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ABSTRACT OF THE THESIS 

Predictive Coding in the Auditory Cortex 

 

by 

 

Srihita Rudraraju 
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University of California San Diego, 2019 

Professor Timothy Gentner, Chair 

Professor Gabriel Silva, Co-chair 

 

Characterization of response properties of neurons in higher-level sensory areas is not well 

defined. Here we show that firing rates of neurons in a secondary sensory forebrain area of 

songbirds can be modeled by different representations of birdsong. In this work, we modeled 

neurons in the caudo-medial nidopallium (NCM) of adult European starlings with three different 

representations of the natural birdsong called signal, prediction, and error. Prediction spectrogram 

was computed by training the data as a Gaussian distribution on a loss function given by the 
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negative log likelihood, and then estimating the means and variances of the signal. Using our 

Maximum Noise Entropy (MNE) model, responses were predicted by the logistic function, the 

parameters of which are obtained from the MNE model. Predictions of neural responses were 

computed by using both a full MNE model, and then by only considering the linear parameters of 

the model. The neural responses to natural stimuli obtained using prediction and error MNEs were 

close to the actual response in the NCM. The concept of stimulus representations obtained from 

predictive coding models may be useful for modeling neural responses in higher-order sensory 

areas whose functions have been poorly understood. 
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1. Introduction 

How does the brain comprehend the world? It is not a passive, receptive, but an active 

process of constructing reality, it is an interaction between the senses and the cortex that balances 

new information from the outside world with predictions from the inside of our brain [1]. 

A popular theory addressing this question is predictive coding (PC). PC states that the brain 

understands what is ‘out there’ by constantly predicting what is out there and improving those 

predictions. The perceiving brain is continuously predicting the incoming sensory input and tries 

to ‘fit’ the model. More technically, predictive coding proposes that the brain constructs a 

generative hierarchical model of the world. This model is capable of generating sensory input 

activity from the top-down and match it with that external stimuli would elicit from the bottom-up 

[2]. Human EEG and magnetoencephalographic (MEG) recordings showed responses to 

mismatched or omitted stimuli from a hierarchical auditory novelty paradigm. They concluded 

that detection of auditory novelty is organized in several stages: MMN responds to local auditory 

predictions, and P3b responds to more global and integrative violations of expectations. [3]  

Predictive coding (PC) aims to offer a unified theory of cortical function. The framework 

has drawn a considerable amount of attention, hailed by some as providing a ‘grand unified theory 

of the brain’. Initially, PC was conceptualized in the context of visual processing. However, with 

many studies capitalizing on the auditory system, it is quickly becoming perhaps the most well-

studied neural signature of surprise or error processing [2,4]. 

1.1 Songbird Auditory System 

Humans are experts at vocal learning, an ability shared by few other vertebrates. Songbirds 

represent an almost unique animal model: song learning has remarkable parallels to human speech 

https://www.utne.com/mind-and-body/human-perception-ze0z1501zhur
https://www.utne.com/mind-and-body/human-perception-ze0z1501zhur


2 
 

learning, which provides an opportunity for mechanistic investigation of vocal learning and its 

disorders. Song is processed by circuitry that is specialized for vocal learning and production, but 

that has strong similarities to mammalian brain pathways (Fig 1.2).  

 

Figure 1.1. Songbird auditory system. Forebrain auditory regions are shown in dark grey and primary motor pathway 

is shown in light grey. This figure shows major regions in songbird auditory system and their connectivity [6]. 

 

The auditory cortex, located in the lateral domains of the temporal lobe, is the location of 

primary auditory processing in the brain. The acquisition and learning of bird song involves a 

group of distinct brain areas that are aligned in two connecting pathways [25,26]: 

1) Anterior forebrain pathway (vocal learning): composed of area X (homolog to mammalian 

basal ganglia), lateral part of the magnocellular nucleus of anterior nidopallium (LMAN), 

and the dorso-lateral division of the medial thalamus (DLM). 

2) Posterior descending pathway (vocal production): composed to HVC, robust nucleus of the 

arcopallium (RA). 
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Figure 1.2. Primary pathways of songbird and mammal auditory systems. Songbird auditory system is shown on 

left and mammalian system is shown on the right. The gray areas are proposed to be homologous based on connectivity 

and topology. NCM does not have a known homologous region in the mammalian cortex [24]. 

