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Abstract

Plant natural products (NPs) are of pharmaceutical and agricultural significance, yet the low 

abundance is largely impeding the broad investigation and utilization. Microbial bioproduction 

is a promising alternative sourcing to plant NPs. Cytochrome P450s (CYPs) play an essential 

role in plant secondary metabolism, and functional reconstitution of plant CYPs in the microbial 

system is one of the major challenges in establishing efficient microbial plant NP bioproduction. 

In this review, we briefly summarized the recent progress in rational engineering strategies 

for enhanced activity of plant CYPs in Escherichia coli and Saccharomyces cerevisiae, two 

commonly used microbial hosts. We believe that in-depth foundational investigations on the native 

microenvironment of plant CYPs are necessary to adapt the microbial systems for more efficient 

functional reconstitution of plant CYPs.

Introduction

The successful microbial production of the antimalarial artemisinic acid shed lights on 

the potential of synthesizing plant specialized metabolites from microbial systems as an 

alternative sourcing to these scarce and expensive molecules [1]. This strategy is further 

highlighted with the recent engineering efforts on the microbial production of opiates 

[2,3], tropane alkaloids [4], cannabinoids [5], and precursors to Taxol [6], vinblastine [7], 

and many more [8,9]. Cytochrome P450s (CYPs) are important biocatalysts that exist 

in almost all the living organisms in nature, and plants are especially enriched in CYPs 

– more than half of the currently annotated CYPs are encoded by plants [10], with a 

significant portion involved in plant specialized metabolism. Plant CYPs belong to Class 

II and are mostly localized in the endoplasmic reticulum (ER) membrane, with a few 

exceptions in the membrane of plastid and other organelles [11]. In addition, another 
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membrane-bound redox partner, CYP reductase (CPR) that normally uses NADPH as the 

electron donor, is always required by plant CYPs [12]. Multiple choices are available for the 

heterologous expression of plant CYPs: tobacco-agroinfiltration transient expression system 

[13,14] and baculovirus-insect cell expression system [15] are highly reliable in respect 

of functional reconstitution, while it is faster, cheaper, and easier to use microbial host 

systems. It is generally challenging to functionally reconstitute plant CYPs in microbial 

hosts that exhibit different membrane infrastructure and/or microenvironment. Although 

various microorganisms such as Lactococcus lactis [16], cyanobacteria [17], and algae 

[18,19] have emerged as feasible microbial hosts for the functional expression of plant 

CYPs or membrane-bound proteins, E. coli and yeast (mainly Saccharomyces cerevisiae, 

while non-conventional yeast such as Pichia and Yarrowia are gaining more attention 

recently [20]) remain the most used microorganisms due to the very well established 

genetic modification tools and metabolic engineering techniques. Here, we reviewed recent 

engineering strategies on functional reconstitution of plant CYPs in E. coli and yeast, aiming 

to depict a roadmap to rationally engineer plant CYPs in these microbes (Figure 1). The 

following topics have been very well reviewed [11,21–24] elsewhere and are not covered 

here: improving the activity of P450s through directed evolution, expression level tuning, 

process engineering, and co-factor optimization.

E. coli or Yeast, which is better for functional reconstitution of plant CYPs?

First, a choice needs to be made on the microbial host for the reconstitutions of plant CYPs. 

Numerous plant CYPs have been successfully reconstituted in both prokaryotic (primarily 

E. coli) and eukaryotic (primarily Saccharomyces cerevisiae) microbial systems (Table 1). 

Many argue that E. coli is not feasible for the functional reconstitution of CYPs due to 

the lack of endomembrane systems such as ER. However, as shown in Table 1, numerous 

plant CYPs have been reconstituted in E. coli for the synthesis of diverse phytochemicals. 

