
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
A satisfiability algorithm for constant depth boolean circuits with unbounded fan-in gates

Permalink
https://escholarship.org/uc/item/4h08t0t1

Author
Matthews, William Grant

Publication Date
2011

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4h08t0t1
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Satisfiability Algorithm for Constant Depth Boolean Circuits with
Unbounded Fan-In Gates

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

William G. Matthews

Committee in charge:

Professor Russell Impagliazzo, Co-Chair
Professor Ramamohan Paturi, Co-Chair
Professor Samuel R. Buss
Professor Daniele Micciancio
Professor Jacques Verstraete

2011

Copyright

William G. Matthews, 2011

All rights reserved.

The dissertation of William G. Matthews is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Co-Chair

Co-Chair

University of California, San Diego

2011

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Tables . vi

List of Algorithms . vii

Acknowledgements . viii

Vita . ix

Abstract of the Dissertation . x

Chapter 1 Introduction . 1
1.1 Previous Work . 4
1.2 Main Results and Techniques 6
1.3 Acknowledgements . 9

Chapter 2 Preliminaries . 10
2.1 Circuits and Satisfiability 10

2.1.1 Subexponential Size AC0 Circuits for More Gen-
eral Classes . 12

2.1.2 Block Parity Circuits 14
2.2 Restrictions and Regions 15
2.3 Canonical Decision Trees 16
2.4 Acknowledgements . 17

Chapter 3 Switching Lemmas . 18
3.1 H̊astad’s Switching Lemma 20
3.2 Razborov’s Switching Lemma 22
3.3 Extended Switching Lemma 26
3.4 Acknowledgements . 29

Chapter 4 Algorithms for CNF Satisfiablity 30
4.1 PPZ Algorithm . 31
4.2 Schöning’s k-sat Algorithm 33
4.3 Lokshtanov–Paturi Algorithm 35
4.4 Our k-sat Algorithm . 37

4.4.1 Optimizing the Constant 39
4.5 Schuler’s Algorithm . 40
4.6 Acknowledgments . 44

iv

Chapter 5 A Satisfiability Algorithm for AC0 45
5.1 Algorithm Details . 47
5.2 Switching Algorithm . 55
5.3 Acknowledgements . 59

Chapter 6 Uniquely Satisfiable k-sat Instances with Almost Minimal Oc-
currences of Each Variable . 60
6.1 Introduction . 60
6.2 Definitions and Results 62
6.3 Proofs . 64
6.4 Acknowledgments . 67

Chapter 7 Lower Bounds . 68
7.1 Switching Lemma Based Lower Bounds 69
7.2 AC0 Algorithm Based Lower Bounds 72

7.2.1 New Proofs of H̊astad’s Lower Bounds 72
7.2.2 Correlation of AC0 with Parity 73

7.3 Williams’ Approach . 74
7.3.1 Overview . 75
7.3.2 Towards NEXP 6⊆ NC1 76

7.4 Acknowledgements . 77

Bibliography . 78

v

LIST OF TABLES

Table 1.1: Some of the best known satisfiability and counting results. . . . 3

vi

LIST OF ALGORITHMS

Algorithm 4.1: PPZ(F) . 31
Algorithm 4.2: Schöning (F) . 34
Algorithm 4.3: KCNFEnumerate(F) . 38
Algorithm 4.4: Schuler(F, k) . 41
Algorithm 4.5: SchulerEnumerate(F, k,R = (R, ρ)) 43

Algorithm 5.1: BottomFanInReduction(C, k) 48
Algorithm 5.2: DepthReduction(C, q) . 50
Algorithm 5.3: RepeatedDepthReduction(C, q) 51
Algorithm 5.4: AC0Enumerate(C) . 52
Algorithm 5.5: SwitchingAlgorithm(Φ = (φ1, . . . , φm), q) 56

vii

ACKNOWLEDGEMENTS

I would like to thank my advisors Russell Impagliazzo and Ramamohan

Paturi for endless ideas, advice, support, discussions, and quite often counter ex-

amples to some of my overly ambitious ideas.

I am very grateful to my parents, John and Margaret Matthews, my siblings

Michael and Elizabeth, and to Chessa Scullin for their support and encouragement.

Chapters 1–4 in part, and Chapters 5 and 7 in full are based on joint

work with Russell Impagliazzo and Ramamohan Paturi, submitted to the 2012

ACM-SIAM Symposium on Discrete Algorithms. Chapter 6 is joint work with

Ramamohan Paturi and appeared in SAT, 369-374, Lecture Notes in Computer

Science 6175, 2010.

viii

VITA

2004 B. S. in Computer Science, University of New Mexico

2005-2011 Graduate Research & Teaching Assistant, University of Cal-
ifornia, San Diego

2011 Ph. D. in Computer Science, University of California, San
Diego

PUBLICATIONS

R. Impagliazzo, W. Matthews, R. Paturi, “A Satisfiability Algorithm for AC0”,
submitted, 2011.

W. Matthews, R. Paturi, “Uniquely Satisfiable k-SAT Instances with Almost Min-
imal Occurrences of Each Variable”, SAT, 369-374, LNCS 6175, 2010

S. Arora, R. Impagliazzo, W. Matthews, and D. Steurer, “Improved Algorithms
for Unique Games via Divide and Conquer”, ECCC, Report TR10-041, 2010

ix

ABSTRACT OF THE DISSERTATION

A Satisfiability Algorithm for Constant Depth Boolean Circuits with
Unbounded Fan-In Gates

by

William G. Matthews

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor Russell Impagliazzo, Co-Chair
Professor Ramamohan Paturi, Co-Chair

We consider the problem of efficiently enumerating the satisfying assign-

ments to AC0 circuits. AC0 circuits are Boolean circuits with n inputs and their

negations, one output, m = poly(n) total gates, and constant depth, and consist

of unbounded fan-in AND and OR gates. The primary technical tool we use is

a new algorithmic approach for efficiently simplifying restricted classes of circuits.

This approach is based on a new extended version of H̊astad’s Switching Lemma.

As the main result, we present a Las Vegas algorithm which takes an

AC0 circuit as input and outputs a set of restrictions (assignments to subsets

of the inputs) which partition {0, 1}n such that under each restriction the out-

x

put of the circuit is constant. With high probability, the algorithm runs in

time poly(m,n) · 2n(1−µ) and outputs at most 2n(1−µ) restrictions, where µ =

1/O(lg m
n

+ d lg d)d−1. This is optimal up to the constants in the big-O for enu-

merating solutions with restrictions. This also implies the best known algorithm

for AC0 circuit satisfiability and for counting satisfying assignments.

Using similar techniques, we also give an algorithm for enumerating the

solutions to a k-cnf, but where µ = 1/O(k). Previously, algorithms with similar

savings µ were known for finding a single satisfying assignment to a k-cnf, but

not for counting or enumerating satisfying assignments.

These results have some interesting applications to circuit lower bounds.

We prove a new bound on the correlation of AC0 circuits with parity which is

optimal up to constants, and show how several classic AC0 circuit lower bounds

follow straightforwardly from our algorithm. Then, we use a powerful theorem due

to Williams to show how a minor improvement in the running time for finding a

single satisfying assignment for an AC0 circuit would imply NEXP 6⊆ NC1.

xi

Chapter 1

Introduction

Circuit satisfiability, deciding whether a Boolean circuit has an assignment

to its inputs where it evaluates to true, is essentially the original NP-complete

problem [Coo71, Lev73], and in many ways, the canonical NP-complete problem.

It is particularly important both theoretically and pragmatically since search prob-

lems reduce to circuit satisfiability without increasing the size of the search space.

In contrast, reductions to special cases such as k-sat often increases the number

of variables dramatically. Despite this downside, k-sat, and to a lesser extent

cnf-sat, have many algorithms which have been analyzed theoretically and im-

plemented practically with astounding success. On the other hand, fairly little is

known either in theory or in practice about the difficulty of satisfiability problems

for circuits even slightly more general than cnfs, much less for arbitrary circuits.

This raises several natural questions: For which classes of circuits are there

non-trivial (faster than enumerating the entire search space) algorithms for satisfi-

ability? How does the complexity of satisfiability algorithms change as increasingly

general classes of circuits are considered? Formally, for an algorithm that decides

satisfiability for circuits in a class C, we express its worst-case running time as

|C| · poly(n) · 2n(1−µ) where C ∈ C is a circuit with n inputs. We say that µ is the

savings over exhaustive search and write it in terms of n and the parameters of

the class C, for example, the ratio of gates or wires to the number of inputs, and

depth.

When can we exploit the structural properties of C to obtain savings over

1

2

exhaustive search? What are the best savings for various circuit classes? How

is the expressive power of a circuit class related to the amount of savings for its

satisfiability problem?

We also consider many of the same questions with respect to algorithms for

the canonical #P-complete problems of counting the number of satisfying assign-

ments for the same classes of circuits. Like in the satisfiability case, #k-sat has

been studied to some extent both theoretically and empirically whereas very little

is know about #circuit-sat for more general classes of circuits.

Both circuit satisfiability and counting satisfying assignments have numer-

ous practical applications such as planning, model-checking, and Bayesian reason-

ing. Most of the effort has been concentrated on cnfs (and in particular k-cnfs),

and for some very structured families of problems, state-of-the-art programs can

handle cnfs with hundreds of thousands of variables and millions of clauses [MZ09].

Circuit satisfiability, rather than just cnf-sat, is important because these un-

derlying problems (model-checking, etc.) reduce to circuit satisfiability without

increasing the search space, in stark contrast to the reductions to cnfs. Less is

known about satisfiability for general circuits, but there have been some promising

empirical results taking advantage of both the added structure given by circuits

and the reduced search space [TBW04, WLLH07].

We approach these problems from a theoretical rather than empirical point

of view. The main result we show is an algorithm which enumerates satisfying

assignments to AC0 circuits. AC0 is the class of constant depth circuits con-

sisting of unbounded fan-in AND and OR gates. Since circuits may have Ω (2n)

satisfying assignments, we construct a set of restrictions which partition {0, 1}n

such that under each restriction the value of the circuit is constant. It turns out

that partitioning the input space this way gives an efficient representation for all

the satisfying (and unsatisfying) assignments. The savings of this algorithm are

the best known, and naturally generalize the savings of many of the best known

satisfiability algorithms for more restricted classes of circuits, and in addition solve

the corresponding counting problems with the same savings. For cnf-sats and

k-sats our algorithms are the best known for counting satisfying assignments, and

3

Table 1.1: Some of the best known satisfiability and counting results.
Throughout the table, n denotes the number of variables, m denotes the number
of gates or clauses, c = m/n is the ratio of the size of the circuit to the number of
inputs, k bounds the fan-in of bottom level gates, and d denotes the depth of the

circuit.

Problem Savings Source

3-sat 0.614 [PPSZ05, Her11]
k-sat 1.227/(k − 1) [PPSZ05]
k-sat 1/O (k) [PPSZ05, PPZ99,

Sch99, LP11], Our al-
gorithm [IMP11]

#2-sat 0.671 [FK07]
#3-sat 0.2569 [DJW05]
#k-sat 1/O

(
2k
)

[LPI01]
#k-sat 1/O (k) Our algorithm [IMP11]
cnf-sat 1/O (lgm) [Sch05]
cnf-sat 1/O (lg c) [CIP06]
#cnf-sat 1/O (lg c) Our algorithm [IMP11]
Boolean formulas, satis-
fiability and counting

1/poly(c) [San10]

AC0 satisfiability 1/O(c2d−2−1 lg3·2d−2−2 c) [CIP09]
AC0, satisfiability and
counting

1/O(lg c+ d lg d)d−1 Our algorithm [IMP11]

ACC0 satisfiability Θ
(
n2−Θ(d)−lgm

n

)
[Wil11]

have similar asymptotic savings as the best known algorithms for satisfiability.

Often, the same ideas which are used to give improved satisfiability algo-

rithms can also be used to prove circuit lower bounds. In our case, this connection

holds in both directions: We used ideas from circuit lower bounds to design our

algorithms, and we used our algorithm as a tool to reprove many classic AC0 lower

bounds and give a new, essentially optimal, lower bound on the correlation of AC0

circuits with parity.

Table 1.1 summarizes our algorithmic results in comparison to some of

the previous and best known results. In Section 1.1 we give more details on the

previous results, and in Section 1.2 we formalize our main theorems.

4

1.1 Previous Work

Among the satisfiability problems for various circuit classes, the k-sat prob-

lem has attracted the attention of several researchers since Monien and Speck-

enmeyer [MS85] first showed that it can be computed in less than 2n time in

the worst-case, that is, in time |F |2n(1−µk) for µk > 0 where F is a k-cnf. Re-

searchers have obtained a series of improvements for µk, with particular attention

to the case k = 3. Currently, the best known savings for 3-sat is about 0.614 for

randomized algorithms [PPSZ05, Her11] and about 0.4157 for deterministic algo-

rithms [Sch99, MS11]. The best known µk is of the form Θ(1/k) [PPZ99, Sch99].

For counting the solutions to a k-cnf (#k-sat), less is known. [FK07, DJW05]

give the best known algorithms for #2-sat and #3-sat with savings 0.671 and

0.2569 respectively, and [LPI01] give an algorithm for general #k-sat with savings

1/O
(
2k
)
.

Much less is known about the nature of savings for satisfiability problems

for more expressive circuit classes. Schuler [Sch05] has shown that the satisfiability

of an m-clause CNF F can be determined in time |F |2n(1− 1
1+lgm

). Using a bit more

careful analysis, Calabro et al. [CIP06] have shown that the satisfiability of a cn-

clause CNF F in n variables can be checked in time |F |2n(1− 1
Θ(lg c)

). Subsequently,

Calabro et al. [CIP09] have considered the question of satisfiability of bounded-

depth unbounded fan-in circuits over standard basis (AC0 circuits) and shown that

the satisfiability of AC0 circuits C of size cn and depth d can be decided in time

|C|2n(1−µ) where µ ≥ 1/O(c2d−2−1 lg3·2d−2−2 c). Santhanam [San10] has considered

cn-size formulas F with no depth restriction and showed that the satisfiability

problem for such formulas can be solved in time |F |2n(1− 1
poly(c)). Like our results,

Santhanam’s also generalize to counting and enumerating satisfying assignments.

More recently, Williams [Wil11] has shown that the satisfiability of ACC0 circuits

C of size s can be solved in time |C|2
n

(
1−Θ

(
n2−Θ(d)−lg s

n

))
.

In this paper, we return to AC0 circuits and seek further improvement in

the savings for the satisfiability algorithm for AC0 circuits of size cn and depth d.

While the algorithm in [CIP09] obtains savings in terms of c and d independent of

5

n, its double exponentially small savings diminish rapidly to zero for d > 2 when

c grows as a function of n. While Williams’ algorithm [Wil11] provides nontrivial

savings even when c grows sufficiently large as a function of n, its savings decreases

with n even when c and d are constants. Furthermore, it leaves open the question

whether one can obtain better savings for AC0 circuits.

Another independent motivation is the natural connection to proving lower

bounds. Paturi et al. [PPZ99] have observed that the analysis that led to an

improved upper bound for k-sat can also be used to prove lower bounds for depth-3

AC0 circuits. Using this approach, they obtain a tight lower bound of Ω(n
1
4 2
√
n) on

the number of gates required to compute the parity function with depth-3 circuits.

Subsequently, [PPSZ05] proposed a resolution-based k-sat algorithm and obtained

an improved savings (by a constant factor) using a sophisticated analysis. Using

the same analysis, they construct a fairly simple function (checking whether the

input binary string is a codeword of a certain code) which requires at least 21.282
√
n

size for any depth-3 AC0 circuit. This is the best-known lower bound for depth-3

circuits for any function. Although depth reduction techniques based on Switching

Lemma [H̊as86a, Raz93, Bea94] and especially the top-down technique of [HJP95]

for depth-3 circuits prove lower bounds that are close to 2
√
n, it is not clear that

these techniques by themselves would yield a lower bound of 2c
√
n for c > 1.

Recently, Williams [Wil10] established a formal connection between satis-

fiability upper bounds and circuit lower bounds. More precisely, he has shown

that if there exists a deterministic algorithm for the circuit-sat problem for

polynomial size circuits which achieves ω(lg n/n) savings, then NEXP does not

have polynomial size nonuniform circuits. Subsequently, using this connection, he

has obtained the first ever exponential size lower bound for ACC0 circuits for

computing a function in NEXP. An important ingredient in this proof is the ear-

lier mentioned satisfiability algorithm for ACC circuits which achieves nontrivial

savings. The results of Williams show an improved satisfiability savings leads to

stronger size lower bounds.

It has been a long open problem to prove 2ω(n
1
d−1) size lower bounds for

AC0 circuits of depth d. Since the breakthrough results of Yao and H̊astad in the

6

mid 1980’s, there have been only modest improvements [Yao85, H̊as86a] and only

for for depth-3 circuits [HJP95, PPSZ05]. It is tantalizing to prove better lower

bounds by exploiting the connection between AC0 satisfiability upper bounds and

lower bounds. Unfortunately, we do not have any ideas for proving strong enough

upper bounds for AC0 satisfiability that would imply better lower bounds. Our

modest goal is to obtain a satisfiability algorithm for AC0 with savings sufficient

enough to imply some of the best-known lower bounds.

1.2 Main Results and Techniques

Our main result is an algorithm for AC0 satisfiability with the best known

savings.

Theorem 1.1. There is a Las Vegas algorithm for deciding the satisfiability

of circuits with cn gates and depth d whose expected time has savings at least

1
O(lg c+d lg d)d−1 .

The above algorithm immediately follows from the existence of an algorithm

that enumerates all satisfying assignments by partitioning the space into sub-cubes

where the circuit is constant.

Theorem 1.2. There exists a Las Vegas algorithm which, on input a cn gate,

depth d circuit C in n variables, produces a set of restrictions {ρi}i which partition

{0, 1}n and such that for each i, C|ρi is constant. The expected time and num-

ber of restrictions are both poly(n)|C|2n(1−µc,d), where the savings µc,d is at least

1
O(lg c+d lg d)d−1 .

We discuss the algorithm for enumerating satisfying assignments to AC0

circuits in Chapter 5.

In Chapter 4, we consider the more restricted case of depth 2 circuits (cnfs

and dnfs). This chapter both provides background in k-sat algorithms, techniques

for the AC0 algorithm, and provides new results for enumerating and counting the

solutions to depth 2 circuits.

7

Theorem 1.3. There exists a randomized algorithm which takes a k-cnf or k-dnf

F in n variables and outputs a set of restrictions which partition {0, 1}n and make

F constant. The algorithm outputs at most 2n(1− 1
O(k)

) restrictions and runs in time

|F | · poly(n) · 2n(1− 1
O(k)

) with probability at least 1− 2−n.

While algorithms for k-sat with savings 1/k were already known, previ-

ous results do not extend to enumerating solutions. In particular, the following

corollary is new and answers affirmatively an open question of [LPI01].

Corollary 1.4. There exists a randomized algorithm for #k-sat with savings

1/O (k).

As a corollary to Theorem 1.2, we obtain the following size and depth

bounds for computing parity by AC0 circuits, which are comparable to the best

known [H̊as86a].

Theorem 1.5. Any poly(n) size AC0 which computes parity must have depth at

least lgn
lg lgn
−O

(
lgn

lg2 lgn

)
. Any depth d AC0 circuit which computes parity must have

size at least 2Ω(n)
1
d−1

.

This is not surprising, because we use a version of the H̊astad Switching

Lemma that was used to prove these lower bounds. However, our results also im-

ply new, very tight, bounds on how well constant-depth circuits can approximate

the parity. As another corollary to Theorem 1.2, we obtain the following bounds

on correlation between AC0 circuits and the parity function. Recently and inde-

pendently from this work, H̊astad [H̊as11] achieved a similar bound on correlation

(although our result is better for small values of m). We discuss these and other

lower bound results in Chapter 7

Theorem 1.6. The correlation of parity with any AC0 circuit of size cn and depth

d is at most 2−µc,dn = 2−n/O(log c+d log d)d−1
.

Overall, our results are particularly interesting in several regimes:

• For linear sized families of circuits, with c and d constants independent of

n, we obtain constant savings µ and a 2−Ω(n) bound on the correlation with

parity.

8

Calabro, Impagliazzo, and Paturi [CIP09] also give an algorithm with con-

stant savings for satisfiability in this case, but our savings are more than

exponentially better (≈ 1/O (lg c)d versus ≈ 1/O
(
c2d
)

). In addition our

algorithm also enumerates solutions and solves the counting problem.

• We obtain non-trivial savings and correlations bounds for circuits up to size

m = 2O(n)
1
d−1

.

Since parity can be computed exactly by circuits of size m = 2Ω(n)
1
d−1

, this

is the essentially the best possible for correlation bounds and for enumer-

ating satisfying assignments. H̊astad [H̊as11] independently gives a similar

correlation bound. Beame, Impagliazzo, and Srinivasan [BIS11] also give an

improved algorithm and correlation bound, but only for quasi-polynomial

size circuits.

• For k-cnfs and cn clause cnfs, we extend the best known savings 1/O (k)

and 1/O (lg c) respectively for satisfiability to also include counting and enu-

merating satisfying assignments.

Previously, the best known savings for #k-sat, due to Littman, Pitassi, and

Impagliazzo [LPI01], were exponentially small in k.