 

Responses to songs in higher auditory regions reveal a variety of complex coding 

properties. Field L subregions L2 and L3 send inputs to NCM, which is posterior to L3. The 

encoding of sounds and the integrations processes are more complex in songbird. In field L, most 

neurons are activated only by complex sounds, and responded only to natural sounds. The field L 

has projections on HVC, which itself projects on the RA. 
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The response properties of NCM neurons are characterized by linear or non-linear models 

such as spectrotemporal receptive fields (STRFs). Characterization of the spectrotemporal 

properties of neurons in these regions have proven to be more difficult than in lower regions [5]. 

NCM is involved in the processing/ categorization of conspecific songs. Strong conspecific-

selective responses have been consistently demonstrated in neurons of NCM, CM and Field L. In 

European starlings, neurons in NCM habituate to a particular stimulus, and “remember” individual 

characteristics of songs to which a bird was exposed [6-8]. Enhanced immediate early gene 

expression and neurophysiological activity in response to songs in CM/ NCM suggest that these 

sites are critical for vocal learning, with analogies to speech-related regions of the human superior 

temporal gyrus [27]. 

1.2 Basics of predictive coding 

The sensory cortex has a hierarchical organization. At every level, neurons integrate 

information received through multiple connections from neurons at the lower level, but also 

receive inputs from the layer above. The cortex is reciprocally connected. The architecture of the 

cortex implements a top-down prediction algorithm that constantly predicts incoming sensory 

stimuli. These predictions are compared with novel incoming inputs. Each cortical area houses an 

internal model of the environment generated by repeated trials of past inputs.  

The difference between the predicted and actual activity at the layer elicits a prediction 

error. Only this difference is propagated to the layer above. This error is used to generate a new 

and improved estimate. The prediction error is used to improve the internal model. The process is 

repeated, at every level in the hierarchy until the most likely estimate is reached, and the stimulus 

is perceived. This results in an active system that continuously updates its internal models at 

multiple hierarchical levels. [2] 

https://en.wikipedia.org/wiki/Habituate
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Figure 1.3. Basic structure of predictive coding model. Hierarchical model, higher-level coding units attempt to 

predict responses of units in the next lower level via feedback connections, while lower-level error detectors signal 

the difference between the prediction and the actual input. 

 

1.3 Evidence of predictive coding in the animal auditory cortex 

According to the predictive coding hypothesis, neurons at higher processing stages 

generate predictions that bias processing at lower levels. The abstract information at higher levels 

informs and potentially drives neurons at lower levels by signaling a prior ‘best guess’ of their 

activity [9]. Findings from animal, human and computational neuroscience provide converging 

evidence for the fundamental influence of expectations on neural responses and specifically the 

notion of prediction error as a model of neural responsiveness.  

Most research on auditory prediction focusses on Stimulus Specific Adaptation (SSA). 

SSA refers to the selective attenuation of responses to repeated stimuli and can be seen as a single 

cell analog to MMN. Research showed that SSA, defined here as the difference in responses to the 

same sound presented with different probabilities, depended not just on local context but also on 
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a longer stimulus history, beyond the order of seconds at which habituation processes are thought 

to occur [10,11]. 

The same data was re-analyzed in an attempt to quantify the longer-term dependencies. 

Results showed representations involving less than 10 preceding stimuli (7.3 s) were almost never 

in the top 10%. The authors concluded that neurons in A1 signal prediction errors ‘generate 

predictions’ based on reduced representations that include long-term stimulus history. These 

results deviate from earlier accounts of SSA, which tend to focus on stimulus-driven explanations 

[12]. 

Ulanovsky in 2003 showed that in cats, A1 neurons in the primary auditory cortex 

responded more strongly to a rarely presented sound than to the same sound when it was common. 

