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. . Abstract

Compression techniques for triangle-mesh representations of 3D models have been
< the focus of many recent efforts from the graphics, modeling, and theory research com-
munity; from developers of computer graphics hardware and sofiware; and from orga-
nizations that define international standards. An ideal compression technology would
simultaneously support the following three objectives: (1) progressive refinements of the
received mesh during decompression, (2) nearly optimal compression ratios for both
geometry and connectivity, and (3) in-line, real-time decompression algorithms for
hardware or software implementations. Because these three objectives impose contra-
dictory constraints on the compressed format, previously reported efforts focus prima-
rily on one — sometimes two — of these objectives. The SQUEEZE technique introduced
here for Fast and Progressive Decompression of Triangle Meshes addresses all three
constraints simultaneously and attempts to provide the best possible compromise for the
needs of common internet applications that require frequent access to remote 3D data-
bases. For a typical mesh of T triangles, SQUEEZE compresses the connectivity to 3.7T
bits, which is competitive with the best progressive compression techniques reported so
far. The geometry prediction encoding techniques introduced here lead to an additional
20% improvement in geometry compression over previous schemes. Qur initial imple-
mentation on a 200 Mhz CPU achieves a decompression rate of about 15000 triangles
per second. Finally, in general SQUEEZE downloads a model through 10 successive
refinement stages, providing the full benefit of progressivity. After each refinement step,
the user may manipulate the current resolution model as SQUEEZE decompresses the
next upgrade, or temporarily stop the transmission until a higher level-of-detail is
needed.

Keywords progressive triangulation, geometry compression, multiresolution modeling, entropy
coding

1. Introduction-

“ An increasing number of industrial, business and entertainment applications require that users down-
load large numbers of remotely located 3D models over phone or regular internet connections. It is
essential to develop techniques that reduce the waiting time in these applications. When 3D models

o are required, as opposite to 2D images, a combination of lossy and lossless compression techniques
may be invoked.

Most of the popular 3D compression techniques are focused on triaﬁgle meshes, because most
other representations of 3D shapes may be easily tessellated (i.e. converted to approximating triangle
meshes), and ‘because triangles are well supported by most software and hardware graphics sub-
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Introduction

Loss-less compression techniques strive to significantly reduce the number of bits required for
encoding any given 3D model. Compression schemes developed specifically for the most common
representations of 3D models perform significantly better than general-purpose compression tech-
niques. The focus of current research in loss-less 3D compression is aimed at striking the optimal
balance between file size and decompression speed for the wide spread of operating conditions
defined by the bandwidth, the local memory, and compute power available for decompression.
These conditions vary from decompression hardware, with high bandwidth to main memory, very
limited local storage, but extremely fast execution; to mobile devices with limited bandwidth and
compute power. The techniques used for loss-less compression include connectivity coding schemes
for planar and non-planar triangle graphs, prediction of vertex locations from previously decoded
vertices, and entropy encoding and transmission of the corrective vectors, which capture the differ-
ence between the predicted and the actual locations of the vertices. Many of these techniques have
been developed and optimized for the compression of single-precision meshes. Different — and often
less effective — solutions are required for progressive meshes, discussed below.

Lossy compression approaches capitalize on two observations. First, most models are repre-
sented with more accuracy than demanded by the application. For example, many CAD models rep-
resent vertices with double precision floating point numbers when in fact the relative round-off
errors resulting from the geometric calculations that were executed to compute the models are
greater than one in a million. More surprisingly, many electronic mock-up or design review applica-
tions use tessellated approximations of curved shapes that carry a much larger relative tessellation
error than one in a million. Finally, many graphic applications (entertainment, walkthrough) produce
images of these models through a series of hardware supported calculations which produce an even
larger error in the position of vertices on the screen and in the associated depth. Second, when com-
plicated scenes or assemblies are viewed under perspective, many of the features or details are either
out of the viewing frustum, or hidden, or sufficiently far from the virtual viewpoint to project on very
small areas of the screen. It is therefore unnecessary to download a full-resolution, precise represen-
tation of these models, until they become visible and Sufﬁciently close to the viewpoint for the
approximation errors to be noticeable.

