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ABSTRACT: Investment in brighter sources and larger and faster detectors has accelerated the speed of data acquisition at
national user facilities. The accelerated data acquisition offers many opportunities for the discovery of new materials, but it also
presents a daunting challenge. The rate of data acquisition far exceeds the current speed of data quality assessment, resulting in
less than optimal data and data coverage, which in extreme cases forces recollection of data. Herein, we show how this challenge
can be addressed through the development of an approach that makes routine data assessment automatic and instantaneous. By
extracting and visualizing customized attributes in real time, data quality and coverage, as well as other scientifically relevant
information contained in large data sets, is highlighted. Deployment of such an approach not only improves the quality of data
but also helps optimize the usage of expensive characterization resources by prioritizing measurements of the highest scientific
impact. We anticipate our approach will become a starting point for a sophisticated decision-tree that optimizes data quality and
maximizes scientific content in real time through automation. With these efforts to integrate more automation in data collection
and analysis, we can truly take advantage of the accelerating speed of data acquisition.

KEYWORDS: high-throughput, X-ray diffraction, data quality assessment, attribute extraction, on-the-fly

■ INTRODUCTION

Advanced technology requires functional materials with tailored
properties. Rational materials design based on prior materials
science knowledge is appealing because it avoids the tedious
trial-and-error of a routine material discovery cycle. Under the
umbrella of the Materials Genome Initiative, several large-scale
efforts have been undertaken to combine high-throughput
computational materials science with intelligent data mining to
accelerate the prediction of new materials.1,2 However, detailed
quantitative knowledge of structure−property processing
relationships is often still missing, especially for compositionally
complex and nonequilibrium materials.3 The predictions from
these efforts must still be experimentally verified, and once
verified, composition and processing conditions need to be
tweaked for optimized performance. A recent estimate states
that there are at least 286 experimentally unexplored chemical
systems.3 The rapid parallel screening of a large number of
samples provided by high-throughput (HiTp) experimentation
is therefore sorely needed.4

In HiTp experimentation, syntheses and characterizations are
coupled. HiTp synthesis, often described as “combinatorial
material libraries”, has the advantages of requiring small
amounts of material for each sample and the ability to
synthesize a large number of compositionally permutated

samples simultaneously.5,6 X-ray diffraction (XRD) using an
area detector is a rapid structural characterization technique; it
can be easily paired with nondestructive compositional analysis
techniques such as the X-ray fluorescence (XRF) measurements
to quickly build composition-property connections.7 Thanks to
the investment in brighter light sources, larger and faster
detectors, and automation efforts, the data acquisition speed at
national user facilities, such as at synchrotron-based HiTp XRD
facilities, have caught up with HiTp material production.8−10

For example, as of mid-2016, a ternary diagram with
approximately 1300 compositionally varying samples can be
mapped within 15 h at the HiTp XRD facility at Stanford
Synchrotron Radiation Lightsource (SSRL).
However, progress in data acquisition creates new challenges

for the analysis of data. The unmatched speed between data
acquisition and data analysis severely hampers the wealth of
new data for driving new scientific discoveries. This major
shortcoming was extensively explored in a 2015 DOE
workshop and highlighted in the findings in a report titled,
“Management, Visualization, and Analysis of Experimental and
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Observational Data (EOD)−The Convergence of Data and
Computing”.11 One of the major problems the workshop
indicated is that, because the large amount of data acquired in a
short period of time was not assessed as it was collected, less
optimal data was often collected, which in extreme conditions
forced repetition of measurements and thus wasted expensive
characterization resources. To truly take advantage of the HiTp
XRD data acquisition capability, we developed several new
algorithms and software tools for assessing the data quality as
soon as they were collected. The design and deployment of
these data assessment tools allows the optimal use of the
characterization resources and allows the data to be ready for
more sophisticated analysis. Developing such data assessment
tools is the first part of our efforts to meet the goals set by the
DOE workshop.
The first step in our on-the-fly data assessment approach is to

reduce raw XRD data into physically meaningful formats as
soon as it is collected. Next, physical information in the form of
attributes, which represent various physical properties or
characterization control parameters, are extracted from the
reduced data on-the-fly on a generic desktop machine. We
strived to keep analysis close to the data source in both time
and space to minimize the amount of data moved across
networks. These attributes are then used to assess data quality
for both individual (local data) and a collection of diffraction
patterns (global data). Because this information is close to the
data source, it can enable optimization of data quality on-the-fly
as well as allowing scientists to strategize data collection plans
and prioritize experiments in real time. We anticipate our
results to be a starting point for building a sophisticated
decision tree to automate data quality improvement. Our
development also allows for more advanced machine learning-
based analysis, such as automated phase identification,12−15 to
be running in parallel to data acquisition in the future.

