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Figure 2.8: Power Spectral Estimate, Displacement and Strain (Semi-Lagrangian).
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Figure 2.10: Cross-Bispectral Estimate, 300–700 m Depth. Units of the bis-
pectra are (m s−3 cpd−1). The axes show negative (anticyclonic)
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bispectrum, B(ω1, ω2;ω1+ω2) = B [Uz(ω1),Uz(ω2),W

∗(ω1 + ω2)],
is plotted at coordinates (ω1, ω2). Uz(ω) is the Fourier trans-
form of complex horizontal velocity, with u pointing across-
ridge/away. W ∗(ω) is the conjugate of the Fourier transform
of vertical velocity. The frequencies ω correspond to negative
(cyclonic) frequencies in the two-sided spectra of (Fig. 2.9). The
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diurnal D1 is marked by the black dotted line. The black solid
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B(ω1, ω2), with the real part 2–3 times larger. . . . . . . . . . . 25

Figure 2.11: Bicoherence and Biphase, 300–700 m Depth. The axes show
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sult plotted at position (ω2, ω1). 0 ≤ b ≤ 1. The local in-
ertial f and diurnal D1 frequencies are indicated by red and
black dotted lines, respectively. The semidiurnal bifrequency
D2 is marked by the solid black line. The strong bicoherences
around (D1, D1;D2) confirm that the large bispectral values in
Fig. 2.10 are statistically significant. The corresponding biphase
φ(ω1, ω2) is slightly negative, with −π/4 < φ < −π/6. . . . . . 26

Figure 2.12: Cross-Bispectral Estimate, 100–500 m Depth. As in Fig. 2.10,
but for the shallower depth range. Units of the bispectra are
(m s−3 cpd−1). The axes show frequencies of ω1 and ω2 in cycles
per day. The value of the bispectrum, B(ω1, ω2), is plotted at
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but for the shallower depth range. The biphase is similar to
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coherence around (D1, D1) shows that the interaction between
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of the bispectra are (m s−3 cpd−1). The axes indicate fre-
quencies ω+ and ω−, which contain only wave energy traveling
upward and downward, respectively. The value of the bispec-
trum, B(ω+, ω−;ω+ +ω−) = B [Uz(ω+),Uz(ω−),W ∗(ω+ + ω−)],
is plotted at position (ω+, ω−). Compared to the bispectral es-
timates computed from full shear fields, an asymetry can be
seen in B(ω+, ω−) which favors a slightly higher frequency ω+
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Figure 2.15: Prefiltered Bicoherence and Biphase, 300–700 m Depth. As
in Fig. 2.11, but for prefiltered shear fields. The axes show
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eling upward and downward, respectively. The bicoherence
b(ω+, ω−;ω+ + ω−) is plotted at position (ω+, ω−). 0 ≤ b ≤ 1.
The local inertial f and diurnal D1 frequencies are indicated by
red and black dotted lines, respectively. The semidiurnal bifre-
quency D2 is marked by the solid black line. Strong bicoher-
ences around (D1, D1;D2) show that the large bispectral values
in Fig. 2.10 are statistically significant. The near-zero biphase
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either “defiltered” version. . . . . . . . . . . . . . . . . . . . . . 30
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In addition to their own convective breaking, the energetic baroclinic tides

at a generation site stimulate the weaker non-linear interactions that might com-

prise the more-typical open ocean energy cascade. Observations of two classes of

nonlinear interactions are presented. The first transfers energy from the semidi-

urnal tide to near-diurnal subharmonics. The second transfers energy from low-

frequency, high-shear waves to high frequencies.

Evidence is shown for wave-wave interactions between the low-mode, semid-

iurnal tide and high-mode, near-inertial motions. Profiles of velocity and density

were collected aboard the Research Platform FLIP, at two sites during the Hawaii

Ocean Mixing Experiment (HOME). In HOME Nearfield, significant bicoherences

are observed between the dominant low-mode semidiurnal tide and opposing pairs

xix



of near-diurnal waves of vertical scale ≈ 100 m. Growth rates of diurnal waves

during each fortnightly cycle agree with theoretical predictions for the Parametric

Subharmonic Instability (PSI) mechanism. At the Farfield location, 430 km from

the generation site, near-diurnal waves are also observed but are not significantly

bicoherent with the semidiurnal tide.

Triple correlations between low frequency vertical shears and high frequency

Reynolds stresses, −〈uiw dUi/dz〉, are used at both HOME sites to estimate en-

ergy transfers from low frequencies, including both wind-generated motions and

PSI subharmonics, to high frequencies. Energy bispectra show significant energy

transfers to pairs of waves with nearly identical frequency. However, wavenum-

ber resonances do not fit either the Induced Diffusion (ID) or eikonal models of

interaction.

Peak transfer rates in the Nearfield are of order 1 × 10−7 W kg−1, while

transfer rates in the Farfield are 3–4× smaller. Nearfield energy transfers are larger

than local turbulence dissipation, but fall within an order of magnitude. Farfield

energy transfers and turbulence dissipation agree within a factor of 3 throughout

the measurement profile.

The suggestion is that the HOME observations of energy transfer from the

semidiurnal tide to near-diurnal waves via PSI, and subsequently from low to high

frequency waves, represent a skeleton of the open-ocean energy cascade.
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Chapter 1

Introduction

“Without deep mixing, the ocean would turn, within a few thousand
years, into a stagnant pool of cold salty water with equilibrium main-
tained locally by near-surface mixing and with very weak convectively
driven surface-intensified circulation.” –Munk and Wunsch [1998].

The meridional overturning circulation (MOC) in the world oceans is of-

ten envisioned as a sort of conveyor belt, in a view popularized by an illustration

appearing in Broecker [1987]. Warm water flows poleward from the tropics, de-

positing its heat at high latitudes, mostly in the North Atlantic and Southern

Oceans, and becomes cold (and salty) in the process. The cold water sinks to the

ocean bottom and returns to the tropics, where it rises once more to complete the

loop. The heat and freshwater fluxes associated downward convection give rise to

the concept of a “thermohaline circulation.”

Discussions in the literature emphasize the point that the popular picture

is oversimplified. In reality, tracers could not be expected to follow well-confined

paths as implied by the famous illustration [Broecker, 1991]. Wunsch [2002] takes

the position that, since mechanical forcing by wind and tide actually “drive” the

general circulation of the ocean, the term “thermohaline” should be used only

to describe transports of heat and salt. On the other hand, Rahmstorf [2003]

maintains that the concept of a separate thermohaline branch remains useful, even

if buoyancy and heat fluxes are confined only to the top of the ocean. Model studies

of climate sensitivity are cited as an important area where changes in regional heat

1



2

and freshwater forcing may influence the ocean circulations, detectable apart from

changes due to wind forcing.

1.1 Mixing recipes

The central role of mechanical forcing to ocean circulation has long been

understood. In a classic paper, Munk [1966] set the problem as a global mean

balance between advection and diffusion, the former associated with upwelling of

cold, dense deep water, and the latter with turbulent mixing. In this way, the

stratification of the oceans could be maintained. The inferred velocity and eddy

diffusiviy were the canonical values w ≈ 1 cm day−1 and κ ≈ 1 cm2 sec−1 in the

abyssal ocean. Mechanical energy to support the mixing rate was estimated at

2 TW.

In the intervening decades, it has become clear that mixing in the ocean

interior is strongly associated with boundaries and rough topography. From mea-

surements taken in the Brazil Basin, Polzin et al. [1997] inferred elevated mixing

rates near the Mid-Atlantic Ridge which were 20–30 times larger than the back-

ground κPE measured above flat topography. High dissipation rates were not con-

fined to the turbulent boundary layer, but extended for hundreds of meters above

the bottom. They concluded that enhanced mixing was due to internal waves, gen-

erated or scattered by the rough bottom topography, propagating upward before

decaying to turbulence.

Satellite altimetry has also became capable of tracking barotropic tidal

fluxes [Egbert, 1997, Egbert and Ray, 2001]. “Hotspots” of barotropic loss were

identified at bathymetric features such as the Mid-Atlantic Ridge and Hawaii.

Detection of a faint surface signature near Hawaii suggested that the tidal losses

were, at least in part, due to the generation of propagating low-mode internal tides

[Ray and Mitchum, 1997].

In revisiting the problem some four decades later, Munk and Wunsch [1998]

retained the original [Munk, 1966] estimates of both turbulent diffusivity and ad-

vection. However, these global averages are now interpreted as proxies for “patchy”
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turbulent mixing concentrated at boundaries, topography, and other potential

hotspots such as fronts and mesoscale eddies. The only two viable sources for

this amount of energy remain the winds and the astronomical tides [Munk and

Wunsch, 1998, Wunsch and Ferrari, 2004].

1.1.1 The internal wave energy cascade

Most diapycnal mixing in the ocean is attributed to turbulence caused by

breaking internal waves [Garrett and Munk, 1972, Gregg, 1987]. The mechanic

energy required support Munk [1966] inferred a global average mixing rate, bal-

ancing the rate of deep water formation against this turbulent mixing. He reported

an implied eddy diffusivity of 10−4 m2 s−1 = 1 cm2 s−1, sufficient to balance the

sinking of ≈ 25 Sv of deep water.

Turbulent mixing occurs at scales of order 1 cm and smaller. In contrast,

most of the mechanical energy input to the ocean, due to winds and tides, occurs at

scales of tens to hundreds of kilometers. Spanning the extremes between winds and

tides and turbulence are internal waves, which are envisioned to form an energy

cascade from the largest scales to the smallest scales in the oceans. The statistical

view of oceanic internal waves is summarized in the Garrett-Munk (GM) spectrum

[Garrett and Munk, 1972, Munk, 1980], which hypothesizes a universal spectral

shape for a continuum of waves. Much work during the past few decades has gone

into studying nonlinear interactions which could transport energy across scales in

a GM spectrum [Hasselmann, 1966, Olbers, 1976, McComas and Bretherton, 1977,

McComas and Müller, 1981b]. An review is given in Müller et al. [1986].

McComas and Bretherton [1977] found three dominant interactions occur-

ring within the GM spectrum: Induced Diffusion (ID), Elastic Scattering (ES),

and Parametric Subharmonic Instability (PSI). Each interaction involves a triad

of waves which are highly scale separated, in the sense that one wave has very

different spatial scale or frequency from the other two. As a result, energy is

transferred across wide jumps in the internal wave spectrum.

The names were chosen by analogy to familiar physical systems: ID involves

transfer between two small-scale, high-frequency waves, mediated by a third, ener-
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getic wave at low frequency and much larger scales. In a field of many waves, the

net result is diffusion in wavenumber space. ES is analogous to Bragg scattering: a

wave is scattered to a near-mirror-image of itself by passing through a background

wave with half its vertical wavelength. Finally, PSI transfers energy between a

large-scale wave and a pair of nearly opposed, small-scale waves. The classical

description involves exciting a pendulum by vertically translating its support at

twice the pendulum frequency.

Evaluation of the energy transfer integrals found that the GM spectrum is

in near-equilibrium at high frequencies with respect to ID; and in the 2f–4f band

with respect to PSI [Olbers, 1976, McComas and Müller, 1981b, Müller et al.,

1986]. Energy transfer by PSI is found to create an excess of energy in subharmonic

frequencies f–2f , implying that there is an unknown sink for low frequency energy.

Notably, the GM spectrum includes no tides, so that frequencies between 2f–4f

and f–2f may be significantly out of balance with respect to PSI where tides

are present. The GM model also assumes vertical symmetry in the internal wave

spectrum, so that ES produces no net energy transfer. This symmetry does not

hold for wind-generated near-inertial waves or for internal tides near generation

sites, hence ES may also play a role in the real ocean.

Resonant interaction theory is exact only in the limit of small nonlinearity.

As ID moves energy to high wavenumbers the nonlinearity grows, and the validity

of the approximation is becomes uncertain. To address this concern, eikonal ap-

proaches have also been used to model the interaction between low frequency, large

scale waves and waves in the high frequency, small scale region of the spectrum

[Henyey et al., 1986, Broutman and Young, 1986]. This “ray-tracing” method

tracks small-scale “test waves” as they propagate through the large scale, slowly-

varying “background field.” Wave triads do not appear in this model; instead, test

waves are assumed not to interact with one another as they pass through and are

refracted by the background field.
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1.1.2 Connecting winds and tidal forcing to the continuum

An outstanding question remains: how do the main energy sources for

internal waves, the winds and the tides, which vary by location and time, support

a near-universal continuum of internal waves? Nonlinear wave interactions that

transfer energy between scales in the internal wavefield have been studied primarily

in the context of a GM spectrum. If enhanced mixing is confined around areas of

strong internal tidal or near-inertial wave generation, then are energy transfers in

a near-GM spectrum the appropriate model for the turbulent energy cascade, or

does a different energy cascade exist for strongly non-GM wavefields?

The PSI interaction, in particular, has attracted recent attention as a pos-

sible first step in the the tidal energy cascade [Hibiya et al., 2002, MacKinnon and

Winters, 2005, Carter and Gregg, 2006, Alford et al., 2007, Young et al., 2008].

The results suggest that PSI of the internal tide can transfer energy from a coher-

ent internal tide to subharmonic waves of near-diurnal frequency on timescales an

order of magnitude shorter than PSI timescales in the GM spectrum.

1.2 Outline of the thesis

The purpose of this thesis is to investigate, in observational data, nonlin-

ear interactions which transfer energy from the low-mode internal tide and wind-

generated near-inertial waves into the internal wave continuum. Novel spectral

techniques are used to identify interacting waves and their resonant configurations.

The results are compared to existing theories of wave-wave interactions.

Data were taken from the Research Platform FLIP in 2001–2002, during the

Hawaii Ocean Mixing Experiment (HOME), which intensively surveyed the tidal

energy cascade near the Hawaiian Ridge. Both the 2002 Nearfield location, on the

southwest shoulder of Kaena Ridge and the 2001 Farfield, located 430 km to the

southwest, are located in a propagating semidiurnal tidal beam. In the Nearfield,

11,000 profiles of density and velocity, to a depth of 800 m, were collected at

4 minute intervals over a period of 30 days. At the Farfield, 9000 profiles were

obtained. The duration of the records, each spanning 2 complete spring-neap
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cycles, allows statistically significant observation of nonlinear interactions.

Chapter 2 presents evidence for nonlinear interaction between the low-mode,

semidiurnal tide and high-mode, diurnal motions in the Nearfield of Kaena Ridge.

Bispectral analysis is used to show phase coupling between the dominant M2 fre-

quency, long-vertical-scale internal tide and waves with frequency near 1
2
M2 and

vertical scale ≈ 100 m. A novel prefiltering separates upward-propagating from

downward-propagating subharmonic waves, resulting in increased statistical sig-

nificance of the bicoherence and supporting the wave triad configuration predicted

by parametric subharmonic instability (PSI).

Subharmonic energy is also found to vary with the fortnightly cycle. A view

of the bicoherence in the time domain shows that resonant interaction “events”

are visible during peak spring tide. Growth timescales are found to be 4–7 days,

in good agreement with theoretical predictions.

Chapter 3 investigates further nonlinear interactions which transfer energy

from low frequency shears, which include both the tidal subharmonic and wind-

generated, near-inertial shears, to high frequencies. Both the HOME Nearfield and

Farfield data are examined, with the Farfield taken as the more representative view

of the open ocean spectrum. Stress-shear covariances −
〈
u′iw

′dUi
dz

〉
are introduced

as a method of estimating energy transfer rates. The energy bispectrum is used to

demonstrate that significant energy transfers are confined to pairs of high frequency

waves with nearly equal frequency. This finding is consistent with both ID and

eikonal models of nonlinear interaction. However, wavenumber analysis shows

while a wide variety of triads are active, they do not generally satisfy the scale

assumptions of either model.

Estimates of turbulent dissipation are made from overturns analysis at both

locations. The Nearfield energy transfer rate of order 1×10−7 W kg−1 is somewhat

higher than the dissipation estimates, but agrees within an order of magnitude.

The Farfield transfer rate is about 3 times smaller, and agrees with the dissipation

rate within a factor of 3 throughout the water column.

The results are summarized in Chapter 4. Taken together, the tidal-subharmonic

and low frequency–high frequency transfers outline a significant energy pathway
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from internal tidal and wind forcing into the internal wave continuum.



