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Introductory Paragraph

It is estimated that 350 million individuals worldwide suffer from rare diseases, which are 

predominantly caused by mutation in a single gene1. The current molecular diagnostic rate is 

estimated at 50% with whole exome sequencing (WES) among the most successful 

approaches2–5. For patients in whom WES is uninformative, RNA-seq has shown diagnostic 

utility in specific tissues and diseases6–8. This includes muscle biopsies from patients with 

undiagnosed rare muscle disorders6,9, and cultured fibroblasts from patients with 

mitochondrial disorders7. However, in many cases, biopsies are not performed for clinical 

care, and tissues are difficult to access. We sought to assess the utility of RNA-seq from 

blood as a diagnostic tool for rare diseases of different pathophysiologies. We generated 

whole blood RNA-seq from 94 cases with undiagnosed rare diseases spanning 16 diverse 

disease categories. We developed a robust approach to compare cases to large sets of RNA-

seq controls (N=1,594 external and N=49 family-based controls) and demonstrated the 

impacts of expression, splicing, gene and variant filtering strategies on disease gene 

identification. Across our cohort, we observed that RNA-seq yields a 7.5% diagnostic rate 

and an extra 16.7% with improved candidate gene resolution.

We obtained RNA sequencing data from samples from 143 individuals, 94 affected by rare 

diseases and 49 unaffected family members (Supplementary Table 1) and whole exome or 
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genome sequencing for 112 of them. In total, whole exome sequencing did not to identify 

the causal variant in 88.8% of patients. Patients represented 80 different diseases and were 

broadly classified into 16 distinct disease categories, with neurology, musculoskeletal, 

hematology and ophthalmology as the most frequent (Fig. 1a, Supplementary Table 2). We 

integrated these data with RNA-seq data from healthy individuals from the Depression 

Genes and Network (DGN) cohort (N=909)10, the Prospective Investigation of the 

Vasculature in Uppsala Seniors (PIVUS) project (N=65)11 and the Genotype-Tissue 

Expression consortium (GTEx version 7) (N=620) cohorts12(Supplementary Table 3). By 

comparison to large healthy cohorts, we demonstrate how extreme gene expression and 

splicing events can aid in identifying candidate genes and variants.

We first evaluated the extent that whole blood RNA-seq captured gene expression of known 

rare disease genes in each major disease category (Fig. 1b, Supplementary Table 4). When 

broadly considering disease genes from the Online Mendelian Inheritance in Man (OMIM) 

database13, we observed 70.6% were expressed in blood and 50% of corresponding gene 

splicing junctions were covered with at least 5 reads in 20% of samples (Extended Data Fig. 

1A–B). Notably, for a panel of genes known to be involved in neurological disorders 

(N=284), we observed that 76% were expressed. Using scores from ExAC14, we further 

observed that genes expressed across multiple tissues were more depleted in missense or 

loss-of-function (LoF) mutations14(two-sided Wilcoxon test, p-value ≤2×10−16 Extended 

Data Fig. 1C, Supplementary Table 3). This suggests that mutations that have more severe 

consequences occur more often in genes for which expression is not restricted to one tissue. 

Indeed, we observed that 66% of LoF-intolerant genes (probability of being intolerant to 

LoF mutations (pLI ≥ 0.9) are expressed in blood samples (average transcripts per million, 

TPM ≥1)(Extended Data Fig. 1D).

Outlier (or aberrant) expression of a gene in a sample when comparing to all tested samples 

has previously been shown to help identify large-effect rare variants and rare disease genes 

in blood15–17. We assessed the differences between outlier genes in cases versus controls 

after correcting the data for batch effects (see Methods, Extended Data Fig. 2, Extended 

Data Fig. 3). We observed an enrichment of case under-expression outliers in genes more 

sensitive to LoF mutations (Fig. 2a, red). This observation corroborates previous evidence 

that new LoF mutations are more likely to lower expression level through nonsense mediated 

decay (NMD)18–20. As we increased the number of controls, the enrichment became 

stronger, demonstrating the impact of large control datasets (Extended Data Fig. 4).

We observed an average of 343 outliers per sample (|Z-score| ≥ 2, Fig. 2b). We tested 

different variant and gene-level filters that could aid in further narrowing down the lists of 

candidate genes (Fig. 2c). We filtered for genes that were LoF intolerant (Filter 1; pLI ≥0.9), 

likely to have a regulatory variant impacting gene expression (Filter 2: RIVER score ≥ 

0.8521); showed allele-specific expression (ASE) (Filter 3); linked to the phenotype (Filter 4: 

Human Phenotype Ontology22 (HPO) match), with a rare variant with MAF ≥ 0.01% within 

10kb upstream of the gene (Filter 5); and with a rare variant that was likely deleterious 

(Filter 7; CADD score ≥10). Other filters were combinations of these sets. We observed that 

when restricting to under-expression outlier genes with HPO matches and a deleterious rare 

variant nearby, we were able to reduce the candidate genes list to less than 1% of the initial 
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set of outliers with 80% of cases having at least one candidate gene (Filter 11; Fig.2c; 

Extended Data Fig. 5A). Overall, we are able to reduce the number of expression outliers to 

less than 10 on average for all cases (Fig. 2d).

Outlier splicing is also an important contributor to Mendelian disease6,7,23–26. To evaluate 

splicing events across rare disease samples, we corrected junction data for batch effects 

(Extended Data Fig. 6) and obtained Z-scores in all samples (Fig. 3a, see Methods). On 

average, we detected 540 splicing outlier genes for each sample at |Z-score| ≥ 2 (Fig. 3b). 