■ RESULTS AND DISCUSSION
The data acquisition speed of XRD analysis is significantly
boosted by using large 2D detectors. Instead of scanning
diffraction intensity by varying Bragg angles, 2D detectors
record complete XRD data in a single exposure, usually in less
than a minute. The XRD data produced by a 2D detector is a
2D image. The prerequisite for rapid data assessment is to
automatically reduce the raw 2D image into scientifically
relevant formats as soon as it is collected.
On-the-Fly Data Reduction. An example of a raw XRD

image for lanthanum hexaboride (LaB6) is shown in Figure
1(a), and the Miller indices for XRD “arcs” are shown on the
image. LaB6 is commonly used as a standard material to
calibrate the detector geometry. Such a raw XRD image is first
mathematically converted to a calibrated XRD image in the
diffraction coordinate system, the Q−γ plot (Figure 1(b)),
based on the knowledge of detector placement with respect to
the position and direction of the incident X-ray beam. The
corresponding Miller indices are also shown on the plot. In
Q−γ plots, the x-axis “γ” measures the Azimuthal angle between
the diffracted beam and the vertical plane containing the
incident beam. “Q”, the y-axis, is the scattering vector defined as
the momentum transfer between the diffracted beam (Qd) and
incident beam (Qi) as in Figure 1(d). In a Q−γ plot, if
calibrated correctly, the scattering arcs become straight lines
unless there is deviatoric strain in the sample. The 1D spectrum
is produced from the corresponding Q−γ plot by averaging the
intensity along “γ” (the left y-axis in Figure 1(c)). Because Q is

related to the Bragg angle (2θ) by the relationship Q =
4πsin(θ)/λ with λ as the X-ray energy, a more traditional 1D
spectrum (intensity vs 2θ) can then be generated as shown in
Figure 1(c) with the right y-axis. Several existing software
packages can reduce raw images to 1D spectra, for example,
NIKA,16 WxDiff, GSAS II,17 and Fit2D.18 However, these
software packages were written mainly for single image analysis
with some batch processing functionality but not optimized for
unsupervised on-the-fly analysis. To build a flexible workflow
with on-the-fly capability, we took advantage of a recently
developed GPU-integrated pyFAI library19 and adopted the
“tilt-rotation” geometry for XRD data reduction with polar-
ization correction.20 Our software looks for a newly created raw
image in a folder, transforms it into a Q−γ plot and 1D
spectrum, and then performs other experiment-specific
operations. We believe that our software is applicable to any
small- or wide-angle scattering pattern collected on a
monolithic 2D detector. The current data reduction speed is
on the order of 0.1 s per image on a generic desktop machine at
SSRL Beamline 1−5.

HiTp XRD Data Structure. Now that the data has been
reduced to scientifically meaningful formats, analysis can
progress with extraction of scientifically relevant information.
Extraction of this information requires understanding of
different raw data streams and the context of each stream in
the overall experimental design. In Figure 2, we illustrate this
multilayered tree structure of HiTp data from a combinatorial
material library. Here, we will refer to a combinatorial material
library as either combi library or combi wafer. The top layer,
i.e., the root of the tree, describes the alloy system under
investigation. The next layer in the tree describes how the alloy
system is broken down into several combi libraries. It also
describes the processing conditions used for synthesizing each
of the libraries. This layer, therefore, captures how the
experimental plan is executed. The next layer describes
individual samples, i.e., individual samples in the combi
libraries. In the case of discrete libraries where the samples
are physically separated, sample definition is self-evident.
However, in the case of continuous compositional spread, the