Yeast system, on the side, contains the ER membrane, and has been generally considered a 

preferred system for the heterologous expression of plant membrane-bound proteins. From 

Table 1, the variety of CYPs successfully reconstituted in S. cerevisiae is more diverse than 

E. coli. However, there are also certain CYPs that have been functionally expressed in E. 
coli but failed to exhibit activity in yeast, e.g. CYP81A15 and CYP81A24 [25,26]. Since 

there are no specific clans of P450s or types of metabolites that cannot be reconstituted in 

E. coli, we believe that with the correct choice of engineering strategies, both E. coli and 

yeast systems are suitable hosts for plant CYPs, yet more engineering efforts are normally 

necessary in E. coli.

Rational design to enable the functional reconstitution of plant CYPs

To have plant CYPs functionally reconstituted in the microbial host, engineering efforts 

need to be applied to meet two criteria: 1) the heterologous CYPs and CPRs are correctly 

localized, folded, and stable; 2) there is sufficient and efficient electron transfer from CPR to 

CYPs.
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N-terminal modification could enhance folding and localization.

Currently, the major strategy to enhance folding and localization is to engineer the 

N-terminus of these membrane-bound proteins from plants. The N-terminal segment of 

plant P450s is responsible for locating CYPs into ER membrane [27,28]. Additionally, 

according to the widely accepted cotranslational protein folding theory, the N-terminus 

as the starting point of the folding process is also essential for correct protein folding 

[29]. Thus, N-terminal modifications are believed to improve the correct localization 

and folding of heterologous CYPs, and have been successfully applied to increase the 

activity of CYPs from different kingdoms [30–33]. N-terminal modification is almost a 

“must” strategy when using the E. coli system to establish a plant pathway involving 

CYPs, generally through removing or replacing the transmembrane peptide with more 

hydrophilic peptides, transmembrane peptides, or peptides shown to enhance expression 

levels or solubility (Table 2). While it is unknown where the hydrophilic peptides and 

the expression-enhancing tags would target CYPs, the transmembrane peptide of E. coli 
membrane proteins was believed to help implement CYPs into the cell membrane [34,35]. 

Plant CYPs are exclusively membrane-bound enzymes, yet surprisingly in some studies, 

the transmembrane peptides did not outperform other types of N-terminus modifications 

(Table 2), e.g. SohB1−48-CYP79A136−558 exhibited a lower activity than 28-codon tag­

CYP79A11−558 [34]. E. coli membrane is different from plant ER membrane in respect to 

chemical composition and membrane-associated protein degradation machinery, which in 

turn may affect the stability of membrane-bound proteins and the access to the substrates 

depending on the hydrophobicity. Thus, the transmembrane peptide may not always be the 

best choice in the E. coli system. Interestingly, an enhanced expression level does not always 

positively correlate with an enhanced catalytic activity (Table 2).

Compared with prokaryotic systems, it is easier to functionally reconstitute plant CYPs in 

yeast due to the presence of similar membrane infrastructures. The N-terminal modifications 

successfully utilized in yeast include exchanging the transmembrane peptide of the target 

P450s with more hydrophilic peptides, and transmembrane peptides from CYPs of a 

subfamily close to the target CYP (Table 2). The choice of boundary for the N-terminus 

modification is also important. In the yeast-based synthesis of opioid, chimeras of 

salutaridine synthase (SalSyn, CYP719B subfamily) and cheilanthifoline synthase from 

Eschscholzia californica (EcCFS, CYP719A5) at different boundaries were tested and only 

yEcCFS1–83-yPsSalSyn95–505 exhibited enhanced activity compared to yPsSalSyn [2]. In 

the N-terminal modification of CYP82Y1, N-terminus truncation or replacement with the 

N-terminus of membrane-bound proteins not close to CYP82Y1 all abolished the catalytic 

activity (Table 2) [36]. On the other hand, removing the N-terminus of CYP90B1 from 

Arabidopsis thaliana decreased but did not abolish the C22-hydroxylation activity [37]. 

