
UC San Diego
Technical Reports

Title
Wide-Area Group Membership for Tightly-Coupled Services

Permalink
https://escholarship.org/uc/item/4gp4r437

Authors
Webb, Kevin C
Vattikonda, Bhanu C
Yocum, Kenneth
et al.

Publication Date
2012-02-23

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4gp4r437
https://escholarship.org/uc/item/4gp4r437#author
https://escholarship.org
http://www.cdlib.org/

Wide-Area Group Membership for

Tightly-Coupled Services

Kevin C. Webb, Bhanu C. Vattikonda, Kenneth Yocum, and Alex C. Snoeren

UC San Diego, Technical Report—February, 2012

Abstract

Today’s large-scale services generally exploit loosely-

coupled architectures that restrict functionality requiring

tight cooperation (e.g., leader election, synchronization,

and reconfiguration) to a small subset of nodes. In con-

trast, this work presents a way to scalably deploy tightly-

coupled distributed systems that require significant co-

ordination among a large number of nodes in the wide

area. Our design relies upon a new reliable group mem-

bership abstraction to ensure that either group members

are capable of communicating or that new groups form.

In particular, we deploy a distributed rate limiting

(DRL) service within a global testbed infrastructure. Un-

like most distributed services, DRL can safely operate

in separate partitions simultaneously, but requires timely

snapshots of global state within each. Our DRL im-

plementation leverages our proposed group membership

abstraction and a robust gossip-based communication

protocol, conjoining the fates of view maintenance and

data dissemination. Through local and wide-area exper-

iments, we illustrate that DRL remains accurate and re-

sponsive in the face of a variety of failure scenarios.

1 Introduction

The last decade has seen the development and commer-

cial deployment of a handful of services that scale to

thousands of nodes while gracefully managing adverse

events such as network disconnections, fail-stop failures,

and node churn. Examples include peer-to-peer file dis-

semination, key-value storage, bulk data processing, and

multiplayer gaming. To accomplish this feat, system de-

signers generally restrict the dependencies of most oper-

ations through techniques such as partitioning and repli-

cation, thereby limiting the impact of individual failures

on the service as a whole. For the remaining set of oper-

ations that require strongly coordinated execution—such

as locking or leader election—system architects isolate

them to a much smaller set of nodes that execute consen-

sus protocols. This two-tiered design pattern underlies

many large-scale services at Google and Yahoo!, which

respectively employ Chubby [5] or Zookeeper [12] to

help maintain correctness during synchronization, fail-

ure, or configuration events.

Not all distributed applications, however, fit well into

this scale-out paradigm. In some cases each node must

be aware of the actions of all other nodes in the system to

make forward progress, ensure correctness, or to have ac-

ceptable performance. We call such services tightly cou-

pled. This paper describes our experience deploying one

such service, a distributed rate limiting (DRL) [20] sys-

tem to control aggregate bandwidth usage across Planet-

Lab. DRL functions optimally when all nodes can com-

municate with each other. Unlike most tightly-coupled

distributed systems, however, DRL has the potential to

remain highly available even in the wide area because

it can safely function without global coordination (i.e.,

operate independently in separate partitions). DRL con-

tinues, however, to require robust and timely communi-

cation between all nodes within a partition.

Existing coordination facilities fail to accommodate

DRL’s unique requirements. In particular, partition-

tolerant systems based upon quorums can endure node

failures and network partitions, but force the application

to cease operation in minority partitions. Moreover, they

provide no guarantees about connectivity between pairs

of nodes within the quorum. Hence, we propose a new

group membership abstraction, circuit breaker, that pro-

vides joint membership and messaging guarantees, al-

lowing us to preserve DRL’s scale-out properties even

when faced with transient network and node failures.

Like FUSE [9], applications using a circuit breaker

participate in failure detection, and the system ensures

that group membership event notifications are delivered

to all members of the group. However, unlike existing

group membership schemes, circuit breakers further en-

sure that all members of a group can actually commu-

nicate with each other despite any cuts or asymmetric

connectivity. In particular, if a node determines that it

cannot reach another group member directly, it can route

messages to that destination over a resilient overlay [2]

provided by the circuit breaker. The sender can be sure

that either 1) routing through the overlay will succeed

or 2) a new view will be delivered shortly in which the

sender or receiver (or both) will no longer be members.

Thus all members of a group are capable of communicat-

ing (perhaps indirectly via the overlay) with one another.

1

The circuit breaker abstraction enables an architecture

for tightly-coupled distributed systems that integrates

traditional view-based group membership techniques [4,

13, 17] with a robust, light-weight gossip protocol. Us-

ing this architecture, we have successfully deployed dis-

tributed rate limiting as an internal management compo-

nent of the PlanetLab global testbed. The resulting sys-

tem not only gracefully handles node failures and simple

network partitions, but also functions efficiently in the

face of the far more common case of many small cuts to

the connectivity between limiters.

This paper makes the following contributions:

• Circuit breaker abstraction: We define and imple-

ment a new coordination abstraction for our tightly-

coupled distributed application that conjoins group mem-

bership and messaging. The abstraction supports parti-

tioned operation similar to traditional consensus-based

view change protocols, but also supports reliable connec-

tivity within a view through a resilient messaging overlay

that provides backup communication paths. The system

guarantees a new view—i.e., the circuit “trips”—if the

messaging overlay fails.

• Robust gossip-based communication: As a tightly-

coupled system, DRL requires the ability to rapidly dis-

seminate updates to system state within a group. In this

case, connectivity cuts can delay or disrupt calculations

and prevent the proper enforcement of the global rate

limit. We extend the work of Kempe et al. [14] to pro-

vide a gossip protocol that maintains the lightweight, ef-

ficient distribution properties of the original while being

resilient to transient packet loss. Our evaluation shows

that our gossip variant provides accuracy similar to a cen-

tralized alternative while providing the scaling benefits

of a fully distributed architecture.

• Integration lessons and evaluation: We discuss how

both DRL and its gossip protocol leverage the circuit

breaker abstraction. In particular both are partition-

aware, having the ability to safely resume operation in

multiple disjoint views simultaneously, and we develop

techniques to enhance re-starts to ensure accurate and re-

sponsive distributed rate limits. Finally, we compare and

contrast two circuit breaker prototypes, each using a dif-

ferent underlying coordination protocol. The first lever-

ages Yahoo!’s ZooKeeper [12], a replicated coordination

service, while the second implements a proposed proto-

col for partitionable [3] group membership, Moshe [13].

We illustrate how their distinct design choices impact

their ability to establish and maintain useful views in

practical wide-area environments.

The remainder of this paper is organized as follows.

We survey related work and briefly review distributed

rate limiting in Section 2. Section 3 enumerates the spe-

cific challenges that must be addressed by any tightly

coupled system that seeks to function well in wide-area

environments. We present the circuit breaker abstraction

in Section 4 before summarizing its implementation in

Section 5. We describe our DRL implementation in Sec-

tion 6 and demonstrate its correctness and effectiveness

in both the local area and on PlanetLab in Section 7. Sec-

tion 8 concludes the paper.

2 Background and related work

Before introducing the circuit breaker abstraction, we

first briefly survey existing approaches to group mem-

bership, as well as describe the distributed rate limiting

problem, which motivates a number of our design re-

quirements.

2.1 Related work

We are far from the first to attempt to deploy a tightly-

coupled distributed service in the presence of failures.

VAXclusters maintained a great deal of shared global

state [15], but assumed the nodes of the system were in

close physical proximity, with relatively reliable, high-

speed connectivity between them. ISIS [4] and its

follow-ons enabled group-based distributed computation

through virtual synchrony, but assumed nodes were dis-

tributed among a relatively small number of sites. Within

a site, nodes were expected to have abundant, reliable

connectivity. In contrast, we seek to operate in an envi-

ronment where no node can assume reliable connectivity

to any significant fraction of other nodes.