Figure 1. Data reduction of the XRD data for lanthanum hexaboride,
including (a) raw image, (b) Q−γ plot, (c) 1D spectrum in Q space
(left y-axis) and Bragg angle space with Cu Kα X-ray source (right y-
axis), and (d) definition of momentum transfer “Q”.
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samples are defined artificially by the characterization scan
grids. Information contained in this layer becomes especially
critical when two different characterization streams need to be
compared or combined. The next layer describes the various
types of characterizations included in the experimental plan,
followed by several layers of data. This first layer of data
contains raw data (primary data) in the forms of images and
spectra from various characterization techniques as well as
metadata describing characterization conditions necessary for
processing the raw data. The layers below contain various
“data-derived products” (secondary data), which is the focus of
this paper. We broadly separate the “data-derived products”
into reduced data, for example, Q−γ images and 1D spectra and

attributes extracted from them. Most often the attributes are
scalar, but sometimes they are 1D vectors.
In the examples shown in this article, each sample was

characterized by XRD and XRF. The metadata associated with
raw data records exposure time, sample location, sample height,
X-ray energy, and so on. In the discussion below, we will talk
about either local data, i.e., XRD or XRF data for a single
sample, or global data, i.e., data ensemble (or data set) collected
for a combi wafer or a ternary system.
In our approach, the goals of data assessment fall into three

categories as described below. The first category uses local data,
whereas the second two categories use global data:
(1) To assess the data quality of local data (individual

spectra). For example, the situations that the sample is under-
exposed, yielding a low signal-to-noise ratio, or overexposed,
causing signal saturation and peak flattening, should be avoided.
(2) To assess the data quality of global data to detect an

experimental incident. For example, data collection should be
aborted immediately when a machine error occurs or an in situ
experiment is complete.
(3) To assess the data quality of global data to optimize the

usage of characterization resources according to the scientific
values of each sample. For example, samples with flaws or that
are not scientifically interesting should not use the same
amount of characterization time as those with higher scientific
impact.
To achieve the goals of data assessment in the three

categories discussed above, we extract scientific information
that can help determine data quality from not only the reduced

Figure 2. HiTp data structure.

Figure 3. Multiple plots show how various spectra are analyzed to assess their quality level: (a) raw spectra, (b) noise spectra, (c1−c5) noise
histograms with Gaussian fit, (d) linear relationship between SNR and log(1/fwhm). The spectrum color legend on the top applies to all the plots in
this figure.
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XRD and XRF data but also from metadata associated with
them. This quantified information is represented by defining
various “attributes”. In the section below, we illustrate our
approach by using some common attributes relevant to combi
libraries.
Attribute Extraction. Data Quality of Local Data. Signal-

to-Noise Ratio. The most direct way to measure the data
quality of a single spectrum is to monitor the signal-to-noise
ratio (SNR). Figure 3 compares five spectra with different noise
levels. The SNR is calculated by dividing the power of signal
(sum of square of signal intensities in Figure 3(a)) by the
power of noise (sum of square of noise intensities in Figure
3(b)), and the noise spectrum is generated by subtracting the
smoothed spectrum from the original spectrum (see the
Experimental Methods for more details). Using this method,
spectrum 1 (blue) has an SNR of 66.9 dB, whereas spectrum 3
(red) has an SNR of 50.3 dB. The SNRs of spectrum 1 (blue)
and spectrum 3 (red) are both sufficiently high to not mask any
diffraction features. With limited characterization resources,
collection of data with a high SNR as spectrum 1 is a waste of
time. On the other hand, the noise in spectrum 4 (cyan) is
significant (SNR = 21.7 dB), and some of the peaks are masked
by noise. By increasing the exposure time 10×, the SNR of
spectrum 5 (magenta) increases to 31.6, making it easier to
separate most of the peaks from noise.
The challenge in determining SNR using this method is the

accurate estimation of noise. If the frequency of peaks in a
spectrum is smaller than the dominant noise frequency, then
smoothing the spectrum and subtracting it from the raw
spectrum gives a reasonably accurate measure of the noise.
However, when the signal peak widths are comparable or
smaller than noise peaks, like in spectrum 2 (green), the
method described above to estimate noise power directly from
noise spectrum (Figure 3(b), green curve) will overestimate the
noise as it incorporates some of the peak features in the noise
spectrum. The SNR estimated for spectrum 2 (green) using
this method is 27.7, which is smaller than that of spectrum 5
(magenta), as in Figure 3(d). An SNR of 27.7 does not
represent the true quality of spectrum 2, in which the peaks are
readily distinguishable from noise. Whereas in spectrum 5,
which has an SNR of 31.6, the noise and peaks are difficult to
separate, for example, the features around Q = 3.45. Therefore,
a robust method for estimating noise is needed.
A better way to characterize the noise is to examine noise