This was shown for frequency deviants. Their paper showed frequency discrimination is better 

when processing deviant frequencies, as compared to frequencies that are close. They did not 

observe any differences in responses in the thalamus. So, they concluded that the origin for this 

process is above the thalamus. [11] 

Gill in 2008 explored surprise as a model for auditory receptive fields. Their paper 

compared three receptive field models based on natural Zebra finch song: 1) a traditional approach 

modeling neurons as responding to specific spectrotemporal receptive fields (STRF) showing 

intensity patterns; 2) a derivative approach, modeling changes in intensities; 3) a model describing 

neurons as responding to surprise, quantified as the inverse conditional probability of a range of 

frequencies given the preceding frequencies shown in Fig 1.4. The ‘surprise model’ substantially 

outperformed traditional models. [13] 
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The performance of these models also depended on the hierarchical level. In area MLD 

(homolog of inferior colliculus), models did not differ significantly. In field L (homolog of 

thalamorecipient neurons in A1), surprise was 20% better than traditional models on average. And 

in CLM (homolog of higher-order auditory cortex), the surprise model performed a striking 67% 

better on average. The ‘expectations’ computed in this research were dependent on very short 

preceding time windows (3-7 ms). The paper concluded that expectations are increasingly 

important at higher levels, but the effect is not a direct consequence of high -level ‘surprise’. The 

paper does not explain how the expectations were computed. However, it does successfully show 

the importance of expectations at the fundamental level of the neural code. 

 

Figure 1.4. Comparisons of predicted PSTHs to the actual PSTHs. Classical-STRF, surprise-STRF and derivative-

STRF of segments of zebra finch song calculated by reverse correlation between the PSTH and spectrogram segments. 

Highlighted red areas show where there is a surprise element within a syllable, captured by the surprise-STRF [13].  
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Human auditory studies on predictive coding use a variation of the MMN paradigm. MMN 

is measured using a method in which a sequence of stimuli (typically a repeated tone) establishes 

a regularity that is violated by a ‘deviant’ stimulus (oddball paradigm). PC interprets MMN as a 

mismatch signal between the input and a prospective prediction, it is not a separate evoked 

response. 

Evidence from EEG, MEG, ECoG shows that omissions can evoke responses that are time-

locked to omitted stimulus and appear to be generated in the auditory cortex and superior temporal 

gyrus. Omission responses seem to occur only after unexpected omissions, suggesting a predictive 

mechanism. However, research showed some remarkable variability. No omission responses were 

found using MEG, whereas using EEG they could find clearer responses although they were 

strikingly different from real auditory-evoked potentials (AEPs) [3,28-34].  

Omission responses are perhaps the signature finding of PC. By showing that evoked 

responses fundamentally reflect surprise, these responses are even observable in the absence of 

sensory input. However, this interpretation critically depends on how prediction error is defined. 

These studies present highly suggestive, converging evidence of anticipatory mechanisms, 

operating without conscious expectation, in auditory cortex. However, due to ambiguities in error 

calculation, it is difficult to directly interpret the implications of omission responses to predictive 

coding. 

Animal model studies relevant to the assumptions of predictive coding are scarce and show 

mixed results. None of the discussed studies explicitly tested PC, which may contribute to the 

inconclusiveness of the results. Methodological differences between these studies, and the fact that 

they did not address the mechanisms of prediction, unfortunately limit their conclusiveness with 

respect to PC. However, there is a conceptual shift from characterizing neurons as encoding 
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bottom-up data features, to encoding hypotheses or predictions, and propagating only the 

divergence from these predictions. 

Although human neuroimaging studies – which are confined to investigating the 

macroscopic level of brain organization – can be informative about cortical function, empirical 

support for predictive coding understanding at the level of single neurons is lacking. In this work, 

we explore the concept of predictive coding in single neuron. 

In Chapter 2, we applied machine learning models to devise a predictive coding mechanism 

for a single neuron in the NCM. Although, we did not have strong reasons to prove that the chosen 

model has better performance over other existing machine learning techniques, Deep Gaussian 

model presents itself as a good starting point. In Chapter 3, we introduce a technique to analyze 

the predictive capacity of our model.  
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2. Deep Gaussian 

2.1 Introduction 

In this chapter, a deep learning model that uses the negative log-likelihood of Gaussian 

distribution as a loss was created. The model estimates the mean and variance of the probability 

distribution of a target as a function of the input, given a Gaussian target error-distribution model.  