• For k-cnfs, cnfs, and AC0 circuits, our algorithms for covering the set of

solutions by sub-cubes (enumerating solutions) are optimal up to a constant

factor in the savings µ. In addition, any algorithm for AC0 satisfiability with

savings µ more than polynomially better than ours would imply NEXP 6⊆
NC1 via Williams’ technique [Wil10, Wil11].

A key ingredient in our analysis is an extended switching lemma. Previous

switching lemmas showed that with high probability applying an appropriate ran-

dom restriction to a single k-cnf yields a circuit which has a small height decision

tree. Specifically, the probability that the k-cnf fails to have a height h decision

tree decreases exponentially in h, so the expected height is constant. We would

like to show a “concentration bound” on the height of decision trees when the

same random restriction is applied to a set of k-cnfs. Ideally, it would be nice

9

to show that the sum of the heights of the decision trees for the set of k-cnfs

is concentrated around (or upper bounded with high probability by) what previ-

ous switching lemmas would predict for independent restrictions. However, if the

k-cnfs are very similar, the heights of the decision trees will be highly correlated,

so with moderate probability the sum will be very large. But in this case, since

the k-cnfs are very similar, the variables involved in their decision trees will be

similar as well. The following lemma intuitively shows that this is the only way

the distribution of the sum can be “unconcentrated.” With high probability a set

of k-cnfs won’t have more than about the expected number of k-cnfs with large

decision trees on different sets of variables. We will prove these results and give

additional background on switching lemmas in Chapter 3.

Lemma 1.7 (Extended Switching Lemma). Let φ1, . . . , φm be a sequence of k-cnfs

and/or k-dnfs in the same n variables. For any p ≤ 1/13, let ρ ∼ Rp
n. The

expected number of nodes at distance t from the root in tree((φ1, . . . , φm)|ρ) such

that the each φi contributes at least one variable to the path to the node is at most(
12pk
1−p

)t
≤ (13pk)t.

Using the observation that any path in the canonical decision tree for

(φ1, . . . , φm)|ρ is also a path in the canonical decision tree for the subset of k-cnfs

or k-dnfs which contribute nodes to the path, and using a union bound, we get

the following corollary.

Corollary 1.8. Let φ1, . . . , φm be a sequence of k-cnfs and/or k-dnfs in the

same n variables. For any p ≤ 1/13, let ρ ∼ Rp
n. The expected number of nodes at

distance t from the root in tree((φ1, . . . , φm)|ρ) is at most
∑min(t,m)

i=1

(
m
i

) (
12pk
1−p

)t
≤

(13pk)t.

1.3 Acknowledgements

Portions of this chapter are joint work with Russell Impagliazzo and Ra-

mamohan Paturi and appear in [IMP11].

Chapter 2

Preliminaries

2.1 Circuits and Satisfiability

We consider Boolean circuits consisting of alternating layers of AND and

OR gates. The inputs are n variables x1, . . . , xn and their negations ¬x1, . . . ,¬xn.

Unless otherwise stated, we assume that circuits have a single output. We also

assume that all wires are between adjacent layers. The depth of a circuit is the

number of layers of AND and OR gates, and the size of a circuit is the total

number of gates. In general, we consider families of circuits, one for each number

of inputs n in which case we view the depth and the size of the circuits as functions

of n. The fan-in of a gate is the number of inputs to the gate. We number the

layers from top to bottom. Layer 1 consists of the top or the output gate. We

regard the inputs as layer d + 1 (or bottom) gates. We assume that inputs of a

gate as well as the gates in a layer are ordered.

We further categorize circuits. The simplest are depth two circuits with

unbounded fan-in gates, cnfs and dnfs. cnfs are circuits in conjunctive normal

form, which consist of an AND of ORs of inputs. We refer to each OR in a cnf

as a clause. dnfs are are circuits in disjunctive normal form, which consist of an

OR of ANDs of inputs, and each AND in a dnf is referred to as a term. k-cnfs

and k-dnfs are cnfs and dnfs respectively where the clauses/terms have fan-in

at most k (the output gate still has unbounded fan-in).

The next larger class of circuits we consider is AC0. AC0 circuits have

10

11

constant depth, polynomial size, and consist of unbounded fan-in AND and OR

gates. More generally, ACi generalizes AC0 to depth O
(
lgi n

)
. The class NCi

refers to depth O
(
lgi n

)
, polynomial size circuits consisting of fan-in 2 AND and

OR gates. Note that NCi ⊆ ACi ⊆ NCi+1. Since NC0 circuits can only compute

a function of a constant number of inputs, NC0 ⊂ AC0. It is known (and we will

reprove in Chapter 7) that AC0 circuits cannot compute parity whereas NC1 can,

so AC0 ⊂ NC1. Beyond NC1 it is not known if the inclusions are proper.

Other authors define ACi and NCi to allow NOT gates throughout the

circuit and allow wires between non-adjacent layers. All NOT gates can be moved

to the inputs using De Morgan’s laws, and this at most doubles the size of the

circuit. Wires between non-adjacent layers can be replaced by sequences of fan-in

1 gates, one for each intermediate layer. This increases the size of the circuit by

at most a factor d. Since these changes only increase the size of the circuits by

a 2d factor, we use our more restrictive definition which will make future results

simpler to state.

For arbitrary constants m1, . . . ,m`, the class ACC0(m1, . . . ,m`) general-

izes AC0 by allowing unbounded fan-in MODm1 , . . . ,MODm` and NOT gates, in

addition to AND and OR gates. Here, as before, we could also assume that the

NOT gates are just at the inputs, but for our purposes it won’t make a difference.

MODm gates output 0 if the sum of its inputs is 0 modulo m and 1 otherwise. The

class ACC0 is the union of ACC0(m1, . . . ,m`) over all finite ` and m1, . . . ,m`.

For technical reasons, we parameterize AC0 circuits further. For circuits

on n inputs, we parameterize them by m, which is the number of gates per layer

and d, the number of layers. We call such circuits (n,m, d)-circuits. where m and

d could be functions of n. For technical reasons we are also interested in a slight

variant of (n,m, d)-circuits where we only require that each gate at level d has

fan-in bounded by k (rather than limiting the number of gates level d), for some

k. All other layers are still required to have at most m gates. We refer to these

circuits as (n,m, d, k)-circuits.

Given a circuit C, the satisfiability problem is to find an assignment to the

variables which causes the circuit to output 1 (a satisfying assignment). When

12

the circuit is a cnf or k-cnf, we refer to the satisfiability problem as cnf-sat

or k-sat respectively. We refer to the satisfiability problem for arbitrary cir-

cuits as circuit-sat. In addition to finding a single satisfying assignment for a

circuit, we are also interested in counting the number of satisfying assignments.

The counting problems for cnfs, k-cnfs, and arbitrary circuits are referred to as

#cnf-sat, #k-sat, and #circuit-sat respectively. By the Cook–Levin The-

orem [Coo71, Lev73], all of these satisfiability problems except for 2-sat are

NP-complete, and the corresponding counting problems are #P-complete. In

addition, Valiant [Val79a, Val79b] showed that #2-sat is #P-complete (2-sat is

in P).

2.1.1 Subexponential Size AC0 Circuits for More General

Classes

Since many of our results remain non-trivial even for subexponential size

circuits, we give some sense of how subexponential size AC0 circuits relate to other

classes of circuits. The following lemma, which generally seems to be regarded as

folklore, gives a simple transformation from bounded fan-in circuits (such as NC1)

to constant depth circuits with subexponential size.

Lemma 2.1. Any depth D ≥ 1 boolean circuit C where every gate has fan-in

at most k ≥ 2 can be converted to an equivalent depth d ≥ 2 size kD2k
D
d−1

AC0

circuit C ′ with either an AND or an OR output gate. The gates in C may compute

arbitrary functions of their inputs, not just AND or OR.

The idea is to divide the D layers of C into d− 1 groups of D
d−1

consecutive

layers, and then replace each group of layers with a depth 2 circuit.

Proof. We will prove a slightly stronger size bound than Lemma 2.1. The size of

the resulting circuit will be at most kD−1

k
D
d−1−1

2k
D
d−1

. We prove this by induction on

d. If d = 2 then we can construct either an AND of ORs or an OR of ANDs of

size 2k
D

equivalent to C since C depends on at most kD inputs.

If d > 2 then let φ1, . . . , φ` denote the subcircuits of C rooted at depth

D
d−1

+ 1, and let ψ denote the top D
d−1

layers of C. By induction, we can convert

13

φ1, . . . , φ` to equivalent depth d − 1 size k
D− D

d−1−1

k
D
d−1−1

2k
D
d−1

AC0 circuits φ′1, . . . , φ`.

Assume without loss of generality that we wish to construct C ′ with an AND

output gate (the OR case is symmetric). Construct φ′1, . . . , φ
′
` with OR output

gates. Construct a depth 2 AND of ORs ψ′ equivalent to ψ. Replace the inputs

to ψ′ with φ′1, . . . , φ
′
` and combine the adjacent layers of OR gates to get C ′.

All that remains is to bound the size of C ′. Since each gate in ψ has fan-in at

most k and ψ has depth D
d−1

, it has at most k
D
d−1 inputs. These inputs correspond

to the circuits φ1, . . . , φ`. The size of C ′ is at most k
D
d−1 times the size of each φ′i

plus the size of ψ′, which is at most

k
D
d−1 · k

D− D
d−1 − 1

k
D
d−1 − 1

2k
D
d−1

+ 2k
D
d−1

=
kD − 1

k
D
d−1 − 1

2k
D
d−1

.

We use Lemma 2.1 to get two useful corollaries. The first using the definition

of NC1, and the second since the parity of n inputs can be computed by a depth

lg n circuit consisting of fan-in 2 parity gates.

Corollary 2.2. Any depth c lg n NC1 circuit C can be converted into an equivalent

AC0 circuit of size nc2n
c

d−1
.

Corollary 2.3. The parity of n inputs can be computed by a depth d size n2n
1
d−1

AC0 circuit.

Allender, Hellerstein, McCabe, Pitassi, and Saks [AHM+06] give, among

other things, a much more general variant of Lemma 2.1.

Lemma 2.4. For every SAC1 circuit C in n variables with depth c lg n and every

ε > 0, there exists a d depending on c and ε such that C can be converted to an

equivalent depth d size 2n
ε

AC0 circuit.

SAC1 is the class of depth O (lg n) circuits consisting of unbounded fan-

in OR gates and fan-in 2 AND gates (or vice versa since SAC1 is closed under

complement [BCD+89]). Clearly NC1 ⊆ SAC1 ⊆ AC1. Furthermore, SAC1 =

LOGCFL/poly [Ven87] and NL/poly ⊆ LOGCFL/poly. LOGCFL/poly is the

14

class of languages reducible in non-uniform log space to context-free languages and

NL/poly is the class of languages decidable by non-uniform nondeterministic log

space Turing Machines. We do not particularly consider these less common classes

of circuits and languages, but we present them as evidence of the power of 2n
ε

size

AC0 circuits.

2.1.2 Block Parity Circuits

Parity is one of the canonical functions which cannot be computed by AC0

circuits. As we show in Section 7.2.2 parity cannot even be well approximated by

AC0 circuits. In this section, we construct a family of circuits which are somewhat

“parity-like,” yet can be constructed in the restricted classes of circuits we consider

(k-cnfs, cnfs, and AC0 circuits). The same general family of circuits was also

used by H̊astad [H̊as86b] as “small” circuits that approximate parity. These circuits

serve as a worst case example for many of our results, and in some cases show that

our results are essentially optimal.

These circuits, which we call “block parity” circuits can be defined for a

variety of classes of circuits. Fix a class of circuits (k-cnfs, depth d AC0, etc.).

Take the n inputs and divide them into n/` groups of ` inputs. Construct a circuit

with an AND output gate to compute the parity of each group of ` inputs, and

then construct the AND of of these circuits. For each class of circuits, we choose

` as large as possible such that the resulting circuit remains in the desired class.

For example, the block parity circuit for k-cnfs sets ` = k, divides the inputs into

n/k groups of k, and constructs 2k−1 clauses for each group to compute the parity.

For size m depth d AC0 circuits, we can compute the parity on ` inputs in depth

d with at most `2`
1
d−1

gates by Corollary 2.3, and the additional AND gate can

be combined with the top level gates of the parity circuits. Choose ` = (lg m
n

)d−1

so that n
`
· `2`

1
d−1 ≤ m.

15

2.2 Restrictions and Regions

Formally, a restriction ρ on a set of variables V is a map ρ : V → {0, 1, ∗}.
Applying the restriction to a function f , denoted f |ρ, results in a function where

ρ(v) is substituted for each input v when ρ(v) 6= ∗. We say that the variables v

where ρ(v) = ∗ are unset. After applying a restriction, f |ρ is a function in the

unset variables in the natural way. A restriction may also be applied to a circuit

C. Replace each input v with ρ(v) when ρ(v) 6= ∗. Then simplify gates with

constant inputs: If an AND gate has a 0 input, replace the gate with 0; if it has a

1 input, remove that input. If an OR gate has a 0 input, remove that input; if it

has a 1 input, replace the gate with 1. Repeat this process until either the circuit

is a single constant, or no constants remain. For our purposes, we will also view

restrictions ρ as functions ρ̂ : {0, 1}n → {0, 1} where ρ̂(x1, . . . , xn) = 1 if and only

if ρ(i) ∈ {xi, ∗} for all i.

We say that a set of functions φ1, . . . , φm : {0, 1}n → {0, 1} partitions

{0, 1}n if for every x ∈ {0, 1}n there exists exactly one i such that φi(x) = 1. We

say that the region {x ∈ {0, 1}n|φi(x) = 1} is defined by φi. In particular, we are

interested in regions defined by functions of the form R ∧ ρ, where R is a k-cnf

and ρ is a restriction. In this case, we will say that R = (R, ρ) defines the region.

Unless otherwise noted, regions will always be defined this way and the value of k

will be clear from the context. In a slight abuse of terminology, we will often refer

to R as the region.

We say that two circuits, C and D, are equivalent in a region R if R =⇒
(C ≡ D).

We define regions this way because in several algorithms we will need to

branch on disjunctions of k variables. This corresponds to partitioning the current

region. In one branch, when the disjunction is true, we add the disjunction as a

clause to R. In the other branch, when the disjunction is false, we set the value of

the k variables in the restriction. In each branch, we will then simplify the current

circuit we are considering based on the branch.

Definition 2.5. Let C be a circuit in n variables. We say that a set P = {(Ri =

(Ri, ρi), Ci)}i is a partitioning for C if {Ri}i defines a set of regions which partition

16

{0, 1}n and for every i, C is equivalent to Ci in the region Ri. We will say that

each Ci is the circuit associated with the region Ri.

We generalize this definition to sequences of circuits in the natural way.

Definition 2.6. Let Φ = (φ1, . . . , φm) be a sequence of circuits in the same n

variables (or equivalently, a circuit with n inputs and m outputs). We say that

a set P = {(Ri = (Ri, ρi),Ψi = (ψi,1, . . . , ψi,m))}i is a partitioning for Φ if {Ri}i
defines a set of regions which partition {0, 1}n and for every i and j, φj is equivalent

to ψi,j in the region Ri.

2.3 Canonical Decision Trees

In several places we will use the notion of the canonical decision tree [Bea94]

for a cnf or dnf φ, tree(φ). For a cnf φ, write φ as C ∧ φ′ where C is the first

clause of φ and φ′ is the rest of φ. Construct tree(φ) by first constructing the

complete binary tree that queries all of the variables in C in order. Label the leaf

that falsifies C with 0 and replace each of the other leaves with tree(φ′|ρ) where

ρ is the path in the tree to the leaf. When ρ satisfies φ′ or φ′|ρ has an unsatisfied

clause, the tree is 1 or 0 accordingly, otherwise it is constructed recursively. For a

dnf φ, we do the analogous process, labeling the leaf that satisfies the first term

with 1 and recursively construct the other leaves.

We also similarly define the decision tree for a tuple of cnfs and/or

dnfs Φ = (φ1, . . . , φ`). First construct tree(φ1) and then replace each leaf with

tree((φ2, . . . , φ`)|ρ) where ρ is the restriction corresponding to the path to the leaf.

Label the leaves of the resulting tree with the tuples of leaves from the original

trees.

When we construct a decision tree for a circuit φ by exploring it clause by

clause, each encounter of a variable which corresponds to a particular occurrence

of it φ results in a branching node in the decision tree. We say that the branching

node is contributed by the particular occurrence of the variable. Similarly for any

subcircuit ψ of φ, we regard the set of nodes contributed by all the occurrences of

variables in ψ as the set of nodes contributed by Ψ. Define the height of a decision

17

tree T , height(T), as the length of the longest path. We will view paths in decision

trees as restrictions in the natural way.

2.4 Acknowledgements

Portions of this chapter are joint work with Russell Impagliazzo and Ra-

mamohan Paturi and appear in [IMP11].

Chapter 3

Switching Lemmas

At a very general level, a switching lemma says that with high probabil-

ity a circuit of one type of circuit can be converted to an equivalent circuit of

another type after applying a random restriction from a particular distribution.

Perhaps the most common switching lemmas convert from k-cnfs to k′-dnfs and

conversely. Furst, Saxe, and Sipser [FSS84] and independently Ajtai [Ajt83] first

used switching lemmas in this context to prove that parity cannot be computed by

polynomial size AC0 circuits. Suppose that a poly(n) size, depth d AC0 circuit C

existed which computed parity. Choose a random restriction and apply it to all of

the subcircuits of C rooted at depth d− 1 and switch them from cnfs to dnfs (or

vice versa). Then repeat this process d−2 times to get a depth 2 circuit. However,

any depth two circuit computing the parity of n inputs requires size Ω(2n). They

show that sufficiently many variables remain unset to arrive at a contradiction.

Yao [Yao85] improved the lower bound for the size of AC0 circuits com-

puting parity to exponential. Cai [Cai89] used similar techniques to show that

PSPACEA 6= PHA with probability 1 for a random oracle A. This result was

built upon a proof that not only can parity not be computed by AC0 circuits, it

can’t even be approximated with probability much more than 1/2. We will give

nearly optimal bounds on how well parity can be approximated by AC0 circuits

in Chapter 7.

Then H̊astad [H̊as86a] gave a switching lemma (Lemma 3.1) which is op-

timal except perhaps for constants. He then used this switching lemma to prove

18

19

that any depth d AC0 circuit requires size 2Ω(n)
1
d−1

, which is also optimal up to

constants. We will give a different proof of this same result in Chapter 7. H̊astad

also gets similar lower bounds for AC0 circuits computing majority, MODp, and

other functions.

Razborov [Raz93] gives a new proof of a switching lemma qualitatively

equivalent to H̊astad’s (but quantitatively slightly weaker). Razborov’s proof is

quite amenable to modification and will be the basis for our extended switching

lemma.

Many switching lemmas of this form can actually be stated in a stronger

way: After applying an appropriate random restriction, any k-cnf or k-dnf has a

decision tree of height at most k′ with high probability. This was first observed by

Cai [Cai89], and subsequently shown to hold for H̊astad’s and Razborov’s Switch-

ing Lemmas. In particular, it holds for the canonical decision tree (Section 2.3).

Given a decision tree T of height at most k′ for a function f , we can construct a

k′-dnf for f by constructing a term for each path in T ending at a leaf labeled 1.

Similarly, we can construct a k′-cnf for f by constructing a clause corresponding

to the complement of each path in T ending at a leaf labeled 0 (equivalently, by

constructing the negation of the k′-dnf for the negation of T). Thus, we see that

stating switching lemmas in terms of decision trees is at least as powerful as stating

them in terms of k′-dnfs. Furthermore, we will use the fact that the canonical de-

cision tree is constructive to design algorithms. H̊astad’s and Razborov’s Switching

Lemmas bound the probability that a “long” path exists in the canonical decision

tree by bounding the expected number of such paths. Since the bound on the ex-

pected number of “long” paths will be useful to us, we will prove these switching

lemmas in this form.

More generally, switching lemmas have been used extensively to prove a

variety of lower bounds in a variety of contexts, for exmaple [Ajt83, FSS84, Yao85,

H̊as86a, Lyn86, Cai89, BH89, Bea90, Raz93, BIK+92, SBI02] and many others.

In the remainder of this chapter, we will make precise H̊astad’s Switching

Lemma, Razborov’s Switching Lemma, and our extended switching lemma, and

give proofs for the second two.

20

3.1 H̊astad’s Switching Lemma

The results in this section are due to H̊astad [H̊as86a] and presented in

greater detail in [H̊as86b]. Let R′pn denote the distribution on restrictions on

n variables where each variable is left unset with probability p, set to 0 with

probability (1− p)/2, and set to 1 with probability (1− p)/2.

In each of the following three lemmas, let α < 2pk

(1+p) ln 1+
√

5
2

≈ 4.16pk
1+p

denote

the unique positive solution to(
1 +

4p

1 + p

1

α

)k
=

(
1 +

2p

1 + p

1

α

)k
+ 1.

To see that α < 2pk

(1+p) ln 1+
√

5
2

, let β = α 1+p
2p

. β is a root of (1+2/β)k−(1+1/β)k−1 =

0 if and only if α is a root of
(

1 + 4p
1+p

1
α

)k
=
(

1 + 2p
1+p

1
α

)k
+ 1. We will show that

(1 + 2/β)k − (1 + 1/β)k − 1 = 0 has a root 1 < β < k/ ln 1+
√

5
2

for all k ≥ 2.

