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Peder E.Z. Larsona,b, and Daniel B. Vignerona,b,*

aDepartment of Radiology and Biomedical Imaging, University of California, San Francisco, CA, 
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bUC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San 
Francisco, Berkeley, CA, USA

cGE Healthcare, Waukesha, WI, USA

Abstract

Acceleration of dynamic 2D (T2 Mapping) and 3D hyperpolarized 13C MRI acquisitions using the 

balanced steady-state free precession sequence was achieved with a specialized reconstruction 

method, based on the combination of low rank plus sparse and local low rank reconstructions. 

Methods were validated using both retrospectively and prospectively undersampled in vivo data 

from normal rats and tumor-bearing mice. Four-fold acceleration of 1–2 mm isotropic 3D dynamic 

acquisitions with 2–5 s temporal resolution and two-fold acceleration of 0.25–1 mm2 2D dynamic 

acquisitions was achieved. This enabled visualization of the biodistribution of [2-13C]pyruvate, 

[1-13C]lactate, [13C, 15N2]urea, and HP001 within heart, kidneys, vasculature, and tumor, as well 

as calculation of high resolution T2 maps.
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1. Introduction

The advent of dissolution dynamic nuclear polarization (dDNP) of 13C substrates [1], in 

conjunction with magnetic resonance imaging (MRI), has provided a new approach for 

studying the metabolic and physiological changes associated with various diseases, 

including cancer and diabetes, among several other examples [2–7]. Recent successful phase 

I and phase II clinical trials have demonstrated how dynamic imaging of 13C substrates can 

provide several quantifiable biomarkers of disease [8–13]. A key tradeoff in the design of 

dynamic hyperpolarized 13C (HP 13C) imaging strategies is the balance between spatial and 

temporal resolution due to the limited lifetime of the hyperpolarized magnetization, which is 
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consistently depleted due to T1 and T2 decay, metabolism, and application of RF pulses. 

This tradeoff can lead to poor image quality (i.e. with large partial volume effects) and 

associated difficulties in model fitting of the dynamics. Balanced steady-state free 

precession (bSSFP) supports high resolution acquisitions by exploiting the long T2’s of 13C 

substrates, but may be especially affected by early depletion of the HP magnetization due to 

the high number of RF pulses required to achieve high resolution volume imaging [14–18]. 

While bSSFP does provide the highest SNR per unit time [19] and has been used for 2D HP 
13C T2 mapping and 3D single time-point acquisitions [14,20,21], it has not been readily 

applied to 3D dynamic HP 13C acquisitions [15], especially at clinical field strengths, 

because of the aforementioned tradeoff in spatial and temporal resolution.

Compressed sensing has been increasingly applied for accelerating MRI by exploiting data 

sparsity in an appropriate domain [22–26]. Alternatively, global low rank and local low rank 

matrix completion has also been utilized in reconstruction of undersampled dynamic MRI 

data by exploiting the spatiotemporal correlations that exist within different tissues [27–30]. 

Both approaches have been well documented in proton imaging and have been extended to 

hyperpolarized 13C imaging to improve both spatial and temporal resolution [31–34]. 

Recently, Otazo et al. [35] showed the advantage of combining these methods into a low 

rank plus sparse (L+S) reconstruction in order to increase imaging speed in dynamic proton 

imaging since the L+S model offered higher compressibility compared to either method 

alone. Perfusion imaging in particular features local low rank properties that lead to 

improved reconstructions, since neighboring tissues have similar spatiotemporal dynamics, 

and these properties have been successfully exploited in initial proton perfusion imaging 

studies [36,37]. Likewise, combining the L+S model and the local low rank method into a 

local low rank plus sparse (LLR+S) model also has the potential to improve reconstruction 

of dynamic imaging of the biodistribution of HP 13C probes (i.e. for HP 13C perfusion 

imaging).

The goal of this study was to accelerate both 2D and 3D T2 mapping and 3D dynamic high 

resolution imaging with the bSSFP sequence using a LLR+S algorithm. In-plane resolutions 

of <1 mm2 were achieved for 2D T2 mapping of multiple HP 13C compounds, with 3D 1 

mm isotropic T2 map demonstrated as well. Furthermore, 3D 1.5–2 mm isotropic imaging 

with 2–5 s temporal resolution was achieved in both healthy rats and tumor-bearing mice. 

Biodistribution of [2-13C]pyruvate, [1-13C]lactate, HP001, and [13C, 15N2]urea was 

visualized within kidneys, vasculature, heart, and tumor.

2. Theory

Otazo et al. [35] provided a formal treatment on the L+S decomposition and how it can be 

applied to 1H acquisitions. Dynamic 1H MRI can be separated into a low rank component 

representing the static background and a sparse component representing the rapid changing 

dynamics. HP 13C MRI, however, lacks a background signal due to the low signal of any 

natural abundance 13C, and the HP signal inherently rapidly decays away towards thermal 

equilibrium. Therefore, HP 13C acquisitions cannot truly be represented by a separation of a 

static background and rapidly changing dynamics since there is no incoherence between the 

low rank and sparse components. However, as previously mentioned, if only L+S is of 
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interest, as is the case here, then this algorithm still outperforms a low rank or sparse only 

reconstruction.

