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Abstract

Compression techniquesfor triangle-mesh representations of 3D modelshave been
thefocus ofmany recenteffortsfrom the graphics, modeling, and theory research com
munity; from developers ofcomputer graphics hardware andsoftware; andfrom orga
nizations that define international standards. An ideal compression technology would
simultaneously support thefollowing three objectives: (1) progressive refinements ofthe
received mesh during decompression, (2) nearly optimal compression ratiosfor both
geometry and connectivity, and (3) in-line, real-time decompression algorithms for
hardware or software implementations. Because these three objectives impose contra
dictory constraints on the compressedformat, previously reported efforts focus prima
rily on one - sometimes two - of these objectives. The SQUEEZE technique introduced
here for Fast and Progressive Decompression of Triangle Meshes addresses all three
constraints simultaneously and attempts toprovide the bestpossible compromisefor the
needs of common internet applications that requirefrequent access to remote 3D data
bases. For a typical mesh ofT triangles, SQUEEZE compresses the connectivity to3.7T
bits, which is competitive with the best progressive compression techniques reported so
far. The geometryprediction encoding techniques introduced here lead to an additional
20% improvement in geometry compression over previous schemes. Our initial imple
mentation on a 200 Mhz CPUachieves a decompression rate of about 15000 triangles
per second. Finally, in general SQUEEZE downloads a model through 10 successive
refinement stages, providing thefull benefit ofprogressivity. After each refinement step,
the user may manipulate the current resolution model as SQUEEZE decompresses the
next upgrade, or temporarily stop the transmission until a higher level-of-detail is
needed.

Keywords progressive triangulation, geometry compression, multiresolution modeling, entropy
coding

1. Introduction

Anincreasing number of industrial, business and entertainment applications require that users down
load large numbers of remotely located 3D models over phone or regular internet connections. It is
essential to develop techniques that reduce the waiting time in these applications. When 3D models
are required, as opposite to 2D images, a combination oflossy and lossless compression techniques
may be invoked.

Most of the popular 3D compression techniques are focused on triangle meshes, because most
other representations of3D shapes may be easily tessellated (i.e. converted to approximating triangle
meshes), and because triangles are well supported by most software and hardware graphics sub-
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Loss-less compression techniques strive to significantly reduce the number of bits required for
encoding any given 3D model. Compression schemes developed specifically for the most common
representations of 3D models perform significantly better than general-purpose compression tech
niques. The focus of current research in loss-less 3D compression is aimed at striking the optimal
balance between file size and decompression speed for the wide spread of operating conditions
defined by the bandwidth, the local memory, and compute power available for decompression.
These conditions vary from decompression hardware, with high bandwidth to main memory, very
limited local storage, but extremely fast execution; to mobile devices with limited bandwidth and
compute power. Thetechniques used for loss-less compression include connectivity coding schemes
for planar and non-planar triangle graphs, prediction of vertex locations from previously decoded
vertices, and entropy encoding and transmission of the corrective vectors, which capture the differ
ence between the predicted and the actual locations of the vertices. Many of these techniques have
beendeveloped andoptimized for thecompression of single-precision meshes. Different - and often
less effective - solutions are required for progressive meshes, discussed below.

Lossy compression approaches capitalize on two observations. First, most models are repre
sented with more accuracy than demanded by the application. For example, many CAD models rep
resent vertices with double precision floating point numbers when in fact the relative round-off
errors resulting from the geometric calculations that were executed to compute the models are
greater than one in a million. More surprisingly, many electronic mock-up ordesign review applica
tions use tessellated approximations of curved shapes that carry a much larger relative tessellation
error than one in a million. Finally, many graphic applications (entertainment, walkthrough) produce
images of these models through a series of hardware supported calculations which produce an even
larger errorin the position of vertices on the screen andin the associated depth. Second, when com
plicated scenes or assemblies are viewedunder perspective, many of the features or details are either
out of the viewing frustum, orhidden, orsufficiently far from the virtual viewpoint toproject onvery
small areas of the screen. It is therefore unnecessary to download a full-resolution, precise represen
tation of these models, until they become visible and sufficiently close to the viewpoint for the
approximation errors to be noticeable.