Substituting 1 for β in (1 + 2/β)k− (1 + 1/β)k− 1 gives 3k− 2k− 1 > 0 (assuming

k ≥ 2). On the other hand,

(1+2/β)k−(1+1/β)k−1 < e2k/β−ek/β−1 =

(
ek/β − 1 +

√
5

2

)(
ek/β − 1−

√
5

2

)

and substituting k/ ln 1+
√

5
2

for β in
(
ek/β − 1+

√
5

2

)
gives 0. Thus, since (1+2/β)k−

(1 + 1/β)k − 1 is continuous when β > 0, it must have a root 1 < β < k/ ln 1+
√

5
2

.

Lemma 3.1 (H̊astad’s Switching Lemma, [H̊as86a]). For any k-cnf F and any

0 < p < 1, let ρ ∼ R′pn. The probability that F |ρ cannot be written as a k′-dnf is

at most αk
′+1.

Lemma 3.2 (H̊astad’s Switching Lemma, Decision Tree Version). For any k-cnf

or k-dnf F and any 0 < p < 1, let ρ ∼ R′pn. The probability that tree(F |ρ) has

height greater than k′ is at most αk
′+1.

Lemma 3.3 (H̊astad’s Switching Lemma, Expected Number of Paths Version).

For any k-cnf or k-dnf F and any 0 < p < 1, let ρ ∼ R′pn. The expected number

of nodes at distance k′ from the root in the canonical decision tree for tree(F |ρ) is

at most αk
′
.

21

Since Lemma 3.1 and Lemma 3.2 follow from Lemma 3.3, we will just

sketch the proof of Lemma 3.3. We actually prove a slightly stronger statement:

Lemma 3.3 hold even if we condition on ρ setting an arbitrary function to true.

Lemma 3.4. Let G = ∧mi=1Gi be a k-cnf. Let F be an arbitrary function and let

ρ ∼ R′pn. Then for each s, let Ns(G|ρ) denote the number of nodes in the canonical

decision tree for G|ρ at distance s from the root. Eρ [Ns(G|ρ) | F |ρ ≡ 1] ≤ αs,

where α satisfies (
1 +

4p

1 + p

1

α

)k
−
(

1 +
2p

1 + p

1

α

)k
− 1 = 0.

This proof follow’s H̊astad’s proof [H̊as86b] closely. We just rephrase parts

in terms of the expected number of nodes in the decision tree rather than minterms.

Proof. We prove this lemma by induction on m. If m = 0, G = 1 and the canonical

decision tree consists of only the root and the lemma hold trivially.

Otherwise, consider the first clause G1, and whether ρ satisfies G1. Let

G′ = ∧mi=2Gi denote the rest of G.

E
ρ

[Ns(G|ρ) | F |ρ ≡ 1] =

max(E
ρ

[Ns(G|ρ) | F |ρ ≡ 1 ∧G1|ρ = 1] ,E
ρ

[Ns(G|ρ) | F |ρ ≡ 1 ∧G1|ρ 6= 1])

.

The first term, Eρ [Ns(G|ρ) | F |ρ ≡ 1 ∧G1|ρ = 1] is equivalent to

Eρ [Ns(G
′|ρ) | (F ∧G1)|ρ = 1] which is at most αs by induction.

Now consider the second term, Eρ [Ns(G|ρ) | F |ρ ≡ 1 ∧G1|ρ 6= 1]. Let T

denote the set of variables in G1, and write ρ as ρ1ρ2 where ρ1 is a restriction on

the variables in T and ρ2 is a restriction on the remaining variables. The condition

G1|ρ 6= 1 is equivalent to saying ρ1 does not satisfy the clause G1. Either ρ1 falsifies

G1 in which case G|ρ = 0 and the canonical decision tree consist of only the root,

or ρ1 leaves some variables in T unset.

In this last case, the canonical decision tree for G|ρ begins by constructing

the canonical decision tree for G1|ρ, and then recursively constructs the canonical

decision tree for G′ at each leaf. The size of the canonical decision tree for G1|ρ

22

depends on the number of unset variables in ρ1. We use the following lemma of

H̊astad.

Lemma 3.5 ([H̊as86b, Lemma 4.3]). For any set Y ⊆ T of variables,

Pr [ρ(Y) = ∗ | F |ρ ≡ 1 ∧G1|ρ 6= 1] ≤
(

2p

1 + p

)|Y |
.

Without the conditioning F |ρ ≡ 1 the probability would be exactly(
2p

1+p

)|Y |
. Intuitively, adding the conditioning cannot make ∗s any more likely.

Given this lemma, it is fairly straightforward to bound the expected number

of leaves by first summing over all possible numbers of unset variables in ρ1, then

summing over all paths in tree(G1|ρ).

E
ρ

[Ns(G|ρ) | F |ρ ≡ 1 ∧G1|ρ 6= 1]

≤
k∑
t=0

Pr
ρ

[ρ has t unset variables in T | F |ρ ≡ 1 ∧G1|ρ 6= 1]∑
ρ′∈tree(G1|ρ)
G1|ρ′ 6=0

E
ρ

[Ns−t(G
′|ρ) | F |ρ ≡ 1 ∧ ρ consistent with ρ′]

≤
k∑
t=0

Pr
ρ

[ρ has t unset variables in T | F |ρ ≡ 1 ∧G1|ρ 6= 1] (2t − 1)αt

≤
k∑
t=0

(
k

t

)(
2p

1 + p

)t
(2t − 1)αs−t

= αs
k∑
t=0

(
k

t

)((
4p

α(1 + p)

)t
−
(

2p

α(1 + p)

)t)

= αs

[(
1 +

4p

α(1 + p)

)k
−
(

1 +
2p

α(1 + p)

)k]
= αs

3.2 Razborov’s Switching Lemma

Let R`
n denote the set of restrictions on n variables which leave exactly `

variables unset.

23

Lemma 3.6 (Razborov’s Switching Lemma [Raz93, Section E.4]). For any k-cnf

F and any 0 < p < 1/9, let ρ ∼ Rpn
n . The probability that F |ρ cannot be written

as a k′-dnf is at most
(

8pk
1−p

)k′+1

≤ (9pk)k
′+1.

Lemma 3.7 (Razborov’s Switching Lemma, Decision Tree Version). For any

k-cnf or k-dnf F and any 0 < p < 1/9, let ρ ∼ Rpn
n . The probability that

tree(F |ρ) has height greater than k′ is at most
(

8pk
1−p

)k′+1

≤ (9pk)k
′+1.

Lemma 3.8 (Razborov’s Switching Lemma, Expected Number of Paths Version).

For any k-cnf or k-dnf F and any 0 < p < 1/9, let ρ ∼ Rpn
n . The expected

number of nodes at distance t from the root in the canonical decision tree for

tree(F |ρ) is at most
(

8pk
1−p

)t
≤ (9pk)t.

Let β ≈ k/ ln 1+
√

5
2
≈ 2.08k be the unique positive root of (1+2/β)k = (1+

1/β)k + 1. The probability bound may be improved to
(

2pβ
1−p

)k′+1

(for comparison,

we may write the probability bound in H̊astad’s Switching Lemma as
(

2pβ
1+p

)k′+1

) at

the expense of making the proof more complicated. For our purposes, the simpler

bound will be sufficient. See [Bea94] for details.

Before we give a formal proof of Razborov’s Switching Lemma, we will give

some intuition and then an outline. Intuitively, either a k-cnf only depends on a

very small fraction of its variables in any significant way, or with very high prob-

ability a random restriction falsifies a clause in the formula. In the extreme case,

if clauses are on disjoint sets of variables (or in some more general sense “inde-

pendent”), the a random restriction falsifies the formula with all but exponentially

small probability. In either case, the fact that under particular restriction a k-cnf

has a large canonical decision tree (also implying that no clause in the k-cnf is fal-

sified) conveys a great deal of information about the restriction. Razborov’s proof

shows how this fact, combined with a small amount of additional information, can

be “decoded” to give the original restriction. Since a small amount of information

can be decoded to get any “bad” restriction, there cannot be too many “bad”

restrictions.

First, we assume that ρ does not falsify any clause in F , since if it did the

decision tree would have height 0. Suppose that F |ρ has a decision tree of height

24

t ≥ s + 1, and let P be a path in this decision tree of length t. P corresponds

uniquely to a node at distance t in the canonical decision tree for F |ρ. Consider

the process of constructing the decision tree for F |ρ along the path P . Find the

first clause C such that C|ρ 6≡ 1, and for simplicity assume C = (x1∨x2∨· · ·∨xk).
Since C is neither satisfied or falsified by ρ, we know that ρ(C) = {0, ∗}. In

particular, let xi be the first variable in C such that ρ(xi) = ∗. When constructing

the decision tree, the first variable queried is xi. Let pi be the value assigned to xi

along P . We the repeat this process to construct the decision tree for F |ρ,xi=pi .
The idea of Razborov’s proof is to encode the pair (ρ, P) using a restriction

ρ′ = ρσ, where σ is a restriction on the variables along the path P , a vector~i ∈ [k]t,

and a vector ~p ∈ [2]t. Given ρ′,~i, and ~p, we wish to figure out the clause C which

contributed the first variable along P . Since we know ρ doesn’t falsify any of the

clauses in F , we may choose σ so that C|ρσ ≡ 0. In this case, the first clause

falsified by ρ′ = ρσ must be C. Let x1 be the first variable along P . Let v1 be

the index of x1 in C. Since we can decode which clause C is, we can decode which

variable x1 is. Let p1 be the value P assigns to x1. Now change σ by setting

σ(x1) = p1. Now if we repeat the process, the first clause falsified by ρσ (using the

new σ) will contain the second variable along P with index v2, and so forth until

we have decoded all of P .

The reason we do this encoding is because the set S = Rpn−t
n × [k]t ×

[2]t is much smaller than the set of all restrictions that leave pn variables unset.

Specifically, |S|/|Rpn
n | ≤

(
8pk
1−p

)t
, and this bounds the probability that for a random

ρ ∈ Rpn
n , such a path P exists.

The proof we give of Razborov’s Switching Lemma is based on Beame’s

proof [Bea94], modified to be as similar as reasonable to our proof of our extended

switching lemma, at the expense of a slightly poorer constant.

Proof. Let P be a path in tree(F |ρ) to a node at distance t from the root.

Let x1, . . . , xt denote the variables along P and let p1, . . . , pt denote the values

that P assigns to x1, . . . , xt. Let C1, . . . , Ct denote the clauses which contribute

x1, . . . , xt respectively (some Cis may refer to the same clauses if these clauses con-

tribute more than one variable to P). Let index1, . . . , indext denote the indices

25

of x1, . . . , xt in the clauses C1, . . . , Ct. Let lasti, 1 ≤ i ≤ t be 1 if xi is the last

variable contributed by Ci along P .

Let σ = σ1 · · ·σs+1 where σi is a restriction where σi(xi) = 0 if xi appears

positively in Ci and σi(xi) = 1 otherwise, and σi(y) = ∗ for all y 6= xi (σ is

constructed to not satisfy the clauses C1, . . . , Cs+1). Let πi be the restriction

where πi(xi) = pi and πi(y) = ∗ for y 6= xi. Note that P = π1 · · · πs+1

We map (ρ, P) to ρ′ = ρσ ∈ Rpn−t
n , ~index = (index1, . . . , indext) ∈

[k]t, ~last = (last1, . . . , lastt) ∈ [2]t and ~p = (p1, . . . , pt) ∈ [2]t.

We must now show that we can decode (ρ, P) from ρ′, ~index, ~last and ~p.

Let ρi = ρπ1 · · · πiσi+1 · · ·σs+1, for 0 ≤ i ≤ s+1. Note that ρ0 = ρ′ and ρs+1 = ρP .

We will show that for any i < s+1 given Ci and ρi, we can decode πi+1 and

therefore ρi+1. Then by induction, given ρ′ we can decode ρ and P . Let last0 = 1.

If lasti = 0 then we know Ci+1 = Ci, otherwise we claim that Ci+1 is the first

clause not satisfied by ρi. Once we identify Ci+1, then indexi+1 is the index of xi+1

in this clause and we get πi using pi. All that remains is to prove the claim that

when lasti = 1 then Ci+1 is first clause in F not satisfied by ρi.

When xi+1 is queried along the path P when constructing the decision tree

for F |ρ, Ci+1 is the first clause not satisfied by ρπ1 · · · πi (otherwise a variable in an

earlier clause would have been queried instead). Since setting more variables in a

restriction cannot change a clause from satisfied to not satisfied, all the clauses in

F before Ci are satisfied by ρi. All that remains is to show that σi+1 · · ·σs+1 does

not satisfy Ci+1. Let j be the largest index such that Cj = Ci+1, or equivalently

xj is the last variable from Ci+1 along P . By the construction of σi+1, . . . , σj,

σi+1 · · ·σj does not satisfy Ci+1 and either j = t or ρπ1 · · · πiσi+1 · · ·σj sets all of

the variables in Ci+1 (because of the way we construct decision trees). In either

case, no σ`, ` > j can satisfy Ci+1 so we conclude that ρi does not satisfy Ci+1.

All that remains is to calculate Eρ [number of nodes at distance t from the

root in tree(F |ρ)]. Each node corresponds to a path P , and each pair (ρ, P) can

be encoded by an element of |Rpn−t
n × [k]t× [2]t× [2]t|. Thus the expected number

26

of such paths is at most

≤ |R
t
n × [k]t × [2]t × [2]t|

|Rpn
n |

=

(
n

pn−t

)
2n−pn+t(4k)t(
n
pn

)
2n−pn

=
(pn)!(n− pn)!

(pn− t)!(n− pn+ t)!
(8k)t

=

(
pn

n− pn+ t

)(
pn− 1

n− pn+ t− 1

)
· · ·
(
pn− t+ 1

n− pn+ 1

)
(8k)t

≤
(

pn

n− pn+ t

)t
(8k)t ≤

(
8pk

1− p

)t
.

3.3 Extended Switching Lemma

The primary use of switching lemmas is to reduce the depth of circuits by

“switching” the subcircuits rooted at depth d − 1 from k-cnfs to k-dnfs or vice

versa. For this to work, after we apply a random restriction, we have to be able

to “switch” all of these gates. For his lower bounds, H̊astad chose his parameters

such that a union bound sufficed (k ≈ lg |C|, see Chapter 7 for more details). For

our AC0 satisfiability algorithm, we would like to keep k constant at least when

the size of the circuit is linear in n. When k is constant, however, we expect a

constant fraction of the subcircuits to not “switch”. The algorithm will be able

to handle some subcircuits not “switching”, but we need to bound the probability

that too many fail to “switch”.

In some ways, our Extended Switching Lemma can be viewed as a concen-

tration bound on the number of subcircuits that fail to “switch”. However, there

is one catch. Suppose we apply a random restriction to a set of cnfs that are

all (essentially) the same. Then either all the cnfs will “switch” or the will all

fail to “switch”. Our Extended Switching Lemma and the subsequent corollary

say that either a set of the cnfs fail to “switch” for essentially the same reason

(the same set of variables) or whether or not they “switch” acts approximately

independently.

Lemma (Extended Switching Lemma, Lemma 1.7, restated). Let φ1, . . . , φm be a

27

sequence of k-cnfs and/or k-dnfs in the same n variables. For any p ≤ 1/13,

let ρ ∼ Rp
n. The expected number of nodes at distance t from the root in

tree((φ1, . . . , φm)|ρ) such that the each φi contributes at least one variable to the

path to the node is at most
(

12pk
1−p

)t
≤ (13pk)t.

Corollary (Corollary 1.8, restated). Let φ1, . . . , φm be a sequence of k-cnfs

and/or k-dnfs in the same n variables. For any p ≤ 1/13, let ρ ∼ Rp
n. The

expected number of nodes at distance t from the root in tree((φ1, . . . , φm)|ρ) is at

most
∑min(t,m)

i=1

(
m
i

) (
12pk
1−p

)t
≤ (13pk)t.

This corollary follows from the observation that any path P in

tree((φ1, . . . , φm)|ρ) is also a path in tree(S|ρ) where S is the subsequence of

φ1, . . . , φm of circuits that contribute variables to P , and then summing Lemma 1.7

over all subsequences of length at most t.

The proof of Lemma 1.7 is basically the same as the proof of Razborov’s

Switching Lemma in Section 3.2 with one exception. There, we used the variable

lasti to indicate when we had finished decoding all of the variables in a clause.

Here we will also use lasti to indicate when we finish decoding all of the variables

in a formula.

Proof. Let P be a path in tree((φ1, . . . , φm)|ρ) of length t where each φi contributes

at least one variable to the path. Let x1, . . . , xt denote the variables along P and

let p1, . . . , pt denote the values that P assigns to x1, . . . , xt. Let C1, . . . , Ct and

F1, . . . , Ft denote the clauses and formulae respectively which contribute x1, . . . , xt

(some Cis and Fis may refer to the same clauses or formulae if they contribute more

than one variable to P). Let index1, . . . , indext denote the indices of x1, . . . , xt in

the clauses C1, . . . , Ct. Let lasti, 1 ≤ i ≤ t be 2 if xi is the last variable contributed

by Fi along P ; be 1 if xi is the last variable contributed by Ci (but not by Fi)

along P ; and be 0 otherwise.

Let σ = σ1 · · ·σs+1 where σi is a restriction where σi(xi) = 0 if xi appears

positively in Ci and σi(xi) = 1 otherwise, and σi(y) = ∗ for all y 6= xi (σ is

constructed to not satisfy the clauses C1, . . . , Cs+1). Let πi be the restriction

where πi(xi) = pi and πi(y) = ∗ for y 6= xi. Note that P = π1 · · · πs+1

28

We map (ρ, P) to ρ′ = ρσ ∈ Rpn−t
n , ~index = (index1, . . . , indext) ∈

[k]t, ~last = (last1, . . . , lastt) ∈ [3]t and ~p = (p1, . . . , pt) ∈ [2]t.

We must now show that we can decode (ρ, P) from ρ′, ~index, ~last and ~p.

Let ρi = ρπ1 · · · πiσi+1 · · ·σs+1, for 0 ≤ i ≤ s+1. Note that ρ0 = ρ′ and ρs+1 = ρP .

We will show that for any i < s + 1 given Ci, Fi and ρi, we can decode

πi+1 and therefore ρi+1. Then by induction, given ρ′ we can decode ρ and P . Let

last0 = 1 and let F0 = φ1. First we identify Fi+1. If lasti = 2 then Fi+1 = φq+1

where q is the index such that Fi = φq, and otherwise Fi+1 = Fi. If lasti = 0 then

we know Ci+1 = Ci, otherwise we claim that Ci+1 is the first clause not satisfied

by ρi. Once we identify Ci+1, then indexi+1 is the index of xi+1 in this clause and

we get πi using pi. All that remains is to prove the claim that when lasti = 1 then

Ci+1 is first clause in F not satisfied by ρi.

When xi+1 is queried along the path P when constructing the decision tree

for F |ρ, Ci+1 is the first clause not satisfied by ρπ1 · · · πi (otherwise a variable in an

earlier clause would have been queried instead). Since setting more variables in a

restriction cannot change a clause from satisfied to not satisfied, all the clauses in

F before Ci are satisfied by ρi. All that remains is to show that σi+1 · · ·σs+1 does

not satisfy Ci+1. Let j be the largest index such that Cj = Ci+1, or equivalently

xj is the last variable from Ci+1 along P . By the construction of σi+1, . . . , σj,

σi+1 · · ·σj does not satisfy Ci+1 and either j = t or ρπ1 · · · πiσi+1 · · · σj sets all of

the variables in Ci+1 (because of the way we construct decision trees). In either

case, no σ`, ` > j can satisfy Ci+1 so we conclude that ρi does not satisfy Ci+1.

All that remains is to calculate Eρ [number of nodes at distance t from the

root in tree((φ1, . . . , φm)|ρ) such that the each φi contributes at least one variable

to the path to the node]. Each pair (ρ, P) can be encoded by an element of

29

|Rpn−t
n × [k]t × [3]t × [2]t|. Thus the expected number of such paths is at most

≤ |R
t
n × [k]t × [3]t × [2]t|

|Rpn
n |

=

(
n

pn−t

)
2n−pn+t(6k)t(
n
pn

)
2n−pn

=
(pn)!(n− pn)!

(pn− t)!(n− pn+ t)!
(12k)t

=

(
pn

n− pn+ t

)(
pn− 1

n− pn+ t− 1

)
· · ·
(
pn− t+ 1

n− pn+ 1

)
(12k)t

≤
(

pn

n− pn+ t

)t
(12k)t ≤

(
12pk

1− p

)t
.

3.4 Acknowledgements

Material in Section 3.3 is joint work with Russell Impagliazzo and Ramamo-

han Paturi and appears in [IMP11].

Chapter 4

Algorithms for CNF Satisfiablity

Recall that we say a satisfiability algorithm has savings µ if it runs in

(expected) time s · poly(n) · 2n(1−µ) on circuits of size s in n variables. We will

discuss four different techniques used in k-sat algorithms that all achieve savings

1/O (k).