More generally, there has been a great deal of work on

group membership and distributed agreement protocols.

Perhaps the most famous is Paxos [16], which provides

distributed consensus. While Paxos can certainly be used

to implement a group membership protocol, it does not

do so by itself. Most group membership protocols are

not targeted for the wide area, however. Those that are

typically leverage hierarchy [6], with Moshe [13] being

a notable exception.

The FUSE [9] failure notification service guarantees

that, once triggered, notifications reach every member

of the FUSE group. Unlike our system, FUSE makes

no guarantees about inter-node communication within

a FUSE group. Furthermore, FUSE applications must

explicitly re-create FUSE groups upon failure event no-

tification, while our system automatically delivers new

views when necessary.

There have been many proposals for lightweight com-

munication within a well-connected group, including

gossip or epidemic routing protocols [7, 10]. The gen-

eral problem of using and efficiently computing aggre-

gates across a distributed set of nodes has been studied

in a number of contexts, including distributed monitor-

2

ing [8] and counting [22, 24]. Similar work developed

probabilistic synopses for robust in-network computation

in wireless sensor networks [19]. In contrast Kempe et al.

does not require construction of an aggregating topology

and, if updates quiesce, converges to the exact answer.

2.2 Cloud control

Distributed rate limiting was originally presented as a

cost-control mechanism for cloud-based services [20].

Raghavan et al. observe that while bandwidth cost

recovery is typically accomplished through burstable

billing (e.g., 95th percentile charging) or metered pric-

ing (e.g., Amazon’s EC2 charges incrementally per gi-

gabyte of traffic consumed [1]), many prefer to manage

expenditures as fixed-cost overheads, not incremental ex-

penses [11]. Instead, DRL provides the ability to control

costs using a flat-fee model, ensuring a fixed price for an

aggregate, global usage.

This work uses distributed rate limiting to address two

thorny bandwidth management scenarios on the Planet-

Lab global testbed: In the first case, operators require a

mechanism to limit the bandwidth consumed by a set of

machines at a particular physical location without requir-

ing that all nodes at the site use the same access link—or

requiring the installation of traffic policing devices on the

link(s). In the second case, management seeks to limit

the bandwidth consumption of an application (or slice, in

PlanetLab terminology) regardless of the set of nodes on

which the slice is deployed. Administrators need such an

ability, for example, to sandbox a prototype distributed

service, e.g., a content distribution network, to control

its aggregate bandwidth usage.

2.3 Distributed rate limiting

In DRL, a set of distributed traffic rate limiters collab-

orate to subject a class of network traffic (for example,

the traffic from a particular slice) to a single, aggregate

global limit. Critically, DRL apportions rate across these

sites in proportion to demand, as if all traffic flowed

through a single bottleneck link. Consider that PlanetLab

has over 575 distinct physical locations, and may wish to

limit the total traffic generated by a particular slice to 100

Mbps. Without DRL, administrators must either limit the

slice to 100 Mbps at each location, or limit each site to

a fixed portion (i.e., 100/575 ≈ 0.173 Mbps). While

the first case allows any site to use the full limit, in the

worst case the aggregate usage could reach 57.5 Gbps.

While the second case ensures the aggregate won’t ex-

ceed 100 Mbps, it can artificially constrain the capacity

at individual sites if demand is not uniform. In contrast,

DRL combines the aggregate limiting with the ability of

individual sites to consume the entire limit.

Distributed rate limiting protocols treat traffic in a dis-

tributed system as if all packets logically pass through a

single traffic policer. Individual flows compete dynam-

ically for bandwidth not only with flows traversing the

same limiter, but with flows traversing other limiters as

well. Maintaining fairness between flows inside a traffic

aggregate depends critically on accurate and timely ap-

portioning of the global limit across limiters. The key

technical challenge to providing this abstraction is mea-

suring the demand of the aggregate at each limiter, and

apportioning capacity in proportion to that demand.

Our implementation employs the flow proportional

share (FPS) allocator due to Raghavan et al. [20]. Every

epoch (typically 50–500 ms) each limiter i uses FPS to

decide how much of the global rate limit, Lglobal, it may

use locally (Li). To do so, each limiter calculates a single

number1 representing bandwidth demand, Di. To calcu-

late the local limit, each limiter computes its proportion

of the aggregate demand across all n limiters each epoch:

Li ∝ (Di/
∑

1...n

Dj) ∗ Lglobal

An effective DRL deployment ensures accurate

(
∑

Li = Lglobal) and responsive (Li ∝ Di

Dtotal

) global

rate limits. Given the fundamental dependence of DRL

on instantaneous aggregate demand, for the purposes of

this paper one can reduce the problem to robustly dis-

tributing this aggregate demand information.

3 Challenges

Deploying DRL as a PlanetLab management facility is

analogous to one of the authors’ original uses cases of

deploying DRL at a CDN and, therefore, presents sim-

ilar real-world challenges. We find, however, that the

initial design fails to adequately address several issues

in practice. In particular, the original design relied on a

scalable gossip-based protocol to take snapshots of ag-

gregate bandwidth usage in the system. However, that

protocol, as we discuss in Section 6.1, is highly sensi-

tive to network cuts. Moreover, while DRL can theoret-

ically operate in multiple network partitions simultane-

ously, the authors’ implementation employs a simplistic

mechanism for detecting that condition. Moreover, that

mechanism also fails in the presence of isolated link cuts

(incomplete partitions). We articulate key practical chal-

lenges that a robust implementation must address below.

3.1 Failures and partitions

One of the first issues that arises in any distributed sys-

tem is the potential for nodes to fail or become parti-

1While FPS calculates demand in a more sophisticated manner, one

may think about Di as the number of active flows.

3

1/3 Lglobal

2/3 Lglobal

Lb Lc

La

Lb Lc

La

2/3 Lglobal

2/3 Lglobal

3/3 Lglobal

link failurepartition VS

Figure 1: DRL adjusts the global rate limit in each par-

titions based on its size. A partition of limiter a results

in both b and c removing a third of the global rate limit

they use (left). In contrast, a partial communication fail-

ure can result in some set of limiters, in this case limiter

c, participating in both “partitions” (right).

tioned from one another. In an asynchronous system—

i.e., any real-world deployment—it is impossible to tell

the difference between a node failure and a network par-

tition; hence, distributed applications must account for

such events in order to proceed safely.

There are two basic strategies for dealing with par-

titions. The classical approach taken in quorum-based

systems [17] is to continue operation in only one (major-

ity) partition—thereby ensuring a consistent view of any

system state. An alternative exists, however, for those

highly available systems that are capable of operating in

multiple groups simultaneously: Nodes can be explicitly

separated into disjoint groups on either side of the parti-

tion(s) which operate independently. These applications

are known as partition aware [3].

Distributed rate limiting is an example of this latter

class of applications. In particular, multiple nodes may

be partitioned away from each other, but still be con-

nected among themselves. DRL can continue to allocate

rate dynamically among connected components while

ensuring that total usage across all partitions remains

≤ Lglobal. To support this strategy, each limiter needs

to track current group membership, and for all limiters

in a group (partition) vi, proportionally adjust its notion

of the global limit by
|vi|
n

. This policy ensures that the

global aggregate remains bounded correctly whether lim-

iters truly fail or are simply partitioned away.

Consider, for example, the case of a network partition

in a set of three limiters, as depicted in the left half of

Figure 1. Initially, all three limiters will allocate rate ac-

cording to their relative demands. After the partition oc-

curs, neither side of the partition can know the total de-

mand of the other. If, however, DRL nodes are aware of

the size of their current group (on either side of the parti-

tion), they can leverage knowledge of the total number of

limiters in the system (as opposed to the current group)

to detect when its estimation of aggregate demand may

be incomplete and apportion the limit appropriately.