The overall strategy for compression is thus to first simplify themodels sothat they arenotover-
specified. This is usually done by selecting the appropriate resolution for the approximation (through
an adaptive tessellation or simplification process), and by truncating the least significant bits of the
vertex coordinates (through a coordinate normalization and quantization process). We refer to the
result of this initial accuracy adaptation phase as the full accuracy, or full resolution model for
that particular application. Then, instead of encoding as a single-resolution model, one converts
it into an equivalent progressive representation [Hop96], which stores a very crude approximation
IAq, and a series of upgrades for i=l to n. Applying upgrade l/j to (Mq produces a slightly more
accurate model iWj. Applying 1/2 to (Mi produces aneven more accurate model (M2, and so on, until
the application of produces (M^. The series ofupgrades and the crude model may beproduced by
a variety ofmesh simplification schemes [HRD"^93, RB93, Hop96, RR96, GH97, LT98, Gue99].

Initially, the user will download (Mq, and may never need a finer approximation of (Mj^. But if the
model moves closer to the view, a finer approximation may berequired. As soon as the display error
that results from using (Mi exceeds the tolerance imposed by the application, the upgrade is
downloaded and used to increase the accuracy of the local representation of the model, as first sug
gested in [Hop96].

For faster transmission, (Mq is usually compressed using compression techniques developed for
single-precision models. However, the storage of (Mq is typically very small compared to an encod-
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ing of The challenge is thus to compress the upgrades so as to significantly reduce the transmis
sion delays and the decompression costs.

The comparison between two such compressed progressive transmission schemes is difficult,
because authors would typically report total bit-per-vertex orbit-per-triangle storage counts and ver-
tex-per-second or tiiangle-per-second decompression speeds, without any quantitative description of
how good the intermediate results are. Amethodology for comparing progressive compression sys
tems was first introduced in [PR99] and was based on the curve that plots the relative error between
Mj and !M„ as afunction of the total number of bits needed to encode !?%, 11^, II2... Ilj. The relative
error may be defined as the ratio of the absolute error bound to the size of the entire model.

We propose here to improve on that methodology in two ways. We first consider a curve that
expresses the error between QAj and as the function ofthe total delay, which combines the time it
takes to transmit and the I4, for i from 1 toj, and the time it takes to decompress them and to
apply the upgrades. Furthermore, to facilitate the quantitative comparison between compression
schemes, we advocate here to use the integral ofthe area under that curve. This may provide a good
single measure ofthe efficiency ofprogressive compression schemes. The smaller the integral, the
smaller the expected error after any given waiting time.

To best reduce that error, one must strike the optimal balance between the compactness of the
compressed representations of (Mq and of the ^ and the time it takes to decode and apply the
upgrades. This is not an easy compromise, since more compact representations usually require more
complex decompression algorithms. Furthermore, the balance must take into account transmission
and computing speed factors, which vary with the hardware used and connectivity bandwidth.

A secondtradeoffmustbe madebetween then number of upgrades and the effectiveness of their
compression. Ingeneral, having fewer upgrades leads to economy ofscale, and thus better compres
sion ratios per triangle. Individual upgrades, which each insert a single vertex (such as the approach
in [Hop96]), require several bits per triangle to identify which vertex must be split. Grouping vertex
splits into larger batches, as first proposed in [PR99] and [Hoppe SIG course 99], helps toreduce the
vertex identification cost. Unfortunately, limiting thenumber of upgrades implies that theclient will
have to wait longer at each level of resolution, and therefore increases the error integral, defined
above.

The SQUEEZE technology introduced in this paper provides a novel compromise between com
pression ratios, number ofupgrades, and performance ofdecompression and upgrade application.

For a typical mesh of t triangles, SQUEEZE compresses the connectivity information down to
3.1-t bits. Although this storage cost is more than twice the storage cost for the best non-progressive
compression schemes, it compares advantageously with all previously proposed progressive com
pression techniques, especially given that SQUEEZE produces about 10 different levels of detail
(LODs) for a typical mesh, ensuring a continuous improvement of the quality of the received mesh.
After each refinement, theusermay manipulate the current resolution model as SQUEEZE decom
presses thenextupgrade, or temporarily stop thetransmission until a higher LOD is needed. Further
more, as an upgrade isbeing decoded and applied, the mesh resulting from the early refinement steps
ofthe upgrade are immediately available for rendering, before the upgrade iscompleted.