The overall strategy for compression is thus to first simplify the models so that they are not over-
specified. This is usually done by selecting the appropriate resolution for the approximation (through
an adaptive tessellation or simplification process), and by truncating the least significant bits of the
vertex coordinates (through a coordinate normalization and quantization process). We refer to the
result of this initial accuracy adaptation phase as the full accuracy, or full resolution model 44, for
that particular application. Then, instead of encoding M, as a single-resolution model, one converts
it into an equivalent progressive representation [Hop96], which stores a very crude approximation
My, and a series of upgrades T, for i=1 to n. Applying upgrade 7/ to A, produces a slightly more
accurate model 2. Applying ‘74, to M; produces an even more accurate model A, and so on, until
the application of ‘U, produces AM,. The series of upgrades and the crude model may be produced by
a variety of mesh simplification schemes [HRD93, RB93, Hop96, RR96, GH97, LT98, Gue99].

Initially, the user will download 2, and may never need a finer approximation of M,,. But if the
model moves closer to the view, a finer approximation may be required. As soon as the display error
that results from using 74; exceeds the tolerance imposed by the application, the upgrade U, is
downloaded and used to increase the accuracy of the local representation of the model, as first sug-
gested in [Hop96].

For faster transmission, A4, is usually compressed using compression techniques developed for
single-precision models. However, the storage of 4 is typically very small compared to an encod-
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Introduction

ing of M,,. The challenge is thus to compress the upgrades so as to significantly reduce the transmis-
sion delays and the decompression costs.

The comparison between two such compressed progressive transmission schemes is difficult,
because authors would typically report total bit-per-vertex or bit-per-triangle storage counts and ver-
tex-per-second or triangle-per-second decompression speeds, without any quantitative description of
how good the intermediate results are. A methodology for comparing progressive compression sys-
tems was first introduced in [PR99] and was based on the curve that plots the relative error between
M; and M, as a function of the total number of bits needed to encode M, 1, ... ‘U;. The relative
error may be defined as the ratio of the absolute error bound to the size of the entire model.

We propose here to improve on that methodology in two ways. We first consider a curve that
expresses the error between 2M; and M, as the function of the total delay, which combines the time it
takes to transmit 44, and the 7, for i from 1 to j, and the time it takes to decompress them and to
apply the upgrades. Furthermore, to facilitate the quantitative comparison between compression
schemes, we advocate here to use the integral of the area under that curve. This may provide a good
single measure of the efficiency of progressive compression schemes. The smaller the integral, the
smaller the expected error after any given waiting time.

To best reduce that error, one must strike the optimal balance between the compactness of the
compressed representations of M, and of the 74 and the time it takes to decode and apply the
upgrades. This is not an easy compromise, since more compact representations usually require more
complex decompression algorithms. Furthermore, the balance must take into account transmission
and computing speed factors, which vary with the hardware used and connectivity bandwidth.

A second tradeoff must be made between the » number of upgrades and the effectiveness of their
compression. In general, having fewer upgrades leads to economy of scale, and thus better compres-
sion ratios per triangle. Individual upgrades, which each insert a single vertex (such as the approach
in [Hop96]), require several bits per triangle to identify which vertex must be split. Grouping vertex
splits into larger batches, as first proposed in [PR99] and [Hoppe SIG course 99], helps to reduce the
vertex identification cost. Unfortunately, limiting the number of upgrades implies that the client will
have to wait longer at each level of resolution, and therefore increases the error integral, defined
above.

* The SQUEEZE technology introduced in this paper provides a novel compromise between com-
pression ratios, number of upgrades, and performance of decompression and upgrade application.

For a typical mesh of ¢ triangles, SQUEEZE compresses the connectivity information down to
3.7-t bits. Although this storage cost is more than twice the storage cost for the best non-progressive
compression schemes, it compares advantageously with all previously proposed progressive com-
pression techniques, especially given that SQUEEZE produces about 10 different levels of detail
(LODs) for a typical mesh, ensuring a continuous improvement of the quality of the received mesh.
After each refinement, the user may manipulate the current resolution model as SQUEEZE decom-
presses the next upgrade, or temporarily stop the transmission until a higher LOD is needed. Further-
more, as an upgrade is being decoded and applied, the mesh resulting from the early refinement steps
of the upgrade are immediately available for rendering, before the upgrade is completed.

