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Spatial and Temporal Variability of Micropollutants Within a 
Wastewater Catchment System

Madison Hattawaya, Chris Alaimoa, Luann Wonga, Jennifer Teerlinkb, Thomas M. Young*,a

aDepartment of Civil and Environmental Engineering, University of California, Davis, Davis, CA, 
95616, United States

bCalifornia Department of Pesticide Regulation, Sacramento, CA, 95618

Abstract

Treated wastewater effluent is a major contributor to concentrations of many anthropogenic 

chemicals in the environment. Examining patterns of these compounds measured from different 

catchment areas comprising the influent to a wastewater treatment plant, across many months, 

may reveal patterns in compound sources and seasonality helpful to management efforts. This 

study considers a wastewater catchment system that was sampled at six sub-catchment sites plus 

the treatment plant influent and effluent at seven time points spanning nine months. Wastewater 

samples were analyzed with LC-QTOF-MS using positive electrospray ionization and GC-QTOF-

MS using negative chemical ionization and electron ionization. MS data were screened against 

spectral libraries to identify micropollutants. As expected, multiple classes of chemicals were 

represented, including pharmaceuticals, plasticizers, personal care products, and flame retardants. 

Patterns in the compounds seen at different sampling sites and dates reflect the varying uses 

and down-the-drain routes that influence micropollutant loading in sewer systems. Patterns in 

examined compounds revealed little spatial variation, and greater temporal variation. For example, 

the greatest loads of DEET were found to occur in the summer months. Additionally, groups 

of compounds exhibited strong correlation with each other, which could be indicative of similar 

down-the-drain routes (such as a group intercorrelated chemicals that are components of cleaning 

products) or the influence of similar physicochemical processes within the sewer system. This 

study contributes to the understanding of dynamics of micropollutants in sewer systems.
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Environmental Significance Statement

Wastewater treatment plants are faced with an increasingly diverse array of micropollutants that 

most were not specifically designed to treat. Few previous studies have measured contaminants 

at sites upstream of the treatment plant influent to examine differences in space and time, which 

could contribute to more effective management solutions.

Introduction

While the utility and benefits of many anthropogenic chemicals are undeniable, it is 

also a fact that these compounds have infiltrated the natural environment [1], to the 

detriment of environmental and human health. One source of chemical pollution in the 

environment is from treated wastewater, as not all micropollutants are effectively removed 

during treatment. Consequently, numerous pharmaceuticals, personal care products, flame 

retardants, plasticizers, and pesticides that find their way down the drain are emitted from 

wastewater treatment plants [2]–[5].

An example of a single, highly-studied compound can be found in fipronil, a common 

spot-on flea and tick treatment for pets, which was found to be dislodged during pet bathing 

up to 28 days post-application [6]. Furthermore, fipronil and its degradates were found 

to disperse throughout the home presumably via dust and dander [7], which may lead to 

down-the-drain transport via laundering or showering. Especially in drier climates such as 

California, where the influence of wastewater effluent on receiving surface waters is largest, 

these contaminants can have significant effects on aquatic life [8].

Application of broad-scope screening methods such as suspect and nontarget analysis 

of high-resolution mass spectrometry (HRMS) data can be valuable in environmental 

monitoring, where changing consumer use patterns and the introduction of new compounds 

may mean that conventional targeted screening fails to capture compounds of toxic concern. 

HRMS-based screening has been used to isolate “fingerprints” of human activity, indicating 

whether a waterway is primarily influenced by agricultural, industrial, or municipal 

wastewater pollution [9], [10]. Many studies have also trained these tools on understanding 

removal of compounds across treatment processes [11], [12], which may help to improve the 

treatment of wastewater before it enters the environment [13]–[15].

However, another potential application of these methods is to examine specific portions of 

the wastewater collection system to isolate the sources of these pollutants. Understanding 
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patterns of contaminant loads in time and space can provide key information to support 

cost-effective management practices such as source control or pretreatment. Few studies 

have examined the patterns in contaminants within the wastewater catchment system [16]. 

