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Abstract

When there isqualitativeinformation about the underlying processes and structure of a dynamical system, it may be possible
to infer very accuratequantitativeinformation about these processes using only an output time series from the system. We
illustrate how this can be accomplished for time series data from a delay-differential equation with a single fixed delay. Our
approach exploits modern techniques for non-parametric function estimation, is robust to fairly high levels of dynamic noise
and measurement error, and can be extended straightforwardly to more general delay-differential systems and multivariate
systems.
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1. Introduction

The dynamics of many systems are affected not
only by the current state of the system but also by
past states. In some cases there is a single fixed delay
which is important: these systems can be described
by ẋ(t) = F(x(t), x(t − τ)), whereτ is a constant.
These delay-differential equation (DDE) models have
been successfully used to describe a wide variety of
phenomena in ecology [1], physiology [2], chemistry
[3], and physics [4].

∗ Corresponding author.

In many cases the qualitative nature of the problem
suggests a general structure forF even if the quanti-
tative details are unknown. In ecology, for example,
we can sometimes determine that the equation should
be of the form

ẋ(t) = f (x(t − τ)) + g(x(t)), (1)

wherex is adult population density,τ the development
time of juveniles,f the recruitment (number of off-
springs born at timet − τ less juvenile mortality), and
g is the number of adult deaths. In these circumstances
we would like to be able to estimateτ , f , andg.

Bünner et al. [5] recently introduced a method to
estimateτ from a time series of the process (1) in the
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special case ofg(x(t)) = −x(t). This method takes
advantage of the fact that at timesti when ẋ(t) = 0,
x(ti) = f (x(ti − τ)). A plot of x(ti) versusx(ti − τ)

therefore gives a set of points on the graph off . It
is then straightforward to estimateτ by trying differ-
ent values to find the value that gives the smoothest
graph. A major attraction of this method is that there
is no need to directly fitf (which may not be given by
any simple formula). The method is surprisingly ro-
bust: we have found that it performs well on simulated
datasets considerably shorter than those analyzed in
[5]. A similar method was proposed earlier by Fowler
and Kember [6]. Their method uses all values ofx(t),
and estimates the derivative from the finite difference
(x(t)−x(t −δ)). Otherwise the approach is similar to
[5] in that the correct delay is identified by finding the
value that gives a smooth, low-dimensional embed-
ding inx(t), x(t−δ), x(t−τ) phase space. Essentially
the same idea also underlies the method of Kaplan
and Glass [7], in which the time lag is inferred from
the alignment of vector fields in a time-delay embed-
ding of the data. Indeed, if the data obey Eq. (1) and
are measured with little or no error, simple visual in-
spection of two-dimensional embeddings of the time
series may be all that is needed to identify the value
of τ .

Our goal here is to unify and extend these ap-
proaches, in order to accommodate some features
typical to biological applications. First, even ifg is
linear that fact would not be known a priori, so it
cannot be an assumption of the method. Second, the
data are often sparse relative to what can be obtained
in controlled physical experiments (e.g. 100–1000
data values, with only a dozen or so extrema). Third,
the data are noisy in two senses: the dynamics are not
completely deterministic, and the measurement errors
may be appreciable (1–10%). Measurement error in
particular makes it difficult to reach unambiguous
conclusions by visual inspection of a reconstructed
vector field. Finally, despite these data limitations, it
is desirable to estimate the rate equationsf and g,
as well as the delayτ , in order to obtain insight into
the underlying mechanisms. Each of the approaches
cited above can cope with some of these features, but
none can cope with all of them simultaneously.

We proceed by noting that Eq. (1) is in the form of
a generalized additive model (GAM), for which there
is a well-developed set of statistical tools [8]. In brief,
our method consists of:

(i) estimateẋ(t) from the time seriesx(t) (we denote
this estimatey(t));

(ii) for each of a range ofτ ’s, do a GAM fit of Eq. (1),
using splines to estimatef andg;

(iii) pick the τ for which the model explains the most
of the variance iny(t).