Our new geometry prediction techniques leads to an additional 20% improvement in geometry
compression over previous progressive methods and yet allows a very fast geometry decompression.
Our initial implementation of SQUEEZE can decode up to 140000 vertex split records per second,
and progressively reconstruct the triangle mesh at a rate of about 15000 triangles per second on a 200
Mhz CPU. :




Related work

2. Related work

Many efficient compression methods for triangulated single-resolution models have been proposed
in the last few years [Dee95, TR98, TG98, Ros99]. In practice, these approaches can compress the
connectivity information (i.e., the triangle/vertex incidence table) down to less than 2 bits per trian-
gle. Furthermore, after a preprocessing normalization step which quantizes the vertex coordinates to
a specified resolution (typically 8 to 16 bit integers), these methods use geometric prediction and
entropy coding to compress the geometry.

Performance issues for in-line hardware decompression of single-resolution models, as opposite
to optimal compression ratios, were addressed in [Dee95]. An excellent compromise between the
performance of software decompression and the file size was presented in [GS98]. Even more
impressive compression ratios for almost regular triangle meshes were reported in [TG98]. The mesh
compression technique of [TR98] has subsequently been optimized for fast decompression and
included in the MPEG-4 standard [Taubin's talk in the SIG99 course].

The progressive transmission of multiresolution mesh models was introduced in [Hop96] as a
technique for graphics acceleration, not focusing on compression. Mesh refinements are based on
vertex splits, which each require an encoding of more than 7 bits per triangle for the connectivity
information if a progressive ordering according to an error measure is used [Hop98]. Variations of
encoding the incremental mesh updates have been proposed in [FMP98].

The idea of grouping the vertex-splits into batches was introduced by the authors in [PR99] aim-
ing at the reduction of the average storage cost of a vertex split refinement (i.e. [PR99] achieves an
average of 3.6 bits per triangle). Batches of vertex splits or vertex insertions have also been advo-
cated in [Hoppe Sigg99 course] and in [CLR99] (roughly 3 bits per triangle). A different approach to
the encoding of upgrades that refine the mesh by the introduction of a significant fraction of new tri-
angles was proposed in [TGHL98]. They encode a forest of edges which, when cut, create holes in
the mesh. The internal triangulation of each hole is encoded using a variation of the mesh compres-
sion method presented in [TR98]. The connectivity for the entire mesh may be compressed to an
average of between 4 and 5 bits per triangle. The method proposed in [BPZ99] encodes contours of
edges, defined in terms of edge-based distance on the triangular graph computed from a seed vertex.
This approach requires between 4.5 and 8.7 bits per triangle for the connectivity information.

The compression of the vertex location is generally based on vertex predictors and entropy cod-
ing. The best geometry compression ratios for progressive meshes are reported by the authors in
[PR99] and in [CLR99]. A comparison to both methods is presented in Section 6.

3. Preliminaries

A triangular mesh can also be viewed as a graph G (V, E, F) with vertices V, edges E and (triangular)
faces F with an embedding in three-dimensional space. The graph G itself without the vertex coordi-
nates represents the connectivity of the mesh, also called the topology. The geometry of the mesh
consists of the 3D coordinates of the vertices which specify the actual embedding of the graph in
space.

The idea of progressively refining a triangular mesh means to increase the number of mesh ele-
ments, i.e. triangles, with every step starting from an initial crude mesh. For triangular meshes the
smallest incremental update consists of adding one vertex. If the mesh is manifold, homeomorphic to
a sphere and has no boundary this also means adding two triangles and three edges to the existing
mesh. This can also be derived from the Euler relation between vertices, edges and faces of planar
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graphs where IV1 - |El + |IFl = 2, and from the fact that in a triangular mesh one face has 3 edges and
every edge is shared by 2 faces, thus 2:|E| = 3-|Fl.

From the discussion above we can see that an incremental update has two main components: the
connectivity changes and the geometry information. The connectivity update consists of increasing
the number of elements, and the incidence changes between vertices, which can be split into two
parts. The first part specifies the topological location, the area of the mesh that will be affected by the
update, and the second part determines the local incidence changes at that location, see also Figure 1.
The geometry information includes the 3D coordinates of the new vertex, and possibly also coordi-
nates of previously existing vertices that changed their positions.

FIGURE 1. Components of incremental updates: a) topological location where the connectivity will change,
b) new mesh elements and incidence relations, and c) coordinates for new vertex and updated old vertices.