The distinct behaviors of the truncated CYP82Y1 and CYP90B1 in yeast are possibly due 

to the different levels of interactions with A. thaliana CPR (ATR1), which is correctly 

localized on ER and may help recruit the truncated P450s back to ER under a stronger 

protein-protein interaction. These results indicate that certain groups of CYPs are highly 

sensitive towards N-terminal modifications, and the activity can be completely lost upon the 

improper truncation or modification.
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Can C-terminal modification enhance folding and activity?

Different from N-terminal modification, C-terminal modification is less frequently utilized. 

In our previous study on CYP82Y1, introduction of the C-terminal 3×HA tag decreased 

the activity by more than 80% in yeast (data not published), compared to the one 

unmodified. The presence of the 3×HA tag at the C-terminus might affect the electron 

transfer efficiency between CYP82Y1 and CPR, which led to a substantial decrease in 

the catalytic activity [38]. However, the 3×HA tag has been utilized extensively in many 

biochemical characterization studies of plant CYPs expressed from S. cerevisiae. In E. coli, 
fusion GFP to C-terminus of CYP was used as a convenient way to indicate whether the 

engineered CYP was correctly folded or not [34]. The effect of the C-terminal GFP fusion 

was examined on CYP79A1 with different N-terminal modifications, and the C-terminal 

GFP fusion generally led to 15%−75% decrease of the catalytic activity in comparison to 

the corresponding CYP79A1 variants without the GFP fusion. This is consistent with what 

we observed on the effect of 3×HA tag on CYP82Y1 in yeast. For now, there is not enough 

data to conclude whether a C-terminal modification can help the folding and activity of plant 

CYPs in microbial systems or not. However, if a C-terminal modification is needed, tags of 

smaller size should be considered over the ones of larger size.

Strategies other than N- or C-terminal modifications to enhance the folding.

Although some chaperons have been utilized to enhance the folding of plant CYPs in E. 
coli, plant chaperones have not been used for this purpose [24]. Both yeast and E. coli 
have been utilized to express and characterize plant chaperons [39–41], so introducing 

plant chaperons to the microbial system may help the folding of plant CYPs and CPRs. 

In addition, expression levels may also affect the folding of P450s and morphology of 

ER membranes. When EcCFS was expressed from a high-copy plasmid in S. cerevisiae, 

the stability of the plasmid much decreased (10.7% versus 90% maintained for low-copy 

plasmid) and the morphology of the ER changed with EcCFS highly concentrated in patches 

instead of averagely distributed across ER [34]. The overall activity of EcCFS was also 

lower when expressed from a high-copy plasmid. In E. coli, similar observations have also 

been reported that sometimes lower expression levels of P450s and CPRs would favor the 

overall catalytic performance of the bioproduction platform [34,42]. However, mechanistic 

investigations need to be conducted to clearly conclude how expression level affects the 

folding, localization, and activity in these cases.

Strategies to enhance the pairing efficiency between P450 and CPR.

Although S. cerevisiae has an endogenous CPR (ScCPR), the efficiency of ScCPR is 

substantially lower than plant CPRs when paring with plant CYPs in yeast. Pairing CFS 

with ATR1 led to > 50-fold enhancement in cheilanthifoline production than ScCPR in 

yeast [43]. The paring with different plant CPRs often makes a substantial difference in 

the activity of CYPs [43–45], as well. This is consistent with the recent observation that 

monolignol biosynthetic CYPs exhibit distinct levels of interactions with different CPRs 

(ATR1 and ATR2) in yeast [46]. The prokaryotic system, on the other hand, does not encode 

CPRs and thus a plant CPR is needed for the functional reconstitution of CYPs. Since 

plant CPRs are also membrane-bound, the engineering strategy is similar to plant CYPs, 
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i.e. N-terminal truncation and modification. CPRs were often fused to the C-terminus of 

plant P450s [47,48] to enhance the CYP-CPR interaction, and has been successfully utilized 

in yeast (both S. cerevisiae and Yarrowia lipolytica) [49–52]. However, in one example, 