We describe the method in detail in Section 2, in
which we apply it to a case in whichg is linear, but the
data are short and sparse. This is followed by sections
in which we illustrate its performance in the cases of
nonlinearg and data with substantial dynamic noise
or measurement error.

2. No noise,g known

We start by lettingg be linear and assuming that we
know this fact. The time series we analyze is generated
by a simple Euler integration of Eq. (1), withf (x) =
10xe−x , g(x) = −mx, τ = 25, andm = 0.27. This
generates a chaotic time series (Fig. 1). This system is
qualitatively very similar to the Mackey–Glass equa-
tion [2]. We used the exponential form off because
it has been used successfully in models for laboratory
insect populations with discrete life-stages, which lead
in some cases to Eq. (1) withx(t) the number of re-
productively mature females [1,9].

The first step is to estimatėx(t) from the time series.
This is done by smoothing the data and numerically
estimating the slope at each value oft . (We useẋ(t) to
denote the true but unknown rate of change ofx, and
y(t) to denote the estimate ofẋ(t) obtained from the
data.) The choice of smoothing method depends on the
nature of the data: there is usually a trade-off between
an ability to fit at sharp peaks or troughs where the
second derivative is large, and a tendency to fit any
noise that might be in the data. For these data we used
a method that performs well at sharp peaks, the locally
weighted regression smoother LOESS [10,11].

Next we fit Eq. (1), using a generalized additive
model, for a variety of values ofτ . Generalized
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Fig. 1. Model time series analyzed in this paper.τ = 25 in all cases. (a)f (x) = 10xe−x ; g(x) = −mx; m = 0.27 (Eq. (1)). (b) As
in (a) but with dynamic noise (Eq. (3)) andf (x) = 12xe−x . (c) As in (b) butg(x) = −(0.21+ 0.018x)x. (d) As in (c) but with
measurement error added.

additive models (GAM) are a recent extension of
multivariate linear regression which allow nonlinear
functional relationships [8]. The form of the model is

y = F(X)

= α + f1(x1) + f2(x2) + · · · + fd(xd), (2)

whereX = (x1, x2, . . . , xd) is the set of independent
variables andy is the dependent variable. In linear re-
gression, eachfi is linear. In GAM eachfi is arbitrary:
the user can assume a specific form (e.g., quadratic,
sigmoid, etc.) or can specify a general flexible form,
such as a spline, neural net, radial basis function, lim-
ited only by the availability of numerical software for
the specific form. To makeα well-defined, we adopt
the conventionfi(0) = 0.

Here we take, for convenience, eachfi to be an
extended family of B-splines [12]. The convenient
aspects are that a GAM with this family is easy to fit

using thegam() procedure in the statistical language
S–PLUS [11], that the way in which the splines are
parametrized reduces the fitting of (2) to a computa-
tionally trivial linear regression, and that this space
of functions encompasses complexities ranging from
constant functions up to complex piecewise poly-
nomials. The potential complexity of the curve is
determined by the “degrees of freedom” (df) which
is the number of free parameters to be fitted. When
df < 3 the functions are polynomials of order df;
because of our convention thatfi(0) = 0, the con-
stant term is not included. When df≥ 3 the functions
are piecewise cubic splines with continuous second
derivatives. The parameters of these spline curves
are their values at a finite number of points (called
“knots”) within the range of the independent variable.
The model fitting process then includes selection of
an appropriate value of dfi for each of thefi based
on the data.
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Fig. 2. Ther2 for different values ofτ and df.

To quantify the “goodness of fit” we first generate
predicted values of the time derivative at each time,
ŷ(t), by evaluating the fitted model at(x(t), x(t −τ)).
We then calculate the proportion of the variation in
y(t) that is explained by the model,

r2 = 1 −
∑

(ŷ(t) − y(t))2
∑

(y(t) − ȳ)2
, (3)

whereȳ is the mean value of the derivative valuesy(t)

estimated from the smoothed data. Fig. 2 shows the
r2 for several values of df. Ther2 is always very high
at τ = 1. This is to be expected, sinceẋ(t) ≈ x(t) −
x(t −1). Thus, we seek a peak for a value ofτ greater
than 1. For df sufficiently large, there is a strong peak
atτ = 25, the correct value. The minor peak atτ = 52
appears to result from approximate symmetries in the
data: the peaks and troughs are about equally wide and
the rising and falling data segments are similar. If these

symmetries were perfect, and the data were perfectly
periodic with periodT , thenx(t + T/2) would be a
linear transformation ofx(t) and we would get equally
good predictions using delaysτ or τ+T/2. In our case
T/2 is about 27, giving the minor peak at delay 52.