In this study, wastewater treatment plant (WWTP) influent and effluent plus sites within the 

catchment system were sampled seven times over a 9-month period. These samples were 

screened against a library of water contaminants to find spectral matches, which were later 

confirmed with analytical standards or structure elucidation. Comparison of contaminant 

patterns between sampling months and sampling sites revealed the complexity of the system.

Materials and Methods

Sampling

Fig. S1 is a schematic of the connections within the sewer system: trunkline sites A, B, C, 

D, E, F, and G all connect separately to the influent of the WWTP. Trunkline site F has been 

omitted from further analysis because it was sampled for fewer months than the other sites. 

All samples (excluding site F) were collected monthly with 15-minute sampling intervals as 

24-hour time-weighted composite samples using a combination of ISCO Model 2910, Hach 

Sigma 900 Max, and Sigma SD900 autosamplers, except for the June 2016 samples which 

were collected at 30-minute intervals. In July and September, three additional “specialty” 

sites were sampled to capture wastewater from anticipated contributors of pesticides to 

wastewater: a laundromat, a pet groomer, and a pest control operation (PCO). These sewer 

laterals were sampled in such a way that the wastewater would be from the single targeted 

source.

Sample Preparation

Wastewater was transported on ice to the lab, stored at 4°C until extraction, and extracted 

within 24 hours of collection. Samples (200 mL of raw wastewater or 1 L of treated effluent) 

were filtered through a GF/F filter (0.45μm) which was extracted separately. Filtered 

samples were spiked with of a stable isotope labeled surrogate solution (Table S2), and 

passed over an Oasis HLB cartridge (Waters, Massachusetts, USA), then eluted ethyl acetate 

followed by methanol, which were collected separately. Jars were rinsed with 3:1 hexane: 

acetone, which was combined with the ethyl acetate eluate and concentrated to 1 mL. 

Methanol eluate was also concentrated to 1 mL. Filters were air-dried and then extracted in a 

sonicating bath with 1:1 hexane/acetone, then concentrated to 1 mL. One LC extract for each 

sample was created from 0.5 mL of the ethyl acetate, methanol, and hexane-acetone extracts, 

then concentrated to 0.2 mL and reconstituted to 1 mL with ultrapure water and spiked with 

the stable isotope labeled internal standard mix. Additionally, a GC extract was made from 

0.5 mL of the ethyl acetate and hexane-acetone extracts, which was concentrated to 0.2 mL 

dibromooctafluorobiphenyl (DBOFB). Extracts were stored at −20°C until data acquisition.

It is possible that the filtration and nitrogen blowdown steps may have led to the loss of 

volatile compounds in the extracts. Most nontarget methods will not be able to recover 

all possible compounds, especially as this method was initially developed for targeted 

quantification of pesticides that would not be considered volatile [17]: of the original target 

pesticides the highest vapor pressure being 3.5e-05 mm Hg for prallethrin at 20°C1. Of the 
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suspect-annotated compounds, D-limonene had the highest vapor pressure: 1.43 mm Hg at 

20°C2.

Suspect Screening

Data acquisition has been previously reported [17] and is summarized in the Supporting 

Information.

To support subsequent processing in MS-DIAL, raw data files from GC– and LC–QTOF-

MS were converted from the vendor format to the analysis base file format (Reifycs 

Analysis Base File Converter v. 4.0.0). All data were then deconvoluted and aligned 

using MS-DIAL (v. 3.90). Tentative identifications of aligned features were established 

by searching against the NIST17 database for GC-EI data, an NCI-specific pesticide 

database for GC-NCI, and a combined library that included the Agilent Water Contaminants, 

Pesticides, and Forensic Toxicology libraries for LC-ESI+. Parameter selection and 

workflow performance evaluation are described in detail in the Supporting Information 

(Table S2 for MS-DIAL alignment parameters; Table S6 for detection performance of 

LC targets in standards and spikes; Table S7 for detection performance of GC targets in 

standards and spikes). For GC suspect screening, the use of retention-index dictionaries 

added an additional level of confidence, and additional identification steps were not taken.

