pla], q[a])
: UNIQUETABLEINSERT(k, m)
10: Cache < ( XOR, {p,q} :m)
11: return m

1
2
3
4
5: if p = ¢ then return 0
6
7
8
9

models. The need for a symbolic (e.g., decision-diagram based) approach for probabilistic

counterexample generation remains a challenge that we plan to address in future work.

2.5.2 Biological sequence analysis

Indexing

Advancements in sequencing instruments and lower cost associated with sequenc-
ing DNA, have resulted in an exponential increase in the amount of sequencing data and
the number of genomes stored in public databases. According to [79], genomic databases
are doubling in size every 15 to 16 months. Due to the size of these dataset, computation

is a bottleneck in the analysis pipeline.

41



Algorithm 2.11 Concatenation operation on SeqDDNs

1: function CONCATENATE( p : SeqDDN, ¢ : SeqDDN)
2 declare local SeqDDN r

3 declare local mdd m

4 for k € LENGTHS(p) do

5: for | € LENGTHS(q) do

6 m < MDDCONCATENATE(p[k], q[l])

7 r[k + 1] < MDDUNION(k+1, r[k+1], m)

8 UNIQUETABLEINSERT(7)

9 return r

: function MDDCONCATENATE(k : 1vl, p : Mdd, ¢ : Mdd)
: declare local m > deal with the base cases
if p=0 or ¢ =0 then return 0

if p =1 then return q

if Cache contains ( Concatenate, p,q : m) then return m

1

2

3

4

5: if ¢ =1 then return p
6

7 for a € S do

8 mla] <~ MDDCONCATENATE(k-1,p[a],q)
9: UNIQUETABLEINSERT(k, m)

10: Cache < ( Concatenate, p,q : m)

11: return m

A memory-efficient representation of these dataset that allows for efficient data
manipulation is needed. For instance, the suffiz tree [53] is a memory-efficient data structure
in which common prefixes are represented in same paths along the tree. The suffix tree be
built in linear time [73], and allows one to answer to queries in time proportional to the size
of the pattern. Although the space required by the suffix tree is linear in the size of the
text, the number of bytes requires is 20-25 times the size of the input DNA string, making
the suffix impractical for large eukaryotic genomes.

Another indexing structure is the directed acyclic word graph (DAWGSs), which
can be built online in linear time [I0]. A DAWG is the DFA that recognizes the set of

all suffixes of a given string. By making all its states accepting, DAWG recognizes the
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set of all subwords of the encoded string. DAWG achieves similar query time complexity
as suffix trees with lower memory cost due to the fact that shared suffixes use common
paths in the DAWG. However, this comes at the cost of losing location information. While
insertion of a new word into an existing DAWG can be done in linear time in the size of
the data structure [67], set manipulation algorithms are not done efficiently. Since DAWGs
are DFAs, the result of set manipulation is not guaranteed to be minimal; therefore, an
additional minimization step should be performed separately. In general, substring indices
data structures lack efficient set manipulation algorithms [24].

Binary decision diagrams are instead designed for efficient set manipulation al-
gorithms. As mentioned earlier in Section 1.3, SeqBDDs inherit BDDs and ZBDDs set
manipulation algorithms, yet still have the ability to store any finite language of finite
strings; where a sequence is represented as a bit vector, each bit represents an alphabet
element per position. This representation requires lg|¥| boolean variables per position,
given |X| > 1.

The authors of [64] adapt the Set Decision Diagrams (SDD) introduced in [20],
to overcome the drawback of binary representation used by SeqBDDs and achieve more
compact storage for large databases of biological sequences. The goal is to maximize sim-
ilarities between encoded sequences to maximize sharing and minimize branching. This is
done by global reordering of each sequence in the set to be encoded. Further reduction is
achieved by swapping, merging, and concatenating nodes to reduce the number of nodes
and edges in the resulting diagram. To ensure canonicity, these reduction rules are applied

iteratively in a predefined order. Their results show a 90% improvement, in the size of their
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data structure over SeqBDD in terms of the number of nodes. SeqBDDs encode bits, while
SDDs encode characters. However, this comparison ignores the number of edges and the
size of data associated with each edge. While the number of nodes and edges might be
smaller in the proposed data structure, the information associated with the edges is more
complicated since it consists of symbols, sequences, or sets. Moreover, since the sequences
are reordered, the permutation needs to be stored to recover the original data.

We have previously introduced SeqDDBs and SeqDDNs, which are multi-valued
(unlike SeqBDDs) yet still maintain a simpler structure than SDDs. Simple structures
promote a more comprehensible development of complex functions. In terms of SeqDDs
compactness in regards to sequence indexing, we will start by discussing SeqDDBs. When
encoding a set of suffixes or a set of subwords of a string w, the compactness of SeqDDBs is
comparable to that of DAWGs. Recall that a DAWG is defined as a minimal partial DFA
and the size of a SeqDDB, in terms of the number of edges, equals the size of a minimized
partial DFA plus the number of accepting states. Given the fact that the size of the smallest
automaton accepting the set of all suffixes of a string w is linear in the size of w [22]; more
specifically, the number of transition is at most 3n — 4, where n = |w| > 3 [21], we can
conclude that the size of a SeqDDB encoding w’s suffixes is bounded by 4n — 3, where the
number of accepting states is at most n + 1. As for the size of a SeqDDB encoding w’s
subwords, Blumer et al. proved in [I0] that a partial minimized DFA recognizing the set
of all subwords consists of 2n — 2 states and 3n — 4 transitions; therefore, the size of a
SeqDDB encoding w’s subwords equals 5n — 6, given that all states are accepting. In the

case of encoding a set of prefixes, the size equals 2n (refer to the example in Figure[2.10|(a)).
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Encoded set ‘ SeqDDB size ‘ SeqDDN size

Suffixes 4n — 3 2n+1
Subwords 5n — 6 2(n® +3n? + 8n + 6)
Prefixes 2n n?+1

|

Table 2.1: Summary of the upper bound size of a SeqDDB/N encoding a set of all prefixes,
suffixes, or subwords of a certain string of size n.

On the other hand, the size of a SeqDDN encoding a set of suffixes is 2n + 1, where the
SeqDDN will consist of a MDD, with one node per level, of size n and n+ 1 handles pointing
to the corresponding suffix (refer to an example in Figure 2.10(b)). A SegDDN encoding
a set of prefixes is of size up to n? + 1, while the size of a SegDDN encoding the set of
substrings, assuming no nodes are shared, equals n + 1 + anl j(n —j+ 1), which simplifies
j=

to é(n?’ + 3n? + 8n + 6). In practice, the size is often smaller due to suffix sharing (Table
shows a summary of these results).

Using SeqDDBs and SeqDDNs for indexing sequences allows for efficient set ma-
nipulations. Moreover, the membership problem can be solved in a time proportional to

the size of the query. Future work will employ edge-valued SeqDDs to preserve information

about substring locations.

Sequence alignment

In molecular biology, similar DNA or protein sequences tend to carry the same
function. Sequence similarity allows one to detect homologies and to predict the function-
ality of novel genes or protein sequences. There are three kinds of sequence alignments:

global, local, and semi-global.
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(a) Prefiz(w) (b) Suffiz(w)

Figure 2.10: Example shows a SeqDDB encoding the set of all prefixes and a SeqDDN
encoding the set of all suffixes of w = “actcgg”.

An alignment between two sequences is formed by inserting gaps, such that the
two sequences becomes of the same length. The similarity between two aligned sequences is
measured by the number of matches, mismatches, and gaps. A global alignment between two
sequences aims produce an alignment with the highest similarity score. A local alignment
between two sequences is a pair of aligned substrings with the highest similarity score among
all other substring pairs of the two sequences. A semi-global alignment is a variation of
global alignment that do not penalize gaps at the end of any of the two sequences.

Global alignment is used to check if two sequences are entirely homologous, i.e.,
entirely aligned. Local alignment is used to discover conserved regions. Semi-global align-
ment is usually used in the context of shotgun genome assembly, where the ends of the
sequences are matched.

The alignment between two sequences is called pairwise alignment; if it is carried

out among multiple sequences, it is called multiple sequence alignment [38|, [79]. Next, we

46



show how we can take advantage of the SeqBDDs and their variants to solve two sequence
alignment problems.

First, we consider the case of a pairwise local/semi-global alignment under the
assumption that there is a single gap in the pattern that is known a priori. Given a query
of the form “sxv”, where * stands for zero or more extra characters, and a SeqBDD encoding
a set of sequences, the single wild card query method proposed in [5] can answer such a query
in time linear in the size of the query. The algorithm returns the intersection of sequences
having prefix s with the reverse of the sequences having a prefix v-reversed. However, the
algorithm does not take into account the time and memory complexity associated with
creating a reversed SeqBDD. This can be done efficiently by incrementally constructing a
reversed SeqBDD in time linear to the size of the original SeqBDD by visiting each node in
the topological ordering of the nodes. Since their fast method to build the reversed SeqBDD
requires an intermediate SeqBDD (representing visited paths) attached to each node of the
original SeqBDD, the memory requirement could be prohibitive for large SeqBDDs.

The more general case of multiple local sequence alignment is related to the fre-
quent subsequence mining problem addressed by [49]. In this chapter, where SeqBDD were
first introduced, a weighted variation was required to accomplish the mining process. The
purpose is to mine subsequences appear at frequency exceed a predefined minimum sup-
port. Given a weighted SeqBDD p encoding arbitrary set of finite strings, they construct
z-conditional databases, each as a SeqBDD, exploiting decision diagrams techniques, such
as a unique table to share nodes among different SeqBDDs and operation cache for efficient

manipulation.
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Biclustering for gene-expression analysis

Conventional clustering approaches compose coherent clusters of objects that are
grouped according to their weights regarding some attributes. In biclustering techniques,
however, objects and attributes are symmetric and the goal shift to clustering them simul-
taneously [35]. Biclustering gene expression aims to identify groups of genes that exhibit
similar reactions to different stimuli [82].

We consider the ZCluster algorithm [83], which uses symbolic manipulation to
discover all biclusters in a given microarray matrix without the need for exhaustive enu-
meration, thus, coping with the computational challenges of an NP-hard problem [82, [17].
The ZCluster algorithm inherits the pScore system from the PCluster algorithm to score
sub-matrices and generate pairwise maximal biclusters, which are divided into two types:
horizonal seeds for every two genes to show a maximal set of experiments to which they
responded similarly, and wertical seeds, analogously, for every two experiment conditions.
Considering that the number of experiments is much smaller than the number of genes,
usually 10% to 10* genes in a microarray and fewer than 100 experiments [17], ZCluster
starts with generating the vertical seeds and represents them as ZBDDs, then generates the
corresponding horizontal seeds represented as a trie, to generate the final biclusters.

In [82], Yoon et al. represented both vertical and horizontal seeds as ZBDDs. In
their follow-up paper [83] they represented horizontal seeds as a set of strings of different
length and encode them using trie. As future work, our goal is to explore the benefits of
storing both vertical and horizontal seeds as SeqDDs, and compare the ZCluster algorithm

efficiency with different combinations of representations.
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All-pair suffix-prefix overlap

Detecting suffix prefix overlap is a vital step in genome assembly, especially for
third generation sequencing where reads are long (but noisy). According to [34, 33], the

all-pair suffiz-prefix overlap problem is defined as follows.

Definition 8 Given two strings S; and S;, any suffix of S; that matches a prefiz of S;
is called a suffiz-prefic match of S;,Sj. Given a set of strings = {S1,S2,---, Sk}, all-pair
suffiz-prefiz problem is the problem of finding, for each ordered pair (S;,S;j), the longest

suffix-prefiz match.

To find all-pair suffix-prefix overlaps in DNA sequences using SeqDDB, we build
two shared SeqDDBs such that for a given finite set of DNA sequences S = {s1, s2, - , Sk},
let S be a set composed of reverse complements Vs; € S. And let u and v be two canonical
shared SeqDDBs, where u encodes S U S and v encodes suffiz.(S). And let p and ¢ be
two canonical SeqDDBs, where p encodes s; U $; and q encodes suffir-,(s;), for all s; € S.
Algorithm introduces a set operation SUFFIX_PREFIX_OVERLAP to find all pair suffix-
prefix overlaps of length > 7.

The algorithm was tested on a set of simulated reads that for chromosome 1 of
Saccharomyces cerevisiae (yeast) genome (which is approximately 230 kbp). Simulated
reads were generated using ART [40], which generated 3,068 reads of length 150 bp each
(about 2x sequencing depth). For 7 = 33, the result contained 1,992 overlaps.

To verify that detected overlaps are indeed the longest overlap, we conducted the
following test; assume that an overlap of length y is detected between a pair of sequences

(si, s5), where |s;| = x and |s;| = z, then the test follows one of the three cases below.
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true  if |overlap| = min(|sil,|s;|),

LONGEST OVERLAP =4 true if suffix_, (s;) # prefiz(s;),

false  otherwise
Note that our test detects false positives, while false negatives are not detected.

Running the test on out dataset shows that all detected overlaps are the longest.

2.6 Conclusion

We introduced SeqDDs, a multi-valued sequence decision diagrams, which can be
perceived as MDDs with no variable ordering but are still, nevertheless, canonical. In our
setting the notion of levels is not applicable, hence our representation is not sensitive to
variable ordering, therefore the “size explosion” depends merely on the encoded set. SeqDDs
are ideal for encoding a finite set of strings of arbitrary lengths. To ensure canonicity, we
proposed two canonical versions, with e restricted towards the bottom or with e restricted
towards the top. The latter version is analogous to a shared MDD, which we adapt into
what we called SeqDDN. The compactness of our representations were studied in relation
to finite automata. The results showed that there is no winner between the two versions;
therefore, we proposed algorithms for both SeqDDBs and SeqDDNs. SeqDDs are useful for
applications that require compact storage and efficient manipulation of large sets of strings

with high sharing rate.
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Algorithm 2.12 Suffix-Prefix overlap

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

13:

10:
11:
12:
13:

14:
15:
16:
17:

18:

19:
20:
21:

function ALLPAIRSUFFIXPREFIXOVERLAP( u : shared SeqDDB, v : shared SeqDDB)

declare local int len
for s; € S do
q < U[S —j] > SeqDDB q points to the root of SeqDDB encoding suffix- . .s;
for s; € S do -
if s; = s; then
continue
p < u[s — Z] > SeqDDB p point to the root of SeqDDB encoding s; U S;
len <0
len < SUFFIXPREFIXOVERLAP(p,q, len)
if len > 0 then
output overlap info

return

: function SUFFIXPREFIXOVERLAP( p : SeqDDB, ¢ : SeqDDB, len : int)

declare local SeqDDB r

declare local int count

if pZO or q:O then return 0 > base case: empty set

if g=1 then return 1

if p=1 then > base case:e
if g[e]=1 then return 1
else return 0

if Cache contains (SefPrefOverlap, (p,q):r) then return r > check if already

computed

count <— 0 > initialize counter
for a € ¥ do > Compute by recursively call SefPrefOverlap for each a € X
rla] <~ SEFPREFOVERLAP(plal, ¢[a])
if r[a]=0 then count + count + 1 > count edges pointing to terminal O
len < len+1
if gle] =1 and ( ple] =1 or Veex pla] # 0 < ¢la] = 0) then
if count = |¥| then return 1 > e-node
else rle] =1

else if count=|X| then r < 0 len <0 > empty-node
UmqueTableInsert(r) > insert to unique table to ensure canonicity
Cache «+ < SefPrevaerlap, (p, q):T) > cache result to avoid re-computation
return r
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Chapter 3

A Comparative Evaluation of

Assembly Reconciliation Tools

While the number of sequenced genome keeps increasing, the majority of eukaryotic
genomes are unfinished due to the algorithmic challenges of assembling them. A variety
of assembly and scaffolding tools are available, but it is not always obvious which tool or
parameters to use for a specific genome size and complexity. As a consequence, it is common
practice to produce multiple assemblies using different assemblers/parameters, then select
the best one for public release. A more compelling approach would allow one to merge
multiple assemblies with the intent to produce a higher quality consensus assembly, which
is the objective of assembly reconciliation.