Applying a sequence of incremental mesh updates to an initial crude mesh 24, generates a pro-
gressive series of increasingly complex meshes M, M, ..., M, where M, refers to the full resolu-
tion triangular mesh including all available vertices. As mentioned in the introduction we are
interested in progressivity in the sense of increasing the quality of the object that is represented by
the triangular mesh with every update. Therefore, the initial mesh 44, embodies only a crude approx-
imation, the incremental updates T = M, ; — M; increase the mesh complexity and reduce the
approximation error with every step, and 2, is the highest quality mesh representation of the object.
A sequence of progressive mesh refinements can be obtained from mesh simplification methods
which create different levels of detail (LODs) from a high resolution input mesh by iteratively sim-
plifying the current mesh. Good overviews of mesh simplification methods can be found in [HG97]
and [LT99].

In SQUEEZE, the simplification and reconstruction of the triangular mesh is based on the edge
collapse (ecol) and vertex split (vsplit) operations introduced in [HRD*93], see also Figure 2. A
coarse mesh A, and a sequence of vsplits define a progressive mesh of increasing approximation
quality as presented in [Hop96].

cut-edges

split-vertex

FIGURE 2. Edge collapse (ecol) and vertex split (vsplit) operations for triangle mesh simplification and
reconstruction. :



Progressive mesh encoding

Note that we use the half-edge collapse simplification that assigns the split-vertex to one of the
vertices of the collapsed edge, i.e. vgyi = v;. Thus based on the displacement vector Vdisp = V2 - V1 the
original vertices can be recovered as vy = Veplit a0 V) = Vpje + Vgisp- Most other placement variants,
such as the midpoint placement of the split-vertex Vsplit = 0.5-(vy + v,), do not guarantee that the
coordinates of Vsplit Stay on the quantized coordinate grid, making geometry encoding more com-
plex. Furthermore, the half-edge collapse has shown to yield better approximation quality than mid-
point placement due to better preserving the volume of the given object, see also [LT99] for a
discussion of different edge collapse simplification and vertex placement methods.

Figure 3 illustrates the combination of data compression and progressive reconstruction. The dif-
ference signals of successive simplification operations are compressed and transmitted. First, the
most simplified mesh 714, is sent using a suitable single-precision mesh compression method, then
the compressed mesh differences are sent in the inverse order of the simplification process. Decom-
pression starts with decoding the initial mesh 44y, and consecutively incorporates the decompressed
mesh differences ‘7. Note that the reconstruction of M, and the decompression of ‘U;,1 can only
use information available from previously reconstructed mesh %4;. This has also to be taken into con-
sideration when compressing the difference signals in the first place.

compression : decompression

input mesh operation operation

uoneoydwis
progressive reconstruction

FIGURE 3. Compression and progressive reconstruction. The differences of successively simplified meshes
are compressed and transmitted in inverse order of the simplification process. Reconstruction starts with an
initial crude mesh and progressively refines it according to the decompressed incremental updates.

4. Progressive mesh encoding

Instead of encoding every vertex split operation individually, SQUEEZE groups simplification and
refinement operations into batches to increase connectivity encoding efficiency. This concept was
introduced in [PR99] and successfully extended to progressive tetrahedral meshes in [PRS99].
SQUEEZE creates a series of meshes 2, M;, ..., M, where each update 7/, = M; 1 = M, between
consecutive LODs 2; ; and AM; consists of multiple vertex split operations. In the course of this
paper ‘/; will denote a batch of vertex split refinement operations, and ’U,-'1 a set of edge collapse
simplification operations, see also Figure 4 for graphical examples. '



Simplification process

FIGURE 4. Batches of vertex split refinement operations of three different mesh updates (not consecutive in
this example). The two triangles inserted by a vertex split are highlighted in each image.

The format of the compressed mesh consists of the initial coarse base mesh 44, encoded using a
single-resolution mesh compression method such as [Ros99], followed by a series of compressed
updates /. Following we describe the encoding of a batch "Ui‘l of edge collapse operations, and
how such a simplification batch can be constructed during compression of the mesh. Decompression
starts with decoding the coarse base mesh 7,, and then applying the inverse of the encoding steps
described below to every compressed update /.

The encoding of a mesh update 7, recovering 2, from the previous mesh 44, ;, requires speci-
fying all split-vertices and their cut-edges in M;, and the coordinates of the newly inserted vertices.
The following steps are performed to encode an update batch

1. Construct and traverse a vertex spanning tree of M;_; and mark all split-vertices — the results
of applying the edge collapses ‘Zl,-'l to mesh M,.

For every marked split-vertex vgp;, we encode its cut-edges as follows:

2. We compute the indices of the two cut-edges in the sorted list of the incident edges on
Veplit> clockwise, starting with the edge from vy, to its parent in the vertex spanning
tree.