LC-ESI+ data was also screened using the Find by Formula workflow in MassHunter 
Qualitative Analysis against the same library used in MS-DIAL, where a “qualified” 

identification required mass error less than 15 ppm, an intensity greater than 1000 counts, 

confirmation with at least one coeluting fragment ion (with a coelution score > 80%), and 

an overall match score of >80% (weighted score of accurate mass, isotopic spacing and 

isotopic abundance). The use of 15 ppm mass error rather than the conventional 10 ppm 

was to act as a broader filter, and additional confirmatory steps resulted in reported suspects 

ultimately falling within a mass error of 10 ppm. As in the MS-DIAL alignment, [M + H]+, 

[M + Na]+, and [M + NH4]+ adducts were searched. Qualified library hits were compared 

against library identifications made by MS-DIAL as separate lines of evidence. For each 

compound that was found by the Qualitative Analysis software, which does not perform 

alignment, there was a range of retention times (RT) and mass-to-charge ratios (m/z) if it 

was detected in multiple samples. The median, 25th and 75th percentiles of RT and m/z 

were used to compare against MS-DIAL aligned features (as each feature is represented 

by an average RT and m/z). Some compounds identified in Qualitative Analysis had quite 

large interquartile ranges (IQR) of RT, large enough for these ions to be considered different 

features in the MS-DIAL alignment. Compounds that had a RT IQR greater than 0.7 minutes 

and were detected in fewer than five samples were omitted from the dataset. Those with RT 

IQR greater than 0.7 minutes but five or more detections were divided into separate features 

based on RT. The filtered MS-DIAL alignment was searched for an aligned feature that was 

within 0.3 minutes of the median RT and ±10 ppm mass error (using median m/z) for each 

compound from the Qualitative Analysis set. Additionally, a Pearson correlation coefficient 

was computed using the peak height in samples as reported by Qualitative Analysis and 

1 https://pubchem.ncbi.nlm.nih.gov/compound/prallethrin#section=Vapor-Pressure 
2 https://pubchem.ncbi.nlm.nih.gov/compound/d-limonene#section=Vapor-Pressure 
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MS-DIAL and was used to filter out features that did not show a significant correlation in 

sample abundance. Features were manually inspected in the MS-DIAL software to assess 

peak shape and to determine if there were any library hits that were below the score 

threshold, which indicated that MS-DIAL’s deconvolution had identified some qualifying 

fragments. Suspect identified compounds were selected for targeted MS/MS experiments 

based on peak height and detection frequency in wastewater samples (rather than spikes, 

standards, or blanks), compound class, and if the laboratory had a standard on-hand.

Quantification of Suspect Compounds

Compounds identified as probable structures by library spectrum match in LC samples that 

were on-hand as standards were included in a 13-point calibration curve ranging from 0.1 

ng/mL to 1000 ng/mL. The calibration curve was run with the LC extracts so that RT and 

coeluting fragments could be used to confirm the identifications. Limit of detection was 

defined in a given batch as the lowest calibration level in which the molecular ion peak 

appeared, whereas the limit of quantification was the lowest level in which a Guassian peak 

with clear fragment ions appeared. Handling of samples with levels below the limits of 

detection and quantification is described below in computation of mass loads. Data analysis 

was carried out in MassHunter Quantitative Analysis software (v. 10.1), using the internal 

standard that was closest in retention time. Internal standards that had been added to the 

extracts were originally used for target pesticide quantification (listed in Table S3). The 

volumes of the extracts had changed since the original processing, due to reinjection for 

multiple analyses, and as such, we did not want to add any additional spikes (such as matrix 

spikes), since the concentration would be unknown. Finally, concentrations were multiplied 

by the concentration factor for the samples: 1 mL extract/L sample for effluent and 5 mL 

extract/L sample for influent and trunkline samples, respectively.