The LLR+S matrix decomposition can be formulated as [35,36]:

minL, S
1
2‖E(L + S) − d‖2

2 + λL ∑
i = 1

Nb
‖BiL‖∗ + λS‖TS‖1 (1)

where L and S are the outputted decomposed low rank and sparse matrices, respectively, E is 

the encoding operator that performs a spatial partial Fourier transform (FT) for each time-

point, d is the undersampled k-t data, Bi is an operator that selects an image block b and 

transforms it into a spatiotemporal matrix (assuming the spatiotemporal image data can be 

divided into Nb image blocks), T is the sparsifying transform for S, and λL and λS act as 

tuning parameters controlling the contribution of the nuclear norm and L1-norm terms, 

respectively.

The optimization problem in Eq. (1) was solved using iterative soft thresholding as 

described in Otazo et al. [35], with slight modifications to account for the local low rank 

approach. Briefly, for each iteration k, given the matrix M = L + S, a soft thresholding 

operator, defined as

Λλ(χ) = χ
|χ|max( | χ | − λ, 0), (2)

was applied to the singular values of Mk−1 − Sk−1 and the sparse transform coefficients of 

Mk−1 − Lk−1 to calculate Lk and Sk, respectively, leading to a calculation of a new Mk by 

enforcing data consistency. The algorithm iterated until the relative change in the solution 

was less than a certain tolerance limit, which depended on the specific acquisition employed. 

The first ten iterations were performed using the singular value decomposition (SVD) of the 

full spatiotemporal matrix (Global Low Rank or GLR) [29], while subsequent iterations 

utilize the SVD of the individual image blocks (local low rank or LLR). This helped speed 

up the reconstruction and improve the reconstruction time, with the number 10 chosen based 

on retrospective simulations. Furthermore, a cooling method was used to converge similar to 

previous work [29], where μ was initialized to equal λL for the first ten iterations, followed 

by 2*λL for the next ten iterations, followed by back to λL for the rest of the iterations. The 

size of the image blocks (bsize) was defined for each dataset based on the acquired matrix 

size. λL and λS were selected in an empirical manner [35] for the 3D dynamic and 2D T2 

mapping acquisitions using the retrospectively undersampled datasets (75% undersampling) 

discussed in Section 3.4. Table 1 summarizes the proposed LLR+S algorithm using pseudo-

code, with Ω defined as the set of image blocks that a spatiotemporal image can be divided 

into.
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3. Methods

3.1. Animal handling

All animal studies were done under protocols approved by the University of California San 

Francisco Institutional Animal Care and Use Committee (IACUC). Normal Sprague-Dawley 

rats and transgenic adenocarcinoma of mouse prostate (TRAMP) mice [38] were used in 

these studies. Isoflurane (1.5%) was used to anesthetize the animals, which were then placed 

in a supine position on a heated pad throughout the duration of the experiments. After 

polarization and dissolution, each of the compounds were injected into the animal via tail 

vein catheters: ~3 mL over 12 s for each rat and ~500 µL over 15 s for the mouse.

3.2. Hardware and hyperpolarization

All experiments were performed on a 3 T GE MR750 clinical scanner (GE Healthcare, 

Waukesha, WI) with multinuclear capability. Dual-tuned 1H/13C transceiver volume 

radiofrequency coils were used that had either an inner diameter of 8 cm for rats or an inner 

diameter of 5 cm for mice.

Stock solutions of all compounds used in this study ([2-13C] pyruvate, [1-13C]lactate, [13C, 
15N2]urea, HP001) were prepared as described previously [14,39]. Each compound was 

individually polarized in a HyperSense dissolution DNP instrument (Oxford Instruments) 

operating at 1.35 K and 3.35 T to achieve polarizations of ~15–20% for each compound. 

The compounds were then dissolved in appropriate media: 4.5 mL of 80 mM NaOH/40 mM 

Tris buffer for [2-13C]pyruvic acid resulting in 80 mM [2-13C]pyruvate (hereafter referred to 

as C2-pyruvate); 4.5 mL of 160 mM NaOH/40 mM Tris buffer for [1-13C]lactic acid 

resulting in 160 mM [1-13C]lactate (hereafter referred to as lactate); 5 mL of 1× phosphate-

buffered saline for [13C, 15N2]urea resulting in 110 mM [13C, 15N2]urea (hereafter referred 

to as urea); and 5 mL of 1× phosphate-buffered saline for HP001 resulting in 100 mM 

HP001.