Currently, the fastest knows algorithm for k-sat is due to Paturi, Pudlák,

Saks, and Zane [PPSZ05]. The PPSZ algorithm has savings µk
k−1

where µk =∑∞
j=1

1
j(j+ 1

k−1
)

(µk is an increasing function in k, with µ3 = 4− 4 ln 2 ≈ 1.227 and

limk→∞ µk = π2

6
≈ 1.645). For k = 3, 4 these bounds were proved by [Her11].

The PPSZ algorithm is based on an earlier algorithm of Paturi, Pudlák, and

Zane [PPZ99]. The PPSZ algorithm performs a limited amount of resolution and

then runs the PPZ algorithm. The PPZ algorithm by itself solves k-sat with

savings 1
k
.

Schöning [Sch99] gives a different algorithm for k-sat based on local search,

and Lokshtanov and Paturi give an algorithm based on approximating k-cnfs

by low degree polynomials and then using a fast zeta transform. Both of these

algorithm also achieves savings 1/O (k).

Using different techniques from all of these results, we also give an algorithm

for k-sat with savings 1
O(k)

, however our algorithm not only finds a satisfying as-

signment if one exists, it enumerates all satisfying assignments in the same amount

of time. We will discuss the PPZ algorithm in Section 4.1, Schöning’s algorithm

in Section 4.2, the Lokshtanov–Paturi algorithm in Section 4.3, and our algorithm

30

31

in Section 4.4.

Schuler [Sch05] gives a Turing reduction from cnf-sat with cn clauses to

k-sat which may be composed with an algorithm for k-sat with savings δk to get

an algorithm for cnf-sat with cn clauses with savings approximately δk − c2−k.
Choosing k ≈ lg c and composing Schuler’s reduction with PPZ or PPSZ gives an

algorithm for cnf-sat with cn clauses with savings 1
lg c

, and composing Schuler’s

reduction with our algorithm enumerates the solutions to a cn clause cnf with

savings 1
O(lg c)

. We present these results in Section 4.5.

4.1 PPZ Algorithm

Algorithm 4.1: PPZ(F)

Data: F is a k-cnf in n variables, x1, . . . , xn
Result: 1 with high probability if F is satisfiable, 0 otherwise

1 begin

2 repeat poly(n)2n(1− 1
k

) times
3 let π be a permutation of [n] chosen uniformly at random
4 for i← 1, . . . , n do
5 if xπ(i) is in a unit clause C in F then
6 set xπ(i) to satisfy C
7 else
8 set xπ(i) uniformly at random
9 end

10 if F is satisfied then
11 return 1
12 end

13 end

14 end
15 return 0

16 end

Algorithm 4.1 gives the PPZ k-sat algorithm [PPZ99]. It chooses a random

order for the variables, and then assigns values to the variables in that order. If a

variable is in a unit clause when it is its turn to have a value assigned, the value

is chosen to satisfy the clause. Otherwise the value is chosen randomly. They

show that each iteration of this process succeeds with probability 2−n(1− 1
k

), so by

32

repeating this process poly(n)2n(1− 1
k

) times it will find a satisfying assignment if

one exists with high probability.

Theorem 4.1. If a k-cnf F is satisfiable, the PPZ algorithm returns 1 with high

probability, and if F is unsatisfiable the PPZ algorithm always returns 0.

To see why this works, assume for now that F has a unique satisfying

assignment, and assume that each time a variable is assigned a random value it

gets the value that is consistent with the unique satisfying assignment. A unique

satisfying assignment means that for every variable x, there must be a clause that is

satisfied by only x (otherwise negating x would also give a satisfying assignment).

Say that such a clause is critical for x. If a variable x occurs in the permutation

π after all the other variables in its critical clause then the critical clause will be a

unit clause when x is assigned a value. In this case, say that x is forced. Since π is

chosen uniformly at random, we expect a 1/k fraction of the variables to occur last

in their critical clause and be forced. Than means that the algorithm only needs

to randomly guess the assignment for n(1 − 1/k) variables. Thus, each iteration

succeeds in finding a unique satisfying assignment with probability 2−n(1−1/k).

In general, we cannot assume that F has a unique satisfying assignment,

much less anything about the solution space. However, as an intermediate step, say

that a satisfying assignment is isolated if changing the assignment for any single

variable changes the assignment to non-satisfying. If F only has isolated satisfying

assignments then the previous intuition still holds since each variable will still have

at least one critical clause with respect to each isolated satisfying assignment. If F

has non-isolated satisfying assignments, then consider an assignment and a variable

x such that the assignment satisfies F regardless of how x is set. In this case, it

doesn’t matter how x is set when it is assigned a random value. Extending this

intuition, for any satisfying assignment either a variable has a critical clause and

is forced with probability 1/k, or it doesn’t matter what value it is assigned.

[PPZ99] formalize this intuition and prove Theorem 4.1. [CIKP08a] take

this intuition further and show that having multiple satisfying assignments not only

doesn’t hurt the performance of the PPZ algorithm, it strictly helps. Formally, they

prove that if a k-cnf F has s satisfying assignments then each iteration of the PPZ

33

algorithm returns 1 with probability at least
(
s

2n

)1−1/k
.

Why do we care so much about the PPZ algorithm when the PPSZ al-

gorithm performs better? For small k, PPSZ gives a significantly faster running

time. For example, for 3-sat PPSZ runs in time ≈ 20.387n whereas PPZ runs in

time ≈ 20.667n. However asymptotically the PPSZ algorithm only gives a small

improvement over PPZ as k increases (both have savings 1/O (k)). Furthermore

PPSZ is based on PPZ, so understanding PPZ would seem to be a prerequisite.

The PPZ algorithm itself is quite simple and elegant and its analysis is, for the

most part, straightforward and intuitive. PPSZ adds complexity to the algorithm

and is less intuitive. Finally, in general, we are more interested in the asymp-

totic behavior of the savings for large k and n. In this regard, PPZ, PPSZ, and

Schöning’s algorithm (which we will discuss next) are equivalent.

4.2 Schöning’s k-sat Algorithm

Schöning [Sch99] gives a very different algorithm (Algorithm 4.2) for k-sat

based on local search. Assume that a k-cnf F is satisfiable and that a∗ ∈ {0, 1}n

is a satisfying assignment. Choose a random assignment a. We will keep track

of the Hamming distance between a∗ and a. If the Hamming distance reaches 0

then a = a∗ and we’ve found a satisfying assignment. We may find a satisfying

assignment sooner, but this can only help us.

As long as a isn’t a satisfying assignment, let C be a clause in F not

satisfied by a. Choose a variable i uniformly from C. Changing the setting of i in

the assignment a decreases the Hamming distance between a∗ and a by one with

probability at least 1/k (a falsifies all the literals in C, and a∗ satisfies at least

one of them, and we randomly choose this one with probability 1/k). View how

this process changes the Hamming distance between a∗ and a as a random walk

on 0, . . . , n which ends when it reaches 0.

The initial Hamming distance between a and a∗ is j with probability 2−n
(
n
j

)
.

For each j, consider random walks that take i steps in the “wrong” direction and

i+ j steps in the “right” direction. The algorithm will consider all 0 ≤ i ≤ j ≤ n,

34

but for the sake of intuition just consider i = j/(k − 2). The probability that the

algorithm takes i steps in the wrong direction and i+j steps in the right direction,

given that the initial Hamming distance was j is(
j + 2i

i

)(
k − 1

k

)i(
1

k

)i+j
=

(
j
(

k
k−2

)
j
(

1
k−2

))(k − 1

k

)i(
1

k

)i+j
≈ ki(k − 1)i

(
1

k

)j+2i

≈
(

1

k

)j
using the fact that

(
n
k

)
≈
(
n
k

)k
. Now summing over j we get an overall success

probability of
n∑
j=0

2−n
(
n

j

)(
i

k

)j
=

(
1

2

(
1 +

1

k

))n
.

Using somewhat more careful calculations, Schöning shows that the process

succeeds with probability at least (1
2
(1 + 1

k−1
))n ≥ 2−n(1− 1

k ln 2). The choice of 3n

allows the random walk to take up to n steps in the “wrong” direction and leaves

2n steps in the right direction.

By running this process poly(n)2n(1− 1
k ln 2) times independently, we get a

k-sat algorithm with savings 1
k ln 2

that succeeds with high probability.

Algorithm 4.2: Schöning (F)

Data: F is a k-cnf in n variables
1 begin

2 repeat poly(n)2n(1− 1
k ln 2) times

3 choose an assignment a ∈ {0, 1}n uniformly at random
4 repeat 3n times
5 if F (a) = 1 then
6 return 1
7 end
8 let C be an arbitrary clause in F such that C(a) = 0
9 choose a variable i ∈ C uniformly at random

10 a← a⊕ i // change the setting for i in a

11 end

12 end
13 return 0 // probably not satisfiable

14 end

35

4.3 Lokshtanov–Paturi Algorithm

Lokshtanov and Paturi [LP11] give an algorithm for k-sat with savings

1/O (k) based a modification of Williams’ [Wil11] ACC0 satisfiability algorithm.

The idea of Williams’ algorithm is to take an ACC0 circuit C in n variables,

choose a parameter m � n and the construct the circuit C ′(x1, . . . , xn−m) =

∨xn−m+1,...,xnC(x1, . . . , xn) which computes the disjunction of the circuits where

the last m variables are set in all possible ways. Then Williams constructs a

polynomial C̃ ′(x1, . . . , xn−m) such that it’s easy to compute C ′(x1, . . . , xn−m) given

C̃ ′(x1, . . . , xn−m). Finally, he uses Yates’ [Yat37] dynamic programming algorithm

for the zeta transform to compute the value of C̃ ′(x1, . . . , xn−m) on all 2n−m inputs.

(Originally, Williams used a different approach to evaluate C̃ ′. The zeta transform

and Yates’ Algorithm were suggested to him by Andreas Björklund.)

In this section, we will always view polynomials as a sum of monomials

(rather than, say, arithmetic circuits) and say that the size of a polynomial is

simply the number of monomials. Yates’ algorithm will evaluate a polynomial

represented this way on all 2n−m inputs in time poly(n)2n−m, even if the size of the

polynomial is Ω(2n−m) (note that the naive evaluation of this size polynomial would

require time Ω(22(n−m))). The key to Williams’ algorithm is to choose m and the

structure of C̃ ′ such that the polynomial can be constructed in time poly(n)2n−m

as well. This is the step which requires particular ingenuity, and where Lokshtanov

and Paturi’s algorithm will differ from Williams’.

Lokshtanov and Paturi convert a k-cnf gate by gate into a polynomial in

the same set of variables over GF (2). It is straightforward to see that ¬x can be

represented by the polynomial (1 − x) and x1 ∧ x2 ∧ · · · ∧ x` can be represented

by x1x2 · · ·x`. By De Morgan’s laws we get that x1 ∨ x2 ∨ · · · ∨ x` corresponds

to 1− (1− x1)(1− x2) · · · (1− x`). The problem with this naive approach is that

it will take time Ω(2n) just to convert the k-cnf into a polynomial, and even

longer if they first set m variables in all possible ways. Instead, they will construct

a polynomial which only approximates the k-cnf but which has sufficiently low

degree that they can bound the size of the polynomial and the time required to

construct it. They do this with a technique due to Razborov [Raz87].

36

Razborov gives a method of converting a circuit into a low degree polyno-

mial which approximates the circuit, and then uses this approach to show that ma-

jority cannot be computed by ACC0(2) circuits (AC0 with parity gates). Smolen-

sky [Smo87] generalizes this technique to show that MODq cannot by computed

by ACC0(p) circuits where p and q are distinct primes (or powers of primes).

To approximate an OR f(x1, . . . , x`) = x1 ∨ x2 ∨ · · · ∨ x`, choose a

random subset S ⊆ {1, . . . , `} where each i is in S with probability 1/2.

The sum fS(x1, . . . , x`) =
∑

i∈S xi (over GF (2)) is equal to f(x1, . . . , x`) when

f(x1, . . . , x`) = 0 and when f(x1, . . . , x`) = 1, fS(x1, . . . , x`) = 1 with probability

exactly 1/2. To see this, fix an xj which equals 1. Then the sum
∑

i∈S\{j} xi

may be either 0 or 1, but i is in S with probability exactly 1/2 so the out-

put of fS is equally likely to be 0 or 1. We may improve this probability to

1 − 2−t by choosing t sets S1, . . . , St ⊆ {1, . . . , `} and then let f̃(x1, . . . , x`) =

fS1(x1, . . . , x`) ∨ · · · ∨ fSt(x1, . . . , x`), where the OR is computed by the naive for-

mula. By De Morgan’s laws, we get a similar formula for AND.

Now we will give the overview of the Lokshtanov–Paturi Algorithm. Let

F = ∧`i=1Ci be a k-cnf in n variables and ` clauses. Let t and m be parameters

which we will optimize shortly. Write each clause Ci as a degree (at most) k

polynomial C̃i using the naive formula. Use Razborov’s approximation with t

random sets S1, . . . , St ⊆ {1, . . . , `} followed by the naive formula for AND to get

a degree tk polynomial F̃ which approximates F . When F (~x) = 1 then F̃ (~x) = 1,

and when F (~x) = 0 then F̃ (~x) = 0 with probability 1− 2−t.

Let G = ∨xn−m+1,...,xnF (x1, . . . , xn) be the circuit the computes the disjunc-

tion of F where the last m variables are set in all possible ways. Let G̃ be the

result of applying Razborov’s approximation to the OR gate of G and using F̃

instead of F . Note that G̃ is a polynomial in n−m variables. For any assignment

~x, let ~x′ denote the corresponding assignment to the n − m variables remaining

in G̃. If F (~x) = 1 then F̃ (~x) = 1, and then G̃(~x′) = 1 with probability 1/2;

and if F (~x) = 0 then F̃ (~x) = 0 with probability at least 1 − 2−t, and then by a

union bound G̃(~x′) = 0 with probability at least 1 − 1
2
2m2−t. Use the fast zeta

transform to evaluate G̃ on all 2n−m inputs. As long as t > m, we have at least

37

a constant gap between Pr
[
G̃(~x′) = 1 | F (~x) = 1

]
and Pr

[
G̃(~x′) = 1 | F (~x) = 0

]
so by repeating the process poly(n) times we can identify a satisfiable k-cnf with

all but exponentially small probability.

The remaining piece is to choose values for m and t. The degree of G̃ will

be at most kt, so it will contain at most
(
n
kt

)
monomials (and can be constructed

in the same amount of time, ignoring poly(n) factors), so in this regard, we want t

small. On the other hand, the zeta transform will take time 2n−m (ignoring poly(n)

factors), so we want m large. But we require m < t. We will set m = t − 1 and

then approximately balance
(
n
kt

)
and 2n−t+1. By choosing t = n

4k
+ 1, we get(

n

kt

)
=

(
n

n/4

)
≤ (4e)n/4 < 20.9n < 2n−m = 2n(1− 1

4k
)

giving savings 1
4k

. This can be optimized somewhat using tighter inequalities, but

it will still only give savings 1/O(k).

4.4 Our k-sat Algorithm

Our k-sat algorithm is a straightforward application of any of the decision

tree versions of the switching lemmas in Chapter 3. The switching lemmas say that

after applying a random restriction which sets a 1− 1/O (k) fraction of variables,

any k-cnf or k-dnf has a small canonical decision tree with high probability. In

particular, the probability that any path in the canonical decision tree involves

more than half of the unset variables is exponentially small. We first build a

complete decision tree on a random set of n(1− 1/O (k)) variables. Then, we view

each path in this tree as a random restriction, and replace each leaf in this tree

with the canonical decision tree for the k-cnf under the corresponding restriction.

By the switching lemma, most of these canonical decision trees are small, so the

overall decision tree doesn’t grow very much when we do this. We can then iterate

over the leaves of this tree to solve k-sat, #k-sat, and to enumerate the solutions

to a k-cnf.

In comparison to PPZ, PPSZ, and Schöning’s algorithm, this algorithm has

a somewhat poorer constant in the savings (we will show savings 1
20k

versus ≈ 1
k
),

38

but has the advantage that it enumerates solutions rather than just finding one,

if one exists. Given the switching lemma, this algorithm is simple and intuitive

like PPZ. However, the switching lemma is fairly complicated so PPZ has the

advantage that it is more self-contained.

More precisely, let F be a k-cnf and let ρ ∼ Rp
n for p = 1

20k
. By Lemma 3.8,

Eρ [number of nodes in tree(F |ρ) at depth t] ≤ (9pk)t =
(

9
20

)t
. Summing over t,

the expected size of the canonical decision tree is at most Eρ [size(tree(F |ρ))] ≤∑∞
t=0

(
9
20

)t
< 2. The algorithm chooses a random set of n(1 − 1

20k
) variables and

repeats this process for the 2n−pn restrictions ρ which set this set of variables in

all possible ways, to construct a decision tree of expected size at most 2 · 2n−pn for

the original k-cnf. This is formalized in Algorithm 4.3 and Lemma 4.2.

Algorithm 4.3: KCNFEnumerate(F)

Data: F is a k-cnf or k-dnf in n variables
Result: a decision tree for F

1 begin
2 let p = 1

20k

3 choose a set V ′ of n(1− p) variables uniformly at random
4 let T be a complete decision tree on the variables in V ′

5 foreach path ρ in T do
6 replace the leaf at the end of the path ρ in T with tree(F |ρ)
7 end
8 return T

9 end

Lemma 4.2. Let F be a k-cnf or k-dnf in n variables. The expected size

of the decision tree constructed by KCNFEnumerate(F) (Algorithm 4.3) is at

most 2 · 2n(1− 1
20k

) and the expected running time of the algorithm is at most

|F |poly(n)2n(1− 1
20k

).

Corollary 4.3. The problems k-sat, #k-sat, and enumerating the solutions to

a k-cnf all have algorithms with savings at least 1
20k

.

The algorithm for enumerating solutions to a k-cnf is optimal up to con-

stants in the savings since the corresponding block parity circuit (Section 2.1.2)

requires 2n−n/Ω(k) restrictions to partition {0, 1}n and make the circuit constant.

39

KCNFEnumerate() naturally generalizes to construct a decision tree for

a sequence F1, . . . , Fm of k-cnfs and/or k-dnfs by using Corollary 1.8 in place

Lemma 3.8 and p = 1
30k

, the rest of the algorithm and argument remain the same

and we get the following lemma.

Lemma 4.4. Let F1, . . . , Fm be a sequence of k-cnfs and/or k-dnfs in the same

n variables. There exists a randomized algorithm which constructs a decision tree

for (F1, . . . , Fm) of expected size at most O
(

(2m − 1)2n(1− 1
30k

)
)

.

4.4.1 Optimizing the Constant

Algorithm 4.3 gives the best known approach for #k-sat for general k. In

this section we will optimize the parameters to get the best known constant. This

same constant also holds for k-sat but this is less interesting since it is somewhat

poorer than the best known.

Lemma 4.5. There exists a Las Vegas algorithm for #k-sat with expected savings

at least
ln 1+

√
5

2

2k
≈ 1

4.1562k
.

Proof. Use Algorithm 4.3 with p =
ln 1+

√
5

2

2k
. The proof is essentially the same as

the proof of Lemma 4.2, however it is complicated slightly by the fact that we will

use H̊astad’s Switching Lemma (Lemma 3.3) rather than Razborov’s Switching

Lemma (Lemma 3.8). H̊astad’s Switching Lemma says that after applying a ran-

dom restriction from R′pn (where each variable is independently 0 with probability

(1 − p)/2, 1 with probability (1 − p)/2, and ∗ with probability p), the expected

number of nodes in the canonical decision tree at depth h is at most αh where

α 2pk

(1+p) ln 1+
√

5
2

is the unique positive root of
(

1 + 4p
1+p

1
α

)k
=
(

1 + 2p
1+p

1
α

)k
+ 1.

We need to calculate Eρ∼R′pn [size(tree(F |ρ)) | ρ has exactly pn ∗s]. How-

ever, since p is a constant and the number of ∗s is distributed binomially,

Prρ∼R′pn [ρ has exactly pn ∗s] = Ω (1/
√
n) so we may ignore the conditioning at

the expense of at most an additional O (
√
n) factor in the size of the tree.

40

The choice of p =
ln 1+

√
5

2

2k
gives α < 1. By the same reasoning as the proof

of Lemma 4.2 Eρ∼R′pn [size(tree(F |ρ))] ≤ O (
√
n)
∑∞

t=0 α
t = O (

√
n). Thus we get

savings p =
ln 1+

√
5

2

2k
≈ 1

4.1562k
.

4.5 Schuler’s Algorithm

Schuler [Sch05] gives a Turing reduction from cnf-sat to k-sat, where

the running time of the reduction will depend on the parameter k, the number of

variables n and the number of clauses m. We will be able to choose k = O
(
lg m

n

)
such that the overhead from Schuler’s reduction is much less than the ≈ 1

k
savings

from any of the previous k-sat algorithms.

Let F be a cnf. The idea is, as long as F contains a clause C of width

greater than k, to branch on the disjunction C ′ of the first k literals in C. If C ′

is true, then we replace C with C ′, and if C ′ is false, then we know that all the

literals in C ′ must be false so we reduce the number of variables by k. This process

is repeated until F is a k-cnf.

The same idea may be applied to a dnf or even an arbitrary collection

of conjunctions (clauses) and disjunctions (terms). When considering a term T

of width greater than k, branch on the conjunction T ′ of the first k literals and

proceed accordingly.