Chapter 2

Subharmonic energy transfer

from the semidiurnal internal tide

at Kaena Ridge

2.1 Introduction

An estimated 2 TW energy for diapycnal mixing, equivalent to a globally-

averaged diffusivity of order 10−4m2 s−1, is needed to balance deep water formation

and maintain the abyssal stratification of the world ocean [Munk and Wunsch,

1998, Wunsch and Ferrari, 2004]. Tidally-driven dissipation remains one of the

viable candidates for producing this mixing rate in the deep ocean. A downscale

energy cascade is hypothesized, wherein energy at large spatial scales is transferred

from the tides through ever-smaller-scale internal waves, until it is lost to turbulent

dissipation. Nonlinear wave-wave interactions are thought to play a key role in this

process [Müller and Olbers, 1975, McComas and Bretherton, 1977, McComas and

Müller, 1981b, Müller et al., 1986].

Resonant nonlinear interactions were first considered for discrete sets of

ocean waves by Phillips [1960]. The analysis was subsequently extended to continuous-

spectrum wavefields [Phillips, 1961, Hasselmann, 1962, 1963a,b, Bretherton, 1964,

Benney and Saffman, 1966]. McComas and Bretherton [1977] examined energy

8
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transfers in a Garrett-Munk (GM) model spectrum and found three distinct mech-

anisms, which they named Induced Diffusion, Elastic Scattering, and Parametric

Subharmonic Instability.

Each named interaction involves a resonant triad of waves which is highly

scale-separated in at least one of frequency and wavenumber. Induced Diffusion

(ID) transfers energy between two similar-scale waves and a third wave with much

lower frequency but much larger wavenumber. Elastic Scattering (ES) involves a

pair of waves with nearly identical horizontal wavenumbers but opposite vertical

wavenumbers, and a third wave with very small horizontal wavenumber but nearly

double the vertical wavenumber.

The focus of this study is Parametric Subharmonic Instability (PSI), in

which a large-vertical-scale wave interacts with a pair of much smaller-vertical-

scale waves which have nearly opposed wavenumbers. Equatorward of ∼ 28.9◦

latitude), the subharmonic of the semidiurnal M2 tide can exist as a free wave.

There, PSI enables a nonlinear energy transfer between the low-mode semidiurnal

tide and pairs of high-mode subharmonic waves.

Bispectral analysis has been used to successfully observe nonlinear coupling

in turbulence [Kim and Powers, 1979] and surface gravity waves [Elgar and Guza,

1985a,b, Elgar et al., 1995]. Initial estimates of the PSI interaction timescale were

very long, suggesting that the interaction could not be detected experimentally

under general open ocean conditions [McComas and Müller, 1981a, Olbers and

Pomphrey, 1981, Müller et al., 1986]. Early bicoherences reported by Neshyba

and Sobey [1975] have been attributed to kinematic effects rather than nonlinear

resonance and energy transfer.

Shorter interaction timescales are not ruled out for non-independent, non-

Garrett-Munk wavefields, such as one dominated by a strong, coherent internal tide

[Olbers and Pomphrey, 1981, McComas and Müller, 1981a]. Theoretical studies

which include an internal tide suggest a “fast” PSI with a timescale of a few days,

rather than a hundred days [Hibiya et al., 1998, 2002, MacKinnon and Winters,

2005, Frajka-Williams et al., 2006, Young et al., 2008].

The Hawaiian Ridge presents nearly ideal conditions for observing nonlin-
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ear interactions between the internal tide and existing wavefield. Barotropic tidal

flow is essentially perpendicular to the (2000-km long) ridge [Rudnick et al., 2003] ,

with an M2 barotropic loss estimated at 18±6GW [Egbert and Ray, 2000]. During

the Hawaii Ocean Mixing Experiment (HOME), the structure and propagation of

the internal tide were intensively studied at the Hawaiian Ridge. In the HOME

Nearfield program, the Research Platform FLIP was moored on the shoulder of

Kaena Ridge in a six-week deployment. Using a combination of Doppler sonars

and profiling CTDs from FLIP, Rainville and Pinkel [2006] observed a coherent,

principally low-mode semidiurnal tide which dominated the velocity and displace-

ment fields. They also found a significant diurnal energy flux accompanied by

strong vertical shears.

Frajka-Williams et al. [2006] calculated wavenumber bicoherences from AVP

profiles taken during HOME. The results were inconclusive due to the small number

of profiles, unknown spatial variability between profiling stations, and absence

of frequency information. Meanwhile, Carter and Gregg [2006] found persistent

near-diurnal waves coupled to the semidiurnal tide during their shipboard survey

in HOME Nearfield. They reported a strong bicoherence within a depth range

525 m–595 m, consistent with an observed M2 tidal beam.

The present study attempts to document PSI at Kaena Ridge, using the

month-long profiling timeseries collected aboard the R/P FLIP during HOME

Nearfield. Section 2.2 begins with a brief overview of resonant nonlinear inter-

action theory. In Section 2.3, the FLIP observations are presented. They show

apparent growth of diurnal shears during successive fortnightly cycles. Section 2.4

examines the principal spectral components in the data. Section 2.5 discusses bis-

pectral analysis and its application to near-inertial PSI. Significant bicoherences

are presented as evidence of nonlinear energy transfer. In Section 2.6 we demon-

strate how prefiltering in wavenumber-frequency space improves bicoherence ob-

servations and helps identify the resonant interactions. In Section 2.7 we compute

triple products of interacting waves in the depth-time domain, showing interaction

“events” as they occur. Section 2.8 compares theoretical and observed timescales

for subharmonic growth. Finally in Section 2.9 we compare the findings in the
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Nearfield to the Farfield and summarize our results.

2.2 Background

The theory of weak resonant interactions describes systems of waves in

which each member approximately satisfies the linear dispersion relationship. For

internal waves,

ω2(k) =
f 2m2 +N2(k2 + l2)

k2 + l2 +m2
, k = (k, l,m). (2.1)

When the waves also satisfy the resonance conditions for wavenumber and

frequency, e.g., a triad of waves with some numbering convention (1, 2, 3), such

that

k1 + k2 = k3, (2.2)

ω1 + ω2 = ω3, (2.3)

then a weak exchange of energy will take place between the members.

The amplitudes a1, a2, a3 of the waves are approximately related by

ȧ3 = −εiω3Γ123a1a2, (2.4)

where the interaction coefficient Γ123 is a function of the member wavenumbers

[Phillips, 1960, Hasselmann, 1962]. The ε is a reminder that the interaction must

remain small, a restriction that will eventually be exceeded if the exponential

growth continues for an appreciable time.

Young et al. [2008], hereafter referred to as YTB08, consider a special case

of PSI when the subharmonic waves are near-inertial. The finite amplitude tidal

“pump” field has frequency ω = 2f0 +σ, where f is the local inertial frequency and

σ is a “small” detuning parameter. Exactly-resonant pairs of near-inertial waves

(σ = 0) will grow exponentially with a rate γmax, which depends upon the pump

amplitude and the wavenumbers of the participating waves.

γmax =
1

2

√
υ2 −

(
N2

2f0

)2(
k2

1

m2
1

+
k2

2

m2
2

− 2
σf0

N2

)2

, (2.5)
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where

υ =
ak2

4(ω − f0)
. (2.6)

If σ ≥ 0 and hence ω ≥ 2f0, pairs of near-inertial waves can still grow

exponentially with a rate near γmax, provided that the pump strength υ2 dominates

the detuning represented by the second term under the square root. YTB08 note

that the dominant term, among the many that affect the M2 instability, quantifies

the lateral advection of horizontal subharmonic Reynolds stress.

2.3 Observations

2.3.1 Site and instruments

Kaena Ridge is an energetic generation site for the internal tide [Egbert

and Ray, 2001, St. Laurent and Garrett, 2002, Rudnick et al., 2003]. During the

2001 HOME Nearfield experiment, the Research Platform FLIP was moored in

the Kauai Channel at (21.68◦ N, 158.63◦ W), in 1100 m of water. The location

on the southwest shoulder of Kaena Ridge allowed the observation of a upward-

and southward-propagating M2 tidal beam emanating from the northeast edge of

the ridge [Rainville and Pinkel, 2006]. The previous year, the HOME Farfield

component was deployed 430 km to the south-southwest, in the approximate path

of a propagating M2 tide. Both locations are shown in Figure 2.1.

The Nearfield data comprise 11,768 profiles of velocity and density, collected

at 4 min intervals during the 6-week FLIP deployment. Over a similar period of

time, about 9400 profiles were collected in the Farfield. Temperature and salinity

data were recorded by tandem SeaBird SBE11 CTDs with a vertical resolution of

approximately 2 m. The Deep-8, a combination up/down-looking Doppler sonar

with 4 beams per direction, measured horizontal velocities with a 4 m resolution.

Vertical velocities were inferred from isopycnal motions derived from the CTD data.

Figure 2.2 shows a diagram of FLIP and its instruments. A detailed discussion of

the instruments and deployment site is found in Rainville and Pinkel [2006].
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This paper focuses on the propagating baroclinic en-
ergy, attempting to quantify the energy flux within the
generating region, where the spatial structure of the
flux is complex, and 450 km offshore, along the path of
the propagating waves. We discuss two series of in situ
measurements of the internal wave field obtained from
the Research Platform (R/P) Floating Instrument Plat-
form (FLIP) as an aspect of the Hawaii Ocean Mixing
Experiment (HOME).

The energy flux density (W m!2) of an internal wave
(or a superposition of waves) is

F " #p! · u$, %1&

where p' and u are the pressure and velocity pertur-
bations associated with the motions and # $ defines an
average over many wave periods. For individual wave
packets, the energy flux can be expressed as the prod-
uct of the total energy E of the wave and the group
velocity cg.

In recent years, E. Kunze and colleagues (Kunze et
al. 2002; Althaus et al. 2003) have pioneered the use of
profiling instruments to estimate energy fluxes. With
several profiles per day, they define a mean velocity
and density field, against which the perturbation veloc-
ities and relative isopycnal displacement are computed.
Perturbation pressure is calculated from integrating the
hydrostatic equation. This technique has proven to be
remarkably effective in regions in which the semidiur-
nal internal tide dominates. In more complex regions,
where fluxes at several wave frequencies are antici-
pated, a more intensive time series approach is re-
quired.

Using the R/P FLIP, we have developed the capabil-
ity to profile the oceanic velocity and density fields
from the surface to approximately 800-m depths at
4-min intervals. The high sampling frequency and mul-
tiweek duration of the FLIP observations enable esti-
mates of energy flux continuously in frequency with
minimal statistical error. In addition to providing a first
look at the frequency dependence of the flux at Hawaii,
the FLIP measurements can provide valuable error
bars for the flux estimates obtained by colleagues with
more limited time sampling. A description of the FLIP
observations is given in section 2, followed by a display
of the internal wave energy flux spectrum (section 3).
The vertical structure (section 4) and time variability
(section 5) of the energy fluxes are discussed with a
focus on the semidiurnal and diurnal frequency bands,
providing insight to the generation and propagation of
the internal tide. Our observations also suggest the ex-
istence of a nonlinear interaction that transfers energy
from low-mode semidiurnal waves to higher-mode
waves at one-half of their frequency.

2. Data

a. Sites

Data were obtained during two 6-week cruises of the
R/P FLIP, one at an active internal-wave generation
site (Nearfield) and the other 430 km offshore
(Farfield), along the anticipated propagation path of
the baroclinic tide (Fig. 1).

During the autumn 2002 Nearfield program, FLIP
was trimoored in the Kauai Channel between Oahu and
Kauai, at the southwest edge of the Kaena Ridge
(21.68°N, 158.63°W). Water depth at this site is 1100 m.
The Kaena Ridge is one of the most active regions of
internal tide generation found in the HOME Survey
program (Rudnick et al. 2003). Despite the strong tidal
currents, the 3-point mooring maintained FLIP’s posi-
tion within 500 m.

The current ellipses of the M2 and K1 barotropic tides
obtained from the TPXO.5 regional tidal model (Eg-
bert and Erofeeva 2002) are shown in Fig. 2. The cur-

FIG. 1. Location of the Nearfield and Farfield sites (stars), near
the Hawaiian Ridge. The thin black line indicates the 1000-m
contour. Depth-integrated energy flux vectors from a numerical
model (Merrifield and Holloway 2002) are also indicated.

JUNE 2006 R A I N V I L L E A N D P I N K E L 1105

Figure 2.1: Deployment of the Research Platform FLIP in 2001–2002 [Rainville
and Pinkel, 2006]. As part of the Hawaii Ocean Mixing Experiment, FLIP was
moored at two locations near Kaena Ridge, Hawaii. During the 2002 Farfield com-
ponent, the measurement location was approximately 430 km to the southwest of
the the ridge crest, in the approximate path of an M2 tidal beam (model fluxes are
shown by the arrows). The 2002 Nearfield component placed FLIP on the shoulder
of Kaena Ridge in approximately 1100 m of water, in a location intersecting the
southward-propagating ray emanating from the north ridge.
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sequently processed following Anderson (1993). The
profiles obtained by the upper CTD overlapped those
measured by the lower instrument by about 20 m at
depths around 400 m, enabling the cross calibration of
upper and lower profilers. After response corrections
and calibration, the vertical resolution of density struc-
ture was slightly better than 2 m.

Cruise-averaged (respectively, 36- and 29-day aver-

ages) profiles of buoyancy frequency for the Nearfield
and the Farfield are shown in Fig. 4. Both profiles
peak at values around 10 cycles per hour (cph) at 100 m,
dropping exponentially with depth to reach 2 cph at
800 m. Note that the mixed layer in the Nearfield is
slightly shallower than in the Farfield. Seasonal tem-
perature and salinity profiles from the World Ocean
Atlas 2001 (Stephens et al. 2002; Boyer et al. 2002) have
been used to complete the profiles from 800 m to the
seafloor.

An eight-beam Doppler sonar (the Deep-8) was de-
ployed at a depth of 400 m in both experiments. It
measured velocities in the same range profiled by the
CTDs (0–!800 m). This sonar had four beams oriented
upward (170 kHz) and four beams facing down (140
kHz). Velocity profiles were recorded with 4-m depth
resolution and 30-s temporal resolution. Repeat se-
quence codes (Pinkel and Smith 1992) were transmit-
ted, with a bandwidth of "8 kHz. Ocean velocities were
estimated by combining the Doppler velocities into
east, north, and up components, taking into account the
tilt and rotation of the sonar as well as the slow drift
velocity associated with the motion of FLIP. Baroclinic
velocities were estimated by subtracting modeled baro-
tropic tidal velocities (M2, S2, K1, O1, N2, K2, P1, and
Q1) from the sonar/GPS estimate of absolute velocity
using the TPXO.5.1 model (Egbert 1997; Egbert and
Erofeeva 2002).

In the Nearfield, roughly 75% of the water column
was sampled, whereas only the top 15% was measured
in the Farfield. However, in the Wentzel–Kramers–
Brillouin (WKB) stretched coordinates appropriate for
linear, refractive, wave propagation (Gill 1982), where

FIG. 3. Schematic diagram of CTDs and Doppler sonar aboard
FLIP.

FIG. 4. Mean buoyancy frequency profiles from observations and extrapolated using the World Ocean
Database, for the Farfield (black line) and the Nearfield (gray line): (a) the complete water column for
the Farfield and (b) the top 1100 m (domain of the Nearfield).

JUNE 2006 R A I N V I L L E A N D P I N K E L 1107

Figure 2.2: Schematic of R/P FLIP Instrumentation during HOME, 2001–2002.
Tandem Seabird SBE11 CTDs profiled down to approximately 800 m once every
4 minutes with approximately 2 m resolution. The Deep-8 Doppler sonar recorded
horizontal velocities with approximately 4 m vertical resolution. Vertical velocities
were inferred from the motion of isopycnals as measured by the CTDs. More than
11000 profiles were collected during the Nearfield and more than 9000 during the
Farfield.

2.3.2 Coordinate systems

In an Eulerian frame of reference, the mutual advection of finite amplitude

waves is a non-linear process that is reversible. In an attempt to minimize the

signature of reversible distortion in the bispectral estimates, we carried out the

analysis in semi-Lagrangian coordinates. Here, the vertical coordinate is fixed

to isopycnals, thereby reducing Doppler spreading of high-vertical-wavenumber

motions [Pinkel, 2008]. Subharmonic motions with high shear more nearly resemble

linear plane waves in the semi-Lagrangian frame. Reference isopycnals are chosen

at two-meter mean separation, using the cruise-averaged density profile ρ0(z). This

discussion focuses on the semi-Lagrangian analysis.

A WKB-stretched vertical coordinate zwkb was also defined from the av-

eraged buoyancy profile N(z). The stretched coordinate preserves straight phase

lines for linear internal waves and is useful for comparing vertical scales as N(z)

changes [Gill, 1982]:

zwkb(z) =
1

N0

∫ z

0

N(z)dz. (2.7)

The reference buoyancy frequency N0 was chosen such that the total profiling depth
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is the same after WKB stretching.