How can we objectively choose the “best” value
of df? Increasing df always increases the number of
parameters, so larger and larger dfs eventually pro-
duce a largerr2. Standard measures of the “value”
of additional parameters, such as the Bayes Informa-
tion Criterion, typically picked the largest value of df
tried, in part because the overall fit is so good. How-
ever, there is useful information for selecting df in the
structure of the residual errors from the model. If the
model is correct, the errors should be iid (indepen-
dent and identically distributed). Evaluating a model
by testing the residuals for departures from iid is a
standard approach in time series analysis [13]. We



186 S.P. Ellner et al. / Physica D 110 (1997) 182–194

Fig. 3. ACF of the residual errors of the fitted model at the bestτ ’s for a range of df.m is the value estimated by the fit. The dotted
lines indicate the 95% confidence bands: autocorrelations exceeding them differ significantly from zero.

have found it useful to focus on the independence as-
pect, using the autocorrelation function (ACF) as the
diagnostic for non-independence (Fig. 3). When the
model is too simple, the time series of residuals has
significant positive autocorrelations at low lags, which
are diminished by increasing the model complexity. In
this case, when df< 7 there is a significant positive
autocorrelation at lag 1. We thus choose df= 7 as
the appropriate model. Notice however the persistent
negative correlation at lag 2 when df is 7 or 8. This
remains for all more complex models, and is a result

of autocorrelations created by the smoothing process
used to estimate the time derivative ofx(t). Thus our
real criterion for model selection is to find the simplest
model such that further increases in model complex-
ity do not bring the residual time-series closer to the
ideal of lacking any significant autocorrelations.

The final estimates off andg are both quite good
(Fig. 4; m̂ = 0.261). Although the errors inf at df =
5 are small, they are systematic; df= 7 corrects most
of them. There is still a systematic bias in the tail
of f , however. If we have a little more qualitative
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Fig. 4. The estimatedf from the fitted model withτ = 25 and df= 5 or 7, α forced to zero or not. The dotted curves are the true
value off . The estimate ofm is 0.26 in all four cases.

information about the system, we can do even better.
Suppose we know thatf (0) = g(0) = 0 – that is,α =
0 (this is often to be expected if the system under study
is closed). Then we can eliminate the constant term
in the GAM, and get a slightly better fit. We maintain
the assumption ofα = 0 in the analyses that follow,
but it makes little qualitative difference in the results.

The above analysis is for 500 days of data (approx-
imately 10 oscillations), sampled once per day. The
method can successfully selectτ for as few as 70 days
of data (less than two oscillations; Table 1).

If there is an error in the choice ofτ , then the
estimates off and m are severely compromised.τ

will not typically be a multiple of the sampling inter-
val. We have simulated this situation and found that
we can recover the true value ofτ by interpolating
the smoothed time series to a finer sampling interval.
Thus, we can recoverτ = 25 from 100 days of data
sampled every 2 days, or 200 days of data sampled

Table 1
Fits for varying numbers of data points (N ) with df = 7

N r2 m̂

500 0.989 0.261
400 0.987 0.261
300 0.987 0.261
200 0.983 0.258
100 0.988 0.236
70 0.986 0.245

In all casesτ̂ = 25 and the true value ofm is 0.27. At
N = 50 the method fails to identify an optimal value ofτ .

every 4 days; and we can recover the true value of
τ from 300 daily samples of a time series generated
by the model withτ = 24.7. In the latter example
the residuals are always autocorrelated at lag 1, even
for models with very high values of df, as a result of
autocorrelations in the interpolation errors. However,
there is a point where the autocorrelations essentially
stop changing with increasing df, and we use this to
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choose the model complexity. A very good estimate
of m is obtained (0.255), and the estimate off is only
marginally less accurate than those shown in Fig. 4.

