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Abstract 

In practice, mathematics education is blocked (i.e., teaching 
one topic at a time; CCSS, 2010), but research generally 
promotes interleaving (i.e., teaching multiple topics together; 
Rohrer & Taylor, 2007).  For example, fraction arithmetic is 
blocked with students being taught fraction addition before 
fraction multiplication. Since students often confuse fraction 
operations to produce arithmetic errors, interleaved fraction 
arithmetic instruction might be more productive than blocked 
instruction to teach students to discriminate between the 
operations. Additionally, a cognitive task analysis suggests 
that fraction multiplication may be a prerequisite to fraction 
addition and thus reversing the blocking order may enhance 
learning. Two experiments with fraction addition and fraction 
multiplication were run. Experiments 1 and 2 show that 
interleaved instruction is generally better than the current 
blocked instruction. Experiment 2 provides evidence that 
blocking that reverses the standard order -- providing practice 
on fraction multiplication before fraction addition -- produces 
better learning. 

Keywords: blocking; interleaving; fractions 

Introduction 
A number of researchers recommend interleaving of 
practice, whereby multiple topics are taught and practiced 
together (Kornell & Bjork, 2008; Rohrer & Taylor, 2007).  
Others have pointed to circumstances where blocking, in 
which instruction/practice on each type of problem is 
grouped together and is much more typical in school 
instruction, is better for learning (Carvalho & Goldstone, 
2014). The Knowledge, Learning, and Instruction 
Framework (Koedinger, Corbett, & Perfetti, 2012) suggests, 
more generally, that effectiveness of an instructional 
recommendation depends on a fit with the specifics of the 
nature of knowledge to be acquired and what learning 
processes are needed to acquire such knowledge. For 
example, when the target knowledge involves a need to 
differentiate similar situations to respond appropriately, 
interleaving can help the induction of appropriate cues (e.g., 
as might be represented in the if-parts of production rules) 
for such differentiation. Fraction addition tasks (e.g., 1/3 + 
1/2 = ?) and fraction multiplication tasks (e.g., 1/3 * 1/2 = ?) 
are a good example in that the tasks look quite similar, only 
differing the operator (+ vs. *), but the appropriate 
responses are quite different (converting to common 

denominators vs. multiplying the numerators and 
denominators).  Thus, this domain provides a fitting context 
in which to explore theoretical conditions that can explain 
and predict when interleaving will be better than blocking. 
We present two experimental studies contrasting interleaved 
versus blocked practice of these two topics within fraction 
arithmetic. 

We also illustrate how a cognitive task analysis of this 
domain suggests a reasonable alternative to the typical and 
recommended approach of teaching fraction addition before 
fraction multiplication.  The analysis not only suggests that 
fraction multiplication is simpler than fraction addition, but 
that it may be a prerequisite to the extent fraction 
multiplication is used to implement the fraction conversion 
steps required in the fraction addition procedure.  The 
second of the two studies explores this hypothesis. 

Practitioners Block, Researchers Interleave 
In practice, mathematics is taught in a blocked fashion. The 
Common Core State Standards (CCSS, 2010) have been 
adopted by 42 of the 50 states, suggesting the CCSS are 
representative of the standards for when mathematics topics 
are generally taught in the United States. Based on these 
recommendations, fractions should be taught across 3 years, 
with different topics in different years. Note that these 
standards do not force blocking or blocking in this order, 
but the textbooks aligned with the Common Core follow the 
blocked fraction addition to fraction multiplication 
sequence. In contrast, research in interleaving and blocking 
mathematics knowledge shows advantages of interleaving 
over blocking (Rohrer & Taylor, 2007). Interleaving may 
aid learning of strategy selection because it provides 
negative feedback on over-generalized induction of when to 
perform an operation that blocking does not (cf., Li, Cohen, 
& Koedinger, 2012). 