0 50 100 150 200
Node rank

0

50

100

150

200

Un
iq

ue
 e

ve
nt

 c
ou

nt

> 1 Minute > 2 Minutes > 5 Minutes > 20 Minutes

Figure 2: 182 PlanetLab hosts sorted by number of cuts

over a six-day period. Each line plots the number of dis-

tinct link cuts longer than the specified duration.

3.2 Incomplete connectivity

Regardless of whether a partition-aware distributed sys-

tem continues to operate in one group or many, the pre-

sumption is that connectivity is complete within a group

and entirely absent between them. If this is not the

case—if members of the same group cannot communi-

cate with each other—even partition-aware designs may

fail. In DRL, if link cuts do not completely partition the

network, the simple strategy of maintaining local views

of group membership can result in exceeding the global

limit. The right side of Figure 1 illustrates this case. Here

limiters a and b both believe they are in separate parti-

tions with c. If, for example, c has no demand, a and b

can both acquire 2/3rds of the global limit.

Clearly, each node must belong to exactly one group,

and existing consensus-based group membership proto-

cols effectively enforce this invariant. Unfortunately,

these protocols do not provide any facilities to handle

incomplete connectivity within a group. Current systems

take one of two approaches: most protocols do not re-

quire full connectivity to successfully form a group, and

rely upon the application itself to detect communication

failures and request a new view which excludes the (par-

tially) unreachable node. Alternatively, a conservative

group membership scheme could require full connectiv-

ity before even forming a group. In either case, any link

cut can lead to the formation of a new (set of) group(s).

This conservative approach would be practical if par-

tial connectivity resulting from link cuts were a rare oc-

currence. Unfortunately, such cuts occur far more fre-

quently in the wide area than true partitions or persistent

node failures [2, 26]. We quantify this well-known [23]

phenomenon in PlanetLab in Figure 2 by considering the

connectivity between the 182 PlanetLab nodes we use in

Section 7. We present the frequency of link cuts during

a six-day period in September of 2010. Here, each node

sends a small UDP ping to every other node every 15 sec-

onds and then tracks the set of nodes from which it does

4

not hear pings. Nodes record when a peer is silent for

one, two, five, and 20 minutes. The figure orders the in-

dividual nodes by the total number of links to other nodes

that failed at least once during the trace (the maximum

being 181). We plot four (independently ordered) lines,

each considering a different minimum cut duration.

While there is a diversity of reliability, ranging from a

few nodes that rarely experience cuts to one node that

was cut off from every other node at some point, no

nodes are ever completely partitioned in this experiment.

Almost all nodes, however, experience at least one short

(≥ 1 minute) or moderate (≥ 2 minute) connectivity fail-

ure to a majority of the nodes. Moreover, while not

shown here, nodes occasionally exhibit asymmetric con-

nectivity, where a can send messages to b, but the reverse

was not true.

Thus, if each change in connectivity requires new

groups to be formed, the system never stabilizes. A ro-

bust wide-area system design must have the ability to

reach consensus on group membership in the presence

of partial connectivity, and, critically, facilitate the con-

tinued operation of a group where all nodes within a sin-

gle group may not be capable of directly communicating

with one another.

4 Circuit breaker

We now present the circuit breaker abstraction, which ex-

plicitly addresses the challenges from the previous sec-

tion. Namely, it provides a consistent view of group

membership (i.e., all members of a group believe they

are members, and no non-member nodes do) through a

group membership service while simultaneously ensur-

ing that any two members of a group are able to commu-

nicate with one another over a messaging overlay, even

in the face of asymmetric or non-transitive network cuts.

Partition-aware applications like DRL can employ a cir-

cuit breaker to operate independently in multiple, simul-

taneous groups with incomplete connectivity.

We realize the circuit breaker abstraction by combin-

ing two existing techniques: view-based group member-

ship and overlay-based routing. The defining characteris-

tic of our design is the separation of concerns—yet shar-

ing of fate—between the mechanisms responsible for

communication within a group and the circuit breaker it-

self. Communication between members of a group can

employ any protocol of the application’s choosing. In

particular, it need not employ the circuit breaker in the

common case. Maintaining group membership informa-

tion, however, is always performed by the circuit breaker.

In our design, the circuit breaker is implemented on a

small set of well-positioned membership servers. Each

node in the system associates with exactly one member-

ship server, and the servers form a full mesh between

each other. Hence, regardless of whether they can con-

tact each other directly, any two members of a group

are indirectly connected through an overlay path of at

most three hops consisting of the links to their respec-

tive membership servers and possibly a link between

the membership servers (if they do not share the same

server). Nodes leverage this messaging overlay provided

by the circuit breaker when they cannot communicate di-

rectly.

4.1 Membership views

The circuit breaker’s group membership service runs an

agreement (i.e., distributed consensus) protocol across a

distributed set of servers to construct one or more views

of the current group membership containing the currently

active group members. There may be multiple, simulta-

neous views in the case of network partitions. Each par-

ticipant associates exclusively with one server (though

they may fail over to other servers) and receives group

membership updates from that server only. Participants

inform their server of potential changes in group mem-

bership with explicit join/leave requests. The member-

ship service guarantees that views have unique, mono-

tonically increasing identifiers within a partition.

The group membership service delivers a succession

of views to all of the members in the system. There are,

however, instances in which the service may not be able

to agree on the next view or not support the existence

of simultaneous views. The membership service will in-

form the impacted group members if either situation oc-

curs, allowing them to react in an appropriate manner.

For example, DRL limiters so notified enter a “panic”

mode in which they safely enforce static local limits of

1/n, as if they were running in isolation.

The particular choice of agreement protocol employed

by the circuit breaker membership service directly influ-

ences whether multiple views can exist simultaneously,

how quickly views are established, and the ability to

reach consensus during cuts to connectivity between the

servers providing the membership view service. Our

current implementation supports two existing, scalable

agreement protocols, Moshe [13] and Zookeeper [12].

We adapt both to serve our needs, but their underlying

designs (Section 5) provide contrasting performance and

semantic guarantees.

4.2 Communication within views

All nodes receiving the same view—i.e., currently in the

same group—expect to be able to reach each other di-

rectly. We rely on the application to report when direct-

communication conditions deteriorate to the point of fail-

ure. Upon detecting such a failure in direct communi-

5

direct communication
failure

nodes

membership
servers

N
2

N
1

N
3

N
4

S
a

S
b

re-route through
membership service

N
2

N
1

N
3

N
4

S
a

S
b

x

Figure 3: Our circuit breaker design incorporates logi-

cally distinct membership servers (Sa and Sb) connected

to application nodes. Nodes in the same group normally

communicate directly. When cuts occur, they leverage

the connectivity between membership servers.

direct
succeeds

direct
comm. in

view i

overlay
comm. in

view i

direct fails

direct
heals

overlay fails
circuit breaker trips

new view i = i+1

overlay
succeeds

Figure 4: The sequence of events within a circuit breaker.

cation, group members communicate indirectly instead

through the circuit breaker messaging overlay. In this

section, we describe a circuit breaker’s behavior during

several common failure scenarios.