Our new geometry prediction techniques leads to an additional 20% improvement in geometry
compression over previous progressive methods and yet allows avery fast geometry decompression.
Our initial implementation ofSQUEEZE can decode up to 140000 vertex split records per second,
and progressively reconstruct the triangle mesh ata rate ofabout 15000 triangles per second on a 200
Mhz CPU.
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2. Related work

Many efficient compression methods for triangulated single-resolution models have been proposed
in the last few years [Dee95, TR98, TG98, Ros99]. In practice, these approaches can compress the
connectivity information (i.e., the triangle/vertex incidence table) down to less than 2 bits per trian
gle. Furthermore, aftera preprocessing normalization step which quantizes the vertex coordinates to
a specified resolution (typically 8 to 16 bit integers), these methods use geometric prediction and
entropy coding to compress the geometry.

Performance issues for in-line hardware decompression ofsingle-resolution models, as opposite
to optimal compression ratios, were addressed in [Dee95]. An excellent compromise between the
performance of software decompression and the file size was presented in [GS98]. Even more
impressive compression ratios foralmost regular triangle meshes were reported in [TG98]. Themesh
compression technique of [TR98] has subsequently been optimized for fast decompression and
included in the MPEG-4 standard [Taubin's talk in the SIG99course].

The progressive transmission of multiresolution mesh models was introduced in [Hop96] as a
technique for graphics acceleration, not focusing on compression. Mesh refinements are based on
vertex splits, which each require an encoding of more than 7 bits per triangle for the connectivity
information if a progressive ordering according to an error measure is used [Hop98]. Variations of
encoding the incrementalmesh updates have been proposedin [FMP98].

The idea of grouping the vertex-splits into batches was introduced bythe authors in [PR99] aim
ing at the reduction of the average storage cost of a vertex split refinement (i.e. [PR99] achieves an
average of 3.6 bits per triangle). Batches of vertex splits or vertex insertions have also been advo
cated in [Hoppe Sigg99 course] and in [CLR99] (roughly 3bits per triangle). Adifferent approach to
theencoding of upgrades thatrefine the mesh by the introduction of a significant fraction of new tri
angles was proposed in [TGF1L98]. They encode a forest of edges which, when cut, create holes in
the mesh. The internal triangulation ofeach hole is encoded using a variation of the mesh compres
sion method presented in [TR98]. The connectivity for the entire mesh may be compressed to an
average of between 4 and 5 bits per triangle. The method proposed in [BPZ99] encodescontours of
edges, defined in terms of edge-based distance onthetriangular graph computed from a seed vertex.
This approach requires between 4.5 and 8.7 bits per triangle for the connectivity information.

The compression ofthe vertex location is generally based on vertex predictors and entropy cod
ing. The best geometry compression ratios for progressive meshes are reported by the authors in
[PR99] and in [CLR99]. A comparison to both methods is presented in Section6.

3. Preliminaries

Atriangular mesh can also beviewed as a graph G(V, E,F) with vertices V, edges E and (triangular)
faces E with an embedding in three-dimensional space. Thegraph G itselfwithout the vertex coordi
nates represents the connectivity of the mesh, also called the topology. The geometry of the mesh
consists of the 3D coordinates of the vertices which specify the actual embedding of the graph in
space.

The idea of progressively refining a triangularmesh means to increase the number of mesh ele
ments, i.e. triangles, with every step starting from an initial crade mesh. For triangular meshes the
smallest incremental update consists ofadding one vertex. If the mesh ismanifold, homeomorphic to
a sphere and has no boundaiy this also means adding two triangles and three edges to the existing
mesh. This can also be derived from the Euler relation between vertices, edges and faces ofplanar
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graphs where IVi - iEI + IF! = 2, and from the fact that in a triangular mesh one face has 3 edges and
every edge is shared by 2 faces, thus 2-IFI = 3-iFI.

Fromthe discussion above we can see that an incremental update has two main components: the
connectivity changes and the geometry information. The connectivity update consists of increasing
the number of elements, and the incidence changes between vertices, which can be split into two
parts. Thefirst partspecifies thetopological location, thearea of themesh that will be affected by the
update, and thesecond partdetermines thelocal incidence changes at thatlocation, seealso Figure 1.
The geometry information includes the 3D coordinates of the new vertex, and possibly also coordi
nates of previously existing vertices that changed their positions.

c)

FIGURE 1. Components of Incremental updates: a) topological location where the connectivity will change,
b) newmesh elementsand Incidence relations, and c) coordinates for newvertex and updatedoldvertices.

