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MANIFOLDS WITH 1/4-PINCHED FLAG CURVATURE

Lei Ni and Burkhard Wilking

Abstract. We say that a nonnegatively curved manifold (M, g) has quarter-pinched
flag curvature if for any two planes which intersect in a line the ratio of their sectional
curvature is bounded above by 4. We show that these manifolds have nonnegative
complex sectional curvature. By combining with a theorem of Brendle and Schoen it
follows that any positively curved manifold with strictly quarter-pinched flag curva-
ture must be a space form. This in turn generalizes a result of Andrews and Nguyen
in dimension 4. For odd-dimensional manifolds we obtain results for the case that
the flag curvature is pinched with some constant below one quarter, one of which
generalizes a recent work of Petersen and Tao.

1 Introduction

Let (M, g) be a Riemannian manifold with curvature tensor R and curvature oper-
ator Rm (we follow the convention R(X, Y, Z, W ) = 〈Rm(X ∧Y ), Z ∧W 〉). Assume
that (M, g) has nonnegative sectional curvature. Fixing a point x ∈ M , for any
nonzero vector e ∈ TxM , we define the flag curvature in the direction e by the sym-
metric bilinear form Re(X, X) = R(e, X, e, X). Restrict Re( · , · ) to the subspace
orthogonal to e, it is semi-positive definite. We call (M, g) has λ-pinched flag curva-
ture (1 > λ ≥ 0) if the eigenvalues of the symmetric bilinear form Re( · , · ), restricted
to the subspace orthogonal to e, are λ-pinched for all nonzero vector e. Namely

Re(X, X) ≥ λ(x)Re(Y, Y ) (1.1)

for any X, Y in the subspace orthogonal to e, with |X| = |Y |. This condition was
recently brought to attention by the work of Andrews and Nguyen [AnN]. In [AnN],
Andrews and Nguyen proved the following theorem.

Theorem (Andrews–Nguyen). For any λ ≥ 1/4 the class of positively curved 4-
manifolds with λ-pinched flag curvature is invariant under the Ricci flow. Moreover
any such manifold is either diffeomorphic to a spherical space form or isometric to
CP 2 with Fubini–Study metric (up to a scaling).

The λ-pinched flag curvature condition is equivalent to saying that K(σ1) ≥
λK(σ2) for a pair of planes σ1 and σ2 such that σ1 ∩ σ2 �= {0}. The above result
generalizes a theorem of Chen [C], who used Hamilton’s Ricci flow to classify four
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manifolds with pointwise quarter-pinched sectional curvature. We recall that a man-
ifold is said to be pointwise quarter pinched if K(σ1) ≥ 1

4K(σ2) holds for all planes
σ1, σ2 ⊂ TxM and all x ∈ M .

The earlier convergence results on Ricci flow are mostly for manifolds with di-
mension not greater than four [H1,2]. Recently, in [BöW2], Böhm and the second
author constructed a new family of cones (in the space of algebraic curvature opera-
tors) which is invariant under Ricci flow and proved that any compact manifold with
2-positive curvature operator is diffeomorphic to a spherical space form, by showing
that the normalized Ricci flow evolves such a metric to one with constant curvature.

Soon afterwards, Brendle and Schoen [BrS1] proved that any manifold with
strictly quarter-pinched sectional curvature is a spherical space form. The key novel
step in the proof is to show that nonnegative isotropic curvature is invariant un-
der the Ricci flow, which was also independently proved by Nguyen [N]. Another
important step was to show that for any pointwise 1/4-pinched manifold M , the
manifold (M, g) × R

2 has nonnegative isotropic curvature. The convergence of the
normalized Ricci flow for metrics with strictly 1/4-pinched sectional curvature then
follows from a convergence result in [BöW2] (cf. Theorem 3.2 in section 3). Later on
it was pointed out in [NiW] that (M, g)× R

2 has nonnegative isotropic curvature if
and only if (M, g) has nonnegative complex sectional curvature. (The readers should
consult [BöW2], [BrS1], and section 2 for the notation involved.) The convergence
result of [BrS1] can then be restated as

Theorem (Brendle–Schoen). A metric g of positive complex sectional curvature on
a compact manifold evolves under the normalized Ricci flow to a constant curvature
limit metric.

The part that strictly pointwise 1/4-pinched manifolds have positive complex
sectional curvature was essentially known to be true by an argument of [YZ] and
[He] for the negatively 1/4-pinched manifolds. The main result of this paper is
to generalize the latter result by relaxing the assumption of pointwise 1/4-pinched
sectional curvature to the assumption of 1/4-pinched flag curvature.
Theorem 1.1. Let (Mn, g) be a nonnegatively curved Riemannian manifold.
If (M, g) has quarter-pinched flag curvature, then (M, g) has nonnegative complex
sectional curvature.

This is proved in section 2. Combining the last two results and the rigidity
theorem of [BrS2] on manifolds with weakly 1/4-pinched sectional curvature, we
obtain the following corollary as a generalization.
Corollary 1.2. Let (Mn, g) be a compact nonnegatively curved Riemannian
manifold with 1/4-pinched flag curvature and the scalar curvature Scal(x) > 0 for
some x ∈ M . Then (M, g) is diffeomorphic to a spherical space form or isometric to
finite quotient of a rank-one symmetric space.

This is done in section 3. We should point out that if an algebraic curvature
operator has λ-pinched flag curvature, then its sectional curvature is λ2-pinched.
We will see in section 4 that this inequality is indeed sharp in dimensions above 3.
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A result similar to Theorem 1.1 yields the following generalization of a result by
Yau and Zheng [YZ], and Hernández [He], by relaxing the condition on 1/4-pinched
sectional curvature to 1/4-pinched flag curvature.
Theorem 1.3. If (Mm, g) (m ≥ 2) is a compact complex Kähler manifold which
also admits a Riemannian metric h with negative 1/4-pinched flag curvature. Then
(M, h) must be holomorphically isometric to a compact quotient of the unit ball
B

m ⊂ C
m.

This is also done in section 4. In section 5 we consider nonnegatively curved
manifolds of odd dimension n = 2m + 1 with λ-pinched flag curvature for λ < 1/4.
A generalization of an earlier result of Berger [B1] on the vanishing of the second
Betti number is obtained for λ ≥ n−3

4n−9 (cf. Theorem 5.1), provided that the scalar
curvature Scal(x) > 0 for some x ∈ M . An interesting corollary is for 5-dimensional
manifolds.
Corollary 1.4. If (M, g) is a closed positively curved 5-manifold with 2/11-
pinched flag curvature, then M must be a rational-homological sphere.

An open question is whether or not a 5-manifold as above is diffeomorphic to a
spherical space form. For odd-dimensional manifolds, we also proved a result gener-
alizing an earlier one of Petersen and Tao [PT] for nonnegatively curved manifolds
(even orbifolds) with flag pinching constant below one quarter and an arbitrarily
small global curvature pinching condition.
Theorem 1.5. For any dimension n ≥ 4 and C > 0, there is an ε > 0 such that
the following holds. Let (Mn, g) be a nonnegatively curved Riemannian orbifold of
dimension n with 1−ε

4 pinched-flag curvature and scalar curvature satisfying 1 ≤
Scal ≤ C. Then the following holds:

(i) When n = 2m + 1, M admits a metric of constant curvature;
(ii) When n = 2m, either M is diffeomorphic to the quotient of a rank-one sym-

metric space by a finite isometric group action or it is diffeomorphic to the
quotient of a weighted complex projective space by a finite group action.