3.3. bSSFP sequence

All acquisitions used a custom bSSFP sequence with either one (2D, T2 mapping) or two 

(3D) phase encoding dimensions for dynamic high resolution imaging. A prior publication 

provides a general description of the T2 mapping sequence [14]. For all acquisitions k-space 

was acquired in sequential fashion. For each time-point in the 3D acquisition, α/2-TR/2 

preparation pulses were played for signal stabilization, and α-TR-α/2-TR/2 flip back pulses 

were played at the end of each time-point for storing the remaining magnetization on the 

longitudinal axis.

A basic 1.6 ms time-bandwidth product (TBW) 4 Sinc RF pulse was used for all 

acquisitions. Frequency and power calibration was performed on a 1 mL enriched [13C]urea 

vial phantom (6.0 M), which was placed on top of the animal. For anatomical reference, 3D 

bSSFP proton images (16 × 8 × 4.8 cm, 256 × 128 × 80, 5.1 ms TR, 50° flip angle) were 

acquired.
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3.4. Retrospective simulations

Three previously acquired datasets were used for retrospective undersampling simulations of 

the 3D dynamic acquisition (here-after designated as 3D Dataset 1, 2 and 3, respectively, and 

shown in Supporting Fig. 1A, B, and C, respectively). Specifically, these consisted of: (1) A 

3D bSSFP acquired urea dataset in rat kidneys that was transformed into a 4D dataset by 

applying signal dynamics based on previously published HP 13C studies [40,41], (2) An EPI 

acquired [1-13C]pyruvate dataset in rat kidneys [42], and (3) An EPI acquired 

[1-13C]pyruvate dataset in TRAMP tumor. Since the LLR+S reconstruction was performed 

for each frequency encode (× location) individually after an FFT along the frequency encode 

direction (described further in Section 3.6), one slice corresponding to an × location from 

each 3D dataset (either containing kidneys or tumor) was used for retrospective simulations. 

This slice would serve as a representation of how the reconstruction would perform when 

applied to all × locations in the prospective acquisitions. Similarly, two previously acquired 

T2 mapping datasets, urea [20] and lactate [14], were used for retrospective undersampling 

and reconstruction with the LLR+S model (hereafter designated as T2 Mapping Dataset 1 

and 2, respectively, and can be seen in Supporting Fig. 1D and E, respectively). Each 

subsequent retrospective simulation was assessed using the structural similarity index 

(SSIM) [43] and normalized root mean squared error (nRMSE), which was calculated 

according to the following formula [32]:

nRMSE =
1
n ∑i = 1

n (χrecon, i − χoriginal, i)
2

1
n ∑i = 1

n (χoriginal, i)
2

(3)

where xrecon is the reconstructed dataset and xoriginal is the fully sampled original dataset 

(ground truth).

The variable-density undersampling patterns in this study were designed with a Monte Carlo 

simulation [22], with a high density in the k-space center. The following function was used 

to generate the density distribution: (1 − r)^p, where r is the radius of the k-space center, and 

p is the power of the polynomial. We used the polynomial variable density sampling scripts 

from the sparseMRI package (http://people.eecs.berkeley.edu/~mlustig/Software.html) to 

generate the sampling patterns for this study. To maximize incoherent aliasing along the 

spatiotemporal dimensions, a different pattern was designed for each time-point. An 

example pattern depicting 75% undersampling of ky-kz-t space, which was used in the 3D 

dynamic imaging, is shown in Fig. 1A and an example pattern depicting 50% undersampling 

of ky-t space, which was used in T2 mapping, is shown in Fig. 1B.

Initial retrospective simulations focused on testing the proper sparse transform and block 

sizes needed for reconstruction [24], and the compressibility of each 3D dataset [35]. We 

tested the following sparsifying transforms: (wavelet along time (Wavelet), principle 

component analysis (PCA), temporal FFT (TempFFT), and total variation (TV)). To 

determine an appropriate transform, each sparsifying transform was applied to each dataset, 

and only the top 10% of the resulting coefficients were retained to compare to the ground 

truth. In addition to validating the sparsifying transform, the appropriate block size for the 
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LLR+S reconstruction was tested based on the different matrix sizes used for T2 mapping 

and 3D dynamic imaging. For each dataset, different block sizes were applied as part of the 

LLR+S reconstruction using a 75% undersampling pattern, with the resulting 

reconstructions again compared to the ground truth using nRMSE and SSIM. 

Compressibility of each dataset was tested using five different models: global low rank 

(GLR) only, local low rank (LLR) only, global low rank plus sparse (L+S), sparse only, and 

local low rank plus sparse (LLR+S). The data compression was performed based on the 

method described in Otazo et al. for the low-rank, sparse, and low rank plus sparse models. 

The LLR and LLR+S models here were compressed using the method for the low rank and 

low rank plus sparse models, respectively, with the low rank compression applied to 

different image blocks. After determining the appropriate sparse transform and block size, 

for all 3D datasets, undersampling patterns using 10–90% of the data were designed and 

used in retrospective simulations to measure at what point the reconstruction begins to 

breakdown, in a similar fashion as described previously [32].