Sequencing Fraction Arithmetic Instruction 
In 2008, the National Mathematics Advisory Panel 
concluded, “The most important foundational skill not 
presently developed, appears to be proficiency with 
fractions” (p. 18). Fraction arithmetic errors are commonly 
the product of incorrect strategy choices, not computational 
errors or fact recall errors (Siegler & Pyke, 2013). A 
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common incorrect strategy choice students make on fraction 
addition problems is to independently add the numerators 
and denominators of the addends, for example, getting 2/5, 
when adding 1/2 and 1/3  (Ni & Zhou, 2005). To make this 
issue more complicated, this independent whole number 
strategy is the correct method for solving fraction 
multiplication problems (e.g., 1/3 times 2/5 does equal 
(1*2)/(3*5)). Learning fraction multiplication might 
encourage students to make this error once again in fraction 
addition problems even if they did learn the correct fraction 
addition strategy. In addition, fraction addition knowledge 
may also interfere with fraction multiplication knowledge 
(Siegler et al., 2011). For example, students sometimes find 
a common denominator before solving a fraction 
multiplication problem and then only multiply the 
numerators resulting in an incorrect answer (e.g., 1/2 * 1/3 = 
3/6 * 2/6 = 6/6 = 1).  

Given the potential sources of confusion and the presence 
of interference errors, interleaving fraction arithmetic 
operations might be beneficial relative to blocking 
operations, especially for learning good strategy choices. 
Blocking can have the benefit, however, of strengthening 
prerequisite subskills before moving on to more complex 
skills (VanLehn, 1987). Contrary to typical practice, 
fraction multiplication may be a prerequisite to fraction 
addition since a variant of fraction multiplication is needed 
to get equivalent fractions in fraction addition problems 
with different denominators Further, fraction multiplication 
provides whole number multiplication practice that may 
support finding common denominators in fraction addition. 

Current Studies 
Experiment 1 compares blocked fraction addition problems 
before fraction multiplication problems to interleaving both 
problem types to see if interleaving alleviates interference 
errors between the two types of problems and if blocked 
instruction causes them. Experiment 2 compares blocked 
fraction addition to fraction multiplication, blocked fraction 
multiplication to fraction addition, and interleaving both 
problem types to see if progressive skill building (i.e., 
blocked fraction multiplication to fraction addition) 
outperforms the other blocked condition and reduces the 
interference amongst the fraction operations. 

Experiment 1 

Methods 

Participants. Participants were 70 sixth grade students in a 
school in the Greater Pittsburgh Area. 35 students were 
randomly assigned to each of the two conditions in the 
study. These students had fraction instruction, but were far 
from mastery. 

Procedure and Design. All participants were run during 
their regularly scheduled math class with the rest of their 
classmates. The study took approximately 80 minutes (i.e., 

two classroom periods). Students worked independently on 
a computer, using an online intelligent tutoring system. All 
students had a pretest, midtest, and posttest with two 
instruction periods between the assessment periods. The 
inclusion of the midtest allowed us to track changes over 
time.  

Conditions. Blocked Condition (Fraction Addition before 
Fraction Multiplication): Students see 24 fraction addition 
problems with correctness feedback at every step in the first 
instruction period followed by 24 fraction multiplication 
problems with correctness feedback in the second 
instruction period. 

Interleaved Condition: Students are presented the same 24 
fraction addition problems and 24 fraction multiplication 
problems with correctness feedback from the blocked 
condition in random order. This design was chosen as 
opposed to perfectly interleaving to avoid students from 
learning that they simply needed to use the alternating 
strategies with every other problem. Twelve addition and 12 
multiplication problems are randomly presented in each 
instruction block. 