3. Given the degree d of the split-vertex in mesh A, the two edge indices are identified as
one possible choice out of ‘21) for selecting the cut-edges, we encode this choice using
exactly [logz(‘;ﬂ bits.

Since SQUEEZE uses the half-edge collapse operator the split direction has to be specified:
4. Using one bit we distinguish between Vsplit = V1 OF Vgpjie = Vo (see also Figure 2).

Furthermore, the geometry has to be encoded:
5. The displacement vector vgisp = Vpew - Vspli¢ 18 compressed as described in Section 6.

5. Simplification process

Coupled with the encoding method mentioned previously is the simplification process that generates
the different LODs M,, M, ;, ..., My of decreasing accuracy. Each simplification step Ut =
M; — M; 1 has to select as many edge collapses as possible to reduce the number of wasted 0-bits
during the split-vertex marking of Step 1 above. However, the edge collapses in M; have to be cho-
sen in such a way that the vertex splits can uniquely be identified in 44 ;. The following three topo-
logical requirements for grouping edge collapses in a batch ‘U,-'l are sufficient:

1. At most two vertices may be collapsed into one.
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2. For each edge e = (v}, v,) that will be collapsed and any other vertex w that is incident to
both v; and v, the triple (vy, v, w) must define a valid triangle in the mesh M,.

3. For each edge ey = (v, v,) that will be collapsed and any edge e, = (w;,w,) forming a quad-
rilateral (v, v, wy,wy) with e in M, e; and e, cannot be collapsed in the same batch.

To achieve a good approximation at each stage, the simplification process must also use an error
metric to evaluate and order edge collapses in addition to satisfying the topological constraints men-
tioned above. The current implementation uses a variant of the quadric error metric introduced in
[GH97] to order edge collapses according to their introduced approximation error, however, another
. edge collapse ordering [HRD*93, Hop96, LT98] could be used as well. In every simplification batch

’Lll-'l, a maximal subset of the least expensive edges in %; that do not violate the topological con-
straints defined above are greedily selected and collapsed. The following Algorithm 1 provides the
outline for the simplification and connectivity encoding process.

PROCEDURE Encode (mesh: Triangulation);
VAR v: Vertex; e: Edge; ecol: EdgeSet; list: SortedList
BEGIN
WHILE mesh not simplified enough DO
(* sort edges according to approximation error *)
list := SortedList.EmptyList;
FOREACH e IN mesh.halfEdges()
error := mesh.evalError(e);
list.insert (e, error)
END;
" (* select maximal group of valid edge collapses *)
ecol := EdgeSet.EmptySet;
FOREACH e IN list.ascOrder ()
IF validCollapse(e, mesh, ecol) THEN
ecol.insert();
ENDIF
END;
(* perform edge collapses, mark split-vertex and
assign cut-edges to split-vertex *)
FOREACH e IN ecol.members ()
mesh.collapseAndMark(e)
END;
(* traverse mesh, output split-vertex marking bits
and cut-edges encoding *)
FOREACH v IN mesh.vertices()
IF v.marked() THEN
output (1) ;
. outputBits (cutEdgesEncoding (v, v.parentVertex, v.cutEdges) ) ;
(* geometry encoding *)
ELSE
. : output (0)
ENDIF
END : . |
END Encode;

ALGORITHM 1. Simplification and connectivity encoding process.

The decoding process performs the inverse steps. It traverses the mesh ‘M;_; and reads the mark-
ing bits for the vertices. Whenever a split-vertex is detected, the cut-edges are decoded and assigned
to that vertex. Furthermore, the displacement coordinates for recovering the other vertex resulting
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from the split are decompressed and stored with the split—vertéx too. In a second traversal all vertex
splits can safely be performed and the next higher resolution mesh 44 with better approximation
quality can be fully recovered.

6. Fast geometry decompression

Geometry compression, encoding the 3D coordinates of vertex split operations, is a problem of vari-
able length coding of scalar values. If these values change smoothly over time or space, but their fre-
quency distribution is uniformly noisy, then prediction error coding can efficiently be applied. The
half-edge collapse used in the simplification process shrinks an edge e = (v;, v,) to one vertex, i.e.
Vsplit = V1, and the deleted vertex vy = v, must be encoded for recovery. The deleted vertices of one -
simplification batch M; — M, ; are all geometrically close to the surface of the simplified mesh
M;.1, thus their values change smoothly over the surface A, 1, but the frequency distribution of indi-
vidual coordinate values is uniform with some noise. The coordinates of local displacement vectors
Vdisp = Vdel - Vsplit Nave a much more skewed distribution. The displacement vector represents a sim-
ple vertex prediction error using the old vertex Vsplit a8 the estimate for the new vertex vge;. In [PR99]
and [CLR99] more sophisticated prediction schemes have been proposed based on the local neigh-
bors of the split-vertex and the deleted vertex.

