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High-Quality Draft Genome Sequence of Pseudomonas
aeruginosa 268 Isolated from a Patient with a Left Ventricular
Assist Device
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Kimberly A. Bishop-Lillya

aGenomics & Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center, Fort Detrick, Maryland, USA
bLeidos, Reston, Virginia, USA
cDivision of Infectious Diseases and Global Public Health, School of Medicine, University of California, San Diego, California, USA

ABSTRACT Pseudomonas aeruginosa is known to cause persistent bloodstream in-
fections associated with left ventricular assist devices (LVAD). Here, we present the
high-quality draft genome assembly for a clinical isolate, P. aeruginosa 268. The ge-
nome sequence is available in GenBank under accession number CP032761.

Pseudomonas aeruginosa is an ESKAPE (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and En-

terobacter species) pathogen that exhibits intrinsic, acquired, and adaptive mechanisms
of antibiotic resistance (1) and can cause persistent bloodstream infections associated
with left ventricular assist devices (LVAD) (2). In one recent study, 22.6% of patients with
LVAD implantation presented with infectious complications, among which almost a
third were caused by P. aeruginosa (3). We present here the high-quality draft genome
sequence of a P. aeruginosa isolate from a patient with a LVAD.

The isolate was cultured in tryptic soy broth overnight at 37°C. Genomic DNA was
extracted with the Wizard genomic DNA kit (Promega, Madison, WI), and shotgun
sequencing libraries were produced with the Nextera XT DNA library preparation kit
(Illumina, Inc., San Diego, CA). Nextera mate-pair libraries were constructed from 1 �g
of genomic DNA following the gel-free protocol. The mate-pair libraries were quanti-
tated using NEBNext qPCR (NEB, Ipswich, MA). In the case of both shotgun and
mate-pair sequencing, equimolar quantities of library were multiplexed and sequenced
on the Illumina MiSeq platform using 2 � 300 v3 chemistry.

Illumina shotgun paired reads were processed with Sickle (4) using Phred at 30 or
higher and a length of at least 50 bp and down-sampled to 100� coverage using
bbnorm (5). Mate-pair sequencing reads were processed with NxTrim (6) (Table 1). Both
mate-paired and shotgun paired-end libraries were de novo assembled with SPAdes
3.11.1 (7), using the “— careful” argument. Only true mate pairs were included, using
the “—mp” argument. The assembly resulted in 27 contigs (N50, 675,323 bp). This initial
assembly was then manually closed to one contig with Bandage (8), Mauve (9), CLC
Workbench 11.0 (Qiagen), and EDGE Bioinformatics (10).

Gene annotation was performed with a RAST server (11) with default settings;
antibiotic resistance genes were identified with the Resistance Gene Identifier (RGI)
from the Comprehensive Antibiotic Resistance Database (CARD) (12); virulence factors
were identified with ShortBRED (13) with a customized database from the Virulence
Factor Database (VFDB) (14). Sequence typing was determined with the Pseudomonas
aeruginosa PubMLST database (15). Insertion sequences were identified with ISFinder
(16). CLC Genomics Workbench was used to perform variant analysis.

P. aeruginosa 268 has a circular genome size of 7,030,474 bp and a G�C content of
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65.9%. Annotation of P. aeruginosa 268 predicted a total of 6,578 coding sequences, 12
rRNA sequences, and 64 tRNA sequences. A total of 374 virulence factors and 63
antibiotic resistance genes were identified, including genes conferring resistance to
beta-lactam, aminoglycosides, fluoroquinolones, macrolides, and tetracyclines. In addi-
tion, 21 insertion sequences were identified, notably 7 IS222 and portions of TnAs3. A
9-bp deletion was identified within acetyl coenzyme A dehydrogenase and occurs in
37% (106/287) of the reads; the biological significance of this potential deletion is not
known. P. aeruginosa 268 strain contains two copies of the acs gene and therefore
belongs to the two sequence types 235 (ST235), an international high-risk, multidrug-
resistant clone, and 2613 (ST2613), which has the same profile as ST235 except with a
different acs allele.

Data availability. The nucleotide sequence for P. aeruginosa 268 has been depos-
ited at the NCBI under accession numbers CP032761 (GenBank) and SRR8183306 and
SRR8183307 (SRA).
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TABLE 1 Sequencing statistics

Library type

Raw data Postquality control
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Shotgun 16,520,130 4,573,422,553 6,501,158 1,325,318,599 SRR8183307
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