2.3.3 Displacement, velocity, shear

Isopycnal displacements η (Fig. 2.3) and baroclinic horizontal velocities u, v

(Fig. 2.4) show a semidiurnal tide with a clear fortnightly cycle and long vertical

scales. Barotropic velocities were removed from the velocity record using estimates

from the TPXO.5.1 model [Egbert, 1997]. Baroclinic vertical displacements are of

order 100 m at depths below 500 m. Horizontal velocities approach 0.5 m s−1 in

the upper thermocline. Predominantly downward propagation of the phase lines

indicates upward energy propagation, consistent with an upward-southward beam

emanating from the north rim of the ridge crest [Rainville and Pinkel, 2006] .
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Figure 2.3: Isopycnal Displacement. Baroclinic vertical displacements are of
order 100 m at depths below 500 m. Long vertical scales dominate the record.
Peak spring tides appears on days 265 and 279. The maximum depth of the CTD
profiles was reduced to 710 m after day 280.

Semi-Lagrangian vertical velocity w was computed as the centered differ-

ence of displacement. Tidally bandpassed wtide was integrated to show the dis-

placement ηtide due to tidal motions only (Fig. 2.5). The downward phase prop-

agation and coherent vertical structure are more clearly seen after WKB-scaling

and normalization.

Velocities (u, v, w) and isopycnal displacement η were WKB-scaled to nor-

malize variances across depths,

η = η0

√
N

N0

, w = w0

√
N

N0

, (u, v) = (u0, v0)

√
N0

N
. (2.8)
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Across Ridge Velocity
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Figure 2.4: Velocity, Semi-Lagrangian (Isopycnal) Coordinates. The record
contains a superposition of large vertical scale, semidiurnal motions and lower-
frequency, shorter vertical scale motions. The reduced depth of the CTD profiles
after day 280 affects the semi-Lagrangian velocities, which depend upon isopycnal
depth information.

Figure 2.5: Semidiurnal-Bandpass Displacement (Semi-Lagrangian). Depth and
variance are WKB-scaled. Coherent vertical structure and predominantly down-
ward phase propagation are visible.
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Semi-Lagrangian shears were computed as centered differences of velocity

divided by the instantaneous separation of isopycnals (with mean separation 4 m).

Shear variance varied more closely as N than the N3/2 predicted by WKB theory.

Therefore, wherever scaled shears are presented, they have been normalized by

(uz, vz) =

(
N0

N

)
(uz0, vz0). (2.9)

The shear record, shown in Figure 2.6, is dominated by waves of approxi-

mately 100 m vertical wavelength. There is a suggestion of a spring-neap cycle in

the shear variance. Upward- and downward-propagating waves of comparable mag-

nitude form an overlapping chevron or ‘X’ pattern which is most apparent below

400 m (Fig. 2.7). The pattern resembles that observed near the during the Internal

Waves Across the Pacific (IWAP) experiment, near the M2 critical latitude of 28.9◦

N [MacKinnon and Winters, 2005, Alford et al., 2007]. The D1 waves below 300 m

depth grow with each spring tide, exceeding the amplitude change predicted by

WKB theory for waves propagating vertically through a slowly varying N2 profile.

Several discontinuities in the data require special attention. Velocity arti-

facts from boundary reflections and the transition from upward-looking to downward-

looking modes of the Deep-8 are visible in narrow depth bands 150–156 m, 412–

424 m, and 526–552 m. The change to semi-Lagrangian coordinates spreads the

disruptions over a 10–20 m range. An interruption in data collection occurs on day

280, after the 8099th profile; afterward, the depth coverage of the CTD is reduced

to 700 m. The change is evident in the displacement and semi-Lagrangian velocity

records.

2.4 Depth-frequency spectra

Depth-frequency power spectra were computed using the multitaper method,

using a sequence of 7 prolate spheroidal tapers. Due to the interruption at day

280, only the first 8099 profiles were used for spectral estimation.
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Figure 2.6: Vertical Shear, Semi-Lagrangian (Isopycnal) Coordinates. Depth is
WKB-stretched, while variance is scaled by N/N0 instead of the (N/N0)

3/2 of WKB
theory. Waves with short vertical scales and approximately diurnal period are
seen propagating both upward and downward. Due to the use of semi-Lagrangian
coordinates and WKB-stretching, wave crests appear as nearly straight lines. A
hint of a fornightly cycle can be seen in the variance, which peaks around days 271
and 285, or about 5–7 days after peak spring tides (days 265 and 279).
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Figure 2.7: Diurnal-Bandpass Shear (Semi-Lagrangian). Depth and variance are
WKB-scaled. Diurnal waves seen in Fig. 2.6 are brought out by bandpass filtering.
The chevron or ‘X’ pattern of waves propagating in opposing vertical directions is
evident during days 269–272 and 278–285, following peak spring tides (days 265
and 279).
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2.4.1 Displacement and velocity spectra

The isopycnal displacement spectrum (Figure 2.8a) is dominated by an

M2 line which extends through the entire water column, peaking at around 360

m depth and again, more strongly, at about 550 m. Also evident is peak near

the 1
2
M2 frequency, with variance within an order of magnitude of the M2 line.

This subharmonic signal is clearly distinguishable from the local inertial frequency

f = 1/32.7 h. Interaction lines are visible at a series of sum frequencies M2 +

1
2
M2, 2M2, . . .

Eulerian and semi-Lagrangian two-sided spectral estimates for complex ve-

locity U = (u + iv) are shown for comparison in Fig. 2.9. Both estimates (a) and

(b) display the expected M2 line with predominantly cyclonic motions. Some an-

ticyclonic content is present at mid depths. The near-inertial line, which we will

tentatively call D1 here, is ambiguously positioned between 1
2
M2 and f . The Eule-

rian velocities (2.9b) show clear interaction lines at frequencies −2D2, −(D2 +D1),

and (D2 −D1) due to vertical mutual advection. These lines are almost absent in

the semi-Lagrangian spectrum (Fig. 2.9a).

2.4.2 Shear and strain

The near-inertial line seen in the velocity spectra is mirrored in the shears.

When variances is normalized by N/N0, the peak near-inertial shear is found in a

broad band betweeen 480 and 600 meters. Smaller bursts of activity are seen near

the 300 m and 340 m depths.

It is more difficult here to discriminate between f and 1
2
M2; the peak be-

tween 250 and 450 m is more f -like, while it is more 1
2
M2-like below 500 m. Very

little shear is seen at other frequencies. M2 is noticeably quiet in shear, as expected,

given the large vertical scales of the semidiurnal tide.

The vertical strain rate ηz (Fig. 2.8b) measures the dilation of layers between

isopycnal surfaces. Some strain variance is visible around 1
2
M2. As with shear,

the energetic M2 motions associated with the low-mode tide create very little

strain. This is consistent with YTB08 ’s near-inertial PSI model, in which the

near-inertial waves are associated with horizontal Reynolds stresses rather than



21

Figure 2.8: Power Spectral Estimate, Displacement and Strain (Semi-
Lagrangian). a) Isopycnal Displacement. Semidiurnal motions at M2 frequency
are accompanied by a subharmonic at 1

2
M2 that is clearly distinct from the local

inertial frequency f . b) Vertical Strain. Some variance is visible around 1
2
M2. As

with shear, the energetic M2 motions associated with the low-mode tide create
very little strain.
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Figure 2.9: Two-Sided Power Spectral Estimates of Complex Velocity U = (u+
iv), a) Semi-Lagrangian and b) Eulerian Coordinates. Semidiurnal motions at
M2 frequency are accompanied by large variances near its half-frequency. The
subharmonic is more 1

2
M2-like than f -like in both coordinate systems. Lines at the

sum frequencies −2D2, −(D2+D1), and (D2−D1) are caused by mutual advection
and are visible in the Eulerian frame (b), but not in the semi-Lagrangian frame
(a).



23

local modulation of the buoyancy frequency N2.

2.5 Bispectra

2.5.1 Definitions

Higher-order spectra are useful for identifying phase coupling between waves

in a multiple-scale, broadband wavefield. The estimator for detecting triad (three-

wave) resonances is the bispectrum, defined as the Fourier transform of the triple

covariance of the signal z(x),

R3(x1,x2) =

∫
CN

z∗(x)z(x + x1)z(x + x2)dx. (2.10)

For time series data it is usually practical to compute the covariance over

time shifts (x1,x2) = (τ1, τ2). The Fourier transform of this covariance is the

frequency bispectrum (Kim and Powers 1979):

B(ω1, ω2;ω1 + ω2) = E
[
A(ω1)A(ω2)A

∗(ω1 + ω2)
]
, (2.11)

where the A(ωi) are the Fourier coefficients of φ at frequencies ωi, and E[·] indicates

the expected value.

If the wavefield is Gaussian, the bispectrum will be zero for all combinations

of frequencies. Conversely, a nonzero bispectrum at some triple (ωk, ωl, ωk+ωl) im-

plies a fixed phase relationship between the frequencies ω1, ω2, and the bifrequency

ω1 + ω2.

A sample estimate for (2.11), computed over a finite record will have a

nonzero value even if the wavefield is Gaussian. Therefore it is useful to establish

a statistical lower bound for significant nonzero values.

The bicoherence is the bispectrum normalized by the variances,

b(ωk, ωl;ωk + ωl) =

{
|B(ωk, ωl)|2

E
[
|A(ωk)A(ωl)|2

]
E
[
|A(ωk+l)|2

]}1/2

. (2.12)

This choice of normalization assures 0 ≤ b ≤ 1. The bicoherence is χ2 distributed

for large degrees of freedom, with confidence intervals around zero bicoherence
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given by b299% = 9.2/ndof, b
2
95% = 6.0/ndof, b

2
90% = 4.6/ndof [Elgar and Guza, 1988].

A discussion of effective degrees of freedom in bispectral measurements of PSI is

undertaken in Appendix A.

A related quantity is the biphase, or the argument of the bispectrum (2.11),

φ(ω1, ω2;ω1 + ω2) = arctan

[
={B(ω1, ω2;ω1 + ω2)}
<{B(ω1, ω2;ω1 + ω2)}

]
, (2.13)

from which the direction of the energy transfer can be inferred.

2.5.2 Bispectral Estimation

Bispectral estimates are computed at each semi-Lagrangian (isopycnal)

depth, using time series up to the break on Day 280 (record 8099). Prior to taking

Fourier transforms, data are divided into 3-day, 50%-overlapping subrecords and

tapered with a Kaiser window. Expected values in (2.11) are approximated by

taking a sample mean by frequency over a depth range and convolving with a 3×3

averaging window. The data are split into two overlapping depth ranges: an upper

range of 100–500 m and a lower range 300–700 m, chosen wide enough to allow

averaging over several vertical wavelengths.

Cross-bispectral variables

Frequency bispectra are computed in the cross-bispectral form

B(ω1, ω2) = B [Uz(ω1),Uz(ω2),W
∗(ω1 + ω2)] . (2.14)

Frequencies ω1, ω2 correspond to the appropriate Fourier coefficients of Uz, while

the bifrequency ω1 + ω2 corresponds to W . U = u + iv is defined such that u is

across-ridge, pointing away, so that v is along-ridge pointing east-southeast. Time

domain and Fourier representations of random variables are here used interchange-

ably, with the dependent variable signifying the appropriate version.

These cross-bispectral variables are chosen to maximize the signals of poten-

tial interaction partners relative to the variance of motions that are not expected

to participate in the interaction. Vertical velocity W gives the clearest picture of

the low-mode D2 tides which can supply energy via PSI. Meanwhile, vertical shear,

Uz, emphasizes high-wavenumber D1 band waves which may receive energy.
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2.5.3 Bispectra, 300–700 m depth average

Figure 2.10 shows the real and imaginary parts of the bispectral estimate

for the 300–700 m depth range. Large bispectral variances are seen in both the

real and imaginary part of the bispectrum, near the (D1, D1) frequencies, with the

real part several times larger (this is more easily seen in the Biphase, Fig. 2.11).

Bicoherences, in Figure 2.11, are larger than 0.6 for the same combination of

frequencies, indicating that the large bispectral values in Fig. 2.10 are statistically

significant. The corresponding biphase is slightly negative, between −π/4 and

−π/6.
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Figure 2.10: Cross-Bispectral Estimate, 300–700 m Depth. Units of the bispec-
tra are (m s−3 cpd−1). The axes show negative (anticyclonic) frequencies only
for ω1 and ω2 in cycles per day. The value of the bispectrum, B(ω1, ω2;ω1 +
ω2) = B [Uz(ω1),Uz(ω2),W

∗(ω1 + ω2)], is plotted at coordinates (ω1, ω2). Uz(ω)
is the Fourier transform of complex horizontal velocity, with u pointing across-
ridge/away. W ∗(ω) is the conjugate of the Fourier transform of vertical velocity.
The frequencies ω correspond to negative (cyclonic) frequencies in the two-sided
spectra of (Fig. 2.9). The local inertial frequency f is indicated by the red line,
while the diurnal D1 is marked by the black dotted line. The black solid line indi-
cates the semidiurnal bifrequency (sum frequency D2). Large bivariances are seen
in both real and imaginary parts of B(ω1, ω2), with the real part 2–3 times larger.
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Figure 2.11: Bicoherence and Biphase, 300–700 m Depth. The axes show frequen-
cies of ω1 and ω2 in cycles per day. The bicoherence b(ω1, ω2), the normalized bis-
pectrum, represents the phase coherence between triads of waves (ω1, ω2, ω1 +ω2),
with the result plotted at position (ω2, ω1). 0 ≤ b ≤ 1. The local inertial f and di-
urnal D1 frequencies are indicated by red and black dotted lines, respectively. The
semidiurnal bifrequency D2 is marked by the solid black line. The strong bicoher-
ences around (D1, D1;D2) confirm that the large bispectral values in Fig. 2.10 are
statistically significant. The corresponding biphase φ(ω1, ω2) is slightly negative,
with −π/4 < φ < −π/6.

2.5.4 Bispectra, 100–500 m depth average

At shallower depths, both the real and imaginary bispectra also display

variance near (D1, D1). The biphase in Figure 2.13 is similar to that of the lower

depth range (Fig. 2.11). However, the low bicoherence shows that this bispectral

result is not significant.

2.6 Vertical propagation prefiltering

The canonical PSI interaction involves three waves: a parent wave along

with one upward- and one downward-propagating subharmonic. The predicted

relationship can be tested by computing cross-bispectra using wave fields which

have been separated by direction of vertical propagation. Significant bicoherences

in the lower 300–700 m depth range are expected only when bispectra (2.14) are

computed using shear fields with opposite-sign vertical propagation.
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Figure 2.12: Cross-Bispectral Estimate, 100–500 m Depth. As in Fig. 2.10, but
for the shallower depth range. Units of the bispectra are (m s−3 cpd−1). The
axes show frequencies of ω1 and ω2 in cycles per day. The value of the bispectrum,
B(ω1, ω2), is plotted at position (ω2, ω1). Some variance is seen in both the real and
imaginary parts of B(ω1, ω2) near (D1, D1), but the interaction is not significant
(see Fig. 2.13).
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Figure 2.13: Bicoherence and Biphase, 100–500 m Depth. As in Fig. 2.11, but
for the shallower depth range. The biphase is similar to that in the lower depth
range (Fig. 2.11), but the nearly null bicoherence around (D1, D1) shows that
the interaction between semidiurnal and diurnal frequencies is not statistically
significant over this depth range.
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Modified bispectral estimates take the form

B(ω1, ω2) = B
[
U+
z (ω1),U−z (ω2),W

∗(ω1 + ω2)
]
, (2.15)

where U+
z and U−z contain only upward- and downward-propagating energy, re-

spectively. To obtain this separation, the complex shears are 2-d Fourier trans-

formed. Opposite quadrants in (ω, k)-space, containing anticyclonic and cyclonic

wave components with the same sense of vertical propagation, are collected and

inverse Fourier transformed to recover U+
z and U−z .

Prefiltering by upward/downward wave propagation reveals some asymme-

try in the interacting wavefields, as shown in Figure 2.14. The bispectral variance

is centered around a frequency slightly higher than D1 in upward-propagating en-

ergy and a slightly lower frequency, between D1 and f , in the downward field .

Bivariances are somewhat smaller, at about 0.4 times the variance in the full field

result, but they have similar relative magnitude and sign. Figure 2.15 shows that

the peak in the bicoherence is again larger than 0.6 and is centered at the same

location as the real part of the bispectrum. The biphase is slightly closer to zero

than in the unfiltered case, with φ ≈ −π/6 at the peak.