This was done in section 6. The proof, in the odd dimensions, makes use of
the above mentioned generalization (of an earlier result of Berger) on the vanishing
of the second Betti number as well as the injectivity radius estimates of Petrunin–
Tuschmann and Fang–Rong [PeT], [FR]). We also explain that in even dimensions
for ε > 0 there are infinitely many distinct simply connected orbifolds (namely
certain weighted projective space) with curvature 1−ε

4 < K < 1. Nevertheless we
are able to classify orbifolds with nearly quarter-flag pinching in even dimensions as
well. This might be interesting in other context as well since its proof provides, in
very special circumstances, a method to deal with a sequence of collapsing solutions
of the Ricci flow.

2 Pinched Flag Curvature and the Complex Sectional Curvature

Fix a point x ∈ M . Let T C
x M � TxM ⊗C be the complexified tangent bundle. The

curvature operator, viewed as a symmetric tensor (transformation) of ∧2TxM , can be
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extended to ∧2T C
x M . We also extend the inner product 〈 · , · 〉 bilinearly to T C

x M . We
defined the complex sectional curvature of a pair of vectors U, V by R(U, V, Ū , V̄ ) �
〈Rm(U ∧ V ), U ∧ V 〉. This notion of curvature appeared previously in geometry
mainly in the study of harmonic maps and its applications to the rigidity theorems
(cf. [S], [Si]). The interested reader may also consult [G] for its relations with various
other curvature notions. In particular, we say that (M, g) has nonnegative isotropic
curvature if R(U, V, Ū , V̄ ) ≥ 0 for any U and V which spans an isotropic (with
respect to 〈 · , · 〉) plane. If U = X +

√−1Y , V = Z +
√−1W , via the first Bianchi

identity, we have that

R(U, V, Ū , V̄ ) = R(X, Z, X, Z) + R(Y, W, Y, W ) + R(X, W, X, W ) + R(Y, Z, Y, Z)
− 2R(X, Y, Z, W ) . (2.1)

The aim of this section is to show that λ-pinched flag curvature implies the positivity
of the complex sectional curvature for λ > 1/4. The proof relies on an improved
version of Berger’s lemma [B1] and a modification of the argument of [YZ]. (See
also [He], [NiW].)

First we start with a simple known lemma. We include its proof for the sake of
the completeness.
Lemma 2.1.

6R(X, Y )Z = −R(Y, Z + X)(Z + X) + R(Y, Z − X)(Z − X)
+ R(X, Z + Y )(Z + Y ) − R(X, Z − Y )(Z − Y ) . (2.2)

Proof. First Bianchi yields
−R(X, Y )Z = R(Z, X)Y + R(Y, Z)X .

While
R(Y, Z)X = 1

2

(
R(Y, Z + X)(Z + X) − R(Y, Z − X)(Z − X)

)− R(Y, X)Z ;
R(Z, X)Y = −R(X, Z)Y

= −1
2

(
R(X, Z + Y )(Z + Y ) − R(X, Z − Y )(Z − Y )

)
+ R(X, Y )Z .

Combining them we have the claimed equation. �

Corollary 2.1. Let k(A, B) � R(A, B, A, B).

−R(X, Y, Z, W ) =
1
12

⎛
⎜⎜⎝

−k(Y + W, Z + X) + k(Y, Z + X) + k(W, Z + X)
−k(X + W, Z − Y ) + k(X, Z − Y ) + k(W, Z − Y )
−k(Y − W, Z − X) + k(Y, Z − X) + k(W, Z − X)
−k(X − W, Z + Y ) + k(X, Z + Y ) + k(W, Z + Y )

⎞
⎟⎟⎠ .

Proof. By the lemma we have that

− R(X, Y, Z, W ) = 1
6

(
R(Y, Z + X, Z + X, W ) − R(Y, Z − X, Z − X, W )

− R(X, Z + Y, Z + Y, W ) + R(X, Z − Y, Z − Y, W )
)
.

The result follows from the fact that R( · , Z + X, Z + X, · ), R( · , Z −X, Z −X, · ),
etc., are symmetric bilinear forms and the standard polarization formula. �

The next lemma is the key to estimate the complex sectional curvature in terms
of the pinching constant of the flag curvatures.
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Lemma 2.2. Let e ∈ TxM be a nonzero vector. Assume that the sectional curvature
is nonnegative at x. Let b( · , · ) � Re( · , · ), and let N be the subspace orthogonal
to e. Assume that the flag curvature of e is λ-pinched with λ > 0. Then for any Y ,
W ∈ N such that 〈Y, W 〉 = 0,

2λ

1 + λ

(
b(Y, Y ) + b(W, W )

) ≤ b(Y + W, Y + W ) ≤ 2
1 + λ

(
b(Y, Y ) + b(W, W )

)
. (2.3)

If equality holds and b �= 0, then |W | = |Y |.
Proof. We may restrict b( · , · ) to the 2-plane P2 spanned by Y, W . We also may
assume λ is the largest number such that b restricted to this two-dimensional sub-
space is λ-pinched. In fact, otherwise we increase λ and prove inequality (2.3)
with the improved λ. Assume that b(e1, e1) = maxZ∈P2,|Z|=1 b(Z, Z) = Λ̂ and
b(e2, e2) = minZ∈P2,|Z|=1 b(Z, Z) = λ̂. Without loss of the generality we can as-
sume that λ̂ > 0. Let a := 1/λ = Λ̂/λ̂. Since one can multiply both sides of (2.3) by
a constant, without loss of the generality we can assume that |Y | = 1 and |W | ≤ 1.
Write Y = cos θe1 + sin θe2 and W = η(− sin θe1 + cos θe2) with |η| < 1. For the
upper bound we just compute b(Y + W, Y + W ) and b(Y, Y ) + b(W, W ) and com-
pare them. The computation shows that the claimed upper bound in (2.3) is, after
dividing λ̂ on both side, equivalent to

(a − 1) cos2 θ + (a − 1)η2 sin2 θ + 1 + η2 − 2(a − 1)η sin θ cos θ

≤ 2a

a + 1
(
1 + η2 + (a − 1) cos2 θ + η2(a − 1) sin2 θ

)
.

Rearranging and dividing by the positive number (a−1) shows that this is equivalent
to

−2η sin θ cos θ ≤ 1
a + 1

(η2 + 1) +
a − 1
a + 1

cos2 θ +
a − 1
a + 1

η2 sin2 θ .

This follows from

(1 + η2) + (a − 1) cos2 θ + η2(a − 1) sin2 θ ≥ 2η − 2(a − 1)η cos θ sin θ

≥ −2(a + 1)η sin θ cos θ .

Clearly equality implies that |η| = 1, namely |Y | = |W |. �
The consequence of the above lemma is a generalization of Berger’s well-known

lemma, which we state below.
Corollary 2.2. Assume that (M, g) has λ-pinched flag curvature with di-
mension n ≥ 4. Assume that the sectional curvature is nonnegative at x and
X, Y, Z, W ∈ TxM are four vectors mutually orthogonal. Then

6
1+λ

1−λ

∣∣R(X, Y, Z, W )
∣∣≤ k(X, Z)+k(Y, Z)+k(X, W )+k(Y, W )+2k(X, Y )+2k(Z, W ).

If equality holds and Rm(x) �= 0, then vectors X, Y, Z, W have the same norm.

Proof. As before let a = 1/λ. The result follows from Corollary 2.1 and the estimate
(2.3). In fact, applying (2.3) one can estimate

R(Y +W, Z+X, Z+X, Y +W ) − R(Y, Z+X, Z+X, Y ) − R(W, Z+X, Z+X, W )
= R(Y, Z+X, Y, Z+X) + R(W, Z+X, W, Z+X) − R(Y +W, Z+X, Y +W, Z+X)
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≥
(

1 − 2a

a + 1

)(
R(Y, Z + X, Y, Z + X) + R(W, Z + X, W, Z + X)

)
.