Several assembly reconciliation tools have been proposed in the literature, but their
strengths and weaknesses have never been compared on a common dataset. We fill this need

with the work presented in this chapter, in which we report on an extensive comparative
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evaluation of CISA, GAA, GAM_NGS, GARM, Metassembler, MIX, and ZORRO. Specif-
ically, we evaluate contiguity, correctness, coverage, and duplication ratio of the merged
assembly compared to the individual assemblies provided in input.

None of the tools we tested consistently improved the quality of the input GAGE
and synthetic assemblies. Our experiments show an increase in contiguity in the consensus
assembly only if the original assemblies already have high quality. In terms of correctness,
the quality of the results depends on the specific tool, as well as on the quality and the
ranking of the input assemblies. In general, the number of misassemblies range from being
comparable to the best of the input assembly to being comparable to the worst of the input

assembly.

3.1 Background

Despite the prodigious throughput of the sequencing instruments currently on
the market, the assembly problem remains very challenging, mainly due to the repetitive
content of large genomes, uneven sequencing coverage, and the presence of (non-uniform)
sequencing errors and chimeric reads. The third generation of sequencing technology, e.g.,
Pacific Biosciences [27] and Oxford Nanopore [19], offers very long reads at a higher cost
per base, but sequencing error rate is much higher.

A significant number of de novo genome assemblers are available to the community.
The choice of the most appropriate assembler depends on the size and complexity (repeat
content, ploidy, etc.) of the genome to be assembled, the type of sequencing technology used

to produce the input reads (e.g., Sanger, 454, Illumina, PacBio, Nanopore, etc.), and the
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availability of paired-end or long-insert mate-pair reads. Each assembler implements slightly
different heuristics to deal with repetitions in the genome, uneven coverage, sequencing
errors and chimeric reads. The final assembly is very rarely entirely finished, with one solid
sequence per chromosome. Instead, the typical output is an unordered/unoriented set of
contiguous regions called contigs. If paired-end or mate-pair reads are available, some of
contigs can be ordered and oriented by anchoring paired-end reads to contigs. In some
cases, the length of the gaps between contigs can be estimated and contigs can be joined
together to create scaffolds.

As said, selecting which assembler to use in order to produce the best quality
assembly is not a trivial task. Assembly competitions such as Genome Assembly Gold-
Standard Evaluation (GAGE) [66] and Assemblathon [I3] have been held to evaluate mul-
tiple assemblers on common data sets. Such comparative evaluations can provide general
guidelines, but there is no systematic way to determine which assembler and what param-
eters settings to use to produce the “best” assembly for a specific genome and a specific
dataset. As a consequence, it is common practice to generate multiple genome assem-
blies from a few different assemblers and/or parameters (e.g., the k-mer size for the de
Bruijn graph), and then try to guess the “best” assembly based on assembly statistics,
spot-checking, homology analysis, etc.

In fact, the notion of “best” assembly is not well defined. Since it is unlikely to
obtain a “perfect” assembly that covers the entire genome with no assembly errors, one has
to decide whether it is more important to maximize contig/scaffold length (at the expense

of possibly introducing more mis-assemblies) or minimize the number of mis-assemblies
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(at the expense of possibly generating shorter contigs/scaffolds). Typically, the quality
assessment for draft assemblies is carried out via statistical measurements and alignment
to a reference genome (if one is available). N50 is a widely used metrics to assess the
contiguity of an assembly, which is defined by the length of the shortest contig for which
longer and equal length contigs cover at least 50% of the assembly. NG50 is similar to
N50 except the metrics relates to the genome size rather than the assembly size. NAS50
and NGA50 are analogous to N50 and NG50 where the contigs are replaced by blocks that
can be aligned to the reference. Correctness is measured by detecting misassemblies such
as mismatches, indels, and misjoins. Misjoins are considered the least desirable type of
misassemblies [72], where loci that are far apart in the genome are improperly joined in the
assembly. Misjoins include inversions, relocations, and translocations. An inversion occurs
when the orientation of a contig is inverted with respect to the reference. A relocation
occurs when a contig is misplaced within the chromosome it belongs to, and a translocation
occurs when a contig is misplaced in a different chromosome.

Assembly reconciliation algorithms attempt to take one step further towards a
finished genome. Rather than arbitrarily try to guess the best assemblies among several
draft assemblies, assembly reconciliation tools offer a compelling alternative. These tools
promise to produce a higher quality consensus assembly by merging two or more draft
assemblies. The main goal of assembly reconciliation algorithms is to enhance contiguity of
the resulting assembly while at the same time, avoid introducing assembly errors. In this
chapter, we carry out the first comprehensive evaluation of assembly reconciliation tools by

measuring the quality of the consensus assembly on several common input datasets with
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different quality attributes.

3.1.1 Assembly reconciliation tools

The concept of assembly reconciliation was first introduced by Zimin et al. [88].
In that work, the authors also introduced an assembly reconciliation tool called RECONCIL-
IATOR, which is no longer maintained (last updated in 2007). Other reconciliation tools in
the literature that are no longer maintained and/or have no documentation were excluded
from our evaluation. We also excluded GAM, because it was superseded by GAM_NGS.
Other tools such as eRGA [74], MAIA [62], and Minimus2 [71] were also not included in our
comparative evaluation because these tools address different problems. Reference-guided
assembly (eRGA and MAIA) and hybrid assembly (Minimus2) are related to the problem of
assembly reconciliation, but not quite the same. The former uses a closely related reference
to assemble the conserved regions of the genome, which reduces the complexity of de novo
assembly to the non-conserved portions. Hybrid assembly allows users to incorporate reads
from different sequencing technologies (e.g., short Illumina reads with long PacBio reads).
MATA has also the ability to merge de novo assemblies if several closely related reference
genomes are available. QuickMerge [16] is a tool that allows users to merge an assembly
obtained from Pacific Bioscience reads with another assembly based on second generation
reads. We excluded QuickMerge from our evaluations due the lack of publicly available
PacBio-based assemblies with a corresponding high quality reference genome that would
allow us to assess the results.

In this work we benchmarked seven assembly reconciliation tools, namely CISA,

GAA, GAM_NGS, GARM, Metassembler, MIX, and ZORRO, which are briefly described
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next. Table|3.1]summarizes the main goals and features of the seven assembly reconciliation
tools evaluated in this study. Several of these algorithms take advantage of compression-
expansion (CE) statistic, which allows them to detect assembly compression (due to an
incorrect deletion) or assembly expansion (due to an incorrect insertion) [88]. In order to
obtain the CE statistics, paired-end or mate-pair reads are mapped to the assembly to be
evaluated. The CE statistics is computed by comparing the distance between the mapped
mates and the expected insert size.

The objective of CISA is to reconcile bacterial genome assemblies [48]. Given
the contigs for each of the input draft assemblies, CISA selects representative contigs (i.e.,
longest contigs) and discards (nearly) contained contigs. CISA then tries to extend repre-
sentative contigs, and detects mis-assembly in the representative contigs by aligning them
to query contigs. Contigs that align to multiple positions are considered misassembled and
another representative contig is selected. Contig with an unaligned portion are split. Fi-
nally, the resulting contigs are iteratively merged. We should note that CISA’s objective is
to merge more than two assemblies, but we have also tested it on two inputs for consistency
with other tools.

Users of GAA have to specify a target and a query assembly [81] where the “target”
assembly is expected to be of higher quality. The objective of GAA is to close gaps in target
assemblies using the query assembly. Query contigs that are not anchored to at least two
contigs target are not utilized.

The input to GAM_NGS is one or more alignments between each library of reads

and each assembly [75]. GAM_NGS first identifies maximal portions of both input assem-
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bly (called blocks) that share the same set of uniquely mapped reads. GAM_NGS then
constructs a weighted undirected graph where each vertex corresponds to a contig, and an
edge connects two contigs if (i) they belong to different assemblies and (ii) they share at
least one block. From this graph, GAM_NGS computes a consistent ordering and orien-
tation of blocks with respect to both input assemblies. Then, GAM_NGS builds another
directed weighted graph (called assembly graph) where each vertex represents a block, and
each edge connects two blocks if they belong to the same contig of at least one of the assem-
blies. After resolving conflicts in the assembly graph, GAM_NGS computes a semi-global
alignment between any two contigs that share at least one block. If two contigs have at
least 95% identity, GAM_NGS “merges” the assemblies by selecting the assembly with the
better compression-expansion statistics.

GARM [55] also manipulates assemblies asymmetrically, but users do not need
to know in advance which one is the better assembly. The tool decides which one is the
“reference” assembly based on a variety of assembly statistics. GARM then (i) aligns
the assemblies to each other to detect overlaps (using nucmer [45]), (ii) removes ambiguous
overlaps and contigs which are (nearly) completely contained in each another, (iii) generates
layout and consensus scores, (iv) merges contigs, (v) orders merged contigs to match the
order and the orientation of the original scaffolds (if scaffolds are available) — if a contig
that is a part of a scaffold is not merged, the contig is placed within the resulting scaffold
in a location that corresponds to the original scaffold and the gap length is recomputed.

Compression-expansion statistics on the two input assemblies are also used in

Metassembler [78]. First, Metassembler uses nucmer [45] to align the two input assemblies;
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the boundaries of these alignments are called break points. For each region between the
break points, one of two assemblies is selected based on its compression-expansion statistics.
Metassembler allows users to input more than two assemblies, but merges them in an
progressive pairwise fashion.

MIX [72] uses a directed weighted graph called extension graph which is annotated
with a variety of weights to represent prefix-suffix overlaps between contigs in the input
assemblies. MIX determines a set of non-overlapping mazimal independent longest paths
on the extension graph to merge contigs. Contigs not included in any path are examined
for duplications, contigs that are contained or nearly contained are removed, and the rest
are added to the assembly. MIX does not performs error correction, but rather focuses on
enhancing contiguity.

ZORRO [6] starts by masking repetitive regions which are identified using k-mer
statistics. Once the repetitive regions are masked, the overlap between the two assemblies is
detected using Minimus [71]. ZORRO then unmasks the repetitive regions and merges the
overlapping contigs. Lastly, ZORRO uses the tool Bambus [63] to order and orient contigs

using paired-end reads.

3.2 Datasets and Experimental Results

Since the quality of the input assemblies is expected to directly affect the quality
of the final merged assembly, we explored the performance of assembly reconciliation tools
under different input quality.

To carry out a comparative evaluation of the seven assembly reconciliation tools

59



Table 3.1: Features of the assembly reconciliation tools evaluated in this study.

CISA GAA GAMNGS GARM Metassembler MIX ZORRO

Inputs

Contigs allowed v v \/[i] v v v v
Scaffolds allowed v il /e v v

Short reads allowed Ve

Paired-end reads allowed Ve v
Mate-pair reads allowed Ve v

Alignments allowed v v

Reads required Ve v v
Reference input assembly required v v

Input assemblies treaded symmetrically v v

Only two input assemblies v v v v
More than two input assemblies v v

Can handle bacterial /small genomes v v v v v v v
Can handle large eukaryotic genomes v v v v v
Goals

To increase assembly contiguity v v v v v v v
To decrease number of assembly errors v v

Methods

Compression-expansion statistics v v v

Scaffolding information v v

Use single reads v

Use paired-end/mate-pair reads v v v v
Can split assembly misjoin v v

Can detect/avoid repetitive regions v v v
Output

Contigs v v v v v v v
Scaffolds »/FI v

“Optional, GAM_NGS requires alignment file.

bScaffolds should be broken into contigs. A gap file and contig naming conveys scaffolding information
‘performs iterative pairwise

dwhen input contains scaffolds

listed above, we used publicly-available assemblies for the GAGE competition [66] and we
created synthetic assemblies of Saccharomyces cerevisiae S288c [6] including structural vari-
ants. The choice of the GAGE assemblies was motivated by the fact that this dataset has
been the most commonly used for assembly reconciliation tools. The authors of GAM_NGS
used this dataset in their experimental results, CISA was tested on assemblies of Staphylo-
coccus aureus and Rhodobacter sphaeroides, and MIX used GAGE_B [52] which includes the

assemblies of Staphylococcus aureus and Rhodobacter sphaeroides. Other assembly reconcil-
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iation tools used the Assemblathon dataset [I3], which was a similar assembly competition
to GAGE.

All assembly reconciliation tools were ran with default parameters, unless other-
wise noted. We explored how other parameter settings affected the experimental results in
section Since some assembly reconciliation tools can take advantage of scaffold in-
formation, we carried out experiments on both contig-based assemblies and scaffold-based
assemblies.

Outputs of assembly reconciliation tools were processed by our scripts, then fed
into Quast [32] (GAGE option activated) to obtain assembly statistics. Quality scores
were also computed using Quast on the input assemblies. We first collected assembly
statistics related to contiguity, namely N50, number of contigs, longest contig, and total
assembly size. By comparing the assemblies to the reference genome we also collected
NGA50, number of misassemblies, the total length of contigs affected by misassemblies, the
number of mismatches and indels between the assembly and the reference, the percentage
of the reference genome covered by the assembly, and the duplication ratio. In addition to
genome-wide analyses, we also studied the ability of these tools to assemble the primary
sequence of annotated genes. Specifically, we computed the fraction of each gene sequence
covered by contigs, for both input and merged assemblies. Details about the procedure
used to compute gene coverage can be found in Subsection A complete report on
these statistics is reported in Tables Here, we only summarize the results using a
graphical representation of the contiguity/correctness tradeoff (see Figures . Input

and output assemblies are represented as points on the scatter plot where the x-coordinate
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Figure 3.1: The performance of assembly reconciliation algorithms is summarized as points
on a 2D scatter-plot, in which the z-axis represents contiguity (NGA50) and the y-axis
represents the number of misassemblies.

represents the contiguity (NGA50), and their y-coordinate is the number of misassemblies.
Figure [3.1] illustrates how to interpret the plots. We want assembly reconciliation tools
to “move” the input points towards the bottom right corner of the plot, i.e., increase the
contiguity and reduce the number of assembly errors.