distribution and to fit the histogram using Gaussian functions
(Figure 3(c1−c5)). Because the number of signal peaks is much

smaller than the number of noise peaks, the contribution from
signal peaks in the histogram is small enough to be ignored.
This is illustrated in Figure 3(c1 and c2); even if spectrum 2
(green) has extra peaks outside the main distribution, appearing
as a tail on the high end of the distribution, the Gaussian fitting
will treat those peaks as outliers and produce a truer
representation of the noise.
We are interested in finding a relationship between a

statistical value of the noise distribution, for example, the full
width at half-maximum (fwhm) and SNR. A plot of SNR (dB)
against log(1/Gaussian fwhm of the noise distribution)
produces a strongly correlated linear relationship (Figure
3(d)) with a positive correlation coefficient of 0.993, suggesting
that log(1/fwhm) is a reasonable measure of SNR. In our
experience, acceptable quality XRD spectra have SNRs of at
least 30. Estimation of the noise as the fwhm of the noise
distribution produces SNR for spectrum 2, which is similar to
that for spectrum 1, indicates that both spectra 1 and 2 are of
high quality.
On-the-fly determination of SNR can thus enable a strategy

that counts longer in the parametrized regions where data is
noisier at the expense of regions where the signal is stronger for
an optimum use of characterization time without losing
information contained in a data set.

Sample Height. Another useful single spectrum attribute for
XRD data from combi libraries is the precise location of the
incident beam on the library. Most HiTp samples are supported
on flat substrates. To avoid signals from substrates, the HiTp
XRD analysis is performed in grazing incidence reflection
geometry. Grazing incidence angle is usually between 1 and 8
degrees, and most commonly at 3 degrees. At an incident angle
of 3 degrees, 50 μm of change in sample height will cause the
X-ray beam to displace by 1 mm on the sample (see the
illustration S1 in the Supporting Information). Because the
compositions vary by location on combi libraries, the sample
height must be precisely adjusted before recording each XRD
pattern. In the HiTp experimental setup at SSRL, the sample
height is constantly monitored by a laser distance finder and
recorded as metadata. The sample height can either be used for
a real-time correction or for composition correction after data
collection.
Global data assessment for HiTp data is important because it

is possible that, even though each of the XRD spectra is of high
quality, the data may not have much value in the context of the
scientific goals for the experiment. To assess the quality of
global data, either single-spectrum attributes are compared with

Figure 4. Two examples of poor quality data: (a) the wafer (25 × 25 mesh grids in a circle, 441 pads in total) was partially blocked by the sample
holder. (b) The wafer (31 × 31 mesh grids in a circle, 709 pads in total) was drifting or warped. The white dotted line shows an abnormal XRF
gradient of the wafer.
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their neighbors or multispectra attributes are extracted and
visualized to capture changes in XRD spectra from point to
point. Because combi libraries are often synthesized with
composition gradients, producing gradual property gradients,
one must be cautious when there is a sudden change in any
property between neighbors. Such abrupt changes often
indicate the occurrence of experimental mishaps.
Experimental Incidents. XRF Elemental Channel. XRF

analysis is a direct way to monitor compositional changes;
therefore, XRF signal is often recorded simultaneously with
XRD data to generate mappings of predefined XRF channels.
Figure 4 presents two examples of machine errors that were
suggested by XRF mapping. The first plot shows a mishap
when the sample holder was blocking the X-rays from the
sample, resulting in a sudden and unexpected change in XRF
signal on the left side of the wafer. In Figure 4(b), the “jagged”
XRF horizontal gradient across the wafer was likely due to
either wafer drifting or a warped wafer surface. Detection of
such experimental incidents in real time is invaluable as it
allows the experimenter to stop the experiments that have gone
awry and correct the error immediately. Monitoring property
changes with real-time visualization for in situ experiments, in
which case axes in visualization are replaced by temperature or
time, are also useful. The other attributes that can be used for
this application will be introduced in the following section.
Prioritizing Interesting Samples. The second part of global