Instruction. All students were presented with a tutor 
interface for practicing fraction addition problems with 
same denominators, fraction addition problems with 
different denominators, and fraction multiplication problems 
with different denominators (created with CTAT; Aleven, 
McClarren,, Sewall, & Koedinger, 2006). For all three 
problem types, students were provided a problem and 
provided a space to input a numerator and denominator 
answer. Students were also provided a checkbox they could 
use to indicate whether the fractions in the problem need to 
be converted before the problem could be solved (for 
fraction addition problems with different denominators). 
See Figure 1 below for example problems. If students were 
incorrect completing any particular step, the system would 
mark that step red. Students were required to input the 
correct answer for any given step before moving on to the 
next step. If he or she was stuck, the system provided up to 
three hints per step. The first hint was always abstract (e.g., 
for fraction multiplication problems, multiply the 
denominators to get the denominator answer). The second 
hint provided the concrete instantiation (e.g., in this case, 
that means multiplying 2 and 3). The final hint provided the 
answer (e.g., please input 6 into highlighted cell). Once 
students provided the correct answer, the step would turn 
green to acknowledge a correct answer. 

Assessment Tasks. Fraction Addition: Participants were 
presented 4 fraction addition problems (2 same denominator 
and 2 different denominators). Students were scored on 
accuracy and incorrect strategy choice. Accuracy was based 
on students having the correct magnitude (i.e., if the answer 
was 1/2, all equivalent fractions, even if they are not 
reduced, count as a valid answer). In this case, an incorrect 
strategy choice reflects a strategy choice that would be 
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successful for a fraction multiplication problem. This 
includes the independent whole number strategy (adding the 
numerators and denominators independently) or multiplying 
either the two numerators or the two denominators while 
adding the others. 
 

 

 

 
Figure 1. Example instructional interfaces of (a) a fraction addition 

problem with different denominators before converting, (b) a 
fraction addition problem with different denominators after the 

student requests to convert denominators, and (c) a fraction 
multiplication problem. Students were prompted to solve the 

following fraction arithmetic problem for every problem provided. 
 
Fraction Multiplication: Participants were presented 4 
fraction multiplication problems (2 same denominator and 2 
different denominators). Students were scored on accuracy 
and incorrect strategy choice. Accuracy was based on 
students having the correct magnitude. In this case, an 
incorrect strategy choice reflects a strategy choice that 
would be successful for a fraction multiplication problem. 
This includes finding a common denominator and only 
multiplying the numerators (assuming a common 
denominator was not present already), multiplying the 
numerators (or denominators) and adding the denominators 
(or numerators). 
Fraction Division: Participants were presented 4 fraction 
division problems (2 same denominator and 2 different 
denominators) at posttest only. Students were scored on 
accuracy. 

Results 

Blocked Addition-to-Multiplication VS. Interleaved. In a 
regression, both pretest proportion correct and condition 
(interleaved = 1) were used to predict posttest proportion 
correct (R2 = 32.54%, F(2,67) = 16.16, p < .01). Pretest was 
a significant predictor (i.e., students with higher scores 
pretest scores did better on the posttest; B = 0.50 (0.10), t = 
5.06, p < 0.01). Condition was a marginally significant 
predictor (i.e., interleaved marginally outperformed 
blocking at posttest; B = 0.08 (0.05), t = 1.80, p = 0.08). The 
interleaved condition had a posttest accuracy of 79% 
compared to the blocked addition-to-multiplication posttest 
accuracy of 68%. 

 

 
Figure 2. Students in the blocked addition-to-multiplication 

condition in Experiment 1 performed better on fraction addition 
after fraction addition training (between the pretest and the 

midtest), while doing worse on fraction multiplication. After 
fraction multiplication training (between midtest and posttest), 

students performed better on fraction multiplication and worse on 
fraction addition. Error bars reflect +/- 1 SE. 

Transfer to Fraction Division. An independent t-test was 
conducted to compare posttest division proportion correct 
between conditions. The interleaved group significantly 
outperformed the blocked addition-to-multiplication group 
(70% vs. 57%; t = -2.27, df = 66, p = 0.03). 