Figure 3 illustrates the distinct logical networks that

connect nodes to one another and to the membership ser-

vice. Here a link between two nodes has failed and the

nodes use the messaging overlay to maintain connectiv-

ity. Critically, a circuit breaker’s messaging overlay en-

sures that despite the separation of group communication

and view maintenance, they share connectivity fate. The

membership service depends on the messaging overlay to

monitor the status of clients and other servers. Thus the

messaging overlay will always succeed when the view is

valid and fail when a new view must be delivered. Hence,

if a node is unable to communicate through the circuit

breaker’s messaging overlay with any node in its current

group, it is guaranteed to receive a new view in which

it can communicate with all other members (although it

is likely the previously troublesome node will no longer

belong to the group in the new view). We say that the cir-

cuit breaker has tripped, and resets by presenting a new

view to each node in the old group. Figure 4 depicts these

events and summarizes the circuit breaker’s reactions.

4.3 Failure scenarios

We illustrate how a circuit breaker reacts to a range of

possible failure conditions through a canonical three-

node graph and a representative set of cuts that demon-

S
b

S
c

S
a

c
a
s
e
 2

case 1

case 3

c
a
s
e
 4

N1 N2

N5

N6

N4

N3

Figure 5: An example topology with three membership

servers, Si, each with two clients Nj . We use this topol-

ogy to study four distinct failure cases.

strate the various classes of (dis)connectivity. Figure 5

illustrates a system that has six nodes and three member-

ship servers, each responsible for two nodes.

The first case we consider fully partitions a server, Sa,

and its nodes, N1 and N2, from the other servers and

nodes. Case 2 presents network cuts between any two

nodes (though shown here only between nodes attached

to different servers). Case 3 partitions the membership

servers into P1 = {Sa} and P2 = {Sb, Sc}, while Case

4 introduces a cut in the mesh connectivity of the mem-

bership servers. In the PlanetLab environment, Case 2 is

the most prevalent/important type of disconnectivity.

Each of these cases presents a challenge that must

be handled appropriately by the application and circuit

breaker. In Case 2 the intra-group connectivity cut will

cause the application to exploit the circuit breaker’s mes-

saging overlay while preserving the group membership.

Cases 1 and 3, on the other hand, trip the circuit breaker,

resulting in a partitioning of the group. Case 4 may or

may not trip the circuit breaker, depending on the seman-

tics of the membership service employed by the circuit

breaker implementation, as discussed in the next section.

Note that we expect most deployments will co-locate

circuit breaker membership servers with application

nodes. This implies that a full partition cannot occur be-

tween nodes without affecting the servers if each node

remains connected to its membership server. Nodes not

connected to a membership server are removed from the

current view (and, in DRL, default to 1/n limiting).

While important for providing connectivity during

failures, re-routing messages via the overlay isn’t ideal.

Doing so increases the latency of communication and

puts an additional load on the membership servers.

Hence, ideally the application should be able to to cope

with transient packet loss itself. TCP is an obvious op-

tion, but may not be well suited for applications that re-

quire bounded delay. In such instances, alternate mech-

anisms must be employed to detect paths with sustained,

heavy packet loss and ameliorate the impact of occa-

6

sional packet loss on the remaining links. We describe

the our DRL implementation’s mechanism in Section 6.

5 Membership service implementation

Our circuit breaker implementation can leverage ei-

ther of two underlying agreement protocols, Moshe or

Zookeeper. Moshe is a partitionable group member-

ship service protocol, proposed by Keidar et al. [13],

that has been optimized for the wide area. We imple-

mented Moshe in 1,100 lines of Python. Our implemen-

tation combines the multiple, simultaneous views of the

original Moshe protocol with an integrated messaging

overlay. In contrast, Yahoo! designed Zookeeper [12]

for use within the data center, and it presents its clients

with a shared “file-system” abstraction for implement-

ing a range of coordination primitives, including leader

election, status propagation, and group membership. We

employ an unmodified version of the publicly available

Zookeeper distribution maintained by Yahoo!.

While both systems provide group membership, they

use different mechanisms to reach agreement on the

next view. Thus, they behave quite differently in the

event of network partitions and cuts in connectivity be-

tween servers and between clients. Moshe provides par-

titionable group membership, allowing servers to be par-

titioned from one another while continuing to deliver

views to their connected clients. This feature allows par-

tition aware systems to continue to operate in each par-

tition as described in Section 3.1. Conversely, quorum-

based designs, such as Zookeeper, maintain a single ac-

tive view, removing nodes from the view when their

membership server is not in the quorum.

5.1 Moshe

View maintenance. In our implementation, Moshe

servers monitor the liveness of their attached clients.

When a server generates a failure (or client join) event, it

propagates it to all other servers and starts a view change.

The servers integrate these events into an NSView,

which is the set of group members that are not currently

suspect. A Moshe server uses the NSView as its pro-

posal when executing its membership protocol, whose

fast path can converge in a single communication round.

Convergence requires all Moshe servers to be fully con-

nected to one another during the agreement process.

When a membership event arrives, each Moshe server

issues a startChange event to its clients, indicating

that the system is starting agreement. Moshe is designed

to avoid delivering stale views and will thus wait until

all servers agree on the set of known failures. Upon re-

ceipt of this message, applications must proceed conser-

vatively until a new view is established.

Messaging overlay. Our implementation of Moshe

uses a separate messaging layer to relay membership

events, NSViews, and other control messages between

clients and Moshe servers. Clients see an extended

Moshe interface that exports this layer as a simple block-

ing messaging API. This API allows client applications

to send and receive datagrams between each other. When

a client sends a datagram, Moshe relays the message

through the client’s membership server.

At the servers, the messaging layer implements a sim-

plified form of the link-state routing protocol used in the

Resilient Overlay Network (RON) [2]. In our case, the

system only monitors link liveness and supports paths

with up to two intermediate servers. Even so, this design

allows Moshe servers to reach agreement even if a signif-

icant fraction of the inter-server links are cut (but do not

create a partition). In contrast, the original Moshe design

fails to reach agreement if any link between servers fails.

5.2 Zookeeper

View maintenance. Group membership is easily lay-

ered on top of Zookeeper’s “file-system” abstraction,

which maintains a set of shared objects, called znodes,

in a hierarchical namespace. Zookeeper serializes and

applies client updates to znodes, returning the same se-

quence of changes to these shared objects to each con-

nected client. For membership, clients add (or remove)

themselves to the current view by creating (or deleting)

a znode in the hierarchical namespace. This directory of

znodes represents the current view of system member-

ship. Clients may “watch” a directory of znodes, receiv-

ing alerts when any child znodes change.

To detect changes in membership, clients lever-

age ephemeral znodes, which are objects removed by

Zookeeper when the client that created it has failed.

Thus Zookeeper automatically removes a group member

from the view when it fails to remain connected to its

Zookeeper server. When re-connecting, clients re-insert

their znode into the hierarchy to re-join the view.

To understand the semantics Zookeeper provides as

a group membership service, it is useful to understand

how it applies client updates. Zookeeper runs a leader

election protocol to ensure that a quorum of servers has

an elected leader. A client’s server relays writes to the

leader and the leader propagates those updates to all

replicas (servers). It employs a totally ordered broadcast

protocol, Zab [21], which implements a simplified form

of Paxos. Note that up to f Zookeeper servers may fail

(assuming 2f+1 servers) and recover statefully.

This design has important implications for the perfor-

mance of client systems during partitions and cuts. First,

it is optimized for read-dominated workloads, where

replicas can easily serve data without running the con-

7

sensus protocol to update state. Second, to create a view

the leader must be able to update (reach) a quorum of

servers. If a server cannot reach the leader or find a new

quorum to elect a new leader, then it assumes that it is not

in the primary partition. In this case, the server will tell

its clients that it is no longer able to return the latest view.

Thus, cuts between servers not only force a new view to

be delivered, but my also force clients to be without a

view for the duration of the failure.