For the T2 mapping datasets, only compressibility was retrospectively simulated as part of 

these initial studies. PCA was used as the sparsifying transform based on previous 

accelerated T2 mapping acquisitions [24], and 50% undersampling was employed to verify 

that the undersampled data can be properly reconstructed and the subsequently calculated T2 

maps matched up with the ground truth. The block sizes were set to 5 × 5 based on the 

results of the retrospective simulations.

3.5. In vivo hyperpolarized studies

The prospective 3D dynamic imaging was acquired in three normal Sprague-Dawley rats 

and one TRAMP mouse for C2-pyruvate, lactate and urea. The rat acquisition with urea had 

the following parameters: 12 × 6 × 1.8 cm3 FOV covering the kidneys, 80 × 40 × 12 matrix 

size for 1.5 mm isotropic resolution, TR/TE of 7.5 ms/3.75 ms, α = 30° flip angle, 60% 

undersampling, 13 time-points, 5 s temporal resolution, and the scan starting at the 

beginning of injection. The rat acquisition with C2-pyruvate had the following parameters: 

12 × 6 × 1.8 cm3 FOV covering the kidneys, 60 × 30 × 9 matrix size for 2 mm isotropic 

resolution, TR/TE of 7.5 ms/3.75 ms, α = 30° flip angle, 60% undersampling, 13 time-

points, 5 s temporal resolution, and the scan starting at the beginning of injection. The rat 

acquisition with lactate had the following parameters: 12 × 6 × 1.8 cm3 FOV covering the 

kidneys, 80 × 40 × 12 matrix size for 1.5 mm isotropic resolution, TR/TE of 6.4 ms/3.2 ms, 

variable flip angle, 75% undersampling, 13 time-points, 3 s temporal resolution, and the 

scan starting 15 s after the beginning of injection. The mouse acquisition for all three 

compounds had the following parameters: 6 × 3 × 3 cm3 FOV covering the tumor, 40 × 20 × 

20 matrix size for 1.5 mm isotropic resolution, TR/TE of 6.4 ms/3.2 ms, variable flip angle, 

75% undersampling, 16 time-points, 2 s temporal resolution, and the scan starting 15 s after 

the beginning of injection.

Initial 3D prospectively undersampled T2 mapping of urea acquisitions had the following 

parameters: 12 × 6 × 1.8 cm3 FOV covering the kidneys, 1–2.5 mm isotropic resolution, 

TR/TE of 6.4 ms/3.2 ms, α = 180° flip angle, 75% undersampling, 20 time-points, and the 

scan starting 30 s after the beginning of injection.
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The 2D prospectively undersampled T2 mapping was acquired in three normal Sprague-

Dawley rats for all compounds. All acquisitions were performed in projection mode (no 

slice-select gradient). C2-pyruvate, lactate, and HP001 acquisitions had the following 

parameters: 14 × 7 cm2 coronal FOV covering heart and abdomen, 140 × 70 matrix size for 

1 mm2 in-plane resolution, TR/TE of 8.5 ms/4.25 ms, α = 180° flip angle, 50% 

undersampling, 20 time-points, and the scan starting 30 s after the beginning of injection. 

Urea acquisitions had the following parameters: 14 × 7 cm2 coronal FOV heart and 

abdomen, 280 × 140 matrix size for 0.25 mm2 in-plane resolution, TR/TE of 12.5 ms/6.25 

ms, α = 180° flip angle, 50% undersampling, 20 time-points, and the scan starting 30 s after 

the beginning of injection. Fully sampled acquisitions of HP001 and urea were acquired at 

the same time as the undersampled acquisitions for comparison and had the following 

parameters: 14 × 7 cm2 coronal FOV heart and abdomen, 140 × 70 matrix size for 1 mm2 in-

plane resolution, TR/TE of 8.5 ms/4.25 ms, α = 180° flip angle, 20 time-points, and the 

scan starting 30 s after the beginning of injection.

3.6. Image reconstruction

Reconstruction of all datasets used the same sparse transform and block sizes for the LLR+S 

retrospective reconstructions. For the 3D dynamic and 3D T2 mapping acquisitions, the data 

was Fourier transformed along the readout (frequency encode) dimension to x-ky-kz-t and 

the LLR+S algorithm was subsequently applied to each × location separately, while for 2D 

T2 mapping the algorithm was applied to kx-ky-t. λL, λS, and the tolerance limit for the 3D 

dynamic and 3D T2 mapping acquisitions were 0.01, 0.001, and 0.0015, respectively. λL, 

λS, and the tolerance limit for the 2D T2 mapping acquisitions were 0.1, 0.001, and 0.004, 

respectively. The total reconstruction time in MATLAB (The MathWorks, Inc., Natick, MA) 

on a Linux Workstation with a 3.07 GHz quadcore Intel Xeon CPU was approximately 10 

min for 3D dynamic acquisitions and approximately 2 min for 2D T2 mapping acquisitions. 