All experiments were performed on a Linux Ubuntu 12.10 server with a 20 cores
Intel Xeon CPU E5-2690v2 3GHz and 512GB of RAM. Multithreading was used when
available. A detailed analysis of run time, memory consumption, CPU utilization for all
the tools and genomes is reported in Subsection [3.2.7 A companion website http://
reconciliation.cs.ucr.edu/ provides links to the all the datasets and the scripts used

in this study.
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3.2.1 GAGE assemblies

The GAGE competition evaluated eight assemblers (ABySS [70], ALLPATHS-LG
[29], Bambus2 [63], Celera Assembler [60, 57], MaSuRCA [87], SGA [69], SOAPdenovo
[47], and Velvet [85]) on whole-genome shotgun sequence data of four genomes, namely
Staphylococcus aureus (genome size ~2.8 Mbp), Rhodobacter sphaeroides (~=4.6 Mbp), Homo
sapiens’ chromosome 14 (~88 Mbp), and Bombus impatiens (~250 Mbp). Staphylococcus
aureus has one main chromosome and a small plasmid, while Rhodobacter sphaeroides has
two chromosomes and five plasmids. In our experiments we mainly used the first hree
genomes, because at the time of writing Bombus impatiens did not have a high quality
reference genome. We only used the assemblies for Bombus impatiens to determine which
tools would be able to handle large inputs. Out of the 4 x 8 genome-assembler pairs, the
GAGE competition included 27 assemblies (available from http://gage.cbcb.umd.edu).

Running each assembly reconciliation tool on all pairs of assemblies (out of the
27 available) would generate several hundred merged assemblies and it would be difficult
to draw general conclusions. We decided instead to select input assembly pairs based on
six different criteria and compare the results on the selected pairs. To streamline the

presentation, we will not comment on tools that did not run successfully.

3.2.2 Limitations

Here are some practical limitations related to the execution of benchmarked tools.
MIX and CISA: we did not run these two tools on the Hg_chrij dataset because they

were designed for bacteria-sized genome and they would not handle such a large input.

63


http://gage.cbcb.umd.edu

GARM: while GARM’s manual claims that the tool can accept two contigs, two scaffolds,
or contig/scaffold combination as an input, we were only successful to run the tool using
one contig and one scaffold; in most cases, running with two contigs produced an empty

FASTA file, while using two scaffolds produced FASTA files with all nucleotides set to N.

3.2.3 Usage of reads

Some of the tools can take advantage of the raw reads, in addition to the input
assemblies. For GAA, while the paper mentions using paired-end reads for error correction,
there is no option to provide them. Therefore, we didn’t use them for GAA. We used
reads in the following cases. For GAM_NGS, we used paired-end reads with a 155-180bp
insert (Library 1 in GAGE). For Metassembler, in the case of bacterial genomes we used
the available short-jump library (insert size of 3500bp); for Hg_chr1j we used the available
long-jump library (insert size is approximately 35 kbp), and for Bombus impatiens we used
the available short-jump library 2 (insert size is approximately 8 kbp). For ZORRO, we

used paired-end reads with a 155-180bp insert (Library 1 in GAGE)

3.2.4 Gene coverage analysis

We used the following reference genomes and their corresponding gene annotations

e Staphylococcus aureus subsp. aureus USA300_.TCH1516 found at http://bacteria.
ensembl.org/staphylococcus_aureus_subsp_aureus_usa300_tch1516/Info/Index

(2844 Genes)

e Rhodobacter sphaeroides KD131
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http://bacteria.ensembl.org/rhodobacter_sphaeroides_kd131/Info/Index| (4474

Genes)

e Homo sapiens, chromosome 14 GRCh38.p2

http://uswest.ensembl.org/Homo_sapiens/Info/Index (ftp release 80) (2289 Genes)

First, we created a BLAST database for each of the GAGE reference genome
assemblies and each of the merged output assemblies. Then, we used BLASTn to align the
primary sequence of each gene against each database (using default parameters). For each
hit reported in BLASTn output, we chose the best ranked alignment with 75% minimum
identity. The total gene coverage reported is the cumulative sum of the coverage of each

hit minus any overlaps between the hits.

3.2.5 Experimental results
High contiguity, high correctness inputs (GAGE)

In the first set of experiments, the objective was to explore the contiguity /correctness
tradeoff. Specifically, we wanted to test the ability of reconciliation tools to take advantage
of the contiguity of the first input assembly and the correctness of the second in order to
create a merged assembly with a number of misassemblies comparable to the second as-
sembly and a contiguity comparable to the first assembly. The two input assemblies to be
merged were chosen so that one has high N50 value (but possibly a relatively high number
of misassembly errors) and the other has few misassembly errors (and possibly a lower N50).

Figure and Table reports the results of merging the SOAPdenovo assem-

bly (high N50) with the ABySS assembly (low misassembly errors) for the three chosen
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Figure 3.2: Contiguity-correctness experimental results when inputs are contigs (top row)
or scaffolds (bottom row); assembly reconciliation tools are given two assembled genomes to
merge (Homo sapiens, chromosome 14, Rhodobacter sphaeroides, Staphylococcus aureus),
in which the first assembly has high contiguity, the second has high correctness; tools were
ran using default parameters

genomes. Since the assembly produced by ABySS on the Rhodobacter sphaeroides genome
has more misassembly errors than the assembly generated by SOAPdenovo, we also reported
in Table the results produced by ALLPATHS-LG and SGA on Rhodobacter sphaeroides
assemblies. The SOAPdenovo assembly was used as the “master” assembly in all tools that
require a ranking of the inputs.

Observe in Figure 3.2 that on the Staphylococcus aureus genome, all tools increase
the contiguity marginally (in fact, by less than 3%). While none of the tools was able to
improve assembly errors compared to the ABySS assembly, GAA and MIX produced more
errors than SOAPdenovo. CISA produced the lowest number of misassemblies (13% less
than SOAPdenovo). Otherwise, GAM_NGS and Metassembler maintained quality statistics
close to that of SOAPdenovo.

GAA created a merged assembly in which number of misassemblies was very close
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to the sum of those statistics for the input assemblies. In terms of NGA50 the contiguity
was at least as good as the most contiguous input assembly.

When the input was composed of scaffolds (bottom panel in Figure , all tools
improved contiguity marginally (in fact, by less than 5%). Table show that GARM’s
and MIX’s merged assemblies covered less than 50% of the reference sequence. None of the
tools was able to reduce the number of misassembly errors compared to ABySS; in fact,
CISA produced more errors than SOAPdenovo.

Despite the fact that ABySS’s assembly for Rhodobacter sphaeroides had a higher
number of misassembly errors than SOAPdenovo, none of the merged assemblies improved
on the number of misassemblies compared to SOAPdenovo. Except for GAA, the number
of misassembly errors produced by all tools were closer to the master (SOAPdenovo). As
expected, tools that rely on a master assembly had a lower number of misassemblies than
those that did not rank the inputs. With scaffolds as inputs, changes in NGA50 were
negligible for all tools except for CISA. With contigs as inputs, GAM_NGS improved the
contiguity by at most by 11%, Metassembler and MIX increased it by 2%, and CISA
dropped it by 85%. MIX and Metassembler, and GARM maintained the same NGA50 as
SOAPdenovo.

In the majority of the cases, experimental results obtained with ALLPATHS-LG
(high N50) and SGA (low misassembly errors) on the Rhodobacter sphaeroides genome
(reported in Appendix [A| Table followed similar patterns to the ones we observed in
Figure CISA decreased the contiguity (although the reduction was far less this time).

GAA followed the same general pattern mentioned earlier. GAM_NGS did not increase
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contiguity but rather maintained it close to that of the master assembly. Metassembler
and MIX also did not increase contiguity. ZORRO worked for this experiment: although
it decreased contiguity by 10%, it produced a smaller number of misassembly errors than
ALLPATHS-LG (but still higher that SGA).

With scaffolds as input assemblies, GAM_NGS retained the quality statistics of the
master assembly. Observe in Figure that GARM retained NGAS50 close to SOAPdenovo
(the master assembly). Also note that in Table that GARM maintained ALLPATHS-
LG’s contiguity statistics.

Experimental results on the Hg_chrij with contigs as input assemblies (Figure,
show that (i) GAM_NGS slightly improved contiguity, (ii) Metassembler maintained con-
tiguity, (iii) GAA crashed, (iv) the number of misassemblies was closer to SOAPdenovo.
With scaffolds as inputs, GAM_NGS and Metassembler produced assemblies with quality

statistics close to SOAPdenovo.

Reordering the inputs (GAGE)

As mentioned above, some of the assembly reconciliation tools assume that the
first input assembly is the master assembly, and should be trusted more (we call these tools
asymmetric). The goal of this set of experiments is determine how the quality of the merged
assembly depends on the specific order of the inputs.

To determine how the ranking affected the results, we repeated the same experi-
ments reported in the previous section but switched the order of the inputs. A comparative

analysis of Figure and Table with the results discussed in the previous section
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Figure 3.3: Contiguity-correctness experimental results when inputs are contigs (top row)
or scaffolds (bottom row); compared to Figure the order of the inputs was swapped.

prompts a few observations. First, we note that CISA, MIX, and GARM are symmetric
(i.e., they do not require users to rank the inputs, see Table , hence they are expected
to be unaffected by the reordering. Experimental results confirm that CISA and GARM
are indeed unaffected. The reordering however affected MIX results, albeit only slightly.

For Staphylococcus aureus, MIX’s contiguity statistics (N50 and NGA50) was not
affected by the reordering of the inputs. However, we observed a small change in the number
of misassemblies, although still higher than SOAPdenovo in both cases.

On Rhodobacter sphaeroides, all statistics remained unchanged except for the num-
ber of misassemblies that increased after reordering. In addition, with contigs as inputs we
did not observe an increase in NGA50 after the reordering.

Despite the fact that GAA requires input ranking, the results for Staphylococcus
aureus and Rhodobacter sphaeroides were similar. The output statistics of GAA followed

the general pattern mentioned in the previous section. For Hg_chrij, GAA crashed in
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one ordering but not on the other. For all three genome, GAM_NGS and Metassembler
produced consensus assemblies with quality statistics close to the master assembly.

Note that the merged assemblies have higher contiguity in Figure[3.2] in which the
master has higher N50. In contrast, the number of misassemblies were lower in Figure [3.3]
for both Staphylococcus aureus and Hg_chr14 in which the master had lower errors (with the
exception of MIX). Merged assemblies for Rhodobacter sphaeroides had higher contiguity
and lower number of misassemblies, in which the master had higher N50 and lower number

of misassemblies (see Figure .

High-quality inputs (GAGE)

In the third set of experiments we tested the ability of the reconciliation tools to
merge two high quality assemblies. We selected two highly contiguous assemblies (i.e., small
number of contigs and scaffolds, high N50 values) and low number of misassembly errors.
Figure[3.4and Table[A 3]show the result of merging assemblies produced by ALLPATHS-LG
as first input and either MSR-CA, SOAPdenovo, or CABOG as the second assembly.

Observe that for Staphylococcus aureus with contigs as inputs, GAM_NGS pro-
duced an improved assembly that had no misassemblies, and was 66% more contiguous.
The next best assembly was by Metassembler with a 107% increase, but it had a slight
increase in the number of misassemblies compared to ALLPATHS-LG. MIX produced a
high number of misassemblies (higher than MSR-CA) but managed to increase contiguity
by 4%. CISA improved contiguity by 11%, but it produced a number of errors higher than

ALLPATHS-LG. ZORRO decreased contiguity by 30%.
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Figure 3.4: Experimental results on merging high-quality assemblies (top row for input
contigs, bottom row for input scaffolds); tools were ran using default parameters

With scaffolds as inputs, ALLPATHS-LG has no misassemblies and higher NGA50
than MSR-CA. In general, asymmetric tools produced a lower number of misassemblies and
decreased the N50. For instance, GAM_NGS maintained quality statistics of ALLPATHS-
LG. Although ZORRO is asymmetric it decreased contiguity by more than 90%. On the
other hand, symmetric tools had a higher number of misassemblies. GARM achieved the
highest increase of NGA50 (16%).

The contiguity of the merged assemblies improved 11% — 108% with the exception
of ZORRO, which decreased the contiguity by 30%. GARM increased contiguity the most
(108%) at the expense of a number of misassemblies close to MSR-CA. MIX introduced no
misassemblies, but covered only 25% of the genome sequence. Notably, both GAM_NGS
and Metassembler improved contiguity by 66.5% and introduced no misassemblies, These
are two rare examples in which we observed an unquestionable improvement in the merged

assembly.

71



On the Rhodobacter sphaeroides genome, the two input assemblies had almost the
same number of misassemblies but the assembly produced by SOAPdenovo was much less
fragmented. Only Metassembler increasing NGA50 significantly. All other tools decreased
the contiguity. In terms of correctness, ZORRO and CISA (using scaffolds as inputs)
reduced the number of misassemblies but also decreased the contiguity by 99% and 60%,
respectively. Other tools produced merged assemblies with a number of misassemblies not
better than the inputs.

GARM improved the contiguity by 38% while CISA increased it by less than 2%.
MIX is the only tool that reduced the number of misassemblies, but again its assembly
only covered about half of the genome. None of the tools improved both contiguity and the
number of misassemblies.

In Hg_chr14, GAA improved the NGA50 by 76%, but it produced a number of mis-
assemblies equal to the sum of the number of misassemblies in the two inputs. GAM_NGS
improved the contiguity (28% increase in NGA50) and slightly reduced the number of mis-
assemblies. Metassembler produced quality statistics that are very close to ALLPATHS-LG.

With scaffolds as inputs, GAM_NGS and Metassembler maintained similar quality
statistics to ALLPATHS-LG. GARM decreased NGA50 by 9%. It also increased the number

of misassemblies.

Highly-fragmented inputs (GAGE)

The goal of this set of experiments was to evaluate the performance of assembly
reconciliation tools when provided with two highly fragmented input assemblies. Input

assemblies were selected to have a high percentage of contigs shorter than 200 bps, a high
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Figure 3.5: Experimental results on merging highly fragmented assemblies (top row for

input contigs, bottom row for input scaffolds); tools were ran using default parameters

number of contigs and scaffolds, and low N50.

Figure and Table [A74] shows the results of merging ABySS assembly and SGA
assembly. Observe that when we used contigs as inputs, ABySS had a higher contiguity
than SGA (except in Hg_chr14). The opposite, however, was observed when scaffolds were
provided in input. In Staphylococcus aureus and Rhodobacter sphaeroides with contigs as
inputs, only asymmetric tools maintained or improved over NGA50 of the better input
assembly (in Staphylococcus aureus we observed up to 8% increase, and up to 17% in
Rhodobacter sphaeroides). However, in Hg_chrl/(with contigs as inputs) GAA produced
a 123% increase over SGA, while GAM_NGS did not improve NGA50 over SGA, but it
increased it 33% over ABySS.