To speed up decompression time compared to [PR99], we simplified the prediction method to
computing the average of direct neighbors of vy, in the presented approach, similar to [CLR99].
Based on the connectivity decoding the correct mesh topology of M; can be reconstructed without
actually knowing the geometric coordinates of the new vertex vy, see also Figure 5. Therefore, the
decoder can use the same neighbors a, ..., gy of v4 that have been used for compressing the geom-
etry. The estimated position of the deleted vertex is calculated as:

k
1
Vet = 37 X 4 (EQ1)
i=1

The geometry information that is encoded with each vertex split is therefore the difference
Verr = Vdel - Vest Detween actual and estimated vertex positions. During decompression the correct
vertex position can be recomputed again by using Equation 1 and decoding Verr- Decompression
speed is mainly determined by the vertex position prediction function, which is greatly simplified by
Equation 1 compared to the approach presented in [PR99], and by decoding v, for which an effi-
cient solution is presented below.

«4 VSplit

vertex split

M.

FIGURE 5. Estimating displacement vectors. The new vertex vy is estimated as the average of its
immediate neighbors a, ..., &, which are known from connectivity decoding. '

The frequency distribution of prediction errors is very skewed towards small absolute values,
and centered around O for most shapes. Also the frequencies tend to decrease exponentially for larger
absolute values which makes it suitable for entropy coding [CNW87, Huf52]. The efficiency prob-
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lem with such variable length coding methods is that a straight-forward implementation of the
decoder has to examine every single bit to proceed in the decision or coding tree, until reaching a
state in which decoded symbols can be returned. To speed up decoding performance we imple-
mented the high-performance Huffman decoder proposed in [Paj99] that allows to read and process
multiple-bit words, i.e. bytes, instead of single bits from the compressed data stream. The approach
is similar to the method presented in [Sie88], every node in the binary Huffman code tree has a Jjump
table associated with it. This jump table captures the necessary information to decode any 8-bit
sequence starting at the current node: it yields the next node resulting from a tree traversal according
to the 8-bit sequence, restarting at the root whenever reaching a leave, and it also provides a list of
decoded symbols that have been encountered in the leaves of the tree while processing the 8 bits.
Therefore, the decoder can read the compressed data stream in bytes, update its current node accord-
ingly and output the decoded symbols for every node transition. An example Huffman code tree and
the corresponding jump table for 2-bit words are illustrated in Figure 6.

words fromnode word symbols

00 |01 10 ] 11 0 00 A

0 01 B

w03 [ 4]1]2 0 10 C
Bl1|1 |21 2 0 11 CC
gle| 3| 4|12 1 00 A
Sla| 3| 4|12 ] TN
gl 3| a| 1] 2 1 11 B,C

a) b) c)

FIGURE 6. a) Huffman code tree with some indicated node transitions using a word size of 2 bits for the
codes A=00, B=01 and C=1. b) The complete node transitions table for all nodes indicating the end-node for
any given combination of start-node and data word. Note that all leaves have the same Jjump table as the
root node and can be left out to save storage. c) Table listing the output symbols for every node transition.

The Huffman code for a set of symbols, quantized prediction error values in our case, is based on
their frequency distribution. The decoder has to use exactly the same code as the encoder, thus either
the Huffman code itself or the symbol frequencies have to be transmitted before decompression is
possible. Note that this has to be done for every refinement batch since the prediction error distribu-
tion changes with every LOD. To avoid this overhead of sending decoding information and con-
structing a code tree on-the-fly for every refinement batch, we model the actual prediction error
distribution by a probability distribution, and precompute Huffman codes for a fixed set of different
distributions.