We observed that the number of splicing outliers was in influenced by the number of 

junction in each gene, was higher in cases and, like expression outliers, was enriched in 

genes sensitive to LoF mutation (data not shown). From both exome and genome data alone, 

we observed that the number of rare variants impacting splicing was large but could be 

significantly reduced when combined with outlier splicing information from RNA-seq (Fig. 

3c). From our pool of candidate genes with splicing outliers, we looked at the proportion 

remaining after different filters (Fig. 3d). We observed that limiting to genes relevant to the 

phenotype (Filter 2) and with a deleterious rare variant within 20 bp of the splicing junction 

(Filter 5), we were able to narrow down to only 0.14% of potential candidate genes (Filter 

7). Overall, 32% of cases had at least one gene matching these criteria (Extended Data Fig. 

5B). Furthermore, genes selected after filtering carried more deleterious rare variants than 

unfiltered outliers suggesting an enrichment of disease-genes with compound heterozygous 

mutations (Fig. 3e). Overall, the filtering steps are reducing candidates to less than 10 per 

case on average (Fig. 3f).

RNA-seq provides the ability to measure allele-specific expression. ASE can inform the 

presence of a large-effect heterozygous regulatory, splicing or nonsense variant, or epi-

mutation aiding the identification of candidate rare disease genes and variants7,27–29. Out of 

all possible heterozygous sites (~105 to 106 per sample for exome and genome, 

respectively), 104 variants had sufficient coverage for analysis (Extended Data Fig. 7A). 

Independent of sequencing technology, we observed 103 sites displaying allelic imbalance 

with an allelic ratio ≤ 0.35 or ≥ 0.65. To highlight ASE events that might be disease-related, 

we focused on the subset of genes outlier ASE sites within case individuals when compared 

to all other rare disease individuals and GTEx samples (Extended Data Fig. 7A). We found 

an average of 94 ASE outliers per individual. We observed that the top 20 ASE outlier genes 

are enriched for overlap with HPO-associated genes per case, regardless of the filters applied 

to the extreme ASE genes and background genes (ie pLI ≥ 0.9, Rare variant nearby, Rare 

variant with CADD score ≥ 10 nearby; (Extended Data Fig. 7B). We also tested whether 

ASE would allow us to identify deleterious variants that were over-represented as this may 

be a marker for compound events or haploinsufficiency. Here, we focused on rare deleterious 

variants where the alternative allele is more abundant than the reference allele (Extended 

Data Fig. 7C). In total, 111 rare variants show allelic imbalance biased toward the 

deleterious alternative allele (96 splice and 15 stop-gain). Among those, one variant is in 

EFHD2, a gene coding for Ca2+ adapter protein involved in B-cell apoptosis, NF-kB 

mediated in inflammatory response, and immune cell activation and motility30–33. The 

carrier of this event was diagnosed with idiopathic cardiomyopathy, where accompanying 

symptoms (elevated in inflammatory markers, Raynaud’s disease, and alopecia) are 

indicative of auto-immune issues.
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By integrating expression, splicing and ASE signals, we were able to identify and validate 

the causal gene in 6/80 independent cases (7.5%, 4 expression outliers, 2 splicing outliers), 

identify candidate genes potentially linked to the disease phenotype (gene matching HPO 

terms for the symptoms of the proband) in 5/30 cases with candidate gene information 

(16.7%) (Extended Data Fig. 8A, Supplementary Table 1). We did not find highly relevant 

candidate genes for 69 cases (86%). Notably, candidates were identified for 5 neurological 

cases where blood is not assumed to be a representative tissue. Furthermore, we observed 

that for cases where a candidate gene set was provided based on previous literature, we had a 

higher percentage of overlaps with an RNA-based filtered gene set than a DNA-based 

filtered gene set (Extended Data Fig. 8B).

Three cases exemplify the use of RNA-seq in causal gene identification. In a first case, two 

brothers ages 4 and 5 years, each presented at 6 months with delayed motor milestones and 

hypotonia, which evolved to include spasticity, an ataxic gait, and progressive loss of motor 

skills. Genome sequencing identified biallelic heterozygous pathogenic variants in the 

MECR gene present in both siblings: c.830+2dupT and c.−39G>C. Pathogenic variants in 

MECR are associated with mitochondrial enoyl CoA reductase protein-associated 

neurodegeneration (MEPAN), a rare disorder characterized by childhood-onset movement 

disorder, signal hyperintensity in the basal ganglia, optic atrophy, and relatively preserved 

cognition. To date only seven individuals with MEPAN have been reported in the 

literature34. While the c.830+2dupT variant has been described previously, the c.−39G>C 

variant is novel. After applying our pipeline on expression outliers, we found MECR as a 

candidate in both siblings in a list of 11 and 15 genes respectively (with respectively 1 and 0 

candidates left after the splicing pipeline, True Positive Rate (TPR) between 6.7 and 8.3%) 

(Extended Data Fig. 9A–B). Without expression information, there was 245 and 302 genes 

(including MECR) and (with 111 and 161 additional after the splicing based pipeline) linked 

to the phenotype with a rare deleterious variant within 10kb (TPR between 0.28 and 0.21%).

In a second case, a 12-year-old Hispanic female presented with developmental regression 

after typical development until age 18 months, manifesting with loss of milestones including 

head control, and speech. Tremors developed at 21 months; and seizures at 22 months. She 

also suffered from occasional myoclonus. She has a 5-year-old brother with onset at 13 

months of ataxia, autism, developmental delay, recurrent febrile seizures, and absent speech. 