CYP725A4-CPR fusion proteins exhibited less than half of the activity towards the synthesis 

of oxygenated taxanes in comparison to the standalone CYP725A4 and CPR [42]. In another 

example, the activity of SbF6H(CYP82D1.1) was substantially enhanced when paired with 

the full length ATR1, instead of the N-terminal-truncated ATR1 in E. coli [53]. Thus, 

whether N-terminus of CPR should be truncated, and CYPs should be fused with CPR as 

a single peptide remain inconclusive. Previous investigation also indicates that the optimal 

ratio between P450 and CPR was approximately 12:1 [42]. Thus, adjusting the expression 

level of both P450 and CPR seems critical to achieving higher P450 activities based on 

several recent reviews [11,23,24].

Future Prospect

To date, we engineer plant CYPs in microbes case by case, because the engineering 

strategies are not generally applicable. More generic engineering strategies may be 

developed in the future if there is better understanding of the natural microenvironment 

around the CYPs in plants. For example, recently, Arabidopsis membrane steroid-binding 

proteins (MSBPs) was discovered as scaffolds to organize monolignol monooxygenases 

(belonging to CYPs) [46]. This discovery may enable the establishment of a more 

sophisticated CYP-CPR complex in yeast to achieve better electron transfer efficiency. In 

addition to native metabolon [54], artificial enzyme scaffolding [55] may also serve as a 

solution to mimic the native protein-protein interactions. Yeast cells producing cholesterol 

has been shown as a better heterologous host for the mammalian membrane proteins [56], 

and phytosterol-producing microbes may also provide a favorable membrane infrastructure 

for the folding and localization of plant membrane-bound proteins including CYPs. To 

sustain the rapid development of microbial production of plant NPs, it is necessary to go 

back to plant for in-depth understanding of plant specialized metabolism (e.g., temporal and 

spatial localization of metabolites and enzymes, metabolons, folding and post-translational 

modifications of enzymes, interactions between CYPs/CPRs and the membranes, regulation 

of these processes). These new insights would help “plantize” the microbial factories for 

better production efficiency.
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Highlights

• Cytochrome P450s (CYPs) play an essential role in plant specialized 

metabolism

• Plant CYPs are generally challenging to be functionally reconstituted in 

microbial systems

• Engineering strategies to functionally reconstitute plant CYPs are limiting

• Current strategies focus on adapting plant CYPs to microbial 

microenvironment

• In-depth in planta studies are needed to adapt microbes for the functional 

reconstitution of CYPs
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Figure 1. 
Functional reconstitution of plant cytochrome P450s (CYPs) for producing phytochemicals 

in microbes. Many strategies have been developed to improve the activity of recombinant 

CYPs in microbes. Some working mechanisms of these strategies have been proposed and 

further study is needed to validate them. *These strategies are reviewed elsewhere [11,24]. 

Process conditions (temperature, pH, etc.) affect CYP activity through multiple mechanisms 

and are reviewed elsewhere [24]. CPR: CYP reductase.
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Table 1

Examples of plant cytochrome P450s reconstituted in Yeast and E. coli

clan# CYP# Metabolite type
Functional in 

yeast?*
Functional in E. 