The reconstruction of the 3D dynamic acquisitions used the Parallel Computing Toolbox in 

MATLAB since the reconstruction at each × location could be treated independently from 

one another. Sample MATLAB code showing example retrospective and prospective 

reconstructions can be found in the recon section of the Hyperpolarized MRI Toolbox 

(https://github.com/LarsonLab/hyperpolarized-mri-toolbox).

4. Results

4.1. LLR+S reconstruction of retrospective simulations

4.1.1. Temporal sparsity and bsize—Table 2 shows the nRMSE and SSIM of the four 

different temporal sparse transforms for all three retrospectively undersampled 3D datasets 

after transformation and retention of the top 10% of coefficients. PCA outperformed the 

other three for all datasets and was used in subsequent simulations and reconstructions.

Table 3 shows the nRMSE and SSIM for the different block sizes that were tested for each 

retrospectively undersampled 3D dataset. The block sizes that resulted in the lowest nRMSE 

were about ~1/5–1/4 the size of the matrix for the phase encode direction and were used in 

subsequent retrospective simulations: 8 × 3 for the 40 × 12 matrix sizes used in 3D Datasets 

1 and 2; 5 × 5 for the 20 × 20 matrix sizes used in 3D Dataset 3.
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4.1.2. Comparison of reconstruction algorithms—The top row of Fig. 2 depicts the 

nRMSE vs. compression ratio for the retrospectively undersampled 3D datasets with the five 

different types of reconstruction algorithms. The LLR+S method showed the lowest nRMSE 

across multiple compression ratios for all the retrospectively undersampled 3D datasets, 

indicating the highest percent undersampling can be achieved when using that algorithm. 

The bottom row of Fig. 2 depicts the nRMSE vs. percent undersampling for the 

retrospectively undersampled 3D datasets reconstructed with LLR+S. Based on the results 

for all the datasets, >75% undersampling was deemed the point where the reconstruction 

began to fail as the nRMSE began rising rapidly past that point, indicating severe distortion 

from the ground truth after reconstruction. Fig. 3 shows an example result from a 

reconstruction of 3D dataset 1 with 75% undersampling, where one slice of the 

reconstruction is shown compared to the ground truth slice and zero-filled slice, along with 

the difference map between the ground truth and reconstruction, and representative dynamic 

curves from the vasculature and kidneys. The difference map and dynamic curves, along 

with visual inspection of the slices show that the reconstruction successfully eliminated 

undersampling artifacts and recovered the original signal.

Fig. 4A shows the resulting T2 maps after retrospective 50% undersampling and 

reconstruction of T2 Mapping Dataset 1. The LLR+S reconstruction matched up well with 

the ground truth qualitatively, as well as based on the ratio between the two maps being 

equal ~1 and the representative signal decay curves in Fig. 4B. Fig. 4C shows similar results 

to Fig. 2A–C, whereby the LLR+S method showed the lowest nRMSE across multiple 

compression ratios for the T2 Mapping Dataset 1, indicating the highest percent 

undersampling can be achieved when using that algorithm.

4.2. LLR+S reconstruction of prospective 3D dynamic acquisitions

Fig. 5 shows the reconstructions of the prospective in vivo urea (A), lactate (B), and C2-

pyruvate (C) datasets acquired in rats. Each part shows a 3D view of one time-point, all 

time-points of a representative kidney slice (outlined in black), representative vascular and 

kidney dynamic curves, and a carbon overlay on the 1H anatomical image. The LLR+S 

algorithm successfully reconstructed both 60% and 75% undersampled datasets, with the 

dynamic curves matching up with expected in vivo dynamics [40,41,44,45] for all three 

compounds in healthy rat kidneys and vasculature. The SNR was high enough for 3D 

visualization for around 30 s after the start of the scan (2nd–7th time-point) for the urea and 

C2-pyruvate acquisitions, and considerably longer in the lactate acquisition with the use of a 

variable flip angle scheme and later scan start time.

