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The Divergent Autoencoder (DIVA) Account of Human Category Learning

Kenneth J. Kurtz (kkurtz@binghamton.edu)
Department of Psychology, PO Box 6000

Binghamton University (State University of New York)
Binghamton, NY 13902 USA

Abstract

The DIVA network model is introduced based on the novel
computational principle of divergent autoencoding. DIVA
produces excellent fits to classic data sets from Shepard,
Hovland & Jenkins (1961) and Medin & Schafffer (1978).
DIVA is also resistant to catastrophic interference. Such results
have not previously been demonstrated by a model that is not
committed to both localist coding of exemplars (or exceptions)
and the use of an explicit selective attention mechanism.

Introduction
The problem of supervised classification learning is of

fundamental importance in both cognitive psychology and
machine learning. Models of many kinds have been put
forward offering powerful solutions. This paper presents a
novel approach to supervised learning that shows
considerable promise as an account of human category
learning and as a technology for applied problems. The
DIVergent Autoencoder (DIVA) network model takes as a
starting point the back-propagation learning algorithm
(Rumelhart, Hinton, & Williams, 1986) and the
reconstructive autoencoder architecture (McClelland &
Rumelhart, 1986). Autoassociative systems are powerful
learning devices that have been shown to implement
principle component analysis and avoid local minima (Baldi
& Hornik, 1989); to be extensible to non-linear function
approximation (Japkowicz, Hanson, & Gluck, 2000); and to
perform compression (e.g., DeMers & Cottrell, 1993).
DIVA also draws on a design principle of multi-task
learning mediated through a common hidden layer that been
articulated in the ORACL model of concept formation
(Kurtz, 1997; Kurtz & Smith, in preparation) as well as in
the literature on neural computation (Caruana, 1995; Intrator
& Edelman, 1997; Gluck & Myers, 1993).

Japkowicz (2001) developed an approach for applying
unsupervised learning to binary classification that is close in
spirit to the present proposal. An autoencoder is trained only
on the positive instances of a category. Subsequently, inputs
can be tested for membership in the category by evaluating
the reconstructive success of the autoencoder. A new
example that is consistent with the set of learned category
examples will show minimal error while an example that is
inconsistent will show a higher level of output error
suggesting an inability to construe the input as a category
member. Japkowicz (2001) demonstrated good results on
binary classification problems by training a model to
recognize examples of one class. Successful reconstructions
are classified as members and rejections are assumed to
belong to the other category. The approach is not extensible

to n-way classification tasks or to cases where an
A/B/neither classification response is required.

The innovation unique to DIVA is a method for
converting any supervised learning problem into a form
addressable by autoassociative learning. Traditionally, an
autoassociative system is only capable of categorization to
the extent that it picks out the statistical structure of a
training set in a manner like clustering. This process
suggests category formation in the sense that if a training
environment is naturally organized in terms of sets of self-
similar cases, the autoassociative learning system will
extract that structure. Similar inputs are similarly
represented and subsequent generalization behavior reflects
these attractors. However, such a system has no capacity to
acquire a classification scheme based on supervision that
crosscuts the correlational structure of the training set.

The computational principle of divergent autoencoding
offers an elegant solution to this problem using an
autoassociative learning channel for each output class in an
n-way classification problem. For a standard A/B
classification learning task, one output channel is designated
for reconstructing patterns labeled A by the teaching signal
and the other is assigned to patterns labeled B.  No output
units are explicitly assigned to code for the categories
themselves. The correct classification choice is used to
select the channel on which to apply the targets (which are
the same as the input). The architecture consists of an input
layer, a shared hidden layer, and a set of autoassociative
output banks. The pattern of connectivity is full and
feedforward; all weight update is by back-propagation.

Figure 1: Architecture of the DIVA network.
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The recoding of input information at the hidden layer of
DIVA is shared by the set of channels, each of which is
dedicated to learning to reconstruct the members of one
class. This is different from forming compressed
representations in traditional autoencoding and also differs
from learning a recoding to achieve a linearly separable
boundary between classes in a standard multi-layer
perceptron architecture. DIVA will tend to produce different
internal representations of an item depending upon the other
same-category members included in the training set and also
depending upon the contrasting categories being learned at
the same time.