3. Dynamic noise, unknowng

We next examine how our method performs in less
idealized settings. First, in many biological applica-
tions we would not know a priori thatg(x) is linear.
We now drop the assumption of linearg and assume
only that the data were generated by Eq. (1), withf

andg both unknown smooth functions. A second in-
evitable complication in many biological applications
is dynamic noise (random perturbations to the state
variable or parameters), even in the laboratory. Moti-
vated by the interpretation of (1) as a population model
with delayed recruitment to the class of reproductively
active individuals, we modify Eq. (1) to include ran-
dom variation in the recruitment term. The model is
then

ẋ(t) = a(t)f (x(t − τ)) + g(x(t)), (4)

wherea(t) has random fluctuations. We assume first
thata(t) is effectively a white noise process, with short
correlation time compared to the time scale of changes
in x(t).

The procedures described above should in princi-
ple require only one modification, namely that the
selection ofτ and the model-fitting require a scan
over df for the estimates of bothg andf . Dynamic
noise adds some scatter to the observed “map” from
(x(t), x(t − τ)) to ẋ(t), but it does not fundamentally
change the problem.

As a trial of this approach we analyzed data gen-
erated by Euler integration of Eq. (4) withτ = 25,
f (x) = 12xe−x , and eitherg(x) = −0.3x or g(x) =
−(0.21 + 0.018x)x (Figs. 1(b) and (c)). Our proce-
dures should be able to estimatef andg in both cases,
and in the former identify thatg is actually linear. We
useda(t) lognormal with parametersµ = 0, σ = 0.1,
which is a substantial amount of noise. For example,
a typical run of 100a(t) values will include some that
are 20% or more above or below the mean.

As before, we first estimatėx(t) by smoothingx(t).
To estimateτ we fitted GAMs withf andg in our
extended spline family (with degrees of freedom dff

and dfg, respectively), forτ = 6–60 and all df pairs
with 1 ≤ dfg, dff ≤ 8. The optimal value ofτ for
each df pair is the value at whichr2 is maximized.

For both the linear-g and the quadratic-g data, ther2

was maximized at the correct value ofτ for all dff ≥
5, dfg ≥ 1 for linearg and dfg ≥ 2 for quadraticg.
Then to estimatef andg we fitted GAMs at each df
pair using this value ofτ , and examined the goodness
of fit (r2), and the autocorrelation function (ACF) of
the residual time series.

Wheng is linear, the ACF plots (Fig. 5) indicate that
there is no improvement from increasing dfg above
1. That is, if we scan down any column in Fig. 5,
which corresponds to fits with the same value of dff ,
the ACFs in lower rows (dfg > 1) are no better than
those in the top row (dfg = 1). Thus, the linearity of
g is identified correctly. Then scanning in the same
way across the top row, dff is picked to be 7, which
is complex enough to approximate closely the truef .
As a result, the estimates off and g are both very
accurate (Fig. 6).

When g is quadratic the ACF plots clearly indi-
cate a need for dfg > 1 to eliminate autocorrelation
(Fig. 7). The ACFs in the second row are markedly
better than those in the first, but no worse than those
in lower rows, so dfg is identified as being 2, which
is correct. Scanning across the second row to choose
dff , the choice between dff = 5 versus dff = 7 is
less clear. However, with either choice the estimates
remain fairly accurate (Fig. 6). As the highr2 values
indicate, the estimates off andg are robust to rea-
sonable changes in the df values for both linear and
quadraticg.