By contrast, the bicoherences disappear when the computation is made us-

ing shear frequencies which have the same-sign vertical propagation. Figure 2.16

shows the results for kz-non-resonant combinations which have two upward-propagating

shears in one instance and two downward-propagating shears in the other. The

bicoherence shows a clear preference for kz-resonant combinations which can sum

to the (small) vertical wavenumber of the low-mode tide.

2.7 The resonant triad in the depth-time domain

To examine the spatial structure and time evolution of the significant (D1, D1,M2)

interaction, the respective records are bandpassed around the interacting frequen-

cies. The triple product is then formed in depth and time. This is the dual of the

cross-bispectral estimate for selected frequencies

B [Uz (D1) ,Uz (D1) ,W
∗ (D2)] . (2.16)
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Figure 2.14: Prefiltered Cross-Bispectral Estimate, 300–700 m Depth. Units
of the bispectra are (m s−3 cpd−1). The axes indicate frequencies ω+ and ω−,
which contain only wave energy traveling upward and downward, respectively. The
value of the bispectrum, B(ω+, ω−;ω+ +ω−) = B [Uz(ω+),Uz(ω−),W ∗(ω+ + ω−)],
is plotted at position (ω+, ω−). Compared to the bispectral estimates computed
from full shear fields, an asymetry can be seen in B(ω+, ω−) which favors a slightly
higher frequency ω+ in upward propagating D1 energy and lower frequency ω+ in
downward propagating D1 waves. Bivariances are about 0.4 that of the unfiltered
version.
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Figure 2.15: Prefiltered Bicoherence and Biphase, 300–700 m Depth. As in
Fig. 2.11, but for prefiltered shear fields. The axes show frequencies ω+ and ω−,
which contain only wave energy traveling upward and downward, respectively. The
bicoherence b(ω+, ω−;ω+ + ω−) is plotted at position (ω+, ω−). 0 ≤ b ≤ 1. The
local inertial f and diurnal D1 frequencies are indicated by red and black dotted
lines, respectively. The semidiurnal bifrequency D2 is marked by the solid black
line. Strong bicoherences around (D1, D1;D2) show that the large bispectral values
in Fig. 2.10 are statistically significant. The near-zero biphase (φ ≈ −π/6) confirms
that the direction of energy transfer is from D2 waves to pairs of D1 waves.
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Figure 2.16: Defiltered Bicoherences, 300–700 m Depth. As in Fig. 2.15, but for
non-resonant wave pairs. The axes show frequencies (ω+, ω+) and (ω−, ω−), cor-
responding to pairs of waves which are both upward-traveling or both downward-
traveling and hence cannot satisfy the wavenumber resonance condition. The sig-
nificant (D1, D1;D2) bicoherence seen in Fig. 2.15 is not seen in either “defiltered”
version.
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and inverse Fourier transforming to recover the depth-time signal.

Both unfiltered complex shear U and prefiltered shears U+
z and U−z were

bandpassed in a half-octave around the 1
2
M2 ≈ D1 frequency ( 1

20
to 1

28
cph),

as shown in Fig. 2.17a and b. The product of the shears U+
z · U−z (Fig. 2.17c)

shows nearly vertical crests and much longer vertical wavelength. This structure

is remarkably similar to the semidiurnal tide.

Vertical velocity W was bandpassed in a full octave around D2 (1
8

to 1
16

cph).

Normalized triple products r3(Uz,Uz,W ) of the bandpassed signals were formed

using both unfiltered (Fig. 2.18) and prefiltered shears (Fig. 2.19). Our notation

r3(·) indicates that the product has been normalized as in the definition of the

bicoherence (2.12). The time-averaged 〈r3〉, shown to the right of each depth-

time figure, is a signed estimator for the bicoherence b. A 20-m vertical averaging

window has been applied to 〈r3〉.
The products in Fig. 2.18 are largest in the depths surrounding the tidal

beam and wax and wane with a fortnightly cycle. Resonant “events” are visually

identifiable during each peak spring tide, around days 264 and 279. The prefiltered

interaction product (Fig. 2.18b) shows the effect most clearly, with long vertical

coherence scales, indicating wavenumber resonance, and persistent sign along the

time axis (shown by the monochromatic appearance).

Both Fig. 2.18a and b exhibit large 〈r3〉, although the magnitude is some-

what lower than the bicoherences computed by the method of Sec. 2.5.3. This may

be attributed to the larger bandwidths used in computing r3 in the time domain

as opposed to the Fourier domain.

By contrast, the products involving wave pairs traveling in the same vertical

direction (Fig. 2.19a and b) exhibit striped patterns which indicate non-resonance.

The time average 〈r3〉 alternates in sign along the vertical due to the lack of

wavenumber matching. As a result, the depth average will tend to zero.

The oscillatory character of the interaction product in the nonresonant case

emphasizes the need for sufficient temporal and spatial coverage when estimating

bispectra.
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Figure 2.17: Prefiltered D1 Shears and Shear Product. a) and b) Upward- and
Downward-Propagating Vertical Shears. As in Fig. 2.7 but prefiltered for direction
of vertical energy propagation. c) Product of D1 Shears Shown in a) and b). The
nearly vertical crests have a longer vertical wavelength than either D1 field. The
structure is remarkably similar to the D2 tide. (cf. Fig. 2.18).
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Figure 2.18: Interaction Product of Prefiltered D1 Shears and D2 Vertical Veloc-
ity, Showing Wavenumber-Frequency Resonance. The triple product is normalized
as the bicoherence (2.12), with time means taken along isopycnals. The signed
bicoherence b, shown to the right of each depth-time record, is computed from the
time mean of the normalized bispectrum B, with a 20 m moving average applied
in depth. a) Triple product of D1 shears and tidal vertical velocity. b) Product of
upward- and downward- filtered D1 shears and tidal vertical velocity. Long vertical
crests below 400 m indicate a shift to zero vertical wavenumber caused by the PSI
triad resonance. The persistent sign of the triple correlation in time shows phase
coherence of the waves.
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Figure 2.19: Interaction Product of DefilteredD1 Shears andD2 Vertical Velocity,
Nonresonant Case. As in Fig. 2.18, but for shear fields which cannot satisfy the
resonance conditions. Repeating striped patterns are visible in a) and b) because
upward-upward and downward-downward D1 pairs do not form a resonant triad
with the dominant tide. The bicoherence b oscillates in sign, with net bicoherence
near zero when the average is taken over a range of depths.
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2.8 Interaction timescales and energy transfer

The near-inertial daughter waves in the theory of YTB08 are pumped by

resonant horizontal stresses in the tidal background field. The growth rate γmax of

the daughter waves is estimated using the observed semidiurnal wave amplitudes

and equation (2.5) from YTB08. Parameters used in (2.5) are: m = 2π/4000 m,

f = 2π/32.48 h, ω = M2 = 2π/12.42 h, N0 = 3.1× 10−3 s−1.

The largest horizontal component of the tidal pump is observed in the

across-ridge current, where the WKB-scaled peak velocity exceeds 0.07 m/s during

the first spring tide and 0.12 m/s during the second. From the polarization relations

for internal waves [Gill, 1982] we estimate a pump amplitude of 0.1278 m2 s−2 and

0.2191 m2 s−2. Corresponding estimates for the growth timescale 1/γmax are 4.5

and 2.6 days. These are plausible numbers for near-inertial waves which must grow

appreciably during each spring tide.

2.9 Summary

Using 30-day continuous depth and time records of displacement and ve-

locity, bispectral estimates are calculated using vertical shears, which emphasize

high-mode, subharmonic motions, and vertical velocities, emphasizing the low-

mode semidiurnal tide. Semi-Lagrangian coordinates are used to reduce the effects

of kinematic distortion. Depth-time averages are computed over several vertical

wavelengths (3-4) and periods (3) of the subharmonic high mode wave to ensure

statistical significance.

Significant bicoherences are found between vertical velocities near the M2

frequency and the energetic shears of nearly diurnal period (D1 ≈ 1
2
M2) and ap-

proximately 100 m vertical wavelength. Prefiltering the shears by direction of

vertical energy propagation, bicoherences are recomputed. The interaction with

the M2 tide is shown to occur only between pairs of subharmonic waves traveling

in opposite vertical directions. These results point to a Parametric Subharmonic

Instability (PSI)-type interaction.

The maximum interaction product is observed during spring tides, with di-
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urnal amplitudes peaking several days after the spring tide. YTB09 would predict

growth timescales of 2–4 days, given the tidal amplitudes at Kaena Ridge. Growth

rates and phase lag of the bicoherent diurnal waves are consistent with the the-

ory, although it is unclear whether the diurnal shears dissipate appreciably before

propagating away between spring tides.

The depth-time interaction product of the tidal velocities and subharmonic

shears reveals that the bicoherence is associated with clearly identifiable interaction

“events” rather than a constant, smooth transfer of energy. The oscillatory charac-

ter of non-resonant “interaction products” underscores the fact that the resonance

conditions require both frequency and wavenumber matching for energy transfer

to occur. Thus, there is a need for sufficient temporal and spatial averaging when

forming bispectral estimates.

Data from the Fall 2001 HOME Farfield program may provide a point of

comparison. The Farfield location, 430 km to the southwest of Kaena Ridge,

also lies in the predicted path of a propagating M2 tide [Rainville and Pinkel,

2006]. Profiles were also collected aboard FLIP, using the same complement of

instruments as in the Nearfield the following year. Depth-time interaction products

are computed using the Farfield data. Vertical velocity and across-ridge vertical

shear are shown in Figure 2.20. The interaction product is shown in Figure 2.21.

Significant PSI bicoherences are not found in HOME Farfield. This suggests

that a fairly coherent, propagating tidal beam alone is not sufficient to generate

the strong PSI interactions seen in the Nearfield, where the tidal pump ampli-

tude is both larger and much more coherent. Investigations near other baroclinic

generation sites will required to test the generalizability of the results found here.

Appendix: Significance of bicoherence

Formal confidence intervals for zero bicoherence can be estimated by the

method of McComas and Briscoe [1980]. They took the number of independent
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Figure 2.20: HOME Farfield: a) M2 Vertical Velocity and b) D1 Across-Ridge
Shear.
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Figure 2.21: HOME Farfield: Triple Product of D1 Shears and M2 Vertical
Velocity. a) Unfiltered D1 Shears. b) Prefiltered Shears. As in Fig. 2.21 but
repeated for the Farfield site, 430 km from Kaena Ridge. No significant resonant
interactions are visible.
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measurements of a Gaussian wavefield to be the same as the number of wave periods

contained in a given record. The lowest frequency of interest sets the appropriate

period.

The FLIP data span 43.5 M2 tidal periods before the interruption on day

280 (63.2 tidal periods in total). Since the subharmonic waves have a period

approximately twice as long as a tidal period, we might conclude that we have

ndof = 43 (or 63) by time averaging alone.

By a similar argument, taking vertical averages would also increase the

statistical stability. For subharmonic waves with characteristic vertical wavelength

of O(100 m), each depth range in our calculation contains 4 wavelengths for a

factor of 4 in independent measurements (more in the upper range if WKB scaling

for vertical wavelength holds). Using the thresholds given by Elgar and Guza

[1988] and discussed following the definition of bicoherence (2.12), a cutoff for zero

bicoherence at the 95% confidence level would be b95% =
√

6/(43 · 4) = 0.19, with

b99% =
√

9.2/(43 · 4) = 0.23.

However, inspection of the shear record reveals that waves in the diur-

nal band exhibit clear group structure, reducing the independence of successive

measurements (or simultaneous measurements at neighboring depths). A conser-

vative estimate of the dominant group scales would be about 3 wavelengths in

the vertical and 5 in time. This reduction in independence is partly offset by

the 3 × 3 convolution applied to the bispectral and power spectral estimators. If

the size of groups is used instead of the size of waves to determine the effective

ndof , then much stricter requirements for significant nonzero bicoherence are set at

b95% =
√

6.4/(43/5 · 4/3 · 3) = 0.42 and b99% = 0.52.

We used a Monte Carlo method to compare these opposing views of sta-

tistical independence. Bicoherence estimates were recomputed for both prefiltered

and unfiltered data in the lower depth range, 300–700 m, using the same methods

as in Sections 2.5 and 2.6. Fourier coefficients at each frequency were multiplied by

random phase-shifts exp (2πi · θ), where θ is uniformly distributed on [0, 1). After

5000 trials, sample thresholds for zero bicoherence were determined for the 90%,

95%, and 99% levels at each frequency pair (ω1, ω2).
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Figure 2.22 shows the results for prefiltered, random-phase data, plotted

on the same color scale as previous bicoherence estimates. The largest (least-

precise) threshold appears at a peak near the inertial frequency f in downgoing

energy (ω−) and between the subharmonic and inertial frequencies in upward (ω+)

energy. Maximum threshold values for prefiltered zero-bicoherence threshold are

b90% = 0.47, b95% = 0.51 b99% = 0.55. The peaks do not overlap significantly

with the “true” prefiltered bicoherence peak of Fig. 2.15, which exceeds 0.60 and

thereby exceeds the 99% threshold for statistical significance.
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Figure 2.22: Prefiltered Zero-Bicoherence Thresholds at the 90%, 95%, and 99%
Confidence Levels Estimated From 1000 Monte Carlo Trials. Thresholds are esti-
mated using prefiltered data from the 300–700 m depth range. Fourier coefficients
at each frequency have been multiplied by random phase shifts exp (2πi · θ), where
θ is uniformly distributed on [0, 1). The largest (least-precise) thresholds appear
near the inertial frequency f in downgoing frequencies (ω−) and between the sub-
harmonic and inertial frequencies in upward (ω+). This peak threshold does not
overlap significantly with the “true” prefiltered bicoherence peak of Fig. 2.15. Max-
imum values are b90% = 0.47, b95% = 0.51 b99% = 0.55, suggesting that the effective
degrees of freedom near these frequencies are relatively few and are set by the
scales of diurnal and near-inertial wave groups rather than individual waves.

By contrast, the unfiltered random-phase bicoherence, shown in Figure 2.23,

has an elevated threshold around around a pair of frequencies which are slightly

higher than diurnal (D1) and thus with bifrequency slightly higher than (M2).

Maximum threshold values are slightly higher than for the prefiltered case, at

b90% = 0.50, b95% = 0.52 b99% = 0.57. The peak threshold area has noticeable

overlap with the peak of the “true” unfiltered bicoherence of Figure 2.11. Thus

only a narrow part of the bicoherence peak at (D1, D1,M2) retains 99% significance.
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Figure 2.23: Unfiltered Zero-Bicoherence Thresholds at the 90%, 95%, and 99%
Confidence Levels Estimated From 1000 Monte Carlo Trials. As in Fig. 2.22,
but using unfiltered shear records. The largest (least-precise) thresholds appears
around around a pair of frequencies which are slightly higher than diurnal (D1) and
which have bifrequency slightly higher than (M2). There is significant overlap with
the bicoherence peak of the “true” unfiltered bicoherence of Fig. 2.11. Maximum
values are b90% = 0.50, b95% = 0.52 b99% = 0.57, suggesting that the effective
degrees of freedom near these frequencies are relatively few and are set by the
scales of diurnal wave groups rather than individual waves.

In both the filtered and unfiltered cases, the zero-bicoherence thresholds

are elevated near pairs of frequencies which have strongly group-like structure.

The peak values are well-predicted by estimating of degrees of freedom from the

scales of the wave groups rather than the individual waves. This implies that the

effective degrees of freedom are relatively few, even with a record spanning multiple

vertical wavelengths and more than 20 subharmonic period. The prefiltering step

thus becomes useful for enhancing the separation between true bicoherence and

spurious signals (in addition to identifying interacting members).



Chapter 3

Energy Transfer from High Shear

Low-Frequency Internal Waves to

High Frequencies

3.1 Introduction

Internal wave energy in the open ocean tends to be concentrated near the

inertial end of the spectrum, a fact represented by the well-known inertial cusp in

the Garrett-Munk spectrum [Garrett and Munk, 1972]. As a consequence of their

low aspect ratios due to the internal wave dispersion relationship, these frequencies

are also associated with most of the shear in the ocean.