Fig. 6 shows the reconstructions of the prospective in vivo urea (A), lactate (B), and C2-

pyruvate (C) datasets acquired in a tumor-bearing mouse. As with Fig. 5, each part shows a 

3D view of one time-point, all time-points of a representative tumor slice (outlined in black), 

and a carbon overlay on the 1H anatomical image. The LLR+S algorithm successfully 

reconstructed the 75% undersampled datasets, with expected in vivo dynamics [14,46,47] 

seen for all three compounds in a TRAMP tumor. The SNR was high enough for 3D 

visualization for several time-points for all three compounds, even at 1.5 mm isotropic 

resolution.
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4.3. LLR+S reconstruction of prospective T2 maps

The prospective LLR+S reconstructed 2D T2 mapping acquisitions of HP001 and urea 

matched up well with the fully sampled acquisitions, as evidenced by the ratio maps of the 

fully sampled and accelerated acquisitions for urea (Fig. 7A and B) and HP001 (Fig. 7C), 

which had an average value of 0.89 ± 0.21 and 0.95 ± 0.23 in the kidneys and vasculature, 

respectively. Supporting video 1 shows all the time-points of the HP001 T2 mapping 

acquisition. The urea acquisition demonstrated the capability of sub-millimeter in-plane 

resolution acquisitions for HP probes with sufficient acceleration. The average value in the 

kidneys for C2-pyruvate (Fig. 8B), 0.786 ± 0.13, agreed well with previously acquired, lower 

resolution T2 maps [14]. The LLR+S reconstruction allowed ~6-fold improvement in 

resolution even with C2-pyruvate having a relatively short in vivo average T2. Additionally, 

both lactate (~2.43 s in kidneys) (Fig. 8A) and 3D urea T2 maps (~4.84 s in kidneys) (Fig. 

8C and D) matched up well with literature values [14,20], with the 3D urea T2 map 

demonstrating the capability of 1 mm isotropic dynamic imaging with HP probes. Video 2 

shows all the time-points from the 3D urea T2 mapping acquisition, with the signal decay 

matching up with the T2 map whereby the longest lasting signal appearing in the renal 

pelvis. Supporting videos 3 and 4 shows the all the time-points of the lactate and C2-

pyruvate T2 mapping acquisitions, respectively.

5. Discussion

With the current desire for high spatiotemporal coverage of hyperpolarized 13C compounds, 

especially with recent successful clinical human studies that require large FOVs, the need 

for accelerated acquisitions with sub-Nyquist sampling strategies and accompanying 

reconstructions is evident. Low rank plus sparse and local low rank reconstruction strategies 

have been previously employed in undersampled dynamic 1H acquisitions. We demonstrated 

the development and application of the local low rank plus sparse algorithm for 

reconstruction of undersampled 3D dynamic and 2D/3D T2 mapping hyperpolarized 13C 

acquisitions with the bSSFP sequence. The algorithm allowed for up to ~75% 

undersampling depending on the particular acquisition, with the acceleration factor 

providing considerably faster effective echo times for high SNR acquisitions. We were able 

to achieve previously unseen 2D sub-millimeter and 1–1.5 mm 3D isotropic spatial 

resolutions with 2–5 s temporal resolutions and considerable temporal windows.

Due to the nonrecoverable nature of the hyperpolarized magnetization, the number of phase 

encoding steps done in HP 13C imaging acquisitions is considerably smaller than 1H 

imaging acquisitions, which limits the amount of undersampling possible. The bSSFP 

sequence is an attractive choice for acceleration since the spatial resolution and matrix sizes 

approach that of 2D high resolution 1H imaging. Additionally, translating this sequence into 

the clinic will require much larger matrix sizes to achieve sub-cm spatial resolution due to 

the larger FOVs, which may allow for higher acceleration factors beyond what has been 

shown in this study. Based on previous 1H studies with local low rank and low rank plus 

sparse reconstructions, the algorithm presented here can be easily combined with parallel 

imaging and other types of imaging sequences, including echo-planar, spiral, and radial 

imaging [28,29,35,48]. Other types of reconstructions can be further evaluated and 
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compared to the LLR+S algorithm, including multi-scale low rank [49] and model-based/

dictionary learning [50]. Furthermore, the results presented here depict the LLR+S 

reconstruction working for different approaches for dynamic acquisitions, which can be 

optimized in general depending on the type of biological information desired. For example, 

the 3D dynamic urea and C2-pyruvate sequences began at the start of injection and were 

acquired for 60 s, and represent acquisitions looking at potentially perfusion, biodistribution, 

and uptake of the injected substrate. The 3D dynamic lactate sequence began after the end of 

injection and was only acquired for 39 s, but provided higher SNR due to both a shorter 

acquisition window and the use of a variable flip angle scheme.

There are several potential applications of the developed high spatial resolution 2D T2 

mapping and 3D dynamic acquisitions with regards to hyperpolarized 13C imaging in 

general, and specifically with regards to the compounds utilized in this study. First, we 

believe the T2 mapping can have multiple roles in both preclinical and clinical studies, 

including understanding the distribution of T2’s within the anatomy of interest for a given 

compound and distinguishing between healthy and diseased tissue, as is currently performed 

in 1H imaging [51]. The distribution of T2’s will help sequence development and 

optimization, as well as analysis, as more and more compounds are developed and translated 

into humans. Quantitative T2 mapping has already been performed with HP 13C compounds 

[21], and can be readily translated to clinical exams, especially with the LLR+S 

reconstruction since larger FOVs would be required. Second, we believe the 3D dynamic 

acquisition can be readily translated into humans for acquisitions featuring the compounds 

used in this study. Urea and HP001 would allow for high spatial resolution calculations of 

perfusion [40,46,47] and glomerular filtration rate [52,53]. C2-pyruvate and lactate could 

represent a different approach to looking at metabolism, whereby the distribution and 

dynamics of each compound would reflect conversion to other metabolites. Furthermore, 

knowing the biodistribution of these compounds at a high spatial resolution in humans could 

be informative for developing the acquisitions for clinical studies.