Evidence for Interference. Figure 2 shows how blocked 
fraction addition practice (before the midtest) changes 
performance on fraction addition and fraction multiplication 
and how fraction multiplication practice (between mid and 
posttest) produces further changes. Notice how there is 
positive transfer within the two task types, but negative 
transfer or interference between them. Paired t-tests 
demonstrate that fraction addition practice between the 
pretest and midtest produces improvement on fraction 
addition (56% vs. 82%, t = -4.61, df = 37, p < 0.01), but 
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decline on fraction multiplication (62% vs. 48%, t = 2.58, df 
= 37, p = 0.01). Similarly, practice on fraction 
multiplication between the midtest and the posttest produces 
improvement on fraction multiplication (48% vs. 82%, t = -
3.34, df = 34, p < 0.01), but decline on fraction addition 
(82% vs. 70%, t = 2.63, df = 34, p = 0.01). 

Insights from Process Data. We analyzed the learning 
process data to further investigate why the interleaved 
practice may have yielded better learning. To do so, we fit a 
logistic regression model predicting first-attempt correctness 
on each step of each problem. The predictors included an 
intercept parameter for each student, an intercept parameter 
for each problem step (e.g., entering the correct numerator 
on a multiplication problem) for each condition (blocked vs. 
interleaved), and a slope parameter for each type of problem 
step for each condition. Examining the beta estimates 
revealed striking condition-driven differences in one 
particular type of skill reflecting the very initial step in 
which students must check a box to indicate whether to 
convert the fractions. In particular, the slope estimates for 
this skill were lower in the interleaved than in the blocked 
condition, suggesting a slower progression in mastering this 
skill during learning (Figure 3). Yet, the slower progression 
on this skill resulted in better pre-post gains. 

 
Figure 3. Process data learning curves for the skill of 

deciding whether to convert fractions. Severe interference 
when switching problem types is apparent in the blocked 

condition (black) but is more incremental in the interleaved 
condition (grey). 

 
   We interpreted this as evidence of local trial-to-trial 
interference between problem types, in the step where 
students must decide the appropriate procedure to carry out 
given the problem (i.e., they had to pay attention to the 
operator to see if it was a ‘+’ or ‘x’). Despite evidence of 
more local interference and slower progression in this 
procedure selection step, students get much more explicit 
practice handling the effects of such interference. We 
hypothesize that this “procedure selection” practice 
underlies the superior pre-post gains observed in the 
interleaved condition. 

Figure 3 also illustrates the striking interference that 
occurs for this procedure selection skill when there are shifts 
between problem types in the blocked addition-to-
multiplication condition. This interference is apparent at the 
sharp learning curve dips that occurs in the fraction addition 

block at the point where students switch from adding same-
denominator fractions (which do not require checking the 
box to convert denominators) to adding different-
denominator fractions (which do require checking the box), 
and again at the point where students switch to multiplying 
fractions (which do not require checking the box). 

Discussion and Motivation for Experiment 2 

We saw support for the hypothesis that interleaved fraction 
addition and multiplication practice produces better learning 
than does conventional blocked ordering, particularly on the 
measure of transfer to fraction division. We found clear 
evidence of interference that we have previously modeled as 
over-generalized induction of the if-part of production rules 
in blocked practice (Li et al., 2012).  Interleaved practice 
provides frequent negative feedback that can be used to 
refine the if-part to prevent over-generalization errors.   

In Experiment 2, we replicated the two conditions from 
Experiment 1 and included fraction division at all 
assessment points.  Further, based on cognitive task analysis 
supported by the tutor process data, we also added a third 
condition that provides blocked instruction in a non-
conventional ordering, going from fraction multiplication to 
fraction addition. In the tutor process data, we observed 
interference on specific steps within fraction arithmetic 
procedures such as students incorrectly trying to apply the 
independent whole number strategy to a fraction addition 
problem (Liu, Patel, & Koedinger, 2016). These errors were 
more likely if there had been practice on fraction 
multiplication problems prior to the fraction addition 
problem.  We also observed student difficulties with finding 
a common denominator, but also with converting to 
equivalent fractions.  Since this step involves fraction 
multiplication, at least in principle, we wondered whether 
there may be positive transfer from fraction multiplication 
to fraction addition.  