Although low-frequency internal waves are primarily associated with wind

forcing, they are also generated by a variety of other mechanisms. These include,

but are not restricted to, lee-wave generation, bottom scattering, and resonant

wave-wave interactions. In particular, studies of nonlinear energy transfers in the

internal wave continuum have suggested that Parametric Subharmonic Instability

(PSI), a resonant interaction which transfers energy from waves with frequencies

2f–4f to approximately half their frequency, would support enhanced near-inertial

energy even in the absence of wind forcing [Olbers, 1976, McComas and Brether-

ton, 1977, McComas and Müller, 1981b]. Several recent studies have specifically

42
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considered PSI of the semidiurnal tide as a likely source of near-diurnal energy [Hi-

biya et al., 2002, MacKinnon and Winters, 2005, Carter and Gregg, 2006, Alford

et al., 2007, Sun and Pinkel, 2011]. Thus in addition to wind energy, a signifi-

cant amount of the tidal energy available for mixing may also pass through low

frequencies before it reaches the rest of the internal wave spectrum.

Further nonlinear interactions may play a role in transferring energy away

from these subtidal frequencies. Due to the lower limit imposed by the inertial

frequency, the direction of energy transfer must be from low to high frequencies.

Induced Diffusion (ID) is the canonical resonant interaction which connects the

low- and high-frequency ends of the spectrum. As originally described by Mc-

Comas and Bretherton [1977], ID is an interaction between two high-frequency,

small-scale waves and a much-lower frequency, large-scale wave, as diagrammed

in Figure 3.1. Numerical evaluation of interaction rates have found that the high

frequency portion of the GM spectrum is nearly in equilibrium with respect to ID,

with the most highly scale-separated interactions being the most active [Olbers,

1976, McComas and Müller, 1981a,b, Müller et al., 1986]. As the scale separation

increases between the high frequency and low frequency waves, the interaction be-

gins to resemble a random shift of wave action from one high frequency wave to a

close neighbor in frequency-wavenumber space, with a net diffusive effect.

Resonant interaction theory is exact only in the weakly non-linear limit. As

an alternative, eikonal methods [Henyey and Pomphrey, 1983, Henyey et al., 1986,

Broutman and Young, 1986] avoid the amplitude restriction on the low-frequency

shears. Small-scale “test” waves are sent through a “background” shear field which

varies slowly on the scales of the test waves. The individual test waves retain their

identity as they pass through the background field and are assumed not to interact

with one another. In contrast to resonant interaction theory, the eikonal approach

does not explicitly conserve energy and momentum. Instead, changes to the test

waves are assumed to be balanced by small changes to the large scale wavefield.

The present study examines nonlinear energy transfers between low- and

high-frequency waves using data collected aboard the Research Platform FLIP

during 2001–2002 as part of the Hawaii Ocean Mixing Experiment (HOME). The
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Induced Diffusion (ID)

k0

k1

k2

kH

kz

Figure 3.1: Resonant Triad for Induced Diffusion. The wave vectors represent a
low-frequency wave k0 and a pair of high frequency waves k1 and k2. The triad
of waves satisfies both a wavenumber resonance condition k0 + k1 = k2 and a
frequency resonance condition ω(k0) +ω(k1) = ω(k2), so that energy is exchanged
among the members of the triad. The high frequency waves in Induced Diffusion
have much larger wavenumber, and hence much smaller spatial scales, than the
low frequency wave. In the limit of large scale separation, the high frequency
wavenumbers are nearly identical.
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data from FLIP combine CTD profiles of density and temperature measured at

4-min intervals with Doppler sonar horizontal velocities with 2-m resolution. En-

ergy transfers between regions of frequency-wavenumber space are identified and

quantified by bispectral analysis. An attempt is made to determine which of the

theoretical interactions between low- and high-frequency portions of the internal

wave spectrum, if any, are supported by the observations. Net energy transfer

rates to high frequency are found to be comparable in magnitude to measurements

of kinetic energy dissipation by turbulence.

3.2 Instruments and Data

As part of the Hawaii Ocean Mixing Experiment (HOME) , the Research

Platform FLIP was deployed near Kaena Ridge, one of the most energetic tidal con-

version sites identified in HOME [Rudnick et al., 2003, Rainville and Pinkel, 2006].

Two locations, shown in Figure 3.2, were occupied in successive years. During the

Fall 2001 Farfield component, FLIP was moored 430 km to the south-south-west

of Kaena Ridge, in the approximate path of an M2 tidal beam emanating from

the Ridge. In the HOME Nearfield, 2002, FLIP was moored on the southwest

shoulder of Kaena Ridge in 1100 m of water.

Data collection during each six-week deployment spanned roughly 30 days,

enough to observe a pair of fortnightly cycles. Figure 3.3 shows a schematic view

of the instrumentation. A pair of tandem profiling Seabird SBE11 CTDs recorded

9400 profiles of temperature and salinity in the Farfield, and more than 11000 pro-

files in the Nearfield, at 4-minute intervals. Depth coverage was approximately 80

to 800 m. Vertical velocities were inferred from the motion of isopycnals, as mea-

sured by the CTDs. Horizontal velocities were recorded by the up/down-looking

Deep-8 Doppler sonar, located at a depth of 400 m during both deployments. Ver-

tical resolutions were 2 m for CTD data and 4 m for horizontal velocities. The

reader is referred to Rainville and Pinkel [2006] for a more detailed discussion of

the instruments and deployment.

A gap in sonar coverage exists in a 10 m range around the 400 m location



46

This paper focuses on the propagating baroclinic en-
ergy, attempting to quantify the energy flux within the
generating region, where the spatial structure of the
flux is complex, and 450 km offshore, along the path of
the propagating waves. We discuss two series of in situ
measurements of the internal wave field obtained from
the Research Platform (R/P) Floating Instrument Plat-
form (FLIP) as an aspect of the Hawaii Ocean Mixing
Experiment (HOME).

The energy flux density (W m!2) of an internal wave
(or a superposition of waves) is

F " #p! · u$, %1&

where p' and u are the pressure and velocity pertur-
bations associated with the motions and # $ defines an
average over many wave periods. For individual wave
packets, the energy flux can be expressed as the prod-
uct of the total energy E of the wave and the group
velocity cg.

In recent years, E. Kunze and colleagues (Kunze et
al. 2002; Althaus et al. 2003) have pioneered the use of
profiling instruments to estimate energy fluxes. With
several profiles per day, they define a mean velocity
and density field, against which the perturbation veloc-
ities and relative isopycnal displacement are computed.
Perturbation pressure is calculated from integrating the
hydrostatic equation. This technique has proven to be
remarkably effective in regions in which the semidiur-
nal internal tide dominates. In more complex regions,
where fluxes at several wave frequencies are antici-
pated, a more intensive time series approach is re-
quired.

Using the R/P FLIP, we have developed the capabil-
ity to profile the oceanic velocity and density fields
from the surface to approximately 800-m depths at
4-min intervals. The high sampling frequency and mul-
tiweek duration of the FLIP observations enable esti-
mates of energy flux continuously in frequency with
minimal statistical error. In addition to providing a first
look at the frequency dependence of the flux at Hawaii,
the FLIP measurements can provide valuable error
bars for the flux estimates obtained by colleagues with
more limited time sampling. A description of the FLIP
observations is given in section 2, followed by a display
of the internal wave energy flux spectrum (section 3).
The vertical structure (section 4) and time variability
(section 5) of the energy fluxes are discussed with a
focus on the semidiurnal and diurnal frequency bands,
providing insight to the generation and propagation of
the internal tide. Our observations also suggest the ex-
istence of a nonlinear interaction that transfers energy
from low-mode semidiurnal waves to higher-mode
waves at one-half of their frequency.

2. Data

a. Sites

Data were obtained during two 6-week cruises of the
R/P FLIP, one at an active internal-wave generation
site (Nearfield) and the other 430 km offshore
(Farfield), along the anticipated propagation path of
the baroclinic tide (Fig. 1).

During the autumn 2002 Nearfield program, FLIP
was trimoored in the Kauai Channel between Oahu and
Kauai, at the southwest edge of the Kaena Ridge
(21.68°N, 158.63°W). Water depth at this site is 1100 m.
The Kaena Ridge is one of the most active regions of
internal tide generation found in the HOME Survey
program (Rudnick et al. 2003). Despite the strong tidal
currents, the 3-point mooring maintained FLIP’s posi-
tion within 500 m.

The current ellipses of the M2 and K1 barotropic tides
obtained from the TPXO.5 regional tidal model (Eg-
bert and Erofeeva 2002) are shown in Fig. 2. The cur-

FIG. 1. Location of the Nearfield and Farfield sites (stars), near
the Hawaiian Ridge. The thin black line indicates the 1000-m
contour. Depth-integrated energy flux vectors from a numerical
model (Merrifield and Holloway 2002) are also indicated.

JUNE 2006 R A I N V I L L E A N D P I N K E L 1105

Figure 3.2: Deployment of the Research Platform FLIP in 2001–2002 [Rainville
and Pinkel, 2006]. As part of the Hawaii Ocean Mixing Experiment, FLIP was
moored at two locations near Kaena Ridge, Hawaii. During the 2002 Farfield com-
ponent, the measurement location was approximately 430 km to the southwest of
the the ridge crest, in the approximate path of an M2 tidal beam (model fluxes are
shown by the arrows). The 2002 Nearfield component placed FLIP on the shoulder
of Kaena Ridge in approximately 1100 m of water, in a location intersecting the
southward-propagating ray emanating from the north ridge.
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sequently processed following Anderson (1993). The
profiles obtained by the upper CTD overlapped those
measured by the lower instrument by about 20 m at
depths around 400 m, enabling the cross calibration of
upper and lower profilers. After response corrections
and calibration, the vertical resolution of density struc-
ture was slightly better than 2 m.

Cruise-averaged (respectively, 36- and 29-day aver-

ages) profiles of buoyancy frequency for the Nearfield
and the Farfield are shown in Fig. 4. Both profiles
peak at values around 10 cycles per hour (cph) at 100 m,
dropping exponentially with depth to reach 2 cph at
800 m. Note that the mixed layer in the Nearfield is
slightly shallower than in the Farfield. Seasonal tem-
perature and salinity profiles from the World Ocean
Atlas 2001 (Stephens et al. 2002; Boyer et al. 2002) have
been used to complete the profiles from 800 m to the
seafloor.

An eight-beam Doppler sonar (the Deep-8) was de-
ployed at a depth of 400 m in both experiments. It
measured velocities in the same range profiled by the
CTDs (0–!800 m). This sonar had four beams oriented
upward (170 kHz) and four beams facing down (140
kHz). Velocity profiles were recorded with 4-m depth
resolution and 30-s temporal resolution. Repeat se-
quence codes (Pinkel and Smith 1992) were transmit-
ted, with a bandwidth of "8 kHz. Ocean velocities were
estimated by combining the Doppler velocities into
east, north, and up components, taking into account the
tilt and rotation of the sonar as well as the slow drift
velocity associated with the motion of FLIP. Baroclinic
velocities were estimated by subtracting modeled baro-
tropic tidal velocities (M2, S2, K1, O1, N2, K2, P1, and
Q1) from the sonar/GPS estimate of absolute velocity
using the TPXO.5.1 model (Egbert 1997; Egbert and
Erofeeva 2002).

In the Nearfield, roughly 75% of the water column
was sampled, whereas only the top 15% was measured
in the Farfield. However, in the Wentzel–Kramers–
Brillouin (WKB) stretched coordinates appropriate for
linear, refractive, wave propagation (Gill 1982), where

FIG. 3. Schematic diagram of CTDs and Doppler sonar aboard
FLIP.

FIG. 4. Mean buoyancy frequency profiles from observations and extrapolated using the World Ocean
Database, for the Farfield (black line) and the Nearfield (gray line): (a) the complete water column for
the Farfield and (b) the top 1100 m (domain of the Nearfield).

JUNE 2006 R A I N V I L L E A N D P I N K E L 1107

Figure 3.3: Schematic of R/P FLIP Instrumentation during HOME, 2001–2002.
Tandem Seabird SBE11 CTDs profiled down to approximately 800 m once every
4 minutes with approximately 2 m resolution. The Deep-8 Doppler sonar recorded
horizontal velocities with approximately 4 m vertical resolution. Vertical velocities
were inferred from the motion of isopycnals as measured by the CTDs. More than
11000 profiles were collected during the Nearfield and more than 9000 during the
Farfield.

of the Deep-8. The resulting discontinuity is easily visible in the vertical shears.

Data collection in the Nearfield was briefly interrupted around day 280, when a

CTD collided with the Deep-8. Profiling was resumed with a reduced ∼ 700-m

maximum depth.

Acoustic reflections from the sea surface and bottom contaminate the sonar

record. To minimize the effect of these discontinuities, Eulerian coordinates are

used throughout. This is different from the convention of Sun and Pinkel [2011],

which uses semi-Lagrangian (isopycnal) coordinates to reduce the effects of vertical

advection by the semidiurnal tide. Here, Eulerian coordinates are chosen to avoid

spreading the scars in the sonar data to adjacent depths; this would occur if the

Eulerian sonar data were transformed to semi-Lagrangian (isopycnal) coordinates

and the isopycnals were to pass through the affected depths. Velocities are in-

terpolated for visual presentation, but the affected depths are discarded whenever

depth averages are formed.

The data are presented using a WKB-scaled vertical coordinate, which is de-

fined using cruise-averaged profiles of relative background stratification N(z)/N0.
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The base stratification N0 is chosen so that the new vertical coordinate, zWKB,

spans the same profiling range before and after stretching.

Velocity and shear are according to linear theory:

w = w0

√
N

N0

, (u, v) = (u0, v0)

√
N0

N
, (uz, vz) =

(
N0

N

)3/2

(uz0, vz0).

As an exception to this convention, the Nearfield shears vary nearly as N , so a

scaling of (N0/N)1 is applied instead of the theoretical (N0/N)3/2.

For brevity, multiples of the diurnal frequency, D1, are denoted by Dn, with

n being the nth multiple. This convention is also used to refer to data which has

been bandpassed around the indicated center frequency.

Nearfield

The HOME Nearfield site, at 21.68◦N, 158.63◦W, is on the south-west shoul-

der of the ridge and intersects a tidal beam emanating upward from the north-east

edge [Rainville and Pinkel, 2006]. Semidiurnal and diurnal motions show distinct

features related to the nearby tidal generation and subsequent nonlinear interac-

tions. To highlight these differences, data are frequency bandpassed around the D1

and D2 frequencies, with remaining motions residing in a “high frequency” band

(HF). The passband for D1 is 0.6–1.2 cpd and includes the local inertial frequency;

D2 spans 1.6–3 cpd. HF only includes frequencies above 6 cpd, in order to avoid

leakage from the semidiurnal tides in the D2 band and their D4 harmonics. A high-

frequency cutoff at 48 cpd is also applied to reduce aliasing for visual presentation.

All filters are a bidirectional (zero-phase), 8th-order Bessel-derived filter.

The D2 and D1 bands are presented in Figure 3.4. D2 velocities exhibit

the predominantly long vertical scale motions of the low-mode semidiurnal tide,

as seen in vertical velocity W in the upper panel. Approximately two weeks of the

total record are shown. A slight backward slant to the phase lines is associated

with upward D2 energy propagation from the ridge. One spring tide is just ending

on day 265, at the beginning of the record; another reaches its peak near day 277.

Vertical shears emphasize the high mode waves found in the D1 band, as

shown in the lower panel of Fig. 3.4. D1 sources include wind-driven near-inertial
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Figure 3.4: HOME Nearfield: Low Frequency Wavefields. Top) Semidiurnal
(D2) Vertical Velocity. Long vertical scales and predominantly downward phase
propagation, associated with upward energy propagation, are the main features
of the record. The end of one spring tide is visible around day 265, and a new
one peaks around day 277. Bottom) Subtidal (D1) Meridional Vertical Shear.
The record is WKB-stretched to show the regular vertical scale, ≈ 100 m, which
appears to dominate the shear. The near-diurnal frequency is prevalent. Both
upward and downward phase propagation can be seen.
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motions and the K1 and O1 tides. PSI-generated subharmonics of the semidiurnal

internal tide are also found in the lower half of the water column, as reported

by Carter and Gregg [2006] and Sun and Pinkel [2011]. The PSI waves have a

characteristic vertical scale of about 100 m, and can seen propagating both upward

and downward from mid depths, as indicated by the cross-hatched or ’X’ pattern

of wave crests seen below 400 m on days 270–275. A fortnightly cycle in the D1

shears lags the D2 spring tide by 4–7 days, consistent with PSI growth timescales

predicted by Young et al. [2008].

HF motions above 6 cpd are presented in Figure 3.5. Moderate to long-

wavelength motions are visible in both the vertical component w (upper panel)

and in the horizontal component (v shown in the lower panel). Hints of grouplike

structures are visible in both w and v. w emphasizes slightly higher frequencies

and longer vertical scales than v. This can be explained by the increasing aspect

ratio with frequency which results from the dispersion relationship for internal

waves.