The successful fitting in this case depends on the
short autocorrelation time ofa(t). If on the other hand
the autocorrelation time ofa(t) is comparable to or
longer than the sampling interval, then the situation is
really one of random parameter drift. This can create
problems at the initial step of estimating theẋ(t) time
series. Ifa(t) changes slowly, there will be stretches
of data during whichẋ(t) has a consistent tendency
to be higher than its expectation conditional onx,
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Fig. 5. ACF of residual errors from the fitted model for the linear-g system with dynamic noise, at a range of df values.

and other stretches during whichẋ(t) will tend to be
lower than its conditional expectation. This means that
residuals from fitting model (1), which specifies the
conditional expectation, will be autocorrelated even if
the model is exactly correct, and the model therefore
would be rejected. That would be technically correct,
but it would be wrong about the mechanistic validity
of the model structure. This problem occurs in our
example system even if the autocorrelation ina(t)

is fairly weak, with correlation coefficientρ = 0.1
between values at successive sampling times.

4. Measurement errors

Small measurement errors can be ignored; large
measurement errors can be reduced by smoothing the
data (e.g., low-pass filtering). The former is apparently
safe (we have in fact been using 1% measurement er-
ror throughout the last two sections), but the latter

is not because of the autocorrelations that it induces.
Before smoothing, successive measurement errors are
independent. After smoothing they are smaller but au-
tocorrelated, and this creates structure in the residuals
that would cause the model to be rejected even iff

andg are estimated accurately. Therefore, we use the
raw data to estimate model complexity, and only af-
terwards use smoothed data to estimatef andg.

Because measurement errors affect both the inde-
pendent and dependent variables at the model fitting
step, they can have more drastic effects than dynamic
noise, which only affects the dependent variable. For
the dynamical noise model of Section 3, adding sim-
ulated measurement errors to the output (Fig. 1(d))
did not affect the identification ofτ , but the goodness
of fit (r2) is greatly reduced, the ACF plots are less
informative (Fig. 8), and the function estimates are
poorer (Fig. 9). The peak in the estimatedf is rounded
off because of the random jitter in thex(t − τ) val-
ues. This is a general property of measurement error:
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Fig. 6. Estimates ofg andf for the linear and quadratic-g systems with dynamic noise.

because it obscures fine structure in the data, such as
sharp peaks, there is a bias towards too-simple mod-
els. Still, we find these results encouraging because
they involve quite large measurement errors: lognor-
mal with σ = 0.1. As noted above, this distribution
implies that a run of 100 data points typically includes
errors as large as 20% of the mean.

5. Discussion

We have shown that it is possible to reconstruct the
form of the underlying equations for a scalar delay-
differential equation from a moderate amount of data
(100–500 data points). With 500 fairly accurate data
points (1% measurement error) the estimated rate
equations were highly accurate even in the presence
of substantial dynamic noise. Our approach has two
essential ingredients: expressing the problem so that

it fits into the framework of generalized additive mod-
els, and using the ACF of the residual time series to
choose appropriate degrees of freedom in the fitted
rate equations. In comparison with previous methods
for delay recognition in differential-delay systems [5–
7], our approach offers two advantages: (1) it remains
accurate on short data series, even at relatively high
levels of dynamic noise; (2) it provides quantitative
estimates of the individual rate equations, which may
be informative about underlying mechanisms.

There are two extensions that increase the generality
of the approach, but also increase the computational
complexity somewhat. The first extension explicitly
addresses the fact that the smoothing process used
to estimate derivatives and lagged values ofx will
often introduce substantial autocorrelations into the
derivative estimates. For many smoothing methods
(including locally weighted quadratic regression) the
covariance matrix for the estimated derivativesy can
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Fig. 7. ACF of residual errors from the fitted model for the quadratic-g system with dynamic noise, at a range of df values.

be calculated or estimated. The covariances can be ac-
counted for by an appropriate weighting in the least
squares minimization. The fitting criterion we used in
this paper (maximizer2) is equivalent to replacing the
inverse covariance matrix with the identity matrix, an
approximation that is reasonable for well sampled data
subject to little measurement error. For the data sets
studied here, estimates were not improved noticeably
by weighting to account for the covariance. However,
weighting will be more important with noisier data
that require a greater degree of smoothing.