Messaging overlay. By design, the znode interface al-

lows clients to coordinate with one another through the

membership service. We built a generic message pass-

ing abstraction using znodes to emulate per-client mail-

boxes. In this case, there is an additional, but persis-

tent znode for every group member that represents its

inbound mailbox. Clients send messages by writing a

new ephemeral znode with the message contents under

the destination’s mailbox znode. By using a “sequence”

znode for the mailbox, the system assigns new message

znodes monotonically increasing sequence numbers, en-

suring ordered message delivery.

Having independent znodes per message avoids the

overhead of Zookeeper’s read-modify-write procedure

for updating existing znodes. However, Zookeeper must

still perform consensus for each message (providing the

global message sequencing). While expensive, this de-

sign obviously meets our messaging requirement: a fail-

ure to deliver a message implies a disconnection that will

force Zookeeper to deliver a new view.

6 DRL implementation

We used circuit breakers to implement a distributed rate

limiting service for PlanetLab. Here, we describe the bar-

riers to an effective wide-area deployment, and how our

circuit-breaker-based architecture addresses them. We

also present a hardened gossip protocol that functions

well in the wide area, and optimizations to improve the

performance of gossip when used in conjunction with

view-based membership services like circuit breakers.

6.1 Communication requirements

As described previously, the key requirement for efficient

operation in DRL is to maintain an accurate demand ag-

gregate as the network paths between limiters experi-

ence packet loss or connectivity cuts. DRL avoids single

points of failure and performance bottlenecks through a

peer-to-peer design, wherein each limiter maintains an

approximation of the aggregate by periodically commu-

nicating with other limiters about their local demand.

Moreover, DRL provides proportional partition toler-

ance, where each limiter only computes the aggregate

demand on its side of a partition, and each connected

component apportions the fraction of the total limit in

proportion to its membership as described in Section 3.1.

Within each connected component, the original DRL

implementation employs a gossip protocol based upon

the push-sum protocol proposed by Kempe et al. [14].

Like other gossip protocols, it scales well, sending a to-

tal of O(n log n) messages per communication round (a

limiter epoch in our case), where n is the number of com-

municating limiters. The protocol works by having each

node send a fraction of its current estimate of the aggre-

gate bandwidth demand to its neighbors. To do so, nodes

maintain two values, participant’s portion p of the de-

mand aggregate, and a protocol weight w. The protocol

begins by setting p to the locally observed demand and

w to one. During a protocol round, each limiter chooses

b peers uniformly at random, where b is the branching

factor. It then divides its portion and weight by (b + 1)
and sends equal amounts to each of the selected peers,

keeping the additional share for itself.

At any time, a node estimates the demand aggregate by

computing (p

w
· n). This estimate converges to the true

demand aggregate in O(log n) messaging rounds. This

also has the nice property that, when gossip starts, the

initial reported aggregate at each limiter will be (Di

1
·n).

Thus initial local allocations will be at most 1/n of the

total limit. While Kempe’s original protocol calculates

the aggregate of a set of fixed values across the system,

it also continues to converge as values change over time.

In theory, gossip protocols can function in partially

connected environments. DRL’s Kempe-inspired gossip

protocol, however, depends upon the conservation of the

total amount of weight in the system, which is equal to

the number of limiters. Any gossip messages that do

not successfully reach their destination take with them

a fraction of the system’s weight. If the local values (in

our case local demand) do not change, the algorithm will

continue to return the correct aggregate. However, if lo-

cal demand changes and weight is not conserved, the re-

ported aggregate quickly diverges.

6.2 Employing circuit breakers

Here, we describe how we leverage circuit breakers to

address DRL’s communication requirements. At a high

level, limiters use view information provided by a circuit

breaker to set the current aggregate limit in proportion to

the fraction of the initial limiter set active in the current

view as discussed in Section 3.1, and adjust parameters

of the gossip protocol to make effective use of the exist-

ing communication links with each view. Additionally,

we extend the gossip protocol to manage packet loss and

leverage the circuit breaker’s messaging overlay to deal

with network cuts. While TCP could be employed to ad-

8

dress packet loss, we eschew this approach for two rea-

sons. First, we wish to avoid the overhead of connection

set up and tear down at fine-grain time intervals or main-

taining hundreds of open connections. Second, retrans-

mission delays can negatively impact convergence2.

6.2.1 A loss-resilient gossip protocol

Every epoch, DRL communicates its local demand to a

set of peer limiters and recalculates its estimate of the

aggregate demand based upon updates it receives. To

generate this update, each limiter gossips its updated lo-

cal demand values to a random set of peers in the current

view as described in Section 6.1. To compensate for tran-

sient packet loss, the gossip protocol employs a cumula-

tive acknowledgment mechanism that ensures that peers

eventually receive all outstanding portion and weight val-

ues. Rather than “firing and forgetting” every message,

each limiter records the amount of outstanding portion

and weight (the gossip “values”) for each peer. Peers

explicitly acknowledge these values, allowing senders to

“free” it from their bookkeeping.

To do so, senders maintain separate sequence num-

ber spaces for each peer. For each destination, senders

transmit the current round’s gossip values plus the cur-

rent unacknowledged weight from previous rounds. The

messages also carry a lower-bound sequence number and

a current sequence number. The lower-bound sequence

number represents the last acknowledgment from this

peer, and the current sequence number increases mono-

tonically. The receiver uses the two sequence numbers

in the message to determine how much, if any, of the

gossip values contained in a message should be incor-

porated locally. Thus, if at any point in the protocol a

message or acknowledgment is dropped or duplicated,

neither weight nor portion is permanently lost. As a re-

sult, the weight conservation property is preserved and

the protocol continues to operate correctly.

There are a few important observations to make about

this protocol. First, gossip values may still be lost for

some period of time, and the aggregate may diverge.

Thus this protocol works well for short periods of loss,

but not for longer-term link failures. In brief, the pro-

tocol provides the scalability of gossip-based commu-

nication, but requires an accurate view of inter-limiter

connectivity—it cannot function across cuts.

6.2.2 Leveraging the messaging overlay

DRL employs a two-part solution to handle link cuts.

First, each limiter passively monitors inter-limiter links

2Because communication is intermittent, retransmission depends

upon a timeout (RTO), not the fast retransmission mechanism (recep-

tion of duplicate acknowledgments).

for persistent loss and adds them to a local “black list.”

Essentially an application-layer link failure detector, this

monitoring mechanism piggy-backs upon existing gos-

sip messages, avoiding the O(n2) messaging inherent

in a straightforward all-pairs ping approach. A limiter

suspects a link/peer is down/unreachable after it sends r
messages without receiving an acknowledgment (we call

this a loss event). This black listing is critical for gos-

sip, since it prevents the protocol from losing weight by

communicating on lossy links.

When a limiter blacklists a link to a peer limiter, it

tries to reach the peer via the circuit breaker messaging

overlay. If it succeeds, the two limiters reconcile any out-

standing gossip protocol weight. Both limiters then con-

tinue as normal but exclude each other as potential gos-

sip partners. They also periodically attempt to reestablish

direct communication, and, if they succeed, remove the

link from the blacklist. Using the connectivity provided

by the circuit breaker as a backup allows DRL to avoid

the cost of re-starting gossip when inter-limiter links fail.

Circuit breaker trips are also discovered passively.

Limiters employ the messaging overlay only when the

gossip protocol adds a link to a limiter’s black list, and a

failure is declared only upon repeated packet drops along

a link in the overlay. (Recall that circuit breakers rely

on the application to detect connectivity failures, so do

not trip themselves.) As Figure 3 illustrates, member-

ship servers must be able to connect to the limiters to de-

liver view changes, and to each other to reach consensus.