Experiment 2 

Methods 
Participants were 118 sixth grade students in a school in the 
Greater Pittsburgh Area. 59 students were in the interleaved 
condition, while 59 students were in the blocked condition. 
In the blocked condition, 29 students were given fraction 
addition training before fraction multiplication training, and 
the other 30 students were given fraction multiplication 
training before fraction addition training. 

The main difference from Experiment 1 is that this 
experiment included an additional blocked condition, 
moving from fraction multiplication to fraction addition. In 
this condition, students saw 24 fraction multiplication 
problems followed by 24 fraction addition problems with 
correctness feedback on every step of all problems. This 
experiment also employed a delayed posttest 3 days after the 
study concluded, and included fraction division problems at 
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all time points. All remaining methods were the same as in 
Experiment 1.  

Results 
Interleaved vs. both Blocked Conditions. A regression 
was run with pretest proportion correct and condition (1 for 
interleaved and 0 for both blocked conditions) predicting 
proportion correct on the delayed posttest (R2 = 55.44%, 
F(2,105) = 65.32, p < 0.01). Both pretest (B = 0.73 (0.06), t 
= 11.40, p < 0.01) and condition (B = 0.06 (0.03), t = 2.28, p 
= 0.02) were significant predictors. The interleaved 
condition had a posttest accuracy of 79% compared to the 
blocked posttest accuracy of 74%. 
 

 
 

Figure 4. The three sequencing groups in Experiment 2 
started with similar accuracies at pretest, but the interleaved 

and blocked multiplication-to-addition conditions 
outperformed the standard blocked addition-to-

multiplication on both the posttest and delayed posttest. 
 

Comparing Blocking Orders Individually. Separating the 
blocked conditions by order type reveals a more interesting 
story (see Figure 4). In a regression, pretest and condition as 
a factor (all conditions were compared to the blocked 
addition-to-multiplication condition) were used to predict 
the delayed posttest (R2 = 57.13%, F(3,104) = 47.34, p < 
0.01). Pretest was a significant predictor (B = 0.73 (0.06), t 
= 11.59, p < 0.01). On average, the students in the blocked 
multiplication-to-addition condition outperformed the 
students in the blocked addition-to-multiplication condition 
by 8% (78% vs. 70%; B = 0.07 (0.04), t = 3.57, p = 0.04). 
On average, the students in the interleaved condition 
outperformed the students in the blocked addition-to-

multiplication condition by 9% (79% vs. 70%; B = 0.10 
(0.03), t = 3.12, p < 0.01). Note: The interleaved condition 
did not outperform the blocked multiplication-to-addition 
condition (79% vs. 78%; B = 0.02 (0.03), t = 0.88, p = 0.38). 
Blocked Multiplication-to-Addition Does Not Cause 
Interference Errors. Four paired t-tests were conducted to 
test changes in fraction multiplication and fraction addition 
from pretest to midtest and midtest to posttest in the blocked 
multiplication-to-addition condition (the blocked addition-
to-multiplication followed similar interference patterns as 
experiment 1). Specifically, these t-tests were designed to 
test if learning fraction multiplication causes worse 
performance on fraction addition (and vice versa) due to 
overgeneralization errors. After being taught fraction 
multiplication between the pretest and midtest, students got 
better at fraction multiplication (79% vs. 91%, t = -1.93, df 
= 29, p = 0.06) and stayed the same at fraction addition 
(55% vs. 58%, t = -0.43, df = 29, p = 0.66). After being 
taught fraction addition between the midtest and the 
posttest, students got better at fraction addition (58% vs. 
78%, t = -3.33, df = 27, p < 0.01) and stayed the same at 
fraction multiplication (91% vs. 90%, t = -0.07, df = 27, p = 
0.95). 
Blocked Addition-to-Multiplication Practice Interferes 
with Fraction Division. The previous study showed an 
advantage of interleaving to blocking in terms of fraction 
division accuracy at posttest. This advantage appears to be 
due to interference in the blocked addition-to-multiplication 
condition. Changes in division accuracy were only observed 
in the blocked addition-to-multiplication condition between 
the pre- and mid-test (72% vs. 50%, t = 2.68, df = 26, p = 
0.01). This decline in performance appears to result from 
over-generalization of fraction addition procedures. 