Applying a sequence of incremental mesh updates to aninitial crude mesh !Mq, generates a pro
gressive series of increasingly complex meshes iWj, ..., where 94^ refers to the full resolu
tion triangular mesh including all available vertices. As mentioned in the introduction we are
interested in progressivity in the sense of increasing the quality of the object that is represented by
the triangular mesh with every update. Therefore, the initial mesh 94q embodies only a crude approx
imation, the incremental updates % = Mi increase the mesh complexity and reduce the
approximation error with every step, and is the highest quality mesh representation of the object.
A sequence of progressive mesh refinements can be obtained from mesh simplification methods
which create different levels ofdetail (LODs) from a high resolution input mesh by iteratively sim
plifying the current mesh. Good overviews of mesh simplification methods canbe found in [HG97]
and [LT99].

In SQUEEZE, the simphfication and reeonstruction of the triangular mesh is based on the edge
collapse (ecol) and vertex split (vsplit) operations introduced in [HRD'''93], see also Figure 2. A
coarse mesh 94^ and a sequence of vsplits define a progressive mesh of increasing approximation
quality as presented in [Hop96].

cut-edges

edge collapse

vertex split

split-vertex

FIGURE 2. Edge collapse (ecol) and vertex spilt (vspllt) operations for triangle mesh simplification and
reconstruction.
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Note that we use the half-edge collapse simplification that assigns the split-vertex to one of the
vertices of the collapsed edge, i.e. Vgpijt =vj. Thus based on the displacement vector v^jsp =V2 -vj the
original vertices can be recovered as Vj =Vjpjjj and V2 =Vgpyj +v^jgp. Most other placement variants,
such as the midpoint placement of the split-vertex Vspm = 0.5-(vi + V2), do not guarantee that the
coordinates of Vgpiij stay on the quantized coordinate grid, making geometry encoding more com
plex. Furthermore, the half-edge collapse has shown to yield better approximation quality than mid
point placement due to better preserving the volume of the given object, see also [LT99] for a
discussion of different edge collapse simplification and vertex placement methods.

Figure 3 illustrates thecombination of datacompression and progressive reconstruction. Thedif
ference signals of successive simplification operations are compressed and transmitted. First, the
most simplified mesh IMq is sent using a suitable single-precision mesh compression method, then
the compressed mesh differences are sent in the inverse order ofthe simplification process. Decom
pression starts with decoding the initial mesh IMq, and consecutively incorporates the decompressed
mesh differences Note that the reconstruction of and the decompression of can only
use information available from previouslyreconstructed mesh 5W-. This has also to be taken into con
sideration when compressing thedifference signals in the first place.

input mesh

O)

3*
"O

o

05

o
3

compression
operation

compressed data

decompression
operation

1%

FIGURE 3. Compression and progressive reconstruction. The differences of successively simplified meshes
are compressed and transmitted in inverseorderofthe simplification process. Reconstruction starts with an
initial crude mesh and progressively refines it according tothe decompressed incremental updates.

4. Progressive mesh encoding

Instead of encoding every vertex split operation individually, SQUEEZE groups simplification and
refinement operations into batches to increase connectivity encoding efficiency. This concept was
introduced in [PR99] and successfully extended to progressive tetrahedral meshes in [PRS99].
SQUEEZE creates a series ofmeshes 5%, Mi, ..., where each update % = Mj.i -> Mi between
consecutive LODs Mi.i and fM,- consists of multiple vertex split operations. In the course of this
paper If will denote a batch of vertex split refinement operations, and a set of edge collapse
simplification operations, see also Figure 4 for graphical examples.
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FIGURE 4. Batches ofvertexsplit refinement operations ofthree different mesh updates (notconsecutivein
this example). The twotriangles insertedby a vertexsplit are highlighted in each image.

The format of the compressed mesh consists ofthe initial coarse base mesh 9^, encoded using a
single-resolution mesh compression method such as [Ros99], followed by a series of compressed
updates I4. Following we describe the encoding of a batch of edge collapse operations, and
how such a simplification batch can beconstructed during compression of the mesh. Decompression
starts with decoding the coarse base mesh 94q, and then applying the inverse of the encoding steps
described below to every compressedupdate

The encoding ofa mesh update 1li, recovering (Mi from the previous mesh Mi.i, requires speci
fying all split-vertices and their cut-edges in and the coordinates of the newly inserted vertices.
The following steps areperformed to encode anupdate batch 9J(.

1. Construct andtraverse a vertex spanning treeof fMj.i andmark all split-vertices - theresults
of applying the edge collapses to mesh

For every marked split-vertex Vspm, we encode its cut-edges as follows:
2. We compute the indices of the two cut-edges in the sorted list of the incident edges on

^split' clockwise, starting with the edge from v^piit to its parent in the vertex spanning
tree.