Applying the similar estimate to the other three groups in the expression of
R(X, Y, Z, W ) from Corollary 2.1, the lower bound of −R(X, Y, Z, W ) follows by
expanding R(Y, Z + X, Y, Z + X) + R(W, Z + X, W, Z + X), etc., and regrouping
them. The upper bound is similar. We leave the detailed checking to the readers. �

Remark 2.3. Berger’s lemma concludes a similar estimate as that of Corollary 2.2
under the stronger assumption that the sectional curvature is λ-pinched.

Next we shall estimate the complex sectional curvature via the pinching con-
stant λ.
Lemma 2.3. Assume that (M, g) (with dimension n ≥ 4) has nonnegative sectional
curvature and satisfies (1.1) at x ∈ M . Then for any X, Y, Z, W ∈ TxM which are
mutually orthogonal with |X| = |Z| = 1, 1 ≥ |Y |, |W | ≥ 0, we have the following
estimates:

R(U, V, Ū , V̄ ) ≥

⎧⎪⎪⎨
⎪⎪⎩

2(4λ−1)
3

(
k(X, Ŷ ) + k(Z, Ŵ )

)
, for λ ≤ 1

4 ,
2(4λ−1)

3 · min
{
k(X, Ŷ ), k(Z, Ŵ )

}
, for 1

1+
√

3
≥ λ > 1

4 ,
2λ(1+2λ)
3(1+λ) max

{
k(X, Ŷ ), k(Z, Ŵ )

}
, for 1 > λ > 1

1+
√

3
.

Here U = X+
√−1Y , V = Z+

√−1W , Ŷ and Ŵ are the unit vectors in the direction
of Y and W . The equality in the case λ ≤ 1/4 can only happen when |X| = |Y | =
|W | = |Z| and λk(X, Y ) = λk(Z, W ) = k(X, Z) = k(X, W ) = k(Y, Z) = k(Y, W ),
provided that the sectional (or scalar) curvature is positive.

Proof. Recall that

R(U, V, Ū , V̄ ) = k(X, Z) + k(X, W ) + k(Y, Z) + k(Y, W ) − 2R(X, Y, Z, W ) .

By Corollary 2.2 we have that

R(U, V, Ū , V̄ ) ≥ 2(a + 2)
3(a + 1)

(
k(X, Z) + k(X, W ) + k(Y, Z) + k(Y, W )

)
− 2(a − 1)

3(a + 1)
(
k(X, Y ) + k(Z, W )

)
.

Here a = 1/λ as before. We focus on λ ≤ 1/4, namely a ≥ 4 case. Now write
t = |Y |2, ξ = |W |2 and Y = t1/2Ŷ , W = ξ1/2Ŵ . Consider

Q(t, ξ) = (a + 2)
(
k(X, Z) + k(X, Ŵ )ξ + k(Ŷ , Z)t + k(Ŷ , Ŵ )tξ

)
− (a − 1)

(
k(X, Ŷ )t + k(Z, Ŵ )ξ

)
as a function defined for 0 ≤ ξ, t ≤ 1. Its minimum can only possibly be achieved
for t and ξ taking values in {0, 1}. For t = 1 and ξ = 1, we deduce that

Q ≥ (4 − a)(a + 1)
a

(
k(X, Ŷ ) + k(Z, Ŵ )

)
which implies the result. If t = 0, ξ = 1,

Q ≥ (a + 2)k(X, Z) +
2 + 2a − a2

a
k(Z, Ŵ )
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≥ (4 − a)(a + 1)
a

k(Z, Ŵ ) .

The case t = 1, ξ = 0, is symmetric to the one above with the estimate Q ≥
(4−a)(a+1)

a k(X, Ŷ ). For t = 0, ξ = 0, we have that Q ≥ a+2
a k(X, Ŷ ). Putting them

together we have the estimate for λ ≤ 1/4. The two cases can be done similarly. �

Proof of Theorem 1.1. Let Rm ∈ S2
B(so(n)) be an algebraic curvature operator

with quarter-pinched flag curvature. We want to check that the curvature of Rm
evaluated at a complex plane σ ⊂ C

n is nonnegative. Next we choose a good basis of
σ as follows. We endow C

n with the usual scalar product 〈〈x, y〉〉 = ȳtrx. Let U be
a unit vector in σ which maximizes among all unit vectors the real part of the scalar
product 〈〈U, Ū〉〉. Let V be a unit vector in σ perpendicular to U such that 〈〈V, V̄ 〉〉
is a nonnegative real number. By the choice of U we have 〈〈U, V 〉〉 = 〈〈Ū , V 〉〉 = 0.
Moreover, 〈〈U, Ū〉〉 and 〈〈V, V̄ 〉〉 are real. Let X, Y, Z, W ∈ R

n be such that U =
X +

√−1Y , V = Z +
√−1W . It is straightforward to check that X, Y, Z, W are

pairwise orthogonal. Furthermore |X| ≥ |Y | and |Z| ≥ |W |.
Finally we rescale U and V by a real number such that |X| = |Z| = 1. The

nonnegativity now follows from the previous lemma. �

The above argument also proves that a curvature operator Rm �= 0 with nonneg-
ative sectional curvature, λ-pinched flag curvature has positive complex sectional
curvature if λ > 1/4. Tracing the proof it is easy to see the following corollary.
Corollary 2.4. Let (M, g) be as in Theorem 1.1. Then if R(U, V, Ū , V̄ ) = 0 for
a pair of vectors U, V spanning a complex plane σ. Then σ is isotopic. Namely for
any T ∈ σ, 〈T, T 〉 = 0.

3 Consequences

Using the work of [BöW2] and [BrS1], Theorem 1.1 has a more general differential
sphere theorem as its direct consequence. Recall that it was proved in [BrS1] that
Theorem 3.1 (Brendle–Schoen). The Ricci flow on a compact manifold preserves
the cones consisting of

(i) the curvature operators with nonnegative complex sectional curvature; and
(ii) the curvature operators with positive complex sectional curvature.

Originally in [BrS1], the authors proved that the condition that M × R
2 has

nonnegative isotropic curvature is preserved under Ricci flow. However it turns
out (cf. [NiW]) that the condition M × R

2 has nonnegative isotropic curvature is
equivalent to M has nonnegative complex sectional curvature. There exists a more
direct proof of Brendle–Schoen’s above result in [NiW] using complex numbers.

Using the above result, Brendle and Schoen further proved that any compact
manifold with strictly 1/4-pinched sectional curvature must be a diffeomorphic
sphere, via the following general invariant cone construction of [BöW2] by Böhm
and the second author, and their consequence on the convergence of the Ricci flow.
(Cf. Theorem 6.2 of [W].)
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Theorem 3.2 (Böhm–Wilking). Let C be an O(n)-invariant convex cone of full
dimension in the vector space of algebraic curvature operators S2

B(so(n)) with the
following properties:

(i) C is invariant under the ODE d Rm
dt = Rm2 + Rm#.

(ii) C contains the cone of nonnegative curvature operators, or slightly weaker all
nonnegative curvature operators of rank 1.

(iii) C is contained in the cone of curvature operators with nonnegative sectional
curvature.

Then for any compact manifold (M, g) whose curvature operator is contained in the
interior of C at every point p ∈ M , the normalized Ricci flow evolves g to a limit
metric of constant sectional curvature.