With scaffolds as inputs, we observed a decrease in NGA50 except for MIX and
GARM (when SGA inputs are scaffolds). MIX, GARM, and CISA are symmetric tools,

hence they are expected to perform better than other tools when the non-master input has
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Figure 3.6: Experimental results on merging assemblies produced by assemblers based on
the de Bruijn graph compared to string graph (top row for input contigs, bottom row for
input scaffolds); tools were ran using default parameters

better quality. CISA, however, produced inferior results with scaffolds as inputs in most
experiments. We discovered that CISA with default parameters break scaffolds into contigs
when a scaffold contains more than ten consecutive Ns. MIX maintained NGA50 of SGA,

while GARM slightly decreased it compared to SGA (yet still higher than ABySS).

De Bruijn vs. string graph assembly (GAGE)

Here we tested the effect of merging assemblies generated using different assembly
strategies. Specifically, we merged an assembly generated by an assembler that uses a
de Bruijn graphs with an assembly produced by an assembler based on the string graph.
Figure and Table shows the result of merging an assembly produced by ALLPATHS-
LG (based on the de Bruijn graph) with an assembly produced by SGA (based on the string

graph). Overall, GAM_NGS, Metassembler, and MIX maintained similar assembly statistics
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as ALLPATHS-LG.

Note that Staphylococcus aureus input assemblies (as contigs) had only one mis-
assembly. The merged assemblies also have one misassembly, with the exception of GAA
(two) and ZORRO (none). ZORRO corrected the assembly error without affecting NGA50.
CISA decreased NGA50 by 49%. With scaffolds as inputs, ALLPATHS-LG’s assembly has
no assembly errors. In fact, observe that all merged assemblies did not have any misassem-
blies. GARM kept NGAS50 close to ALLPATHS-LG. CISA covered less than 40% of the
genome, while ZORRO decreased the contiguity by 99%.

On Rhodobacter sphaeroides with contigs as inputs, CISA and ZORRO decreased
the contiguity by 34% and 10%, respectively. GAM_NGS and Metassembler maintained
ALLPATHS-LG’s quality statistics. All tools produced a relatively high number of mis-
assemblies (similar to ALLPATHS-LG). With scaffolds as inputs, CISA, ZORRO, and
GARM’s assembly statistics followed the same of statistics of Staphylococcus aureus. All
assemblies, with the exception of CISA and ZORRO, had a number of misassemblies closer
to ALLPATHS-LG. CISA again covered less than one fifth of the genome and ZORRO
decreased the contiguity by 99%. GAM_NGS, Metassembler, and MIX produced consensus
assemblies with quality statistics comparable to ALLPATHS-LG.

In Hg_chr1j(with contigs as inputs) GAM_NGS increased NGA50 by 2%. With
scaffolds as inputs, GAM_NGS and Metassembler maintained assembly statistics close
to ALLPATHS-LG. GARM increased the number of misassemblies by 9% (compared to
ALLPATHS-LG) and decreased NGA50 by 9%.

With scaffolds as inputs, GARM increased contiguity by 58%, while other tools
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improved it by less than 3%. GAM_NGS and Metassembler produced about the same
number of misassembly errors as the higher of the two inputs. GARM improved NGA50

the most, but also increased the number of misassemblies by 42%.

Multiple inputs (GAGE)

In this set of experiments we tested the ability of the tools to merge more than
two assemblies. When an assembly reconciliation tool allowed no more than two assemblies
in input (see Table for a list), we merged them in an iterative fashion. For instance,
to merge three assemblies, we first merged two assemblies, then merged the result to the
third assemblies. Metassembler uses a similar strategy: when the user provides multiple
assemblies the tool iteratively performs pairwise reconciliation, where the output of one
iteration is the input of the next. We ordered the input assemblies based on feature response
curve (FR curve), which is an assembly quality metric proposed in [61]. The FR curve
represents the dependency between contigs that contains no more than 7 features and the
corresponding genome coverage. The x-axis represents 7 and the y-axis represent genome
coverage: the “steeper” is the curve, the better is the assembly. We used the FR curves in
[75] to determine the merging order of the GAGE assemblies, starting with the assemblies
with highest quality. Results for an alternative ordering is discussed in Note and
corresponding Tables For tools that allowed to merge more than two assemblies
(e.g., CISA and MIX), the merging was done in one step from the original assemblies. Here
we were interested in measuring the contiguity and correctness of the resulting assemblies

as the number of input assemblies increases.
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Figure 3.7: Experimental results on merging multiple assemblies of Staphylococcus au-
reus(black diamonds); the input order was determined using the FRCurve score (see text
for details); integer labels indicates successive merging steps; tools were ran using default
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Figure 3.8: Experimental results on merging more than two assemblies (as scaffolds) ordered
by the FRCurve score (Staphylococcus aureus, genome size 2,903,081 bp). The Figure
reports on quality of merged assembly compared to the input assemblies. Tools were ran
using default parameters, unless otherwise noted
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Figure 3.10: Experimental results on merging more than two assemblies (as scaffolds) or-
dered by the FRCurve score (Rhodobacter sphaeroides, genome size 4,603,060 bp). The
Figure reports on quality of merged assembly compared to the input assemblies. Tools were
ran using default parameters, unless otherwise noted
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Figure 3.11: Experimental results on merging more than two assemblies (as contigs) ordered
by the FRCurve score (Hg_chrlj, genome size 107,349,540 bp). The Figure reports on
quality of merged assembly compared to the input assemblies. Tools were ran using default
parameters, unless otherwise noted
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Figure 3.12: Experimental results on merging more than two assemblies (as scaffolds) or-
dered by the FRCurve score (Hg_chrij, genome size: 107,349,540). The Figure reports on
quality of merged assembly compared to the input assemblies. Tools were ran using default
parameters, unless otherwise noted
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Figure 3.13: Experimental results on merging more than two assemblies (as contigs) —
alternative ordering (Staphylococcus aureus, genome size 2,903,081 bp). The Figure reports
on quality of merged assembly compared to the input assemblies. Tools were ran using
default parameters, unless otherwise noted
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Figure 3.14: Experimental results on merging more than two assemblies (as contigs) — alter-
native ordering (Rhodobacter sphaeroides, genome size 4,603,060 bp). The Figure reports
on quality of merged assembly compared to the input assemblies. Tools were ran using
default parameters, unless otherwise noted
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Figure 3.15: Experimental results on merging more than two assemblies (as contigs) —
alternative ordering (Hg_chrl/, genome size 107,349,540 bp). The Figure reports on qual-
ity of merged assembly compared to the input assemblies. Tools were ran using default
parameters, unless otherwise noted

Figure Figure[3.9, and Figure [3.11]show the experimental results for Staphylo-
coccus aureus, Rhodobacter sphaeroides and Hg_chrly, respectively, when inputs are contigs.
First observe that in several cases, the process of iterative merging did not complete.

On Staphylococcus aureus and Rhodobacter sphaeroides, CISA generally improved
the contiguity as the number of merged assemblies increased. The number of errors fluc-
tuated over the iterations. GAA did not produce assembly files for the first iteration.
Although GAA did not work for this particular ordering it did produce results for the
alternative ordering reported in Appendix [A] Note

In Staphylococcus aureus and Rhodobacter sphaeroides, GAM_NGS’s contiguity
improved over successive iterations, but the number of misassemblies errors did not decrease
(it stayed close to the first master input in all iterations). For Hg_chrlj, the number
of misassemblies was also relatively high. GAM_NGS increased NGA50 by at least 70%

compared to CABOG.
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In Staphylococcus aureus, Metassembler’s contiguity improved over successive it-
erations, but the number of misassemblies also increased. In Rhodobacter sphaeroides,
Metassembler’s assembly did not improve after the forth iteration. Note that NGA50 was
lower than BAMBUS2 and SOAPdenovo. Metassembler’s assembly had number of misas-
semblies about the average of the inputs. In Hg_chri1/, the number of misassembly errors
were low and decreased over successive iterations. Contiguity was high, but slightly de-
creased over successive iterations.

MIX maintained a low number of misassemblies in most iterations but suffered
from relatively poor NGA50. Since the genome coverage in most iterations was less than
50% of the reference, no NGA50 was reported for those iteration. On the Staphylococcus
aureus genome, the coverage was less than 50% in all iterations but it steadily improved
with increasing number of inputs. On Rhodobacter sphaeroides, the genome coverage was
below 50% with four or more inputs.

ZORRO frequently failed to produce results. When it worked, contiguity usually
started high, then fluctuated over successive iterations. ZORRO produced relatively high
number of misassemblies (somewhat in between the values of the inputs).

We repeated the same experiment but with scaffolds as inputs. Results are re-

ported in Tables [A.9] [A-10] and [AT1] and Figures [3.8] 3.10, and CISA’s results show

that after a certain number of input assemblies, increasing the number of inputs did not
affect the results significantly. From that point forward, it generally improved the contigu-
ity and reduced the number of contigs as the number of merged assemblies increased. The

number of misassemblies were with the range of input assemblies. CISA reached stability
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with four inputs on Staphylococcus aureus and three inputs on Rhodobacter sphaeroides).

MIX on Staphylococcus aureus, produced a high number of misassemblies which
generally increased as the number of inputs increased. It maintained high genome coverage.
It also maintained high contiguity except for the last iteration. On Rhodobacter sphaeroides,
the number of misassemblies were also relatively high but it fluctuated as the number of
inputs increased. It also maintained high contiguity, achieving the best NGAS50 for less than
five inputs.

ZORRO produced low number of misassemblies on Staphylococcus aureus and
Rhodobacter sphaeroides. Contiguity was poor and generally decreased over successive iter-
ations.

GAM_NGS maintained results very close to the first input throughout all iterations
on Staphylococcus aureus, Rhodobacter sphaeroides, and Hg_chri4. In the latter genome,
GAM_NGS contiguity generally improved in successive iterations but so did the number of
misassemblies.

Metassembler maintained similar quality statistics to CABOG on Hg_chri4. On
Rhodobacter sphaeroides, Metassembler also maintained CABOG’s quality statistics with
a slight decrease of number of misassemblies, and contiguity as the number of iteration
increased. On Staphylococcus aureus, Metassembler also maintained quality statistics close
but not identical to MSR-CA. In general, as the number of inputs increased, the number of

misassemblies slightly decreased and the contiguity slightly improved.
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Table 3.2: Experiments on the Bombus impatiens assemblies. Notes: all reported statistics
are for contigs; tools were ran using default parameters, unless otherwise noted; the E-Size
is defined as the expected scaffold size of any arbitrary location in the reference genome.

Reconciliation Contigs N50 E-Size
Tool or Input # (bp) (bp)
Input 1 (CABOG) 18,918 23,515 34,227.94
Input 2 (MSR-CA) 18,501 32,431 46,890.24

GAA Did not produce an assembly file
GAM_NGS 10,129 52,123 77,240.76
GARM (ctg_scf) 10,5672 70,577 98,189.44
Metassembler 17,694 25,317 36,774.11
Input 1 (ABySS) 35,112 14,383 20,904.98
Input 2 (SOAPdenovo) 11,556 57,117 78,228.65
GAA 46,668 63,941 99,133.63
GAM_NGS Did not produce an assembly file
GARM (ctg_scf) 9477 64,172 86,881.27
Metassembler 34,149 13,842 20,386.78
Input 1 (SOAPdenovo) 11,556 57,117 78,228.65
Input 2 (ABySS) 35,112 14,383 20,904.98
GAA 46,660 63,941 99,133.42
GAM_NGS 10,971 63,152 87,930
GARM (ctg_scf) 8042 101,115 133,528.41
Metassembler 9349 57,238 78,395.6
Input 1 (MSR-CA) 18,501 32,431 46,890.24
Input 2 (SOAPdenovo) 11,556 57,117 78,228.65

GAA Did not produce an assembly file
GAM_NGS 12,559 59,549 89,960.46
GARM (ctg-scf) 5984 117,986 148,549.55
Metassembler 16,234 35,077 50,156.59

Large genomes (GAGE)

To test the ability of these tools to scale to large eukaryotic genomes, we used
GAGE’s assemblies for Bombus impatiens. We selected the two input assemblies where
most of the tools were able to complete. A high quality reference genome is unavailable
for Bombus impatiens, so the statistics we reported were produced by the GAGE script. In
addition to the usual assembly statistics, GAGE computes the e-size, which is the expected
size of a contig (or scaffold). The e-size if computed as Y, L?/G, where the sum is over all
contigs ¢, G is the expected genome length and L. is the length of contig ¢ [66].

Results are reported in Table [3.2] in which only contigs and scaffolds of 500bp or

longer were considered. Observe that GARM reduced the number of contigs, increased N50
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and the e-size for all experiments. GAM_NGS did not work for one of the experiments. In
the others, it decreased the number of contigs in all but one experiment. GAM_NGS always
improved N50, and increased the e-size in all but one experiment. GAA did not work for
two of the experiments. When it worked, it did not reduce the number of contigs, but it
increased both N50 and the e-size. Lastly, Metassembler decreased N50 and the e-size in
three out of four experiments. Metassembler reduced the number of contigs in half of the

experiments.

3.2.6 Parameter tuning

For the results in Appendix [A] Note all assembly reconciliation tools were
ran with default parameters. Here we explored how other parameter settings affected the

experimental results. Each tool has its own set of parameters, as briefly described next.

e CISA has three main parameter namely the minimum contig cutoff, the maximum
number of consecutive N’s; and the maximum unaligned gap (default values 100bp,
10bp, 0.95 quintile, respectively); we changed the minimum contig cutoff to 200bp and

500bp and the maximum gap size to 100 and 200; we also tried scaffolds as inputs.

e For GAA we focused on two parameters, namely the minimum contig cutoff and the
maximum tip size (default values of 100bp and 90 bp, respectively); we changed the
contig cutoff size to 200bp and 500 bp and the maximum tip size allowed to 15 bp

and 50bp.

e GAM_NGS has three main parameters, namely the minimum number of reads to

build a block, the block coverage filtering, and the minimum block length; for these
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parameters the authors suggest using 10bp, 0.75, 200bp, respectively for bacterial
genomes, and 50bp, 0.75, 500bp for Hg_chrlj; since there was no option to change
the minimum block size, we explored the other two parameters; we used the default
values of at least 50 reads per block and 0.75 block coverage filter; we also tried setting
the read support to 10 and 30 with 0.75 block coverage filter, as well as read support

of 10 and 50 with 0.95 block coverage filter.

GARM: we explored changing the minimum contig cutoff (default 200bp), minimum
overlap (default 200bp) and maximum tip thresholds (default 50bp); in addition to
the default values, we tried the following combinations (i) 500bp contig cutoff, 200bp
min overlap, and 50bp max tip, (ii) 200bp contig cutoff, 100 bp min overlap, and 50
bp max tip (iii) 200bp contig cutoff, 200bp min overlap, and 100bp max tip, and (iv)

100bp contig cutoff, 50bp min overlap, and 15bp max tip.