Hence, any partition in the membership service topol-

ogy will trip the circuit breaker. For instance, a limiter

disconnection forces the circuit breaker to deliver a new

view without that limiter. Similarly, a disconnection be-

tween membership servers implies that they cannot reach

consensus. This may cause the circuit breaker to deliver

new views and/or some limiters to “panic” (set local lim-

its to 1/n ∗ Lglobal) as they realize they are not included

in a new view. Hence, our use of the circuit breaker’s

messaging overlay as a last resort ensures a consistent

view of connectivity.

To understand the benefits of this fate sharing, con-

sider an alternate design that leverages a dedicated rout-

ing overlay running on the limiters themselves. If this

overlay fails to find a path between two limiters whose

direct path has failed, the gossip protocol cannot resolve

lost weight and the aggregate will diverge. If this failure

were decoupled from the delivery of views, the global

rate limit may be over- (or under-) subscribed for an in-

determinate period of time. However, a failure to com-

municate through the circuit breaker’s messaging overlay

will trip the circuit breaker, causing all limiters to enter

a new view (or realize that a view cannot form). This

will reset communication to the new view, restoring the

ability of DRL to maintain the global limit.

9

6.3 Managing constant change

In general, changes in view membership are disruptive to

the limiting functionality of the DRL system. While, in

principle, view-change events only need to adjust Lglobal

to account for the size of the new view, practical con-

siderations significantly impact the performance of the

aggregation protocol. In particular, due to potential in-

consistencies in limiter states across view changes, it is

generally necessary to restart gossip in each new view.

In particular, due to the impossibility of determining

whether gossip packets were successfully received at a

now disconnected limiter—and, hence, the inability to

ensure weight conservation—the DRL restarts its gossip

protocol for each new view. Since the protocol converges

in O(log n) rounds, it takes approximately 5 seconds

to re-converge with 500 limiters, 500-ms epochs, and a

branching factor of two. Recall that the initial aggregate

computed is (n ·Di), however, which causes every local

limit to be at most 1/nth of the global limit. Limiters

with additional demand will drop packets, which will

likely trigger backoffs for many TCP flows that will sub-

sequently need to rediscover their fair share. We there-

fore seek to minimize view changes while ensuring the

aggregate computed within the view remains accurate.

Our implementation contains several optimizations

that attempt to improve performance with the current

view and lessen the impact of view changes that do oc-

cur. We also suggest an extension to determine when new

views may be advisable even if not strictly necessary.

Efficient gossip restart: Recall that restarting

gossip—which happens every time the view changes—

forces the reported aggregate to be (n · Di). Thus, until

gossip re-converges, it may report an aggregate value that

is significantly different from the aggregate in the previ-

ous view, even if demand has not changed. To reduce this

fluctuation we blend the last aggregate value of the previ-

ous view with the aggregate returned by the new gossip

instance for a number of gossip rounds equal to the num-

ber expected to reach convergence, log(n). We blend the

prior aggregate, Ai, with the new one, Ai+1 using an ex-

ponentially weighted moving average. EWMA smooths

the transition from Ai to Ai+1 over a few epochs.

Fast view propagation: While gossip converges in

approximately the same number of rounds everywhere,

each limiter may become aware of the new view at dif-

ferent times. To facilitate a rapid changeover to a new

view, we allow limiters to learn of new views not only

from their circuit breaker membership server, but also

from their peers. Specifically, when a limiter receives

a gossip message with a higher instance number than is

current (indicating a gossip restart due to a view change),

the limiter will stop participating in its current gossip in-

stance and begin gossiping only with the source of this

message (who must also be in the new view) and any

others it receives with the new instance. Eventually, lim-

iters learn of the new view from the circuit breaker and

update their neighbor set.

Choke point detection: Finally, though beyond the

scope of this paper, we observe that it may be desirable

to proactively create a new view based on connectivity.

For example, there may be instances where only a few

links exist between two otherwise well-connected com-

ponents. Consider the (albeit unlikely) event when the

only connectivity is through the circuit breaker messag-

ing overlay. In the event that the system is sufficiently

large, this lack of connectivity could severely degrade the

communication protocol’s ability to converge to an accu-

rate global demand. We conjecture that DRL could pas-

sively monitor inter-limiter connectivity (collecting link

failed events) and then use min flow/max cut algorithms

could be used to determine when such a “choke point”

exists. At this point, DRL could trip the circuit breaker

to create an artificial partition to improve performance.

7 Evaluation

We now evaluate the utility of circuit breakers and our

resulting architecture by considering how effectively our

DRL implementation manages changes in connectivity

between limiters. In particular, we quantify the price

DRL pays for its fully distributed design by comparing

its performance to a centralized design in the absence of

network partitions.

First, however, we compare the differing behavior of

alternative circuit breaker membership services in re-

sponse to the four canonical failure classes described in

Section 4.2 using a local area testbed. Continuing in

the local area, we then illustrate the robustness proper-

ties of our gossip aggregation protocol during packet loss

and link failures. Finally, we demonstrate the ability of

the system to maintain accurate limits by running DRL

across 182 world-wide PlanetLab nodes3. To separate

the effectiveness of our view-based group membership

and communication mechanism from the DRL algorithm

itself (which is due to Raghavan et al.), we measure the

accuracy of the demand aggregate computation indepen-

dently from DRL’s ability to police traffic.

7.1 Local-area validation

All local-area experiments run on six physical machines

connected via Gigabit Ethernet. They run the 2.6.22.19

Linux kernel included in the 4.2 MyPLC release. Four

machines have 3 GB of memory and 2.33-GHz Xeons,

while the other two have 1 GB of memory and 1.266-

GHz PIII processors. There is a limiter on each physical

324 in Asia, 48 in Europe, and 110 in the Americas.

10

0 10 20 30 40 50 60 70 800

200

400

600

800

1000
KB

/s
Without Blacklist

Aggregate
Limiter 1: 20 Flows
Limiter 2: 40 Flows

0 10 20 30 40 50 60 70 80
Time (sec)

0

200

400

600

800

1000

KB
/s

With Blacklist

Figure 6: The behavior of Moshe with and without black-

listing in Case 2 (network cut).

machine and three of them are co-located with member-

ship servers (on the faster CPUs). None of our experi-

ments are CPU limited. Both Zookeeper and Moshe op-

erate as independent servers in their own slices.

7.1.1 Comparing membership services

We consider the performance of Zookeeper- and Moshe-

based circuit breakers on each of the four failure modes

shown in Figure 5. All of our local experiments share the

same static traffic pattern: L2 services forty TCP flows

and L6 services twenty TCP flows with a shared, global

limit of 6 Mbps. All flow sources send as fast as possible

for the entirety of the experiment to an off-testbed sink.

Thus, without failures, we expect L2 to acquire 2/3rds of

the global limit, as DRL sets limits proportional to the

flow count if all flows have effectively infinite demand.

Figure 6 shows the results of running DRL with Moshe

with and without using the blacklist/overlay for a sin-

gle cut between two limiters (Case 2). The red vertical

dashed lines represent both the onset (at time 10) and

resolution (at time 55) of the cut event, in this case be-

tween L2 and L4. Without the use of a blacklist, gossip

diverges, causing both L2 and L6 to synchronously os-

cillate between believing they each have the entire limit

and believing they have none of it. By routing through

the circuit breaker messaging overlay to recover gossip

weight, DRL maintains accurate limits despite the cut.

The next experiment illustrates the benefits of parti-

tionable group membership when the limiters experience

a partition (Case 3). Here, solid green vertical lines in-

dicate the time(s) at which the membership services de-

livers a new view. Note the perturbation in rates as both

systems restart gossip after delivering new views. Here

Moshe delivers two views, {L1,L2} and {L3,L4,L5,L6},

which allow L2 to receive a 1/3rd of the global limit

(2 Mbps) and L6 to acquires the remaining 2/3rd’s (4

Mbps). In contrast, Zookeeper forces L2 (and L1) to

panic, since they are in the minority partition, leaving

1/6th of the global limit unused. Finally, Zookeeper re-

0 20 40 60 800

200

400

600

800

1000

KB
/s

Moshe
Aggregate
Limiter 1: 20 Flows
Limiter 2: 40 Flows

0 20 40 60 80
Time (sec)

0

200

400

600

800

1000

KB
/s

Zookeeper

Figure 7: The behavior of Moshe and Zookeeper in Case

3, both with blacklisting (server partition).