Proof. It follows from the proof of Lemma 3.4 and 3.5 of [BöW2] verbatim. �

Combining Theorem 3.1 and Theorem 3.2 we have that if (M, g) is a Riemannian
manifold with positive sectional curvature such that (1.1) holds for some λ > 1/4,
then (M, g) is diffeomorphic to a spherical space form. In fact one can arrive at
the same conclusion assuming only that (M, g) is a nonnegatively curved manifold
with quarter-pinched flag curvature and with some point x at which the curvature
operator Rm(x) �= 0 has strictly quarter-pinched flag curvature.

In [BrS2], the manifolds with weakly 1/4-pinched sectional curvature were ana-
lyzed. Since the key step is a result on the rigidity of manifolds with nonnegative
complex sectional curvature (Theorem 2 of [BrS2]), which in turn relies on a general
strong maximum principle result, one can modify this part to obtain the generaliza-
tion stated in Corollary 1.2.
Proof of Corollary 1.2. By [BrS2], particularly, Proposition 11 therein on the
rigidity of manifolds with nonnegative complex sectional curvature, one can reduce
the proof of Corollary 1.2 to show that if M is a Kähler manifold with 1/4-pinched
flag curvature, then the universal cover of M is isometric to CPm (n = 2m). Now
consider the complex sectional curvature R(U, V, Ū , V̄ ) for any U, V ∈ T 1,0M with
|U | = |V | and 〈U, V̄ 〉 = 0. By the Kählerity it must be zero. Write as before that
U = X +

√−1Y and V = Z +
√−1W . We deduce that Y = −JX, W = −JZ, By

tracing the equality case in section 2, we have k(X, JX) = k(Z, JZ) = 4k(X, Z) =
4k(X, W ) = 4k(Y, Z) = 4k(Y, W ). This proves the result for the case m ≥ 3 since
for any U1, U2 ∈ T 1,0M one can find U3 such that 〈U3, Ūi〉 = 0 for i = 1, 2. Hence
M has constant holomorphic sectional curvature at any given point p ∈ M . By
the Kählerian analogue of Schur’s lemma we can conclude that M is of constant
holomorphic sectional curvature. For m = 2, the result has been proved in [AnN].
(See also the next section for a different argument on this part.) �

4 An Example and the Dual Case

In this section, first for n ≥ 4, we present an example of algebraic curvature operator
which has 1/4-pinched sectional curvature, but only 1/2-pinched flag curvature (by
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scaling, one can easily derive examples which has λ2-pinched sectional curvature,
but only λ-pinched flag curvature).

Define an algebraic curvature operator on R
4 by

Rm = 4(e1 ∧ e2) ⊗ (e1 ∧ e2) + 2(e1 ∧ e3) ⊗ (e1 ∧ e3)
+ 2(e1 ∧ e4) ⊗ (e1 ∧ e4) + 2(e2 ∧ e3) ⊗ (e2 ∧ e3)

+ 2(e2 ∧ e4) ⊗ (e2 ∧ e4) + (e3 ∧ e4) ⊗ (e3 ∧ e4) .

Here {ei} is a orthonormal frame. First one can easily check that Rm is an algebraic
curvature operator since it is a symmetric tensor of ∧2(R4) and satisfies the first
Bianchi identity. It is easy to see that the sectional curvature of Rm is 1/4-pinched.
On the other hand, for the flag curvature it is only 1/2-pinched. It is clear that the
eigenvalues of Re( · , · ) are 1/2-pinched, when e = ei. To check for generic vector
it is sufficient to check for e = cos θe1 + sin θe3 for any θ ∈ R. Direct computation
verifies that the three eigenvectors of Re( · , · ) are e2, e4 and − sin θe1 + cos θe3 with
eigenvalues 2 cos2 θ+2, 1+cos2 θ and 2 correspondingly. They have pinching constant
1/2 again. The example shows that if an algebraic curvature tensor R has λ-pinched
flag curvature, its sectional curvature has pinching constant at the best λ2. In
particular, if Rm has 1/4-pinched flag curvature, one at best can expect its sectional
curvature is 1/16-pinched. This example can easily be generalized to any dimensions
by replacing e3 and e4 by ei for n ≥ i ≥ 3.

Finally we observe that the discussions in section 2 can be adapted to the mani-
folds with nonpositive sectional curvature and 1/4-pinched flag curvature. Note
that in the case that (M, h) has nonpositive sectional curvature we say that it has
λ-pinched flag curvature if and only if

λRe(X, X) ≥ Re(Y, Y ) (4.1)
holds for any e �= 0, and any X, Y in the orthogonal complement of e with |X| =
|Y | = 1. Clearly this is equivalent to saying that the curvature tensor R′ = −R has
nonnegative sectional curvature with λ-pinched flag curvature. The following is the
analogue of Theorem 1.1
Corollary 4.1. Assume that (Mn, g) is a Riemannian manifold (n ≥ 4) hav-
ing nonpositive sectional curvature. If (4.1) holds for some λ ≥ 1/4, then (M, g)
has nonpositive complex sectional curvature. Moreover if the sectional curvature is
negative at x and (4.1) holds at x with λ > 1/4, for all e(x) �= 0, then there exists
ε(x) > 0, depending on λ(x) and Scal(x) such that at x, (Rm +ε I) has nonpositive
complex sectional curvature, where I is the identity of S2(∧2(R)). In particular
(M, g) has negative complex sectional curvature at x.

Now Theorem 1.3 follows from the existence result of Eells and Sampson on the
harmonic maps and the following general rigidity theorem.
Theorem 4.2. Let Xm (m ≥ 2) be a compact Kähler manifold of complex
dimension m, Mn be a Riemannian manifold of even dimension (real) n = 2m with
nonpositive sectional curvature and satisfying (4.1) with λ = 1/4. Suppose that
there is continuous map f0 : X → M of nonzero degree. Then M is a locally
symmetric space with universal cover B

m (n = 2m).
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Proof. Here we follow the line of argument in [YZ]. First by the existence theorem
of Eells and Sampson f0 is homotopic to a harmonic map f which is onto. Let Z be
the critical value of f . First restrict the discussion on M \Z. Endow M \Z with an
almost complex structure (still denoted by J) by pushing forward the complex J on
X via f∗. Let (z1, . . . , zm) be a local complex coordinate of X. Let Ui = f∗(∂/∂zi).
Since by Corollary 4.1 M has nonpositive complex sectional curvature, a result of
Sampson, Theorem 1 of [S], asserts that

∇UiU j = 0 , R(Ui, Uj , U i, U j) = 0 .

This particularly implies that R(U, V, Ū , V̄ ) = 0 for any U, V ∈ T 1,0M (here the
decomposition is with respect to the push-forward complex structure). The dual
version of Corollary 2.4 asserts that σ = Span{U, V } is isotropic, if it is a complex
plane. This in turn implies that 〈U, U〉 = 0, hence the metric h, with respect to
the push-forward of the complex structure, is Hermitian. Using ∇UiU j = 0, one
can check, via a direct computation, that the Kähler form of (M \ Z, h, J) is closed
(this is the observation of [YZ], the proof of Theorem 3). The Kählerity conclusion
is first made on M \Z and then extends to M since M \Z is open and dense. Once
we know that (M, h, J) is a Kähler manifold with 1/4-pinched flag curvature, when
m ≥ 3, the claimed result follows similarly as in the proof of Corollary 1.2. More
precisely, we can show, in exactly the same manner as in Corollary 1.2 that, at every
point x ∈ M , its holomorphic sectional curvature is independent of the choice of the
complex lines. Hence the result follows by the holomorphic Schur lemma. When
m = 2, the last conclusion can be seen by observing that at every point x ∈ M , the
curvature operator Rm is the multiple of curvature operator of B

2. The reason is
that the condition of 1/4-flag curvature pinching is a convex U(2) invariant condition
including the curvature operator of B

2. On the other hand, one can check easily that
there exist some small perturbations towards the holomorphic Weyl part, as well as
the traceless Ricci part, which violates the condition of the flag curvature being
1/4-pinched. This shows that the curvature operator of B

2 is the only curvature
operator of Kähler manifolds satisfying the flag curvature 1/4-pinching condition. �

Remark 4.3. It is very reasonable to expect that a similar result as Theorem 4.2
holds for quaternion-Kähler manifold with nonpositive 1/4-pinched flag curvature.