Consider the execution of Schuler’s reduction as a tree where each node

corresponds to branching on some disjunction (or conjunction) of k literals. To

use this reduction its fullest extent, we will keep track of the number of variables

remaining at each leaf in this tree.

Schuler’s reduction outputs a set of k-cnfs with varying numbers of re-

maining variables. In order to use Schuler’s reduction efficiently, we need to bound

the number of k-cnfs output and the number of variables remaining in each. View

Schuler’s reduction as constructing a tree where each leaf of the tree has a k-cnf.

The following theorem bounds the number of k-cnfs generated by Schuler’s re-

duction.

Theorem 4.6. Let F be a cnf with m clauses and k > 0 be a parameter. For

41

Algorithm 4.4: Schuler(F, k)

Data: F is a cnf and k ≥ 1 is a parameter
1 begin
2 if F is a k-cnf then
3 output F
4 else
5 let C be the first clause in F of width > k
6 let C ′ be the conjunction of the first k literals in C
7 Schuler(F ∪ {C ′} \ {C}, k) // C ′ is true
8 Schuler(F |C′=0, k) // C ′ is false

9 end

10 end

each 0 ≤ f ≤ n/k, the computation tree of Schuler’s algorithm has at most
(
m+f
f

)
leaves with at most n− fk variables remaining.

Proof. For any path in the computation tree, let f refer to the number of branches

where the conjunction C ′ is false. Each of these branches sets k variables, so

f ≤ n/k. Each branch where C ′ is true reduces the number of clauses of width

> k by one, so there can be at most m such branches. Thus, the length of the

path is at most m+ f . For each f , we can bound the number of paths with f false

branches by
(
m+f
f

)
.

Now we’ll compose Schuler’s reduction and the PPZ algorithm (using PPSZ

would improve the constants slightly, but they end up hidden in the big O anyway).

Recall that PPZ runs on a k-cnf F in n variables in time |F |poly(n)2n(1− 1
k

).

Theorem 4.7. Let F be a cnf in n variables with m clauses. The composition of

Schuler’s reduction and PPZ can compute the satisfiability of F in expected time

2n(1− 1
O(lg(m/n))).

Proof. These calculations are due to [CIP06] and give slightly better bounds than

Schuler’s original calculations [Sch05]. Let k be a parameter that we’ll optimize

for. We bound the running time by summing over all the paths in the computation

42

tree.

n/k∑
f=0

(
m+ f

f

)
2(n−fk)(1− 1

k
) ≤ 2n(1− 1

k
)

m+bn/kc∑
f=0

(
m+ bn/kc

f

)
2−fk(1− 1

k
)

= 2n(1− 1
k

)
(
1 + 2−(k−1)

)m+bn/kc ≤ 2n(1− 1
k

)e2−(k−1)(m+n/k)

≤ 2n(1− 1
k

)+4·2−(k−1) max(m,n/k)

choose k = Θ
(
max(lg m

n
, 1)
)

such that 4 · 2−(k−1) max(m,n/k) ≤ 1
2k

≤ 2n(1− 1
2k

) = 2
n

(
1− 1

O(1+lg mn)

)

We can compose Schuler’s reduction (Algorithm 4.4, Theorem 4.6) and our

algorithm for enumerating solutions to a k-cnf (Algorithm 4.3, Lemma 4.2) in

exactly the same way to get an algorithm for cnf-sat with m clauses running in

expected time 2n(1− 1
O(lg(m/n))). However, since Algorithm 4.3 can also be used to

enumerate the satisfying assignments to a k-cnf, we would like to use Schuler’s

reduction with our algorithm to enumerate the satisfying assignments to a cnf

with m clauses. This requires a little bit more work.

First, lets see why the naive composition doesn’t work as well as we would

like when enumerating solutions. We would like to output a set of restrictions which

partition {0, 1}n such that under each restriction the cnf is constant. Consider

the single clause cnf (x1 ∨ x2 ∨ x3 ∨ x4) and let k = 2. Schuler’s algorithm will

first branch on (x1 ∨ x2). When (x1 ∨ x2) is true, the cnf is equivalent to just

(x1 ∨ x2). Now by constructing the decision tree for this, we would output among

other things, the restriction x1 = 0, x2 = 0, x3 = ∗, x4 = ∗ since this makes the

cnf (x1 ∨ x2) constant. However, it doesn’t make the original cnf constant.

In general, when the naive composition outputs a restriction that makes

the k-cnf 1, it will also make the original cnf 1 (this is why the composition

works for satisfiability). However, when the k-cnf is 0, it can be 0 because the

original cnf is 0 or because of the path taken in the computation tree of Schuler’s

reduction.

43

We could solve these problems by first running the combined algorithm on

F to get a set of restrictions (paths from the decision tree) which set F to 1,

and then run the algorithm on ¬F to get a set of restrictions which set ¬F to

1 (equivalently set F to 0), and output these, but we will instead use a different

technique which will also be useful in Chapter 5.

Think of each branch in Schuler’s reduction as partitioning the space {0, 1}n

of inputs into smaller and smaller regions. Recall from Section 2.2, a region R =

(R, ρ) where R is a k-cnf and ρ is a restriction is the subset of {0, 1}n which

satisfies R and is consistent with ρ. In the branch in Schuler’s reduction where C ′

is true, we add C ′ to R, and in the branch where C ′ is false, we add C ′ = 0 to

ρ. This way, we maintain the invariant that at any point in Schuler’s reduction in

the current region F is equivalent to the original cnf. When F becomes a k-cnf,

we use Algorithm 4.3 to construct a decision tree for the pair (F,R). Now, we can

simply output the subset of paths where R ≡ 1 since these correspond exactly to

the current region. This is formalized in Algorithm 4.5.

Algorithm 4.5: SchulerEnumerate(F, k,R = (R, ρ))

Data: F is a cnf and k ≥ 1 is a parameter, R is a region initially all
of {0, 1}n

Result: A set of restrictions which partition R and make F constant
1 begin
2 if F is a k-cnf then
3 foreach path σ in KCNFEnumerate(F,R) do
4 if R|σ ≡ 1 then
5 output ρσ
6 end

7 end

8 else
9 let C be the first clause in F of width > k

10 let C ′ be the conjunction of the first k literals in C
11 SchulerEnumerate(F ∪ {C ′} \ {C}, k, (R ∧ C ′, ρ)) // C ′ is true
12 SchulerEnumerate(F |C′=0, k, (R, ρ(C ′ = 0))) // C ′ is false

13 end

14 end

Lemma 4.8. Let F be a cnf in n variables with m clauses. We may choose k such

44

that SchulerEnumerate(F, k) outputs at most s restrictions which partition {0, 1}n

and make F constant and such that SchulerEnumerate(F, k) runs in expected time

|F |poly(n)s where s ≤ 2n(1−1/O(lg m
n))+O(1).

The algorithm for enumerating solutions to a size m cnf is optimal up to

constants in the savings since the corresponding block parity circuit (Section 2.1.2)

requires 2n−n/Ω(lg m
n) restrictions to partition {0, 1}n and make the circuit constant.

Proof. Let F 0 denote the original cnf. We maintain the invariant at every recur-

sive call that R =⇒ (F ≡ F 0). This follows by induction from inspection of the

two recursive calls. The calculations bounding the number of branches in the com-

putation tree of Schuler’s reduction are identical to the proof of Theorem 4.7.

4.6 Acknowledgments

The content of Section 4.4 and parts of Section 4.5 is joint work with Russell

Impagliazzo and Ramamohan Paturi and appears in [IMP11].

Chapter 5

A Satisfiability Algorithm for AC0

Schuler [Sch05] (Section 4.5) gives an algorithm for cnf-sat with savings

O(1/ log c). He does this by reducing the cnf to a moderately exponential sized

set of O(log c)-cnfs through a case analysis, then using known k-sat algorithms

(Chapter 4) to get overall savings 1/O(log c). Like [CIP09], our algorithm can be

thought of as generalizing Schuler’s approach to larger depths, where each step

performs a case analysis to reduce a single circuit of depth d to a moderate-sized

collection of circuits which are all depth d − 1. Calabro et. al. use a complex,

but local, form of Schuler’s case analysis, branching on large constant sized sub-

formulas of the input formula. Here, we use a more global case analysis, based

on H̊astad’s Switching Lemma. This global treatment was in part inspired by an

algorithm of Santhanam [San10] for formula satisfiability, that constructs a decision

tree for the formula whose paths are short on average, although there might not

be a small depth decision tree for the formula.

Using a Switching Lemma to convert depth d circuits to depth d−1 circuits

is standard. However, to achieve the claimed savings with Switching Lemmas is

not at all straight-forward. Assume that we have converted the bottom two levels

of our circuit to k-cnfs. The main idea is that after a random restriction setting

all but about n/k variables, with high probability, each of these sub-circuits is

equivalent to a small depth decision tree. View the random restriction as first

picking the set of variables to restrict, then the values. For a randomly chosen set

of variables to restrict, our algorithm will perform an exhaustive search over all

45

46

settings of the values. If for a certain setting, the sub-formulas all become decision

trees of depth k′, we can write them all as k′-dnfs and combine with the level of

OR gates above. Then we can hope to get the recursive savings on these branches

for depth d− 1 circuits on n′ = Ω(n/k) variables.

So there are two factors that limit our savings with this approach: Even if

the formula became constant after every restriction, we cannot get savings more

than 1/k, since we use exhaustive search on n−n/k variables.. On the other hand,

there is a failure probability (exponentially small in k′) where our sub-formulas

might not become small depth decision trees. For these branches , we might not

get any savings. So our savings is also bounded by roughly k′/n, the log of the

failure probability as a fraction of n. Since our value of k′ in this depth becomes

the new value of k, it is hard to see how to get savings more than 1/
√
n by this

type of argument, even for depth 3.

We get around this by taking a more error-tolerant approach. We don’t

assume that all of our sub-formulas become small depth decision trees, just most

of them. This is still problematic, because the sub-formulas might be identical or

close, so the events that they become small depth decision trees might be highly

correlated. To handle this, we look not at the decision tree complexity of a single

sub-formula but at sets of sub-formulas, where the decision tree has to compute

the value of each one. If several formulas become high depth for essentially the

same reason, once we’ve evaluated one of them, the others should become small

depth, so the combined decision tree will still have relatively small depth. We

give an extended switching lemma that proves that it is (almost) exponentially

unlikely that there is a large set of sub-formulas who all contribute many variables

to their joint decision tree. Thus, intuitively, with extremely high probability,

either only a few sub-formulas remain complex, or the ones that do all involve the

same moderate sized subset of variables.

Our algorithm then does a case analysis over which of the sub-formulas are

in this set of mutually complex ones, and over all paths in their joint decision tree.

For each, the other sub-formulas are equivalent to k-dnfs by definition. Because

we are not insisting that all sub-formulas become small, we can pick k relatively

47

small and still have an extremely small chance of failure. k affects the overhead

for the case analysis (we’ll have to branch on which set of at most n/k of the m

sub-formulas stay complex, which is relatively small for k = O(log c)), which is

determined by the length of the joint decision tree. We can let this be a constant

fraction of the remaining variables, and so get a failure probability exponentially

small in n/k rather than k.

In the next section, we formalize the overall algorithm. In Section 5.2 we

describe the algorithm for converting one level of cnfs to dnfs and vice versa,

which uses our Extended Switching Lemma, Lemma 1.7 proved in Section 3.3.

5.1 Algorithm Details

The main algorithm consists of a sequence of steps, each of which takes a

circuit and computes a partitioning for that circuit where the circuits associated

with each region are simpler (either the depth or the bottom fan-in is reduced).

The first step reduces the bottom fan-in to k (for some k which will eventually

depend on m/n and d). It takes an (n,m, d)-circuit C and outputs a partition

for C into regions with associated (n′,m, d, k)-circuits. In each subsequent step,

we reduce the depth of the circuit by further partitioning. In each such step,

an we construct a partition for a (n,m, i, k)-circuit into regions with associated

(ε′n,m, i − 1, k)-circuits. This continues until the depth becomes two at which

point we run the algorithm of Lemma 4.2. Each step increases the size of the

partition by a factor of 2(1−ε)n but decreases the number of variables by a factor ε′

(where ε and ε′ depend on m, d, and k and will be made precise below.) Both the

final step where we handle depth 2 circuits, and the depth reduction step require

the circuit to have bounded bottom fan-in. Hence why we needed the first step.

We construct a partition for an (n,m, d)-circuit into regions and associated

(n′,m, d, k)-circuits by using a technique of Schuler [Sch05] (Section 4.5).

Lemma 5.1 (BottomFaninReduction). Let C be a (n,m, d)-circuit and let k ≥
1 be a parameter. There exists an algorithm which outputs a partitioning P =

∪0≤f≤n/kPf for C, where the sets Pf are disjoint and for each f , Pf contains at

48

Algorithm 5.1: BottomFanInReduction(C, k)

Data: C is a (n,m, d)-circuit and k ≥ 1 is a parameter
// Assume that the bottom level gates are OR gates (the AND gate

case is symmetric.)
1 begin
2 let R be an empty (true) k-cnf and let ρ be a restriction where all

variables are unset
3 while there exists a bottom level gate φ with fan-in greater than k

do
4 let φ′ denote the disjunction of the first k inputs to φ
5 branch on φ′

6 if φ′ = 1 then
7 replace φ with 1 in C
8 R← R ∧ φ′
9 else

10 remove the first k inputs from φ in C
11 ρ← ρ ∧ ¬φ′
12 end

13 end
14 output (R = (R, ρ), C)

15 end

49

most
(
m+f
f

)
regions with associated (n − fk,m, d, k)-circuits. The algorithm runs

in time poly(n) · |C| · |P|.

The proof of Lemma 5.1 is essentially the same as for Lemma 4.8.

Next, we repeatedly reduce the depth of (n,m, i, k)-circuits by one until it

reaches depth 2 (either a k-cnf or a k-dnf). Let Φ be the sequence of subcircuits

of an (n,m, i, k)-circuit at depth i− 1. Assume without loss of generality that the

subcircuits are k-dnfs. The main technical ingredient for depth reduction is an

algorithm which constructs a partition which allows us to transform a sequence of

k-dnfs into a sequence of equivalent k-cnfs in each region, or vice versa. This

algorithm will be described in detail in Section 5.2. We apply this algorithm to

transform Φ into sequences of k-cnfs. Since the gates at level i − 1 change from

∨ to ∧, they may be combined with the gates at level i− 2 to reduce the depth by

one without increasing the number of gates at any levels i− 2 or higher.

Lemma 5.2 (DepthReduction). Let C be a (n,m, d, k)-circuit and let 0 < q ≤ 1/2

be a parameter. There exists a randomized algorithm which outputs partition-

ing P for C where the circuit associated with each region of P is a (n
100k

,m, d −
1, k)-circuit. With probability at least 1 − q, |P| ≤ s and the algorithm runs in

time poly(n) · lg 1
q
· |C| · s where s = 2n

100k
· 2n− n

100k
+3−km.

The depth reduction algorithm follows from Lemma 5.3, given below and

proved in Section 5.2.

Lemma 5.3 (SwitchingAlgorithm). Let Φ = (φ1, . . . , φm) be a sequence of k-cnfs

in n variables and let 0 < q ≤ 1/2 be a parameter. There exists a randomized

algorithm which takes Φ as input and outputs a partitioning P for Φ where the

circuits associated with each region of P are k-dnfs in at most n
100k

variables. With

probability at least 1−q, |P| ≤ s and the algorithm runs in time poly(n) · lg 1
q
· |Φ| ·s

where s ≤ 2n
100k
· 2n− n

100k
+3−km.

The case where each φj is a k-cnf and the circuits in each region of P are

k-dnfs is symmetric.

Proof of Lemma 5.2. By Lemma 5.3, each Ψi is a depth 2 circuit in at most n
100k

variables. Therefore, each Ci will be a (n
100k

,m, d − 1, k)-circuit after combining

50

Algorithm 5.2: DepthReduction(C, q)

Data: C is a (n,m, d, k) and 0 < q ≤ 1/2 is a parameter-circuit
1 begin
2 let Φ = (phi1, . . . , φm) be the sequence of subcircuits rooted at level

d− 1 in C
3 foreach (Ri,Ψi = (ψi,1, . . . , ψi,m)) output by

SwitchingAlgorithm(Φ, q) do
4 let Ci be the circuit resulting from replacing φ1, . . . , φm with

ψi,1, . . . , ψi,m in C and then combining the gates at level d− 2
and d− 1 // these will be the same type of gates

5 output (Ri, Ci)

6 end

7 end

the gates at levels d− 2 and d− 1. With probability at least 1− q, the algorithm

of Lemma 5.3 produces P satisfying |P| ≤ s and runs in time poly(n) · lg 1
q
· |Φ| · s

where s ≤ 2n
100k
·2n− n

100k
+3−km. This algorithm produces a partition of the same size

and increases the running time by an additive O(|C| · |P|).

This lemma does d− 2 steps of depth reduction.

Lemma 5.4 (RepeatedDepthReduction). Let C be a (n,m, d, k)-circuit and let

0 < q ≤ 1/2 be a parameter. There exists a randomized algorithm which out-

puts a partitioning P for C where the circuit associated with each region is a(
n

(100k)d−2 ,m, 2, k
)

-circuit (either a k-cnf or a k-dnf). With probability at least

1 − q, |P| ≤ s and the algorithm runs in time poly(n) · lg 1
q
· |C| · s where s ≤

(2n)d−2

(100k)(d−1)(d−2)/2 2
n− n

(100k)d−2 +(d−2)3−km
.

Proof. We will prove Lemma 5.4 by induction on d. If d = 2, output ((R = 1, ρ =

1), C) since C is already a k-cnf or k-dnf and the bounds on P and the running

time holds with probability 1.

If d > 2 we assume by induction that we can run this algorithm recursively

on circuits of depth d− 1 and that the recursive call will satisfy the properties of

the lemma.

Say that P is good if |P| ≤ 2n
100k

2n(1− 1
100k

)+3−km. By Lemma 5.2, P
is good with probability at least 1 − q/2. For each i, say that Pi is good

51

Algorithm 5.3: RepeatedDepthReduction(C, q)

Data: C is a (n,m, d, k)-circuit and 0 < q ≤ 1/2 is a parameter
1 begin
2 if the depth of C is at most 2 then
3 output (R = (R = 1, ρ = 1), C)
4 else
5 let P = {(Ri, Ci)}i be the set of outputs of

DepthReduction(C, q/2)
6 foreach (Ri, Ci) ∈ P do
7 let Pi = {(Ri,j, Ci,j)}j be the set of outputs of

RepeatedDepthReduction(Ci, q/2
n+1)

8 foreach {(Ri,j, Ci,j)} ∈ Pi do
9 output (Ri ∧Ri,j, Ci,j)

10 end

11 end

12 end

13 end

if |Pi| ≤
(2n

100k)
d−3

(100k)(d−2)(d−3)/2 2
(n

100k)(1− 1

(100k)d−3)+(d−3)3−km
(note that this is the result

of a recursive call on a (n
100k

,m, d − 1, k)-circuit). By induction, each Pi is

good independently with probability at least 1 − q/2n+1. By a union bound,

Pr [Pi is good for all i | P is good] ≥ 1 − q/2, since if P is good then the num-

ber of Pis is much less than 2n. The probability that P and Pi for all i are all good

is at least (1− q/2)(1− q/2) > 1− q. In this case, the total number of outputs is

at most(
2n

100k
· 2n(1− 1

100k
)+3−km

)((
2n

100k

)d−3

(100k)(d−2)(d−3)/2
2
(n

100k)(1− 1

(100k)d−3)+(d−3)3−km

)

=
(2n)d−2

(100k)(d−1)(d−2)/2
2
n(1− 1

(100k)d−2)+(d−2)3−km
.

When we end up with a k-cnf or a k-dnf C in a region defined by a k-cnf

R (and a restriction), we run the algorithm of Lemma 4.2 on each (C,R) which

outputs a set of restrictions that partition R and make C constant.

Lemma 5.5 (Depth Two Algorithm). Let C be a k-cnf or k-dnf and R be a

k-CNF each in the same n variables and let 0 < q ≤ 1/2 be a parameter. There

52

exists a randomized algorithm which outputs a partitioning P for C in the region

R where each region on P is defined by a restriction and the circuit associated with

each region of P is either 0 or 1. With probability at least 1− q, |P| ≤ s and the

algorithm runs in time poly(n) · lg 1
q
· (|C|+ |R|) · s where s ≤ 50 · 2n(1− 1

30k).

This follows from running Lemma 4.2 lg 1
q

times in parallel with independent

randomness and outputting the smallest result.

Algorithm 5.4: AC0Enumerate(C)

Data: C is a (n,m, d)-circuit
1 begin
2 let k = Θ

(
max

(
lg m

n
, d lg d

))
as in the proof of Theorem 1.2

3 foreach (Ri = (Ri, ρi), Ci) output by BottomFaninReduction(C, k)
do

4 foreach (Ri,j = (Ri,j, ρi,j), Ci,j) output by
RepeatedDepthReduction(Ci, 2

−2n) do
5 let T be the smallest tree constructed after running

KCNFEnumerate(Ci,j, Ri ∧Ri,j) poly(n) times with
independent randomness

6 foreach path ρi,j,` ending at a leaf (bC , bR) in T do
7 if bR = 1 then
8 output ρiρi,jρi,j,`
9 end

10 end

11 end

12 end

13 end

We compose the preceding algorithms to get our algorithm for AC0 circuits,

Algorithm 5.4, formalized in the following lemma.