Without expression data, we were able to filter the number of candidate genes from 1,034 

genes to 96 genes (with an additional 105 candidate genes from the expression based side of 

the pipeline, TPR 0.49%), when looking only at genes associated with the phenotypes (from 

HPO terms [24]) and containing rare variants within 20bp of annotated junctions with a 

CADD score ≥ 1035. The causal gene is missing from the most stringent filter because there 

is no rare deleterious variants within 20bp of known junctions. Adding splicing outlier 

information from RNA-seq data left us with one gene (in addition to 7 filtered expression 

outliers, TPR 12.5%); KCTD7, containing a non-annotated junction in the affected sample 

(Fig. 4a, left panel). A synonymous mutation was found responsible for the creation of a 

new splicing junction in this gene (p.V152V, Fig. 4b). RT-PCR from RNA extracted from 

fibroblasts from exons 2–4 regions of the gene confirmed a difference in fragment size in the 

probands (Fig. 4c, Source Data). In addition, this variant exhibited monoallelic expression 

towards the reference allele as a consequence of the premature splicing event.
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In a third case, we reprocessed a solved case for which we had found an exon-skipping event 

in a previous study8. In this case, the patient presented with a sporadic form of spinal 

muscular atrophy. After filtering for splicing outliers (|Z-score| ≥ 2) and selecting only genes 

relevant to the symptoms (HPO), only one gene was left (Extended Data Fig. 10A), ASAH1, 

for which we subsequently identified with Sanger sequencing a splice-loss mutation leading 

to the creation of a new transcript, skipping exon 6 (Extended Data Fig. 10B). While many 

of our cases had genetic data, this case demonstrated that use of RNA-seq alone can aid in 

disease gene identification.

In summary, the use of whole blood RNA-seq in combination with variants and phenotype 

relevant gene filters was able to identify the causal gene and variant(s) in 7.5% of cases or to 

further highlight candidate genes linked to phenotype in 16.7% of cases (see methods). We 

recommend using our most stringent set of filters from splicing and expression outliers. As 

with exome sequencing, we expect this to be a baseline rate that will grow through ongoing 

case reanalysis36,37. Similar to the utility of large databases of control exomes for Mendelian 

disease diagnoses14,38–40, we demonstrated the utility of large control RNA-seq data to 

identify aberrant expression, splicing and ASE events in candidate rare disease genes. 

Furthermore, this work demonstrates the utility of performing RNA-Seq on peripheral 

blood, which is a readily available specimen type in clinical practice. Throughout our study, 

a trade-off needed to be found between strictly filtering the data and losing candidates of 

interest. It is worth noting that this combination of information is not expected to lead to the 

causal gene successfully in the following situations: first, if the causal gene is not expressed 

in the analyzed tissue; second, if the effects of the causal variant do not affect the expression 

of the gene; and third, if the filters are too strict. Therefore, expert evaluation remains 

required when prioritizing candidate genes using RNA-seq data. We can expect that 

combining information from multiple “omics” sources will only further improve diagnosis 

of unsolved rare disease cases in the future.

Material and Methods

We sequenced 143 whole blood samples, 94 extracted from affected individuals and 49 

unaffected family members. The 94 cases represent a total of 80 independent diseases. 

Samples were collected from 3 different institutions, the Children’s Hospital of Eastern 

Ontario (CHEO), the Stanford Clinical Genomics Program (CGP) and the Undiagnosed 

Disease Network (UDN). Ethical and research approval was obtained by CHEO Research 

Ethics Board (REB Protocol Number 11/04E), NHGRI IRB (Protocol 15-HG-0130) and 

Stanford University IRB (Protocols 23066, 32641 and 38046).

Whole blood samples were collected and shipped in Paxgene RNA tubes or as isolated RNA 

for processing. Paxgene RNA tubes were processed manually per manufacturer’s protocol 

and 1.0 μg RNA was used for further processing. Isolated total RNA was analyzed on an 

Agilent Bioanalyzer 2100 by pico RNA chip for RIN quality. Globin mRNA was removed 

using GLOBINclear prior to cDNA library construction. cDNA libraries were constructed 

following the Illumina TrueSeq Stranded mRNA Sample Prep Kit protocol and dual 

indexed. The average size and quality of each cDNA library was determined by Bioanalyzer 

and concentrations were determined by Qubit for proper dilutions and balancing across 
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samples. On average, twenty pooled samples were run simultaneously on an Illumina 

NextSeq 500 (high output cartridge). Pooled samples were run in 9 distinct sequencing runs: 

two runs generated 75bp paired end reads and seven runs generated 150 bp paired end reads. 

Output bcl files were converted to fastq files and demultiplexed using bcl2fastq version 

2.15.0.4 from Illumina. Overall, we obtained around 50M reads per sample (median 52M +/

− 20M).

Reads were trimmed and adapters were removed using cutadapt v1.11 (https://github.com/

marcelm/cutadapt). Reads were then aligned to the reference human genome (hg19) with 

STAR v2.4.0j (https://github.com/alexdobin/STAR/releases/tag/STAR_2.4.0j). We used 

gencode v19 for reference annotation (https://www.gencodegenes.org/releases/19.html). We 

removed reads with a mapping quality under 30 and filtered duplicate reads with Picard 

Tools MarkDuplicates v1.131 (http://broadinstitute.github.io/picard/). Gene-level and 

transcript-level quantifications were generated with RSEM v1.2.2141(https://github.com/

deweylab/RSEM/releases/tag/v1.2.21). Junctions files generated by STAR were filtered: to 

consider a junction, a minimum of 10 reads uniquely spanning was required. For faster 

processing of samples, we used GNU parallel42.

Independent control cohorts for expression, splicing and ASE analyses

We used whole blood transcriptome data of 909 samples from the DGN cohort10 as well as 

65 samples (age 70) from the PIVUS cohort11 to serve as independent healthy controls for 

expression analysis and splicing respectively. DGN samples are single-end 50bp reads and 

PIVUS samples are 75bp paired-end reads. Sequences were aligned, quantified and filtered 

following the same protocol used for rare disease cases and controls. We determined outlier 

ASE events at the gene level per individual by comparing our data to 620 individuals in 

GTEx v712 across 48 tissues. Allele-specific expression in GTEx was processed as in21, and 

only sites with a minimum of 20 reads overlapping and not entirely monoallelically 

expressed were analyzed.

We tested the tolerance to different types of mutations (from ExAC) in function of the 

expression status in a single versus multiple tissues using a two-sided Wilcoxon rank sum 

test on 620 individuals from GTEx v7 across 22 tissues.

Disease gene lists

Disease gene lists for neurology (n=284 genes), ophthalmology (n=380 genes), hematology 

(n=50 genes) and musculoskeletal and orthopedics (n=395 genes) and disease categories 

were obtained from curators for genes of interest in regards of the disease (Table S4). We 

obtained OMIM genes list (n=3,766 genes) from https://omim.org/downloads/. Gene 

expression of disease genes in our samples was restricted to protein coding genes.

Genetic data

Variant data was produced according to recommended protocols for exome or genome data. 

VCFs obtained from UDN were generated through Hudson Alpha and Baylor pipelines. In 

short, DNA reads alignment was performed using BWA-mem v0.7.1243 and variant calling 

was made using GATK v3.344. For CGS samples, variant calling was performed using 
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GATK v3.4. We filtered variants according to the following criteria from previous 

studies14,45:

• Filter field is PASS

• At least 20 reads covering the position (DP field)

• Genotype quality greater than 20 (GQ field)

• Normalized Phred-scaled likelihoods of the predicted genotypes lower than 20 

(PL field)\

• Allele depth
Total depth > 0.8  for homozygous calls and > 0.2 for each allele for heterozygous 

calls.

• Exclude variants with Hardy-Weinberg Equilibrium p-value < 1×10−6

• Exclude variants with call rate < 0.80 (missing > 20%)

We obtained genetic information for 112 samples (out of 143, 54 from whole genome 

sequencing, 58 from whole exome sequencing) (Supplementary Table 1). The number of 

LoF rare variants is variable across samples, and institutions. We merged all VCF files from 

those different institutions and homogenized their format for further analysis. We used 

BEDtools (version 2.26.0–112-gd8c0fe4)46 to filter for junction or gene with a rare variant 

within 20 bp of a tested splicing junction. We filtered for rare variants with minor allele 

frequency ≤0.1%. We kept the singletons in the analysis.

Genetic data annotation

We annotated genetic data with allele frequency from the Genome Aggregation Database 

(gnomAD)14 and Combined Annotation Dependent Depletion scores (CADD)35 scores 

using Vcfanno (version 0.2.7)47. We used CADD scores v1.3 and gnomAD genomes release 

2.0.2.

Ancestry inference

VCF files were processed for ancestry inference using BCFtools v1.8 as following. They 

were normalized (fixing strand flips and left aligning indel records) and merged. We then 

subset this file to only variants in exonic regions, and filtered out variant with > 25% 

missingness. Missing variants were set to homozygous reference. A total of 2,666 variants 

remained after filtering. To perform ancestry inference, we used all individuals from 1000 

Genomes phase 3 version 5 populations. For computational feasibility, we used genotypes 

from chromosomes 1,4,12,15,16, and 19. We used the prcomp function in R to extract 

principal components and plotted the first three principal components.

Expression levels normalization

We filtered out genes for which less than 50% of samples from each origin (i.e. rare disease 

individuals and unaffected family members sequenced in-house, external controls) had TPM 

> 0.5 and/or variance equal to zero. This resulted in 14,988 genes being retained in the 

dataset. We performed Surrogate Variable Analysis (SVA) using the “two-step” method on a 

centered and scaled matrix of log10-transformed (log10(TPM+1)) RNA-seq count data 
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output by RSEM41. We did not provide any known covariates to SVA. To control for 

nonlinearity in uncorrected gene expression data, we added regression splines for the top 

two Surrogate Variables (SVs) significantly associated with batch and institution (p-value 

<1e−30 from univariate linear regression of batch and institution against all significant SVs), 

removing the untransformed SV in each case. Linear regression splines had knots positioned 

at every 1.66% of samples, resulting in approximately 17 individuals per region - which is 

around the average number of individuals in each batch sequenced in-house (Extended Data 

Fig. 3). Significant surrogate variables (SVs) and regression splines were then used as 

covariates in a regression model. The residuals of this model were centered and scaled to 

generate Z-scores for use in all subsequent analyses using gene expression data.

We tested the impact of adding splines in the model using a per-gene likelihood ratio test 

comparing linear regression model fit with and without regression splines. We used 1052 

samples and corrected p-values for multiple testing (Benjamini & Hochberg adjustment).

Global outliers

To control for potential residual technical artifacts impacting outlier expression, we removed 

samples for which 100 or more genes had normalized expression values of |Z-score| > 4 after 

SVA correction (54 samples). We tested the model described in Figure 2 for several global 

outlier thresholds and observed a similar enrichment profile.

Gene expression outlier enrichment analyses

We used the union of DGN samples and healthy family members that passed the global 

outliers criteria as the control set (n=899 and n=32 individuals, respectively). We assessed 

enrichment for case outliers at increasingly stringent percentiles of gene expression in genes 

intolerant to mutations using a logistic regression model. As features in this model we used 

ExAC gene constraint metrics for LoF, missense and synonymous mutations [16]. For each 

gene in the dataset that had ExAC gene constraint metrics (n genes = 10,605), we calculated 

a binomial outcome variable corresponding to the proportion of case expression outliers 

found in each gene: Yi ~ B(ni; pi), where ni is the number of outlier samples in genei at a 

given percentile tested (the number of ‘trials’), and pi is the proportion of case outlier 

samples (which can be thought of as the probability of ‘success’ (or all outliers being case 

outliers) for genei). Then we modeled the relationship between the observed proportion of 

cases for each gene, and the corresponding gene constraint Z-score from ExAC. Specifically, 

we wanted to find Pr(Yi = AllCasesjXi), where Xi is the gene constraint Z-score for gene i. 

We assessed the effect of X using logistic regression: logit(p(X)) = β0 +β1X. A positive β1 

value indicates that a step change in constraint metric X (toward genes less tolerant to 

mutations) is associated with an increase in the log odds of Yi = 1 (i.e. all outliers being case 

outliers). A separate model was fit for each mutation class. We reported results as the log 

odds (+/− 1.96*SE) associated with each feature for each percentile. P-values were 

calculated based on the z-statistic.

RIVER

RIVER (RNA-informed variant effect on regulation) is a hierarchical Bayesian model to 

infer rare variants of their regulatory effects. Compared with other variant scoring methods, 
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RIVER takes the advantage of utilizing both genomic information and transcriptome 

information21.We used GTEx v7 whole genome sequencing and cross-tissue RNA-seq data 

as training data for the model. The trained model (with learned parameters) is subsequently 

applied on UDN data to predict effects of rare variants. The model uses rare variants and the 

genomic annotations at those variants as predictors, uses RNA status (for this case is outlier 

status based on total gene expression levels) as the target/response variable. Rare variants 

here are defined as those with a minor allele frequency (MAF)<0.01 in 1000 Genomes 

Project phase III all populations combined. For variants in GTEx, we additionally require 

MAF<0.01within the GTEx cohort itself and for variants in the rare disease samples we 

additionally require MAF<0.02 within the rare disease samples themselves. We considered 

all rare variants 10kb near genes (10kb before transcription start site until 10kb after 

transcription end site). Overall, there were a median of 2 rare variants per gene for GTEx 

subjects and rare disease subjects. For this analysis, we considered protein-coding and 

lincRNA genes only. We used the following genomic annotations: Ensembl VEP48, 

CADD35, DANN49, conservation score (Gerp50, PhyloP51, PhastCons52), CpG content, GC 

content, chromHMM53 and Encode chromatin-openness track. We selected those features 

based on their prior evidence of association with regulatory effects21. Features were 

aggregated over each gene and individual pair, using either max(), min() for quantitative 

features, or any() for categorical features. Expression outliers (the response variable) were 

defined as those with |Z-score|>2. Z-scores were calculated based on total gene expression 

level RPKM from RNA-seq. In addition, for GTEx training data, gene expression levels 

were corrected by PEER54 to remove technical artifacts and major common-variant eQTL 

effects are also removed. Z-scores for GTEx are median over all available tissues21.

Junctions coverage ratios

Reference junctions were derived from Gencode v19 annotation file on known protein 

coding genes (142,246 in 14,296 genes). For each junction donor (then acceptor), all 

possible acceptors (then donors) were screened in the samples junctions files. The 

distribution of reads spanning those junction sets was evaluated by calculating the set ratios 

(Fig. 3a). We restricted the analysis to junctions for which several acceptors (donors) were 

associated to one donor (acceptor). In total, 13,109 groups of junctions were generated. In 

total, 34,060 junctions in 6,261 protein coding genes across all samples fulfilled those 

criteria. We performed the analysis on all PIVUS samples (n=65) and rare disease samples 

(n=143).

Splicing data normalization and analysis

We used the union of PIVUS samples (n=65) and healthy family members (n=49) as a 

control set together with all the cases samples (n=94). To remove possible noise, and to 

allow missing values imputation, we removed junctions for which there was no more than 30 

samples with data in the junction group. We analyzed coverage ratios for a total of 25,612 

junctions.

Missing values in junction coverage ratios were imputed using missMDA R package. PCA 

analysis was then performed using prcomp R package. We regressed out principal 

components (PCs) accounting for 95% of the variation in our imputed dataset (176 PCs). We 

Frésard et al. Page 10

Nat Med. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



then put back original missing values in the dataset and derived Z-scores used in the outlier 

analysis. We looked at the correlation pattern between the 10 first PCs and known covariates 

from our dataset. In brief, PC1 was mainly separating the source of the data (UDN, CGS, 

CHEO or PIVUS). PC2 was highlighting differences between the first batch and the other 

batches. Overall, we observed some level of correlation between all known covariates and 

the PCs that were regressed out from the data.

We tested the impact of our filters on the median number of rare variants with CADD score 

≥10 with a two-sided Wilcoxon rank sum test on all samples with splicing outliers and 

genetic information (n=74).

Allele specific expression

ASEReadCounter55 version 3.8–0-ge9d806836 from Genome Anaysis Tool Kit (GATK)56 

was run on single nucleotide variants from VCFs provided by the UDN, CHEO and CGS 

and corresponding RNA-seq data, using all samples for which we had genetic information 

(n=112). Only sites with a minimum read depth of 10, mapping quality of 10 and base 

quality of 2 were integrated in the analysis. For a gene to be considered with ASE, we 

required that at least 5 samples had heterozygous sites in the gene, that the heterozygous site 

was covered by at least 20 reads for the individual and to be considered imbalanced for 

allelic ratios ≥ 0.65 or ≤ 0.35. We eliminated total mono-allelic expression from the analysis 

(ie allelic ratio = 0 or 1).

To detect ASE outliers we restricted our analysis to sites and genes common to our samples 

and GTEx dataset including 11,224 genes and 87,739 sites, subject to the same site filters 

above. After this step, 108 individuals were left. We scaled the reference ratios for all sites 

within a gene across samples to obtain Z-scores per site. To summarize GTEx data per 

individual, we considered the maximum ratio (|0.5 - reference ratio|) across all tissues for 

which the individual had data at that site. Then, for each case, we selected the top N genes 

by |Z-score| as ASE outliers. We assessed the overlap of this set of genes with the genes 

associated with that individual case’s listed HPO terms, as well as the parent and child 

terms. To determine whether the overlap of ASE outliers with HPO-associated genes is 

significant, we selected 20 genes at random for each individual and assessed the overlap 

with the same HPO-associated genes. This was repeated 100 times. We then layered in 

additional filters, and took the top N most extreme ASE genes with a pLI > 0.9 or with a 

nearby rare variant with that individual, and finally, a nearby deleterious (CADD ≥ 10) rare 

variant. In each instance, we matched the background for that filter, thereby comparing the 

overlap for extreme ASE + pLI > 0.9 with HPO-associated genes to the overlap seen in a 

random background of genes, also with pLI > 0.9, and the same with the rare variant criteria.

Phenotypic data

For each case we have RNA-seq data (n=94), we also obtained HPO terms corresponding to 

the symptoms of the affected individual. We extended this list of HPO terms to terms that 

were hierarchically one level lower (child terms), one level higher (parent terms) or 

alternative terms for the same phenotype. To do so, we used the Human Phenotypic 

Ontology (HPO, downloaded 10-23-18)22 (http://human-phenotype-ontology.github.io/
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downloads.html). To link HPO terms to genes, we used the genes to phenotype and 

phenotype annotation files provided by the Human Phenotypic Ontology.

Diagnostic rate

We labeled “solved” cases for which we found candidates from RNA-seq data for which the 

causal mutation was found and validated. In order to evaluate the number of cases for which 

we have strong candidates, we took a subset of 30 cases from the same institutions for which 

we obtained a list of candidate genes from curators. If any of those candidates were in the 

final set of filtered genes, they were labelled as “strong candidate”. Cases for which no 

strong candidate genes were found after analyzing RNA-seq data are labeled “no candidate”.

You can find detailed information on protocol in the Life Science Reporting Summary.

Code availability

Code for running analysis and producing the figures throughout the manuscript is available 

at https://github.com/lfresard/blood_rnaseq_rare_disease_paper. Our pipeline to highlight 

candidate variants is available at https://github.com/lfresard/

blood_rnaseq_rare_disease_paper/blob/master/pipeline.md

Data availability

UDN data is accessible through the UDN Gateway and through dbGaP entry at 

phs001232.v1.p1. DGN RNA-seq data is available by application through the NIMH Center 

for Collaborative Genomic Studies on Mental Disorders. Instructions for requesting access 

to data can be found at https://www.nimhgenetics.org/access_data_biomaterial.php, and 

inquiries should reference the “Depression Genes and Networks study (D. Levinson, PI).” 

The GTEx Analysis V7 release allele-specific expression data is available from dbGaP 

(dbGaP Accession phs000424.v7.p2). PIVUS RNA-seq data is accessible on the European 

Genome-Phenome Archive (EGAS00001003583). The Care4Rare data is available through 

Genomics4RD.

Extended Data
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Extended Data Fig. 1. Gene expression patterns across whole blood samples.
We used a total of 1,061 whole blood samples from our controls cohorts and rare disease 

samples. a, Density plot representing the proportion of annotated junctions covered per 

gene. Those are a subset of genes for which at least one junction is covered with at least five 

uniquely mapped reads across at least 20% of the samples. On average (blue dashed line) 

86%, (median of 100%—red dashed line) of junctions fulfil those criteria. b, Percentage of 

genes from disease genes panels in which at least one junction is covered with at least five 

uniquely mapped reads in at least 20% of samples. We observe that about 50% of genes 

from OMIM, Neurology, Musculoskeletal, Ophthalmology or Hematology panels are 

fulfilling this criteria. c, Tolerance to different types of mutations (from ExAC) in function 

of the expression status in a single versus multiple tissues (two-sided Wilcoxon test, Pvalue 

≤ 2 × 10−16). Analysis performed on 620 individuals from GTEx v.7 across 22 tissues. 

Boxplots represent median value, with lower and upper hinges corresponding to the 25th and 

75th percentiles, and lower and upper whiskers extend from the hinge to the smallest and 

largest value at most 1.5× interquartile range of the hinge, respectively. Genes that are 

expressed in multiple tissues tend to be more sensitive to missense and LoF mutations. d, 

Number of LoF intolerant genes stratified by expression level in blood. We considered genes 

with pLI score ≥ 0.9 as LoF intolerant.
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Extended Data Fig. 2. Correction for batch effects: Expression data.
Analyses performed on n = 909 DGN samples and 143 rare diseases (cases and family 

controls). a, Plot of first two principal components run on uncorrected gene expression data. 

Samples are coloured by batch. Largest cluster (green dots) are DGN control samples (n = 

909). b, Plot of first two principal components run on gene expression data after regressing 

out significant surrogate variables found by SVA. c, Correlation between known covariates 

and all significant surrogate variables (SVs). We observed that SV2 is highly correlated with 

the read type, and the sequencing technology corresponding to differences between DGN 

and the other samples.
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Extended Data Fig. 3. Use of regression splines in expression data normalization.
a, Normalized gene expression residuals from 1,052 samples in an example gene without 

correction (left panel), after regressing out significant surrogate variables (SVs) (middle 

panel) and significant SVs plus regression splines on top SVs significantly associated with 

batch and study (right panel). Residuals were plotted against SV2 for illustration purposes 

(SV2 is significantly associated with batch (P value < 1 × 10–30, two-sided t-test from linear 

regression, no adjustment for multiple correction). b, Mean number of outlier genes per 

sample (n = 990) in each batch (absolute Z-score > 8) after correction with SVs (left panel) 

and SVs with regression splines (right panel). Standard deviation is displayed above each 

bar. Regression splines resulted in a more consistent number of outlier genes across samples 

in all batches. c, Benjamini & Hochberg adjusted P values resulting from a per-gene 

likelihood ratio test comparing linear regression model fit both with and without regression 

splines. Regression splines improve the model fit for 2,644 genes (P value ≤ 0.05,17.6% of 

all genes in dataset). Red dashed line indicates P value = 0.05 cutoff. d, Change in R2, in 

Frésard et al. Page 15

Nat Med. Author manuscript; available in PMC 2019 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



decreasing order, across all genes in the dataset (n = 14,988) after correcting data using 

significant SVs with regression splines, compared to correcting data using significant SVs 

without regression splines. Mean change in R2 is 0.036 (s.d. = 0.025).
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Extended Data Fig. 4. Impact of the number of controls on loss-of-function intolerance 
enrichment.
a, Enrichment of case (red, n = 64) under-expression outliers in LoF sensitive genes as we 

increase the number of controls (7,600 random subsets for each sample size indicated in 

legend). This enrichment was not observed for rare disease family member controls (gray, n 
= 34). b, Benjamini & Hochberg adjusted −log10 P value associated with the enrichment at 

different number of controls (two-sided t-test, n = 64 cases). Horizontal line indicates 0.05 

significance cutoff. The P values are decreasing as we increase the number of controls. 

When switching cases for controls (gray) we observed significant negative log odds when 

using the a smaller number of controls, but this trend disappeared when using the full set of 

900 controls. For a and b, Boxplots represent median value, with lower and upper hinges 

corresponding to the 25th and 75th percentiles, and lower and upper whiskers extend from 
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the hinge to the smallest and largest value at most 1.5× interquartile range of the hinge, 

respectively.
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Extended Data Fig. 5. Percentage of samples left when filtering outliers.
Filters have various impacts on the number of samples with at least one candidate gene. By 

combining several layers of filters we are drastically reducing the number of candidate genes 

but also the number of samples for which we have candidates. We recommend to relax filter 

stringency after looking at sets of genes that match the most stringent criterion. a, 

Expression outliers. After filtering for outlier genes matching HPO terms, with a deleterious 

rare variant within 10 kb, we observed less than 2.6% of samples with over 25 candidate 

genes. b, Splicing outliers. When keeping only genes with HPO match, and a deleterious 

rare variant with 20 bp of the outlier junction, we observed less than 1.3% of samples with 

more than five candidate genes.
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Extended Data Fig. 6. Correction for batch effects - Splicing data.
Analyses performed on 65 PIVUS samples and 143 rare disease samples. a, Plot of first two 

principal components (PCs) run on uncorrected splicing ratio data. Samples are coloured by 

batch. We observed that PC1 was separating PIVUS controls samples (left) from rare disease 

samples (right). b, Plot of first two PCs on splicing ratios after regressing out PCs explained 

up to 95% of the variance in the data. Batches were no longer separated on the first PCs. c, 

Correlation between known covariates 10 first PCs. We observed that PC1 is highly 

correlated with the batch, whereas PCs 2 and 3 separated samples from one institution (batch 

1, CHEO) from others. We also observed that PC1 is highly correlated with RIN, 

highlighting differences in quality across samples.
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Extended Data Fig. 7. Allele specific expression across rare disease samples.
a, Prevalence of ASE events in rare diseases samples (n = 112). Results are displayed 

separately for exome and genome sequencing. b, Difference in proportion of genes matching 

HPO terms for top 20 ASE outliers per case in comparison to random genes (100 random 

gene sets for each sample, n = 109 samples). Analysis performed for all genes, genes with 

pLI ≥ 0.9, genes with a rare variant (RV) and genes with a RV with CADD score ≥ 10. The 

top 20 ASE outlier genes are enriched for overlap with HPO-associated genes per case, 

regardless of the filters applied to the extreme ASE genes and background genes (**** P 
value ≤ 1 × 10−4, two-sided Wilcoxon test). For a and b, Boxplots represent median value, 

with lower and upper hinges corresponding to the 25th and 75th percentiles, and lower and 

upper whiskers extend from the hinge to the smallest and largest value at most 1.5× 

interquartile range of the hinge respectively. c, Rare deleterious variants are biased toward 

the alternative allele across all samples. A stop–gain variant was highly expressed in EFHD2 
for one sample where there were matching symptoms.
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Extended Data Fig. 8. Diagnostic rate after analysis of 80 distinct cases.
a, Overview of cases. Solved: causal gene found and further validated. Strong candidate: 

Strong candidate after RNA-seq analysis (out of a subset of 30 affected individuals for 

which we have prior candidate genes information from literature). Unsolved: Other cases for 

which further investigation is needed. b, Percentage of cases for which prior candidate gene 

is in final set of filtered genes (outlier with deleterious rare variant in a gene linked to 

symptoms). Analysis was performed only on a subset of 30 cases for which we have prior 

candidate gene information and for which we have genetic information. Shuffling candidates 

corresponds to the percentage of cases for which we observe a prior candidate genes in the 

most stringent gene list when shuffling gene lists across individuals (10,000 permutations). 

On average, no match is found. Shuffling genes correspond to the percentage of prior 

candidate genes we observed within the final set of DNA-only filters when sampling from 

this list a matched number of genes corresponding to the expression filters. Average matched 

percentage is 4.1% after 10,000 permutations. Real data corresponds to the percentage of 

cases for which we found a candidate gene in the most stringent RNA-based filter set. We 
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find a match for 7 affected samples out of 30, that is, 25.9 % of cases. There is significantly 

more match in real data in comparison to permuted data (two-sided Wilcoxon rank sum test, 

P value < 10–5). Boxplots represent median value, with lower and upper hinges 

corresponding to the 25th and 75th percentiles, and lower and upper whiskers extend from 

the hinge to the smallest and largest value at most 1.5× interquartile range of the hinge, 

respectively.
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Extended Data Fig. 9. Identification of disease gene through expression outlier detection.
MECR case. a, Proband results. After our most stringent filter, there are 11 candidate genes 

left and MECR is rank 2nd by Z-score. b, Proband’s brother. After filtering, only 15 out of 

1,099 expression outliers are left and MECR is ranked 10th in that list.
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Extended Data Fig. 10. Solved case without genetic data: ASAH1 case.
a, After filtering our detected splicing outliers for genes related to the phenotype (through 

HPO IDs), only eight genes were left, with ASAH1 being the most extreme outlier (Z-score 

= 3.9) and for which we previously confirmed the association with SMA-PME phenotype in 

the case. b, Sashimi plot of the case and 2 controls of the ASAH1 gene. For the case (red 

track), we observed an alternative transcript skipping exon 6 (supported by 142 reads). This 

pattern was never observed in controls.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Using blood RNA-seq to study rare disease genes.
a: Disease categories of sequenced affected patients. The majority of cases belong to 

neurology (n=40), musculoskeletal and orthopedics(n=8), hematology (n=8) and 

ophthalmology (n=8) categories. b: Percentage of disease genes (from curated lists) 

expressed in blood. We used the median TPM across 909 DGN samples, 65 PIVUS samples 

and our 143 samples.
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Figure 2: Expression outliers in rare disease samples.
a: Enrichment for case or control outlier genes in intolerance to LoF (red), missense (blue) 

and synonymous (yellow) mutations at different percentiles of gene expression. Represented 

here as the log odds ratio with 95% Wald confidence intervals using 931 samples. P-values 

were calculated based on the z -statistic. No adjustment for multiple testing. b Impact of Z-

score thresholds on number of outliers. Differences between under and over expression 

outliers were tested using a two-sided Wilcoxon rang sum test. No adjustment for multiple 

testing. Vertical dashed lines indicate mean Z-score for n=1 and n=5 percentiles across all 

genes used in analysis (N = 14,988). For a and b: significance level: **** p-value≤1×10−4; 

*** p-value≤1×10−3; ** p-value≤1×10−2; * p-value≤5×10−2. c: Proportion of under-

expression outlier genes remaining after filters (n=75 cases with genetic information). 

Adding genetic information (rare variant within 10kb upstream of the gene body) allows to 

filter down to 50% of the original set of outliers. Keeping only genes for which HPO 

information of the affected individual match helps narrow down to less than 10% of 

candidates. For b and c: Boxplots represent median value, with lower and upper hinges 
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corresponding to the 25th and 75th percentiles, and lower and upper whiskers extend from 

the hinge to the smallest and largest value at most 1.5 * inter-quartile range of the hinge 

respectively. d: Number of candidate genes at each filter for all cases with genetic 

information (n=75). Average number of candidate genes and s.d are represented in black for 

each filter.
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Figure 3: Splicing outlier detection.
a: Splicing outlier definition. Gene model is in green, rectangles represent 3 exons. In this 

model, we show junction information for one donor (D) and two acceptors(A1 and A2). For 

each sample for this gene we have coverage information for the two existing splicing 

junctions (D-A1 and D-A2). We defined the proportion of one splice junction as the number 

of reads overlapping this junction divided by the total number of reads spanning all junctions 

from a common donor (or acceptor). b: Number of genes with at least one splicing outlier at 

different Z-score thresholds (n=208 samples from PIVUS and rare disease cohorts). c: 

Number of rare variants in each sample, in total, nearby junction and associated with a 

splicing outlier (n=111 samples with genetic information). Rare variants were defined as 

variants with MAF≤0.1%. d: Impact of different filters on splicing outlier discoveries (n=75 

cases with genetic information). e: We observed a significant increase (two-sided Wilcoxon 

test, p-value 9.8×10−5) in the median number of rare variants with CADD score≥10 in the 

gene when filtering outliers with a rare variant within 20 bp of the junction and relevant to 

the disease phenotype (HPO match) (n=109 samples with splicing outliers and genetic data). 

f: Number of candidate genes at each filter for all cases with genetic information (n=75). 

Mean value and s.d. are represented in black for each filter. For b and d and e: Boxplots 

represent median value, with lower and upper hinges corresponding to the 25th and 75th 
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percentiles, and lower and upper whiskers extend from the hinge to the smallest and largest 

value at most 1.5 * inter-quartile range of the hinge respectively.
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Figure 4: Identification of disease gene through splicing outlier detection.
a: Splicing outliers in the KCTD7 case. Number of candidate genes obtained throughout 

different filters using genetic data, splicing outlier data, and phenotypic data. Shape indicates 

if the causal gene is in the list. After filtering for splicing outliers with a deleterious rare 

splice variant within 20 bp of a splice junction and limiting the search to genes for which 

there is a link to phenotype (HPO match), 1 candidate gene was left, KCTD7. b: Sashimi 

plot of the case and 3 controls of the splicing gain region in KCTD7. For the case only (red 

track), we observed a new splicing junction ahead of the annotated one in exon 3. c: cDNA 

gel from fibroblast cDNA of exons 2–4 of KCTD7 for the proband, her affected sibling and 

three unaffected controls (no independent replicate). Both for the case and her affected 

brother we observed 2 fragments of different size, corresponding to the alternative splice 

products induced by the splice-gain mutation. In control samples, only one fragment is 

observed, corresponding to the original transcript.
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