5 Odd Dimensions – A Vanishing Theorem

As another application of the estimates from section 2 we prove a generalization of
an earlier result of Berger (Theorem 2 of [B1]) on odd-dimensional manifolds. Again,
we relax the assumption on the pointwise λ-pinching of the sectional curvature to
the λ-pinched flag curvature. The difference on the assumption does cause subtlety
which needs to be dealt with more carefully.
Theorem 5.1. Let (M, g) be a nonnegatively curved compact Riemannian mani-
fold of odd-dimension n. Assume that it has λ-pinched flag curvature with λ ≥ n−3

4n−9
and its scalar curvature satisfying Scal(x) > 0 for some point x ∈ M . Then the sec-
ond Betti number of M vanishes.
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Proof. Let n = 2m+1. As in [B1] the proof is via the Bochner–Weitzenböck formula,

Δd = − tr∇2 +
∑
i,j

ωi ∧ i(Ej)REiEj ,

on harmonic 2-forms. Here Ei is a orthonormal frame, R is the curvature of the
induced covariant differentiation on two forms, i( · ) is the contraction operator. We
first prove the result for the case that λ > 2(m−1)

8m−5 . By Hodge theory, it suffices to
show that any harmonic 2-form is trivial. With some calculations one can show that
for any two form Ω∑

i,j

ωi ∧ i(Ej)REiEjΩ = (Ric∧ id−Rm)(Ω) . (5.1)

(Here A ∧ B(X ∧ Y ) � 1
2(A(X) ∧ B(Y ) + B(X) ∧ A(Y )).) The key is to show that

if λ > 2(m−1)
8m−5 , then Ric∧ id−Rm > 0 as a symmetric tensor on ∧2(Rn) (which

can be identified with so(n)). Also observe an interesting fact that by Lemma 2.1
of [BöW2], Ric∧ id−Rm = Rm # I, even though we do not make use of it in our
proof. Here id : R

n → R
n, I : S2

B(so(n)) → S2
B(so(n)) are two identity maps.

Given Ω ∈ ∧2(Rn), by linear algebra one can find orthonormal frame
X1, X2, . . . , X2m+1 such that

Ω =
m∑

i=1

αiX2i−1 ∧ X2i .

Computation shows that

2
〈
(Ric∧ id−Rm)(Ω), Ω

〉
=

∑
1≤j≤m, 1≤s≤n

α2
j

(
k(2j − 1, s) + k(2j, s)

)
− 2

∑
1≤i,j≤m

αiαjR(X2i−1, X2i, X2j−1, X2j) .

Here k(2j, s) � k(X2j , Xs). Writing the last term above as

2
∑

1≤j≤m

α2
jk(2j − 1, 2j) + 2

∑
1≤i�=j≤m

αiαjR(X2i−1, X2i, X2j−1, X2j)

and combining the similar terms we arrive at

2
〈
(Ric∧ id−Rm)(Ω), Ω

〉
= 1

2

∑
i�=j

(α2
i + α2

j )
(
k(2j − 1, 2i) + k(2j − 1, 2i − 1) + k(2j, 2i) + k(2j, 2i − 1)

)
+

∑
1≤j≤m

α2
j

(
k(2j − 1, n) + k(2j, n)

)
− 2

∑
1≤i�=j≤m

αiαjR(X2i−1, X2i, X2j−1, X2j) .

Here
∑

i�=j means
∑

1≤i�=j≤m. Now we use Corollary 2.2 to estimate the last term.
Let

β =
3(1 + λ)λ

2(1 − λ)(m − 1)



582 LEI NI AND B. WILKING GAFA 

and write

2|αi||αj |R(X2i−1, X2i, X2j−1, X2j) = 2(1 − β)|αi||αj |R(X2i−1, X2i, X2j−1, X2j)

+ 2β R
(|αi|1/2X2i−1, |αi|1/2X2i, |αj |1/2X2j−1, |αj |1/2X2j

)
.

Now via Corollary 2.2 the right-hand side above can be estimated by
1 − λ

3(1 + λ)
|αi||αj |

(
k(2i, 2j − 1) + k(2i, 2j) + k(2i − 1, 2j − 1) + k(2i − 1, 2j)

)
+

2(1 − λ)
3(1 + λ)

(1 − β)|αi||αj |
(
k(2i, 2i − 1) + k(2j, 2j − 1)

)
+

2(1 − λ)
3(1 + λ)

β
(
k(2i, 2i − 1)α2

i + k(2j, 2j − 1)α2
j

)
.

Observe that∑
1≤j≤m

α2
j

(
k(2j−1, n)+k(2j, n)

)−∑
i�=j

2(1 − λ)
3(1 + λ)

β
(
k(2i, 2i−1)α2

i +k(2j, 2j−1)α2
j

) ≥ 0

by the choice of β and the λ-pinching of the flag curvature. Putting the above
estimates together we have that

2
〈
(Ric∧ id−Rm)(Ω), Ω

〉
≥

(
1− 1−λ

3(1+λ)

)∑
i�=j

α2
i +α2

j

2
(
k(2j−1, 2i)+k(2j−1, 2i−1)+k(2j, 2i)+k(2j, 2i−1)

)

− 2(1 − λ)
3(1 + λ)

(1 − β)
∑
i�=j

|αi||αj |
(
k(2i, 2i − 1) + k(2j, 2j − 1)

)
.

Also observe that k(2i, 2i − 1) ≤ 1
λ(k(2j, 2i) + k(2j − 1, 2i)) and 2k(2j, 2j − 1) ≤

1
λ(k(2j − 1, 2i− 1)+ k(2j, 2i− 1)). The positivity of 〈(Ric∧ id−Rm)(Ω), Ω〉 holds if(

1 − 1 − λ

3(1 + λ)

)
λ >

1 − λ

3(1 + λ)
(1 − β)

which, after plugging in the expression of β, is equivalent to

(8m − 5)λ2 + (6m − 3)λ − 2(m − 1) > 0 .

It is a simple matter to check that if λ > 2(m−1)
8m−5 the above inequality holds up. This

completes the proof of the theorem for λ > 2(m−1)
8m−5 .