The DIVA network is tested by presenting an input which
is processed along each channel in parallel. A classification
response can be based on the amount of reconstructive error
along a particular channel (i.e., testing the hypothesis that
the example is a member of a particular category) as in
Japkowicz (2001). In standard n-way classification tasks,
the response is determined by selecting the class
corresponding to the channel with the best reconstruction,
i.e., the lowest sum-squared error. A version of Luce’s
(1963) choice rule is used to generate response probabilities
for each choice K based on the inverse of the sum squared
error at the output layer of the N channels. This is an
extension of the common application of the choice rule to
response generation based on output unit activations (e.g.,
Kruschke, 1992):

                    N

         Pr (K) = (1/SSE(K)) / Σ  (1/SSE(k)),     (1)
                                             k=1
 
The logic of this paper is to demonstrate the power and

promise of the DIVA network for cognitive simulation. To
address the topic of human category learning, the primary
goal is to evaluate the model on the two most widely studied
datasets in the literature: the Shepard, Hovland, & Jenkins’
(1961) dataset on ease of learning and the 5-4 learning
problem introduced by Medin & Schaffer (1978). In
addition to fitting benchmark data, a number of appreciable
properties of DIVA in comparison with competing models
will be outlined.

Experiment 1. The Relative Ease of Learning
Across Category Structures

Shepard, Hovland, & Jenkins (1961) produced a
groundbreaking analysis of the rate of acquisition of the six
general types of category structures that are possible within
a training set of binary-valued, overtly analyzable, three-
dimensional stimuli. The most interpretable of these
structures are: Type I, a unidimensional rule (UNI); Type II,
the exclusive-or problem plus an irrelevant dimension
(XOR); and Type IV, a family resemblance structure (FR).
The results that have generated considerable challenges to
model-builders is a qualitative ordering of the relative ease
of learning: UNI fastest; followed by XOR; followed by

roughly equivalent performance of FR, Type III, and Type
V; followed by Type VI (though see Kurtz, under review).

The relative ease of learning the six types was tested
across six random initializations of a (3-2-3x2) DIVA
network (note: this refers to a DIVA network with three
input units, two hidden units, and two autoassociative output
channels with three units each). The number of epochs to
criterion was determined based on total sum-squared error
across the eight training patterns. Error was recorded only
on the target-active (correct) channel. Two stopping points
(SSE = .2; SSE = .1) were applied in accord with the strict
criteria used in the behavioral study.

For the data reported in Table 1, learning rate of 0.25 and
initial weight range of zero +/- 0.5 were used. However,
qualitative performance was found to be consistent across
variations in learning rate and the range of initial weight
randomization. The only critical parameter is the number of
hidden units. A simple systematic basis is used to determine
the number of hidden units for a task. The smallest number
of hidden units that can successfully reach asymptotic
minimization of error across the manipulated learning
conditions is the number that are used. This approach is in
sharp contrast to the usual technique of exhaustive search
through parameter space to find the best fit for each
phenomenon of interest. In this case, two hidden units were
required to consistently reduce error on the six SHJ types.

Table 1: Relative ease of category learning by DIVA

SHJ Type
Mean number
of Epochs to
criterion (0.2)

Mean number
of Epochs to
criterion (0.1)

I         566         840
II         847        1295
III        1195        1953
IV        1232        2087
V        1144        1750
VI        5719        9416

As can be seen in Table 1, the data are well fit (Type 1 <
Type II < Types III, IV ,V < Type VI). Consistent findings
were observed across the time course of training as was
found in the SHJ replication by Nosofsky, Gluck, Palmeri,
McKinley, & Glauthier (1994). By way of comparison, a
standard feedforward (4-2-1) back-propagation network was
tested under matching conditions. As also reported by
Kruschke (1992), the network was far too quick to learn FR
(comparable speed to UNI) and too slow to learn XOR.
With two hidden units, some initializations became stuck in
local minima (especially on Type V) and the system showed
no progress on Type VI (a version of parity problem)
without more hidden units.

Another way to test the performance of DIVA is to
compute the classification response to each pattern using the
choice rule over sum-squared error as outlined above. A
single simulation was conducted in this fashion using the
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identical set of initial weights for each of the SHJ types. The
learning results after 500 training epochs appear in Table 2.

Table 2: Classification accuracy for a DIVA network.

SHJ Problem
Type

Category
Structure

Classification
Accuracy

I UNI        .97
II XOR        .94
III        .84
IV FR        .83
V        .93
VI        .56

The fit is excellent except for the overly good
performance of Type V. There is a degree of variation
across initializations of DIVA networks and in the case
presented above, Type V showed performance at the upper
end of its usual range. Such variation results primarily from
the degree of consistency between the initial random
configuration of weights and the form of the solution that is
required. When lower learning rates and smaller initial
weight variation are selected, the degree of variation lessens
considerably.