Lemma 5.6. Let C be a (n,m, d)-circuit. Let k ≥ 1 be a parameter. There exists

a randomized algorithm which outputs a partitioning P for C where each region is

defined by a restriction and the circuit associated with each region is either 0 or 1.

With probability at least 1− 2−n, |P| ≤ s and the algorithm runs in time at most

poly(n) · |C| · s where s ≤ 50 (2n)d−2

(100k)(d−1)(d−2)/2 2
n− 3n

(100k)d−1 +(d−2)3−km+4·2−k max(m,n/k)
.

Theorem 1.2 follows straightforwardly from Lemma 5.6.

53

Theorem (Theorem 1.2, restated). There exists a randomized algorithm which

takes a cn size and depth d AC0 circuit C in n variables as an input and outputs

a set of restrictions which partition {0, 1}n and make C constant. The algorithm

outputs at most 2n(1−µc,d) restrictions and runs in time poly(n)|C|2n(1−µc,d) with

probability at least 1− 2−n where savings is at least µc,d ≥ 1
O(lg c+d lg d)d−1 .

Proof of Theorem 1.2. Let C be a (n,m, d)-circuit. If m ≥ 2Ω(n)
1
d−1

then output

all 2n restrictions which set all of the variables. Otherwise, we may choose k =

Θ
(
max

(
lg m

n
, d lg d

))
such that

50
(2n)d−2

(100k)(d−1)(d−2)/2
2(d−2)3−km+4·2−k max(m,n/k) ≤ 2

2n

(100k)d−1

and then use Lemma 5.6. In either case, the algorithm outputs at most

2
n− n

O(lg mn +d lg d)d−1 +O(1)
restrictions.

The algorithm for enumerating solutions to a (n,m, d)-circuit is almost

optimal up to constants in the savings since the corresponding block parity circuit

(Section 2.1.2) requires 2n−n/Ω(lg m
n)

d−1

restrictions to partition {0, 1}n and make

the circuit constant.

For the sake of simplifying the calculations in the proof of Lemma 5.6, we

first prove the special case where the circuit has bottom fan-in k.

Lemma 5.7. Let C be a (n,m, d, k)-circuit. There exists a randomized algorithm

which outputs a partitioning P for C where each region is defined by a restriction

and the circuit associated with each region is either 0 or 1. With probability at least

1 − 2−2n, |P| ≤ s and the algorithm runs in time at most poly(n) · |C| · s where

s ≤ 50 (2n)d−2

(100k)(d−1)(d−2)/2 2
n− 3n

(100k)d−1 +(d−2)3−km
.

Proof. Run the RepeatedDepthReduction (Lemma 5.4) on (C, q/2) to get a parti-

tion P = {((Ri, ρi), Ci)}i for C. Each Ci is either a k-cnf or a k-dnf in n
(100k)d−2

variables. Run the Depth Two Algorithm (Lemma 5.5) on (Ci, Ri, q = q/2n+1) to

get a partition Pi = {(ρi,j, bi,j)}j for Ci. Output (ρi ∧ ρi,j, bi,j).
Say that P is good if |P| ≤ (2n)d−2

(100k)(d−1)(d−2)/2 2
n(1− 1

(100k)d−2)+(d−2)3−km
. By

Lemma 5.4, Pr [P is good] ≥ 1 − q/2. For each i, say that Pi is good if |Pi| ≤

54

50·2
n

(100k)d−2 (1− 1
30k

)
(note that the Depth Two Algorithm is run on circuits in n

(100k)d−2

variables). By Lemma 5.5, Pr [Pi is good] ≥ 1 − q/2n+1. By a union bound,

Pr [Pi is good for all i | P is good] ≥ 1− q/2, since if P is good then the number

of Pis is much less than 2n. The probability that P and Pi are all good is at least

(1− q/2)(1− q/2) > 1− q. In this case, the total number of outputs is at most(
(2n)d−2

(100k)(d−1)(d−2)/2
2
n(1− 1

(100k)d−2)+(d−2)3−km
)(

50 · 2
n

(100k)d−2 (1− 1
30k

)
)

≤ 50
(2n)d−2

(100k)(d−1)(d−2)/2
2
n(1− 3

(100k)d−1)+(d−2)3−km
.

Proof of Lemma 5.6. Run the BottomFaninReduction (Lemma 5.1) on (C, k) to

get P = ∪0≤f≤n/kPf where Pf = {((Rf,i, ρf,i), Cf,i)}i. For each f and i, the circuit

Cf,i is an (n − fk,m, d, k)-circuit. Run the algorithm of Lemma 5.7 on (Cf,i, q =

2−2n) to get a partition Pf,i = {(ρf,i,j), bf,i,j)}j for Cf,i. Output (ρf,i ∧ ρf,i,j, bf,i,j).
By Lemma 5.1, the sets Pf are disjoint and for each f , |Pf | ≤

(
m+f
f

)
and the

circuits associated with each region in Pf are (n− fk,m, d, k)-circuits. For each f

and i, say that Pi,f is good if |Pf,i| ≤ 50 (2n)d−2

(100k)(d−1)(d−2)/2 2
(n−fk)(1− 3

(100k)d−1)+(d−2)3−km
.

By Lemma 5.7, Pr [Pf,i is good] ≥ 1 − 2−2n, and by a union bound over the at

most 2n pairs f, i, all of the sets Pf,i are simultaneously good with probability at

least 1− 2−n. In this case, the total number of outputs is at most

n/k∑
f=0

(
m+ f

f

)
50

(2n)d−2

(100k)(d−1)(d−2)/2
2

(n−fk)(1− 3

(100k)d−1)+(d−2)3−km

= 50
(2n)d−2

(100k)(d−1)(d−2)/2
2
n(1− 3

(100k)d−1)+(d−2)3−km

·
n/k∑
f=0

(
m+ f

f

)
2
−fk(1− 3

(100k)d−1)+(d−2)3−km

≤ 50
(2n)d−2

(100k)(d−1)(d−2)/2
2
n(1− 3

(100k)d−1)+(d−2)3−km+4·2−k max(m,n/k)

55

since

n/k∑
f=0

(
m+ f

f

)
2
−fk(1− 3

(100k)d−1) ≤
m+n/k∑
f=0

(
m+ n/k

f

)
2−fk =

(
1 + 2−k

)m+n/k

≤ 2(lg e)2−k(m+n/k) ≤ 24·2−k max(m,n/k)

5.2 Switching Algorithm

Lemma (Lemma 5.3, restated). Let Φ = (φ1, . . . , φm) be a sequence of k-cnfs

in n variables and let 0 < q ≤ 1/2 be a parameter. There exists a randomized

algorithm which takes Φ as input and outputs a partitioning P for Φ where the

circuits in each region of P are k-dnfs in at most n
100k

variables. With probability

at least 1− q, |P| ≤ s and the algorithm runs in time at most poly(n) · lg 1
q
· |Φ| · s

where s ≤ 2n
100k

2n−
n

100k
+3−km.

Let φ be a k-cnf. Consider the decision tree tree(φ) for φ. If the height of

tree(φ) is at most k′, then we can construct a k′-dnf φ′ equivalent to φ by taking

the disjunction of the terms corresponding to paths in tree(φ) labeled 1.

However, in general, k′ will be much larger than k. In this case, we split

the paths in tree(φ) into two categories: “short paths” of length at most k, and

“long paths” of length greater than k. Since any assignment to a set variables is

consistent with exactly one path in any decision tree on those variables, we can

partition {0, 1}n by partitioning the paths. We will construct a k-cnf T (φ, k)

which will define the region corresponding to the set of short paths. Rather than

defining a single region for the set of long paths, we further partition the space and

define a separate region for each long path (each long path viewed as a restriction

defines a region).

Formally, for any k-cnf φ and any k ≥ 1, let Σ′ = {σ′1, . . . , σ′`′} be the set

of paths of length greater than k in tree(φ). Let Σ = {σ1, . . . , σ`} be the set of

paths of length k in tree(φ) that do not end at a leaf (equivalently, Σ consists of

the paths in Σ′ truncated after k variables). Define T (φ, k) = ¬σ1∧¬σ2∧· · ·∧¬σ`

56

Algorithm 5.5: SwitchingAlgorithm(Φ = (φ1, . . . , φm), q)

Data: φ1, . . . , φm are k-cnfs in the same n variables and 0 < q ≤ 1/2
is a parameter

1 begin
2 repeat lg 1

q
times // output the smallest partition from a single

iteration
3 let p = 1

100k

4 choose a set U of pn variables uniformly at random
5 foreach restriction ρ0 which leaves the variables in U unset do
6 ρ← ρ0

7 R← 1
8 for i← 1, . . . ,m do
9 let T = tree(φi|ρ)

10 branch on T (φi|ρ, k) and each path ρ′ in T of length
> k

11 if T (φi|ρ, k) then // the T (φi|ρ, k) branch
12 ψi ← S(φi|ρ, k)
13 R← R ∧ T (φi|ρ, k)

14 else // a ρ′ branch
15 ψi ← φi|ρρ′ // equivalently, the bit labeling the end of

the path ρ′ in T
16 ρ← ρρ′

17 end

18 end
19 output (R = (R, ρ),Ψ = (ψ1, . . . , ψm))

20 end

21 end

22 end

57

where each σi is viewed as the conjunction of the literals along the path. Note that

T (φ, k) is a k-cnf. An assignment is in the region corresponding to short paths

if and only if it is not consistent with any σ′i. Since the paths σ′i form complete

decision trees after the first k variables along each path, an assignment is not

consistent with any σ′i if and only if it is not consistent with any σi, and therefore

if and only if it satisfies T (φ, k).

The algorithm will branch on the region T (φ, k) and on the regions corre-

sponding to long paths. In the region T (φ, k), we can do as we did before and

convert φ into an equivalent k-dnf by only considering the short paths ending with

1. Formally, for any k-cnf φ and any k ≥ 1, let S(φ, k) = τ1 ∨ τ2 ∨ · · · ∨ τ` where

τ1, . . . , τ` are the paths of the decision tree for φ of length at most k with label 1

where each τi is viewed as a conjunction of the literals along the path. S(φ, k) is

a k-dnf and is equivalent to φ in the region T (φ, k). In the regions correspond to

long paths, φ is constant and therefore trivially a k-dnf.

We repeat this process for each k-cnf φ1, . . . , φm in order, each time recur-

sively partitioning the current set of regions.

The problem with this approach is that we may well branch more than 2n

times between branching on T (φ, k) and branching on each long path. We solve

this problem by first applying a random restriction which leaves a small constant

fraction of the variables unset, and then do depth reduction as described above.

In this case, we can bound the expected number of long paths using Lemma 1.7.

Proof. Let p = 1
100k

. Choose a set U of pn variable to leave unset uniformly at

random. Branch on each restriction ρ0 which leaves the variables in U unset. Let

ρ = ρ0 and let R denote an empty (true) k-cnf. For each φi in order, branch on

T (φi|ρ, k).

In the region ρ ∧ T (φi|ρ, k), φi is equivalent to S(φi|ρ, k) so set ψi =

S(φi|ρ, k). Let R = R ∧ T (φi|ρ, k). In this branch, say that φi is “not targeted.”

When T (φi|ρ, k) is false, we further branch on each path ρ′ in tree(φi|ρ) of

length greater than k. Let ρ = ρ ∧ ρ′ and let ψi = b′ where b′ is the label at the

end of the path ρ′. In each of these branches, say that φi is “targeted.”

Once we have branched in this fashion for each φi, output the resulting

58

(R = (R, ρ),Ψ = (ψ1, . . . , ψm)).

This algorithm naturally defines a computation tree: First branch on each

restriction ρ0, then for each φi in order branch on whether φi is targeted, and

if φi is targeted branch on each long path. Each leaf of this computation tree

correspond to a region in partition output. Define the “type” of each leaf as the

sequence of targeted k-cnfs along the path to the leaf. We will group the leaves of

the computation tree both by type and by parent restriction ρ0 in order to bound

the expected number of leaves.

For any ρ0 and any type (sequence of targeted k-cnfs) T , let Gρ0,T denote

the set of leaves of type T with parent restriction ρ0. Consider the decision tree

tree(T |ρ0). Let Pρ0,T denote the set of paths in tree(T |ρ0) where each k-cnf in T

contributes at least k + 1 variables to the path. The set of paths Pρ0,T correspond

exactly to the leaves in Gρ0,T : The path in Pρ0,T corresponds to which branch ρ′ is

taken at each targeted k-cnf (each ρ′ sets at least k+ 1 variables since only paths

of length > k are considered when branching).

By Lemma 1.7, EU,ρ0 [number of paths in tree(T |ρ0) of length s where

each k-cnf in T contributes at least one variable] ≤ (13/100)s, which gives

EU,ρ0 [|Pρ0,T |] ≤
∑pn

s=0(13/100)s. Since we only consider paths in tree(T |ρ0) where

each φi ∈ T contributes at least k + 1 variables, any such path must have length

at least |T |(k + 1). We bound the expected number of outputs by summing over

restrictions ρ0, then path lengths s and then sets of targeted k-cnfs T of size at

59

most s/(k + 1).

E
U

[|P|] =
∑
ρ0

∑
T⊆{φ1,...,φm}

E
U

[|Pρ0,T |] = 2n−pn
∑

T⊆{φ1,...,φm}

E
U,ρ0

[|Pρ0,T |]

≤ 2n−pn
∑

T⊆{φ1,...,φm}

pn∑
s=0

E
U,ρ0

number of paths in tree(T |ρ0) of

length s where each φi ∈ T con-

tributes > k variables


= 2n−pn

pn∑
s=0

∑
T⊆{φ1,...,φm}
|T |≤s/(k+1)

E
U,ρ0

number of paths in tree(T |ρ0) of

length s where each φi ∈ T con-

tributes > k variables


≤ 2n−pn

pn∑
s=0

bs/kc∑
t=0

(
m

t

)
(13/100)s ≤ 2n−pn

pn∑
s=0

⌊ s
k

⌋(m

bs/kc

)
(13/100)s

grouping terms with the same value of bs/kc and replacing bs/kc with s′

≤ 2n−pn
pn/k∑
s′=0

ks′
(
m

s′

)
(13/100)ks

′ ≤ pn2n−pn
m∑
s′=0

(
m

s′

)
(13/100)ks

′

=
n

100k
2n−pn(1 + (13/100)k)m ≤ n

100k
2n−pn+(lg e)(13/100)km

with probability at least 1/2

|P| ≤ 2n

100k
· 2n−

n
100k

+3−km

We may repeat the algorithm lg 1
q

times in parallel with independent choices of

U and output the smallest partition. This increases the probability of success to

1− q.

5.3 Acknowledgements

The content of this chapter is joint work with Russell Impagliazzo and

Ramamohan Paturi and appears in [IMP11].

Chapter 6

Uniquely Satisfiable k-sat

Instances with Almost Minimal

Occurrences of Each Variable

6.1 Introduction

Let (k, s)-cnf refer to CNF formulas with exactly k distinct literals per

clause and at most s occurrences of each variable. Let (k, s)-sat refer to the

family of satisfiability problems restricted to (k, s)-cnf formulas. Since (2, s)-sat

is in P for all s, we restrict our attention to k ≥ 3.

Tovey [Tov84] first observed that (3, 3)-sat was trivial since every instance

is satisfiable, and showed that (3, 5)-sat was NP-hard. This was generalized to

larger k by Kratochv́ıl, Savický and Tuza [KST93] who showed that for each k ≥ 4

there exists a threshold f(k) such that for all s ≤ f(k), (k, s)-sat is trivial whereas

for all s > f(k), (k, s)-sat is NP-hard.

Using Hall’s Theorem, Tovey [Tov84] showed that every (k, k)-sat instance

is satisfiable, giving the first lower bound f(k) ≥ k. This was improved by Kra-

tochv́ıl, Savický and Tuza [KST93] who used the Lovász local lemma to show that

all (k, b2k/ekc)-sat instances are satisfied by random assignments with positive

probability, implying f(k) ≥ b2k/ekc.

60

61

Trivially, f(k) < 2k since enumerating all 2k possible clauses for k variables

gives an unsatisfiable formula. Kratochv́ıl, Savický and Tuza [KST93] proved that

f(k + 1) ≤ 2f(k) + 1. Combined with the fact that f(3) = 3, we get f(k) ≤
2k−1 − 1 (this may be improved slightly by using a base case of f(k) for larger k).

Subsequently, this has been improved to f(k) = Θ
(
2k/k

)
[Geb09]. However the

exact value of f(k), or even whether f(k) is computable, remains unknown.

Valiant and Vazirani [VV86] showed that deciding whether a sat formula

has zero or one solution is essentially as hard as sat in general. In particular, they

prove the following theorem:

Theorem 6.1 (Valiant–Vazirani Theorem [VV86]). There exists a randomized

polynomial time reduction from sat to unique-sat.

By the standard parsimonious reduction from sat to k-sat, the Valiant–

Vazirani Theorem implies the same hardness for k-unique-sat. However, what

happens when the number of occurrences of each variable is also limited? Specifi-

cally, what can be said about (k, s)-unique-sat for various values of s?

We give a parsimonious reduction from 3-sat to (k, s)-sat, for any k ≥ 3

and s ≥ f(k) + 2. Thus, (k, f(k) + 2)-unique-sat is as hard as unique-sat. In

contrast, (k, f(k))-unique-sat is trivial since every formula is satisfiable.

Calabro et al. [CIKP08b] give additional evidence that k-unique-sat is no

easier than k-sat, not just for polynomial time algorithms (as shown by Valiant

and Vazirani), but for super-polynomial time algorithms. They show that if

3-unique-sat is in randomized subexponential time (∩ε>0RTIME[2εn]), then so is

k-sat for all k ≥ 3. Our parsimonious reduction from 3-sat to (k, s)-sat combined

with their result implies that if (k, s)-unique-sat is in randomized subexponential

time for some k ≥ 3 and s ≥ f(k) + 2, then so is k′-sat for all k′ ≥ 3. We omit

the details which follow fairly straightforwardly from [CIKP08b, IPZ01].

A key component in our reduction is a construction of uniquely satisfiable

(k, s+ 1)-cnf formulas from unsatisfiable (k, s+ 1)-sat formulas. Starting with

unsatisfiable (k, f(k) + 1)-cnf formulas allows us work with uniquely satisfiable

formulas with almost the minimum number of occurrences of each variable, and

also argue about the transition where uniquely satisfiable formulas first occur.

62

Since the smallest s we argue about for each k is f(k)+2, the questions of whether

there exists a uniquely satisfiable (k, f(k) + 1)-cnf formula and the complexity of

(k, f(k) + 1)-unique-sat remain open.

Since our reduction requires the existence of an unsatisfiable (k, s)-cnf

formula, we require that k and s > f(k) be constants. In this case we know

there exists an unsatisfiable formula of constant size. If we could give an upper

bound on the size of this formula in terms of k and s it would imply that f(k) was

computable, which would be an independently interesting result.

Let Fk(n,m) refer to a random k-cnf formula with n variables and m

clauses. Just as there is a transition in (k, s)-sat as s increases from trivial to

NP-hard, there is a similar transition in Fk(n, rn) as r increases from satisfiable

with high probability to unsatisfiable w.h.p. (See [AP04] and its references). It is

conjectured that for each k the transition occurs at a sharp threshold rk. Achilop-

tas and Ricci-Tersenghi [ART06] show that for sufficiently large k and r < rk,

w.h.p., Fk(n, rn) has exponentially many, widely separated, small clusters of so-

lutions. In some ways, small, widely separated clusters of solutions are similar to

unique solutions. In both cases, they seem to be some of the hardest instances for

algorithms. While we don’t consider random sat formulas in this paper, we view

the similarities as additional motivation.

6.2 Definitions and Results

Definition 6.2. We let unique-sat refer to the promise problem of deciding

whether a cnf formula is unsatisfiable or has a unique satisfying assignment.

k-unique-sat and (k, s)-unique-sat are defined similarly.

Definition 6.3 (Valiant and Vazirani [VV86]). A randomized polynomial time

reduction M from a problem A to a problem B is a randomized polynomial time

Turing machine such that for all x 6∈ A we are guaranteed that M(x) 6∈ B, and for

all x ∈ A we get M(x) ∈ B with probability at least 1/poly(|x|).

Definition 6.4. In the context of sat, a reduction M is said to be parsimonious

if the formulas x and M(x) have the same number of satisfying assignments.

63

In particular, parsimonious reductions preserve the existence of unique sat-

isfying assignments.

Definition 6.5 (Kratochv́ıl, Savický and Tuza [KST93]). For each k ≥ 3, f(k) is

defined as the largest value of s such that all (k, s)-sat instances are satisfiable.

Equivalently, we may think of f(k) + 1 as the smallest value of s such that

there exist unsatisfiable (k, s)-sat instances.

Definition 6.6. For each k ≥ 3, we define u(k) as the smallest value of s such

that there exist (k, s)-sat instances with exactly one satisfying assignment.