data quality assessment is how to use the limited character-
ization resources to yield maximum scientific values. The
guideline here is to spend more time and effort on
measurements that have the highest impact on validating a
scientific hypothesis or resulting in new discoveries. An effective
strategy can be to perform sparse data sampling across the
whole wafer to rapidly locate regions that show interesting
properties and then to increase the data density on these
regions of interest in the second pass. For this strategy to be
effective, the results of the first screen must be available almost
as soon as the measurements are completed with minimum
human intervention and low computational cost. Below, we
illustrate such strategies for three types of sample characteristic:
crystallinity, texture, and phase boundaries. In the end, we will
present a case study using these methods.
Crystallinity. Commonly, the degree of crystallinity is

inferred from the full width at half-maximum (fwhm) of
XRD peaks. Because the integrated area of a powder diffraction
peak (under kinematic conditions) is invariant of crystallinity,
XRD peaks of more crystalline samples are not only narrower
(with smaller fwhm) but also have larger peak intensity.
Therefore, a ratio of the maximum intensity (Imax) to average
intensity (Iave) is also a good measure of crystallinity, and it is
computationally easier and faster to extract from 1D XRD
spectra than widths of diffraction peaks. Although technically
the two intensity values can also be extracted directly from raw
images, the validity of this method relies strongly on the
algorithm to remove artificial bright spots on the detector, often
called detector “zingers”. Because the intensity of every point of
a 1D spectrum is averaged over hundreds of pixels across “γ”,
such artificial zingers in a 1D spectrum are mostly averaged out.
The average intensity of a 1D spectrum is dominated by diffuse
and inelastic scattering, and the maximum intensity is almost
always the intensity of the most intense peaks with few
exceptions when the background intensity is high. Figure 5
compares two 1D spectra with different Imax/Iave values. Sample
A has a sharp peak and is crystalline, whereas sample B has a

broad low peak and is most likely amorphous, although there is
some likelihood that it is nanocrystalline. This illustrates that,
with appropriately calibrated thresholds, the degree of
crystallinity of each sample can be determined quickly by
monitoring Imax/Iave. In our analysis of the data collected at
SSRL BL 1-5, the Imax/Iave is plotted on a log scale with a set
maximum of 1.4 and minimum of 0.2. Through cross-validation
with peak width analysis, the amorphous−crystalline boundary
is found to be around Imax/Iave = 0.6. These values can be
adjusted accordingly for data collected with other instruments.
The attribute Imax/Iave can also be used to monitor the

progress of in situ experiments, for example, to facilitate the
study of the thermal stability of an amorphous material. When
the temperature is above the crystallization temperature, Imax/
Iave is expected to increase dramatically. If a proper threshold is
chosen, the scientist can be informed when the crystallization
starts and decide whether to stop the experiment. Such
automated monitoring is particularly invaluable for experiments
that operate 24 h continuously.

Crystallographic Texture. Many materials have large
crystallographic anisotropy. There are sometimes advantages
if these highly anisotropic materials are synthesized with a
preferred crystallographic orientation. Locating materials with
the desired crystallographic texture corresponding to some
processing conditions is a valuable HiTp search. In powder
diffraction, if the crystallites are randomly oriented, the XRD
arcs in the 2D image will be continuous, as in Figure 1.
However, if the crystallites stack with preferred orientations, the
continuous diffraction rings break up into discrete XRD arcs, as
shown in Figure 6(a). Note that traditional 1D spectra (Figure
1(b)), which were created by integrating the intensity across γ
in Q−γ plots, lack the texture information.
A texture analysis algorithm was developed to monitor the

crystalline texture in the sample. Note that to precisely measure
the texture, some corrections20 must be applied to the
diffraction intensities. The texture analysis method introduced
here is for flagging the textured samples that need extensive
texture analysis. The as-defined texture compares azimuthally
weighted peak intensity with the azimuthally averaged intensity.
If the XRD arcs are continuous, the azimuthally weighted and
azimuthally averaged intensities will be the same and therefore
texture will equal zero. When the intensity is higher at γ close to
0, resulting from out-of-plane preferred orientation, texture is
larger than 0, denoted by the red arrow in Figure 6. When the
intensity is higher at higher γ angle, resulting from in-plane
preferred orientation, texture is smaller than 0, denoted by the
green arrow in Figure 6. After generating a textured 1D

Figure 5. 1D spectra of samples A (green curve) and B (blue curve).
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spectrum, a texture_sum attribute is calculated by summing the
square of all the texture values along Q in the texture spectrum
and normalized by the number of Qs. The texture_sum can
then be mapped on a log scale with a maximum of −10.3 and a
minimum of −11.1 in our examples, which can be adjusted for
other instruments. For an ideally nontextured sample,
texture_sum is zero, but real XRD data with finite noise will
show a small apparent texture_sum.
Phase Boundary by Number of Peaks and Nearest-