For the case that λ ≥ 2(m−1)
8m−5 (= n−3

4n−9), observe that the above argument shows
that Ω is parallel (after integration by parts on the manifold). On the other hand,
since the manifold has positive sectional curvature at some point and it is of odd
dimension its holonomy group has to be SO(n). The fact that Ω is parallel implies
that as an element in so(n) it is fixed by the conjugate action of SO(n). This is
impossible unless Ω = 0. �

Corollary 1.4 is a simple consequence of the vanishing of the second cohomology
and the fact that a positively curved compact manifold has finite fundamental group.
We are also aware of the fact that in the case of sectional curvature pinching, Berger
did push the constant further down to 4/23 for 5-manifolds [B2].
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Remark 5.2. From the proof it is easy to see that the nonnegativity of the complex
sectional curvature implies the nonnegativity of Bochner-Weizenböck curvature on
two forms, namely Ric∧ id−Rm ≥ 0. The argument in the proof of Theorem 5.1
also proves that if M is an even dimensional manifold with positive isotropic cur-
vature, then the second Betti number b2(M) = 0, a result of Micallef and Wang
[MW]. Moreover, it proves the same result for an odd-dimensional manifold (Mn, g)
(n = 2m + 1) with positive isotropic curvature and 2-nonnegative sectional curva-
ture (namely k(1; i) + k(1; j) ≥ 0 for 2 ≤ i �= j ≤ n), which covers the case of
M = S

2m × S1.

6 Pinching Theorems Below One Quarter

First we remark that Corollary 1.2 carries over to the orbifolds (due to Theorem 3.2
in section 3 and Proposition 5.2 of [BöW2]).
Theorem 6.1. In dimensions above 2 a compact Riemannian orbifold with 1/4-
pinched flag curvature either admits a metric of constant sectional curvature or it is
isometric to the quotient of a rank 1 symmetric space by a finite group action.

This generalization is interesting since in even dimensions the situation changes
dramatically if one relaxes the assumption:
Proposition 6.1. In each even dimension 2n > 2 and for each λ < 1/4 there is
a compact Riemannian orbifold with sectional curvature λ < K < 1 which is not
given as the quotient of a manifold by a finite group action.

Proof. Consider on S
2n+1 (viewed as (a1, . . . , an+1) ∈ C

n+1 with
∑n+1

i=1 |ai|2 = 1),
the S1-action given by z(a1, . . . , an+1) = (zk+1a1, z

ka2, . . . , z
kan+1). The quotient

Mk � S
2n+1/S1 is an orbifold – a weighted complex projective space. If we endow Mk

with the induced metric it is straightforward to check that as k → ∞ the lower and
upper curvature bounds of Mk converge to the lower and upper curvature bounds
of CPn.

On the other hand Mk is not covered by a manifold. In fact, consider the frame
bundle F corresponding to the horizontal distribution on S

2n+1. The action of S1

induces a free action on F and the quotient F̄ = F/S1 can be naturally identified
with the frame bundle of the orbifold Mk. Thus the fundamental group of the
frame bundle of Mk has at most two elements and Mk is not a finite quotient of a
manifold. �

The above proposition shows that in general the classification of nearly one-
quarter-pinched manifolds of [PT] cannot be easily adapted to orbifolds. (But also
see Theorem 6.4.) In odd dimensions the situation is quite different and we do have
the following generalization.
Theorem 6.2. For each constant C and each odd dimension n there is an
ε > 0 such that the following holds. Let (Mn, g) be a nonnegatively curved Rie-
mannian orbifold with 1−ε

4 -pinched flag curvature and scalar curvature satisfying
1 ≤ Scal ≤ C. Then M admits a metric of constant curvature.
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Proof. First notice that the assumptions imply the existence of positive constants
c1, c2 such that the sectional curvature K of M is globally pinched with c1 ≤ K ≤ c2.
In order to avoid too much technical difficulties we will frequently replace the orbifold
M by the frame bundle F of the orbifold. Recall that F is a manifold which can be
endowed with a natural connection metric.

The next step is to show that the universal cover F̃ of the frame bundle F of the
orbifold M has finite second homology.

We may assume that 1−ε
4 > n−3

4n−9 . By Theorem 5.1 this implies that the Bochner–
Weitzenböck operator of M on two forms (namely Rm # I) is positive. We only need
to check that the frame bundle F has a metric such that the Bochner–Weitzenböck
operator on two forms is positive. We endow F with the connection metric and
shrink the fiber SO(n) by a small factor λ. Let g denote the bi-invariant metric on
SO(n). It is easy to see that the difference of the curvature tensor of (F, gλ) and
the curvature tensor of the product M × (SO(n), λ2g) converges to zero. Since the
Bochner–Weitzenböck operators of M and SO(n) are positive it is easy to see that
the smallest eigenvalue of the Bochner–Weitzenböck operator of M × (SO(n), λ2g)
increases if λ decreases. This shows that F and its universal cover have finite second
homology, by Theorem 5.1.

Next we run the Ricci flow on M . We want to apply a dynamical version of the
maximum principle [ChL], [BöW1]. We assume ε < 1/2. For a large constant C2
and C3 >> C2 and t ∈ [0, 1/C2

3 ] we define a set S(t) ⊂ S2
B(so(n)) as follows. Let

S(t) be the set of all algebraic curvature operators which have 1−ε−C3t
4 -pinched flag

curvature and whose scalar curvature satisfies 1 ≤ Scal ≤ C + C2t. Furthermore
we require that for any Rm ∈ S(t) the curvature operator (Rm +C3ε · eC2

3 t I) has
nonnegative complex sectional curvature.

It is straightforward to check that one can choose C2 and C3 independent of ε
such that the family S(t) is invariant under the Ricci flow ODE,

d

dt
Rm = 2(Rm2 + Rm#) ,

that is if Rm(t) is a solution to the ODE and Rm(t′) ∈ S(t′), then Rm(t) ∈ S(t)
for t ∈ [t′, t0]. For example by ODE it is easy to see that there exists t1 = t1(C, n)
such that |Rm | ≤ C ′(C) on [0, t1] for some C ′ depending only on C and dimen-
sion n. This gives an upper bound C ′′(C) on the slope

∣∣ d
dt Rm

∣∣. From this it
follows easily that 1 ≤ Scal ≤ C + C2t is preserved. Similarly one can show
that 1−ε−C3t

4 -pinched flag curvature is preserved. To see that the condition on
almost nonnegative complex sectional curvature is preserved one has to use the
fact that the nonnegative complex sectional curvature is an invariant condition
and the that the ODE is locally Lipschitz. More precisely, by [BrS1] (as well as
[NiW]), if R̂m = Rm +C3ε ·eC2

3 t I has nonnegative complex sectional curvature, then

R̂m
2

+ R̂m
#

is contained in the tangent cone of complex nonnegative curvature
operators. Since d

dtR̂m = Rm2 + Rm# +C3
3ε · eC2

3 t I is greater than R̂m
2

+ R̂m
#

for large C3, the same holds for d
dtR̂m. By the dynamical version of Hamilton’s
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maximum principle (see, for example, section 1 of [BöW1]) it follows that the Ricci
flow on M exists up to the time t0 and (M, gt) satisfies the curvature condition S(t).

We shall prove more generally that there exists a constant ε such that the nor-
malized Ricci flow evolves to a constant curvature limit metric. We argue by contra-
diction and consider a sequence of orbifolds (Mk, gk) with 1−εk

4 -flag pinching, scalar
curvature 1 ≤ Scal ≤ C and εk → 0 such that for each element in the sequence the
normalized Ricci flow does not converge to a constant curvature limit metric.

Without loss of generality we assume that (Mk, gk) cannot be written as a non-
trivial quotient of another orbifold, since otherwise we may replace Mk by its finite
cover. This in turn implies that the fundamental group of the frame bundle Fk of
(Mk, gk) has at most two elements.

We next want to rule out collapsing. For each fixed t ∈ [t0/4, t0] we can use
Shi’s estimate to see that (Mk, gk(t)) has a priori bounds on all derivatives of the
curvature tensor. We now look at the frame bundle Fk of (Mk, gk(t)) with the
induced connection metric. We now rescale the fibers of the frame bundle by a
small factor λ independent of k, such that there are constants d1, d2 > 0 for which
the sectional curvature of this metric on Fk is bounded above by d2 and the Ricci
curvature is bounded below by d1.

