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On the formulation of cost functions for torque-optimized

control of rigidbodies ⋆

Oliver M. O’Reilly a

aDepartment of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720-1740. U.S.A.

Abstract

In the context of controlling the attitude of a rigid body, this communique uses recent results on representations of torques
(moments) to establish cost functions. The resulting cost functions are both properly invariant under whatever choice of Euler
angles is used to parameterize the rotation of the rigid body and have transparent physical interpretations. The function is
related to existing works in geometric control theory and applications of optimal control theory to biomechanical systems.

Key words: kinetic modeling and control of biological systems, model formulation, modeling for control optimization,
rotations, torques.

1 Introduction

The recent work of [8] features a rigid body model for
the human head and proposes interesting solutions to
the challenging problem of controlling the motion of the
head. Of particular interest is the computation of the
generalized torque components (τφ1

, τφ2
, τφ3

) needed to
move the head from one orientation to another while
satisfying a constraint on the orientation known as Don-
der’s constraint. The chosen cost function to minimize
is (from [8, Eqn. (31)])

C =

∫ T

0

[

τ2φ1
(t) + τ2φ2

(t) + τ2φ3
(t)

]

dt. (1)

Although the cost function appears at first glance to be
the magnitude squared of the moment (torque) acting
on the rigid body modeling the head, it is not. Motivated
by this example, we seek to find a more appropriate cost
function.

The avenue we use to find the cost function features re-
cent works [4–6] on a (non-orthogonal) basis known as
the dual Euler basis. The use of this basis in the rep-
resentation of moments provides a clear correspondence
between the components of a generalized torque and the

⋆ Corresponding author O. M. O’Reilly. Tel. +510-642-0877.

Email address: oreilly@berkeley.edu (Oliver M.
O’Reilly).

moment vector acting on the rigid body. Alternative for-
mulations of the cost function we propose can be found
in a recent paper by Bloch et al. [1] and a work by Ghosh
et al. [3] that appeared while the present paper was un-
der review. With help from [7], we are able to provide
additional physical insight into the cost function found
in [1] and show its equivalence to the cost function being
proposed.

2 Background

To facilitate comparisonswith the literature, we use a set
of 1-2-3 Euler angles (or Tait-Bryan angles) to parame-
terize the rotation from a fixed left-handed set of Carte-
sian basis vectors {E1,E2,E3} to a set of left-handed or-
thonormal basis vectors {e1, e2, e3}. Using this param-
eterization, the angular velocity vector ω has the repre-
sentation 1

ω = φ̇1g1 + φ̇2g2 + φ̇3g3. (2)

1 We are assuming that φk is a counterclockwise angle of
rotation about gk and follow the conventions in [5] in defin-
ing the sequence of rotations used to define the Euler angle
parameterization.
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Here, the Euler basis vectors {g1,g2,g3} have the rep-
resentations

g1 =E1,

g2 = cos (φ1)E2 − sin (φ1)E3,

g3 =− sin (φ2)E1 + cos (φ2) (sin (φ1)E2 + cos (φ1)E3) .

(3)

The dual Euler basis vectors
{

g1,g2,g3
}

can be com-

puted using the nine identities gi · g
k = 1 if i = k and is

otherwise 0:

g1 =E1 + tan (φ2) (sin (φ1)E2 + cos (φ1)E3) ,

g2 = cos (φ1)E2 − sin (φ1)E3,

g3 = sec (φ2) (sin (φ1)E2 + cos (φ1)E3) . (4)

As is well known, the Euler basis fails to be a basis when
φ2 = ±π

2
. At these singular values of φ2, the dual Euler

basis is not defined and we henceforth assume that φ2 ∈
(

−π
2
, π
2

)

.

It can be shown that Lagrange’s equations for the rota-
tional motion of a rigid body are simply related to the
balance of angular momentum for a rigid body:

d

dt

(

∂Trot

∂φ̇k

)

−
∂Trot

∂φk

= M · gk, (5)

where M is the resultant moment relative to the center
of mass acting on the body and Trot is the rotational
kinetic energy of the rigid body.

It is typical to refer to the components of M as the
generalized torques:

τφk
= M · gk. (6)

Using the dual Euler basis, it is straightforward to show
that

M = τφ1
g1 + τφ2

g2 + τφ3
g3. (7)

This representation has parallels to the representation
of force vectors using a contravariant basis acting on a
particle when a curvilinear coordinate system is used to
parameterize the position vector of the particle.

3 An Alternative Cost Function

The cost function we propose is

V =

∫ T

0

||M||
2
dt. (8)

If a set of 1-2-3 Euler angles is used to parameterize the
rotation of the rigid body, then it can be demonstrated

from (7) with the help of (4) that ||M||
2
= M ·M in (8)

can be replaced by the explicit representation

||M||
2
= τ2φ1

+ τ2φ2
+ τ2φ3

+
{

tan2 (φ2)
(

τ2φ1
+ τ2φ3

)

+ 2 sec (φ2) tan (φ2) τφ1
τφ3

} . (9)

When φ2 = ±π
2
, ||M|| cannot be defined using a 1-2-3

set of Euler angles and an alternative set must be used
to parameterize the rotation at these singular values. It
should be clear from (9) that the integrand in the cost
function (1) does not represent the magnitude of the
moment M.

In contrast to (1) the results produced by the cost func-
tion (8) have the attractive feature that they will be in-
dependent of the set of Euler angles used to parameter-
ize the rotation (provided singular values in the second
Euler angle are avoided).