One can observe that prediction errors for good estimators have a probability distribution that
decreases exponentially with the absolute value of the prediction error. The Laplace distribution of
Equation 2 is widely used for statistical coding of differential signals in image compression
[NH95, Sal98]. We use this Laplace distribution to model the prediction error histogram of our geo-
metric vertex position estimator of Equation 1. For symmetric error distributions, the mean U is 0,
and the variance v uniquely defines the shape of the Laplace distribution. The variance is adjusted
for every batch by the average of the squared prediction errors, v = (1/|batch| )2, < baten (Ver=H)? . Thus
the only information that has to be sent at the beginning of every batch is the current variance for the
Laplace distribution. '

; 21 .
Ly(x) = %e—@ H (EQ 2)




Experimental results

Given the frequency distribution defined by the variance v and the Laplace function Ly(x), a
Huffman code can be constructed for every batch based on its variance. However, this process can be
very time consuming. We avoid this problem by precomputing a set of Huffman codes for a set of 37
pre-specified variances that guarantee an unnoticeable loss in coding efficiency as shown in
[How93, Sal98]. At the beginning of every batch, the Huffman code for a fixed variance closest to
the given variance is chosen and used to decode the compressed geometry data of the entire batch.

7. Experimental results

We conducted a variety of experiments comparing our fast progressive mesh compression method to
other approaches with respect to compression efficiency and decompression performance. Compres-
sion efficiency was challenged with one of the best known single-resolution mesh compression tech-
niques [TG98], and compared to various recently developed multiresolution mesh compression
methods [PR99, CLR99, BPZ99]. The progressive forest split mesh compression method introduced
in [TGHL98] cannot compete in terms of geometry compression to the newer approaches and is not
included in the experiments. Also the progressive mesh compression method presented in [Hop98]
only reported tests on highly quantized meshes, and it does not provide advanced connectivity com-
pression. The progressive approach presented in [FMP98] needs even more bits than the initial pro-
gressive meshes representation of [Hop96] and can thus not compete in terms of compression ratio.
Decompression performance of progressive methods is only reported for [Hop98], and thus we also
compare our results to single-resolution compression methods [FMP98, GS98].

Tables 1 and 2 evaluate the compression efficiency of our approach compared to other methods
mentioned in the literature. The proposed method is competitive with the single-resolution compres-
sion approach of [TG98] in terms of geometry compression. The added functionality of progressive
multiresolution mesh reconstruction comes at higher cost for connecitivity encoding due to the com-
plexity of the multiresolution model. Our approach outperforms other multiresolution compression
methods [CLR99, BPZ99] mainly in geometry encoding. Note that our method and the method in
[CLR99] use a very similar geometry prediction and error coding mechanism. However, in [CLR99]
the simplification process is not driven by an error metric, and their entropy coder depends on sym-
bol statistics. The compressed progressive meshes (CPM) method presented in [PR99] compresses
slightly better on average than the presented approach, however, at much higher processing cost for
geometry prediction. ' '

[TG98] [CLR99] fast

bits /A tor |bits /vertex for| bits /A for |bits vertex for| bits/ A for |bits /vertex for
connectivity| coordinates |connectivity| coordinates connectivity| coordinates

quantization| models |vertices

—[ticeratops| 2832 | 1.1 83 37 96

8 bit bicb | 8036 | 0.9 7.9 N/A 37 9.2
12 pn|Toeraops| 2832 | 1.1 52 59 % 37 21
biob | 8036 | 0.9 2 3 26 38 21

TABLE 1. Compression efficiency compared to other existing techniques based on published results. The
method presented in [TG98] provides highest compression ratios for single-resolution meshes, whereas the
approach of [CLR99] shows smallest connectivity encoding for progressive meshes and also efficient
geometry compression.
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Experimental results.

[BPZ99] CPM [PR99] fast
L . bits / Afor |bits vertex for| bits /A for [bits /vertex for[ bits/ A for | bits Avertex for
quantization| - models | vertices connectivity| coordinates |connectivity| coordinates |connectivity| coordinates

fandisk | 6475 . 34 15 3.7 15

10 bit fohe 4005 N/A 3.7 15 3.8 19
triceratops| 2832 3.5 20 3.8 15

12 bit bunny |34834 5.0 28 3.6 16 3.8 17
phone |83044 4.5 31 3.6 14 3.8 13

TABLE 2. Compression efficiency compared to published results and to a previous version of the proposed
method. [PR99] has a more sophisticated and more complex vertex prediction function than the proposed
solution.