In order to make clear how the learning occurs, DIVA
solutions to the most interesting of the SHJ problem types
(UNI, XOR, FR) are described as follows. A representative
DIVA network solved the UNI problem (on F1) by
assigning one hidden unit to code for the presence of F1 and
F2 respectively. Each hidden unit strongly activated the F1
output units: via excitation on one channel and inhibition on
the other. Each hidden unit also activated the appropriate
non-diagnostic feature on each channel. F2 and F3 were
always correct on the ‘incorrect’ category channel, while the
output there for F1 was always exactly opposite to the input
activation.

To solve XOR (on F1 and F2), a representative DIVA
network largely ignored F2, but used signals from F1 and
F3 to generate hidden layer recodings as shown in Table 3.

Table 3: Recodings formed by DIVA network on XOR.

Input Hidden1
Activation

Hidden2
Activation

Target
Category

101 0.2 0 0
001 0 0.8 1
000 0.8 1 0
011 0 0.9 0
111 0.2 0 1
100 1 0 0
110 1 0 1
010 0.8 1 0

The DIVA network used four areas of the activation space
on H1 to code for the pairwise combinations of the
diagnostic F1 and the non-diagnostic F3, while H2 primarily
coded for F1. It is interesting to note that neither hidden unit

explicitly represented the critical correlation between the
diagnostic features (a standard back-propagation network
would search for a recoding of the input specifically
targeted to allow for linearly separable classification
between the hidden layer to the output.) F1 and F3 were
always correct on the ‘incorrect’ category channel, and the
output there for F2 was always exactly opposite to the input
activation.

On the FR problem, a representative DIVA network
reached the following solution. H1 received an excitatory
signal from F3 and an inhibitory signal from F2. H2 was
sensitive to all three input features with a strong inhibitory
signal from F1 and lesser excitation from F2 and F3
yielding the recodings shown in Table 4.

Table 4: Recodings formed by a DIVA network on FR.

Input Hidden1
Activation

Hidden2
Activation

Target
Category

101 1 0 1
001 1 0.9 0
000 0.4 0.6 0
011 0.5 1 1
111 0.5 0.4 1
100 0.5 0 0
110 0 0 1
010 0 1 0

The network assigned each input item to a unique location
in the two-dimensional representational space of the hidden
layer. The two channels showed equivalent connectivity
projecting from the hidden layer and used strong bias
weights to differentiate their performance. It is interesting to
note that this solution parallels the behavior of an ordinary
autoencoder operating on this training set. Once again,
while operating entirely on the basis of the back-
propagation algorithm, the hidden units do not act to
transform the input for linearly separable classification. The
‘incorrect’ channel attempts to interpret each input as a
member of its category and therefore produces markedly
increased or reducing activation on one or more of the
features.

The XOR problem holds a high place in the contemporary
study of both human and machine learning. For decades, the
connectionist tradition was halted by the lack of an
algorithm to handle cases of hard learning, i.e., non-linearly
separable functions. Rumelhart, Hinton, & Williams’ (1986)
paper on back-propagation of errors was a breakthrough that
elicited tremendous productivity. The XOR problem
remains a benchmark for evaluation of learning systems. A
standard (hetero-associative) back-propagation network
reaches asymptote on Type II learning (the XOR problem
with an added irrelevant dimension) after approximately
3000 epochs of training. The DIVA network reached
asymptote on average in 847 epochs. This nearly fourfold
increase in speed of learning suggests that DIVA can
perform non-linear function approximation with
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considerable ease. The SHJ Type VI is the parity problem
with three dimensions. The standard back-propagation
network did not make any headway with two hidden units,
but the DIVA network coasted smoothly down the error
gradient. These findings suggest the power of the DIVA
network as a general learning device.

In sum, the Shepard, Hovland, & Jenkins (1961) dataset is
something of a litmus test for models of classification
learning. Despite some question about the generality of the
finding (see Kurtz, under review), it a seminal result in the
literature. The design features of those models which have
successfully fit this data have come to represent the state of
the art in the field. Localist encoding and selective attention
are core components of the three successful models:
ALCOVE (Kruschke, 1992), SUSTAIN (Love, Medin, &
Gureckis, 2004) and RULEX (Nosofsky, et al., 1994).
These models all depend upon multiple free parameters (not
including learning rate) that are selected according to the
same data that is to be fit. RULEX uses three best-fitting
parameters in addition to best-fitting attentional weights.
ALCOVE and SUSTAIN each use three best-fitting
parameters. DIVA offers a successful fit with a single
parameter which is set a priori, rather than post-hoc, and
offers a strong challenge to the widespread view that
selective attention and localist representation are the correct
explanatory constructs.