The second extension involves a general multivari-
ate model,

Ẋ = F(X(t), X(t − τ1), X(t − τ2), . . . , X(t − τd)),

in which F is not additive, but the complete state
vectorX(t) is again observed. Again the model may
contain unknown functions and again the lag(s) will
generally be unknown. In this case the model may be
fitted by non-linear least squares, which involves far

more computational effort than that required for the
model in this paper, and which is not guaranteed to
converge to the global best fit. Nevertheless such tech-
niques, if properly implemented, generally have better
convergence properties than the alternative methods
for the same model based on matching observed and
predicted trajectories (Wood, in preparation).

Although our results and procedures are specific to
the differential-delay system (1), we believe that this
case study illustrates some points of general impor-
tance for model selection and fitting in the context of
nonlinear time series analysis.

First, criteria based solely on overall prediction ac-
curacy were not successful at selecting model com-
plexity. In all of the cases considered here, very high
r2 values were achieved by models that were revealed
as too simple by calculating the ACF of the residuals.
The Bayes information criterion (BIC) often preferred
overly complex models, or overly simple models, de-
pending on the levels of measurement and dynamic
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Fig. 8. ACF of residual errors from the fitted model for the quadratic-g system with dynamic noise and measurement error. Inaccuracies
at the smoothing stage lead to persistent autocorrelations in the residuals, so the choice of df is less clear-cut than with more accurate
data.

noise. It is easy to understand why overall predic-
tion accuracy is not sufficient for model selection,
once we realize how much information is discarded
[14]. Any candidate model produces a time-series of
residualse(t). Both the raw prediction accuracy and
complexity-penalized criteria (such as BIC or the min-
imum description length criterion [15]) are based on
the mean value ofe(t)2, a single number. By reduc-
ing the residual time series to this single number we
lose all information on spatial and temporal structure
in the residuals, and on correlations between the resid-
uals and state variables, that can be very informative
for evaluating the model.

Residual ACF plots are only one of many ways to
examine the time series of residuals for structure that
signals a flawed model. Spatial autocorrelation (e.g.,
Moran’sI statistic [16]) might circumvent some of the
difficulties that we had in choosing model complex-

ity (where “space” refers to the(x(t), x(t − τ)) state
space). The temporal autocorrelations introduced by
the process of smoothingx(t) to estimate its deriva-
tive would introduce artifactual spatial autocorrela-
tions, but these could be eliminated by the standard
device of omitting temporal neighbors from the cal-
culation. However, spatial autocorrelation appears to
present difficulties of interpretation, and in our expe-
rience it commonly rejects even the correct model if
its parameters were estimated from data. The cause
of this problem is that even if the (unobserved) errors
between the true equation and the data were indepen-
dent in time and space, the residuals from a fitted es-
timate of the equation are correlated [16]. However,
if the variance–covariance matrix of the residuals is
known, then a linear transformation can be used to
obtain uncorrelated “pseudo-residuals” that are suit-
able for a spatial autocorrelation analysis [16]. As
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Fig. 9. Estimates ofg andf for the quadratic-g system with dynamic noise and measurement error. df= (1, 5) is really too simple,
but would be selected based on the ACF plots, because the inaccurate data do not allow an increase in accuracy by fitting more
complex models. Increasing df to adequate values (right column) hardly changes the estimates.

noted above, smoothers very similar to the one used
here have this property. We are currently implement-
ing and testing this approach (Seifu and Ellner, in
preparation). In practice, however, ACFs appear to be
adequate for selecting model complexity, if we ac-
cept that there will be persistent temporal autocor-
relations at small lags due to the initial smoothing
stage.

Another type of test for model mis-specification is
to check for correlations between residuals and mea-
sured system variables, which should be absent if the
model is correct. Statisticians usually do this visually.
In our case one might plot the residuals versus present
or lagged values ofx(t). Manuca and Savit [17] have
recently presented a way of looking for such depen-
dencies in high-dimensional models, by testing for an
increase in apparent determinism when an extra vari-

able is added to the information used for nonlinear
forecasting.