Farfield

As the semidiurnal internal tide propagates away from the generation site,

it assumes a more “modal” structure. By the time they reach the Farfield site

at 18.39◦N, 160.70◦W, the clear downward propagation of phase lines seen in the

Nearfield is no longer evident. Figure 3.6 (top) shows a sample of vertical velocities.

Meanwhile, in strong contrast to the “monochromatic” shear field in the Nearfield,

the Farfield D1 shears (Fig. 3.6, bottom) display a mix of vertical scales, resulting

in an irregular vertical pattern rather than the regular ’X’ pattern of the PSI

subharmonic waves. The D2 and D1 wavefields in the Farfield may be taken as

far more typical cases for the open ocean, as compared to the highly anisotropic

semidiurnal and monochromatic diurnal fields in the Nearfield.

High frequency wavefields, shown in Fig. 3.7, emphasize very long vertical

scales rather than the distinct grouplike patches seen in the Nearfield. Some group

propagation is still visible in high-frequency w, but very little in high-frequency v.

However, v displays a considerable amount of variance at very small vertical scales
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Figure 3.5: HOME Nearfield: High Frequency Wavefields. Top) High Frequency
(> D6) Vertical Velocity. Wave groups with long vertical scales and possibly up-
ward group propagation are visible. Bottom) High Frequency Meridional Velocity.
Somewhat lower frequencies and shorter wavelengths are emphasized by v, as com-
pared to w. Grouplike structures are still visible.
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as well as at the long scales.

Farfield: Semidiurnal Vertical Velocity W
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Figure 3.6: HOME Farfield: Low Frequency Wavefields. Top) Semidiurnal (D2)
Vertical Velocity. As in Fig. 3.4, but for the Farfield. Long vertical scales are still
visible in W , but absent is the clear downward phase (upward energy) propagation
seen in the Nearfield. Bottom) Subtidal (D1) Meridional Vertical Shear. Short
vertical scales are emphasized as before, but no single vertical length scale stands
out even after WKB stretching.

3.3 Nonlinear energy transfers

The goal of this section is to investigate nonlinear interactions between

low-frequency shears (Fig. 3.6, bottom) and high-frequency motions (Fig. 3.7). An

effort is made to avoid attachment to any particular theory or expectation of those

interactions. Instead, an attempt is made to identify the participating members of

any interactions and quantify the nonlinear energy transfer rate.
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Farfield: High Frequency Vertical Velocity w
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Figure 3.7: HOME Farfield: High Frequency Wavefields. Top) High Frequency
(> D6) Vertical Velocity. Wave groups with long vertical scales and possibly up-
ward group propagation are visible. Bottom) High Frequency Meridional Velocity.
Somewhat lower frequencies and shorter wavelengths are emphasized by v, as com-
pared to w. Grouplike structures are still somewhat visible in w, less so in v.
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3.3.1 Stress-shear triple products

A traditional approach from the theory of turbulent flows is to take a

Reynolds decomposition [Tennekes and Lumley, 1972], separating velocities ũ, w̃

into a “mean flow” and “fluctuations,”

ũi = Ui + ui, i = 1, 2, 3, (3.1)

where Ūi ≡ 0.

For wave fields, a modified approach has been taken which associates wave

energy with the “mean flow” and turbulent motions with the “fluctuations” [Os-

born, 1980]. Gargett and Holloway [1984] point out, however, that it may not be

clear how to make such a scale-separation of the velocity field. Following their

approach, an energy transfer expression for mixed wave/turbulence motions is de-

rived with making an explicit separation.

The kinetic energy equation is used under the Boussinesq approximation,

∂

∂t

(
1

2
u2
i

)
+ uiuj

∂ui
∂xj

= − 1

ρ0

ui
∂p

∂xi
+ ν

∂

∂xj

(
ui

(
∂ui
∂xj

+
∂uj
∂xi

))
− g

ρ0

ρ′w − ν

2

(
∂ui
∂xj

+
∂uj
∂xi

)2

, (3.2)

where i = 1, 2, 3 and u3 = w, ν is the kinematic viscosity, and ρ′ is the perturbation

density.

Assuming a quasi-steady-state, the time averaged equation is〈
uiuj

∂ui
∂xj

〉
= − 1

ρ0

∂

∂xi
〈uip〉+ ν

∂

∂xj

〈
ui

(
∂ui
∂xj

+
∂uj
∂xi

)〉
− g

ρ0

〈ρ′w〉 − ε, (3.3)

ε =
ν

2

〈(
∂ui
∂xj

+
∂uj
∂xi

)2〉
.

Gargett and Holloway [1984] suggest on prior observational grounds that

the first term, the divergence of the pressure-velocity correlation, and the third

term, the pressure work, are small. The second term is a viscous transport term,

which is ordinarily negligible compared to ε, the transport due to Reynolds stresses

Tennekes and Lumley [1972]. Finally, since the horizontal stress-shear terms in ε
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are unknown, they are omitted (equivalent to an assumption of horizontal homo-

geneity in the internal wavefield). Thus Gargett and Holloway [1984] find a leading

order balance between dissipation ε and stress-shear triple products

ε ≈ −
〈
uiw

dui
dz

〉
, i = 1, 2. (3.4)

The present study focuses primarily on triple correlations betweenD1 shears,

indicated by the capital dUi/dz, and fluctuations in ui, w with significantly higher

frequency. Thus a new symbol, ε∗, is introduced and defined as the energy transfer

rate from low-frequency shears due to high frequency fluctuations,

ε∗ ≈ −
〈
uiw

dUi
dz

〉
, i = 1, 2. (3.5)

Nearly all the shear variance in the observations is captured by taking only

D1. A clear separation between low and high frequencies is justified by excluding

the D2 band, since D2 is already involved in a nonlinear energy transfer, via PSI,

to D1. Unlike the discussion of Duda and Jacobs [1998], which also investigates

wave-wave interactions using shear-shear correlations, an explicit scale separation

in wavenumber (where the fluctuations are assumed to have “turbulent” scales) is

not also assumed.

As a measurement of the relative coupling of the three components in (3.5),

a triple correlation r3 is also defined. The energy transfers are normalized by the

rms magnitudes of the multiplicands,

r3(Dm, Dn) =
ε∗(Dm, Dn)

{u2(Dm)w2(Dn)U2
z (D1)}1/2

. (3.6)

3.3.2 Bispectral analysis

Wave frequencies which participate in resonant energy transfers may be

identified using bispectral methods. Bispectra have been used to demonstrate

nonlinear coupling in a variety of settings, including turbulent flows, [Kim and

Powers, 1979] and surface gravity waves [Elgar and Guza, 1988]. Resonant inter-

nal wave interactions, in the form of parametric subharmonic instability of the

semidiurnal internal tide [Carter and Gregg, 2006, Sun and Pinkel, 2011], have

also been observed using a bispectral approach.
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Here, the energy transfer term −〈uwUz〉 in (3.5) is expressed as a bispec-

tral density, B(ωu, ωw). This function quantifies the contribution of each pair of

frequencies in u,w, respectively, to the energy transfer out of the low frequency

shears.

To define the energy bispectrum, it is necessary to first define the Fourier

series:

u(t) =
N∑

n=−N

Une
iωnt, w(t) =

N∑
n=−N

Wne
iωnt,

Uz(t) =
N∑

n=−N

Zne
iωnt, ωn = 2πn/N.

(3.7)

Then the triple product involving u in the brackets may be written in the form

uwUz =
∑
m

Ume
iωmt

∑
n

Wne
iωnt
∑
p

Zpe
iωpt (3.8)

=
∑
m

∑
n

∑
p

UmWnZpe
i(ωm+ωn+ωp)t. (3.9)

Taking ensemble averages causes all terms to vanish except those fulfilling

the frequency resonance condition ωm + ωn + ωp = 0, and thus the exponentials

may be replaced by Kronecker deltas,

〈uwUz〉 =
∑
m

Ume
iωmt

∑
n

Wne
iωnt
∑
p

Zpe
iωpt (3.10)

=
∑
m

∑
n

∑
p

UmWnZpδ(ωm + ωn + ωp). (3.11)

For Uz containing only low frequency shears and u,w representing high

frequency fluctuations, a pair of positive frequencies (ωm, ωn) can participate in

one of two resonances

ωm < ωn : ωm + ωp = ωn, (3.12)

ωm > ωn : ωm − ωp = ωn. (3.13)

If ωp is allowed to take on both positive and negative values, then the contribution

to the energy transfer involving (ωm, ωn) can be written as the product of Fourier
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coefficients UmZm−nW
∗
n , where the property that W−n = W ∗

n has been used. The

real-valued energy bispectrum can thus be defined as a function of positive frequen-

cies (ωm, ωn) by taking the sum of contributions from (ωm, ωn) and (−ωm,−ωn),

and taking the negative of the expected value,

B(ωm, ωn) = −E [2 · <(UmW
∗
nZm−n)] . (3.14)

As defined, the bispectral density represents resonant energy transfers from

the low frequency shears to each pair of frequencies (ωm, ωn). In practice, the

expected values are estimated by averaging over many realizations of U,W,Z.

The energy bispectrum will tend to have large values if the moduli of the

Fourier coefficients are large. A normalized version, called the bicoherence, mea-

sures only the phase locking between wave frequencies and is useful for assessing

the significance of bispectral estimates. Following Kim and Powers (1979) and

Elgar and Guza (1980), the bicoherence is defined

b =

{
|B(ωm, ωn)|2

E [|UmZm−n|2]E [|W ∗
n |2]

}1/2

, (3.15)

with the property that 0 ≤ b ≤ 1. The bicoherence only has meaning for bis-

pectral estimates formed across multiple realizations; the bicoherence for a single

realization is identically 1. Just as the energy bispectrum (3.14) is the bispectral

representation of the triple covariance (3.5), the bicoherence is the counterpart to

the triple correlation r3 (3.6).

3.3.3 Nearfield energy transfers

The bispectral method is illustrated for the HOME Nearfield data. Time

series for U , W , and Uz are divided into 10%-overlapping subrecords of length

1024 = 68.3 hrs. A separate bispectral realization (3.14) is computed for each

subrecord. Estimates from all Eulerian depths between 200 and 600 m are averaged

together to form a depth-averaged bispectral estimate and a bicoherence.

Nearfield bispectral estimates are shown in Figure 3.8. Bispectral densities

appear in the top panel, with bicoherence estimates shown below. Coordinate
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axes (ωu, ωw) correspond to Fourier frequencies in U and W , respectively. The

third frequency in each bispectral triad, corresponding to Uz, is implied for each

coordinate pair according to (3.12)–(3.13). To improve statistical stability, a 5× 5

gaussian filter has been applied to both the bispectrum and bicoherence.

Positive bispectral variance, shown in red in Fig. 3.8 (top), is concentrated

near the line of symmetry (ωu = ωw). Upon closer inspection, it can be seen that

bispectral peaks actually occur along two ridges closely paralleling (ωu = ωw).

Bispectral variance decays rapidly with distance from the symmetry line. The

locations of the peaks suggest that a multitude of resonant interactions are moving

energy from low-frequencies to slightly-offset pairs of high frequencies.

Negative variance is also seen at low frequencies, particularly along a line

ωu = 2. This is a result of the large semidiurnal horizontal velocities in the

Nearfield. The sign of the bicoherence suggests that low frequency shear field may

receive energy from low- frequency waves. However, the energy bispectrum near

D2 is not strictly valid, as the energy transfer expression (3.5) assumes a frequency

separation between the shear field and interacting waves. Thus energy transfers

implied in this region of the bispectrum should be taken cautiously.

The energy transfers roll off at very high frequencies. This may be explained

by the Vaisala cutoff, which is near 68 cpd at mid-depth and gradually excludes

more depths from the averaging process with increasing frequency.

After normalization to form the bicoherence, Fig. 3.8 (bottom), only the

double ridge of peaks near (ωu = ωw) remains. This suggests that the positive

energy transfers from low frequency shears to high frequency waves are a significant

bispectral feature and not merely an statistical artifact of high spectral levels near

the respective frequencies. By contrast, the negative bispectral values near ωu = 2

are not bicoherent and are not discussed further.

Energy transfer rate ε∗ by frequency octave

To gain a more quantitative picture of the Nearfield energy transfers de-

tected in Fig. 3.8, the bispectral densities are aggregated by frequency band. Bis-

pectral densities are binned over boxed subdomains in the bispectral plane, shown
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Figure 3.8: Nearfield: Bispectral estimates. Top) Bispectral density,
B(u,w, dU/dz). Coordinates are (ωu, ωw), corresponding to frequencies in u and
w, respectively. The third frequency, corresponding to dU/dz, is implied. Posi-
tive bispectral variance is concentrated in a double ridge straddling the diagonal
where ωu = ωw, implying positive energy transfers from dU/dz to u,w pairs which
differ by a small frequency. Negative variance in the low-ωu region, suggests that
energy transfers may also work in the opposite direction. Right) Bicoherence es-
timate. After normalization it appears that only the positive energy transfers in
the bispectral estimate are statistically significant.
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on the left in Figure 3.9. The subdomains are centered on pairs of frequencies

(Dm, Dn), and span one-octave intervals along each axis.
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Figure 3.9: Nearfield: Bispectral energy transfers by octave. Left) Bispectral
octave filter bands. Energy transfers are binned by the indicated boxes in bispectral
space. Each region spans a single octave along each axis. Right) Energy transfer
rate by frequency bands corresponding to the bins in the left figure. Units are
W kg−1. Axes are scaled by octave. Transfer rates are additive, with a total
energy transfer of order 1× 10−7 W kg−1.

Figure 3.9 (right) shows the integrated energy transfer rates for each fre-

quency subdomain, denoted by ε∗(Dm, Dn). Note that the frequency axes are now

scaled by octave. Rather than compute area integrals in bispectral space, the

values for ε∗ shown here are obtained by an equivalent time-domain algorithm.

Both horizontal components in −〈uwUz + vwVz〉 are included. (u, v) and w are

bandpassed in octave bands around each center frequency, using a bidirectional

4th-order Butterworth filter (zero-phase, 8th-order equivalent). The passband for

Uz is centered on 0.85 cpd to retain both D1 and local f . The energy transfer rate

ε∗(Dm, Dn) = −
〈
u(Dm)w(Dn)Uz(D1) + v(Dm)w(Dn)Vz(D1)

〉
(3.16)

is then computed using the frequency-filtered versions of the multiplicands.

As before, energy transfers are concentrated in frequency bins along the

main diagonal of Figure 3.9 (right); subsequent discussion will focus on these fre-

quency bins only. The time-domain procedure allows the energy transfers to be
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watched as they unfold in depth and time, with time-averaged profiles of the energy

transfer rate shown in Figure 3.10 as a function of depth . Correlations, r3(z), are

shown below. All profiles are vertically smoothed by a 60 m rectangular window.
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Figure 3.10: Nearfield: Energy Transfer Profiles. Above) Energy transfer rates
ε∗ = −〈uwUz + vwVz〉 by frequency octave bin, as functions of depth. Error
estimates (3.17) are plotted in green for reference. Significant energy transfers
are found across a range of bands from D8 to D64. Maximum values of ε∗ are
found between 300 and 600 m in the D32 band, peaking at 6 × 10−8 W kg−1.
Below) Stress-shear correlations r3(z) (3.6), as functions of depth. In all cases,
r3(z) appears to closely resemble ε∗(z), up to a scaling factor. As before, error
estimates are plotted in green.

ε∗ and r3 appear qualitatively similar in all bands. The largest energy

transfers and correlations are found in the D32 band, where ε∗ is exhibits a broad

plateau between 300 and 620 m. ε∗ peaking at 6×10−8 W kg−1 near 500 m, which is
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also near the level where the biocoherent D1 shears are largest. The corresponding

peak correlation r3 is 0.3. D64 also peaks broadly betwen 300 and 500 m depth.

Dips in both bands near 430 m are due to the gap in the record near the position

of the Deep-8 sonar. A smaller peak is also observed in the D8 band near 330 m

depth. Total energy transfers in the D16 band are similar to the total D8 transfers

but are spread over a range of depths, with weak peaks at 330 and 500 m where

strong peaks are observed in the neighboring bands.

An additional method of estimating measurement error in ε∗ can be ob-

tained from (3.16). Whereas 〈uwUz〉 and 〈vwVz〉 represent energy transfers in the

equations of motion, 〈uwVz〉 and 〈vwUz〉 are not physically meaningful quantities

but contain the same random noise. The resulting error estimate is defined as

εerr(Dm, Dn) = −
〈
u(Dm)w(Dn)Vz(D1) + v(Dm)w(Dn)Uz(D1)

〉
. (3.17)

Normalization by the convention of (3.6) yields a correlation error estimate, r3 err.