MIX’s main parameters are the minimum length of alignment (default Obp) and min-
imum contig cutoff (default 500bp); according to the documentation, if these two
parameters are not specified MIX is supposed to check thresholds from 0 to 2000 with
step of 50; we tried this option, but only got results with default settings; the author of
MIX recommend a minimum alignment of 500bp and a minimum contig cutoff of Obp
for bacterial genomes (which is what we used); in addition we tried (i) minAlign=>50
and minctg=100, (ii) minAlign=>50 and minctg=200, and (iii) minAlign=100 and

minctg=500.

Metassembler has several parameters. We explored the parameters controlling the

assembly merge phase, namely minimum read coverage (default 15), minimum overlap
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(default 60) and identity (default 60); Metassembler accepts identity in base pairs;
we tested (i) 60 bp min overlap, 51 bp 85% identity, and 15x coverage (ii) 100bp min
overlap, 95% identity, and 15x coverage (iii) 100bp min overlap, 85% identity, and 30x

coverage and (iv) 200bp min overlap, 170bp 85% identity, and 30x coverage.

e ZORRO’s parameters include the minimum overlap (default 40bp), the maximum tip
(default 15), and identity threshold (default 94%); in addition to the default values we
tested (i) 40bp min overlap, 100bp max tip, and 94% identity, (ii) 100bp min overlap,
15bp max tip, and 94% identity, (iii) 100bp min overlap, 15bp max tip, and 85%

identity, (iv) 100bp min overlap, 50bp max tip, and 85% identity.

Experimental results for all these parameter sets are reported in Appendix [A]
Table Appendix [A] Table and Appendix [A] Table for Staphylococcus aureus,
Rhodobacter sphaeroides and Hg_chrl4, respectively. For most experiments, the variations
due to changing parameters were small. Few observations are in order.

Observe that for Staphylococcus aureus, Metassembler and GAM_NGS maintained
the same statistics for all parameters configurations, with the exception of a slight variation
in the size of the assembly. CISA produced changes only when the minimum contig cutoff
increased to 500 bp, with contigs as input. In this case, both genome and gene coverage
improved but the contiguity decreased with respect to other configurations. With scaffolds
as inputs, the contiguity increased but the genome fraction was lower than 50% in most
cases. In GARM we observed a small variation in the number of mismatches and indels

and an insignificant change in the genome coverage.
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3.2.7 Time and Space Analysis

As said, all experiments were performed on a Linux Ubuntu 12.10 server with a
20 cores Intel Xeon CPU E5-2690v2 3GHz and 512GB of RAM. Multithreading was used
when available.

First, we measured the usage of computational resources to merge two input as-
semblies. Graphs in Figure illustrate the average (wall clock) run time, the average
percentage of processor utilization (where 100% indicates full utilization of one core), and
the average memory usage required by each tool to perform each experiments on the four
genomes. The average are over all the tested pairs of GAGE assemblies for that genome.
Error bars indicate the minimum and maximum.

Second, we measured the usage of computational resources as a function of the
number of input assemblies using CISA and MIX, which are the only tools that can merge
more than two input assemblies. Graphs in Figure shows the (wall clock) run time,
processor utilization (where 100% indicates full utilization of one core), and memory usage

as the number of input assemblies increases.

3.2.8 Synthetic assemblies

In this set of experiments we tested assembly reconciliation tools on synthetic
assemblies generated using RSVSim [§]. We used RSVSim to introduce specific structural
variations into the reference genome of Saccharomyces cerevisiae [6]. For tools that required
reads, we generated synthetic reads using ART [40]. The output of the seven assembly

reconciliation tools was fed into Decipher [80]. Decipher detects synteny blocks between a
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(where 100% indicates full utilization of one core), and average memory usage required by
each tool to perform each experiments on the four genomes; averages are over all the tested
pairs of GAGE assemblies for that genome; error bars indicate the minimum and maximum
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Figure 3.18: The eight assembly reconciliation tools were given in input (A) chromosome
4 and 15 yeast genome and (B) a flawed version of (A) produced by RSVSim containing
either a deletion in chromosome 4 (top row), or an inversion in chromosome 4 (middle row)
or an translocation from chromosome 4 to chromosome 15 (bottom row); A and B are first
two rows in each plot; Decipher was used to detects synteny blocks between the reference
and the outputs and to generate synteny plots displayed as gradients: when reference and
output disagree, the gradients are interrupted; gray regions indicate blocks that do not
match the reference

reference and a query sequence, and generates synteny plots displayed as gradients. When
reference and query disagree, the gradients are interrupted. Gray regions indicate blocks
that do not match the reference.

In each experiment we merged two inputs, namely (1) chromosomes 4 and 15 of the
yeast genome and (2) a flawed version of (1) produced by RSVSim containing one structural
variation, i.e., either a deletion, an inversion (reversal), or a translocation. RSVSim does
not allow de nowvo insertions. For asymmetric tools, the flawed assemblies was used as

the master assemblies to model the worst case. We introduced deletions and inversions of
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various sizes (50 kbp, 100 kbp, 200 kbp, and 500 kbp) into chromosome 4, and generated
translocations from chromosome 4 into the chromosome 15 of various sizes (again, 50 kbp,
100 kbp, 200 kbp, and 500kbps).

Figure (top row) show that CISA resolved the deletion but did not output
chromosome 15. GAA also resolved the deletions but it produced two extra sequences
that did not align to the reference. GARM did not output chromosome 4. GAM_NGS,
Metassembler, and MIX produced assemblies similar to the flawed input assembly. ZORRO
broke the assembly at the position of the deletion, produced three individual contigs, and
omitted the deleted sequence.

Figure (middle row) shows that only CISA resolved the inversion but did
not output chromosome 15. GAA did not correct the inversion, and generated a merged
assembly that was similar to the flawed input assembly with two additional sequences
that did not align to the reference. Again, GAM_NGS, Metassembler, and MIX produced
assemblies similar to the flawed assembly. ZORRO broke the inversion by producing three
contigs for chromosome 4, and an additional contig representing chromosome 15.

For translocations, the behavior of reconciliation tools depended on the size of
the translocation, as shown in Figure (bottom row). For translocations of 50, 100
and 200 kbps, CISA, GAA, and GAM_NGS produced the correct version of chromosome 4.
CISA did not produce chromosome 15 and GAA and GAM_NGS produced chromosome 15
with an unaligned sequence at the location of the insertion. As before, GAA produced two
additional sequences. GARM did produce any merged assembly. Metassembler and MIX’s

output was similar the flawed input assembly. ZORRO split the assembly over structural
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Figure 3.19: Assembly reconciliation results for difference choices of read coverage; (a,b)
are translocations; (c,d,e) are deletions; (f,g) are inversion

variation breaking points. For 200 and 500 kbps, ZORRO was stopped after allocating more
than 350 GB of RAM. None of the tools managed to correct the 500 kbps translocations.
CISA and GAA produced the flawed version of chromosome 15. Again, GAA produced the
correct version of chromosome 4, but two extraneous sequences. GAM_NGS output was
very similar to the input flawed assembly. Metassembler and MIX’s produce chromosome
4 without the deleted fragment and a flawed version of chromosome 15.

To test whether read coverage had any impact on the quality of merged assemblies
for assembly reconciliation tools that requires reads as input, we ran several experiments on
the same synthetic assemblies with increasing reads fold coverage (15x to 75x). Figure

shows that read coverage did not have any affect on the quality of the results.
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3.3 Discussion and Conclusions

Given the practical challenges of de novo assembly assembly, the idea of assembly
reconciliation is very appealing. One could generate multiple assemblies on the same dataset
using various assembly tools and/or parameters, then use an assembly reconciliation tool
to merge all the assemblies and obtain a high quality consensus assembly. At the outcome,
the expectation is that the quality of the merged assembly should be at least as good as the
best assembly in input. In fact, if both input assemblies have some good quality assembly
statistics (e.g., one is more contiguous while the other has less misassemblies), one should
expect the consensus assembly to inherit the good qualities from both inputs. The reality
is that it seems very hard to produce a merged assembly which consistently better than (or
at least as good as) both input assemblies. The extensive set of experiments reported in
this manuscript showed that none of the tools we evaluated was able to consistently achieve
this goal. There were a few cases in which the consensus assembly was better that both
inputs, but for the vast majority of the inputs the merged assembly was not.

Despite the inability of these assembly tools to solve the general assembly recon-
ciliation problem, each tool demonstrated some strengths that could lead to algorithmic
advances on this problem. For instance, CISA generally was able to correct most structural
variations and to ignore duplications in the input assemblies (however, its duplication rate
increased as the number of merged assemblies increased); GAA and GARM often improved
the contiguity (but often introduced more misassembly errors and increased the duplication
ratio); GAM_NGS typically produced consensus assemblies very close to the quality of the

reference (but not much better), and it was able to resolve translocations; MIX generally
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improved the contiguity modestly (but its number of misassemblies was usually close or
higher than the most erroneous input, and its genome coverage dropped in some cases);
Metassembler often produced consensus assembly with a very low number of misassembly
errors, sometimes even lower than both input assemblies (however it did not consistently
increase N50); finally, ZORRO generally maintained a high genome coverage (but it did not

significantly increase contiguity).
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Chapter 4

SequOIA: Sequence Overlap

Identification and Assembly

The problem of assembling BAC assemblies to obtain a genome-wide assembly
is not new. The public Human Genome Project relied on a tool called GIGASSEMBLER
[43] to assemble about 30,000 BAC clones using a genome-wide physical map as well as
BAC-end sequencing and other genetic markers. GIGASSEMBLER used the overlap-layout-
consensus approach: it detected prefix-suffix overlaps between BAC contigs to build an
overlap graph, it removed transitively-inferable edges, then it found paths in the graph to
generate contigs. Unfortunately, GIGASSEMBLER has not been maintained since 2001. To
the best of our knowledge the only other work in the literature that addresses this problem
is MEGAWEAVER [76], which solves it by computing overlaps between all pairs of BAC
assemblies via MEGABLAST [86], detects and remove spurious overlaps, then generates a

consensus assembly. MEGAWEAVER is not maintained anymore as well. While most of
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the genome assemblies follow the whole-shotgun approach, in recent year, there has been
renewed interest in the BAC-by-BAC hierarchical sequencing approach (see Introduction
for more information about the BAC-by-BAC approach).

Let us first define precisely the BAC assembly problem. We are given in input a
set of BAC assemblies {By,Ba, -, By}, n > 2 for a genome G, where each BAC assembly
B; is a set of unoriented contigs {c1,co, - ,cm}, m > 1 (each contig is a string over the
DNA alphabet and 'N’). Let ¢ be the fraction of G covered by the contigs in each BAC
assemblies. The objective is produce another set of BAC assemblies {C1,Ca,- - ,C;}, where
(i) I is the smallest possible and (ii) the genome coverage of the new set is also ¢, (iii) the
new assemblies do not contain any mis-assembly.

Observe that producing as output the input set is optimal when the BAC assem-
blies do not overlap. Also observe that producing an empty set as output (I = 0) would
satisfy (i) and (iii), but not (ii). In order to solve the problem we need to determine BAC
overlaps and reduce the redundancy. We propose to use colored positional de Bruijn graph

to solve the problem.

4.1 Colored positional de Bruijn graph

Several augmented de Bruijn graph have been introduced in the literature, to
address difficulties in finding Eulerian paths in regular de Bruijn graph when dealing with
noisy sequencing data for complex, repetitive genome. For instance, sequencing errors the
end of reads may result in tips, sequencing errors or mutations towards the middle of reads

may introduce in bubbles, and repeats induce a frayed rope structure as shown in Figure 4.1
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Here we consider the positional de Bruijn graph and the colored de Bruijn graph.

Positional de Bruijn graph. Defined in SEQuel [65] as a variation of the classical de
Bruijn graph used in genome assembly, the positional de Bruijn graph is a variation of a
de Bruijn graph such that every edge is associated with kmer and its inferred positions in
contigs. The goal of the tool SEQuel is correct substitutions and small indels smaller than

50 bps.

Colored de Bruijn graph. Introduced in [I] to solve the halving problem. In a whole
genome duplication evolutionary event, the gene content is duplicated in the offspring and
rearranged within the genome. The halving problem requires one to reconstruct the pre-
duplication ancestral genome. Later the “Cortex” assembler (based on a colored de Bruijn
graph graph) was introduced in [41] to assemble multiple genomes simultaneously to detect
and genotype genetic variations. Each node in a colored de Bruijn graph is associated
with a kmer and a list of colors represents all the read sets (i.e., genomes after assembly)

containing that kmer.

Align Graph was introduced in [7] in order to extend and merge contigs of an existing
de novo assembly contigs using paired-end reads and guided by a closely related reference
genome. The authors align the contigs and paired-end reads to a related reference genome,
and exploits the positional information to build a graph that combines reads and contigs.
An align graph is a combination of a positional de Bruijn graph and a paired-end de Bruijn
graph, where the latter is a generalization of de Bruijn graph that incorporate mate-pair

reads distance information.
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Figure 4.1: de Bruijn graph structure

In our case we are merging assembled BACs to obtain a genome-wide assembly.
This problem is an assembly of assemblies, where the input assemblies are expected to have
a much lower error rates than reads. Furthermore, the input assemblies are much longer
sequences, and their positional information can help to resolve repeats. We propose an
algorithm that utilizes positional and color information, and does not require a reference
genome of closely related specie.

We assign each input assembly a distinct color. A colored positional de Bruijn
graph is an extension of a de Bruijn graph. It is a directed graph where each node p
represents a kmer and contains a set £ of (color, pos) pairs where pos is the starting position
of the kmer in a sequence uniquely identified by color. For any two pairs (color;, pos;) € L
and (color;, posj) € L,color; # colorj. A labeled directed edge p 2 ¢ exists in the graph

if pair (color;,pos;) € L, and pair (colorj,pos;) € L4 are such that color; = color; and
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Figure 4.2: Edge orientation and labeling. Each node contains a k-mer (kK = 3 in this
case). The annotation below the edge indicates the assigned direction (Forward, Backward,
Innie, Outie), while the annotation on top of the edge is transition nucleotide between the
corresponding kmers. Violet denotes forward nodes and light blue represent to backward
nodes.

|pos; — pos;j| = 1. The label o € {A,C,G,T} on the edge and direction A € {forward,
backward, innie, outie} are assigned based on kmer orientation of the source and destination
nodes. Forward (F) edge connects two forward nodes, backward (B) edge connects two
backward nodes, innie (I) edge connects a forward node to backward, and outie (O) connect

backward node to forward node. Figure [£.2]illustrates all possible combinations.

4.2 Methods

Our proposed method (called SequOIA) is articulated in four steps: overlap de-

tection, graph construction, graph compaction and graph traversal.