Given the degree d of the split-vertex in mesh the two edge indices are identified as
one possible choice out of for selecting the cut-edges, we encode this choice using

3.

exactly log bits.

Since SQUEEZE uses the half-edge collapse operator the split direction has to be specified:
4. Using one bit we distinguish between v^piit = Vj or v^piit =V2 (see also Figure 2).
Furthermore, the geometry has to be encoded:

The displacement vector v^jsp = v^ew - ^sput is compressed as described inSection 6.5.

5. Simplification process

Coupled with the encoding method mentioned previously is the simplification process that generates
the different LODs (M^.i, ..., (Mq of decreasing accuracy. Each simplification step =
(Mi (Mi.i has to select as many edge collapses as possible to reduce the number of wasted 0-bits
during the split-vertex marking ofStep 1above. However, the edge collapses in (Mi have to becho
sen in such a way that the vertex splits can uniquely be identified in (Mi.i. The following three topo-
logical requirements for groupingedge collapsesin a batch are sufficient:

1. At most two vertices may be collapsed into one.
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2. For each edge e = (vj, V2) that will be collapsed and any other vertex w that is incident to
both vj and V2, the triple (vj, V2, w) must define a valid triangle inthe mesh Mi.

3. For each edge ej = (vj, V2) that will becollapsed and any edge 62 = (wi,W2) forming a quad
rilateral (vj, V2, Wi,iv2) withej in M^, and 62 cannot be collapsed in the samebatch.

To achieve a good approximation at each stage, the simplification process must also use an error
metric to evaluate and order edge collapses in addition to satisfying the topological constraints men
tioned above. The current implementation uses a variant of the quadric error metric introduced in
[GH97] to order edge collapses according to their introduced approximation error, however, another
edge collapse ordering [HRD+93, Hop96, LT98] could be used as well. In every simplification batch
1l{ , a maximal subset of the least expensive edges in Mi that do not violate the topological con
straints defined above are greedily selected and collapsed. The following Algorithm 1 provides the
outline for the simplification andconnectivity encoding process.

PROCEDURE Encode (mesh: Triangulation);
VAR v: Vertex; e: Edge; ecol: EdgeSet; list: SortedList

BEGIN

WHILE mesh not simplified enough DO
(* sort edges according to approximation error *)
list := SortedList.Empty-List;
FOREACH e IN mesh.halfEdges()

error := mesh.evalError(e);

list.insert(e, error)
END;

(* select maximal group of valid edge collapses *)
ecol := EdgeSet.EmptySet;
FOREACH e IN list.ascOrder()

IF validCollapse(e, mesh, ecol) THEN
ecol.insert();

ENDIF

END;

(* perform edge collapses, mark split-vertex and
assign cut-edges to split-vertex *)

FOREACH e IN ecol.members()

mesh.collapseAndMark(e)
END;

(* traverse mesh, output split-vertex marking bits
and cut-edges encoding *)

FOREACH V IN mesh.vertices()

IF V.marked() THEN

output(1);

outputBits(cutEdgesEncoding(v, v.parentVertex, v.cutEdges));
(* geometry encoding *)

ELSE

output(0)

ENDIF

END

END Encode;

ALGORITHM 1. Simplification and connectivity encoding process.

The decoding process performs the inverse steps. It traverses the mesh Mi.^ and reads the mark
ing bits for the vertices. Whenever a split-vertex is detected, the cut-edges are decoded and assigned
to that vertex. Furthermore, the displacement coordinates for recovering the other vertex resulting

8
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from the split are decompressed and stored with the split-vertex too. In a second traversal all vertex
splits can safely be performed and the next higher resolution mesh Mi with better approximation
quality can be fully recovered.

6. Fast geometry decompression

Geometry compression, encoding the 3D coordinates ofvertex split operations, is a problem ofvari
able length coding of scalar values. If these values change smoothly over time or space, buttheir fre
quency distribution is uniformly noisy, then prediction error coding can efficiently be applied. The
half-edge collapse used in the simplification process shrinks an edge e = (vj, V2) to one vertex, i.e.
^split = ^1' and the deleted vertex v^ei = V2 mustbe encoded for recovery. The deleted vertices of one
simplification batch 5^- iM/.i are all geometrically close to the surface of the simplified mesh
iMj.i, thus their values change smoothly over the surface Mi.i, but the frequency distribution of indi
vidual coordinate values is uniform with some noise. The coordinates of local displacement vectors
^disp = I'del - ^spiit have a much more skewed distribution. The displacement vector represents a sim
ple vertex prediction error using the old vertex Vspm as the estimate for the new vertex Vdei- In [PR99]
and [CLR99] more sophisticated prediction schemes have been proposed based on the local neigh
bors of the split-vertex and the deleted vertex.