4 A Geometric Treatment

In a recent work Bloch et al. [1] examined the optimal
control of the rotations of a rigid body which minimized
the cost function

J =
1

2

∫ T

0

〈〈τ , τ 〉〉
∗
dt, (10)

where τ ∈ so
∗(3) is a control torque. It is of interest to

see how J and V are equivalent even though the formula-
tions of these functions appear at first glance to be very
different. To establish the forthcoming results, we make
extensive use of results from Žefran and Kumar [7] and
follow the notation of [1].

When a set of Euler angles is used to parameterize the
group of rotations SO(3), then the angular velocity ω ∈
so(3) has the representation

ω = φ̇1

∂

∂φ1

+ φ̇2

∂

∂φ2

+ φ̇3

∂

∂φ3

, (11)

where ∂
∂φk

are basis vectors for so(3). In addition, the

torque τ has the representation

τ = τφ1
dφ1 + τφ2

dφ2 + τφ3
dφ3, (12)

where dφk are one-forms which form a basis for so∗(3).
With evident parallels to the Euler and dual Euler basis
vectors, the inner-product of dφk and ∂

∂φj
is the Kro-

necker delta:
〈

dφk,
∂

∂φj

〉

= δkj .

We define the fixed basis
{

∂
∂X1

, ∂
∂X1

, ∂
∂X1

}

for so(3) and

its dual
{

dX1, dX2, dX3
}

for so∗(3). Then, for a 1-2-3
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set of Euler angles we have the following representations:

∂

∂φ1

=
∂

∂X1

,

∂

∂φ2

= cos (φ1)
∂

∂X2

− sin (φ1)
∂

∂X3

,

∂

∂φ3

=− sin (φ2)
∂

∂X1

+ cos (φ2) sin (φ1)
∂

∂X2

+cos (φ2) cos (φ1)
∂

∂X3

, (13)

and

dφ1 = dX1 + tan (φ2)
(

sin (φ1) dX
2 + cos (φ1) dX

3
)

,

dφ2 = cos (φ1) dX
2 − sin (φ1) dX

3,

dφ3 = sec (φ2)
(

sin (φ1) dX
2 + cos (φ1) dX

3
)

. (14)

With the help of (9), (12), (14), and the identity
〈〈

dXj , dXk
〉〉

∗

= δ
j
k it is now straightforward to estab-

lish a one-to-one correspondence between τ and M and
to show that

||M||
2
= 〈〈τ , τ 〉〉

∗
. (15)

The equivalence (15) also enables a straightforward
physical interpretation of the components of τ . For
completeness we note that the mechanical power of M
has the representations

M · ω = 〈τ , ω〉 = τφ1
φ̇1 + τφ2

φ̇2 + τφ3
φ̇3. (16)

5 Movements of the Human Head, Donder’s
Law, Clinical Moments

In [8] the motion of the head is assumed to be subject
to a rotational constraint known as Donder’s law. This
constraint is expressed in the form (from [8, Eqn. (10)])
∆ = 0, where the function

∆ (φ1, φ2, φ3) = t tan2
(

φ3

2

)

+ s tan

(

φ3

2

)

+ r, (17)

and t, r and s are functions of φ1 and φ2. Taking the
derivative of this constraint with respect to time, we find
that (17) implies that

ω · d = 0 where d =

3
∑

k=1

∂∆

∂φk

gk. (18)

The constraint moment Mc acting on the head which
enforces Donder’s constraint has the representation

Mc = µd, (19)

where µ is a Lagrange multiplier. Consequently, La-
grange’s equations of motion (5) are replaced by

d

dt

(

∂Trot

∂φ̇k

)

−
∂Trot

∂φk

= Mo · gk − µ
∂∆

∂φk

, (20)

where Mo = τφ1
g1 + τφ2

g2 + τφ3
g3 is now the optimal

control moment vector and the resultant moment M =
Mc+Mo The equations (20) should be supplemented by
(17) and (18). 2 The appropriate cost function for this
problem is to replace M with Mo in the cost function
(8):

V =

∫ τ

0

||Mo||
2
dt. (21)

An additional benefit of the representations (7) and (19)
is that they can be used after the optimal control prob-
lem has been solved to give clear clinical interpretations
of the control Mo and constraint moment Mc. Such in-
terpretations are established by relating M = Mo+Mc

to forces provided by the various muscle groups acting
on the head.

6 Closing Remarks

It would be interesting to see how the optimal torques

for a cost function
∫ τ

0
||Mo||

2
dt compare to those com-

puted by the authors of [8] using (1). Indeed some recent
results on this comparison can be found in Ghosh et al.
[3] which appeared while the present work was in review.
By using the material presented in Section 5 on M, the
authors of [8] could also determine if µ = 0 for motions
which satisfy Donder’s law. Such a result would parallel
a closely related result in a symmetric rigid body model
of the human eye subject to Listing’s law that can be
found in [2, Appendix IV].

We close by emphasizing the importance of the corre-
spondence between the components of M and τ that
was noted in Section 4 (cf. (7) and (12)):

∂

∂φk

↔ gk, dφi ↔ gi, ω ↔ ω, τ ↔ M. (22)

These results enables a straightforward physical inter-
pretation of the components of τ and shows how the
geometric treatment proposed in [1] is relevant to other
works such as [2,8].
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