The second general point is that it can be extremely
valuable to have qualitative information on the struc-
ture of the dynamics, to constrain the search in “model
space”. It is particularly useful, in our experience, to
have some guidance on the choice of state variables
to include in the model. Model-free approaches, such
as attractor reconstruction by time-delay embedding,
can provide qualitative and quantitative information
about the dynamics, but they do not provide any in-
sights into the processes underlying those dynamics.
A model developed using our approach might not have
greater predictive power than a conventional delay-
embedding model and might not estimateτ more ac-
curately, but it gives explicit approximations of the
underlying functional relationships. This allows us to
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include qualitative constraints (for example iff rep-
resents a birth rate it must be non-negative), which
can further ease the task of model selection. On the
other hand, if the best-fit unconstrained model grossly
violates an expected constraint, this would lead us to
re-evaluate our qualitative understanding of the under-
lying processes.

Acknowledgements

This work was conducted as part of the Complex
Population Dynamics Working Group supported by
the National Center for Ecological Analysis and Syn-
thesis, a Center funded by NSF (grant no. DEB-94-
21535), the University of California at Santa Barbara,
and the State of California. We thank the remaining
members of the Working Group – W.W. Murdoch,
R.M. Nisbet and P. Turchin – for discussions that
inspired this work and D. Kaplan, G.A. Fox, A.
Bohanok, N.G. Hairston Jr. and L. Glass for com-
ments on the manuscript. SE was partially supported
by a Japan Society for Promotion of Science Visiting
Research Fellowship at Kyushu University.

References

[1] W.S.C. Gurney, S.P. Blythe and R.M. Nisbet, Nicholson’s
blowflies revisited, Nature 287 (1980) 17–21.

[2] M.C. Mackey and L. Glass, Oscillations and chaos
in physiological control systems, Science 197 (1977)
287–289.

[3] K.W. Smith and R.M. Noyes, Gas evolution oscillators. 3.
A computational model of the Morgan reaction, J. Phys.
Chem. 87 (1983) 1520–1524.

[4] K. Ikeda, Multiple-valued stationary state and its instability
of the transmitted light by a ring cavity system, Opt.
Commun. 30 (1979) 257–261.

[5] M.J. Bünner, M. Popp, Th. Meyer, A. Kittel, U. Rau and
J. Parisi, Recovery of scalar time-delay systems from time
series, Phys. Lett. A 211 (1996) 345–349.

[6] A.C. Fowler and G. Kember, Delay recognition in chaotic
time series, Phys. Lett. A 175 (1993) 402–408.

[7] D.T. Kaplan and L. Glass, Coarse-grained embeddings of
time series: Random walks, gaussian random process, and
deterministic chaos, Physica D 64 (1993) 431–454.

[8] T.J. Hastie and R.J. Tibshirani, Generalized Additive
Models (Chapman and Hall, London, 1990).

[9] W.S.C. Gurney, R.M. Nisbet and J.H. Lawton,
The systematic formulation of tractable single-species
population models incorporating age structure, J. Animal
Ecology 52 (1983) 479–495.

[10] S. Cleveland, Robust locally weighted regression and
smoothing scatterplots, J. Am. Statist. Assoc. 74 (1979)
829–836.

[11] Statistical Sciences, S-PLUS Guide to Statistical and
Mathematical Analysis, Version 3.2, StatSci, a division of
MathSoft, Inc., Seattle (1993).

[12] G. Wahba, Spline Models for Observational Data (SIAM,
Philadelphia, PA, 1990).

[13] P. Kennedy, A Guide to Econometrics, 3rd Ed. (MIT Press,
Cambridge, MA, 1992).

[14] L.A. Smith, Locally optimized prediction of nonlinear
systems: Stochastic and deterministic, in: Chaos and
Forecasting, ed. H. Tong (World Scientific, Singapore,
1995) pp. 87–108.

[15] K. Judd and A. Mees, On selecting models for nonlinear
time series, Physica D 82 (1995) 426–444.

[16] A.D. Cliff and J.K. Ord, Spatial Autocorrelation, Pion,
London (1973).

[17] R. Manuca and R. Savit, Model misspecification tests,
model building and predictability in complex systems,
Physica D 93 (1996) 78–100.