General Discussion 
Perhaps the most interesting result suggests that the U.S. 
curriculum teaches fraction addition and fraction 
multiplication in the least effective way out of the three 
alternatives we explored. Across both experiments, blocked 
fraction addition-to-multiplication practice produced 
significantly less learning than both interleaved practice and 
blocked fraction multiplication-to-addition practice.  

Consistent with theory (Li et al, 2012; Rohrer & Taylor, 
2007), we observed evidence of interference between 
practice trials of different kinds of fraction operations. That 
interference was particularly pronounced for fraction 
multiplication and division after an initial block of fraction 
addition practice and for fraction addition after a second 
block of fraction multiplication practice (see interference 
sections under the results). The generally slower learning 
rate in the interleaved condition in Experiment 1 is 
consistent with interference from over-generalization during 
interleaved practice, but the better posttest performance 
suggests these over-generalizations were at least somewhat 
remediated by error feedback during interleaved practice. 
          We did not find clear evidence of interference in the 
blocked multiplication-to-addition condition. Perhaps the 
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lower cognitive load of starting with a simpler task, namely 
fraction multiplication, left students with capacity for more 
deliberate and accurate reasoning about strategy selection.  
Thus, they may have been better able to avoid over-
generalizing the fraction multiplication strategy 
(independent whole number operations) to fraction addition. 
Further, when moving to fraction addition, the prior fraction 
multiplication practice may have aided performance of key 
steps, particularly finding a common denominator (which 
requires whole number multiplication) and converting the 
numerators to maintain equivalent fractions (which arguably 
requires faction multiplication, e.g., 1/2*2/2 = 2/4). With 
better prior preparation, students may have had more 
cognitive headroom to more deliberately avoid over-
generalizing similar to above, but in this case from fraction 
addition to fraction multiplication or division. While this 
argument is, in broad strokes, consistent with VanLehn 
(1987), a precise application of the SimStudent model in Li 
et al (2012) would still predict interference due over-
generalization. Thus, more work is warranted. A replication 
of this reverse blocking effect is desirable. 

Applications to Education 
In the current U.S. standards, fraction arithmetic training 
follows the same order as whole number arithmetic training 
(addition, subtraction, multiplication, and finally, division). 
While there may be some appeal to ordering the operations 
the same way, our results imply that interleaving practice 
among different operations yields superior learning 
outcomes. Interleaved practice forces students to explicitly 
practice recognizing when to carry out which procedure, an 
aspect that is important for overcoming interference. An 
alternative implication is that re-structuring blocked 
instruction to progress from simpler subskills to more 
complex skills (i.e., practicing fraction and whole number 
multiplication before adding fractions with different 
denominators), could be more optimal than what is currently 
implemented in classrooms.  

Generalizing to Other Domains 
Our studies targeted the fraction arithmetic domain and past 
experience and theory give us pause in suggesting cross-
domain generalizations (Koedinger et al, 2012). We 
specifically chose fraction addition and multiplication 
because they present highly similar tasks features that 
require different strategic responses.  Other task type pairs 
that have this characteristic are good candidates for applying 
interleaving.  For example, tasks types of finding the area 
versus perimeter of figures are highly similar (with the 
words “area” or “perimeter” sometimes being the only 
difference) and thus interleaving practice of these task types 
should be effective at reducing over-generalization errors 
(i.e., computing the area on a perimeter problem). On the 
other hand, we also found evidence consistent with some 
forms of blocking being as effective as interleaving.  The 
benefits of blocking may be particularly enhanced when 
subskills accumulate into more complex tasks. Thus, we 

recommend careful cognitive task analysis to support the 
decision of when to block or interleave. 
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