Future work will focus on optimizing the acquisitions presented here with improved flip 

angle schemes to maximize SNR over the entire temporal window, and incorporate 

spectrally selective pulses for accelerated metabolic imaging of [1-13C]pyruvate. As 

discussed previously in Otazo et al. [35], the L+S sum represents the image reconstruction 

and the individual background and dynamic components are less important. In the case of 

hyperpolarized 13C imaging, since the signal is always decaying away back to equilibrium 

due to various processes, there is no explicit separation of slowly-varying background and 

dynamic components as can be found in cardiac perfusion, for example. However, further 

evaluation is needed on what information may be obtained from the individual L and S 

components that result from running the algorithm. Based on the simulations above, the sum 

of L and S out-performed other reconstructions, and was consequently the focus of this 

study.

6. Conclusion

In this study, we implemented and tested a local low rank plus sparse reconstruction 

algorithm to accelerate hyperpolarized 13C imaging with the balanced steady-state free 
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precession sequence. We were able to acquire 3D images with high spatiotemporal 

resolution in healthy rat kidneys and tumor-bearing mice, as well as high spatial resolution 

2D and 3D T2 maps of multiple hyperpolarized substrates. Future work will focus on 

adapting the reconstruction algorithm for parallel imaging and translation into clinical 

studies.
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Fig. 1. 
Depiction of undersampling patterns used for the (A) 3D dynamic and (B) 2D dynamic 

acquisitions. The 3D dynamic acquisitions were undersampled in ky-kz-t space with 

different variable-density patterns and fully sampled k-space centers, with 4 time-points 

shown above (acquired points in black/red/green/blue). The 2D dynamic acquisitions were 

similarly undersampled, but in ky-t space. Each acquired point within the patterns represents 

a frequency encoded line of k-space. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 2. 
Different undersampling factors were used to test the capability of the LLR+S reconstruction 

for all three retrospectively undersampled 3D datasets. Parts A–C depict the nRMSE vs. 

compression ratio for the three retrospectively undersampled 3D datasets, respectively, with 

the five different types of reconstruction algorithms. For all three datasets, the LLR+S 

method showed the lowest nRMSE across multiple compression ratios, indicating the 

highest percent undersampling can be achieved when using that algorithm. Parts D–F depict 

the nRMSE vs. percent undersampling for all three retrospectively undersampled 3D 

datasets reconstructed with LLR+S, respectively, with >~75% undersampling being the 

point where the reconstruction begins to considerably breakdown.
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Fig. 3. 
An example reconstruction of 3D dataset 1 (B) with 75% undersampling can be seen here 

compared to the ground truth (A), along with the difference image (C), zerofilled 

reconstruction (D), overlay of depicted carbon slice onto a 1H image (E), and comparison of 

dynamic curves between the ground truth, LLR+S reconstruction, and the zero-filled 

reconstruction for the vasculature (F) and kidney (G). The LLR+S reconstruction matches 

up closely with the ground truth based on the difference image, qualitative observation and 

the dynamic curves, while the zero-filled reconstruction has severe aliasing. All images were 

scaled from 0 to 1.
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Fig. 4. 
The LLR+S reconstruction was tested on retrospective T2 Mapping Dataset 1. The LLR+S 

reconstruction matches up with the fully sampled ground truth as evidenced by the ratio map 

being equal ~1 (A). Furthermore, representative decay curves (B) from the ground truth and 

LLR+S match up very well. Part C shows the nRMSE vs. compression ratio for T2 Mapping 

Dataset 1, with the LLR+S reconstruction showing better compressibility compared to other 

reconstruction algorithms.
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Fig. 5. 
Depiction of the urea (A), C2-pyruvate (B), and lactate (C) uptake and biodistribution of the 

3D dynamic acquisition in one Sprague-Dawley rat. The full 3D view of each compound at 

15 s and in one slice (outlined in black) dynamically from 0 to 60 s (15–54 s in lactate) 

indicates uptake in vasculature, kidneys, and heart. The dynamics in the vasculature and the 

kidneys can also be seen on the top right of each part, along with carbon overlays of the 

outlined slice on top of anatomical 1H images on the left.
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Fig. 6. 
Depiction of the urea (A), C2-pyruvate (B), and lactate (C) uptake and biodistribution of the 

3D dynamic acquisition in a tumor-bearing mouse. The full 3D view of each compound at 