Since Fk has finite second homology we can employ one of the main theorems
of [PeT] (see also Theorem 0.2 of [FR]) which asserts that the injectivity radius of
Fk is bounded from below by a priori constant depending only on d1 and d2. Now
by the compactness theorem (cf. [H3], noting that we do not need the compactness
result of [L] on orbifolds), after passing to a subsequence we obtain a limit manifold
F endowed with a smooth family of metrics g(t) with t ∈ [t0/4, t0] and with almost
free isometric SO(n)-action. The quotient orbifolds (M, ḡ(t)) = (F, g(t))/SO(n) have
nonnegative complex sectional curvature, positive sectional curvature and ḡ(t) is a
solution to the Ricci flow.

The strong maximum principle of [BrS2] implies that either the complex sectional
curvature is positive for t > t0/4 or the orbifold has nongeneric holonomy. Since the
sectional curvature is positive and the orbifold is odd dimensional, the holonomy
is generic and it follows that (M, ḡ(t)) has positive complex sectional curvature for
t > t0/4. This in turn implies that (M, gk(t0/2)) has positive complex sectional
curvature for infinitely many k. This is a contradiction since it implies that the
normalized Ricci flow converges to a constant curvature limit metric for this infinite
subsequence. �

Remark 6.3. (a) The above proof does not give effective bounds on ε. There is on
the other hand a different proof which does give effective bounds. This alternative
proof uses that the Ricci flow ODE behaves somewhat better in odd dimensions
than in even dimensions. In fact with a bit of work one can show that for an
algebraic nonvanishing curvature operator R ∈ S2

B(so(2n+1)) with quarter-pinched
flag curvature there exists an ε > 0 such that R + t(R2 + R#) has positive complex
sectional curvature for all t ∈ (0, ε]. Knowing this fact one can just apply a dynamical
version of the maximum principle to see that for nearly 1/4-pinched operators, the
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Ricci flow ODE pinches towards positive complex sectional curvature. It would be
interesting to see if one can modify this approach such that ε becomes independent
of C.

(b) Recall that by a theorem of Abresch and Meyer [AM], any simply connected
odd-dimensional manifold with sectional curvature K satisfying 1

4(1+10−6)2 ≤ K ≤ 1
is homeomorphic to a sphere. An obvious question arises whether or not one can
improve the conclusion to diffeomorphism.

(c) For even-dimensional manifolds, since the collapsing cannot happen, the con-
clusion of Petersen and Tao’s result still holds under the assumption of Theorem 6.2.
On the other hand, the argument of the proof above can be sharpen to show that the
weighted complex projective spaces are the only exceptions to a similar statement
for even-dimensional orbifolds. See the theorem below.

The following theorem shows that the examples constructed in the proof of
Proposition 6.1 are essentially the only additional examples that occur in even di-
mensions.
Theorem 6.4. Given n and C there is an ε > 0 such that any Riemannian
orbifold with 1−ε

4 -flag pinching and scalar curvature satisfying 1 ≤ Scal ≤ C is either
diffeomorphic to the quotient of rank-one symmetric space by a finite isometric group
action or it is diffeomorphic to the quotient of a weighted complex projective space
by a finite group action.

The proof requires the following lemma which can be proved along the same
lines as in the proof of Theorem 1.3 (more precisely, the last part of the proof of
Theorem 4.2).
Lemma 6.1. A quaternion-Kähler curvature operator with quarter-pinched flag
curvature is a multiple of the curvature operator of HPn.

We remark that Berger [B3] proved that a compact quaternion-Kähler manifold
with positive sectional curvature must be isometric to the quaternion projective
space.
Proof of the theorem. We argue by contradiction. Consider a sequence of orbifolds
Mk satisfying 1−εk

4 -flag pinching, 1 ≤ Scal ≤ C with εk → 0, such that each orb-
ifold violates the conclusion of the theorem. Similarly to Theorem 6.2, we can find
constant C2 and C3 such that the Ricci flow on Mk exists on [0, t0] with t0 = 1/C2

3
and that (Mk, gt) satisfies the curvature condition S(t), where S(t) is defined as
before.

Recall that geodesics are well defined in the orbifold. For any regular point
pk ∈ Mk we consider the exponential map exp: TpMk → Mk and pull back the
metric gt of Mk to the tangent space. Since we have global curvature bounds, there
exists r > 0 such that this metric is nondegenerate on Br(0pk

) ⊂ Tpk
Mk.

We identify this ball with Br(0) ⊂ R
n using a linear isometry and denote by

gk(pk, t) the induced Riemannian metric on Br(0). By Shi’s estimates we have a
priori bounds on all the derivatives of the metric which are independent of k and
just depend on a lower bound for t ∈ (0, t0].



GAFA MANIFOLDS WITH 1/4-PINCHED FLAG CURVATURE 587

We will consider all possible limit metrics g(t) for all convergent subsequences
gk(pk, t) and all choices pk ∈ Mk. We can assume that any limit metric comes
with the parameter t. It is then clear that modulo local diffeomorphism g(t) is
a solution to the Ricci flow. All of the limit metrics have nonnegative complex
sectional curvature. The strong maximum principle can be utilized to see that
the complex sectional curvature is positive unless the limit metric has nongeneric
holonomy. Since the sectional curvature is positive the only possible nongeneric
holonomies are Kähler, quaternion-Kähler, or Spin(9)-holonomy. It has been known
that the Spin(9)-holonomy implies that the limit metric is locally isometric to CaP 2.
Below we subdivide the rest of the proof into three cases, which amounts to S

n,
HPn/4 or CaP 2, and the weighted complex projective spaces.

Case 1. There is a sequence of points pk ∈ Mk such that a subsequence of
gk(pk, t) converges to a limit metric with generic holonomy.

After passing to a subsequence we may assume gk(pk, t) itself converges. As
explained above the limit metric must have positive complex sectional curvature.
This in turn implies that we can find an δ > 0 such that the complex sectional of
B3r/4(pk) ⊂ Mk is bounded below by δ > 0, for large enough k. Notice that for all
qk ∈ B5/4r(pk) the ball of radius r around qk contains a point, on which all com-
plex sectional curvature > δ. This in turn implies that any convergent subsequence
gk(qk, t) has generic holonomy and thus positive complex sectional curvature every-
where. This in turn shows that there exists a δ2 > 0 such that the complex sectional
curvature on the ball B2r(pk) is bounded below by δ′ for k sufficiently large. Since
we have a priori bounds on the diameter of all orbifolds a finite iteration of this
argument shows that there exists k0 such that the complex sectional curvature of
Mk is positive for k ≥ k0, and thus we get a contradiction.

From now on we assume that any limit metric has non generic holonomy.
Claim 1. There are no two sequences pk, qk ∈ Mk such that the metrics gk(pk, t)
and gk(qk, t) converge to limit metrics with different holonomy groups.