coli?* Native localization**

51 clan CYP51H10 triterpene Y [57] Y [34] ER

71 clan

CYP71D51v2 sesquiterpene Y [58] - ER

HPO(CYP71D55) sesquiterpene Y[59] - ER

CYP71E1 cyanogenic glycoside Y [60] Y [61] ER

CYP71AV1 sesquiterpene Y [62] Y [63] ER

MaCYP71CD2/
MaCYP71BQ5/

CsCYP71CD1/CsCYP71BQ4
triterpene Y [64] - ER

CYP71BA1 sesquiterpene Y [65] Y [66] ER

CYP73A1 flavonoid Y [67] - ER

IO (CYP76A26) monoterpene Y [7] - ER

G8H (CYP76B6) monoterpene Y [7] - ER

CYP76AH1 diterpene Y [68] Y [69] ER

CYP76AH15 diterpene Y [70] - ER

AtCYP79A1 cyanogenic glycoside - Y [34] ER/mitochondrion***

SbCYP79A1 cyanogenic glycoside Y [60] Y [71] ER

CYP79A2 glucosinolate Y [72] Y [73] ER/mitochondrion**

CYP79F1 glucosinolate Y [74] Y [75] ER

CYP79F2 glucosinolate Y [74] N [74] ER

DRS (CYP80Y)-DRR benzylisoquinoline 
alkaloid Y [2] N**** [76] ER

CYP81A12/21 herbicide detoxification Y [77] Y [26] ER

CYP81A15/24 herbicide detoxification N [25] Y [26] ER

SbF6H (CYP82D1.1) flavonoid Y [78] Y [53] ER

CYP82D113 sesquiterpene Y [79] - ER

AbCYP80F1/AbCYP82M3 tropane alkaloid Y [4] - ER

CYP82J17 triterpene Y [80] - ER

MSH (CYP82N)/P6H 
(CYP82N)

benzylisoquinoline 
alkaloids Y [43] - ER

CYP83A1 glucosinolate Y [81] Y [75] ER

CYP83B1 glucosinolate Y [81] Y [47] ER

SbFNSII-1 (CYP93B24) flavonoid Y [82] - ER

SbFNSII-2 (CYP93B25) flavonoid Y [82] Y [53] ER

CYP93E1 triterpene Y [83] - ER

CYP701A3 diterpene Y [84] Y [84] chloroplast

CYP701A8 diterpene Y [85] N [85] ER/chloroplast

CYP705A1 triterpene Y [86] - ER

Curr Opin Plant Biol. Author manuscript; available in PMC 2021 September 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 16

clan# CYP# Metabolite type
Functional in 

yeast?*
Functional in E. 

coli?* Native localization**

CYP706B1 sesquiterpene Y [87] Y [63] ER

CYP706M1 sesquiterpene Y [88] - ER

EbF6H (CYP706X) flavonoid Y [89] - ER

CFS (CYP719A)/STS 
(CYP719A)

benzylisoquinoline 
alkaloid Y [43] - ER [43]

SalSyn (CYP719B) benzylisoquinoline 
alkaloid Y [2] Y [76] ER

CYP716A47 triterpene Y [90] - ER

CYP716A49 triterpene Y [45] - ER

JcC5OX1(CYP726A35) diterpene Y [91] - chloroplast [92]

CYP750B1 monoterpene Y [93] - ER

72 clan

SLS (CYP72A1) monoterpene Y [7] - ER

CYP72A63 triterpene Y [44] N [94] ER

CYP72A154 triterpene Y [95] - ER

7-DLH (CYP72A224) monoterpene Y [7] - ER

CYP714A2 diterpene Y [96] Y [48] ER

85 clan

CYP87D16 triterpene Y [97] - ER

CYP88D6 triterpene Y [95] - ER

CYP90A1/CYP90B1 sterol Y [37] - ER

CYP90B27 sterol Y [98] - ER

CYP90G4/CYP90B50 triterpene Y [80] - ER

CYP708A2 triterpene Y [86] - ER

PPDS(CYP716A47) triterpene Y [49] - ER

CYP716AL1 triterpene Y [99] - ER

CYP725A4 diterpene Y [100] Y [101] ER [102]

86 clan CYP94D108 triterpene Y [80] - ER

97 clan CYP97C27 carotene - Y [103] chloroplast [104]

*
Y: can be functionally reconstituted; N: cannot be functionally reconstituted; -: no data reported.