0 1 2 3 4 5 6
Time (s)

0

101

102

103

%
 e

rr
or

0%
5%
10%
25%

(a) Kempe (no ACKs).

0 1 2 3 4 5 6
Time (s)

0

101

102

103

%
 e

rr
or

0%
5%
10%
25%

(b) Hardened gossip (ACKs).

Figure 8: The effect of packet loss before and after the

acknowledgment protocol.

acts more slowly to the healed partition because it expo-

nentially backs off when probing server liveness.

Table 1 summarizes the outcome of all combinations

of the four failure scenarios and group membership ser-

vices. In each row we have shaded the systems with de-

sirable results. Both Zookeeper and Moshe maintain the

original view during inter-limiter network cuts, the most

common scenario (Case 2). In scenarios 1 and 3, Moshe

avoids the static panic modes of Zookeeper, which force

limiters in the minority partition to panic. Finally, be-

cause Moshe can route around single inter-server cuts,

Moshe will continue to deliver the same view in Case 4.

7.1.2 Robust gossip

Satisfied that our implementation properly handles clean

cuts in network connectivity, we now explore the behav-

ior of our gossip protocol under adverse environments

with varying degrees of packet loss. These experiments

study the ability of the communication protocol to report

accurate aggregates. Instead of traffic demand, limiters

in this experiment advertise a fixed value that changes at

pre-defined times, allowing us to know the aggregate.

Figure 8(a) shows the effect of packet loss on DRL’s

original gossip protocol by reporting the average relative

error from the true aggregate across all six limiters. Ini-

tially the system has correctly converged; at 2 seconds all

11

Case Optimal Rates Optimal Behavior Zookeeper Moshe

Case 1: Full partition L2 ∝
1

3
, L6 ∝

2

3
2 View Minority Panic 2 View

Case 2: Limiter cut L2 ∝
2

3
, L6 ∝

1

3
1 View 1 View 1 View

Case 3: Server partition L2 ∝
2

3
, L6 ∝

1

3
2 View Minority Panic 2 View

Case 4: Server cut @ Sa and Sc L2 ∝
2

3
, L6 ∝

1

3
1 View Minority Panic 1 View

Table 1: How the membership services react to the five failure scenarios. 1 View: DRL active in one view. 2 View:

DRL in 2 views {L1, L2} and {L3, L4, L5, L6}. Minority Panic: Panic in {L1, L2}.

0 5 10 15 20
Time (s)

0

50

100

150

200

%
 e

rr
or

W/ blacklist
W/O blacklist

Figure 9: A link is cut at five seconds, which affects ag-

gregate accuracy when limiters report new values (ev-

ery 9 seconds). Without reconciling through the overlay

(blacklisting), the aggregate quickly diverges.

limiters report a new value. With any packet loss what-

soever, the reported aggregate experiences over 1000%

error. In contrast, Figure 8(b) illustrates the same experi-

ment employing our acknowledgment scheme presented

in Section 6.2.1. Even when there is 25% packet loss, the

system converges to the true aggregate.

The next experiment illustrates how blacklisting gos-

sip links and re-routing through the circuit breaker mes-

saging overlay can assuage persistent connectivity is-

sues. Here limiters report new values every 9 seconds, re-

quiring gossip to re-converge to the new aggregate. Fig-

ure 9 shows the average relative error in the system dur-

ing the experiment. After a warm up period, we cut one

link at 5 seconds. Since the limiters do not change their

advertised value, the aggregate remains stable regardless.

However, when the limiters change their values at 9 sec-

onds they converge to the wrong value if they attempt

to gossip across the cut. By blacklisting the cut link,

the system reconverges by resolving outstanding weight

through the circuit breaker messaging overlay.

7.2 Wide-area experiments

We now explore the behavior of our DRL implementa-

tion in the absence of catastrophic node failures or net-

work partitions—i.e., a case in which a (simpler, likely

higher-performance) centralized alternative might suf-

fice. If a fully decentralized implementation is simi-

larly performant, its increased robustness and availability

properties make it attractive for world-wide deployment.

0 100 200 300 400 500
Time (sec)

0

500

1000

1500

2000

2500

3000

Ag
gr

eg
at

e
se

en
 a

t e
ac

h
lim

ite
r

Central

0 100 200 300 400 500
Time, 1 sec interval

0

100

200

300

400

500

600

Nu
m

be
r o

f d
ow

n
lin

ks

Central
Gossip

0 100 200 300 400 500
Time (sec)

0

500

1000

1500

2000

2500

3000

Ag
gr

eg
at

e
se

en
 a

t e
ac

h
lim

ite
r

Gossip

Figure 10: The performance of the gossip and central-

ized aggregation protocol leveraging Moshe-based cir-

cuit breakers across 182 PlanetLab nodes. The middle

graph plots the number of failed links encountered by

each protocol.

DRL (with Moshe) has been deployed as a trusted

component on PlanetLab nodes since late January 2010.

These experiments use 182 PlanetLab nodes, and deploy

three membership servers, each co-located with a partic-

ular node. We place a membership server on each conti-

nent where PlanetLab nodes exist: North America, Asia,

and Europe. We set the gossip branching factor to ⌈log2

182⌉. An ordinary slice on each limited node runs a sim-

ple traffic generator to which we can connect to create

bandwidth demand.

7.2.1 A centralized alternative

As an optimistic comparison point, we also compute ag-

gregates using a centralized aggregator, similar to tree-

based schemes in large-scale system monitoring [18, 25].

We implement a scheme in which individual nodes relay

their local demands to a single, collector node in each

view that computes the sum. While this approach con-

verges in O(1) rounds and has a lower per-round cost

12

0 100 200 300 4000

2000

4000

6000

8000

10000
KB

/s
Aggregate Limit

0 100 200 300 4000

50

100

150

200

250

w
ei

gh
t

Aggregate Weight

0 100 200 300 400
Time (sec)

0

50

100

150

200

250

w
ei

gh
t

Avg. Aggregate Weight

Figure 11: DRL enforcing a 30-Mbps global limit across

182 limiters worldwide.

(2n versus n log n) than gossip, it also exhibits a single

point of failure (or scalability bottleneck) in each view,

i.e., the collector.

Like gossip, the centralized aggregator must restart

on a new view. However, in this case the limiters use

the view to re-elect a new aggregator, delaying accu-

rate snapshots of global demand for approximately two

epochs. This communication protocol also blacklists

inter-limiter links and leverages the circuit breaker mes-

saging overlay. However, unlike our gossip protocol, it

will continuously send messages through the overlay un-

til the link heals or a new view arrives.

7.2.2 Detecting and healing cuts

Before demonstrating traffic rate limiting, we first vali-

date the behavior of our gossip aggregation protocol on

182 nodes in the wide area using a simple 6-minute ex-

periment. Like our initial local-area tests, there is no traf-

fic; instead, each limiter reports a fixed demand value at

each epoch, allowing us to compare reported aggregates

to ground truth. We benchmark the gossip aggregation

protocol against the centralized aggregation alternative

described in Section 7.2.1.

Initially, all limiters report the value 0. Every 90 sec-

onds, 38 additional limiters change their value to 10.