To speed up decompression time compared to [PR99], we simplified the prediction method to
computing the average of direct neighbors of v^ei in the presented approach, similar to [CLR99].
Based on the connectivity decoding the correct mesh topology of Mi can be reconstructed without
actually knowing the geometric coordinates of the new vertex v^ei, see also Figure 5. Therefore, the
decoder can use the same neighbors aj,..., aj^ ofvjgj that have been used for compressing the geom
etry. The estimated position of the deleted vertex is calculated as:

1

i= 1

(EQ1)

The geometry information that is encoded with each vertex split is therefore the difference
^err = ^del " ^est between actual and estimated vertex positions. During decompression the correct
vertex position can be recomputed again by using Equation 1 and decoding Vgn- Decompression
speed is mainly determined by the vertex position prediction function, which is greatly simplified by
Equation 1compared to the approach presented in [PR99], and by decoding Vgn- for which an effi
cient solution is presented below.

vertex split

FIGURE 5. Estimating dispiacement vectors. Thie new vertex v^ei is estimated as the average of its
immediate neighbors a^,..., which are known from connectivity decoding.

The frequency distribution of prediction errors is very skewed towards small absolute values,
and centered around 0for most shapes. Also the frequencies tend to decrease exponentially for larger
absolute values which makes it suitable for entropy coding [CNW87, Huf52]. The efficiency prob-
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lem with such variable length coding methods is that a straight-forward implementation of the
decoder has to examine every single bit to proceed in the decision or coding tree, until reaching a
state in which decoded symbols can be returned. To speed up decoding performance we imple
mented the high-performance Huffman decoder proposed in [Paj99] that allows to read and process
multiple-bit words, i.e. bytes, instead of single bits from the compressed data stream. The approach
is similar to the method presented in [Sie88], every node in the binary Huffman code tree has a. jump
table associated with it. This jump table captures the necessary information to decode any 8-bit
sequence starting atthe current node: it yields the next node resulting from atree traversal according
to the 8-bit sequence, restarting at the root whenever reaching a leave, and it also provides a list of
decoded symbols that have been encountered in the leaves of the tree while processing the 8 bits.
Therefore, the decoder canreadthecompressed datastream in bytes, update its current node accord
ingly and output the decoded symbols for every node transition. An example Huffman code tree and
the corresponding jump tablefor 2-bitwords are illustrated in Figure 6.

^ Q_£)0 f

OOi 0
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a)

M
0

•D
O
C

words

00 01 10 11

0 3 4 1 2

1 1 2 1 2

2 3 4 1 2

3 3 4 1 2

4 3 4 1 2

b)

from node word symbols
0 00 A
0 01 B
0 10 C
0 11 c,c
1 00 A
1 01 A, C
1 10 B
1 11 B,C

c)

FIGURE 6. a) Huffman code tree with some indicated node transitions using a word size of 2 bits for the
codesA=00, B=01 andC=1. b) The complete node transitions table for all nodes indicating theend-node for
any given combination of start-node and data word. Note that all leaves have the samejump table as the
root node andcan be left out tosavestorage, c)Table listing theoutput symbols for every node transition.

TheHuffman code for a setof symbols, quantized prediction error values in ourcase, is based on
their frequency distribution. The decoder has touseexactly thesame code as theencoder, thus either
the Huffman code itself or the symbol frequencies have to be transmitted before decompression is
possible. Note that this has tobe done for every refinement batch since the prediction error distribu
tion changes with every LOD. To avoid this overhead of sending decoding information and con
structing a code tree on-the-fly for every refinement batch, we model the actual prediction error
distribution by a probability distribution, and precompute Huffman codes for a fixed set of different
distributions.

One can observe that prediction errors for good estimators have a probability distribution that
decreases exponentially with the absolute value of the prediction error. The Laplace distribution of
Equation 2 is widely used for statistieal coding of differential signals in image compression
[NH95, Sal98]. We use this Laplace distribution to model the prediction error histogram ofour geo
metric vertex position estimator ofEquation 1. For symmetric error distributions, the mean |i is 0,
and the variance v uniquely defines the shape ofthe Laplace distribution. The variance is adjusted
for everybatchby the average of the squaredprediction errors, u = (l /Ibatchl )y (v -u)2 Thus
4.U 1 • r 1 1 1 , , . . batch en-the only information that has to be sent at the beginningof every batch is the current variance for the
Laplace distribution.