Experiment 2.  Learning the 5-4
Categorization Problem

The case for the superiority of exemplar models has rested
in no small part on extensive behavioral and computational
tests of the 5-4 problem introduced by Medin & Schaffer
(1978). A challenge has been raised recently (e.g.,  Smith &
Minda, 2000) based on successful fits by a ‘souped-up’
version of a prototype model and questioning of the
satisfactory nature of the exemplar account presented by
Nosofsky, Kruschke, & McKinley (1992).

The 5-4 category problem consists of nine training items
with four binary-valued features plus a set of transfer items.
The design feature of the problem is that it is linearly
separable (and therefore fair game for testing prototype
models), but includes three very weak category members
(for which only two out of the four features are consistent
with the underlying prototype). Category B consists only of
its prototype, one strong example, and two weak examples.

Model testing has focused not only on overall quantitative
fit, but also to two qualitative aspects of the data. The first is
that in non-elaborated experimental versions of the task,
learners are more accurate on Stimulus A2 (which has two
features in common with the A prototype) than they are on
Stimulus A1 (which has three prototypical features). The
prototype model predicts the opposite, while exemplar
models capture the result (Nosofsky, et al., 1992). In
addition, behavioral results typically show that a transfer
test on the Category A prototype produces highly accurate
responding, though not more so than the observed
performance on training items that are somewhat distant

from the prototype. Once again, the advantage goes to the
exemplar view.

A (4-2-4x2) DIVA network was applied to the 5-4
problem using a learning rate of 0.1 and initial weights
randomized in a range of zero +/- .05. The model was
allowed to run for 1000 epochs. Performance on each
training instance and the transfer items was determined by
applying the choice rule to the sum-squared error along each
channel. In terms of quantitative fit, a correlation of .96 was
found between the probabilistic responses of the DIVA
network and a summarization of thirty different behavioral
tests of the 5-4 problem published by Smith & Minda
(2000). The DIVA network produced a probability of A,
Pr(A) = .96 for Stimulus A2 and Pr(A) = .85 for Stimulus
A1; thereby fitting the critical qualitative result that was
previously captured only by pure exemplar models and
RULEX (Nosofsky, Palmeri, & McKinley, 1994). In
addition, the transfer item T3 which is the prototype of
Category A produced Pr(A) = .86 which was the strongest
response to any transfer item, but was a lesser response than
that shown for the training items A2 and A3. DIVA offers
the first successful fit to these results by a model that does
not implement the theoretical framework of localist
encoding and selective attention.

Experiment 3.  Avoiding Catastrophic
Interference

Among some researchers, the phenomenon of catastrophic
interference has been considered a fatal flaw for back-
propagation as an account of human learning and memory
(e.g., McCloskey & Cohen, 1989). In point of fact, a
number of intriguing solutions and more nuanced treatments
(McClelland, McNaughton, & O’Reilly, 1995; Mirman &
Spivey, 2001) have appeared. Nonetheless, a minimal
solution (one that does not graft an additional component,
integrate additional mechanisms, or make modifications to
the training set, etc.) has not been found. Is it possible to
preserve the computational power and psychological
validity of learning distributed internal representations via
back-propagation without catastrophic interference?

The definitive demonstration of catastrophic interference
for neural network models trained by back propagation is
Ratcliffe’s (1990) simulation result using the 4-4 encoder
problem. The problem involves two learning phases.
Training is performed to a certain level on the Phase I
examples and then the training set is swapped. Phase II
consists of training on only the second training set. The
observed phenomenon is that the network performs well on
the first training set at the end of Phase I, but the process of
learning in Phase II “catastrophically” disrupts performance
on Phase I examples. Phase I consists of three four-
dimensional patterns to be autoassociatively reconstructed
through an intermediate hidden layer. The patterns are:
1000, 0100, and 0010. Phase II consists of a single pattern:
0001.

Using DIVA, it is straightforward to assign a separate
output channel to each sequential phase of learning. The
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divergent autoencoding principle is applied in this case to
separate phases of learning rather than to separate
classification labels (as above). The same input and hidden
units are used, however separate bank of outputs are used
for each phase. Both channels are present in the architecture
at all times, but targets only are applied to adjust the weights
along the active channel. The critical assumption is that the
shift between phases of learning must somehow be
demarcated and psychologically encoded. The task context
must make clear that “now you are to learn something else.”
In point of fact, traditional paradigms for studying
interference usually make a very clear distinction between
List 1 and List 2. An intriguing prediction is that an
unannounced or non-obvious shift from Phase I to Phase II
ought to elicit CI unless the switch is made manifest. As a
final point of emphasis, no known model has been able to
exploit the phase variable to prevent CI by devoting input or
output units to code for the phase of each presented pattern.