Structure Confirmation

For library spectrum-matched LC compounds not currently in the lab inventory, targeted 

MS/MS experiments were used to gain further insight on the structure. Samples containing 

high abundances of these compounds were run with a list of precursors to isolate (exact 

masses and retention times) where collision cell voltages again cycled through 0, 10, 

and 40 eV. Instrumental parameters are included in Table S1. Again, the data were 

deconvoluted using MS-DIAL (parameters in Table S2), and results were exported to 

both MS-FINDER (v. 3.24) and SIRIUS CSI:FingerID for identification using in silico 
fragmentation approaches [18], [19]. Additionally, at the end of each targeted MS/MS run, a 

mix of RTI compounds was run in All Ions mode for input into an RTI prediction platform 

(http://rti.chem.uoa.gr/) [20], which was then used to evaluate the top-ranked structure 

options for a suspect using experimental RT.

Computation of Mass Loads

Quantified concentrations in wastewater extracts for confirmed structures was both left- and 

right- censored, due to relative responses below the limit of quantification as well as above 

the highest calibration point. The function ros(), from R package NADA (ver. 1.6–1.1) was 

used [21] to impute non-detect values, both if the peak was below the limit of detection or 

quantification. For points exceeding the calibration curve range, the highest calibration point 
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was used. Censored values in mass load per capita box-and-whisker plots are differentiated 

by shape from un-censored values. To calculate the mass load (mg/d*person), routine 

measurements of ammonia-nitrogen (NH4-N) were used to estimate population, assuming 

a population equivalent of 8.1 g of NH4-N per person per day [22].

Statistical Analysis for Significant Difference

To determine if mass loads per capita were statistically significantly different between 

sampling months and sites, a pairwise Wilcoxon rank-sum test with a Benjamini-Hochberg 

correction was implemented for compounds with ≥50% un-censored data points. For 

annotated GC compounds, the raw peak height was divided by the peak height of an 

internal standard, 4,4’-dibromooctafluorobiphenyl (DBOFB), to obtain a scaled peak height. 

This was used in a similar pairwise Wilcox rank-sum test. A similar approach was used 

for the three annotated LC features, using instead the peak height of the internal standard, 

simazine-d10, for scaling.

Compound Correlation Test

Some compounds were observed to follow similar monthly or site-wise patterns. The 

function rcorr() from package Hmisc (v. 4.7–0) [23] was used to obtain a correlation matrix 

for the concentrations of quantified LC compounds and scaled peak heights of annotated GC 

and LC features at the six trunkline sites plus influent and effluent. The correlation matrix 

consisted of correlation coefficients and p-values of the Spearman rank-order correlation of 

each compound against the other. A Spearman correlation was used rather than Pearson 

because relationships between compounds were not necessarily expected to be linear. 

Finally, p-values were adjusted for multiple tests to control the false discovery rate using 

p.adjust() with method “fdr”.

Results and Discussion:

Quantification of micropollutants

In the LC data, there were 63 library hits corresponding between MS-DIAL and Qualitative 

Analysis. Fourteen of these were available in the lab inventory as standards and were 

quantified. Additionally, the fungicide diethofencarb was identified by suspect screening, 

but when compared against an analytical standard, was not confirmed. This might be due 

perhaps to degradation of the already infrequently detected peaks in the original sample 

analysis (2016–2017), although others have found that a peak originally thought to be 

diethofencarb was in fact metoprolol acid, a metabolite of metoprolol and atenolol [24]. 

Additionally, a feature annotated as 8-hydroxyquinoline and one as benzotriazole were 

detected with moderate frequency (approximately 40% of samples) but were not confirmed 

when compared against standards. Benzotriazole is commonly detected in wastewater, 

owing to its application as a corrosion inhibitor in dishwashing machines [25], [26]. Table 

S8 presents the list of suspect hits, the frequency of feature detection, use class, and level of 

identification confidence (if confirmed) [27]. Table 1 summarizes the detection frequency of 

the compounds that were confirmed with analytical standards.
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Among the list of compounds that were tentatively identified via suspect screening, many 

of the common use-classes of chemicals detected in wastewater were included, with the 

notable exception of any sweeteners. This absence could be due to the exclusion of 

electrospray negative ionization (ESI-) data, as others have detected common sweeteners 

in environmental water and wastewater using ESI- [28], [29]. Other food-related compounds 

including caffeine, caffeine metabolites, and piperine were suspect-hits, with caffeine then 

being confirmed at a confidence level 1, and piperine at 2a. In previous studies of wastewater 

treatment plants and surface water, sweeteners are detected with a ubiquity to even lend 

the artificial sweetener, acesulfame, the proposed role as indicator of anthropogenic load on 

surface waters [28].