Theorem 6.7. For all k ≥ 3, f(k) ≤ u(k) ≤ f(k) + 2.

This theorem follows directly from the following two lemmas:

Lemma 6.8. For all k ≥ 3 and s ≥ u(k), there exist unsatisfiable (k, s+ 1)-sat

instances.

Lemma 6.9. For all k ≥ 3 and s ≥ f(k) + 1, there exist uniquely satisfiable

(k, s+ 1)-sat instances.

To prove that(k, f(k) + 1)-sat is NP-hard, Kratochv́ıl, Savický and

Tuza [KST93] give a reduction from k-sat to (k, s)-sat for any s > f(k). Com-

bining their proof with Lemma 6.9 we get the following lemma:

Lemma 6.10. For any constants k ≥ 3 and s ≥ f(k) + 2, there is a parsimonious

polynomial time reduction from 3-sat to (k, s)-sat.

Composing the Valiant–Vazirani Theorem (Theorem 6.1), the standard par-

simonious reduction from sat to 3-sat, and Lemma 6.10, we get the following:

Corollary 6.11. For any constants k ≥ 3 and s ≥ f(k)+2, there is a randomized

polynomial time reduction from sat to (k, s)-unique-sat.

64

6.3 Proofs

Lemma 6.8. Since s ≥ u(k), there exists a uniquely satisfiable (k, s)-cnf formula

F . Add a single clause to F which is violated by the unique satisfying assign-

ment. We add at most 1 occurrence of each variable, so this gives an unsatisfiable

(k, s+ 1)-cnf formula.

To prove Lemma 6.9, we will construct a uniquely satisfiable (k, s+ 1)-cnf

formula in a sequence of steps from an unsatisfiable (k, s)-cnf formula. We classify

variables in each of these formulas as either forced or unforced. If every satisfying

assignment for a formula sets a variable to the same value, we say that the variable

is forced. Otherwise, we say that the variable is unforced. We will be particularly

interested in forced variables that occur exactly once in the formula. Without loss

of generality, we will always assume that forced variable must be set to false in

all satisfying assignments (otherwise replace every occurrence of the variable with

its negation). Note that uniquely satisfiable formulas are equivalent to formulas

where every variable is forced.

Our construction can be broken down into 3 steps formalized by the follow-

ing lemmas: Lemma 6.12 constructs a formula with a few forced variables. Lemma

6.13 increases the number of forced variables without increasing the number of un-

forced variables. Lemma 6.14 uses the newly created forced variables to force all

of the unforced variables.

Lemma 6.12. We can transform an unsatisfiable (k, s)-cnf formula into a satis-

fiable (k, s)-cnf formula with k forced variables that only occur once.

Lemma 6.13. We can transform a (k, s)-cnf with n unforced variables and t ≥
k − 1 forced variables that only occur once (and possibly other variables that are

forced but occur more than once) into a (k, s)-cnf with n unforced variables and

t+ (s− k) > t forced variables that only occur once.

Lemma 6.14. We can transform a (k, s)-cnf with n unforced variables and at

least n+ k forced variables that only occur once into a (k, s+ 1)-cnf where every

variable is forced.

65

Lemma 6.12. Let F be a minimal unsatisfiable (k, s)-cnf. (A formula is minimally

unsatisfiable if removing any clause would make it satisfiable.) Transform F by

renaming variables and replacing variables with their negations so that F can be

written as (x1 ∨ x2 ∨ · · · ∨ xk)∧G, where G is satisfied by the all-false assignment.

Within G, the variables x1, . . . , xk each occur at most s − 1 times and are forced

to false (any satisfying assignment that didn’t set them to false would also satisfy

F).

Let G(1), . . . , G(k−1) be k − 1 disjoint copies of G. Let x
(i)
1 , . . . , x

(i)
k denote

the copy of x1, . . . , xk occurring in G(i). Return the formula G(1)∧· · ·∧G(k−1)∧H,

where H =
∧k
i=1(x

(1)
i ∨ · · · ∨ x

(k−1)
i ∨ yi) and y1, . . . , yk are fresh variables. Each

variable yi occurs in exactly 1 clause and must be set to false to satisfy that clause

since all of the other variables in the clause are already forced.

Lemma 6.13. Let G be a (k, s)-cnf with n unforced variables and t ≥ k − 1

forced variables that only occur once. Let y1, . . . , yk−1 denote k− 1 of these forced

variables. Let H =
∧s−1
i=1 (y1 ∨ · · · ∨ yk−1 ∨ zi), where z1, . . . zs−1 are fresh variables.

Return the formula G∧H. Each of the variables y1, . . . , yk−1 is still forced, but now

each occurs s times. In their place, we have s− 1 new forced variables z1, . . . , zs−1

which each only occur once, for a total of t+(s−k) such variables. Whether other

variables are forced remains unchanged. Note that s > f(k) ≥ k since unsatisfiable

(k, s)-cnfs exist.

Lemma 6.14. Let F be a (k, s)-cnf with n unforced variables and n + k forced

variables that only occur once. Let x1, . . . , xn denote the unforced variables. Let

y1, . . . , yn+k denote the forced variables that only occur once. Let m = d n
k−1
e.

Arbitrarily partition the variables x1, . . . , xn into m sets X1, . . . , Xm of size k − 1.

Add new variables as needed so that every set contains exactly k − 1 variables.

Arbitrarily partition the variables y1, . . . , y(k−1)m into m sets Y1, . . . , Ym of size

k − 1.

For each 1 ≤ i ≤ m, we will construct a formula Hi using the variables in

sets Xi and Yi. For simplicity, let Xi = {x1, . . . , xk−1} and Yi = {y1, . . . , yk−1}.
For each i, let Hi =

∧k−1
j=1(y1 ∨ · · · ∨ yk−1 ∨ xj).

66

Return the formula F ∧H1 ∧ · · · ∧Hm. Each Hi uses the variables in Yi to

force the variables in Xi. Since each variable in Yi is forced, the variables in Xi

must be false to satisfy the clauses in Hi. This adds k − 1 occurrences for each

variable in Yi and one occurrence for each variable in Xi. Each variable in Yi now

occurs k < s times and each variable in Xi now occurs at most s+ 1 times.

Lemma 6.9. Since s ≥ f(k) + 1, there exists an unsatisfiable (k, s)-cnfa F . Use

Lemma 6.12 to construct a (k, s)-cnf G with k forced variables that only occur

once. Let n denote the number of unforced variables in G. Use Lemma 6.13

sufficiently many times starting with G to get a formula H with at least n + k

forced variables that only occur once. Note that H still contains only n unforced

variables. Using Lemma 6.14 on H gives a uniquely satisfiable (k, s+ 1)-cnf.

By repeating Lemma 6.13 sufficiently many additional time before using

Lemma 6.14, we get the following corollary:

Corollary 6.15. For any constants k ≥ 3 and s ≥ f(k) + 2, and any m ≥ 0, we

can construct a uniquely satisfiable (k, s)-cnf with at least m forced variables that

only occur once in time polynomial in m.

The following proof of Lemma 6.10 is the same as the reduction given by

Kratochv́ıl, Savický and Tuza [KST93] to prove that (k, f(k) + 1)-sat is NP-hard

with one exception. We use Corollary 6.15 to supply forced variables whereas they

used a (k, f(k) + 1)-cnf with potentially many satisfying assignments.

Lemma 6.10. For any k ≥ 3 and s ≥ f(k) + 2, we transform a 3-cnf F parsimo-

niously into a (k, s)-cnf in 2 steps:

First, we reduce the number of occurrences of each variable to at most s,

which introduces additional 2-variable clauses. For each variable x occurring t > s

times, replace each occurrence of x with a new variable xi, 1 ≤ i ≤ t. Add clauses

(xi ∨ xi+1) for 1 ≤ i ≤ t − 1, and (xt ∨ x1). These clauses ensure that in any

satisfying assignment all the variables xi are assigned the same value. Thus, we

maintain exactly the same number of satisfying assignments. Each of these new

variables occurs exactly 3 < s times. Let G denote the resulting formula, and m

the number of clauses in G.

67

Second, we pad each clause with forced variables so that all clauses contain

exactly k variables. Using Corollary 6.15, there exists a (k, s)-cnf H with at

least mk forced variables that only occur once. For each clause c of length ` < k

in G, replace c with (c ∨ y1 ∨ · · · ∨ yk−`), where y1, . . . , yk−` are arbitrary forced

variables from H occurring fewer than s times. Let G′ denote the result of these

replacements. Return the formula G′ ∧H. Since the only satisfying assignment to

H sets all variables to false, the padded clauses in G′ are satisfied by exactly the

same assignments that satisfy G. Thus, G′ ∧ H has exactly the same number of

satisfying assignments as G.

6.4 Acknowledgments

The content of this chapter is joint work with Ramamohan Paturi and

appears in [MP10]. With kind permission from Springer Science+Business Media:

Theory and Applications of Satisfiability Testing SAT 2010, Uniquely Satisfiable

k-SAT Instances with Almost Minimal Occurrences of Each Variable, 6175, 2010,

369–374, W. Matthews and R. Paturi.

Chapter 7

Lower Bounds

One approach to prove P 6= NP would be to find a language L ∈ NP which

requires a family of circuits of size S(n) for each n where S(n) grows faster than

any polynomial. This approach seems natural since circuit families may be easier

to reason about than Turing Machines. Still, completely arbitrary circuit families

may even be too hard to reason about. As a result, researchers have considered

restricted classes of circuits in the hopes of proving meaningful results and then

gradually relaxing the restrictions.

We will begin with extremely restricted families of circuits and survey the

known lower bounds as the restrictions are gradually removed. The simplest stan-

dard family of circuits studied is NC0 which consists of constant depth circuits

with bounded fan-in. The result of these circuits may only depend on a constant

number of inputs, so it is easy to construct functions that cannot be computed by

NC0 circuits. The next simplest reasonable family of circuits to consider is depth

two circuits where the gates have unbounded fan-in (cnfs and dnfs). Any function

can be computed by an exponential size cnf or dnf. However, it is straightfor-

ward to see that parity and many other simple functions require exponential size

cnfs or dnfs. What if we increase the depth, but still keep it constant?

In the early 1980s, Furst, Saxe, and Sipser [FSS84] and independently Aj-

tai [Ajt83] showed that parity (and other similar functions) cannot be computed by

polynomial size AC0 circuits. Yao [Yao85] improved this by showing that parity

requires exponential size AC0 circuits, and then H̊astad [H̊as86a] gave essentially

68

69

optimal size lower bounds for parity. We will sketch H̊astad’s proof in Section 7.1

and then in Section 7.2 we give an alternative proof of the same result which follows

straightforwardly from our algorithm in Chapter 5.

The natural next step would be to add parity for free. Razborov [Raz87]

showed that ACC0(2) (constant depth circuits consisting of unbounded fan-in

AND, OR, MOD2, and NOT gates) require exponential size to compute majority.

Smolensky [Smo87] showed that for any distinct primes p and q, ACC0(p) circuits

require exponential size to compute MODq.

All of these previous results show that very restricted classes of circuits

cannot compute easy functions. On the other hand, there are a few results

showing that we can find extremely hard functions where we can prove circuit

lower bounds. Buhrman, Fortnow, and Thierauf [BFT98] show that MA-EXP 6⊆
P/poly . MA-EXP is the version of MA where Arthur runs in randomized ex-

ponential time and where the message from Merlin may be exponentially long.

Milterson, Vinodchandran, and Watanabe [MVW99] show that there is a language

in ∆EXP
3 , the third level of the exponential hierarchy, that requires exponential

size circuits.

However, despite all of these results, we still cannot even separate ACC0

from NC1, or P, or even PSPACE, much less separate P from NP. Indeed,

given all of these results, however, it is still plausible that NEXP ⊆ ACC0(6).

Recently, Williams [Wil11] made significant progress and showed that at least the

last possibility cannot happen. Specifically, there is a language in NEXP that

does not have polynomial size ACC0 circuits. In Section 7.3 we sketch Williams’

result at a high level, and in Section 7.3.2 we show how a small (but perhaps quite

hard to achieve) improvement to our algorithmic result of Chapter 5 combined

with Williams’ result would imply that NEXP 6⊆ NC1.

7.1 Switching Lemma Based Lower Bounds

In this section we will show how H̊astad used his switching lemma to prove

essentially optimal lower bound on the size of AC0 circuits computing parity. In

70

[H̊as86a, H̊as86b] he uses similar techniques to also prove similar results for other

functions as well.

Theorem 7.1 ([H̊as86a]). Any depth d circuit computing the parity of n inputs

must have size at least 2Ω(n)
1
d−1

.

First we will give the intuition behind the proof. Suppose there existed

a “small” depth d circuit that computed parity on n inputs, where the bottom

level gates all have fan-in at most k (for some reasonably small k). The subcircuits

rooted at level d−1 can be viewed as a set of k-cnfs (or k-dnfs). If the circuit and

k are sufficiently small then we can choose p such that under a random restriction

fromR′pn (restrictions where each variable is independently set to 0 with probability

(1 − p)/2, to 1 with probability (1 − p)/2, and to ∗ with probability p) we can

simultaneously write all of the subcircuits at level d−1 as k-dnfs (or k-cnfs) and

such that the number of unset variables is at least pn with positive probability,

and in particular such a restriction exists. Then we can combine the gates at levels

d− 2 and d− 1 since after applying the switching lemma these gates are the same

type. Now we have a “small” circuit of depth d − 1 that computes parity on pn

inputs. We repeat this process until we end up with a “small” depth 2 circuit that

computes parity. However any depth 2 circuit that computes parity on n inputs

must have size at least 2n−1.

We will first prove the theorem in the special case of circuits with bounded

bottom fan-in. Then we will use this theorem to prove Theorem 7.1.

Theorem 7.2 ([H̊as86a]). For any d ≥ 2 and sufficiently large n, the parity of

n inputs cannot be computed by any (n,m, d, k)-circuit with m = 2
1
10
n

1
d−1

and

k = 1
10
n

1
d−1 .

Proof. We prove this by induction on d. If d = 2, then any circuit computing parity

must have bottom fan-in n. We prove the inductive case by contradiction. Assume

that Theorem 7.2 holds for depth d−1, and suppose F is a (n,m, d, k)-circuit circuit

computing parity. Let p = n−
1
d−1 and ρ ∼ R′pn. We will show that with positive

probability either F |ρ or ¬F |ρ is a circuit computing parity that doesn’t exist.

71

Without loss of generality, assume that the gates in F at level d− 1 are ∧
gates. Let φ1, . . . , φ` denote the subcircuits of F rooted at depth d − 1. Each of

these circuits is a k-cnf and ` ≤ m. Let ψi = φi|ρ for 1 ≤ i ≤ `. The probability

that all of the ψis cannot be written as k-dnfs is at most mαk = (2α)k, by

Lemma 3.1 with k′ = k. By the choices of p and k, 2α ≤ 1, so this probability is

at most 1/3 for sufficiently large n. With probability at least 2/3, each ψi can be

written as a k-dnf. Replace each φi in F with ψi and collapse the gates at levels

d− 2 and d− 1 to get a depth d− 1 circuit. Let F ′ denote this circuit.

The expected number of unset variables is pn = n
d−2
d−1 . For n > nd0

for some constant n0, the probability that the number of unset variables is

at least n
d−2
d−1 is greater than 1/3. Thus, with positive probability F ′ is a(

n
d−2
d−1 , 2

1
10
n

1
d−1

, d− 1, 1
10
n

1
d−1

)
-circuit, letting n′ = n

d−2
d−1 and d′ = d − 1, we can

rewrite this as a

(
n′, 2

1
10
n
′ 1
d′−1

, d′, 1
10
n′

1
d′−1

)
-circuit. Since applying any restriction

to parity gives either parity or the negation of parity, one of F ′ or ¬F ′ computes

parity, a contradiction.

The last step to prove Theorem 7.1 is to reduce the bottom fan-in.

Proof of Theorem 7.1. Assume for the sake of contradiction that F is a

(n,m, d)-circuit circuit computing parity for m = 2(1
10)

d
d−1 n

1
d−1

. Let p = 1
10

and

ρ ∼ R′pn. View F as a depth d+1 circuit with bottom fan-in 1 and apply Lemma 3.1

with k′ = 1
10

(
n
10

) 1
d−1 to the subcircuits of F at depth D. With positive probability

F ′ = F |ρ is a (n
10
,m, d, k′)-circuit circuit computing either parity or the negation

of parity, contradiction Theorem 7.2.

H̊astad also uses his switching lemma to prove lower bounds majority and

other functions using similar proofs. Theorem 7.1 is optimal up to constants in the

Ω, since parity on n inputs can be computed by depth d circuits of size 2O(n)
1
d−1

(Corollary 2.3).

72

7.2 AC0 Algorithm Based Lower Bounds

Let C be a depth d size m AC0 circuit. Theorem 1.2 implies that there

exists a set of at most O
(

2n−n/O(lgm+d lg d)d−1
)

restrictions which partition {0, 1}n

and make C constant. Any function f which requires ω
(

2n−n/O(lgm+d lg d)d−1
)

restrictions to partition {0, 1}n and make f constant cannot have depth d size m

AC0 circuits. This line of reasoning allows us to easily reprove many classic lower

bounds which were originally proved using switching lemmas (so this isn’t a big

surprise).

7.2.1 New Proofs of H̊astad’s Lower Bounds

The results in this section were originally due to H̊astad [H̊as86a]. We are

just giving alternate proofs.

Theorem 7.3. Any size poly(n) AC0 circuit which computes parity requires depth

at least lgn
lg lgn

− O
(

lgn
lg2 lgn

)
and any depth d circuit which computes parity requires

size at least 2
Ω

(
n

1
d−1

)
.

Proof. Parity requires 2n restrictions to partition {0, 1}n and make the parity con-

stant. The two statements in the theorem follow from solving

O
(

2n−n/O(lg m
n

+d lg d)
d−1)

≥ 2n

for d in terms of n and m and m in terms of d and n respectively.

For any constant p ≥ 2, the MODp function on n inputs requires at least

2n−p+1 = Ω (2n) restrictions to partition {0, 1}n and make the function constant

constant since any restriction which sets fewer than n− p variables clearly cannot

make it constant. By the same argument as for Theorem 7.3, we get

Theorem 7.4. For constant any p ≥ 2, any size poly(n) AC0 circuit which com-

putes MODp requires depth at least lgn
lg lgn

− O
(

lgn
lg2 lgn

)
and any depth d circuit

which computes MODp requires size at least 2
Ω

(
n

1
d−1

)
.

73

To prove the same sort of lower bound for circuits computing the majority

function, we need to be able to lower bound the number of restrictions which can

partition {0, 1}n and make the majority constant. For simplicity, assume that n

is odd (the general case will be essentially the same depending whether n/2 1s

should output 0 or 1). Let A0 denote the set of assignments of Hamming weight

exactly
⌊
n
2

⌋
and let A1 denote the set of assignments with Hamming weight exactly⌈

n
2

⌉
. Every assignment in A0 causes the majority function to output 0 and every

assignment in A1 causes the majority function to output 1. Furthermore, any set of

restrictions partitioning {0, 1}n and making the majority constant cannot contain

any restrictions which are consistent with two or more assignments in A0 ∪ A1.

Suppose there were a restriction ρ consistent with both a, b ∈ A0 where a 6= b

(the a, b ∈ A1 case is symmetric). Since a and b both have Hamming weight

exactly
⌊
n
2

⌋
and a 6= b there must be an index i such that ai = 0 and bi = 1.

Thus, we get ρ(i) = ∗. However let a′j = aj for all j 6= i and let a′i = 1. The

Hamming weight of a′ is now
⌈
n
2

⌉
so the majority function must output 1 but a′

is still consistent with ρ. Thus, any such set of restrictions must have size at least

|A0|+ |A1| = 2
(

n
bn/2c

)
≥ 2n/n. Since this bound isn’t quite Ω (2n), we get a slightly

weaker lower bound for majority than H̊astad.

Theorem 7.5. Any size poly(n) AC0 circuit which computes majority requires

depth at least lgn
lg lgn

−O
(

lgn
lg2 lgn

)
and any depth d circuit which computes majority

requires size at least 2
Ω

(
(n/ lgn)

1
d−1

)
.

7.2.2 Correlation of AC0 with Parity

Definition 7.6. Let C denote a class of circuits. Let f : {0, 1}n → {0, 1} be a

function. The correlation of f with circuits from C is defined as

max
C∈C

(
Pr

x∈{0,1}n
[C(x) = f(x)]− Pr

x∈{0,1}n
[C(x) 6= f(x)]

)
Not only can we prove that parity cannot be computed exactly by small

circuits, we prove that it cannot even be well approximated. Ajtai [Ajt83] showed

that for any ε > 0, the correlation of parity with any AC0 circuit is at most 2n
1−ε

.

74

Beame, Impagliazzo, and Srinivasan [BIS11] improve this bound to 2−n
1−O(log−1/5 n)

.

Independently of our work, H̊astad [H̊as11] gives a bound qualitatively equivalent

to Theorem 1.6.

Theorem (Theorem 1.6, restated). The correlation of parity with any AC0 circuit

of size cn and depth d is at most 2−µc,dn.