Both εerr and r3 err are included in Fig. (3.9) for comparison. The reported esti-

mates for ε∗ and r3 are significantly larger than the error estimates at nearly all

depths for all frequency bands considered here.

The frequency rolloff seen in Fig. 3.8 is more clearly seen after depth av-

eraging. Figure 3.11 shows the distribution of the energy transfers by frequency

octave. The dashed lines pass through a set of small dots which correspond to the

bands in the previous figure, as well as a set of intermediate points corresponding

to octave bands with center frequencies falling between those of the indicated dots.

Energy transfer rates, shown in the upper panel of Figure 3.11, increase nearly lin-

early with octave until a peak at about 4 × 10−8 W kg−1, between the D32 and

D64 bands. Above this peak frequency, the energy transfer rate rolls off steeply.

Correlations, shown below, exhibit a similar trend, although the peak correlation

is already reached in D32 and holds steady for a half-octave before rolling off.

Energy transfer rate ε∗ by wavenumber octave

The waves which interact to produce the energy transfers seen in Fig. 3.8 are

compatible with the frequency resonance condition for Induced Diffusion: a pair
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Figure 3.11: Nearfield: Depth-Averaged Energy Transfers by Octave. Above) En-
ergy transfer rates ε∗ = −〈uwUz +vwVz〉 by frequency octave bin, depth-averaged.
Plotted points are depth averages of the energy transfer profiles shown in Fig. 3.10.
Dotted lines also pass through a set of points computed for intermediate octave
bands. Error estimates (3.17) are plotted in green. Below) Stress-shear correla-
tions r3(z) (3.6) by octave, depth-averaged. As before, error estimates are plotted
in green.
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of high frequency waves of similar, but not identical, frequency interact resonantly

with a low frequency wave. The significant depth averages obtained in Fig. 3.11

also suggest that the waves are resonant in vertical wavenumber.

However, classical ID prescribes a specific arrangement for the wavenumber

resonance: the high frequency waves have much larger wavenumbers, and hence

much smaller spatial scales than the low frequency wave. This scale separation

underlies the use of eikonal models of ID. As a corollary, the wave vectors for the

high frequency waves are nearly identical in the limit of large scale separation.

Wavenumber resonances are examined using a bispectral approach analo-

gous to the octave band method which was previously used to investigate frequency

resonances. Energy transfer rates within each frequency band are computed as

functions of u and w wavenumber. The wavenumber bands are, as before, ar-

ranged by octave. Here, the bands are centered on vertical wavelengths: 400 m,

200 m, 100 m, 50 m, 25 m, and 12.5 m in u and w.

Figure 3.12 plots the Nearfield ε∗ per frequency band, as functions of u

and v vertical wavelength.. The largest values of ε∗ are seen in the D32 band,

as previously observed. Common to all frequency bands which include significant

energy transfers is an apparent resonance between the 400 m wavelength band

in w and the 100 m wavelength in u. These are waves with the longest vertical

wavelengths that can be resolved in w interacting with waves of significantly shorter

wavelength in u, with scales similar to the dominant D1 shear scale. There is also

appreciable interaction between the immediately adjacent wavelength bands, so

that 200 m w and 50 m u, for example, show relatively strong energy transfers as

well. As before, the pattern of correlations closely mirrors the pattern of energy

transfers.

The wavenumber-frequency analysis can be extended a step further. An

attempt is made to distinguish between motions associated with wave energy go-

ing up (wave crests moving downward) and wave energy going down (phase lines

moving upward). To accomplish this, the wavefields are 2-d Fourier transformed,

and alternating quadrants in frequency-wavenumber space are collected to retain

only motions with either downward or upward phase propagation, respectively.
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Figure 3.12: Nearfield: Energy transfer rate ε∗ by wavenumber octave. As in
Fig. 3.9 (right), but here the axes represent wavelengths. One map of wavenumber
resonances is computed for each frequency band.

The up-down separated wavefields are then inverse transformed before frequency

and wavenumber octave filtering.

By convention, waves with upward-propagating energy are denoted by pos-

itive vertical wavenumbers, while negative wavenumbers represent downward wave

energy. Because each interaction involves a triad of waves, the up-down separation

divides each wavenumber combination in Fig. 3.12 into 8 possible combinations of

positive and negative wavenumbers.

Figure 3.13 shows ε∗ separated for upward- and downward- propagating

waves. Signed wavenumbers corresponding to u,w, respectively, are represented

in the four distinct quadrants of each plot. The upper row of plots shows en-

ergy transfers involving upward-propagating shears U+
z , while the lower row shows

energy transfers for U−z .

Much greater variety in wavenumber triads is revealed in Fig. 3.13, relative

to the unsigned versions of Fig. 3.12. As before, the 100-m u and 400-m w waves

are generally most active when averaged over all quadrants of each plot. However,

other interactions stand out in specific quadrants: e.g, the (+50,+200) triad in the

D32, U
+
z panel; the (+200,+100) triad in D32, U

−
z ; and (−100,+200) in D16, U

+
z .

It is noteworthy that some interactions appear in quadrants where u and w have

opposite sign — this is a point that will be returned to.
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The energy transfers seem to be biased toward upward-travelling w waves in

the lower frequency panels D4–D16, gradually becoming more symmetric by D32.

The imbalance can explained by the predominance of upward-traveling energy,

associated with the tidal generation at the ridge, in the semidiurnal frequency and

its first several harmonics. Interactions involving downward shears U−z appear to be

somewhat larger than those involving U+
z across all frequencies. This is consistent

with the usual picture of generally more low frequency shear propagating downward

in the oceans.

The wavenumber resonances implied in Figures 3.12–3.13 are unexpected

in light of the theoretical predictions. Interactions found here seem to involve

triads of waves with identifiable frequencies and wavenumbers. However, unlike

classical Induced Diffusion, the high frequency members of the interactions remain

distinct from one another even at the highest frequencies observed; Fig. 3.13 shows

that some of the interacting high frequency waves have opposite signs of vertical

propagation. Even more puzzling, the energy transfers involve high frequency

waves which are not scale-separated from the background shears at all: u has

vertical scales similar to Uz, and w has noticeably longer vertical scales noticeably

than either u or Uz. This is incompatible with both the ID triad structure and the

eikonal view of small test waves passing through a slowly varying background.

3.3.4 Farfield energy transfers

It is worth considering whether the surprising wavenumber resonances ob-

served in the Nearfield of Kaena Ridge are representative of “typical” nonlinear

interactions between low frequency shears and the high frequency portion of the

internal wave spectrum. The HOME Farfield location provides a point of compar-

ison, as a possibly more “typical” open ocean environment. While the Farfield site

was chosen to coincide with the path of a propagating M2 tidal beam, the tide is

markedly less coherent at this location [Rainville and Pinkel, 2006], and shears are

not strongly bicoherent subharmonics as found in the Nearfield. The key points of

the analysis in the previous section are repeated using the HOME Farfield data,

beginning with the separation of energy transfers by frequency-octave.
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Figure 3.13: Nearfield: Energy transfer rate ε∗ by wavenumber octave. As in
Fig. 3.12, but here the distinction is made between wave energy propagating up-
ward and downward. Signed wavenumbers indicate upward and downward propa-
gating u,w, respectively. The upper row shows energy transfers involving upward
propagating shear U+

z , while the lower row corresponds to U−z . A wider variety of
wavenumber triads can be seen, relative to the unsigned version of Fig. 3.12. Some
energy transfers involve u,w with opposite-sign propagation.

Energy transfer rate ε∗ by frequency octave

As before, the Farfield time series are divided into octave frequency bands

and the triple products corresponding to the energy transfer rate ε∗ and the cor-

relation r3 are computed. Profiles of energy transfers in the Farfield are presented

in Figure 3.14, along with error estimates (3.17). These should be compared with

the Nearfield profiles in Figure 3.10.

Farfield energy transfers are generally weighted toward the surface, presum-

ably where wind-generated D1 waves are largest. This contrasts with the Nearfield,

where ε∗ is largest at depths where PSI-generated D1 shears are large, below 500 m.

However, a large peak is seen near 280 m depth in the Farfield D64 band. This

region of elevated energy transfer represents the largest values of ε∗ observed in the

Farfield. Peak transfer rates are near 2 × 10−8 W kg−1, or about 3 times smaller

than in the Nearfield. As before, energy transfers grow steadily with frequency,

but in the Farfield, ε∗ does not stand out from εerr until the D16 frequency band,

whereas in the Nearfield, ε∗ appears significant in all bands.
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Figure 3.14: Farfield: Energy Transfer Profiles. As in Fig. 3.14, but for the
Farfield. Above) Energy transfer rates ε∗ = −〈uwUz + vwVz〉 by frequency octave
bin, as functions of depth. Error estimates (3.17) are plotted in green for reference.
Energy transfers appear significant in bands from D16 to D64. Maximum values
of ε∗ are biased toward the surface, expect for a peak near 280 m in the D64

band. Peak values are near 2 × 10−8 W kg−1, or about 3 times smaller than in
the Nearfield. Below) Stress-shear correlations r3(z) (3.6), as functions of depth.
Unlike the Nearfield case, r3(z) does not resemble ε∗, and holds relatively steady
through a broad range of depths. As before, error estimates are plotted in green.
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Also unlike the Nearfield case, correlations in the Farfield do not mirror

the energy transfer rate. Instead, r3(z) holds relatively steady through a broad

range of depths. A possible explanation for this difference is that the Farfield is

relatively “quiet” with respect to other nonlinear processes, while the interaction

is only detectable above other nonlinear processes in the Nearfield when the energy

transfer rate is large.

Depth-averaged energy transfer rates by octave, shown in 3.15, are 3–4

times smaller in the Farfield and are slightly more skewed toward high frequencies

than in the Nearfield. ε∗ nearly doubles with each octave, suggesting that the

energy transfer density is nearly constant with linear frequency. A cutoff is reached

between D32 and D64 as in the Nearfield.

Although the profiles of r3 and ε∗ in Fig 3.14 appear quite different, their

distributions by frequency are remarkably similar, as seen in the lower panel of

Figure 3.15.

Energy transfer rate ε∗ by wavenumber octave

In the frequency domain, the energy transfers in the Nearfield and Farfield

locations appear relatively similar. It remains to show whether the widely sepa-

rated spatial scales of high frequency w and u seen in the Nearfield are also seen in

the Farfield. Energy transfers by wavenumber octave are shown in Figure 3.16. As

in the Nearfield (Fig. 3.12), the longest-wavelength w waves are the most strongly

interacting. However, the u-wavelengths which interact with the long w waves are

even shorter, at about 50 m, than in the Nearfield. The suggestion is that shorter

u waves are involved simply because the shear scales in the Farfield include shorter

wavelengths than the dominant 100 m scale found in the Nearfield.

Farfield energy transfers are also separated for upward-downward propaga-

tion. The signed wavenumber estimates are presented in Figure 3.17. Less new in-

formation is gained here than in the Nearfield. As before, a somewhat wider spread

of resonant frequencies are apparent in isolated quadrants, and energy transfers

are seen involving u,w pairs with opposite-sign vertical propagation. However, no

significant biases in upward vs. downward propagation of u,w or Uz are apparent.
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Figure 3.15: Farfield: Depth-Averaged Energy Transfers by Octave. As in
Fig. 3.15, but in the Farfield. Above) Energy transfer rates ε∗ = −〈uwUz + vwVz〉
by frequency octave bin, depth-averaged. Plotted points are depth averages of the
energy transfer profiles shown in Fig. 3.14. Dotted lines also pass through a set of
points computed for intermediate octave bands. Error estimates (3.17) are plotted
in green. Below) Stress-shear correlations r3(z) (3.6) by octave, depth-averaged.
Although profiles of r3(z) do not resemble ε∗(z) (Fig. 3.15), their depth averages
have a similar frequency distribution.
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Figure 3.16: Farfield: Energy transfer rate ε∗ by wavenumber octave. As in
Fig. 3.12, but for the Farfield. As in the Nearfield, the wavenumber resonance
is concentrated around the longest wavelengths in w, but a somewhat shorter-
wavelength u of about 50 m interacts with the long w waves.
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Figure 3.17: Farfield: Energy transfer rate ε∗ by wavenumber octave. As in
Fig. 3.13, but for the Farfield. Signed wavenumbers indicate upward and downward
propagating u,w, respectively. The upper row shows energy transfers involving
upward propagating shear U+

z , while the lower row corresponds to U−z .
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The frequency and wavenumber resonances seem to show a similar inter-

action occurring in the Farfield as in the Nearfield. Both involve pairs of u,w

waves with similar frequency but dissimilar vertical scales interacting with the low

frequency shear field. The scale difference between the long w and the shorter u

is even more pronounced in the Farfield than in the Nearfield. In both settings,

the interaction seems clearly different from classical Induced Diffusion. The ob-

servations also do not support the eikonal model of small-scale test waves being

refracted in a background shear field.

3.4 Discussion

If the interaction is neither Induced Diffusion nor eikonal, then what is it?

An interesting question is whether weakly nonlinear interactions are needed at all

to explain the energy transfers observed in the upper water column in the Nearfield.

Klymak et al. [2008] attributed much of the Nearfield dissipation below 400 m due

to immediate breaking of the internal tide rather than to internal wave cascade

processes. Perhaps a strongly nonlinear mechanism, such as shear instability in

the D1 band, is associated with the apparent energy transfers above 400 m as well.

To examine the shear instability hypothesis, a gradient Richardson number

Ri6 = 〈N2〉 /S2
6 is calculated using the D1 shears down to 6 m scale and a cruise-

averaged stratification N̄(z). This method amounts to a rescaling of the D1 shear

fields (Figs. 3.4, 3.6). The results, presented in Figure 3.18, are presented on a

log2 scale which is centered around a canonical Richardson number of 1/4. In the

Nearfield, shears often reach a Richardson number of unity but are rarely seen to

approach 1/4, except at the peaks of the large PSI inertial packets around days 270

and 284. However, the largest energy transfers in the Nearfield are not observed at

peak shear, but during the overlap between the fading spring tide and the growing

PSI shears. Depth-time correlations between ε∗ and critical Ri6 (not shown) find

no significant statistical relationship between the two.

In the Farfield, the Ri tend to be about 4 times larger, hence almost never

reach 1/4. However, a similar pattern of energy transfers is observed at both
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Figure 3.18: Richardson number associated withD1 shears. Results are presented
on a log2 scale, so that the critical Ri cutoff of 1/4 appears as -2 on this scale.
In the Nearfield (top), the shears are potentially unstable only at the peak of the
PSI subharmonics near days 270 and 294 and around 500–550 m. This contrasts
with the peak times and depths of ε∗, which peaks between the spring tide and the
maximum of the PSI shears around a depth of 300 m. In the Farfield (bottom),
the shears are essentially stable.
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locations. The presence of energy transfers in the Farfield, combined with the lack

of time correlation in the Nearfield make it unlikely that shear instabilities explain

the observations.

Resonant triads of interacting waves remain a viable explanation, so long as

they are not Induced Diffusion. The wavenumber-frequency analysis of Section 2.5

show that the energy transfers take place between distinct frequencies and vertical

wavelengths. Energy transfer rates also reflect features of the internal wave field,

e.g., the assymmetry of w with respect to upward-downward propagation at low

frequencies. Finally, distributions of ε∗ by frequency octave, Figs. 3.11, 3.15, show

a distinct Väısala cutoff in both the Nearfield and Farfield. These findings support

a picture of interacting waves.

3.4.1 Energy transfers compared to turbulent dissipation

Aside from a qualitative description of the energy transfers captured by ε∗, a

separate and potentially more important question is whether the energy transfers

are likely to be a significant source, relative to energy removal, for the internal

wave field. To address this question, ε∗ is compared to independent estimates of

the turbulent dissipation rate ε.

Dissipation estimates are available from several sites in HOME, as measured

by a combination of tethered profilers and towed instruments. Directly over the

ridge, Klymak et al. [2006] found a mean vertical diffusivity Kρ > 10−3 m2 s−1. The

magnitude of the energy transfers ε∗ in the Nearfield are of order 1×10−7 W kg−1,

which can be converted to a diffusivity using the relationship due to Osborn [1980],

Kρ = Γ
ε∗
〈N2〉

, (3.18)

where Γ ≈ 0.2 and a reference value of (0.0031 s−1)2 is used for 〈N2〉. This yields a

value for Kρ ∼ 2×10−3 m2 s−1, provided that all of the energy which is transferred

to high frequencies subsequently breaks.