This follows from Case 1. In fact, since the diameters of the orbifolds are bounded
above we can choose an fixed integer l and points p1

k, . . . , p
l
k satisfying d(pi

k, p
i+1
k ) ≤

r/2 , p1
k = pk and pl

k = qk.
After passing to subsequence we may assume that gk(p

j
k, t) converges to a limit

metric gj . Suppose now that the holonomies of the limit metrics gj and gj+1 are
different and both not generic. Suppose for example that gj is Kähler and gj+1 is
quaternion-Kähler. Then all the curvature operator of gk(p

j
k, t) are close to being

quaternion-Kähler. Since Br(p
j
k) and Bk(p

j+1
k ) have a large intersection a fixed

portion of points in Br(0) have curvature operators which are close to ones having
quaternion-Kähler with respect to the metric gk(p

j
k, t). This in turn shows for certain

points in Br(0) the curvature operator (of the limit metric gj) is both Kähler and
quaternion-Kähler. But this is impossible since such a curvature operator would have
a vanishing Ricci tensor, a contradiction as the limit metric has positive sectional
curvature.
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Hence we below can further assume that all limit metrics have the same holon-
omy.
Claim 2. The limit metric g(t) on (0, t0] must be locally isometric to a rank-one
symmetric space.

We only need to consider the case that the limit metric has the holomony of
a Kähler or quaternion-Kähler manifold since Spin(9)-holonomy implies that the
limit metric is locally isometric to CaP 2. We only prove it for the case that the
limit metric is Kähler, since in view of Lemma 6.1 the argument for quaternion-
Kähler case is analogous (easier). Notice that for t → 0 the limit metrics have flag
pinching constant converging to one quarter which in turn implies that the curvature
operator converges to the curvature operator of CPn/2. The main idea is to establish
a maximum principle for the collection of all limit metrics.

We consider for each t the supremum d(t) over the following set: consider for all
limit metrics g(t) and all points x ∈ Br(0) the distance of the curvature operator
Rmg(t)(x) to nonnegative multiples of the curvature operator of CPn/2 (resp. of
HPn/4). We claim that the supremum of all these distance is actually attained.

In fact to construct a limit metric where the maximum is attained we can argue
as follows: Choose for each k a point qk such that the curvature operator Rmgk(t)(qk)
has maximal distance dk(t) to the O(n)-invariant subset of multiples of the curvature
operator of CPn/2. We choose a regular point pk with d(pk, qk) < r/2 and pass to
subsequence such that dk(t) converges to the supremum and gk(pk, t) converges to
a limit metric g(t). Clearly the above supremum is now attained at some point in
the closure of Br/2(0) ⊂ Br(0) with this limit metric g(t).

Since the supremum d(t) is attained and g(t) is modulo local diffeomorphisms a
solution to the Ricci flow. We can now use the maximum principle to derive that
limh→0+

d(t)−d(t−h)
h ≤ C4d(t) holds for some universal constant C4. In fact the space

of Kähler curvature operators having distance ≤ d(t) to multiples of the curvature
operators of CPn form a convex sets. Since the Ricci flow ODE leaves the multiples
of CPn invariant the inequality follows from the dynamical maximum principle and
the fact that Rm2 + Rm# is locally Lipschitz.

Since d(t) → 0 as t → 0 this inequality implies d(t) ≡ 0.
Now we can restrict to the cases that all limits are locally isometric to a rank-one

symmetric spaces.
Case 2. All limit metrics are locally isometric to HPn/4 or CaP 2 up to scaling.
This implies that all limit metrics have a Bochner–Weitzenböck operator which is

positive on two forms. Therefore, the Bochner–Weitzenböck operator of Mk on two
forms is positive for sufficiently large k. As in the odd-dimensional case, it follows
that the universal cover Fk of the frame bundle of Mk has finite second homology.
As before we deduce that Fk has a priori bound on its injectivity radius and we
can assume that Fk converges to a limit manifold F endowed with a continuous
family of metrics. The quotient F/Spin(n) is locally isometric to HPn/4 (or CaP 2)
and since F is simply connected it is globally isometric. Moreover, after passing
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to a subsequence Fk endowed with the action of its isometry group is equivariantly
diffeomorphic to F endowed with a action of a subgroup of its isometry group.

This shows that Mk is diffeomorphic to a quotient of HPn/4 or CaP 2 by a finite
isometric group action.

Case 3. All limit metrics are locally isometric to CPn/2 up to scaling.
We replace Mk by a finite cover if needed. It is easy to get a contradiction if

the frame bundle Fk of Mk has finite second homology, since then noncollapsing
would imply convergence to the frame bundle of CPn/2 which has infinite second
homology. Thus we assume that there exists a nonzero harmonic two form θ on Fk.
Since SO(n) is connected, it induces a trivial action on cohomology and thus θ is
SO(n)-equivariant. Moreover θ cannot be perpendicular to any pulled back 2 form
on Mk. In fact, for such a form, it is not hard to check that the L2-norm of ∇θ
is bounded below by α times the L2 norm of θ, where α > 0 is independent of k.
Moreover the number α increases if we scale down the the fibers by a constant. This
is a contradiction since the smallest eigenvalue of the Bochner–Weitzenböck operator
of Fk converges to 0 if we scale down the fibers by small factor λk → 0. Hence θ is
the pull back of some two form ηk on Mk. In particular, we can push down θ to a
class η on the orbifold (Mk, gk)

For each λ > 0, we scale down the fibers of the frame bundle Fk by λ and let
θk,λ denote the harmonic two form with respect to this metric representing a fixed
cohomology class. The above argument shows that the push down ηk,λ of θk,λ is of a
two form on the orbifold (Mk, gk). Clearly ηk,λ satisfies an elliptic equation and its
straightforward to check that ηk,λ converges to a harmonic two form ωk on (Mk, gk)
for λ → 0.

We normalize ωk to have L2-norm equal to vol(Mk). We may assume that the
pull back c ·pr∗ωk of cωk to Fk is a primitive integral class for some c = c(k) > 0. We
consider the S1 bundle over Fk whose Euler class is cωk and we choose a connection
with curvature c · ωk.

Since the curvature when restricted to a SO(n)-fiber vanishes, the SO(n)-action
naturally extends to an isometric SO(n)-action of the total space of the S1 bundle.
By dividing out the SO(n)-action we obtain an orbifold bundle S1 → Sk → Mk over
Mk with a connection metric whose curvature is given by cωk. The idea is to show
that one can scale the S1-fibers such that the curvature pinching constant of the
total space approaches 1 as k → ∞.

This implies that Sk endowed with the S1 action is equivariantly diffeomorphic
to a space form endowed with a linear S1-action and hence the result.

In order to show that the total space has nearly constant curvature for the
right choice of scaling of the fibers it suffices to prove ‖∇ωk‖L∞ → 0. Because
this implies that the curvature of the total space Sk approaches the curvature of
S1 → S

2n+1 → CPn.
Integrating the harmonic form gives∫

Mk

∫
Br(0p)

‖∇ωk‖2
exp(v) = vol

(
Br(0)

) ∫
Mk

‖∇ωk‖2(p) ≤ vol
(
Br(0)

)
hkvol(Mk)
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where −hk → 0, as k → ∞, is the smallest eigenvalue of the Bochner–Weitzenböck
operator of (Mk, g(t)) on two forms.

For any qk ∈ Mk we can find a regular point pk with d(pk, qk) < r/2 and∫
Br(0pk

)
‖∇ωk‖2

exp(v) ≤ hkvol
(
Br(0)

) vol(Mk)
vol(Br/2(qk)) � jk

with jk → 0, where we have used that the ratio vol(Mk)/vol(Br/2(qk)) is bounded.
Since exp∗ ωk satisfies an elliptic equation with respect to a metric for which we

have a priori bounds on all derivatives we deduce that exp∗ ωk converges to a form
which is parallel with respect to the limit metric g(t). This in turn shows that on
the orbifold ‖∇ωk‖L∞ → 0. �
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[BöW1] C. Böhm, B. Wilking, Nonnegatively curved manifolds with finite fundamental
groups admits metrics with positive Ricci curvature, Geom. Funct. Anal. 17 (2007),
665–681.
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