Compounds detected at frequencies greater than 50% and at concentrations on the order 

of micrograms per liter of wastewater represent a range of use classes and potential down-

the-drain routes. This group included caffeine, DEET, bis(2-ethylhexyl) phthalate (DEHP), 

diethyl phthalate (DEP), iohexol, oleamide, and tris(2-butoxyethyl) phosphate (TBEP). This 

is reflective of the high frequency of use of these compounds among the population, or 

in the case of iohexol, the dosage at which it is administered. Iodinated x-ray contrast 

media (ICM), such as iohexol, are consumed in large dosages, with one hospital studied by 

Weissbrodt et al. (2009) reporting iohexol as the ICM with the largest amount consumed 

per day. DEP and DEHP, although both phthalates, have different uses and thus may have 

different pathways to the wastewater system: DEP is used as a solvent and in multiple kinds 

of personal care products, whereas DEHP is primarily employed in soft plastics such as 

toys, food containers, and food packaging [31]. TBEP (also abbreviated as TBOEP) is a 

organophosphate ester flame retardant, a class that has seen an increase in use with the 

phase-out of brominated flame retardants [32]. A study of the San Francisco Bay, to which 

the WWTP of this study discharges, found a 100% detection frequency of TBEP in bay 

water samples [33]. TBEP and DEHP can enter the wastewater system via laundering of 

fabrics, which have been found to accumulate TBEP and similar semi-volatile compounds 

from air and dust [34]. Oleamide is a polymer lubricant used in plastics such as food and 

medicine containers, and has also been found to leach out of these plastics [35]. Sewer 

sampling that occurred at the sites of a groomer, laundry, and pest control operation (PCO) 

found a similar subset of compounds that were detected with high frequency, as detailed in 

Table 2.

Compounds that were quantified less frequently or at lower concentrations were 

all pharmaceuticals or metabolites of pharmaceuticals (Table 3). Multiple classes of 

pharmaceuticals were represented: two antibiotics, sulfamethoxazole, and trimethoprim; 

one antihistamine, fexofenadine; a beta-blocker, metoprolol; an anti-seizure medication, 

carbamazepine; and the metabolite of an opioid painkiller, o-desmethyltramadol. 

Additionally, valsartan, an anti-hypertensive, was detected most frequently of the quantified 

pharmaceuticals. Valsartan and o-desmethyltramadol were the only pharmaceuticals detected 

at the specialty sites, reflecting the relatively small catchment served by these sampling 

locations. The higher frequency of detection of these compounds in WWTP effluent samples 

is most likely due to the higher sample volume processed and less-complex matrix. All 

pharmaceuticals quantified here have been documented in other studies of wastewater and 

surface water. A report of seven different WWTP in the San Francisco Bay area found 
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valsartan to be among the top ten highest concentration pharmaceuticals in influent samples, 

with valsartan, metoprolol, carbamazepine, and sulfamethoxazole included in the top ten for 

effluent samples [36].

Detection frequency of annotated compounds

Of the suspect hits in the LC dataset, that were not quantified, 23 were selected for 

targeted MS/MS experiments due to peak height, sample detection frequency, and use class. 

However, only 3 structures were confirmed with tMS/MS experiments. These compounds 

were acetaminophen, mycophenolic acid, and piperine. In trunkline, influent, and effluent 

samples, corresponding MS-DIAL aligned features had detection frequencies of 57%, 54%, 

and 25%, respectively, where a detection was counted as a peak with height greater than 

3000 counts. A study of seven different Bay Area WWTP found acetaminophen among 

the top-ten pharmaceutical compounds in WWTP influent [36]. Mycophenolic acid is an 

immunosuppressant drug developed for prevention of organ transplant rejection [37] and is 

also used in cancer treatment [38]. One study found mycophenolic acid in 6 out of 6 WWTP 

effluents [39]. Piperine is an alkaloid present in black pepper, is excreted in the feces, and 

thus has been found to be ubiquitous in wastewater [40].