Proof of Theorem 1.6. Let C be the class of depth d size cn AC0 circuits. We

will bound the correlation of C and the parity function. Let C be an element

of C and consider the partition produce by Theorem 1.2. Each restrictions in

this partition which sets fewer than n variables contributes 0 to the correlation

with parity. Each restriction which sets all n variables contributes at most 2−n

to the correlation with parity. Thus the correlation of C with parity is at most

2n(1−µc,d) · n−n = 2−µc,dn = 2−n/O(lg c+d lg d)d−1

.

For any n,m, and d, consider the block parity circuit (Section 2.1.2). Each

input which sets the circuit to 1 correctly computes parity (assume that the num-

ber of groups of inputs is odd). At most half the remaining inputs compute parity

correctly. The fraction of inputs which cause the circuit to output one, and there-

fore the correlation with parity is 2
− n

Θ(lg c)d−1 . The output of the circuit can always

be changed by changing at most one bit per group, or at most n

Θ(lg m
n)

d−1 bits total.

Thus, the number of regions required is at least 2
n− n

Θ(lg mn)d−1

7.3 Williams’ Approach

Ryan Williams [Wil10, Wil11] gives a powerful connection between circuit

satisfiability algorithms and circuit lower bounds. For any constant c > 0, there

exists a c′ > 0 such that for any “reasonable” class of circuits C, if there exists

a satisfiability algorithm for circuits in C with n + c lg n inputs in time 2n/nc
′

then NEXP does not have non-uniform C circuits. He then gives a satisfiability

algorithm for ACC0 with sufficient savings to prove that NEXP 6⊆ ACC0.

We will give an overview of Williams’ approach and then show how a small

improvement in our algorithm, from savings ≈ 1

O(lgm)d−1 to savings 1

O(lgm)o(d)
, would

75

imply NEXP 6⊆ NC1 (however, for several reasons, such an improvement may not

be easy).

7.3.1 Overview

Let C be a class of circuits such that AC0 ⊆ C ⊆ P/poly and such that C
is closed under composition (think of C as ACC0,TC0,NC1, etc.).

Theorem 7.7 (Williams [Wil11]). There exists a constant c > 0 such that if there

exists an algorithm A to decide the satisfiability of circuits in C with n inputs in

time 2n/nc then NEXP 6⊆ C.

At a high level, we assume for the sake of contradiction that NEXP ⊆ C.
Then we take a complete language L for NTIME[2n/n10] and construct, using the

assumption L ∈ C and the algorithm A, an algorithm for L in NTIME[2n/n20].

However, this contradicts the Nondeterministic Time Hierarchy Theorem [Coo73,

SFM78, Zák83] so our assumption must be false.

The language succinct-3-sat consists of boolean circuits C in n inputs

which view the inputs at integers 0 ≤ i < 2n and on input i outputs the ith

clause of a 3-sat formula FC . A circuit C is in succinct-3-sat if and only if the

corresponding 3-sat formula FC is satisfiable. We use the fact every language in

NTIME[2n/n10] can be reduced to succinct-3-sat instances C of size poly(n)

with n inputs. The reduction follows from an efficient version of the Cook–Levin

Theorem [Coo71, Lev73, Tou01, FLvMV05].

Say that succinct-3-sat has succinct witnesses if for every C ∈
succinct-3-sat in n inputs there exists a circuit D in n inputs such that for

0 ≤ i < 2n, D(i) (viewing i as an n bit number in binary) outputs the ith bit of a sat-

isfying assignment to FC . The assumption NEXP ⊆ C implies NEXP ⊆ P/poly

since we assumed C ⊆ P/poly . Impagliazzo, Kabanets, and Wigderson [IKW02]

show that NEXP ⊆ P/poly implies that succinct-3-sat has succinct witnesses

(and more generally, that every language in NEXP has succinct witnesses).

The assumption NEXP ⊆ C also implies P ⊆ C, and in particular circuit

evaluation is in C. Thus, for any boolean circuit C (such as the succinct-3-sat

76

instance or its witness), there exists a circuit C ′ ∈ C of size at most poly(|C|), by

hard-coding C in the C circuit for circuit evaluation. Note that just because the

circuit C ′ exists, we may not be able to efficiently find it. Using nondeterminism,

however, we can guess C ′ and check it, but even this is a bit tricky.

Nondeterministically guess circuits C ′1, . . . , C
′
|C| ∈ C where C ′j(i) is supposed

to output the value on the jth gate of C(i). Then for gate j, let j′1, . . . , j
′
` denote

the gates corresponding to the inputs to j. Construct a circuit Ej using C ′j and

C ′j′1
, . . . , C ′j′`

such that Ej(i) outputs 0 if and only if the output of C ′j(i) is consistent

(in terms of the gate j) with the outputs of C ′j′1
(i), . . . , C ′j′`

(i). Repeat this process

for each gate j. Use the algorithm A to verify that each Ej is not satisfiable. After

verifying that all these circuits are not satisfiable, let C ′ = C ′j where j corresponds

to the output gate of C.

Now we’ll put the pieces together. Let L be a language in NTIME[2n/n10]

and let x an input such that we want to decide whether x ∈ L. Use the reduction

to succinct-3-sat to map x to a circuit C. Nondeterministically guess and verify

a circuit C ′ ∈ C equivalent to C. Nondeterministically guess a circuit D ∈ C which

we would like to be a succinct witness for C. Construct a circuit G using C ′

and D such that G(i) = 0 if the assignment encoded by D satisfies the ith clause

output by C ′. If G is not satisfiable then D must encode a satisfying assignment

to C ′ and therefore x ∈ L. However, we can test this by running A on G in time

2n/n20, which violates the Nondeterministic Time Hierarchy Theorem. Thus, we

can conclude that if C has an improved satisfiability algorithm, then NEXP 6⊆ C.

7.3.2 Towards NEXP 6⊆ NC1

Theorem 1.2 (Chapter 5) gives a randomized algorithm that decides the sat-

isfiability of size m depth d AC0 circuits in n inputs running in time m · poly(n) ·

2
n

(
1− 1

O(lgm)d−1

)
, where the time bound holds with probability at least 1−2−n. Since

Williams’ Theorem (Theorem 7.7) uses the satisfiability algorithm in a nondeter-

ministic algorithm to verify that circuits are not satisfiable, a co-nondeterministic

satisfiability algorithm, and in particular a Las Vegas algorithm (a randomized

algorithm that always gives the correct result but where the running time is only

77

given in expectation) suffices. Our AC0 satisfiability algorithm (Theorem 1.2) is

a Las Vegas algorithm and therefore suffices for use with Williams’ Theorem.

In this section, we will show that improving this running time to m·poly(n)·

2
n

(
1− 1

O(lgm)o(d)−1

)
(improving the d in the exponent of the savings to o (d)) would be

sufficient to establish NEXP 6⊆ NC1 via Williams’ technique! Note, however, that

such an improved satisfiability algorithm must use significantly different techniques

since there exists circuits with the above parameters which require 2
n

(
1− 1

Ω(lgm)d−1

)

restrictions to enumerate the solutions. This follows from Corollary 2.2 which show

that NC1 circuits have equivalent depth d size 2n
O(1

d−1)
AC0 circuits. Combining

this corollary with such a hypothetical satisfiability algorithm for AC0 would give

a 2n−n
1−o(1)

time satisfiability algorithm for NC1. Finally, by Williams’ Theorem,

this would imply NEXP 6⊆ NC1.

7.4 Acknowledgements

Material in Section 7.2 and parts of Section 7.3 is joint work with Russell

Impagliazzo and Ramamohan Paturi and appears in [IMP11].

Bibliography

[AHM+06] Eric Allender, Lisa Hellerstein, Paul McCabe, Toniann Pitassi, and
Michael Saks, Minimizing dnf formulas and AC0

d circuits given a
truth table, Annual IEEE Conference on Computational Complexity
0 (2006), 237–251.

[Ajt83] M. Ajtai, Σ1
1-formulae on finite structures, Annals of Pure and Applied

Logic 24 (1983), no. 1, 1 – 48.

[AP04] Dimitris Achlioptas and Yuval Peres, The threshold for random k-SAT
is 2k ln 2−O(k), J. AMS 17 (2004), 947–973.

[ART06] Dimitris Achlioptas and Federico Ricci-Tersenghi, On the solution-
space geometry of random constraint satisfaction problems, STOC
(Jon M. Kleinberg, ed.), ACM, 2006, pp. 130–139.

[BCD+89] A. Borodin, S.A. Cook, P.W. Dymond, W.L. Ruzzo, and M. Tompa,
Two applications of inductive counting for complementation problems,
SIAM Journal on Computing 18 (1989), no. 3, 559–578.

[Bea90] Paul Beame, Lower bounds for recognizing small cliques on crcw
pram’s, Discrete Applied Mathematics 29 (1990), no. 1, 3 – 20.

[Bea94] , A switching lemma primer, Technical Report, Department of
Computer Science and Engineering, University of Washington, 1994.

[BFT98] H. Buhrman, L. Fortnow, and L. Thierauf, Nonrelativizing separa-
tions, Proceedings of the Thirteenth Annual IEEE Conference on
Computational Complexity, 1998, pp. 8–12.

[BH89] Paul Beame and Johan Hastad, Optimal bounds for decision problems
on the crcw pram, J. ACM 36 (1989), 643–670.

[BIK+92] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi,
Pavel Pudlák, and Alan Woods, Exponential lower bounds for the
pigeonhole principle, Proceedings of the twenty-fourth annual ACM

78

79

symposium on Theory of computing (New York, NY, USA), STOC
’92, ACM, 1992, pp. 200–220.

[BIS11] Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan, Approxi-
mating ac0 circuits by ‘small’ height decision trees, manuscript, March
2011.

[Cai89] Jin-Yi Cai, With probability one, a random oracle separates pspace
from the polynomial-time hierarchy, Journal of Computer and System
Sciences 38 (1989), no. 1, 68 – 85.

[CIKP08a] C. Calabro, R. Impagliazzo, V. Kabanets, and R. Paturi, The com-
plexity of unique k-sat: An isolation lemma for k-cnfs, Journal of
Computer and Systems Sciences 74 (2008), no. 3, 386–393, Prelim-
inary version in Proceedings of the Eighteenth IEEE Conference on
Computational Complexity, 135-144, 2003.

[CIKP08b] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ra-
mamohan Paturi, The complexity of unique k-SAT: An isolation
lemma for k-CNFs, J. Comput. Syst. Sci. 74 (2008), no. 3, 386–393.

[CIP06] Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi, A du-
ality between clause width and clause density for sat, CCC ’06: Pro-
ceedings of the 21st Annual IEEE Conference on Computational
Complexity (Washington, DC, USA), IEEE Computer Society, 2006,
pp. 252–260.

[CIP09] , The complexity of satisfiability of small depth circuits, Param-
eterized and Exact Computation: 4th International Workshop, IW-
PEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised
Selected Papers (Berlin, Heidelberg), Springer-Verlag, 2009, pp. 75–
85.

[Coo71] S.A. Cook, The complexity of theorem-proving procedures, Proceedings
of the Third Annual ACM Symposium on Theory of Computing, 1971,
pp. 151–158.

[Coo73] Stephen A. Cook, A hierarchy for nondeterministic time complexity,
Journal of Computer and System Sciences 7 (1973), no. 4, 343 – 353.

[DJW05] Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström, Counting
models for 2sat and 3sat formulae, Theoretical Computer Science 332
(2005), no. 1–3, 265–291.

[FK07] Martin Fürer and Shiva Prasad Kasiviswanathan, Algorithms for
counting 2-sat solutions and colorings with applications, 2007, pp. 47–
57.

80

[FLvMV05] Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anas-
tasios Viglas, Time-space lower bounds for satisfiability, J. ACM 52
(2005), 835–865.

[FSS84] Merrick Furst, James B. Saxe, and Michael Sipser, Parity, circuits,
and the polynomial-time hierarchy, Mathematical Systems Theory 17
(1984), no. 1, 13–27.

[Geb09] Heidi Gebauer, Disproof of the neighborhood conjecture with implica-
tions to SAT, Algorithms - ESA 2009, vol. 5757/2009, Springer Berlin
/ Heidelberg, 2009, pp. 764–775.

[H̊as86a] J. H̊astad, Almost optimal lower bounds for small depth circuits, Pro-
ceedings of the eighteenth annual ACM symposium on Theory of com-
puting (New York, NY, USA), STOC ’86, ACM, 1986, pp. 6–20.

[H̊as86b] , Computational limitations for small depth circuits, Ph.D. the-
sis, MIT, 1986.

[H̊as11] Johan H̊astad, On parity, Unpublished Manuscript, 2011.

[Her11] Timon Hertli, 3-SAT Faster and Simpler — Unique-SAT Bounds for
PPSZ Hold in General, 2011.

[HJP95] Johan H̊astad, Stasys Jukna, and Pavel Pudlák, Top-down lower
bounds for depth-three circuits, Computational Complexity 5 (1995),
no. 2, 99–112.

[IKW02] R. Impagliazzo, V. Kabanets, and A. Wigderson, In search of an easy
witness: Exponential time vs. probabilistic polynomial time, Journal
of Computer and System Sciences 65 (2002), no. 4, 672–694, (prelim-
inary version in CCC’01).

[IMP11] Russell Impagliazzo, William Matthews, and Ramamohan Paturi, A
satisfiability algorithm for AC0, Unpublished Manuscript, 2011.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane, Which
problems have strongly exponential complexity?, J. Comput. Syst. Sci.
63 (2001), no. 4, 512–530.

[KST93] Jan Kratochv́ıl, Petr Savický, and Zsolt Tuza, One more occurrence of
variables makes satisfiability jump from trivial to NP-complete, SIAM
Journal on Computing 22 (1993), no. 1, 203–210.

[Lev73] L. Levin, Universal sorting problems, Problems of Information Trans-
mission 9 (1973), 265–266.

81

[LP11] Daniel Lokshtanov and Ramamohan Paturi, Personal Communica-
tion, 2011.

[LPI01] Michael L. Littman, Toniann Pitassi, and Russell Impagliazzo, New
and old algorithms for belief net inference and counting satisfying as-
signments, Unpublished Manuscript, 2001.

[Lyn86] James F. Lynch, A depth-size tradeoff for boolean circuits with un-
bounded fan-in, 1986, pp. 234–248.

[MP10] William Matthews and Ramamohan Paturi, Uniquely satisfiable k-
sat instances with almost minimal occurrences of each variable, 2010,
pp. 369–374.

[MS85] B. Monien and E. Speckenmeyer, Solving satisfiability in less than 2n

steps, Discrete Appl. Math. 10 (1985), 287–295.

[MS11] Robin Moser and Domink Scheder, A Full Derandomization of
Schöning’s k-SAT Algorithm, Proceedings of the Forty-Fourth An-
nual ACM Symposium on Theory of Computing, 2011.

[MVW99] P. B. Miltersen, N.V. Vinodchadran, and O. Watanabe, Super-
polynomial versus half-exponential circuit size in the exponential hi-
erarchy, Proceedings of the Fifth Annual International Conference
on Computing and Combinatorics (T. Asano, H. Imai, D.T. Lee,
S. Nakano, and T. Tokuyama, eds.), Lecture Notes in Computer Sci-
ence, vol. 1627, Springer Verlag, 1999, (COCOON’99), pp. 210–220.

[MZ09] Sharad Malik and Lintao Zhang, Boolean satisfiability from theoretical
hardness to practical success, Commun. ACM 52 (2009), 76–82.

[PPSZ05] R. Paturi, P. Pudlák, M.E. Saks, and F. Zane, An improved
exponential-time algorithm for k-sat, Journal of the ACM 52 (2005),
no. 3, 337–364, Preliminary version in 39th Annual IEEE Symposium
on Foundations of Computer Science, pages 628–637, 1998.

[PPZ99] R. Paturi, P. Pudlák, and F. Zane, Satisfiability coding lemma,
Chicago Journal of Theoretical Computer Science (1999), (prelimi-
nary version in FOCS’97).

[Raz87] A. A. Razborov, Lower bounds on the size of bounded depth circuits
over a complete basis with logical addition, Matematicheskie Zametki
41 (1987), no. 4, 598—607.

[Raz93] Alexander A. Razborov, Bounded arithmetic and lower bounds
in boolean complexity, Feasible Mathematics II, Birkhauser, 1993,
pp. 344–386.

82

[San10] Rahul Santhanam, Fighting perebor: New and improved algorithms for
formula and qbf satisfiability, Proceedings of the 2010 IEEE 51st An-
nual Symposium on Foundations of Computer Science (Washington,
DC, USA), FOCS ’10, IEEE Computer Society, 2010, pp. 183–192.

[SBI02] N. Segerlind, S. Buss, and R. Impagliazzo, Switching lemma for small
restrictions and lower bounds for k-dnf resolution, Foundations of
Computer Science, 2002. Proceedings. The 43rd Annual IEEE Sym-
posium on, 2002, pp. 604 – 613.

[Sch99] U. Schöning, A probabilistic algorithm for k-sat and constraint satis-
faction problems, FOCS, 1999, pp. 410–414.

[Sch05] R. Schuler, An algorithm for the satisfiability problem of formulas in
conjunctive normal form, Journal of Algorithms 54 (2005), no. 1, 40–
44.

[SFM78] J.I. Seiferas, M.J. Fischer, and A.R. Meyer, Separating nondeterminis-
tic time complexity classes, Journal of the Association for Computing
Machinery 25 (1978), no. 1, 146–167.

[Smo87] R. Smolensky, Algebraic methods in the theory of lower bounds for
boolean circuit complexity, Proceedings of the Nineteenth Annual
ACM Symposium on Theory of Computing (New York City, NY)
(Alfred Aho, ed.), ACM Press, May 1987, pp. 77–82.

[TBW04] Christian Thiffault, Fahiem Bacchus, and Toby Walsh, Solving non-
clausal formulas with dpll search, 2004, pp. 663–678.

[Tou01] Iannis Tourlakis, Time-space tradeoffs for sat on nonuniform ma-
chines, Journal of Computer and System Sciences 63 (2001), no. 2,
268 – 287.

[Tov84] Craig A. Tovey, A simplified NP-complete satisfiability problem, Dis-
crete Applied Mathematics 8 (1984), no. 1, 85 – 89.

[Val79a] L. Valiant, The complexity of computing the permanent, Theoretical
Computer Science 8 (1979), 189–201.

[Val79b] , The complexity of enumeration and reliability problems,
SIAM J. on Computing 8 (1979), no. 3, 410–421.

[Ven87] H. Venkateswaran, Properties that characterize logcfl, Proceedings of
the nineteenth annual ACM symposium on Theory of computing (New
York, NY, USA), STOC ’87, ACM, 1987, pp. 141–150.

83

[VV86] L. G. Valiant and V. V. Vazirani, NP is as easy as detecting unique
solutions, Theor. Comput. Sci. 47 (1986), no. 1, 85–93.

[Wil10] Ryan Williams, Improving exhaustive search implies superpolynomial
lower bounds, Proceedings of the 42nd ACM symposium on Theory of
computing (New York, NY, USA), STOC ’10, ACM, 2010, pp. 231–
240.

[Wil11] , Non-Uniform ACC Circuit Lower Bounds, Proceedings of the
Twenty-Sixth Annual IEEE Conference on Computational Complex-
ity, 2011.

[WLLH07] Chi-An Wu, Ting-Hao Lin, Chih-Chun Lee, and Chung-Yang (Ric)
Huang, Qutesat: a robust circuit-based sat solver for complex circuit
structure, Proceedings of the conference on Design, automation and
test in Europe (San Jose, CA, USA), DATE ’07, EDA Consortium,
2007, pp. 1313–1318.

[Yao85] Andrew C-C. Yao, Separating the polynomial-time hierarchy by ora-
cles, Proc. 26th annual symposium on Foundations of computer sci-
ence (Piscataway, NJ, USA), IEEE Press, 1985, pp. 1–10.

[Yat37] F. Yates, The design and analysis of factorial experiments, Imperial
Bureau of Soil Science Technical Communication (1937).

[Zák83] S. Zák, A Turing machine time hierarchy, Theoretical Computer Sci-
ence 26 (1983), 327–333.

	Signature Page
	Table of Contents
	List of Tables
	List of Algorithms
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Previous Work
	Main Results and Techniques
	Acknowledgements

	Preliminaries
	Circuits and Satisfiability
	Subexponential Size AC0 Circuits for More General Classes
	Block Parity Circuits

	Restrictions and Regions
	Canonical Decision Trees
	Acknowledgements

	Switching Lemmas
	Håstad's Switching Lemma
	Razborov's Switching Lemma
	Extended Switching Lemma
	Acknowledgements

	Algorithms for CNF Satisfiablity
	PPZ Algorithm
	Schöning's Algorithm
	Lokshtanov–Paturi Algorithm
	Our Algorithm
	Optimizing the Constant

	Schuler's Algorithm
	Acknowledgments

	A Satisfiability Algorithm for AC0
	Algorithm Details
	Switching Algorithm
	Acknowledgements

	Uniquely Satisfiable Instances with Almost Minimal Occurrences of Each Variable
	Introduction
	Definitions and Results
	Proofs
	Acknowledgments

	Lower Bounds
	Switching Lemma Based Lower Bounds
	AC0 Algorithm Based Lower Bounds
	New Proofs of Håstad's Lower Bounds
	Correlation of AC0 with Parity

	Williams' Approach
	Overview
	Towards NEXPNC1

	Acknowledgements

	Bibliography