Neighbor Distance. Identification of phase boundaries is an
essential step in discovering new materials in HiTp searches for
combi libraries. An optimized search for new materials on a
combi library should devote a larger proportion of the
characterization resources on phase transition regions to
identify the exact location of the boundary, whereas lower
data density can be used to cover the region between
boundaries where the structure of the material changes
gradually. There has been significant progress on developing
phase identification algorithms, as mentioned in the Introduc-
tion. The goal of the on-the-fly analysis approach discussed in
this article is not to attempt to solve the challenge of identifying
phases of any materials in real time. Our goal is to ensure the
data density is sufficiently high in regions where diffraction

patterns are changing rapidly, so that more advanced phase
identification algorithms can run reliably and with high
accuracy.
Materials belonging to a single phase will have the same

number of peaks in XRD spectra, though the peak positions
may shift due to solid solution effects. Specifically, if crystalline
phase A has three peaks and crystalline phase B has two peaks
within the phase transition region (A → B) and if there is an
observable two-phase region, there will temporarily be five
peaks because both A and B phases will be detected. The
transition from phase A to B thus either goes from three to five
and to two XRD peaks or goes from three to two XRD peaks
directly depending on whether there is an observable two-phase
region in between. Another scenario is when a phase gradually
loses crystallinity. In such a case, the number of peaks will
monotonically decrease as the phase loses crystallinity.
Therefore, a simple peak number map can locate the phase
change and multiphase regions so that assessment of data
density in these regions is possible.
Another method to monitor the phase changes is through an

attribute that directly measures the distance between the
nearest neighbors. The two neighbors in the upper stream of
the scanning order (as shown in Figure 7) were chosen so that

this method can run on-the-fly. Although there are many
dissimilarity matrices for identifying phase boundaries,21 the
cosine dissimilarity matrix was chosen to measure the distances
between XRD spectra because of its performance in the
presence of both peak height change and peak shifting when
the magnitude of peak shifting is unknown.22 This attribute has
sensitivity to both peak shifting due to solid-solution effects as
well as emergence or disappearance of peaks due to phase
transformation. Therefore, this attribute is more universal than
the peak number attribute.

Case Study. Below, we demonstrate the on-the-fly attribute
extraction methods discussed above coupled with visualization
tools to illustrate how they operate with a single combi library.
The elemental information from the combi library was omitted
from the plots to avoid a conflict of interest. Figure 8 displays
four attribute maps for this data set: crystallinity (Imax/Iave)
map, texture_sum map, peak number map, and nearest-
neighbor distance map.

Figure 6. (a) Q−γ plot, (b) 1D spectrum, and (c) texture spectrum of
a textured sample. The red and blue arrows show different crystalline
orientations.

Figure 7. Relative locations of the sample of interest and its two
nearest neighbors in the upper stream. The scanning order is shown by
the blue arrows.
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In the crystallinity map, the blue region is amorphous, and
the red region is crystalline. In a search for amorphous
materials, locating the blue region associated with amorphous
materials (region 3 in Figure 8(a)) and the boundary between
the amorphous and crystalline regions (region 2 in Figure 8(a))
is the primary focus of the experiment. In the texture_sum map,
the blue region indicates untextured samples, and the red
region indicates textured samples. If an experiment is
performed to compare the substrate effect on nucleation film
orientation, the samples in region 1 (in Figure 8(b)) are more
strongly influenced by the substrate than the other regions. In
the peak number and nearest-neighbor distance maps, the
regions where the number of peaks and nearest-neighbor
distance changes slowly, for example, region 3, can be covered
with low data density, whereas high data density and
consequently more characterization resources, should be
devoted to regions with rapidly changing XRD patterns
(regions 1 and 2). The guideline here is to use a higher data
density on regions that have the highest impact on validating a
scientific hypothesis or resulting in a new discovery depending
on a particular application.
On the basis of the four attribute maps of the data set shown

in Figure 8, the researcher would know that region 1 has
crystalline and textured phases and six to eight XRD peaks and
that the spectra in this region change rapidly. The samples in
region 3 of the wafer are amorphous and untextured, and the

number of peaks and nearest-neighbor distances do not change
much. Region 2 captures the transition from region 1 to 3, and
thus, a higher data density is recommended to precisely locate
the transition boundaries. Depending on the scientific goals of
the experiment, the scientist can decide whether the data
density in regions 1 and 3 needs to be adjusted and additional
data should be collected before the library is removed from the
instrument.