15 s and in one slice (outlined in black) dynamically from 15 to 45 s indicates uptake in 

vasculature, tumor periphery, kidneys, and heart. The carbon overlays of the outlined slice 

on top of anatomical 1H images are on the left, along with the outline of the tumor in white.
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Fig. 7. 
2-fold accelerated acquisitions of 0.5 × 0.5 mm2 urea and 1 × 1 mm2 HP001 T2 mapping are 

presented here. Part A shows the slices of the urea acquisition, with the signal lasting longest 

in the kidneys due to the long T2’s. Part B shows a zoomed-in version of the outlined slice in 

part A, which shows the resolution being high enough to accurately visualize the different 

kidney compartments. Additionally, comparison of the LLR+S reconstructed T2 map to the 

fully sampled 1 ~1 mm2 T2 map revealed a good agreement in calculated T2 values. The 

ratio map had an average of 0.89 ± 0.21 (mean ± intra-image standard deviation) within the 

kidneys and vasculature. Part C shows the results of the HP001 T2 mapping. Similar to the 

urea results, comparison to the fully sampled 1 ~1 mm2 acquisition revealed a good 
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agreement in calculated T2 values. The ratio map had an average of 0.95 ± 0.23 (mean ± 

intra-image standard deviation) within the kidneys and vasculature.
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Fig. 8. 
High resolution T2 maps for other substrates, such as lactate (A) and C2-pyruvate (B), are 

shown here. The accelerated acquisitions had high enough spatial resolution to visualize the 

substrate in kidney, heart, and vasculature, with the mean T2 values matching up well with 

previously acquired T2 maps. The slice by slice T2 map (C) and maximum intensity 

projection representation (D) from the urea 3D 1 mm isotropic T2 mapping acquisition show 

clear delineation of renal cortex, medulla, pelvis, and vasculature, with the T2 distribution 

matching up with literature values. Only 6 representative slices (out of 18) are shown in part 

C, while the maximum intensity projection in part D is from all slices.
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Video 1. 
All time-points from the 2-fold accelerated 1 × 1 mm2 HP001 T2 Mapping acquisition used 

in the analysis (some cutoff due signal over-ranging).
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Video 2. 
The dynamics of the urea over the course of the 3D 1 mm isotropic T2 mapping acquisition 

can be seen in the accompanying video. Each 360° rotation signifies one time-point, with the 

temporal resolution of the acquisition being 2.3 s. The signal decays rapidly outside the 

kidneys, and lasts the longest within the renal pelvis, which is known to have the longest T2 

values.
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Video 3. 
All time-points from the 2-fold accelerated 1 × 1mm2 lactate T2 Mapping acquisition used in 

the analysis (some cutoff due signal over-ranging).
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Video 4. 
All time-points from the 2-fold accelerated 1 × 1mm2 C2-pyruvate T2 Mapping acquisition 

used in the analysis (some cutoff due signal over-ranging).
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Table 1

Pseudo-code for LLR+S reconstruction algorithm.

Inputs: y: undersampled k-t data

E: partial spatial Fourier transform operator based on undersampling mask

T: sparsifying transform

λL: singular value threshold

λS: sparsity threshold

b: image block in Ω for local low rank soft thresholding

Tol: relative change of solution

Outputs: L, S: solutions to Eq. (1); low rank and sparse components of reconstructed data

Algorithm: M0 = E*y, S0= 0% Initialize data

do {

% Singular Value Soft Thresholding

Lk = ∪b∈ΩSVTλL (Cb(Mk−1 − Sk−1))

% Soft Thresholding in T domain

Sk = T−1(ΛλS (T(Mk−1 − Lk−1)))

% Data consistency: subtract residual

Mk = Lk + Sk − E* (E(Lk + Sk) − y)

err =
‖Lk + Sk − (Lk − 1 + Sk − 1)2‖

‖Lk − 1 + Sk − 1‖2
} while err > Tol

Soft Thresholding Operator:
Λλ(χ) = χ

|χ|max( | χ | − λ, 0)

Singular Value Thresholding (SVT) Operator: SVTλ (M) = UΛλ (Σ)V, where [U, Σ, V] = SVD(M)

J Magn Reson. Author manuscript; available in PMC 2019 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Milshteyn et al. Page 29

Table 2

Comparison of the different sparsifying transforms on all three 3D retrospectively undersampled datasets. 

Comparison to the ground truth was done after retaining only the top 10% of sparsifying coefficients.

TempFFT Wavelet TV PCA

3D Dataset 1

nRMSE 0.3638 0.2968 0.4983 0.2712

SSIM 0.7053 0.7486 0.6484 0.7586

3D Dataset 2

nRMSE 0.1944 0.1562 0.3016 0.092

SSIM 0.6772 0.6618 0.6138 0.8941

3D Dataset 3

nRMSE 0.1497 0.1777 0.3614 0.0631

SSIM 0.7581 0.7177 0.5875 0.88
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