This results in the “stair-step” shape graph that both the

centralized aggregator (top) and gossip protocol (bottom)

produce in Figure 10. While centralized converges al-

most instantaneously, gossip exhibits a short period of

instability before it converges.

0 100 200 300 4000

2000

4000

6000

8000

10000

KB
/s

Aggregate Limit

0 100 200 300 4000

50

100

150

200

250

w
ei

gh
t

Aggregate Weight

0 100 200 300 400
Time (sec)

0

50

100

150

200

250

w
ei

gh
t

Avg. Aggregate Weight

Figure 12: Enforcing a 30-Mbps global limit across 182

limiters, but using a centralized aggregation protocol.

In fact the stable performance of both protocols be-

lies that fact that connectivity is not perfect. The mid-

dle graph plots the count of failed (directed) links ob-

served during the experiment. Since the centralized pro-

tocol uses order O(n) links compared to gossip’s O(n2),
it sees a lower level of failed links. Even though there

are large spikes of disconnectivity, routing through the

circuit breaker messaging overlay during those periods

ensures stable, accurate aggregates for both protocols.

During the gossip experiment a node was removed from

the view at 175 seconds, causing its link to all 181 other

limiters to be considered cut.

While space limitations prevent us from showing

graphs, we note that DRL is unable to leverage

Zookeeper-based circuit breakers on PlanetLab because

the messaging overlay becomes the bottleneck for com-

puting the aggregate. Moreover, Zookeeper’s quorum-

based group membership semantics are more restrictive

than Moshe’s, which enable DRL to be partition aware.

7.2.3 Limiting

Finally, to demonstrate the ability of DRL to effectively

limit traffic in the wide area, we install a global rate limit

of 30 Mbps for a traffic-generating slice installed on the

same 182 nodes. Here our traffic demand follows the

same “stair-step” pattern as before: An off-testbed packet

sink opens connections to 38 limiters every 90 seconds.

Figure 11 shows three graphs: the aggregate limit, the

true aggregate weight (via post processing), and the aver-

age aggregate weight observed by each limiter (error bars

13

show one standard deviation). Each value is averaged

over the last two seconds; c.f. Figure 10, which is instan-

taneous. Despite the variations in measured demand—

resulting in variation in average weight shown in the

bottom graph—the computed aggregate weight remains

quite stable, resulting in an accurate and responsive limit

as shown in the top graph.

Figure 12 shows the same experiment using central-

ized aggregation. While there are slight differences—

notably the computed aggregate weight is somewhat

more stable—the resulting limiting performance is not

markedly better. Here a tightly-coupled gossip-based

protocol can provide similar performance to a central-

ized design while providing the scaling and robustness

properties of decentralization.

8 Conclusion

This paper introduces the circuit breaker membership ab-

straction that ensures that the group members in a tightly-

coupled distributed system can communicate with one

another. Its design combines traditional view-based

membership techniques with a reliable messaging over-

lay. This approach enabled a tightly-coupled service,

DRL, to provide accurate global rate limits during the

myriad network cuts found in relatively hostile environ-

ments like PlanetLab and the Internet in general.

References

[1] AMAZON. Elastic compute cloud. http://aws.

amazon.com/ec2, 2009.

[2] ANDERSEN, D. G., BALAKRISHNAN, H., KAASHOEK,

M. F., AND MORRIS, R. Resilient overlay networks. In

SOSP (2001).

[3] BABAOGLU, O., DAVOLI, R., AND MONTRESOR, A.

Group communication in partitionable systems: Specifi-

cation and algorithms. IEEE Trans. Softw. Eng. 27 (April

2001), 308–336.

[4] BIRMAN, K. P. Replication and fault-tolerance in the

ISIS system. In Proceedings of SOSP (1985), pp. 79–86.

[5] BURROWS, M. The chubby lock service for loosely-

coupled distributed systems. In Proceedings of USENIX

OSDI (Nov. 2006).

[6] CAO, J., WANG, G., AND CHAN, K. C. C. A fault-

tolerant group communication protocol in large scale and

highly dynamic mobile next-generation networks. IEEE

Trans. Comput. 56, 1 (2007).

[7] DEMERS, A., GREENE, D., HAUSER, C., IRISH, W.,

LARSON, J., SHENKER, S., STURGIS, H., SWINEHART,

D., AND TERRY, D. Epidemic algorithms for replicated

database maintenance. In Proceedings of PODC (1987),

pp. 1–12.

[8] DILMAN, M., AND RAZ, D. Efficient reactive monitor-

ing. In Proceedings of IEEE INFOCOM (2001).

[9] DUNAGAN, J., HARVEY, N. J. A., JONES, M. B.,

KOSTIĆ, D., THEIMER, M., AND WOLMAN, A. FUSE:

lightweight guaranteed distributed failure notification. In

OSDI (2004).

[10] GOLDING, R. A. A weak-consistency architecture for

distributed information services. Computing Systems 5, 4

(1992), 379–405.

[11] HINCHCLIFFE, D. 2007: The year enterprises open thier

SOAs to the Internet? Enterprise Web 2.0 (Jan. 2007).

[12] HUNT, P., KONAR, M., JUNQUEIRA, F. P., AND REED,

B. Zookeeper: Wait-free coordination for internet-scale

systems. In USENIX ATC (2010).

[13] KEIDAR, I., SUSSMAN, J., MARZULLO, K., AND

DOLEV, D. Moshe: A group membership service for

wans. ACM Trans. Comput. Syst. 20, 3 (2002), 191–238.

[14] KEMPE, D., DOBRA, A., AND GEHRKE, J. Gossip-

based computation of aggregate information. In IEEE

FOCS (2003).

[15] KRONENBERG, N. P., LEVY, H. M., AND STRECKER,

W. D. Vaxclusters (extended abstract): a closely-coupled

distributed system. ACM Transactions on Computer Sys-

tems 4, 2 (1986).

[16] LAMPORT, L. The part-time parliament. ACM Transac-

tions on Computer Systems 16, 2 (1998), 133–169.

[17] LISKOV, B., GHEMAWAT, S., GRUBER, R., JOHNSON,

P., AND SHRIRA, L. Replication in the harp file system.

In SOSP (1991).

[18] MADDEN, S., FRANKLIN, M., HELLERSTEIN, J., AND

HONG, W. TAG: a tiny aggregation service for ad-hoc

sensor networks. In OSDI (2002).

[19] NATH, S., GIBBONS, P., SESHAN, S., AND ANDERSON,

Z. R. Synopsis diffusion for robust aggregation in sensor

networks. In Proceedings of the 2nd SenSys (November

2004).

[20] RAGHAVAN, B., VISHWANATH, K., RAMABHADRAN,

S., YOCUM, K., AND SNOEREN, A. C. Cloud control

with distributed rate limiting. In ACM SIGCOMM (Aug.

2007).

[21] REED, B., AND JUNQUEIRA, F. P. A simple totally or-

dered broadcast protocol. In Workshop on Large-Scale

Distributed Systems and Middleware (2008), pp. 1–6.

[22] SHAVIT, N., AND ZEMACH, A. Diffracting trees. ACM

Transactions on Computer Systems 14, 4 (1996).

[23] STRIBLING, J. All-pairs-pings for PlanetLab. http://

pdos.csail.mit.edu/∼strib/pl app/, 2005.

[24] WATTENHOFER, R., AND WIDMAYER, P. An inher-

ent bottleneck in distributed counting. In Proceedings of

PODC (1997).

[25] YALAGANDULA, P., AND DAHLIN, M. A scalable dis-

tributed information management system. In ACM SIG-

COMM (September 2004).

[26] ZHANG, M., ZHANG, C., PAI, V., PETERSON, L., AND

WANG, R. PlanetSeer: Internet path failure monitor-

ing and characterization in wide-area services. In OSDI

(2004).

14