7^
(EQ2)

10
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Given the frequency distribution defined by the variance u and the Laplace function L^{x), a
Huffman code can beconstructed for every batch based onitsvariance. However, this process can be
very time consuming. We avoid this problemby precomputing a set of Huffmancodes for a set of 37
pre-specified variances that guarantee an unnoticeable loss in coding efficiency as shown in
[How93, Sal98]. At the beginning of every batch, the Huffman code for a fixed variance closest to
thegiven variance is chosen and used to decode thecompressed geometry data of theentire batch.

7. Experimental results

We conducted a variety ofexperiments comparing our fast progressive mesh compression method to
other approaches with respect to compression efficiency and decompression performance. Compres
sion efficiency was challenged with one ofthe best known single-resolution mesh compression tech
niques [TG98], and compared to various recently developed multiresolution mesh compression
methods [PR99, CLR99, BPZ99]. The progressive forest split mesh compression method introduced
in [TGHL98] cannot compete in terms of geometry compression to the newer approaches and is not
included in the experiments. Also the progressive mesh compression method presented in [Hop98]
only reported tests on highly quantized meshes, and it does not provide advanced connectivity com
pression. The progressive approach presented in [FMP98] needs even more bits than the initial pro
gressive meshes representation of [Hop96] and can thus not compete in terms ofcompression ratio.
Decompression performance of progressive methods is only reported for [Hop98], and thus we also
compare our results to single-resolution compression methods [FMP98, GS98].

Tables 1 and 2 evaluate thecompression efficiency of ourapproach compared to other methods
mentioned in the literature. The proposed method is competitive with the single-resolution compres
sion approach of [TG98] in terms ofgeometry compression. The added functionality ofprogressive
multiresolution mesh reconstruction comes athigher cost for connecitivity encoding due to the com
plexity ofthe multiresolution model. Our approach outperforms other multiresolution compression
methods [CLR99, BPZ99] mainly in geometry encoding. Note that our method and the method in
[CLR99] use a very similar geometry prediction and error coding mechanism. However, in [CLR99]
the simplification process is not driven by an error metric, and their entropy coder depends on sym
bol statistics. The compressed progressive meshes (CRM) method presented in [PR99] compresses
slightly better on average than the presented approach, however, atmuch higher processing cost for
geometry prediction.

[TG9B] [CLR99] fast

quantization models vertices
bits/A for

connectivity
bits/vertex for

coordinates

bits/A for

connectivity
bits/vertex for

coordinates

bits/A for

connectivity
bits/vertex for

coordinates

8 bit
triceratops 2832 1.1 8.3

N/A
3.7 9.6

blob 8036 0.9 7.9 3.7 9.2

12 bit
triceratops 2832 1.1 22 2.9 26 3.7 21

blob 8036 0.9 21 3 26 3.8 21

r--- / .w Wki.w kwwi II wi i ^uu;ilQI ICU IC^OUIlO. I IIC

method presented In [TG98] provides highest compression ratios for single-resolution meshes,whereas the
approach of[CLR99] showssmallestconnectivity encoding for progressive meshes and also efficient

geometry compression.
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Experimental results

[BPZ99] CRM [PR99] fast

quantization modeis vertices
bits/A for

connectivity
bits A/eitex for

coordinates

bits/A for

connectivity
bits/vertex for

coordinates

bits/A for

connectivity
bits/vertex for

coordinates

10 bit

fandisk 6475

N/A

3.4 15 3.7 15

fohe 4005 3.7 15 3.8 19

tricetatops 2832 3.5 20 3.8 15

12 bit
bunny 34834 5.0 28 3.6 16 3.8 17

phone 83044 4.5 31 3.6 14 3.8 13

^ , f- .WMW W WIWI • Wl LI IW ^1

method. [PR99] has a more sophisticated and more complex vertex prediction function than the proposed
solution.