■ CONCLUSIONS

The implementation of algorithms that enable on-the-fly
assessment of high-throughput data serves three critical
functions. The first function of the data assessment is to
ensure that the local data is of a desired quality. The second
critical function is to assess the global data to detect
experimental incidents or mishaps. The third function is to
quickly detect regions of interest and trends in the global data
and to assess whether those regions are covered with sufficient
data density. Our goal is to provide assessment of data quality
and coverage in real time so that scientists can decide whether
the data quality is sufficient to address the problem that the
experiment is designed for and for more sophisticated analysis.
These attributes also provide actionable information that
scientists can use to enable strategic experimental plans toward
experiments with the highest impacts. Intuitive visualization of
the attributes is often as important as the design and extraction

Figure 8. (a) Imax/Iave map of the wafer in log scale, (b) texture_sum map of the in log scale, (c) peak number map, and (d) nearest-neighbor
distance map in log scale. The wafer was mapped with a 25 × 25 mesh in a circle with 441 pads in total. Two dotted curves separate the wafer into
regions 1−3.
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of attributes, as these visualizations are how actionable
information is presented. The development and integration of
these tools into an intuitive visualization platform that is made
available to scientists during data collection has the potential to
save hours and often days of expensive instrument time and
human labor within each experimental cycle.

■ EXPERIMENTAL METHODS
The data presented in this paper are collected at SSRL
beamline 1-5. An illustration of the scattering geometry is
shown in a recent research paper.8 The 2D detector used is
MarCCD (2048 pixel × 2048 pixel, 79 μm) from Rayonix,
LLC. The raw images are calibrated using geometry
parameters: sample-to-detector distance, detector tilting angle,
rotation angle, and beam center on the detector (xbeam, ybeam).
The geometry is shown in illustration S2 (Supporting
Information).
Signal-to-Noise Ratio. SNR is calculated as the ratio of

power of the raw signal and the power of the noise as23
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To express the SNR in decibels,

=SNR (dB) 10log SNR10

The noise can be directly measured from instruments or
estimated by subtracting the smoothed signal (using a
Savitzky−Golay filter with a window size of 15, for example,
for data shown here) from the raw input signal. Ideally, the
smoothing window size is chosen so that the noise is effectively
captured while minimizing the effect on signal features.

= − _k k knoise( ) signal( ) SG smooth(signal( ))

However, with the current window size, the filter will not be
able to differentiate noise peaks and crystalline peaks that have
similar peak shapes. Therefore, the histogram of noise is
plotted, and the distribution is fitted using a Gaussian function.
The full width at half-maximum (fwhm) of the fitted Gaussian
peak is recorded to represent SNR.
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Texture Analysis. The definition of the crystallographic

texture is shown below. In a Q−γ plot, at each q = qj

∑_ =
γ

=

Iintensity sumj

q q

i

i

j

∑ γ_ _ =
γ

=

Iweighed intensity sum cos( )j

q q

i i
i

j

∑=
γ

=

count 1j

q q

i

j

∑_ =
γ

=

yweight count cos( )j

q q

i
i

j

=
_ _

_

_
−

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟texture

weighed intensity sum

weighed count
/

intensity sum

count
1j

j

j

j

j

_ =
∑

#
texture sum

(texture )

 of Q
Q
j

j
2

Peak Detection. A continuous wavelet transform (CWT)-
based peak detection is implemented by adopting a python
library (scipy.signal.cwt) with a Ricker wavelet kernel.24 Peaks
are identified from the CWT convolution space by the ridge-
line approach implemented in scipy. This algorithm takes into
consideration characteristics of XRD peak shapes, providing
robust peak detection on overlapping peaks and effectively
separating signal from noise.25 The parameters in CWT were
chosen to favor false positives. After the “peaks” are found, a
simple second-order finite differences threshold filter is applied
to provide more precise peak detection results.

Nearest-Neighbor Distance Analysis. The nearest-
neighbor distance attribute was calculated as a sum of cosine
distances from the two nearest neighbors: one to the left and
one below. If any of the neighbors is missing in the physical
space, the distance is recorded as zero.
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