The agreement in magnitude between ε∗ and ε is encouraging. However,

estimates of ε are known to vary by several orders of magnitude with increasing

distance from the ridge crest. To gain a better estimate of the true dissipation rate
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near the FLIP locations, an attempt is made to estimate the turbulent dissipation

rate by an overturns analysis of the FLIP CTD data.

The method used is described in Dillon [1982]: a Thorpe displacement d′ is

assigned to each sample in the density profile, where d′ is defined as the difference

of the sample’s position in a sorted density profile from the position at which it was

measured. Where the water column is already statically stable, LT is identically

zero. The rms displacement defines the Thorpe scale LT = 〈d′〉. LT, in turn, is a

proxy for the Ozmidov scale LO = (ε/N3)1/2 ≈ LT.

Profiles of the Nearfield time-averaged dissipation rate ε inferred from Thorpe

scales are plotted together with the energy transfer rate ε∗ in Figure 3.19. ε∗ and

ε have the order of magnitude, but ε∗ is relatively steady with depth, while ε in-

creases steadily with depth, matching and eventually surpassing ε∗ between 500

and 600 m depth. It is unknown why the energy transfer rate is larger than the

dissipation rate. Much of the turbulent mixing in the Nearfield has been attributed

to an apparently unrelated process, that of direct breaking of the internal tide near

the sloping bottom [Klymak et al., 2008]. Depth-time correlations between ε∗ and

ε show no significant link, so it seems likely that high frequency motions associ-

ated with the energy transfers propagate away before contributing to breaking and

mixing.

A speculative hypothesis for explaining for the excess in ε∗ is that low

frequency shears near the generation site are unusually out-of-balance with respect

to the high frequency region of the internal wave spectrum. This might be a result

of local generation of D1 shears by PSI. In this scenario, the Nearfield represents

a net source for high frequency internal waves in a broader region surrounding the

ridge.

The picture is somewhat different in the Farfield, as shown in Figure 3.20.

Throughout the water column, the profiles agree closely, within a factor of about 3.

The dissipation estimate has a step discontinuity around 400 m, near the depths of

best agreement in the upper water column, due to a mismatch between the upper

and lower CTDs. The lower CTD does not appear to be resolving all the overturns

in the Farfield, but due to substantial changes in the T-S relationship during
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Figure 3.19: Nearfield: Comparison of turbulent dissipation rate ε and energy
transfer rate ε∗. The turbulent dissipation rate ε is estimated from density over-
turns using Thorpe scales. The profiles generally agree within an order of mag-
nitude, but the energy transfer rate ε∗ holds relatively steady, while ε increases
with depth until it surpasses ε∗ between 500 and 600 m depth. The large ε values
in the lower several hundred meters are associated with strongly nonlinear wave
breaking.
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the cruise, a conservative approach is taken here to identifying “true” overturns.

Nevertheless, the closeness of the profiles is remarkable, especially since the Farfield

is taken to be the more typical of the two sites.

10 9 10 8

100

200

300

400

500

600

700

HOME Farfield : Comparison of dissipation  and energy transfer *

Energy Rate (W kg 1)

D
ep

th
 (m

)

 

 

*

Figure 3.20: Farfield: Comparison of turbulent dissipation rate ε and energy
transfer rate ε∗. As in Fig. 3.19 but for the Farfield. The turbulent dissipation
rate ε is estimated from density overturns using Thorpe scales. The profiles agree
within a factor of 3 in the upper 400 m. The lower CTD (below 400 m) does not
seem to resolve all the overturns, resulting in a discontinuity at the switchover
depth near 400 m.

3.5 Summary

Observations taken from both the HOME Nearfield and Farfield compo-

nents find shears concentrated at low frequencies along with horizontal and ver-

tical velocities spanning a broad range of frequencies up to the Väısala cutoff.

In the Nearfield, the low frequency shears, which are associated with PSI of the

semidiurnal tide, have a well-defined dominant vertical scale of about 100 m. Peak

amplitudes appear in the lower half of the profiling column. A fortnightly cycle is
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apparent and lags the semidiurnal fortnightly cycle by several days. Meanwhile, the

high frequencies have largest amplitudes during spring tides. The Farfield shears

are more typical, showing a range of vertical scales. High frequency motions are

also observed, but have no obvious fortnightly cycle.

A modified stress-shear correlation, in which the shears are allowed to vary

slowly at low frequency, finds that energy is transferred from the low frequency

shear background to high frequencies. Energy transfer rates are of order 1 ×
10−7 W kg−1 in the Nearfield and are about 3 times smaller in the Farfield.

The interacting frequencies are identified using energy bispectra, which ex-

press the stress-shear correlation a function of paired frequencies (ωu, ωw). Bicoher-

ences suggest that significant energy transfers are confined to u,w high frequencies

which differ by a small frequency contained in the D1 band. Analysis of total

energy transfers by frequency octave bands finds that the interaction remains pos-

itive and relatively steady with increasing frequency, up to a cutoff near the Väısala

frequency.

While the frequency resonances are compatible with a classical Induced

Diffusion triad, the wavenumber resonances are not. Energy transfers are detected

involving distinct high frequency pairs, in which w typically has very long vertical

scales of about 400 m, while u has much shorter scales of about 100 m in the

Nearfield and 50 m in the Farfield. The difference in u scales may be a result of

shorter shear scales available for interaction in the Farfield. In both cases, the w

scales are much longer than the shear scales, contradicting the scale separation

assumed by eikonal models of high-frequency–low-frequency interaction.

The energy transfer rates found here are placed in perspective by comparing

them to estimates of the true turbulence dissipation rate ε. Surprising agreement is

found between the energy transfers to high frequency ε∗ and dissipation ε inferred

from Thorpe scale analysis of overturns. The suggestion is that ε∗ may be a

significant source of energy to waves which eventually break and trigger turbulent

mixing in the ocean.

If the energy transfers identified in this study can be demonstrated in other

data sets, then one might imagine a scheme for estimating the decay of low-
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frequency shears, whether due to PSI or more generally by wind generation, by

modeling the interaction as a “wave diffusivity” for the background shears. At the

same time, energy transfer rate may also prove valuable as an additional proxy for

turbulent mixing, based on the close agreement, especially in the Farfield, between

ε∗ and ε estimated from overturns.

A future goal is to gain a better understanding of the dynamics behind

the nonlinear interaction. A major unanswered question is why this specific con-

figuration of waves, particularly involving the very long-wavelength w waves, are

preferred (or detected) in a nonlinear energy transfer. The assumptions behind the

triple correlation method should also be carefully examined. Further analysis of

the HOME dataset, particularly with refined spectral techniques, may yield insight

into these problems.



Chapter 4

Summary

Observations were made from the Research Platform (R/P) FLIP at two

locations in 2001–2002, during the Hawaii Ocean Mixing Experiment (HOME). In

the HOME Nearfield component, FLIP was moored on the southwest shoulder of

Kaena Ridge, one of the most active internal tidal generation sites identified during

HOME. Semidiurnal tidal energy emanating upward from the ridge and energetic

diurnal shears propagating both upward and downward were observed. During the

Farfield deployment, FLIP was positioned approximately 430 km to the southwest

of the Ridge, in the approximate path of a propagating semidiurnal tidal beam .

A combination of profiling CTDs and the Deep-8 sonar recorded density

information and horizontal velocities down to approximately 800 m depth during

both deployments. More than 9000 profiles were taken at 4-minute intervals during

the six-week Farfield component, and more than 11000 profiles were recorded in

the Nearfield. The 2-d data gathered aboard FLIP provided a unique opportunity

to apply wavenumber-frequency analysis.

PSI of the semidiurnal internal tide

The first investigation attempted to observe Parametric Subharmonic In-

stability (PSI) of the internal tide. Bispectral analysis was introduced as a method

for demonstrating and establishing the significance of phase coupling between the

low mode internal tide and diurnal waves observed near the ridge. Here a cross-

80
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bispectrum was used to maximize the signal-to-noise of the measurement: the

diurnal waves were most clearly detected in the shears, while the low-mode tide

was emphasized by vertical velocities. Due to the prediction of PSI that an inter-

action could take place between pairs of diurnal waves and the tide, cross-bispectra

were computed between two shear signals and one vertical velocity.

To further test the wavenumber resonance predicted by PSI, upward-propagating

and downward-propagating diurnal waves were separated using a 2-d Fourier trans-

form method. Bicoherences involving one upward-propagating shear frequency and

one downward-propagating shear frequency were significantly greater than those

for the unseparated fields. Configurations with two upward or two downward

shears, which could not fulfill the vertical wavenumber resonance condition, were

not statistically distinguishable from zero bicoherence.

Depth-time correlations were computed, corresponding to the bicoherences

between the semidiurnal and diurnal bands only. Regions of uniformly positive cor-

relation indicated times and locations of active energy transfer. The PSI subhar-

monics were shown to be strongest between 500 and 600 m, with a peak amplitude

lagging the spring tide by about 4–7 days as predicted by theory.

Due to the apparent group structure of subharmonic packets, two inter-

pretations of significant bicoherence were compared: one using the characteristic

time and space scales of the subharmonic groups, and the other using the more

traditional scales of individual subharmonic wavelengths and periods. The group

scales predicted a much stricter threshold for significance. Monte Carlo simula-

tions showed that group scales were a good predictor of empirical bicoherence dis-

tributions, while wave scales drastically underpredicted thresholds associated with

significant bicoherences. Unseparated cross-bicoherences were only marginally sig-

nificant under the stricter requirement, but the up-down separated bicoherences re-

mained clearly significant. The bicoherence measurements, combined with the im-

plied relationship between the wavevectors and subharmonic growth rates, strongly

supported the hypothesis that PSI of the internal tide was transferring energy to

the subharmonic waves in the Nearfield of Kaena Ridge.
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Energy transfer from low to high frequencies

In the second part of the thesis, energy transfers from low-frequency waves

due to high frequency fluctuations were investigated in both the HOME Nearfield

and Farfield data. The monochromatic PSI waves in the Nearfield provided a

clearly identifiable starting point for the investigation; meanwhile, the Farfield was

taken as an example of a much more “typical” open-ocean environment.

The stress-shear triple correlation −
〈
uiw

dUi
dz

〉
, analogous to the produc-

tion term in turbulence theory, was developed as a method for quantifying en-

ergy transfers in the (assumed) quasi-steady wavefield. To identify interacting

frequencies, the correlation was expressed in energy bispectral form. Significant

interactions were found only near the main frequency diagonal in bispectral space,

implying that energy transfers were confined to high frequency waves with similar

frequency. Further frequency analysis found significant energy transfers involved a

broad range of frequencies, reaching to an approximate Väısala cutoff before rolling

off.

While the frequency resonances were compatible with both the Induced

Diffusion and eikonal models of nonlinear interaction, wavenumber analysis showed

that neither model was supported. While a variety of resonant triads were found

in signed wavenumber space, three findings conflicted with the expectations of the

theory: 1) interactions tended to favor very long scales in w, in contradiction to

the scale separation assumption; 2) interacting ui and w waves remained distinct

in the limit of high frequency rather than collapsing; and 3) wave triads involving

two upward or two downward propagating high frequency waves were observed.

Nevertheless, energy transfer rates of order 1×10−7 W kg−1 in the Nearfield

and about 30% that in the Farfield, appeared significant from a measurement

standpoint. To place those numbers in perspective in terms of significance to the

internal wave field and mixing, a set of turbulence dissipation estimates were also

computed for both locations. These estimates were formed by an analysis of over-

turns to determine Thorpe scales. While the energy transfer found in the Nearfield

was somewhat higher than the turbulence measurement, they still agreed to within

an order of magnitude throughout the water column. A possible explanation for
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this discrepancy may be that the excess of subharmonic waves generated by PSI

in the Nearfield lead to unusually high energy transfers relative to other locations,

but that the high frequency waves carry some the energy away to “leaner” regions

before breaking. In the Farfield, the agreement between energy transfer rate and

dissipation was much better, within a factor of 3 at all depths.

Similar analyses should be carried out with other data sets to verify that

these relationships hold. If they do, these high frequency transfers may prove

useful as a proxy for internal wave energy available to turbulent mixing. However,

it remains an open question: what selects these triads for energy transfer? A

priority for future research should be to investigate the dynamical picture behind

the energy transfers found in this investigation.



References

M. Alford, J. MacKinnon, Z. Zhao, R. Pinkel, J. Klymak, and T. Peacock. Internal
waves across the Pacific. Geophys Res Lett, 34(24):L24601, Jan 2007. doi:
10.1029/2007GL031566.

D. Benney and P. Saffman. Nonlinear interactions of random waves in a dispersive
medium. Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences, pages 301–320, 1966.

F. Bretherton. Resonant interactions between waves - the case of discrete oscilla-
tions. J Fluid Mech, 20(3):457–479, Jan 1964.

W. S. Broecker. The biggest chill. Nat. Hist. Mag., 97:74–82, 1987.

W. S. Broecker. The great ocean conveyor. Oceanography, 4(2):79–89, 1991.

D. Broutman and W. Young. On the interaction of small-scale oceanic internal
waves with near-inertial waves. Journal of Fluid Mechanics, 166:341–58, 1986.

G. Carter and M. Gregg. Persistent near-diurnal internal waves observed above a
site of M2 barotropic-to-baroclinic conversion. Journal of Physical Oceanogra-
phy, 36(6):1136–1147, 2006.

T. M. Dillon. Vertical overturns: a comparison of thorpe and ozmidov length
scales. Journal of Geophysical Research, 87(C12):9601–9613, November 1982.

T. Duda and D. Jacobs. Stress/shear correlation: Internal wave/wave interaction
and energy flux in the upper ocean. Geophys Res Lett, 25(11):1919–1922, Jan
1998.

G. Egbert and R. Ray. Significant dissipation of tidal energy in the deep ocean
inferred from satellite altimeter data. Nature, 405(6788):775–778, 2000.

G. Egbert and R. Ray. Estimates of M2 tidal energy dissipation from
TOPEX/Poseidon altimeter data. Journal of Geophysical Research, 106(22):
475–22, 2001.

G. D. Egbert. Tidal data inversion: interpolation and inference. Progress In
Oceanography, 40(1-4):53–80, 1997.

84



85

S. Elgar and R. Guza. Shoaling gravity waves: Comparisons between field obser-
vations, linear theory, and a nonlinear model. Journal of Fluid Mechanics, 158:
47–70, 1985a.

S. Elgar and R. Guza. Observations of bispectra of shoaling surface gravity waves.
Journal of Fluid Mechanics, 161:425–48, 1985b.

S. Elgar and R. Guza. Statistics of bicoherence. IEEE T Acoust Speech, 36(10):
1667–1668, October 1988.

S. Elgar, T. Herbers, V. Chandran, and R. Guza. Higher-order spectral-analysis
of nonlinear ocean surface gravity-waves. J Geophys Res-Oceans, 100(C3):4977–
4983, Jan 1995.

E. E. Frajka-Williams, E. L. Kunze, and J. A. MacKinnon. Bispectra of internal
tides and parametric subharmonic instability. Master’s thesis, University of
Washington, Nov 2006.

A. Gargett and G. Holloway. Dissipation and diffusion by internal wave breaking.
Journal of Marine Research, 42(1):15–27, 1984.

C. Garrett and W. Munk. Oceanic mixing by breaking internal waves. Deep Sea
Research and Oceanographic Abstracts, Jan 1972.

A. E. Gill. Atmosphere-ocean dynamics. Academic Press, New York, 1982.

M. C. Gregg. Diapycnal mixing in the thermocline – a review. Journal of Geo-
physical Research-Oceans, 92(C5):5249–5286, May 1987.

K. Hasselmann. On the non-linear energy transfer in a gravity-wave spectrum .1.
general theory. J Fluid Mech, 12(4):481–500, Jan 1962.

K. Hasselmann. On the non-linear energy transfer in a gravity wave spectrum .2.
conservation theorems - wave-particle analogy - irreversibility. J Fluid Mech, 15
(2):273–281, Jan 1963a.

K. Hasselmann. On the non-linear energy transfer in a gravity-wave spectrum .3.
evaluation of the energy flux and swell-sea interaction for a neumann spectrum.
J Fluid Mech, 15(3):385–398, Jan 1963b.

K. Hasselmann. Feynman diagrams and interaction rules of wave-wave scattering
processes. Rev Geophys, 4(1):1–&, Jan 1966.

F. Henyey and N. Pomphrey. Eikonal description of internal wave interactions - a
non-diffusive picture of induced diffusion. Dynam Atmos Oceans, 7(4):189–219,
Jan 1983.



86
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