4.2.1 Overlap detection

In the first step, we identify potentially overlapping BAC assemblies. In order to do
so, BAC assemblies are clustered into groups based on the Jaccard distance calculated over
number of shared kmers between each pair of BACs. The Jaccard distance matrix was first
introduced in [I4] to cluster webpages. The same approach was also used in locality-sensitive
hashing [9], which uses sampling to detect potential overlaps. Our approach generates a

k-spectrum for each BAC and calculate a Jaccard-like similarity score for each pair of BACs
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(i,7) using the following formula.
(

|i<kmers> N j<kmers>’/min(|i<kmers>’7 U<kmers>|)

Jaccard*560r€<i’ ‘7> = max |i/<kmers> N j<kmers> |/ min(|i<kmers> ’7 |j<l~cme7’s>|)

i <kmers> 0 I pmerss |/ MIN(li<kmers> |, [ <kmers> )
where i’ and j’ are the DNA reverse complement of i and j, respectively. Note that the
BACs is given as a set of unoriented contigs. We do not consider all possible combination of
contigs orientation within a BAC, but rather assume that all the contigs in a BAC assembly
have the same orientation for the purpose of detecting potential overlaps.

The Jaccard score computes the percentage of shared kmers in relation to size of
the smaller BAC. A score above threshold 7 indicates potential containment. Score greater

than another threshold v < 7 denotes potential overlap. Otherwise, no overlap is reported.

4.2.2 Construction of the colored positional de Bruijn graph

First, we assign each input BAC assembly a unique color. Sequences with the same
color are not considered for overlaps (since the belong to the same BAC). We break scaffolds
into contigs, then start from an arbitrary assembly from the input. For this arbitrary input
assembly, we build the graph by decomposing each contig into kmer and creating a node for
each kmer. We add a forward edge between every two consecutive nodes of the same contig,
sorted in ascending positions. For the remaining input assemblies, we process a kmer based

on following cases
e if Anode(kmer) € G or Y node (kmerycolor € Lyoge then we create a new node

e if 3 only one node(kmer) such that color ¢ L,,4. then add (color, position) to Lyge
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Figure 4.3: An illustration of different kinds of branch nodes

e when multiple nodes for kmer exist, we select the best node to merge with based

on anchored pairwise alignment between the current sequence and every sequence in

Lnode of a candidate node (see Algorithm .

Algorithm describes the colored positional de Bruijn graph construction in more details.

4.2.3 Graph compression

We follow the conventional definition of unitigs that a compact node encoding a
unitig comprises nodes such that in-degree of all nodes except the first is one and out-
degree of all nodes except the last is one. In our algorithm, a normalized confidence score

is assigned to each unitig. The score is calculated using the following formula.

0 if compact node is singleton,
Confidence_score =

Znode€compact,node ‘E’ﬂode |
|unitig|

otherwise,
Assuming a relatively low number of colors and a large kmer size, short unitigs
will have lower scores. As the size of the unitigs increases, a higher coverage leads to a

higher confidence score.
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4.2.4 Graph traversal

Our graph traversal explores alternative paths and produces a string “contig”
corresponding to the path with the highest confident score. A node p is considered an
initial if in-degree(p) = 0 or V (color,pos) € L,, pos = 1. A contig is a path in the graph
(or a node in a compact graph). Traversal starts at an initial node and extends to the
right and to the left until it generates a contig with zero unexplored incoming and outgoing
edges.

Given a compact de Bruijn graph, the path extension Algorithm [.3]solves branches
as they appear along the path from the initial node by considering three cases based on
the type of the (merge, diverge) and the orientation of alternative branches. We start by
solving divergent branches of same orientation. Next, we solve merged branches. Lastly,

we solve any branch not addressed by the two previous cases.

Branches with same orientation represent alternative paths in the form of bubbles or
tips (Figure shows an example). This case has straightforward solution presented in
Algorithm We simply select a branch with the maximum confident score, and ties are
solved by branch length to achieve maximal extension. In the case of divergent branches
represent a bubble, selecting which branch to consider for extension depends only of the
fragments between endpoints of the bubble. In case of tips, selecting a branch requires

solving all subsequent bifurcations in these branches.

Merged branches can be a part of a bubble, for which the solution is to be deferred to
the previous case. Merged branches can also be tips, and therefore solved using the same

algorithm in the previous case. Otherwise, we merge branches if the merging node has no
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Figure 4.4: Example contains different kinds of sEQl: TGAAACGCTAC SsEQ2:
GTAGCGTTTCA, MERGED SEQUENCE: GTAGCGTTTCA branch nodes

outgoing edges. In case the merging node has an outgoing edge, we recursively solve all
subsequent bifurcations using the EXTEND algorithm. We now solve for three branches, the
merged two branches and the newly acquired potential extension branch. Since two of the
three branches must be a part of alternative paths, we select the best alternative and merge

the third branch (see Algorithm [4.5)).

Branches with different orientation are either extending the source in the same di-
rection (we call these branches alternative paths) or extend the source node in different
directions (we call these branches extension paths). Figures and illustrate extension
paths, while Figure illustrates alternative paths. If two branches are parts of alterna-
tive paths, we select the most path with higher confidence as explained earlier. If the two
branches are extensions, if the branch node is singleton, we merge. Otherwise, the node
branches into alternative paths. In this case, we select the path with the highest confidence

score and merge afterwards (see Algorithm for details).

4.3 Experimental Results

To test SequOIA, we used Vigna unguiculata (cowpea) assembled BACs, generated

at UC Riverside [59]. The datasets contains 4355 BACs, where each BAC assembly has on
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Figure 4.5: Examples illustrate solving bubble and tip branches
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Figure 4.6: Examples illustrate solving extend branches

average of 29 scaffolds. Each BAC assembly has an average N50 of approximately 14 kbp
[50]. We excluded 97 BAC assemblies smaller than 5000 nucleotides from the dataset.

We detected overlaps between BACs using the Jaccard-distance matrix method
described above. BACs with similarity score greater than 90% typically indicate contain-
ment; similarity scores greater than 80% are considered potential overlaps. Our algorithm
generated 676 clusters containing on average of 2.67 BACs, with 292 BACs belonging to
more than one cluster, and 1444 BACs appearing in at least one cluster.

Each cluster of overlapping BACs was assembled using SequOIA with four kmer
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Table 4.1: Quality statistics of merged cowpea BACs for SequOIA and CANU. All statistics
were generated with QUAST. Statistics below the double lines based on contigs of size >
500 bp. The reference assembly is 474,399,596bp.

Assembly Input BACs | CANU | SequOIA
# contigs (> 0 bp) 24,730 7 9550
# contigs (> 25,000 bp) 679 1 604
# contigs (> 50,000 bp) 105 0 99
Total length (> 0 bp) (bp) 94,386,917 | 60,976 | 75,504,631
Total length (> 25,000 bp) (bp) 26,287,750 | 31,437 | 23,429,428
Total length (> 50,000 bp) (bp) 6,854,907 0] 6,521,556
# contigs 16,069 7 9356
Longest contig (bp) 141,058 | 31,437 141,104
Total length (bp) 91,591,924 | 60,976 | 75,442,096
N50 (bp) 14,602 | 31,437 16,169
N75 (bp) 6299 6067 7806
L50 1709 1 1318
L75 4086 3 2985
Genome fraction (%) 14.689% | 0.011% 13.606%
Duplication ratio 1.297 1.132 1.154
# N’s per 100 kbp 9350 | 0.00 0.00
Longest alignment (bp) 141,058 | 17,260 141,104
Total aligned length (bp) 90,135,040 | 60,974 | 74,335,415
NAS50 (bp) 12,903 | 14,177 14,177
NAT75 (bp) 5413 6067 6677
LA50 1943 2 1515
LAT75 4675 4 3454

sizes ranging from 2% — 1 to 2! — 1. We select the merged assembly that maximizes the
decrease in number of contigs compared to the input. The resulting assembly aggregates sets
of contigs from all performed merges, in addition to BACs not identified to have potential
overlaps. We compared SequOIA to the long read assembler CANU [44]. SequOIA and
CANU were run on the same input. Table shows the statistics of the input BACs,
CANU’s output assembly, and SequOIA output assembly. Statistics were generated using
QUAST [32].

CANU produced assembly with a higher N50 but only seven contigs that covered
less that 1% of the reference genome. The input assemblies covered around 14%. SequOIA

produced an assembly that covers 13% of the genome, while containing 62% fewer contigs.
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SequOIA also improved 10% the N50 value compared to the input. Both SequOIA and
CANU produced equal a similar NA50 value. SequOIA’s statistics showed better NAT5
and N75 values (please refer to Section for more information regarding the definitions

of N50 and NA50 values).

4.4 Conclusion

We introduced SequOIA, a new tool for the assembly of BAC assemblies. SequOIA
uses a Jaccard-like similarity-matrix clustering approach to detect overlaps between BACs
based on the number of shared kmers. To merge overlapping BAC assemblies, SequOIA uses
a new version of de Bruijn graph, which combines a colored de Bruijn graph and positional
de Bruijn graph. Our new de Bruijn graph utilizes the knowledge of kmer position within
the sequence to avoids collapsing repeats within the same sequence. Considering that a
BACs is an unordered unoriented set of sequences assumed to be non-overlapping, the color
information prevents collapsing repeats within a set of sequences sharing the same color.
The new data structure also allows one to devise a voting scheme to find the path with the
highest confidence. We tested SequOIA assembler on cowpea BAC assemblies produced at
UC Riverside. SequOTA successfully increased the contiguity, while producing an assembly

containing 62% fewer contigs than the input covering similar genome portion.
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Algorithm 4.1 Build colored positional de Bruijn graph

1: function BUILDGRAPH(assemblies, k: kmer_size)

2 select an arbitrary assembly and assign unique color

3 for each contigs in assembly do

4 kmer < contig[pos : /{] > pos =1, substring of length k starting at position 1
5: node; <— new node(kmer, color, pos)

6 for kmer in contig do > excluding the first
7 nodes < new node({kmer, color, pos)

8 ADDEDGE(Forward, node;, nodes)

9 nodey < nodes

10: for each assembly do > excluding the first
11: color <+ new unique color

12: parse each contig € assembly

13: Get node; following cases in lines [15] to

14: for kmer in contig do

15: if ﬂ node(kmer) then > If no node represents kmer in Graph
16: nodes <— new node(kmer, color, pos)

17: else if 3 singleton node(kmer) then

18: if color ¢ node(colors) then

19: add color to node(colors)
20: nodey <— node
21: else nodey < new node(kmer, color, pos)
22: else if node(kmer) € node;(edges) and color ¢ node(kmer) then > if the

previous node points to a node represent kmer, reuse that node

23: nodes <— node(kmer)
24: else nodey < INSERT_REPEAT(kmer, color, pos)
25: ADDEDGE(nodey, nodes)
26: nodel < nodes
27: end function
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Algorithm 4.2 Insert repeated sequence to de Bruijn graph

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:

14:

function INSERT_REPEAT( kmer: sequence, color: ID, pos: integer)

declare local is_merged <+ false
declare local max_score < 0
for each node(kmer) in Graph s.t. color ¢ node(colors) do
for color € node(colors) do
sequence’ < GETSEQUENCE(node, color)
score < PAIRWISE_ALIGNMENT (sequence, pos, sequence’, node(pos))
if score > max_score then
max_node < node
is_merged < true
max_score <— score
if is_merged = true then node < max_node
else node < new node({kmer, color, pos)

return node

Algorithm 4.3 SequOIA de Bruijn graph traversal algorithm

1:
2
3
4
5:
6
7
8
9

10:
11:
12:

13:
14:

15:
16:

function EXTEND( p: compact node, process_path: set of compact nodes)

declare local in_edges < GETINCOMINGEDGES(p)
declare local out_edges < GETOUTGOINGEDGES(p)
if p € process_path then return NULL
if all in_edges are explored and all out_edges are explored then return p
process_path < INSERT(p)
if p € branch nodes then
for Edge Direction € {forwards, backwards, innie, outie} do
if |unexplored edges| € Edge Direction > 1 then
p < RESOLVEBUBBLEORTIP(p, process_path, Edge Direction)

if p € combine nodes then

p < RESOLVECOMBINE(p, process_path)
if |unexplored edges| > 0 then

P < RESOLVEBRANCH(p, process_path)

process_path < ERASE(p)
return p
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Algorithm 4.4 SequOIA de Bruijn graph traversal algorithm — Solving Bubbles and Tips

1: function RESOLVEBUBBLEORTIP( p: compact node, process_path: set of compact
nodes, EdgeDirection)

2: declare local out_edges + GETOUTGOINGEDGES(p, EdgeDirection)
3: declare local max_score < 0

4: declare local best_extension < NULL

5: for e € out_edges do

6: q < ple]

7 MARKVISITED(e)

8: q <+ EXTEND(q, process_path)

9: score < SCORE(p)

10: if score > max_score then

11: MaxT_score < score

12: best_extension < q

13: if score = max_score then

14 if UNITIGLENGTH(q) > UNITIGLENGTH(best_extension) then
15: best_extension < q

16: p <+ MERGE(p, best_extension)

17: return p
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Algorithm 4.5 SequOIA de Bruijn graph traversal algorithm — Solving combine

1: function RESOLVECOMBINE( p: compact node, process_path: set of compact nodes)
2 declare local tip < false

3: declare local combined_nodes <~ GETCOMBINEBRANCHES(p)

4: declare local edges < GETOUTGOINGEDGES(p)

5 process_path < INSERT(combined_nodes)

6 if combined_nodes C start_nodes or

7 combined_nodes C end_nodes then tip < true

Consider two combined nodes p and ¢

8: if SAMEDIRECTION(p, ¢) then

9: if tip = true then > If tip, select the return best branch
10: P < RESOLVEBUBBLEORTIP(p, q)

11: return p > if bubble, relegate resolving to the source of the bubble
12: if |out_edges| = 0 then

13: p + MERGE(p, q)

14: return p

15: else

16: S p[e] > potential suffix
17: MARKVISITED(e)

18: s < EXTEND(s, process_path)

19: if SAMEDIRECTION(p, s) then

20: s <= RESOLVEBUBBLEORTIP(p, s)

21: p < MERGE(q, )

22: else if SAMEDIRECTION(q, s) then

23: s <— RESOLVEBUBBLEORTP(q, s)

24: p + MERGE(p, s)

25: else

26: P < RESOLVEBUBBLEORTIP(p, q)

27 p < MERGE(p, s)

28: return p
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Algorithm 4.6 SequOIA de Bruijn graph traversal algorithm — Solving branches

1: function RESOLVEBRANCH( p: compact node, process_path: set of compact nodes)
2 declare local edges + GETOUTGOINGEDGES(p, EdgeDirection)
3 if (efya € edges and eqyuiie € edges then

4 U £ p[efwd]

5: [ p[eoutie]

6: MARKVISITED(€ f4yq)

7 MARKVISITED (€outic )

8 p < resolve BubbleOrTip(u,v)

9 if (eper € edges and e € edges then
10: U <— p[ebck]
11: V< p[einnie]
12: p < RESOLVEBUBBLEORTIP(u, v)
13: for e € edges do
14: q <+ ple]
15: MARKVISITED(e)
16: q <+ EXTEND(q, process_path)
17: p < MERGE(p, q)
18: return p
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Chapter 5

Conclusion

In this dissertation we presented novel data structures and computational methods
to detect sequence overlaps and assemble overlapped sequences. We introduced Sequence
Decision Diagrams which are data structures that can compactly store finite sets of strings
and presented algorithms to efficiently perform set operation on them via memoization a
natural feature of decision diagrams. We also provided an algorithm to solve the all-pair
suffix-prefix problem using Sequence Decision Diagrams. In practice, genomic sequences
contain many variations due to SNPs, sequencing errors, and misassemblies, among other
reasons.