A (4-3-4x2) DIVA network was tested with three hidden
units and a learning rate of 0.2 in accord with Ratcliffe
(1990) and Kruschke (1992). Weights were randomly
initialized in a tighter range around zero. The network
required 550 epochs to reach the 70% training criterion for
Phase 1 learning used by previous investigators. As
explained above, Phase I training applied targets only on the
P1 channel. The same amount of training was conducted for
Phase II on just the 0001 pattern using only the targets on
the P2 channel.

Table 5: Output Activations of DIVA network on
Sequential Learning Task.

Input    Channel for P1   Channel for P2
After Phase 1

1000 .74 .19 .17 .04
0100 .18 .68 .23 .03
0010 .16 .24 .70 .04
0001 .49 .49 .49 .50

After Phase 2
1000 .73 .21 .15 .03
0100 .16 .66 .24 .03
0010 .17 .22 .68 .03
0001 .04 .04 .04 .96

As shown in Table 5, catastrophic forgetting was fully
avoided. Similar performance was observed across
differently initialized runs and variations in learning rate
and initial weight range. Two follow-up tests were
conducted. The DIVA network was tested using negative
valued (-1) input activations rather than zero-valued ‘off’
units. This also yielded successful results. In addition, an
alternate version of Phase II learning was conducted using
the pattern <–1 1 –1 1>. This extends the problem beyond
the case in which positive activation of the features is
segregated between the two training phases. Once again,
performance on Phase I examples remained intact.

The success of the DIVA network can be explained very
simply. The weights from Features 1-3 to the hidden layer

are hardly affected by Phase II training, and the weights
from the hidden layer to the P1 channel are affected not at
all. However, this is not at all equivalent to using entirely
different networks for the two phases of learning. The same
input units, hidden units, and connecting weights are used.
The two learning phases are equivalent for DIVA to
learning a two-way classification problem with massed
practice. One can interpret the DIVA solution to the
problem of catastrophic interference as the establishment of
a contextually-driven classification of inputs as members of
either Phase 1 or Phase 2. With this one very plausible
assumption, divergent autoencoding preserves the back-
propagation machinery for error-driven learning without the
catastrophic interference.

General Discussion
Given the demonstrated promise of DIVA, a number of

further explorations are underway. DIVA shows a tendency
to shift during learning from more general to more specific
category representations (e.g., Smith  & Minda, 1998).
DIVA is naturally extensible to the recently vigorous
investigation of category learning beyond traditional
classification, i.e., inference learning, category use,
unsupervised learning, and cross-classification. Since
autoassociative processing naturally generates a feature-
based representation as its output, applications to
recognition memory, memory distortions, and feature
prediction are forthcoming.

An intriguing aspect of the DIVA architecture is that it
offers a straightforward mechanism for producing a
convolved representation of any input in terms of any
category known to the network. Imagine that a pattern
representing a cat is presented to a DIVA network trained
on various animal concepts. Regardless of which animal is
the actual classification response, every channel produces an
interpretation or construal of the input in terms of its
category. The psychological nature of such construals is of
great interest. For example, the similarity of concepts A and
B can be computed as the degree of reconstructive success a
DIVA network achieves in processing a prototypical
example of A along a channel trained on concept B.
Typicality or graded structure of category members can be
understood as the degree of reconstructive success in
processing a member of category A through the channel for
that category. Argument strength for category-based
induction can be understood as the degree of reconstructive
success in processing a representation of the conclusion
category along the channel(s) of premise categories. The
internal representation generated by inputting a
representation or representative example of one concept to
the channel of another concept is likely to produce a
conceptual combination or metaphoric interpretation. If a
parsimonious means can be found to represent structural
information in a form submittable to a neural network, the
potential deepens.
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In sum, DIVA provides an uncompromisingly good fit to
the two most influential data sets on human category
learning and does so with the following characteristics:

1. Distributed representation rather than localist nodes
for individual instances

2. No selective attention mechanism
3. No performance-optimized free parameters

Therefore, the success of this model calls into question
widely held theoretical assumptions. The DIVA network
offers the brain-style computational power of back-
propagation and overcomes its shortcomings in simulating
human learning. The computational design principle of
divergent autoencoding deserves consideration as an
explanatory construct underlying broad aspects of cognition.
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