**
unless specified, predicted from Uniprot database or DeepLoc [105]

***
predicted from the Arabidopsis Information Resource (TAIR)

****
enhanced compared to native DRS-DRR, but with only trace activity detected
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Table 2

Examples of N-terminus modifications on plant cytochrome P450s

Host CYP# N-terminus modification* Type** Expression*** Activity*** Reference

E. coli 

CYP79A1

CYP79A136−558 T - Y

[34]

28aa-CYP79A136−558 E Y+ Y

8RP-CYP79A11−558 H Y -

SohB1−48-CYP79A136−558 TM Y+ Y

YafU1−88- CYP79A136−558 TM N+ N+

LepB1−288- CYP79A11−558 TM Y N+

SbCYP79A1

28aa-SbCYP79A1 E Y+ Y

[71]
SohB1−48-SbCYP79A1 TM Y+ -

OmpA-SbCYP79A1 TM Y Y+

DsbA-SbCYP79A1 TM Y Y

SbF6H**** (CYP82D1.1)
MBP-SbF6H25−517 E Y N−

[53]
2B1-SbF6H25−517 H Y Y+

CYP701A3

8RP-CYP701A33−509 H - Y

[84]

8RP-CYP701A39−509 H - Y

8RP-CYP701A318−509 H - Y

8RP-CYP701A325−509 H - Y

2B1-CYP701A351−509 H - Y+

SalSyn (CYP719B1)
tCYP719B1 T Y Y

[3]
tDRS (CYP80Y)-DRR T Y N+

CYP725A4

8RP-CYP725A425−297 H Y Y

[42]

MA-CYP725A443−297 T Y -

2B1-CYP725A460−297 H Y -

28aa-CYP79A136−558 E Y+ Y

8RP-CYP79A11−558 H Y -

SohB1−48-CYP79A136−558 TM Y+ Y

YafU1−88-CYP79A136−558 TM N+ N+

LepB1−288-CYP79A11−558 TM Y N+

Yeast

CYP71AV1 8RP-CYP71AV125 H - Y [106]

CYP73A1 PD1-CYP73A121−505** E N− NN [67]

CYP82Y1

MSH1-44 – CYP82Y158-556 A - Y

[36]
L14D1−56 – CYP82Y158−556 B - X

CmCPR1−41 – CYP82Y158−556 C - NN

EcCFS1−32 – CYP82Y158−556 B - X

CYP82Y158−556 T - X

PsSalSyn (CYP719B1) yEcCFS1−66-yPsSalSyn78−505 A - N− [2]
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Host CYP# N-terminus modification* Type** Expression*** Activity*** Reference

yEcCFS1−90-yPsSalSyn102−505 A - N−

yEcCFS1−23-yPsSalSyn33−505 A - N−

yEcCFS1−26-yPsSalSyn36−505 A - N−

yEcCFS1−83-yPsSalSyn95−505 A - Y

PbSalSyn (CYP719B)

yEcCFS1−26-yPbSalSyn33−504 A - N+

yEcCFS1−23-yPbSalSyn30−504 A - N+

yEcCFS1−83-yPbSalSyn92−504 A - Y

*
t: N-terminus truncated; y: yeast codon optimized; MA: Met-Ala; 8RP: MALLLAVP; 2B1: MAKKTSSKGKLPPGPS; 28aa: 28 codon tag with 

weak mRNA structure shown to enhance expression levels [107]; Sumo: S. cerevisiae small ubiquitin-like modifier; MBP: maltose binding protein; 
PD1: MEELLKQALQQAQQLLQQAQELAKK, an amphipathic tag to enhance solubility of membrane proteins [67].

**
T, N-terminus truncation. Types of the N-terminus modification peptide sequences: H, hydrophilic or relatively hydrophilic peptide; E, peptide to 

enhance expression level or solubility; TM, transmembrane peptide from bacterial membrane proteins; A, transmembrane peptide from analogous 
P450s belonging to the same subfamily; B, transmembrane peptide from P450s belonging to different subfamilies; C, transmembrane peptide from 
yeast membrane proteins.

***
Y: enhanced; Y+: enhanced more than other N-terminus modifications; N−: slightly lower, statistically not significant; N+: slightly higher, 

statistically not significant; NN: decreased much; X: abolished; -: no data reported.

****
when paired with full length ATR1, no enhancement across the N-terminus modifications when paired with N-terminus truncated ATR1.
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