As part of SequOTIA, we developed a tool that detects overlaps between sequences
based on a Jaccard-like similarity score calculated over the number of shared kmers be-
tween the two sequences. The use of kmers allows for error resilience in detecting potential
overlaps. We used this approach to detect potential overlaps between BACs, represented

as contigs.
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The second component of SequOIA merges overlapping assemblies (represented as
sets of contigs) to create longer contigs. The algorithm is based on an augmented de Bruijn
graph that we developed. Our de Bruijn graph is a hybrid of the positional de Bruijn graph
and colored de Bruijn graph, that exploits the a priori knowledge of the kmer positioning
within a sequence and to which set that sequence belongs. We showed that our augmented
de Bruijn graph can resolve most repeats and produce a de Bruijn graph with fewer path
discrepancies. We used SequOIA to merge assembled cowpea BAC clones.

We also presented an extensive comparative analysis of the state-of-the-art assem-
bly reconciliation tools, to better understand the performance of these tools on this hard
problem. If assembly reconciliation was solved properly it would very useful. Since it is a
common practice to produce multiple assemblies using different assemblers, parameters, or
even sequencing technologies, the ability to reconcile multiple assemblies would allow one
to leverage the strengths of each assembler/parameters and obtain a higher quality merged

assembly.
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Appendix A

A Comparative Evaluation of
Assembly Reconciliation Tools:

Supplementary Material

A.1 Experimental results on GAGE assemblies: comments
on Tables [A.THA 15|

A.1.1 High contiguity, high correctness inputs (GAGE)

In the first set of experiments, the objective was to explore the contiguity /correctness
tradeoff. Specifically, we wanted to test the ability of reconciliation tools to take advantage
of the contiguity of the first input assembly and the correctness of the second in order to
create a merged assembly with a number of misassemblies comparable to the second as-

sembly and a contiguity comparable to the first assembly. The two input assemblies to be
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merged were chosen so that one has high N50 value (but possibly a relatively high number
of misassembly errors) and the other has few misassembly errors (and possibly a lower N50).

Table reports the results of merging the SOAPdenovo assembly (high N50)
with the ABySS assembly (low misassembly errors) for the three chosen genomes. Since
the assembly produced by ABySS on the Rhodobacter sphaeroides genome has more misas-
sembly errors than the assembly generated by SOAPdenovo we also considered the results
on Rhodobacter sphaeroides reported in Table [A5] where the input assemblies were pro-
duced by ALLPATHS-LG and SGA. The SOAPdenovo assembly was used as the “master”
assembly in all tools that distinguish the assembly inputs.

Observe in Table that on the Staphylococcus aureus genome, all tools increase
the contiguity by less than 3%, although the number of contigs decreased by 7 — 30%
(except for GAA). While none of the tools was able to improve assembly errors compared
to the ABySS assembly, GAA and MIX produced more errors than SOAPdenovo. CISA
produced the lowest number of misassemblies (13% less than SOAPdenovo) at the cost of
a 4% decrease in genome and gene coverage. Otherwise, GAM_NGS and Metassembler
maintained quality statistics close to that of SOAPdenovo.

In this and the rest of the experiments below, GAA consistently produced as-
semblies with predictable statistics. In the vast majority of the cases, GAA created a
merged assembly in which the number of contigs, the size of the resulting assembly, and
the number of misassemblies were very close to the sum of those statistics for the input as-
semblies. GAA’s gene coverage was typically low in Staphylococcus aureus and Rhodobacter

sphaeroides (not as much on Hg_chr14, where the gene coverage was generally high in com-
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parison to other merged assemblies), while the percentage of covered genome was relatively
high. While GAA’s N50 was low, in terms of NGA50 the contiguity was at least as good
as the most contiguous input assembly. In fact for Hg_chrij, GAA increased NGA50 by
19 — 123% except for one case in which the increase was negligible.

When the input was composed of scaffolds, all tools improved contiguity by less
than 5%, and reduced the number of scaffolds by 12 — 92%, with GARM reporting the
highest decrease. GARM was the only tool that significantly increased N50 and produced
the lowest number of misassemblies; however, GARM’s merged assembly covered less than
40% of the reference sequence and less than one third of the genes. In contrast, MIX’s
merged assembly covered 94% of the genes despite (i) including only about 44% of the
reference genome and (ii) decreasing the contiguity by 48%. If we exclude the number
of contigs and NGAJ50, all the other assembly statistics for GAM_NGS and Metassembler
are very similar to SOAPdenovo. None of the tools was able to reduce the number of
misassembly errors compared to ABySS; in fact, CISA and MIX produced more errors than
SOAPdenovo.

Despite the fact that ABySS’s assembly for Rhodobacter sphaeroides had a higher
number of misassembly errors than SOAPdenovo, none of the merged assemblies improved
on the number of misassemblies compared to SOAPdenovo. Except for GAA, the number
of misassembly errors produced by all tools were closer to the master (SOAPdenovo). As
expected, tools that rely on the master assembly had a lower number of misassemblies
than those that did not rank the inputs. With scaffolds as inputs, changes in NGA50 were

negligible for all tools except for CISA. With contigs as inputs, GAM_NGS improved the
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contiguity by at most 11%, Metassembler and MIX increased it by 2%, and CISA dropped
it by 85%. CISA also increased the number of contigs by 18%, and decreased genome
and gene coverage by about 45%. GAM_NGS’s assembly covered less than one quarter
of the genome and about one fifth of the genes sequences, but its output had quality
statistics similar to SOAPdenovo (with a 5% decrease in scaffolds). MIX and Metassembler
decreased the number of scaffolds by 30% and 39%, respectively; otherwise, they maintained
contiguity and coverage statistics within 1% of SOAPdenovo. GARM significantly improved
the contiguity in terms of N50 but maintained the same NGA50 as SOAPdenovo. GARM
decreased genome and gene coverage by 11%.

With contigs as inputs, GAM_NGS maintained the same genome and gene coverage
as SOAPdenovo. MIX and Metassembler produced comparable results, namely (i) they
both reduced the number of contigs by nearly one quarter, (ii) increased N50 by 10%, (iii)
maintained the same genome coverage, and (iv) decreased gene coverage by less than 2%.

In the majority of the cases, experimental results obtained with ALLPATHS-LG
(high N50) and SGA (low misassembly errors) on the Rhodobacter sphaeroides genome
(reported in Table followed similar patterns to the ones we observed in Table CISA
increased the number of contigs, but decreased the contiguity, genome and gene coverage
(although the reduction was far less this time). GAA followed the same general pattern
mentioned earlier. GAM_NGS did not increase contiguity but rather maintained it close to
that of the master assembly. Metassembler and MIX also did not increase contiguity, but
they reduced the number of contigs, as well as genome and gene coverage. ZORRO worked

for this experiment: it increased the number of contigs, decreased contiguity by 10%, but
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retained genome and gene coverage of ALLPATHS-LG. ZORRO’s merged assembly is the
only one that achieved a smaller number of misassembly errors than ALLPATHS-LG (but
still higher that SGA).

With scaffolds as input assemblies, CISA again reduced the number of contigs
and produced an assembly with low genome and gene coverage. GAM_NGS reduced the
number of contigs slightly but retained the quality statistics of the master assembly. Ob-
serve in Table that GARM improved N50 by 57% although it retained NGA50 close
to SOAPdenovo (the master assembly). Observe in Table that GARM maintained
ALLPATHS-LG’s contiguity statistics. In both experiments GARM decreased genome and
gene coverage; on the positive side, the consensus assembly had about 85% less scaffolds
compared to the master.

Experimental results on the Hg_chri4 with contigs as input assemblies (Table,
show that (i) GAM_NGS slightly improved contiguity, (ii) Metassembler maintained con-
tiguity with fewer contigs, (iii) GAA crashed, (iv) number of misassemblies were closer to
SOAPdenovo. With scaffolds as inputs, GARM drastically reduced the number of contigs,
but also decreased the genome coverage by 7%. GAM_NGS and Metassembler produced
assemblies with quality statistics close to SOAPdenovo except for a 26% decrease in the

number of contigs for Metassembler.

A.1.2 Reordering the inputs (GAGE)

As mentioned above, some of the assembly reconciliation tools assume that the

first input assembly is the master assembly, and should be “trusted” more (we call these
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tools asymmetric). The goal of this set of experiments is determine how the quality of
the merged assembly depends on the specific order of the inputs.

To determine how the ranking affected the results, we repeated the same experi-
ments reported in the previous section but switched the order of the inputs. A comparative
analysis of the results in Table and Table prompts a few observations. First, we
note that CISA, MIX, and GARM are symmetric (i.e., they do not require users to rank
the inputs, see Table , hence they are expected to be unaffected by the reordering.
Experimental results confirm that CISA and GARM are indeed unaffected. The reordering
however affected MIX results, albeit only slightly.

For Staphylococcus aureus, MIX’s contiguity statistics (N50 and NGA50) and
genome coverage were not affected by the reordering of the inputs. However, we observed
(i) a 2% decrease in gene coverage, (ii) a small difference in the number of contigs (+1), and
(iii) a small change in the number of misassemblies, although still higher than SOAPdenovo
in both cases.

On the Rhodobacter sphaeroides genome, all statistics remained unchanged except
for the number of misassemblies that increased after reordering. In addition, with contigs
as inputs we did not observe an increase in NGA50 after the reordering.

Despite the fact that GAA requires input ranking, the results for Staphylococcus
aureus and Rhodobacter sphaeroides were similar. The output statistics of GAA followed
the general pattern mentioned in the previous section. For Hg_chrij, GAA crashed in
one ordering but not on the other. For all three genome, GAM_NGS and Metassembler

produced consensus assemblies with quality statistics close to the master assembly.
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Note that the merged assemblies have higher contiguity in Table[A 1] in which the
master has higher N50. In contrast, the number of misassemblies were lower in Table
for both Staphylococcus aureus and Hg_chr1/ in which the master had lower errors (with the
exception of MIX). Merged assemblies for Rhodobacter sphaeroides had higher contiguity
and lower number of misassemblies, in which the master had higher N50 and lower number

of misassemblies (see Table |A.1]).

A.1.3 High-quality inputs (GAGE)

In the third set of experiments we tested the ability of the reconciliation tools to
merge two high quality assemblies. We selected two highly contiguous assemblies (i.e., small
number of contigs and scaffolds, high N50 values) and low number of misassembly errors.
Table show the result of merging assemblies produced by ALLPATHS-LG as first input
and either MSR-CA, SOAPdenovo, or CABOG as the second assembly.

Observe that for Staphylococcus aureus with contigs as inputs, GAM_NGS pro-
duced an improved assembly that (i) had no misassemblies, (ii) was 66% more contiguous,
and (iii) covered the same portions of the genome and the genes. The next best assembly
was by Metassembler with a 107% increase in contiguity and a 51% decrease in the num-
ber of contigs, but it had a slight increase in the number of misassemblies compared to
ALLPATHS-LG. MIX also improved the contiguity by 107% (N50), but due to the high
number of misassemblies (higher than MSR-CA) the increase in contiguity dropped to 4%
when aligned to the reference. MIX’s gene coverage also dropped by 37%. CISA improved
contiguity by 11%, and reduced the number of contigs by nearly a half, but it produced

a number of errors higher than ALLPATHS-LG. CISA also decreased genome and gene
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coverage. ZORRO decreased contiguity by 30% and increased the number of contigs by
22%, although it maintained genome and gene coverage.

With scaffolds as inputs, ALLPATHS-LG has no misassemblies, a lower N50 than
MSR-CA but higher NGA50. In general, asymmetric tools produced a lower number of
misassemblies and decreased the N50. For instance, GAM_NGS maintained quality statistics
of ALLPATHS-LG. Although ZORRO is asymmetric it decreased contiguity by more than
90%. On the other hand, symmetric tools had a higher number of misassemblies. GARM
achieved the highest increase of NGA50 (16%).

The contiguity of the merged assemblies improved 11% — 108% with the exception
of ZORRO, which decreased the contiguity by 30%. GARM increased contiguity the most
(108%) at the expense of (i) an additional 12% duplication rate, (ii) a number of misas-
semblies close to MSR-CA, and (iii) a 10% decrease in gene coverage. MIX introduced no
misassemblies, but covered only 25% of the genome and gene sequences. Notably, both
GAM_NGS and Metassembler (i) improved contiguity by 66.5%, (ii) reduced the number
of contigs, (iii) introduced no misassemblies, (iv) and maintained gene coverage. These
are two rare examples in which we observed an unquestionable improvement in the merged
assembly.

On the Rhodobacter sphaeroides genome, the two input assemblies had almost
the same number of misassemblies but the assembly produced by SOAPdenovo was much
less fragmented. Only MIX, Metassembler and GARM increased N50 by 37%, 43%, and
69%, respectively (with only Metassembler increasing NGA50 significantly). All other tools

decreased the contiguity. In terms of correctness, ZORRO and CISA (using scaffolds as
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inputs) reduced the number of misassemblies but also decreased the contiguity by 99% and
60%, respectively. Other tools produced merged assemblies with a number of misassemblies
not better than the inputs.

GARM improved the contiguity by 38% while CISA increased it by less than 2%.
GARM, CISA, and MIX reduced the number of contigs by 48%, 51%, and 60%, respectively,
but also decreased genome and gene coverage. MIX is the only tool that reduced the number
of misassemblies, but again its assembly only covered about half of the genome. None of
the tools improved both contiguity and the number of misassemblies.

In Hg_chrlj, GAA decreased the contiguity by 8%, but it improved the NGA50
by 76%, and increased the gene coverage by 13%. Nevertheless, it had a 198% inflation
rate and produced a number of misassemblies equal to the sum of the number of misassem-
blies in the two inputs. GAM_NGS reduced the number of contigs by 10%, improved the
contiguity (39% increase in N50, 28% increase in NGA50), slightly reduced the number of
misassemblies, but decreased the gene coverage by 11%. Metassembler produced quality
statistics that are very close to ALLPATHS-LG.