Decompression speed performance is reported in Table 3 for various test models, measured on a
200MHz R10000 SGI O2 machine. While decoding speed varies only slightly and is limited by
geometry prediction and Huffman decoder, updating the triangle mesh depends on the size of the
model due to the growing mesh data structures. In [Hop98] timings are not presented for the
advanced arithmetic coding version, but only for a gzip compression of vertex split records which
. has a much lower compression ratio compared to other approaches. Nevertheless, our decoding per-
formance of about 90000 decoded vertex split records per second compares favorably with the
80000 reported in [Hop98],1 considering the much better compression ratio that is achieved. In
[FMP98] decompression speed has been reported fora single-resolution mesh coding method,
achieveing roughly 35000 triangles per second.2 Much higher connectivity decoding speed was
reported in [GS98] with up to 800000 triangles per second.? Both of these approaches do not include
geometry coding which dominates decompression speed. Considering that the presented approach
and the reported timings include the imperative geometry information and provide a much higher
complexity in functionality — progressive reconstruction of a multiresolution model, our approach
can easily match [FMP98] and is a convincing alternative to [GS98] when progressivity and speed
are important.

Models |Quantization Model size Vertex splits per second
base mesh|vertex splits| decoding| mesh update
tricderatops 10 bit 53 2779 92633 21377
12 bit 53 2779 138950 15438
fohe 10 bit 124 3881 64683 18480
fandisk 10bit 89 6386 91228 18246
blob 12 bit 137 7899 78990 16806
8 bit 126 7910 98875 18833
bunny 12 bit 824 34010 62981 11687
phone 12 bit 1403 | 81641 68034 9438

TABLE 3. Decompression speed performace. Model size denotes the number of vertices in the base mesh,
and the inserted ones due to vertex splits. Performance is measured in processed vertex splits per second
for decoding only, and for performing the decoded updates on the triangular mesh.

1. 200 MHz Pentium
2. SGI Indigo2
3. 175 MHz R10000 SGI 02
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Experimental results

Figure 7 shows the different test models, and results from SQUEEZE. Indicated are the number
of bits needed in SQUEEZE to represent the mesh #; and the time needed for transmission using a
56Kb/s connection. Note that the bits and time of %4 include all previous LODs M;forj=0toi. In
roughly one-tenth of the time and size of the full resolution model 4, SQUEEZE provides already
6 progressive LODs 9, to 5. '

With an average speed of 13’000 decoded and applied vertex splits per second, thus reconstruct-
ing the mesh at a rate of 26’000 triangles per second, and a typical encoding of about 11 bits per tri-
angle, SQUEEZE can decompress and reconstruct a progressive mesh in real-time on the test
machine (200MHz CPU) for connections with a transmission rate of 286Kb/s.
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Experimental resuits

M, 3026 bits, 0.05 seconds

10, 144306 bits, 2.57 seconds

triceratops M, 1802 bits, 0.03 seconds M, 63330 bits, 1.13 seconds

10, 109488 bits, 1.95 seconds

MO, 56120 bits, 1.00 seconds WIS, 198472 bits, 3.54 seconds fMlO, 1753256 bits, 31.3 seconds

5

M, 32960 bits, 0.58 seconds

¥

Ms 101944 bits, 1.82 seconds 2, 864088 bits, 15.4 seconds

bunny

FIGURE 7. Original test models shown in the first column, followed by the base mesh My, an intermediate ‘
representation M5 and the full resolution mode! 4 of SQUEEZE. Bits and transmission time of #4; include all prior |
LODs, and time is estimated for a 56Kb/s communication. ‘
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Conclusion

8. Conclusion

The progressive multiresolution mesh compression method SQUEEZE introduced in this paper pro-
vides an effective compromise between optimal compression ratio, flexibility in mesh reconstruc-
tion, and decompression speed. SQUEEZE matches or improves the best progressive mesh
compression methods in terms of compression efficiency, and additionally provides high-speed
decompression. Even for single-resolution mesh compression methods there have not been reported
faster methods than SQUEEZE that incorporate both connectivity as well as geometry information.

The improvements achieved by SQUEEZE are based on a unique combination of new and
improved techniques for progressive mesh encoding, geometry prediction, entropy coding, and vari-
able-length prefix decoding. Good compression efficiency is realized by grouping mesh refinements
and locally encoding updates based on a vertex traversal order, by encoding the coordinates of new
vertices based on a local prediction error encoding, and by removing code tables from the data file.
High decompression speed is gained by using a computationally simple geometry predictor, a fast
prefix-code decoding algorithm and data structure, and by precomputing Huffman codes which can
be used for multiple downloads. :
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