The aligned GC-EI dataset returned 1,470 annotated features. The subset considered herein 

was created by choosing a mix of use-classes and variable patterns within sampling dates 

and sites. Similarly, the GC-NCI aligned dataset yielded 48 annotated features, most of 

which were pesticides, largely those covered by targeted analysis in Budd et al. [17]. Again, 

MS-DIAL aligned peaks with heights greater than 3000 counts were counted as detections, 

and the detection frequencies of a subset of suspect-identified compounds is included in 

Table S9. Of these, the most frequently detected compound in the trunkline, influent, and 

effluent samples was oxybenzone, a UV filter. Equally ubiquitous was 3-methyl phenol, a 

human urinary metabolite of toluene.

Comparison of LC compound loads across months and sites

Concentrations of quantified compounds were converted to mass loads per capita to gain a 

better understanding of contributions from different sections of the wastewater catchment 

system and throughout the year. Table 4 details the comparisons found to be significantly 

different (p < 0.05) using a Wilcox rank sum test. One interesting pattern that emerged 

was the significantly lower loads in the months of May and June for caffeine, DEET, 

DEHP, DEP, Iohexol, and TBEP. Alternatively, oleamide and valsartan displayed fewer 

significant differences in monthly loads. In the case of caffeine, this difference in mass 

loads is unexpected, since it is typically assumed that caffeine consumption remains broadly 

consistent throughout the year (Figure 1). Although caffeine has been proposed as a proxy 

for population, it is also susceptible to biodegradation by biofilms within the sewer system, 

a process which can vary depending on a number of variables [41]. Bis(2-ethylhexyl) 

phthalate and tris(2-butoxyethyl) phosphate have a similar pattern to caffeine, with May 

and June both lower than the other five months. The load per person of tris(2-butoxyethyl) 

phosphate measured here is greater than that reported by O’Brien et al. [32], which was 

a cumulative organophosphate flame retardant load of 0.8 – 2.6 mg person−1 day−1, with 
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TBEP making up the greatest share; the quantifiable loads in this study varied from 7 μg 

person−1 day−1 to as high as 3.7 mg person−1 day−1.

For the X-ray contrast agent, iohexol, per capita loads in May and June are only significantly 

lower than the August load (Figure 1). The sampling site C had significantly higher loads 

than site E (Figure 1).

However, in the case of DEET, the summer months of July, August, and September show 

significantly higher loads than all other months, which may correspond with times of 

mosquito prevalence (Figure 1). Diethyl phthalate follows a similar pattern to DEET (Figure 

1): highest in July through September, with January and November greater than June and 

May. This similar pattern may be linked to the similar applications of products containing 

the two compounds.

Because the samples were collected as time-weighted composites, rather than flow-weighted 

composites, there is an associated uncertainty with the load patterns presented here [42]. Ort 

et al. [43] show that a pulse of anthropogenic gadolinium (an x-ray contrast agent) can occur 

over the span of 15 to 20 minutes at the influent of a WWTP; such pulses may be narrower 

upstream in the system at the sub-sewershed sampling sites. Samples were collected as 

24-hour composites, with a sampling frequency of 15 minutes. Additionally, greater flows 

occurred in January, despite the fact that the system normally receives negligible inflows 

from non-sanitary sources [17].

Comparison of GC annotated compounds by month and site

For compounds annotated from the GC-EI and NCI datasets, absolute peak heights were 

scaled by the height of DBOFB internal standard in the sample before comparison. 2-

Naphthalenol is a human xenobiotic metabolite (Phase 1) of naphthalene; the most likely 

routes human of exposure are through fuels, moth repellents, and cigarette smoke [44]. 

Phenol, 3-methyl (also known as m-cresol), is a urinary metabolite and used as a biomarker 

for human exposure to toluene, which may be found in fuels as well [45]. Presumably the 

general population could be exposed to naphthalene and toluene from vehicle exhaust. These 

two compounds show different patterns by month, with higher levels of 2-naphthalenol 

in May and June, and a majority of non-detects in later months (Figure 2). 3-methyl-

phenol was detected consistently across the months, although January and November are 

significantly lower than May, June, August, and September.