With scaffolds as inputs, GAM_NGS and Metassembler maintained similar quality
statistics to ALLPATHS-LG, with the exception of the number of contigs (Metassembler de-
creased it by 33%) and gene coverage (GAM_NGS and Metassembler decreased by 18% and
51%, respectively). GARM improved N50 but decreased NGA50 by 9%. It also increased
the number of misassemblies and decreased genome and gene coverage.

GARM improved the contiguity by 128% and reduced the number of contigs in

half at the cost of 14% inflation and about 41% increase in the number of misassemblies.
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GAA and GAM_NGS improved the contiguity by 76% and 28%, but only GAA increased

the gene coverage.

A.1.4 Highly-fragmented inputs (GAGE)

The goal of this set of experiments was to evaluate the performance of assembly
reconciliation tools when provided with two highly fragmented input assemblies. Input
assemblies were selected to have a high percentage of contigs shorter than 200 bps, a high
number of contigs and scaffolds, and low N50.

Table [A-4] shows the results of merging ABySS assembly and SGA assembly. Ob-
serve that when we used contigs as inputs, ABySS had a higher contiguity than SGA (except
in Hg_chr14). The opposite, however, was observed when scaffolds were provided in input.
In Staphylococcus aureus and Rhodobacter sphaeroides with contigs as inputs, all tools in-
creased N50 except for GAA. In terms of NGA50, only asymmetric tools maintained or
improved over NGA50 of the better input assembly (in Staphylococcus aureus we observed
up to 8% increase, and up to 17% in Rhodobacter sphaeroides). However, in Hg_chr1/(with
contigs as inputs) only GAM_NGS improved the N50. In terms of NGA50, GAA produced
a 123% increase over SGA, while GAM_NGS did not improve it over SGA, but it increased
it 33% over ABySS.

With scaffolds as inputs, we observed a decrease in N50 except for MIX and
GARM (when SGA inputs are scaffolds). MIX, GARM, and CISA are symmetric tools,
hence they are expected to perform better than other tools when the non-master input
has better quality. CISA, however, produced inferior results with scaffolds as inputs in

most experiments. It turns out that CISA with default parameters break scaffolds into
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contigs when a scaffold contains more than ten consecutive occurrences of Ns. MIX and
GARM enhanced or maintained N50 of SGA. In terms of NGA50, MIX maintained it, while
GARM slightly decreased it compared to SGA (yet still higher than ABySS). The number
of contigs decreased although it remained relatively high in the majority of the cases. CISA
had more than 80% decrease in the number of contigs with scaffolds as inputs, but the
genome coverage was poor. GARM reduced the number of contigs by 74 — 91%, regardless

of the genome coverage.

A.1.5 De Bruijn vs. string graph assembly (GAGE)

Here we tested the effect of merging assemblies generated using different assembly
strategies. Specifically, we merged an assembly generated by an assembler that uses a de
Bruijn graphs with an assembly produced by an assembler based on the string graph. Ta-
ble shows the result of merging an assembly produced by ALLPATHS-LG (based on the
de Bruijn graph) with an assembly produced by SGA (based on the string graph). Overall,
GAM_NGS, Metassembler, and MIX maintained similar assembly statistics as ALLPATHS-
LG.

Note that Staphylococcus aureus input assemblies (as contigs) had only one mis-
assembly. The merged assemblies also have one misassembly, with the exception of GAA
(two) and ZORRO (none). ZORRO corrected the assembly error without affecting N50 but
at the price of a 17% increase in the number of contigs. CISA also increased the number
of contigs, decreased NGA50 by 49%, and decreased the gene coverage by 15%. With scaf-
folds as inputs, ALLPATHS-LG’s assembly has no assembly errors. In fact, observe that

all merged assemblies did not have any misassemblies. GARM produced only 3 scaffolds
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and increased N50 by 31% but kept NGA50 close to ALLPATHS-LG, while decreasing less
than 6% of genome and gene coverage. CISA covered less than 40% of the genome, while
ZORRO decreased the contiguity by 99%.

On Rhodobacter sphaeroides with contigs as inputs, CISA and ZORRO decreased
the contiguity by 34% and 10%, respectively. CISA decreased genome and gene coverage
by 8%, while ZORRO maintained ALLPATHS-LG’s coverage. GAM_NGS and Metassem-
bler slightly reduced the number of contigs; otherwise they maintained ALLPATHS-LG’s
quality statistics. All tools produced a relatively high number of misassemblies (similar to
ALLPATHS-LG). With scaffolds as inputs, CISA, ZORRO, and GARM’s assembly statistics
followed the same of statistics of Staphylococcus aureus. All assemblies, with the exception
of CISA and ZORRO, had a number of misassemblies closer to ALLPATHS-LG. CISA again
covered less than one fifth of the genome and ZORRO decreased the contiguity by 99%.
GARM produced only four contigs but decreased the genome coverage by less than 5%.
GAM_NGS, Metassembler, and MIX produced consensus assemblies with quality statistics
comparable to ALLPATHS-LG.

In Hg_chri4(with contigs as inputs) GAM_NGS and Metassembler reduced the
number of contigs by 4% and 2%, respectively. GAM_NGS increased NGA50 by 2%. With
scaffolds as inputs, GAM_NGS and Metassembler maintained assembly statistics close to
ALLPATHS-LG except for the fact that Metassembler reduced the number of contigs by
21%. GARM reduced the number of contigs by 83%, maintained genome and gene cover-
age but increased the number of misassemblies by 9% (compared to ALLPATHS-LG) and

decreased NGA50 by 9%.
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GARM increased contiguity by 58%, while other tools improved it by less than
3%. GAM_NGS and Metassembler produced about the same number of misassembly errors
as the higher of the two inputs. GARM improved NGA50 the most, but also increased the

number of misassemblies by 42% and had 31% inflation rate.

A.1.6 Multiple inputs (GAGE)

In this set of experiments we tested the ability of the tools to merge more than
two assemblies. When an assembly reconciliation tool allowed no more than two assemblies
in input (see Table for a list), we merged them in an iterative fashion. For instance,
to merge three assemblies, we first merged two assemblies, then merged the result to the
third assemblies. Metassembler uses a similar strategy: when the user provides multiple
assemblies the tool iteratively performs pairwise reconciliation, where the output of one
iteration is the input of the next. The ordering of the input assemblies was chosen based
on feature response curve (FR curve), which is an assembly quality metric proposed in [61].
The FR curve represents the dependency between contigs that contains no more than 7
features and the corresponding genome coverage. The z-axis represents 7 and the y-axis
represent genome coverage: the “steeper” is the curve, the better is the assembly. We used
the FR curves in [75] to determine the merging order of the GAGE assemblies, starting
with the assemblies with highest quality. Results for an alternative ordering is discussed
in the next section. For tools that allowed to merge more than two assemblies (e.g., CISA
and MIX), the merging was done in one step from the original assemblies. Here we were
interested in measuring the contiguity and correctness of the resulting assemblies as the

number of input assemblies increases.
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Tables[A.6], [A.7], and [A_§} in addition to Figure and Figures[3.9 and show

the experimental results for Staphylococcus aureus, Rhodobacter sphaeroides and Hg_chri4,
respectively, when inputs are contigs. First observe that in several cases, the process of
iterative merging did not complete.

On Staphylococcus aureus and Rhodobacter sphaeroides, CISA generally improved
the contiguity and decreased the number of contigs as the number of merged assemblies
increased. The number of errors and the percentage of genome covered fluctuated over the
iterations. As the number of merged assemblies increased, CISA increased the duplication
rate and decreased the percentage of covered genes. GAA did not produce assembly files for
the first iteration. Although GAA did not work for this particular ordering it did produce
results for the alternative ordering reported in the next section.

In Staphylococcus aureus and Rhodobacter sphaeroides, GAM_NGS’s contiguity
improved over successive iterations, but the number of misassemblies errors did not de-
crease (it stayed close to the first master input in all iterations). On the positive side, (i)
the number of contigs was relatively small and (ii) the percentage of genome covered was
relatively high, and (iii) gene coverage was relatively high, although slightly lower than the
best gene coverage in the input assemblies. In contrast, the percentage of gene coverage
decreased for Hg_chr1j. Although the genome coverage and contiguity were high, the num-
ber of misassemblies was also relatively high. GAM_NGS increased NGA50 by at least 70%
compared to CABOG.

In Staphylococcus aureus, Metassembler’s contiguity improved and the number of

contigs decreased over successive iterations, but the number of misassemblies also increased.
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Metassembler maintained high genome and gene coverage, although slightly lower than the
best gene coverage in the input assemblies. In Rhodobacter sphaeroides, Metassembler’s
assembly did not improve after the forth iteration. Note that NGA50 was lower than BAM-
BUS2 and SOAPdenovo. Metassembler’s assembly had low genome and gene coverage and
number of misassemblies was about the average of the inputs. In Hg_chri4, the number of
contigs and misassembly errors were low and decreased over successive iterations. Contigu-
ity, genome and gene coverage were high, but slightly decreased over successive iterations.

MIX maintained a low number of misassemblies in most iterations but suffered
from low genome and gene coverage. Also, NGA50 was relatively poor. Since the genome
coverage in most iterations was less than 50% of the reference, no NGA50 was reported for
those iteration. On the Staphylococcus aureus genome, the coverage was less than 50% in
all iterations but it steadily improved with increasing number of inputs. On Rhodobacter
sphaeroides, the genome coverage was below 50% with four or more inputs.

ZORRO frequently failed to produce results. When it worked, it increased genome
and gene coverage. Contiguity usually started high, then fluctuated over iterations. ZORRO
produced relatively high number of contigs and misassemblies (somewhat in between the
values of the inputs).

We repeated the same experiment but with scaffolds as inputs. Results are re-

ported in Tables[A.9] [A.10], and [A.11] and Figures and CISA’s results show

that after a certain number of input assemblies, increasing the number of inputs did not af-
fect the results significantly. From that point forward, it generally improved the contiguity

and reduced the number of contigs as the number of merged assemblies increased, at the
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cost of decreased genome and gene coverage and about 25% inflation rate. The number of
misassemblies were with the range of input assemblies. CISA reached stability with four
inputs on Staphylococcus aureus and three inputs on Rhodobacter sphaeroides).

MIX maintained a low number of contigs albeit this number fluctuated in Rhodobac-
ter sphaeroides with increasing number of inputs. MIX also produced a high duplication
ratio. On Staphylococcus aureus, MIX produced a high number of misassemblies which
generally increased as the number of inputs increased. It maintained high genome coverage
but gene coverage was poor in comparison to the inputs. It also maintained high contiguity
except for the last iteration. On Rhodobacter sphaeroides, the number of misassemblies
were also relatively high but it fluctuated as the number of inputs increased. Genome cov-
erage increased steadily but gene coverage decreased. It also maintained high contiguity,
achieving the best NGA50 for less than five inputs.

ZORRO produced a high number of contigs and a low number of misassemblies on
Staphylococcus aureus and Rhodobacter sphaeroides. It maintained a high genome coverage
but it slightly decreased gene coverage. Contiguity was poor and generally decreased over
successive iterations.

GAM_NGS maintained results very close to the first input throughout all iterations
on Staphylococcus aureus, Rhodobacter sphaeroides, and Hg_chri4. In the latter genome,
GAM_NGS contiguity generally improved in successive iterations but so did the number of
misassemblies.

Metassembler maintained similar quality statistics to CABOG on Hg_chril/, al-

though the number of contigs slightly decreased over successive iteration. On Rhodobacter
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sphaeroides, Metassembler also maintained CABOG’s quality statistics with a slight de-
crease of (i) number of contigs, (ii) number of misassemblies, (iii) genome and gene cover-
age, and (iv) contiguity, as the number of iteration increased. On Staphylococcus aureus,
Metassembler also maintained quality statistics close but not identical to MSR-CA. In gen-
eral, Metassembler produced a small number of contigs. Also, as the number of inputs
increased, the number of misassemblies slightly decreased and the contiguity slightly im-

proved.

A.1.7 Multiple inputs (alternative ordering)

In this set of experiments we tested the ability of the tools to merge more than
two assemblies on an alternative ordering to the FR curves used in the main Text. Recall
that when an assembly reconciliation tool allowed no more than two assemblies in input
(see Table 1 in the main text for a list), we merged them in an iterative fashion starting
from the most contiguous assemblies (see main Text for more details)

Tables[A 12 [A.T3] [A14] and [A15|show the experimental results for Staphylococcus

aureus, Rhodobacter sphaeroides (two tables) and Hg_chr14, respectively on this alternative
ordering. Figures[3.8]-[3.12]summerize the results with respect to contiguity and correctness.
First observe that similar to what we observed for the ordering based on FR curves,
in many instances the process of iterative merging did not complete.
On Staphylococcus aureus and Rhodobacter sphaeroides, CISA generally increased
the contiguity and decreased the number of contigs as the number of merged assemblies
increased. The number of errors and the percentage of genome covered fluctuated over the

iterations. While the percentage of covered genes peaked with three input assemblies, CISA
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increased the duplication rate as the number of merged assemblies increased. GAA instead
increased contiguity, number of errors, and duplication rate and the percentage of covered
genome fraction, as the number of merged assemblies increased.

In Staphylococcus aureus, Rhodobacter sphaeroides, and Hg_chr1lj, GAA produced
a monotonic increase in duplication rate at successive iterations, while misassemblies seemed
to be the union of those present in the input assemblies. GAA’s contiguity did not increase
over successive iterations, but the genome coverage was relatively high, while gene coverage
which was very low in both Staphylococcus aureus and Rhodobacter sphaeroides.

GAM_NGS’s contiguity increased over successive iterations, but the number of
misassemblies did not decrease. On the positive side, the number of misassemblies was small
and the percentage of genome covered was high. In Staphylococcus aureus and Rhodobacter
sphaeroides, gene coverage was high, although slightly lower than the best gene coverage in
the input assemblies. In contrast, the percentage of gene coverage decreased for Hg_chrlj.

GARM increased the contiguity over successive iterations but also inflated the re-
sulting assembly. The number of misassemblies and the genome/gene coverage fluctuated.
The percentage of gene coverage decreased in Hg_chr14. In Rhodobacter sphaeroides, GARM
crashed after the third iteration. Note that in the second iteration of Staphylococcus aureus
only 26 contigs covered nearly 93% of the genome with 91% gene coverage, no misassem-
blies, and no inflation. In Staphylococcus aureus, Metassembler maintained a low error rate
and NGA50 (with the exception of Hg_chrl4) over successive iterations (although NGA50

was consistently low). In Hg_chr1j, NGA50 was low and also decreasing over iterations.
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In Rhodobacter sphaeroides, genome and gene coverage for Metassembler was low with
respect to input assemblies.

MIX maintained a low number of misassemblies in most iterations but suffered
from low genome and gene coverage. Its NGA50 fluctuated over successive iteration, but it
was relatively poor. Since the genome coverage in some iterations is less than 50% of the
reference, no NGA50 was reported for those iteration.

ZORRO frequently failed to produce results. When it worked, it increased the

percentage of genome coverage and gene coverage and it did not increased duplication.
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