Decompression speed performance is reported inTable 3 for various test models, measured ona
200MHz RIOOOO SGI 02 machine. While decoding speed varies only slightly and is limited by
geometry prediction and Huffman decoder, updating the triangle mesh depends on the size of the
model due to the growing mesh data structures. In [Hop98] timings are not presented for the
advanced arithmetic coding version, but only for a gzip compression of vertex split records which
has a much lower compression ratio compared to other approaches. Nevertheless, our decoding per
formance of about 90000 decoded vertex split records per second compares favorably with the
80000 reported in [Hop98],^ considering the much better compression ratio that is achieved. In
[FMP98] decompression speed has been reported fora single-resolution mesh coding method,
achieveing roughly 35000 triangles per second.^ Much higher connectivity decoding speed was
reported in [GS98] with up to 800000 triangles per second.^ Both ofthese approaches do not include
geometry coding which dominates decompression speed. Considering that the presented approach
and the reported timings include the imperative geometry information and provide a much higher
complexity in functionality - progressive reconstruction of a multiresolution model, our approach
can easily match [FMP98] and is a convincing altemative to [GS98] when progressivity and speed
are important.

Models Quantization Modei size Vertex spiits per second
base mesh vertex splits decoding mesh update

tricderatops
10 bit 53 2779 92633 21377

12 bit 53 2779 138950 15438

fohe 10 bit 124 3881 64683 18480

fandisk 10 bit 89 6386 91228 18246

blob
12 bit 137 7899 78990 16806

8 bit 126 7910 98875 18833

bunny 12 bit 824 34010 62981 11687

phone 12 bit 1403 81641 68034 9438

iviwijoi uciiwico ulc Muiiiuei \ji in me ease mesn,

and the inserted ones due to vertex splits. Performance is measured in processed vertex splits per second
for decoding only, and for performing thedecoded updates onthetriangular mesh.

1. 200 MHz Pentium

2. SGI Indigo2

3. 175 MHz RIOOOO SGI 02

12



Experimental results

Figure 7 shows the different test models, and results from SQUEEZE. Indicated are the number
ofbits needed in SQUEEZE to represent the mesh 5^- and the time needed for transmission using a
56Kb/s connection. Note that the bits and time of include all previous LODs Mj for7=0to i. In
roughly one-tenth ofthe time and size ofthe full resolution model SQUEEZE provides already
6 progressive LODs 5%to 5%.

With anaverage speed of 13'000 decoded and applied vertex splits persecond, thus reconstruct
ing the mesh at a rate of26'000 triangles per second, and atypical encoding ofabout 11 bits per tri
angle, SQUEEZE can decompress and reconstruct a progressive mesh in real-time on the test
machine (200MHz CPU) for connections with a transmission rate of 286Kb/s.

13



Experimental results

fandisk 3026 bits,0.05 seconds 14819bits,0.26 seconds 10^ 144306 bits, 2.57 seconds

triceratops 5%^ 1802 bits, 0.03 seconds 7474 bits, 0.13 seconds 63330 bits, 1.13 seconds

secon 13000bits, 0.23seconds 109488 bits, 1.95seconds

W IP
pnone 51^^ 56120 bits, 1.00 seconds 198472 bits, 3.54 seconds 1753256 bits, 31.3 seconds

lunny 514o, 32960 bits, 0.58 seconds iWsl 01944 bits, 1.82 seconds q, 864088 bits, 15.4 seconds

FIGURE 7. Original test models shown in the first column, followed by the base mesh an Intermediate
representation 51^5 and the full resolution model of SQUEEZE. Bits and transmission time of 5^- include all prior
LODs, and time is estimated for a 56Kb/s communication.
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Conclusion

8. Conclusion

The progressive multiresolution mesh compression method SQUEEZE introduced inthis paper pro
vides an effective compromise between optimal compression ratio, flexibility in mesh reconstruc
tion, and decompression speed. SQUEEZE matches or improves the best progressive mesh
compression methods in terms of compression efficiency, and additionally provides high-speed
decompression. Even for single-resolution mesh compression methods there have not been reported
faster methods than SQUEEZE that incorporate both connectivity as well as geometry information.

The improvements achieved by SQUEEZE are based on a unique combination of new and
improved techniques for progressive mesh encoding, geometry prediction, entropy coding, and vari
able-length prefix decoding. Good compression efficiency is realized by grouping mesh refinements
and locally encoding updates based on a vertex traversal order, by encoding the coordinates of new
vertices based on a local prediction error encoding, and by removing code tables from the data file.
High decompression speed is gained by using a computationally simple geometry predictor, a fast
prefix-code decoding algorithm and data structure, and by precomputing Huffman codes which can
be used for multiple downloads.
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