2-Propanol, 1-chloro-, phosphate (3:1) (TCPP) is a chlorinated organophosphate flame 

retardant that is now frequently used in flexible polyurethane foam products and can be 

found in house dust [46]. The most probable down-the-drain route for this compound would 

be from laundry water [34], [47]. Compound abundance in September is significantly higher 

than in May, July, November, and January (Figure 2). January is also significantly lower than 

June and August, and November lower than May, June, and August.

Correlations between micropollutants

As noted above, correlations among compounds were examined to search for common usage 

and/or fate processes across different chemicals and implications of these correlations are 
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discussed here. Cholestan-3-ol, (3.beta.,5.beta.)3 is a breakdown product of cholesterol by 

gut bacteria, and has been used as an indicator of fecal contamination of environmental 

waters [48]. The scaled peak abundance is higher in November and January with all 

other sampling months having detections below the 3000-count cut-off. Shown in Figure 

3, this compound was found to be positively correlated with seven other compounds 

including two plant related steroids (stigmastanol and stigmasta-5,24(28)-dien-3-ol) and 

guaifenesin, an expectorant found in cough medicines. Allopregnane-3α,20α-diol, an 

endogenous metabolite of progesterone, was positively correlated with another fecal 

indicator, 3-methylindole (skatole). Significant positive correlations were also observed 

among many pairs of pharmaceuticals. These included correlations between the antibiotics 

sulfamethoxazole and trimethoprim, which are used together to treat, for example, 

pneumonia in HIV/AIDS patients, and both were correlated with the anti-hypertensive 

medication valsartan. Mycophenolic acid, another antibiotic was correlated with three 

other pharmaceuticals (acetaminophen, iohexol, and trimethoprim). Another group of 

intercorrelated compounds with the potential for common sources were components 

of common cleaning products including 5-heptyldihydro-2(3H)-furanone, D-limonene, m-

cresol and p-cresol.

Most correlations were observed between compounds measured with the same instrument. 

This could be due in part to the molecular properties of compounds that make them 

amenable to GC versus LC. For example, compounds that tend to sorb to suspended solids 

in the sewer system may vary in the same ways, depending on the TSS present. However, 

performing a Spearman’s correlation with TSS and all annotated compounds in the GC 

data revealed that only hexadecamethyl heptasiloxane and 3-methyl phenol had a corrected 

p-value < 0.05, with ρ = 0.50 and 0.48, respectively. However, given the differences in 

physicochemical properties between LC- and GC- amenable compounds, this separation is 

not surprising. There are many parameters within the sewer system that might influence 

these groups of chemicals differently [49].

Conclusions

There have been many studies addressing the wide range of contaminants that find their 

way from the built environment, down the drain, and for some, into environmental waters. 

The dynamics of these compounds within the sewer system have been found in other 

studies to vary with physical, chemical, and biological parameters, not even considering the 

many anthropogenic processes that could drive variation. For these reasons, considering 

sub-sewershed contaminant patterns becomes even more complex. Ultimately, for the 

compounds considered here, which are found in a diverse range of product categories, 

distinct geographical usage patterns (i.e., systematic variation by trunkline sampling site) 

were not observed. This may be because the sub-sewershed sites are quite similar in 

land-use patterns. Instead, it seems that seasonal variation in product use or within-sewer 

processes seems to be primarily responsible for the overall system variation. However, there 

3Other names used in literature include 5β-coprostanol, 5β-cholestan-3β-ol. Cholestan-3-ol, (3.beta.,5.beta.) is the name used in the 
NIST spectral library.
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were many chemical features that went unidentified or undiscussed because the scope of 

chemicals within a sewer is so great.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mass load per capita of caffeine, DEET, DEHP, DEP, iohexol, and TBEP in each site, 

arranged by month.
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Figure 2. 
Scaled peak height of three GC-suspect annotated compounds including two human 

biomarkers for exposure to xenobiotics, 2-naphthalenol and phenol, 3-methyl- (m-cresol).
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Figure 3. 
Correlation matrix showing statistically significant correlations between micropollutants 

identified in the sewer system. Compound names are colored according to general use, as 

shown by the key in the upper right corner.
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Table 1:

Detection frequency in trunkline, influent, and effluent samples of quantified micropollutants

Detection frequency Detection frequency

Caffeine 87.5% Metoprolol 7.14%

Carbamazepine 1.79% O-Desmethytramadol 5.36%

DEET 92.9% Oleamide 89.3%

DEHP 58.9% Sulfamethoxazole 44.6%

DEP 75% Tris(2-butoxyethyl) phosphate (TBEP) 92.9%

Fexofenadine 12.5% Trimethoprim 14.3%

Iohexol 85.8% Valsartan 58.9%
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Table 2:

Detection frequency of quantifiable micropollutants in specialty sampling sites

Compound Groomer (n = 4) Laundry (n = 4) PCO (n = 2)

Caffeine 100% 100% 100%

DEET ND* 100% 100%

DEHP 25% 100% 100%

DEP 100% 100% 100%

Iohexol ND 75% ND

O-Desmethyltramadol 50% ND ND

Oleamide 25% ND 100%

TBEP 100% 100% 100%

Valsartan ND ND 50%

*
Not detected
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Table 3:

Concentrations (ng/L) of infrequently detected* quantifiable compounds

Month Site Sulfamethoxazole Fexofenadine Trimethoprim Metoprolol Carbamazepine O-Desmethyltramadol

May C 43.8

May Effluent 6.54 59.6

June A 29.0

June C 25.3

June D 29.0

June Effluent 6.62 52.8

July C 51.6 102

July D 32.1

July Influent 26.4

July Effluent 22.5 196 23.1

Aug C 35.7

Aug D 25.4

Aug Influent 25.5 68.1

Aug Effluent 79.3 > Cal 21.7 174 63.3 54.2

Sep A 40.9 70.0

Sep G 156

Sep Effluent 19.2 365 12.3 74.5 32.7

Nov A 43.5 60.3

Nov B 138

Nov C 132.4

Nov D 33.6

Nov E 28.4

Nov Influent 31.8

Nov Effluent 15.5 118 42.3

Jan B 27.3 66.1

Jan E 181.5 415

Jan Effluent 5.37

*
Only samples with at least one of the infrequently detected compounds are included in this table
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Table 4:

Per capita load (mg person−1 day−1) comparisons found to be statistically significant using a Wilcox rank-sum 

test with a Benjamini-Hochberg test for multiple comparisons (p < 0.05)

Caffeine May, Jun, Jan < Jul, Aug, Sep May, Jun < Nov, Jan

DEET May, Jun, Nov, Jan < Jul, Aug, Sep May, Jun < Nov, Jan

DEHP May, Jun < Jul, Aug, Sep, Nov, Jan

DEP May < Jun, Jul, Aug, Sep, Jan, Nov
Nov, Jan < Jul, Aug, Sept

Jun < Jul, Aug, Sep, Nov, Jan

Iohexol E < C May, Jun < Aug

Oleamide Inf < A, B, C, E, G May < Sep, Jan

TBEP May, Jun, Jan < Jul, Aug, Sep May, Jun < Nov, Jan

Environ Sci Process Impacts. Author manuscript; available in PMC 2025 February 21.


	Abstract
	Graphical Abstract
	Environmental Significance Statement
	Introduction
	Materials and Methods
	Sampling
	Sample Preparation
	Suspect Screening
	Quantification of Suspect Compounds
	Structure Confirmation
	Computation of Mass Loads
	Statistical Analysis for Significant Difference
	Compound Correlation Test

	Results and Discussion:
	Quantification of micropollutants
	Detection frequency of annotated compounds
	Comparison of LC compound loads across months and sites
	Comparison of GC annotated compounds by month and site
	Correlations between micropollutants

	Conclusions
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Table 1:
	Table 2:
	Table 3:
	Table 4:



