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ARTICLE

A robust and interpretable machine learning
approach using multimodal biological data to
predict future pathological tau accumulation
Joseph Giorgio1, William J. Jagust 2,3, Suzanne Baker 3, Susan M. Landau2, Peter Tino4, Zoe Kourtzi 1✉ &

Alzheimer’s Disease Neuroimaging Initiative*

The early stages of Alzheimer’s disease (AD) involve interactions between multiple patho-

physiological processes. Although these processes are well studied, we still lack robust tools

to predict individualised trajectories of disease progression. Here, we employ a robust and

interpretable machine learning approach to combine multimodal biological data and predict

future pathological tau accumulation. In particular, we use machine learning to quantify

interactions between key pathological markers (β-amyloid, medial temporal lobe atrophy, tau

and APOE 4) at mildly impaired and asymptomatic stages of AD. Using baseline non-tau

markers we derive a prognostic index that: (a) stratifies patients based on future pathological

tau accumulation, (b) predicts individualised regional future rate of tau accumulation, and (c)

translates predictions from deep phenotyping patient cohorts to cognitively normal indivi-

duals. Our results propose a robust approach for fine scale stratification and prognostication

with translation impact for clinical trial design targeting the earliest stages of AD.
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A lzheimer’s Disease (AD) develops gradually with multiple
pathophysiological events occurring well before clinical
manifestations1. The proposed sequence of events begins

with the deposition of β-amyloid (Aβ) which promotes wide-
spread pathological tau protein accumulation that in turn leads to
neurodegeneration and cognitive impairment2. Quantifying these
interactions is critical for establishing a mechanistic account of
the events that lead to initiation and progression of AD.

The availability of PET imaging of Aβ plaques and neurofi-
brillary tau pathology in the brain, has enabled the detection of
the core features of the neuropathology of AD in-vivo, and largely
supported the proposed sequence of events from Aβ through tau
and neurodegeneration (for reviews:3–5). In light of these devel-
opments, the staging of AD has shifted from a clinical syndromic
diagnosis requiring pathological verification post-mortem6,7 to a
disorder reflecting a continuum of biomarker characteristics8.
The clinical syndromic classification framework defined AD as
the transition from a cognitively unimpaired state (i.e., cognitively
normal: CN) to a state of mild cognitive impairment (MCI) to
AD dementia9. However, these clinical syndromic definitions are
neither specific10,11 nor sensitive12,13 to the underlying pathology
of AD. In contrast, the recently proposed NIA-AA 2018 biological
framework of AD offers an objective classification framework
using biomarkers taken at a single time point8.

To classify individuals as AD within this biological framework,
continuous biomarkers are categorically assigned as either posi-
tive or negative. An individual with positive biomarkers for Aβ
and tau is defined as having AD and positive biomarkers for
neurodegeneration are used to provide information about disease
stage8. To dichotomise Aβ biomarkers large AD cohort studies
have shown that Aβ PET is distributed bimodally14 with tracer
and study specific probabilistic thresholds derived15. However,
these single threshold values do not account for individuals who
are below thresholds of β-amyloid positivity but may nevertheless
follow subsequent AD trajectories16,17, limiting the sensitivity of
β-amyloid alone as a predictor of future biomarker changes.
Further, spatiotemporal patterns of tau are shown to be strongly
linked to both future neurodegeneration and cognitive decline18.
A recent study showed four distinct spatiotemporal profiles of tau
burden in predominantly symptomatic AD19, proposing clinically
meaningful topographies of tau burden. Further evidence in early
AD (i.e., asymptomatic and mildly impaired) cohorts suggests
converging patterns of primary tau seeding (measured in-vivo by
longitudinal PET)20–23. These studies suggest that tau initially
accumulates within the medial temporal cortex then spreads to
the inferolateral temporal lobe and superior and medial regions of
the parietal cortex prior to severe cognitive impairment20–23.
Thus, slowing rates of tau accumulation within these primary
regions could serve as a biomarker outcome of interest for clinical
trials that typically use change in cognition as primary outcome.
In line with these findings, a recent trial of an amyloid-lowering
therapy used tau levels to select participants and rate of change in
regional tau accumulation as a secondary trial outcome24. How-
ever, clinical trials remain hindered by sample heterogeneity that
reduces sensitivity in assessing treatment outcome25. Thus,
innovative modelling approaches are needed to integrate con-
tinuous topographic patterns of Aβ, tau and neurodegeneration to
accurately stratify patients for trial inclusion, with potential to
reduce sample heterogeneity and increase trial efficacy.

Recent advances in machine learning allow us to develop
predictive models of neurodegenerative disease that mine multi-
modal datasets including measurements of clinical syndrome,
cognition and neuropathology from large patient cohorts26. To
date, most machine learning models in AD utilise information
from rich longitudinal cohorts that were initiated under the fra-
mework of clinical syndromic definitions27. These studies have

primarily focused on discrete changes in syndromic diagnosis28

and probabilistic estimates of time to conversion to AD based on
longitudinal changes in clinical labels29–36. Modelling approaches
that utilise both longitudinal syndromic labels and continuous
biomarker information have strong potential to improve predic-
tion of longitudinal biological processes in AD, bridging the gap
between biological and syndromic frameworks.

Here, we employ a trajectory modelling approach based on
machine learning37 to quantify the multivariate relationships
between key biomarkers (Aβ, tau, medial temporal atrophy)—in
line with the biological framework of AD—and APOE 4 (4 allele
of the Apolipoprotein E gene) genotype, the major genetic risk
factor for late onset AD38. We train our model using discrete
longitudinal changes in syndromic definitions to separate indi-
viduals who are Clinically Stable from those who are in the ear-
liest stages of AD (i.e., CN or MCI at baseline but Clinically
Declining). Extending beyond this binary classification, we derive
a continuous prognostic index that quantifies the distance of an
individual from the Clinically Stable prototype. We test whether
this trajectory modelling approach predicts longitudinal change
in cognition and biomarkers (i.e., future tau accumulation) based
on baseline non-tau data (Aβ, medial temporal atrophy, APOE 4)
over the short timeframes that are typical of AD clinical trials
(i.e., 1–3 years) (Fig. 1). We demonstrate that our prognostic
index: (a) predicts individualised rates of future tau accumulation
even before symptoms occur, (b) re-stratifies populations at
greatest risk of accumulating tau in the future. We validate our
prognostic index not only in a sample of CN and MCI patients
that was not included in constructing the index (i.e. training the
model), but also on an independent data set from asymptomatic
individuals. Finally, we demonstrate that our prognostic index:
(a) is more sensitive compared to baseline syndromic diagnosis
and Aβ positivity, (b) reduces the sample size required to deter-
mine future tau accumulation, suggesting strong potential of our
trajectory modelling approach for application in the design of
clinical trials.

Results
Deriving a prognostic index from multimodal biomarkers. We
used a trajectory modelling approach based on the Generalised
Matrix Learning Vector Quantisation (GMLVQ) machine learn-
ing framework (GMLVQ-scalar projection37) to generate a
prognostic index as a single numerical descriptor (scalar projec-
tion) from three biological markers measured at baseline: cortical
Aβ measured using PET, medial temporal grey matter density
measured using T1-weighted MRI and APOE 4 genotype (pre-
sence of one or two alleles). This approach derives a continuous
prognostic index by training a machine learning model with
classes determined by longitudinal syndromic labels which are
assigned independent of baseline biomarker status.

We trained a GMLVQ model on baseline (defined as the date
of Aβ PET scan) data from the Alzheimer’s Disease Neuroima-
ging Initiative (ADNI) 2/GO cohort. We determined two classes
for training the algorithm defined by baseline and longitudinal
syndromic labels independent of biomarker status: (a) Clinically
Stable (n= 100): CN individuals who remain stable for 4+ years
following baseline, (b) Clinically Declining (n= 156): individuals
with unstable diagnosis (i.e., those with MCI or CN diagnosis at
baseline who are subsequently diagnosed with dementia or those
who had reverted from a diagnosis of dementia prior to baseline
to MCI at baseline). An additional 181 individuals diagnosed with
AD (which we refer to as Alzheimer’s Clinical Syndrome) were
included to cover the full spectrum of longitudinal AD diagnoses.
These individuals received a stable diagnosis of AD dementia
across follow-ups and were used as a reference population of late-
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stage AD. Comparing the unimodal distributions of the Clinically
Stable and Clinically Declining groups shows that the Clinically
Declining group has greater AD pathology than the Clinically
Stable group across the three biological predictors (Supplemen-
tary Figure 1).

We trained our GMLVQ-scalar projection model to learn the
multivariate relationship between the three baseline biological
predictors (metric tensor) and the location in multidimensional
space (prototype) that best discriminates between Clinically
Stable and Clinically Declining individuals. We then determined
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Fig. 1 Study Workflow.Workflow and analyses performed to generate, benchmark and validate predictions of future tau accumulation. The fill colour of the
schematic cohort participant indicates the longitudinal syndromic label assigned; where: red filled individuals are Clinically Declining, blue filled individuals
are Clinically Stable and black filled individuals denote unknown longitudinal diagnoses; these individuals form a test sample for the algorithm. The outline
of the schematic cohort participant indicates the baseline syndromic label; where: red outlines are MCI at baseline and blue outlines are cognitively normal
at baseline. a Training of the GMLVQ-scalar projection model on ADNI2/GO participants based on longitudinal syndromic definitions. The centre figure is
a cartoon example indicating how the scalar projection is derived to separate Clinically Stable vs. Clinically Declining (Supplementary Methods). b ADNI 3
individuals are classified as either Clinically Stable (blue box) or Clinically Declining (red box); using this stratification regional future rate of tau
accumulation is compared between the two groups. Two benchmark classifications are used for comparison: 1. Syndromic definition (i.e., CN vs. MCI), 2.
Stratification using Aβ status. c Final modelling stage using the continuous scalar projection to predict individualised rates of regional future tau
accumulation for individuals classified as Clinically Declining (red box). Regression models are learnt to predict future rate of FTP-PET accumulation for
each ROI using the ADNI3 sample. These equations are then used to predict future rate of tau accumulation within each ROI for the cognitively normal
BACS sample.
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the distance of each individual from the Clinically Stable
prototype along the axis that is predictive of future diagnosis
(i.e., prognostic axis from Clinically Stable towards Clinically
Declining).

Using random resampling to split the ADNI2/GO sample into
training and test sets we demonstrated that our model classifies
Clinically Stable vs. Clinically Declining individuals with cross-
validated class-balanced accuracy of 88% (sensitivity 87%,
specificity 91%). Further, using logistic regression we showed
that an individual is less than 50% likely to be classified as
Clinically Stable if they have a scalar projection greater than 0.34
(i.e., individuals are more than 50% likely to be classified as
Clinically Declining or Alzheimer’s Clinical Syndrome). Compar-
ing the scalar projection to the three biological markers showed
that our multimodal prognostic index captures predictive
variance in each of the unimodal predictors (scalar projection
vs. Aβ: R2= 82.8%, p < 0.0001; scalar projection vs. grey matter
density: R2= 41%, p < 0.0001; scalar projection (APOE 4 - /+):
t(254)8.5, p < 0.0001) (Fig. 2).

Next, we used the model trained on ADNI2/GO data to derive
the scalar projection for individuals from two independent
cohorts who only have baseline syndromic assessment available:
(a) ADNI3 (CN= 72, MCI= 43) (b) Berkeley Aging Cohort
Study (BACS) (CN= 56). Participants who were enroled in
ADNI3 as roll overs from ADNI2/GO were not used in the initial
training of the machine learning model (i.e., Fig. 1a) and are
unique to the ADNI3 sample (i.e., Fig. 1b, c). The scalar
projection classified 59 ADNI3 participants and 39 BACS
participants as Clinically Stable, with 56 ADNI3 and 17 BACS
participants classified as Clinically Declining (i.e., scalar projec-
tion greater than 0.34) (Fig. 3). This scalar projection was not
significantly related to education (BACS: r(54)=−0.12, p= 0.37,
ADNI3: r(113)=−0.009, p= 0.93) nor sex (BACS:
t(54)=−1.72, p= 0.09, ADNI3: t(113)=−1.13, p= 0.26) and
showed a weak effect size when correlated to baseline age in
BACS (r(54) = 0.33, p= 0.01) and ADNI3 (r(113)= 0.36,
p= 0.0005).

Further, we tested whether difference in MRI field strength for
the BACS sample introduced a systematic bias to the multimodal
scalar projection. A two-samplet-test comparing the residual of
the fit of the medial temporal grey matter density and the scalar
projection showed no significant differences between 1.5 T and
3 T MRI in BACS (t(54)=−1.79, p= 0.08) (Supplementary
Fig. 2), suggesting that our multimodal approach is robust across
differences in MRI acquisition.

Finally, for the ADNI3 sample, we tested whether the
classification based on the scalar projection derived from baseline
multimodal biomarkers is similar to baseline syndromic clinical
diagnosis. Comparing the classification of Clinically Stable vs.
CN, and Clinically Declining vs. MCI (Fig. 3) showed that
agreement was not significantly different from chance (CN(n=
72): Clinically Stable n= 40; Clinically Declining n= 32,
MCI(n= 43): Clinically Stable n= 19; Clinically Declining
n= 24, Cohens kappa κ= 0.09 [−0.0953, 0.274] p= 0.38). That
is, the clinician-based syndromic diagnosis and the biomarker-
derived multimodal scalar projection have poor agreement for
differentiation of Clinically Stable and Clinically Declining,
suggesting that cross-sectional syndromic definitions of AD are
limited in capturing the underlying pathobiology that is
predictive of clinical decline.

Clinically Declining individuals accumulate tau more rapidly
than Clinically Stable individuals. We investigated whether the
classification of Clinically Stable vs. Clinically Declining based on
baseline biomarkers relates to baseline and future changes in tau

accumulation. We used [18F]-flourtaucipir PET (FTP-PET) from
the ADNI3 sample (Fig. 1b) to extract regional baseline and
longitudinal Standardised Uptake Value Ratios (SUVR) values
from 36 Desikan–Killiany ROIs. ROIs were grouped together in
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of any sample point along the model-derived prognostic axis, where a scalar
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with medial temporal grey matter density. c Relationship of scalar projection
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75th percentile and the dashed black lines represent the range of the data.
Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28795-7

4 NATURE COMMUNICATIONS |         (2022) 13:1887 | https://doi.org/10.1038/s41467-022-28795-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


order to approximate the topographical distribution of tau in the
Braak Staging scheme, as previously described39. First, we con-
trasted baseline tau for Clinically Stable vs. Clinically Declining
samples (Supplementary Results: Differences in baseline tau
burden Clinically Stable vs. Clinically Declining). These analyses
show that the sample classified as Clinically Declining has sig-
nificantly greater baseline tau than the Clinically Stable sample
across the cortex (Braak I mean difference = 0.167 SUVR,
t(113)= 5.6, p < 0.001; Braak II mean difference = 0.074 SUVR,
t(113)= 2.6, p= 0.01; Braak III mean difference = 0.12 SUVR,
t(113)= 4.77, p < 0.001; Braak IV mean difference = 0.08 SUVR,
t(113)= 3.81, p < 0.001; Braak V mean difference = 0.07 SUVR,
t(113)= 3.47, p < 0.001; Braak VI mean difference = 0.041
SUVR, t(113)= 2.53, p= 0.012) (Supplementary Fig. 3, Supple-
mentary Table 1). This pattern of greater baseline tau for the
Clinically Declining sample was also observed in the BACS data
set (Supplementary Fig. 4).

Next, we extracted longitudinal rates of regional tau accumula-
tion from the ADNI3 sample within each of the 36
Desikan–Killiany ROIs. For Clinically Stable and Clinically
Declining groups we then contrasted the global rate of tau
accumulation for Clinically Stable vs. Clinically Declining (i.e.,
independent samples t-test across ROIs for Clinically Stable vs.
Clinically Declining). We observed a significant difference in
global tau accumulation when comparing Clinically Stable vs.
Clinically Declining (t(70) = 2.23, p= 0.029), with the Clinically
Declining group accumulating global cortical tau 2.3 times faster
than the Clinically Stable group (Supplementary Table 2). We
observed that there is high specificity to regional tau accumula-
tion using the classification based on the multimodal scalar
projection with a near zero interclass correlation coefficient across
ROIs (r= 0.036 [−0.29 0.36], F(35,36)= 1.074 p= 0.42). Further,
we tested which regions significantly accumulated tau (i.e., rate of

accumulation significantly greater than 0; one sample (i.e.,
Clinically Stable or Clinically Declining) one tail t-tests within
each ROI). We showed that Clinically Declining individuals
accumulate tau primarily in Braak stages 4 and 5 ROIs
(Supplementary Table 2, Fig. 4). In contrast, the sample classified
as Clinically Stable did not show significant future tau
accumulation across any cortical regions (Fig. 4d).

We next investigated whether the classification of Clinically
Stable vs. Clinically Declining is sensitive to future cognitive change
(as measured by future annualised change in Preclinical Alzheimer’s
Cognitive Composite, i.e., PACC) over the same time period. We
observed a significant difference in future cognition between the
sample classified as Clinically Stable(mean= 0.13/year) vs. Clini-
cally Declining(mean=−0.86/year) (t(100)=−2.48, p= 0.015),
with the Clinically Declining sample showing significant worsening
(i.e., rate of PACC change significantly less than 0) in future
cognitive ability (one tail t-test t(50)=−2.65, p= 0.0054). Taken
together, our results show that our modelling approach based
on baseline multimodal data is sensitive and specific to baseline
tau burden, changes in future tau accumulation and cognitive
decline in an independent sample without longitudinal syndromic
information (i.e., ADNI3).

Next, we compared a baseline syndromic classification (i.e., CN
vs. MCI) to future changes in tau accumulation. We observed a
difference in global tau accumulation between CN and MCI groups
(t(70)= 2, p= 0.05), with the MCI population accumulating global
cortical tau 1.9 times faster than the CN population. To determine
if a classification based on syndromic labels (i.e., CN vs. MCI) is
specific to future regional rate of tau accumulation, we calculated
the interclass correlation coefficient of future regional rate of tau
accumulation across ROIs. A significant interclass correlation
coefficient across ROIs (r= 0.47 [0.159 0.68], F(35,36)= 2.69
p= 0.002) suggests poor specificity to regional tau accumulation
for stratification based on baseline syndromic definitions. Further,
we showed that both CN and MCI samples significantly
accumulate tau, with a high degree of overlap across AD susceptible
regions in the temporal and posteromedial cortices (Supplementary
Table 3, Supplementary Fig. 5). To further quantify this, we
calculated the interclass correlation coefficient between a baseline
syndromic definition of CN vs. Clinically Declining, and, MCI vs.
Clinically Declining. For both syndromic definitions, we observed
significant overlap in future regional tau accumulation with
Clinically Declining (CN vs. Clinically Declining r= 0.584 [0.323
0.763], F(35,36)= 3.81 p < 0.0001; MCI vs. Clinically Declining
r= 0.86 [0.751 0.928], F(35,36)= 13.7 p < 0.0001). Taken together,
our results suggest that stratification based on syndromic diagnosis
has poorer sensitivity and specificity to future tau accumulation
compared to the biological classification of Clinically Stable vs.
Clinically Declining based on our prognostic index.

Modelling comparisons. We compared our model-derived pre-
dictions generated from our GMLVQ-scalar projection approach
to alternate prediction frameworks.

First, comparing our GMLVQ binary classification of Clinically
Stable vs. Clinically Declining to the standard linear Support
Vector Machine (SVM) showed similar accuracy (mean accuracy
GMLVQ: 88% SVM: 88%, t(798) = 1.5, p= 0.13) and 99.13%
agreement in the predicted labels for the ADNI3 sample
(Supplementary Results: GMLVQ vs. SVM classification). Thus,
the SVM classifier corroborates our binary classification results
using GMLVQ. We note that this binary classification task serves
simply as a step in the derivation of our prognostic index that
is at the core of our trajectory modelling approach. In particular,
to derive this prognostic index, we need to work in a feature
subspace that captures possible signatures of future tau
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Fig. 3 Distribution of the scalar projection for the ADNI2/GO, ADNI3 and
BACS samples. The distribution of the scalar projection for individuals from
ADNI2/GO in the Clinically Stable (n= 100), Clinically Declining (n= 156)
and Alzheimer’s clinical syndrome (n= 181) groups (APOE 4 positive: n=
116, APOE 4 negative n= 140), the red line is the median of the group, the
solid black box represents the 25th to 75th percentile and the black
horizontal lines represent the range of the data, red crosses are outliers
from the distribution, non-overlapping notches indicate significantly
different medians (p < 0.05). Blue dots indicate individuals from ADNI3/
BACS who are cognitively normal (CN) at baseline. Red dots indicate
individuals from ADNI3 who have Mild Cognitive Impairment (MCI) at
baseline. The dashed vertical black line represents the probabilistic
boundary used to classify Clinically Declining vs. Clinically Stable, all
individuals to the right of the line are classified as Clinically Declining.
Source data are provided as a Source Data file.
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accumulation. Any machine learning classifier that supports this
subspace learning could be used. We chose to use GMLVQ over
SVM because it naturally provides class prototypes and a
subspace endowed with an appropriate metric (distance to the
prototypes) that allows us to derive the prognostic index using
our scalar projection method.

Second, we compared our trajectory modelling approach based
on baseline biomarker data to latent time joint mixed effects
models (LTJMM) that have been previously shown to infer
disease stage based on longitudinal biomarker data40. We tested
whether our scalar projection (Fig. 2) which incorporates only
baseline pathological burden relates to disease stage (i.e., latent
time shift) extracted from the LTJMM that is derived modelling
longitudinal tau data. We observed a positive relationship
between the LTJMM latent time shift and our prognostic index
(r(113)= 0.42, p < 0.0001), suggesting the scalar projection
derived using only baseline data relates to the LTJMM derived
disease stage (Supplementary Results GMLVQ-scalar projection
vs. LTJMM prediction). We note that LTJMM requires long-
itudinal data to model disease trajectories and fit individualised
parameters, limiting out-of-sample generalisation. In contrast,
our modelling approach derives these out-of-sample predictions
form baseline data naturally, as we provide individualised indices
and features rather than constructing individualised models.

Fewer patients are required to detect meaningful change in tau
accumulation than cognition. To examine the clinical utility of
regional longitudinal tau accumulation as an outcome measure,
we contrasted the sample size required to observe change in
cognitive decline vs. tau accumulation for the sample classified as
Clinically Declining based on the scalar projection. We defined a
clinically meaningful change as a 25% reduction in rate of change
of either regional tau accumulation or PACC change. For the
sample classified as Clinically Declining, we calculated that the
required sample size (for a significance level of p= 0.05 at a
power of a= 0.8) to detect a 25% reduction in rate of PACC

change is n= 917. However, an average sample size of n= 637 is
required to detect a 25% reduction in regional future tau accu-
mulation in selected regions (Fig. 4b) at the same power. Thus,
using future rate of tau accumulation as a clinical outcome
measure compared to future rate of cognitive decline delivers a
reduction in required sample size of 31%.

Using multimodal biomarkers reduces sample size to detect a
meaningful change in tau accumulation. Next, we compared
prediction of longitudinal tau accumulation for the sample classi-
fied as Clinically Declining (n= 56) based on the scalar projection
vs. a sample classified based on Aβ alone (n= 61Aβ positive). We
observed that the sample classified as Clinically Declining accu-
mulated global cortical tau (i.e., mean rate of tau accumulation
across the 36 Desikan–Killiany ROIs) 1.31 times faster than the
sample defined only as Aβ positive (Supplementary Table 4).

We next tested for the sample size needed to detect a 25%
decrease in rate of future tau accumulation (given significance level
of p= 0.05 at power of a= 0.8) for Clinically Declining vs. Aβ
positive samples within regions shown to significantly accumulate
tau for individuals classified as Clinically Declining (Fig. 4b). We
observed on average a 44% reduction in sample size when stratifying
based on Clinically Declining classification (n= 637) vs. Aβ positive
alone (n= 1139). We repeated these calculations using regions in
which the Aβ positive sample was shown to significantly accumulate
tau (Supplementary Table 4). This showed an average of 38%
reduction in sample size when stratifying based on Clinically
Declining classification (n= 581) vs. Aβ positive alone (n= 935)
(Fig. 5). These results provide evidence for the clinical utility of
stratification of Clinically Declining using our prognostic index
derived from baseline multimodal data compared to Aβ status alone.

Prognostic index predicts individual variability in trajectories
of regional tau accumulation in asymptomatic and mildly
impaired samples. Using the ADNI3 sample we fit linear
regression equations to test whether the continuous prognostic
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Fig. 4 Regional future rate of tau accumulation. Future annualised rate of tau accumulation for ADNI3 individuals across the 36 Desikan–Killiany ROIs.
a Mean future annualised rate of tau accumulation for individuals classified as Clinically Declining. b The regions in red are significantly accumulating tau
for individuals classified as Clinically Declining (one-sided t-test (right) against 0, p < 0.05 uncorrected). cMean future annualised rate of tau accumulation
for individuals classified as Clinically Stable. d The regions in red are significantly accumulating tau for individuals classified as Clinically Stable (one-sided
t-test (right) against 0, p < 0.05 uncorrected). Source data are provided as a Source Data file.
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index (derived from the model trained on ADNI2/GO) predicts
individual variability in future tau accumulation. Of the 11
regions that were shown to significantly accumulate tau (Fig. 4b)
7 showed a significant relationship between the prognostic index
and individual rates of future tau accumulation, explaining up to
21% of variance in the temporal lobe and medial regions of the
posterior parietal cortex (Supplementary Table 5). Figure 6a
shows an example case of the relationship between our prognostic
index and rate of tau accumulation in Fusiform gyrus, a region
that is known to be susceptible to early pathological tau deposi-
tion in AD.

Predicting future tau accumulation based on cognitive data. To
investigate the predictive power of cognitive data we re-ran our
classification experiments using data from multiple neu-
ropsychiatric tests as input features (ADAS-Cog, MOCA Total,
MMSE Total, RAVLT Total). This cognitive classification model
reliably separated Clinically Stable vs. Clinically Declining (86%
class-balanced accuracy). Further, using the cognitive scalar
projection derived in ADNI3, we show that this prognostic index
separates individuals who will accumulate tau in the future
(Supplementary Results: Cognitive Classification Model, Supple-
mentary Fig. 6). These results demonstrate that stratification
based on future tau accumulation is possible using cognitive
(non-biomarker) data. Next, we related the cognitive scalar pro-
jection to future regional tau accumulation within ROIs that were
shown to significantly accumulate tau (Supplementary Fig. 6). We
did not observe a significant relationship between the cognitive
scalar projection and individual variability in future tau accu-
mulation in these ROIs (Supplementary Results: Cognitive Clas-
sification Model). Thus, our trajectory modelling based on
cognitive data separates individuals who will accumulate tau in
the future; yet, it is less sensitive in predicting individual varia-
bility in future regional tau accumulation.

Individual trajectories of pathological tau accumulation are
accurately predicted in an independent asymptomatic sample.
We generated individualised predictions of future tau accumu-
lation for CN individuals classified as Clinically Declining from
the BACS sample. Using the model trained on ADNI2/GO
individuals, we derived the scalar projection from baseline mul-
timodal biological data in the BACS sample (Fig. 4). To predict
the future rate of tau accumulation in this sample, we used the

linear regression models relating the scalar projection to rate of
future tau accumulation derived from the 7 regions that showed
significant relationships for the ADNI3 sample (Fig. 6, Supple-
mentary Table 5). Comparing the predicted and real future rate of
tau accumulation for BACS Clinically Declining individuals, we
observed individualised predictions of future tau accumulation
explain up to 41% of variance in the temporal cortex and 22% in
regions of the posterior parietal cortex (Table 1 and Fig. 7).

Finally, we tested whether future tau accumulation can be
predicted for BACS Clinically Stable individuals based on their
scalar projection. No accurate prediction can be made for these
individuals, with predicted regional future tau accumulation
accounting only for 2.8% on average of the observed variance in
future tau accumulation (Table 1). These results suggest that our
predictions are robust and specific for staging individuals who are
in the asymptomatic phase of AD.

Potential application in clinical trial design. Our findings pro-
pose that our modelling approach has strong potential for
application in clinical trial design. First, we reliably stratify
individuals into two samples based on baseline non-tau data: (a)
Clinically Stable, with low baseline tau, stable cognition and non-
significant tau accumulation, (b) Clinically Declining with high
baseline tau, declining cognition and significant future tau accu-
mulation. We propose that the Clinically Declining sample is a
good candidate for clinical trials, while individuals in the Clini-
cally Stable sample are not suitable for AD clinical trials as they
do not show baseline AD pathology or predictable change in
outcome measures (cognition, tau accumulation).

Yet, substantial heterogeneity still exists within the Clinically
Declining sample. We demonstrate that our prognostic index that
quantifies individualised and continuous distance to the Clinically
Stable prototype explains some of this heterogeneity both in the
ADNI3 and BACS asymptomatic sample. In Fig. 8, we
demonstrate how our prognostic index can be used to re-
stratify the Clinically Declining sample. Focussing on the fusiform
gyrus as a potential intervention target region we show that a
more stringent threshold (Fig. 8, dashed black vertical line) than
the probabilistic threshold used in the binary classification (Fig. 8,
solid black vertical line) allows us to (a) select individuals with
increased rate of tau accumulation (mean rate of accumulation:
0.028 vs. 0.0136 SUVR/Year), (b) reduce sample heterogeneity
(variance: 0.00079 vs. 0.0012), (c) increase power to detect change
in tau accumulation, reducing substantially the required sample
size (n= 93 vs. n= 598). This more precise patient stratification
has potential impact in clinical trial design, by reducing
heterogeneity in the treatment and placebo groups that has been
shown to hamper statistical power in clinical trials25.

Finally, our multimodal stratification has greater statistical power
to detect a clinically meaningful change in tau accumulation vs.
cognitive decline (PACC change n= 917 vs. tau accumulation
n= 637) over the time frame of a standard AD clinical trial (1–3
years), suggesting tau accumulation is a sensitive outcome measure
for clinical trials in the earliest stages of AD. Further, our multimodal
stratification—in contrast to Aß alone—selects a sample with higher
rate and lower variability in tau accumulation, increasing statistical
power to detect treatment effects (Aβ positive alone n= 1139 vs.
Clinically Declining n= 637).

Discussion
Here, we employ a robust and transparent machine learning
approach to combine continuous information across AD bio-
markers and predict pathological changes in tau accumulation in
asymptomatic and mildly impaired stages of AD. We use well-
characterised AD biomarkers (Aβ, medial temporal grey matter

0 20 40 60
% Reduction in Sample Size

Fig. 5 Reduction in sample size for patient stratification based on
prognostic index vs. Aβ positive. Percentage reduction of sample size
required to observe a 25% reduction in tau accumulation per region for
Clinically Declining classification based on multimodal data vs. Aβ status
alone. For example, to observe a 25% reduction in tau accumulation in the
middle temporal cortex 34% fewer individuals are required when stratifying
based on Clinically Declining classification vs. Aβ status alone. In medial
and superior-parietal regions (e.g., Precuneus or superior parietal) a sample
size reduction of 29% and 39% is achieved when stratifying based on
Clinically Declining vs. Aβ status alone. Source data are provided as a
Source Data file.
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density, APOE 4) to derive a prognostic index, introducing a
trajectory modelling approach that extends beyond binary patient
stratification based on syndromic labels. Using this prognostic
index derived from multimodal baseline data, we predict future
tau accumulation, a known pathological driver of AD progres-
sion. We demonstrate that this multimodal prognostic index of
future tau accumulation is a more sensitive tool for patient
stratification than Aβ status alone or clinical syndrome labels.
Further, our prognostic index predicts individualised spatially
specific changes in tau accumulation in CN individuals, enabling
fine stratification and staging at asymptomatic stages of AD (i.e.,
before clinical symptom occurrence). Our approach advances our
understanding of the mechanisms of AD progression and has
potential implications for the design of clinical trials.

In particular, using our trajectory modelling approach37 we
derive a prognostic index from baseline biomarkers that accu-
rately classifies individuals as Clinically Declining. Using this
prognostic index we show that individuals classified as Clinically
Declining will accumulate tau in a topography-specific manner
that reflects the initial spreading of tau in early-stage AD (i.e.,
prior to severe cognitive impairment)23, accurately reproducing
the topography reported in numerous independent cohorts cor-
responding to the proposed “meta-ROI” for tau quantitation20–22.
Building on previous work, we show that our multimodal index is
more sensitive for predicting tau accumulation compared to a
unimodal measure (i.e., Aβ positive alone), demonstrating that
individuals who are classified as Clinically Declining accumulate
tau at 1.3 times the rate of Aβ positive individuals. Extending
beyond binary classifications, we show that our continuous
prognostic index predicts individual variability in future regional
tau accumulation within regions that are known to be affected in
early stages of AD. Further, we show that these individualised
predictions generalise to an independent sample of CN indivi-
duals before symptoms occur.

Our approach has potential relevance for the design of clinical
trials in four main respects. First, we demonstrate that our
multimodal modelling approach is more sensitive in capturing
early-stage AD-related pathology than a classification based on
baseline syndromic labels. The poor sensitivity and specificity of
syndromic labels to AD pathology10–13 has led to the introduc-
tion of a biological framework for AD classification8. We show
that syndromic labels are not consistent with baseline biology that
predicts clinical decline (i.e., changes in longitudinal syndromic
changes) or future pathological changes (i.e., tau accumulation).

Second, using the rate of tau accumulation as an outcome
measure results in 31% reduction in the sample size for detecting
a clinically meaningful change at early stages of AD compared to
the gold standard cognitive instrument (PACC41). This is con-
sistent with previous work showing that a smaller sample size is
required to detect a clinically meaningful change in tau accu-
mulation within the “meta-ROI” for tau accumulation than using
a cognitive endpoint22. Although typically cognitive decline is
considered as a primary outcome measure for clinical trials42,
recent trials indicate a potential future role for biomarkers in drug
discovery (e.g., Aβ in the case of the recently FDA approved
aducanumab). Further, recent trials in early AD participants have
investigated downstream effects of Aβ lowering immunotherapies
on both cognitive decline and changes in cortical tau burden
measured with FTP-PET24. As tau is strongly linked to both
future neurodegeneration and cognitive decline18 this makes
reduction of future tau accumulation a relevant intervention
target and potential outcome measure. This is further evidenced
by anti-tau drugs entering the clinical trial pipeline43,44. Given the
limitation of anti-amyloid interventions in halting clinical decline,
simply clearing already deposited tau may be insufficient to stop
downstream events44. Therefore, measuring changes in tau and
cognition simultaneously may be more appropriate for assessing
efficacy of anti-tau drug treatments. That is, targeting individuals
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Fig. 6 Predicting individual variability in future tau accumulation in the ADNI3 Clinically Declining sample. a Regression fit of the scalar projection with
future rate of tau accumulation for the fusiform gyrus (two-tailed linear regression, p < 0.05 FWE). The central black line indicates the regression line for
the regression fit; the dashed lines indicate the 95% confidence intervals for this regression line. Two outliers based on the scalar projection are not shown
for illustrative purposes. b Significant regional parameter estimates from linear regressions to predict future rate of tau accumulation for individuals
classified as Clinically Declining (two-tailed linear regression, p < 0.05 uncorrected). The colour scale indicates the parameter estimate for the slope of the
regression fit of the scalar projection with regional future tau accumulation. c Percentage of variance explained when using the scalar projection to predict
future rate of tau accumulation for individuals classified as Clinically Declining from the ADNI3 cohort. Source data are provided as a Source Data file.
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with the highest risk of depositing tau rather than those burdened
with tau, may increase the likelihood of successfully modifying
downstream clinical decline. Our machine learning approach is
well suited to address this need as it is sensitive to baseline tau
and allows us to select individuals who are predicted to both
accumulate tau and have declining cognition.

Third, we show that using our multimodal prognostic index vs.
Aß status alone reduces the sample size required to observe a
clinically meaningful change in pathological tau accumulation by
44% (Clinically Declining n= 636, Aß positive n= 1139). This
result extends a recent study investigating predictors with the most
independent utility in predicting future rate of tau accumulation45.
This previous work suggests that when considering key AD bio-
markers (i.e., APOE 4, Aß and neurodegeneration) Aß status alone
is the optimal independent biomarker for stratification to predict
future tau accumulation. Our machine learning approach captures
predictive disease-related covariance in biomarkers, showing a clear
benefit in using multivariate predictors over Aß status alone when
stratifying for clinical trials targeting future tau accumulation. The
benefit of integrating multimodal biomarkers has been demonstrated
in the context of predicting future changes in cognition46–51. In
particular, previous studies have shown that grey matter atrophy and
cortical Aβ burden relate to separable patterns of future cognitive
decline46,47,50,51, and longitudinal changes in tau relate to cognitive
decline in preclinical AD18.

Fourth, our trajectory modelling approach shows that there is a
linear relationship between baseline non-tau biomarkers and
future rates of tau accumulation over a short timespan (typical of
a clinical trial). This result has particular relevance to clinical
trial design, as it suggests that patient stratification for clinical

trials can be optimised to select individuals with appropriate
rate of tau deposition, reducing heterogeneity in treatment and
placebo groups may lead to erroneous conclusions in clinical
trials25.

Future work is needed to extend our modelling approach and
enhance generalisation to diverse data types and populations.
First, it is likely that our measure of medial temporal grey matter
density captures information specific to typical amnestic AD
populations, as it was derived using ADNI data. Additional
measures of atrophy may contribute to a larger scale predictive
model, as dissociable patterns of tau spreading have been
observed for atypical AD syndromes52.

Second, we focussed on specific well-studied biomarkers (i.e., Aß,
medial temporal grey matter density and APOE 4) to make robust
predictions, as evidenced by the consistency of our results across
samples with different Aß tracers (i.e., FBP in ADNI and PiB in
BACS) and MRI field strength. Extending our biomarker modelling
approach to integrate less-costly (i.e., plasma) and non-invasive (i.e.,
cognitive) data has strong potential to determine the most cost-
effective approach for stratification at asymptomatic or early
stages of AD.

Third, our linear modelling approach, focusing on data from
CN and MCI individuals, captures the earliest changes in tau
accumulation over a limited timespan (i.e., 3 years). We show that
a linear model predicts individual variation in future tau accu-
mulation within multiple samples and over this time frame that is
typical of a clinical trial (i.e., early to intermediate pathological
stages). This model fits the majority of individual predictions with
only a small number of outlier cases due to a high scalar pro-
jection (ADNI3: n= 2, BACS: n= 1).
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Fig. 7 Prediction accuracy of future tau accumulation in the BACS Clinically Declining sample. Comparing predicted tau accumulation to observed tau
accumulation for individuals classified as Clinically Declining in the BACS cohort. a Fit of the predicted future rate of tau accumulation to the observed
tau accumulation within the fusiform gyrus (R2= 41%). The central black line indicates the regression line for the fit of predicted vs. observed future rate of
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individuals within each of the selected ROIs (Fig. 6a). Source data are provided as a Source Data file.

Table 1 Predicting regional future annualised tau accumulation in BACS.

Braak stage Region Clinically Declining (n = 17) Clinically Stable (n = 39)

Predicted variance explained % Predicted variance explained %

3 Fusiform 40.58 1.7
4 Inferior temporal 28.96 2.25
5 Supramarginal 19.59 1.38

Inferior parietal 3.38 8.78
Superior parietal 22.09 5.45
Precuneus 2.57 0.04
Bankssts 21.94 0.57

Shared variance of the predicted regional future tau accumulation and the observed future tau accumulation for individuals from the BACS cohort classified as Clinically Stable or Clinically Declining.
Source data are provided as a Source Data file.
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Fourth, we validated our model—that was trained on data from
an AD disease-specific cohort—by testing predictions in an
independent CN sample. This provides evidence that our results
are not driven by the sampling characteristics of ADNI, sug-
gesting generalisability (albeit in the small BACS sample) of our
modelling approach to more diverse groups. Our asymptomatic
sample size was limited, as publicly available data from CN
participants with longitudinal FTP-PET are scarce. Larger sam-
ples with longitudinal data would increase the generalisability and
validate the real-world efficacy of our approach.

In sum, our machine learning approach successfully capitalises
on longitudinal data to make sensitive and specific predictions of
early-stage AD trajectories based on baseline pathophysiology.
Our modelling approach provides two key advances: (a) it com-
bines multimodal continuous biological measures to capture
trajectories for individuals who may be on the threshold of
unimodal biomarker positivity but likely to follow AD related
trajectories17, (b) it harmonises longitudinal data collected using
syndromic diagnostic criteria6,7 (e.g., ADNI27) by means of a
model-derived prognostic index. Importantly, our approach has
translational impact for clinical trial design, as our prognostic
index supports more precise patient stratification for inclusion to
clinical trials, reducing sample heterogeneity that may lead to
erroneous conclusions in clinical trials25. Using our prognostic
index to select participants within a range of projected tau
accumulation has potential to (a) reduce sample heterogeneity
that hampers statistical power, (b) target individuals at greatest
risk who may benefit the most from clinical intervention (c)
decrease the required sample, resulting in more timely and cost-
effective clinical trial. Our modelling approach can be tailored to
trade off sample size, cost (from subjects screened but rejected

from inclusion), and generalisability for a sample with the highest
probability of benefitting from treatment. Our findings highlight
the strong potential for machine learning to extract informative
disease markers from rich and complex multimodal data and
deliver tools with high predictive power for early diagnosis and
precise patient stratification.

Methods
Study design and participants. Three separate cohorts were used to generate and
test predictive models of regional future tau accumulation. For ADNI, ethical
approval was obtained by the ADNI investigators. For BACS, ethical approval was
obtained from the institutional review board at Lawrence Berkeley National
Laboratory and the University of California, Berkeley. All ADNI and BACS par-
ticipants provided written informed consent. Primary analysis was performed by
investigators not involved in ADNI or BACS recruitment.

Two cohorts were drawn from the ADNI database: ADNI2/GO and ADNI3
(adni.loni.usc.edu). ADNI was launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. A major goal of ADNI has been
to examine biomarkers including serial magnetic resonance imaging, and positron
emission tomography, with clinical and neuropsychological assessment to predict
outcomes in MCI and AD.

A third validation cohort was taken from the BACS. This cohort is comprised of
a convenience sample of community-dwelling cognitively intact elderly individuals
with a Geriatric depression scale53 score ≤10, Mini mental status examination
(MMSE)54 score ≥25, no current neurological and psychiatric illness, normal
functions on verbal and visual memory tests (all scores ≥−1.5 SD of age-adjusted,
gender-adjusted, and education-adjusted norms) and age of 60–90 (inclusive)
years. All subjects underwent a detailed standardised neuropsychological test
session and neuroimaging measurements, all of which were obtained in close
temporal proximity with follow-up every 1–2 years.

Data from 437 individuals from ADNI2/GO were used to train the machine
learning model. Individuals were placed into three categories based on their
baseline and longitudinal syndromic labels from clinical diagnosis independent of
their baseline biomarker status, with baseline defined as the evaluation closest to
the first florbetapir (FBP) PET scan acquired in ADNI. Alzheimer’s Clinical
Syndrome (n= 181, 158 Aß+ at baseline, APOE 4(+/-)= 119/62, Age
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Fig. 8 Potential application in clinical trial design. a Cortical maps show average rate of tau accumulation for individuals classified as Clinically Stable vs.
Clinically Declining (see Fig. 4). b Relationship of the scalar projection with future rate of tau accumulation within the Fusiform gyrus (as shown in Fig. 6a).
The solid black vertical line indicates the probabilistic boundary used to perform the binary stratification, blue crosses indicate rate of tau accumulation for
the clinically stable group, black circles indicate future rate of tau accumulation for the clinically declining group. Using our prognostic index (i.e., scalar
projection) we show that re-stratifying to a more stringent threshold—as indicated by the dashed black vertical line—a new sample can be selected with
higher future rates of tau accumulation and lower heterogeneity within the sample.
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mean= 73.7+-std= 6.3 years, Education mean= 16.7+-std= 2.7 years, Sex (M/
F)= 107/74): individuals have a stable diagnosis of dementia (in ADNI this
corresponds to AD); Clinically Stable (n= 100, 18 Aß+ at baseline, APOE 4(+/-)
=21/79, Age mean= 73.7+-std= 6.3 years, Education mean = 16.7+-std= 2.7
years, Sex (M/F)= 51/49): individuals have a baseline diagnosis of CN and retain
this diagnosis at follow-up for 4 or more years (mean= 5.7+-std= 1.1 years);
Clinically Declining (n= 156, 130 Aß+ at baseline, APOE 4(+/-)= 95/61, Age
mean=74.9+-std= 7 years, Education mean= 15.9+-std= 2.7 years, Sex (M/
F)= 88/68): individuals have a baseline diagnosis (at date of FBP scan) of either
CN (n= 17) or MCI (n= 139) but received a diagnosis of dementia in future
clinical evaluation (i.e., progressed to dementia (n= 75)), or had been diagnosed as
demented in a clinical evaluation prior to baseline (i.e., reverted (n= 81)). We
included individuals in the Clinically Declining group who were MCI at baseline
but have received a diagnosis of dementia prior to baseline (i.e., reverted) in this
group as we anticipate they are likely affected by AD pathology but are at an earlier
stage of AD than the Alzheimer’s Clinical Syndrome (i.e., late AD) group. Further,
as our machine learning model is designed with limited parameters, when training
using noisy diagnostic labels it is optimised to account for target uncertainty
without leading to over-fitting. Therefore, including the additional training samples
(i.e., 81 individuals who reverted to MCI) will likely improve model training even
though their diagnostic labels may have poor reliability.

Data from 115 individuals from ADNI3 were used to test the relationship between
the scalar projection and regional future tau accumulation. These individuals were
either CN (n= 72) or MCI (n= 43) (61 Aß+ at baseline, APOE 4(+/-)=51/64, Age
mean=73.7+-std= 6.9 years, Education mean=16.6+-std= 2.3 years, Sex (M/F)= 58/
57) at baseline, defined as the diagnosis closest to the first FTP-PET scan acquired in
ADNI3, and have at least one follow-up FTP-PET scan.

Data from 56 community-dwelling individuals from BACS were used to test the
accuracy of predictions of regional future tau accumulation. These individuals were
CN (n= 56, 30 Aß+ at baseline, APOE 4(+/-)= 17/39, Age mean= 77.2+-
std= 5.2 years, Education mean=16.7+-std= 1.8 years, Sex (M/F)= 22/34) at
baseline (defined as the diagnosis closest to the first FTP-PET scan acquired in
BACS) and have at least one follow-up FTP-PET scan.

MRI acquisition. Structural MRIs for the ADNI samples were acquired at ADNI-
GO, ADNI2 and ADNI3 sites equipped with 3T MRI scanners using a 3D MP-
RAGE or IR-SPGR T1-weighted sequences, as described online (http://
adni.loni.usc.edu/methods/documents/mri-protocols). Structural MRIs for the
BACS sample were collected on either a 1.5T MRI scanner at Lawrence Berkeley
National Laboratory (LBNL) or a 3T MRI scanner at UC Berkeley using 3D MP-
RAGE T1- weighted sequences. All ADNI and BACS scans were acquired with
voxel sizes of approximately 1 mm × 1mm × 1mm.

PET acquisition. PET imaging was performed at each ADNI site according to
standardised protocols. The FBP-PET protocol entailed the injection of 10 mCi
with acquisition of 20 min of emission data at 50–70 min post injection. The FTP-
PET protocol entailed the injection of 10 mCi of tracer followed by acquisition of
30 min of emission data from 75–105 min post injection.

For the BACS, PIB PET scans were collected at LBNL. After ∼15 mCi tracer
injection into an antecubital vein, dynamic acquisition frames were obtained in 3D
acquisition mode over a 90 min measurement interval (4 × 15 s frames, 8 × 30 s
frames, 9 × 60 s frames, 2 × 180 s frames, 8 × 300 s frames, and 3 × 600 s frames)
after X-ray CT. FTP-PET scans were collected following an injection of ~10 mCi of
tracer in a protocol highly similar to that used for ADNI with a slightly shorter
window of emission data used (80–100 min post injection). All BACS participants
were studied on a Siemens Biograph PET/CT.

Imaging analysis-MRI: medial temporal grey matter density. All structural MRI
pre-processing was performed using Statistical Parametric Mapping 12 (http://
www.fil.ion.ucl.ac.uk/spm/). Structural scans were segmented into grey matter, white
matter and Cerebrospinal Fluid (CSF). The DARTEL toolbox55 was then used to
generate a study specific template to which all scans were normalised. Following this,
individual grey matter segmentation volumes were normalised to MNI space without
modulation. The unmodulated values for each voxel represent grey matter density at the
voxel location. All images were then smoothed using a 3mm3 isotropic kernel and
resliced to MNI resolution 1.5 × 1.5 × 1.5mm voxel size.

To generate a single index of medial temporal grey matter density we used a
voxel weights matrix that was previously derived to generate an interpretable and
interoperable disease-specific biomarker37. In brief, a feature generation
methodology (partial least squares regression with recursive feature elimination
(PLSr-RFE)) was used to apply a decomposition on a set of predictors (T1-
weighted MRI voxels) to create orthogonal latent variables that show the maximum
covariance with the response variable (memory score). Further, we performed
recursive feature elimination by iteratively removing predictors (voxels) that have
weak predictive value. The PLSr-RFE procedure results in a voxel weights matrix
that is used to calculate a single score of AD related medial temporal density. This
index of medial temporal grey matter density has been shown to predict memory
deficits, relate to individual tau burden and discriminates stable MCI and
progressive MCI individuals37. To generate an individual’s score of medial

temporal grey matter density we performed a matrix multiplication of the
previously derived voxel weights matrix and each subject’s pre-processed T1-
weighted MRI scans. Given that this value represents density and not regional
volume, the medial temporal grey matter density score is not affected by head size
differences (Supplementary Fig. 7).

Imaging analysis (ADNI)-PET: FBP (florbetapir PET) Aβ. FBP data were rea-
ligned, and the mean of all frames was used to co-register FBP data to each
participant’s structural MRI. Cortical Standardised Uptake Value Ratios (SUVR)s
were generated by averaging FBP retention in a standard group of ROIs defined by
FreeSurfer v5.3 (lateral and medial frontal, anterior and posterior cingulate, lateral
parietal, and lateral temporal cortical grey matter) and dividing by the average
uptake from the whole cerebellum to create an index of global cortical FBP burden
(Aβ) for each subject56. Finally we converted the SUVR to the centiloid scale57

using the following conversion taken from the LONI website CL= (FBP SUVR ×
196.9) – 196.03 (http://adni.loni.usc.edu/methods/documents/, PET Protocols:
ADNI Centiloids). To assign individuals as Aß positive we used the widely pub-
lished threshold for ADNI FBP; SUVR= 1.1 or CL= 22.515.

Imaging analysis (BACS)-PET: PiB (Pittsburgh Compound B) Aβ. Distribution
volume ratios (DVRs) were generated with Logan graphical analysis on the aligned
PIB frames using the native-space grey matter cerebellum as a reference region,
fitting 35–90 min after injection.

For each subject, a global cortical PIB index was derived from the native-space
DVR image coregistered to the MRI using FreeSurfer (5.3) parcellations using the
Desikan–Killiany atlas58 to define frontal (cortical regions anterior to the precentral
sulcus), temporal (middle and superior temporal regions), parietal (supramarginal
gyrus, inferior/superior parietal lobules, and precuneus), and anterior/posterior
cingulate regions- ROIs combined as a weighted average. There was no partial
volume correction performed. Finally we converted PiB DVR values to centiloids
using the following conversion CL= (PiB DVR * 142.73) – 141.99.

Image analysis-PET: FTP (Flortaucipir PET) tau. FTP data were realigned and
the mean of all frames used to co-register FTP to each participant’s MRI acquired
closest to the time of the FTP-PET. FTP SUVR images were generated by dividing
voxel wise FTP uptake values by the average value within a mask of eroded sub-
cortical white matter regions59. MR images were segmented and parcellated into 72
ROIs taken from the Desikan–Killiany atlas using Freesurfer (V5.3). These ROIs
were then used to extract regional SUVR data from the normalised FTP-PET
images. Left and right hemisphere ROIs were averaged to generate 36 ROIs for
further analysis. We calculated the future annualised rate of tau accumulation for
each of the 36 ROIs either by taking the difference between the follow-up and
baseline FTP-PET scans divided by the time interval in years from baseline (when
only 2 FTP scans were taken), or fitting a linear least squares fit to 3 or more FTP-
PET scans and extracting the parameter estimate for the slope of the ROI SUVR vs.
time in years from baseline (when 3 or more FTP scans were taken). In the
ADNI3 sample the average time between FTP-PET scans is 1.22+- std: 0.38 years
with the number of follow-up FTP-PET scans n (2 FTP-PET scans)= 93, n (3 FTP-
PET scans) =17, n (4 FTP-PET scans)= 5. In the BACS cohort the average time
between FTP-PET scans is 1.8+-std:0.65 years with the number of follow-up FTP-
PET scans n (2 FTP-PET scans) =37, n (3 FTP-PET scans)= 19.

Predictors and outcomes. Three baseline biological markers related to AD were
used as predictors to generate the scalar projection from the machine learning
model: (a) Cortical amyloid burden (Aβ) measured using either FBP (ADNI) or
PiB (BACS) PET, (b) medial temporal grey matter density derived from the T1-
weighted structural MRI and (c) APOE 4 genotype. To quantify cortical amyloid
burden we utilised multiple PET tracers. To derive a robust scalar metric for
predictions we first harmonised Aß PET values using the centiloid approach. Using
this approach it has been shown that FBP and PiB amyloid tracers are inter-
changeable once scaled linearly onto a common scale (i.e., centiloids)57.

We have previously shown that training our GMLVQ-scalar projection model
on multimodal baseline data predicts future changes in cognition for individuals
diagnosed with MCI37. Here, we use the same baseline predictors to generate
predictions in a new sample of early AD individuals (i.e., individuals who are CN
or MCI at baseline). The primary outcome measure for the predictive models is
regional future annualised rate of tau accumulation (SUVR/year). To model patient
trajectories of future tau accumulation we used longitudinal FTP-PET. The
association between antemortem FTP uptake and neurofibrillary tangles load post-
mortem has been shown previously60. However, FTP retention is associated with
significant off-target binding. To mitigate this, we used a reference region from
eroded subcortical white matter regions. Previous work has shown that FTP-PET
uptake in subcortical regions accounts for 60% of the variation global FTP uptake
in healthy amyloid negative CN individuals61. A secondary outcome measure is
changes in future cognition over the same time scale as the longitudinal FTP scans,
as measured by the PACC. To test changes in future cognition for individuals from
ADNI3 we used the previously derived ADNI-PACC measure
(adni.loni.usc.edu)41. Of the 115 ADNI3 individuals with multiple FTP-PET scans
102 individuals had multiple measures of the PACC over a similar time period
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(within 6 months of the baseline FTP-PET and the final FTP-PET scan). Future
annualised change in PACC is calculated by either taking the difference between
the follow-up and baseline PACC scores divided by the time interval in years from
baseline (when only 2 PACC scores are available), or fitting a linear least squares fit
to 3 or more PACC scores and extracting the parameter estimate for the slope of
the PACC vs. time in years from baseline (when 3 or more PACC scores are
available). The average time between PACC testing sessions scans is 1.04+-std:
0.44 years with the number of follow-up PACC testing sessions n (2 PACC
sessions)= 82, n (3 PACC sessions)= 18, n (4 PACC sessions)= 2.

Prediction models
Generalised Matrix Learning Vector Quantisation (GMLVQ)-Scalar Projection. We
previously developed a machine learning approach based on the GMLVQ classi-
fication framework: GMLVQ-Scalar Projection37. This approach allows us to derive
a continuous prognostic metric (i.e., scalar projection) by training a model based
on longitudinal diagnostic labels.

Learning Vector Quantisation (LVQ) are classifiers that operate in a supervised
manner to iteratively modify class-specific prototypes to find boundaries of discrete
classes. In particular, LVQ classifiers are defined by a set of vectors (prototypes)
that represent classes within the input space. These prototypes are updated
throughout the training phase, resulting in changes in class boundaries. For each
training example, the closest prototype for each class is determined. These
prototypes are then updated so that the closest prototype representing the same
class as the input example is moved towards the input example and those
representing different classes are moved further away. The Generalised Matrix
LVQ (GMLVQ)62 extends the LVQ utilising a full metric tensor for a more robust
(with respect to the classification task) distance measure in the input space. To do
this, the metric tensor induces feature scaling in its diagonal elements, while
accounting for task conditional interactions between pairs of features (co-ordinates
of the input space) (Supplementary methods: Generalised matrix learning vector
quantisation). Previously we trained a GMLVQ model with baseline multimodal
data (medial temporal grey matter density, Aβ, APOE 4 genotype) and show that
the GMLVQ modelling approach classifies MCI patients into subgroups
(progressive vs. stable) with high specificity and sensitivity37.

Extending the binary model, we derived a single prognostic distance measure
(scalar projection) that separates individuals based on their longitudinal diagnosis.
The GMLVQ-scalar projection approach derives a continuous distance metric from
the trained GMLVQ classifier. This continuous distance measure (scalar
projection) indicates how far an individual is from the Clinically Stable prototype
along the dimension that best separates individuals who have stable (i.e., Clinically
Stable) vs. declining (i.e., Clinically Declining) syndromic diagnosis. This allows the
model to learn implicitly a continuous prognostic score for an individual that may
be predictive of underlying pathophysiological change. Previously we calculated the
scalar projection separating individuals who are stable MCI from progressive MCI
showing that the continuous value predicts individualised rates of future cognitive
decline37. Here, we apply the same framework on a new sample, deriving the scalar
projection on Clinically Stable vs. Clinically Declining and making individualised
predictions of future regional tau accumulation in Clinically Declining populations.

GMLVQ-scalar projection implementation. From the training sample, the model
learns the multivariate relationship between Aβ, medial temporal grey matter
density and APOE 4 (metric tensor Λ) and the location in multidimensional space
that best classifies Clinically Stable vs. Clinically Declining individuals (prototype
locations: wðClinically Stable;Clinically DecliningÞ). For any new subject with Aβ, medial
temporal grey matter density and APOE 4 (sample vector: xi) the scalar projection
can be calculated by a series of simple linear equations.

1. Transform the sample vector xi and prototypes wðClinically Stable;Clinically DecliningÞ
into the learnt space via the metric tensor Λ. Note as the metric tensor is learnt in the
squared Euclidean space we transform using the square root of the metric tensor (i.e.,
Λ1=2)

Xi ¼ Λ1=2 xi ð1aÞ

WðClinically Stable;Clinically DecliningÞ ¼ Λ1=2wðClinically Stable;Clinically DecliningÞ ð1bÞ

2. Centre the co-ordinate system onWðClinically StableÞ and calculate the orthogonal

projection of each vector Xi onto the vector WClinically DecliningWClinically Stable
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3. To normalise the projections with respect to the position of the prototype
WðClinically StableÞ , then we divided the projection by the norm of

WClinically DecliningWClinically Stable
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:

Scalar Projection ¼ XiWClinically Stable

����������������������*
:WClinically DecliningWClinically Stable

������������������������������������*

WClinically DecliningWClinically Stable

������������������������������������*�
�
�

�
�
�

2 ð3aÞ

For a graphical derivation and interpretation see Supplementary Methods:
GMLVQ-Scalar Projection.

To determine a meaningful threshold of the scalar projection for separating
individuals who are Clinically Stable from Clinically Declining individuals we use
logistic regression for the ADNI2/GO sample labelled as Clinically Stable, Clinically
Declining, and Alzheimer’s Clinical Syndrome. This results in a probabilistic
boundary based on the scalar projection.

Determining regions of significant AD-related tau accumulation. We first classified
individuals from ADNI3 as either Clinically Stable or Clinically Declining based on
each individual’s scalar projection. For the individuals who are classified as
Clinically Declining (based on the probabilistic threshold value) we performed a
subsequent first level analysis to determine which of the 36 selected ROIs will
accumulate tau in the future (i.e., regions with a future annualised rate of accu-
mulation statistically greater than 0).

Predicting individual variability in regional tau accumulation. Finally, for regions
that pass first level significance (i.e., within regions that significantly accumulating
tau p < 0.05, uncorrected) we trained a series of regression models using ADNI3
individuals classified as Clinically Declining to test if the scalar projection relates to
individual variability in regional future rate of tau accumulation (dependent
variable: regional future tau accumulation, independent variable: scalar projection).
We then tested these models by making individualised predictions—out of sample
—for individuals classified as Clinically Declining from the BACS sample. To test
the accuracy of the regional predictions we calculated the shared variance between
the observed future accumulation of tau and the model generated prediction using
baseline biological data (i.e., scalar projection).

Statistical analysis. Within-sample accuracy for classifying Clinically Stable vs.
Clinically Declining in the ADNI2/GO sample was assessed using random
resampling. In brief, we determined within-sample classification accuracy by
randomly splitting our sample into test and training data 400 times. To avoid
biasing the model in the training phase due to class imbalance in the data
(majority class: Clinically Declining= 156 vs. minority class: Clinically Stable =
100), we resampled the data to generate balanced classes (i.e., number of Clini-
cally Declining equals number of Clinically Stable individuals). This resampling
process randomly selects half of the individuals in the minority class and the same
number of individuals from the majority class as training data; with the
remaining sample used as test data. We then averaged the true positive and true
negative accuracies across the 400 resampling’s to generate a class-balanced cross-
validated accuracy.

We used logistic regression to define a probabilistic boundary that separates
individuals who are Clinically Stable from Clinically Declining. Using the ADNI2/GO
sample we fit a three class (Clinically Stable, Clinically Declining, Alzheimer’s Clinical
Syndrome) logistic regression to determine the threshold value of the scalar projection.
We set the threshold as the probability an individual is less than 50% likely to be
Clinically Stable. To determine the regions that will significantly accumulate tau for
individuals classified as Clinically Declining we used one-tailed one sample t-tests. As
we are testing if regions are accumulating tau we use right tail t-tests to determine if
the future rate of tau accumulation is significantly (p < 0.05, uncorrected) greater than
0 per ROI for individuals classified as Clinically Declining. To compare required
sample sizes for different models derived using ADNI3 data we calculated the sample
size needed for an arm of a hypothetical clinical trial designed to detect a 25%
reduction in annual change (rate of tau accumulation, rate of PACC decline) with a
significance of 0.05 and a power of a= 0.8. For each comparison, we defined the null
hypothesis as the mean and standard deviation of the rate of change calculated from
the observed sample, where the alternate hypothesis is a 25% reduction of the mean of
the observed sample. For each of the regions that showed significant tau accumulation
we fit a robust linear regression (robustfit MATLAB) to predict future tau
accumulation using the prognostic index. Setting the dependent variable as future
regional tau accumulation and the independent variable as the scalar projection we
learnt a series of ROI regression equations.

Rate of tau accumulation ADNI3ð ÞROI
¼ βðADNI3ÞROI � Clinically Declining Scalar Projection ADNI 3ð Þ þ β0ðADNI3ÞROI

ð4Þ

Finally, using the significant (p < 0.05, uncorrected) fits derived from ADNI3
data we generated predictions of tau accumulation for individuals classified as
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Clinically Declining in BACS.

Predicted rate of tau accumulation BACSð ÞROI
¼ βðADNI3ÞROI � Clinically Declining Scalar Projection BACSð Þ þ β0ðADNI3ÞROI

ð5Þ
We tested the accuracy of these predictions in the BACS sample by calculating

the shared variance between the predicted future rate of tau accumulation and the
observed future rate of tau accumulation after treating for outliers (robust
correlation63).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The summary data generated in this study have been deposited in the University of
Cambridge online data repository (https://doi.org/10.17863/CAM.80891). ADNI data is
accessible via adni.loni.usc.edu. Additional BACS data are available on request.

Code availability
Custom code used in this work is available via the University of Cambridge online data
repository (https://doi.org/10.17863/CAM.80891).
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