Deep neural networks in recent years have emerged as flexible parametric models which 

can fit complex patterns in data. Gaussian processes are a traditional nonparametric tool for 

modeling. Each layer in the network can be considered as a Gaussian Process (GP). The input to 

each layer is governed by another GP. The data input to the network is modeled as the output of a 

multivariate GP. Gaussian Processes govern the mappings between the layers.  

2.2 Gaussian Model 

2.2.1 Problem setup 

It was assumed that the training dataset D consists of N independent and identically 

distributed data points D = {xn, yn}
N n=1, where x ϵ RD represents the D-dimensional features. The 

label was assumed to be real-valued, that is y ϵ R. Given the input features x, a neural network was 

used to model the probabilistic predictive distribution p(y|x) over the labels. The process for 

training this neural network is discussed below. 

2.2.2 Training criterion 

Neural networks usually output a single value, say µ(x), and the parameters are optimized 

to minimize the mean squared error (MSE) on the training set, given by ∑ (𝑦𝑛 − µ(𝑥𝑛))2𝑁

𝑛=1
. 

However, MSE does not capture predictive uncertainty. The network used in this case outputs two 
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values in the final layer, corresponding to the predicted mean µ(x) and variance σ2(x) > 0. By 

treating the observed value as a sample from a (heteroscedastic) Gaussian distribution with the 

predicted mean and variance, we minimize the negative log-likelihood criterion [14,15]: 

− log p(𝑦𝑛|𝑥𝑛) =
log σ2(x)

2
+  

(y −  µ(x))2

2σ2(x)
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

2.2.3 Adversarial training 

Adversarial examples are perturbed inputs designed to fool machine learning models. 

These are ‘close’ to the original training examples (for example, an image that is visually 

indistinguishable to the original image) but are misclassified by the neural network. Such examples 

are injected to increase robustness. To scale this technique to large datasets, perturbations were 

crafted using fast single-step methods (fast gradient sign method in this case) that maximize a 

linear approximation of the model’s loss. 

Given an input x with target y and loss l(x, y) given by − log 𝑝 (𝑦𝑛|𝑥𝑛), the fast gradient 

sign method generates an adversarial example as 𝑥′ = 𝑥 +  𝜖(𝛻𝑥l(x, y)), where 𝜖 is a small value. 

The adversarial perturbation creates a new training example by adding a perturbation along a 

direction in which the network is likely to increase the loss. This process is called adversarial 

training [14,15].  

2.3 Network Details 

2.3.1 Architecture 

Both µ and σ2 were connected to a common large set of hidden units hj (indexed by j). In 

addition, a second and a third shared hidden layers were added as per required (Fig 2.1). 
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Figure 2.1. Deep Gaussian Neural Network Architecture. Architecture of network with output unit µ and variance 

unit σ2. Hidden units connected to input units and have shared connections (not all connections shown). Output units 

share connections to hidden layer. Network has multiple hidden layers.  

 

2.3.2 Learning Dynamics 

Random initialization of the NN parameters, along with random shuffling of the data 

points, was enough to obtain a good performance. The overall training procedure is summarized 

in Table 2.1.  

Table 2.1. Algorithm. Pseudocode for the training procedure of method. 

1. Let neural network parametrize a distribution over the outputs, i.e. p(y|x). Use training 

criterion l(x, y). Default value for ϵ = 10-6.  

2. Initialize ϴ (parameters of the NN) randomly. 

3. Sample data point n randomly for network (batches for training) 

4. Minimize l(xn, yn) with respect to ϴ. 
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2.3.3 Experimental setup 

The negative log likelihood (NLL) was evaluated, which depends on the predictive 

uncertainty. NLL is a proper scoring rule and a popular metric for evaluating predictive 

uncertainty. A batch size of 1024, and Adam optimizer with a fixed learning rate of 0.001 were 

used in these experiments. Rectified Linear Unit (relu) nonlinearity was added onto layers for more 

complexity, and default weight initializations were used. The feedback intervals were set to 500. 

The model has three hidden layers with 64, 64 and 32 units in each layer respectively. The training 

dataset was split into train and validation sets with a validation ratio of 0.06. 

2.3.4 Platform 

TensorFlow was used to run this network. Although, Keras is usually the first-choice deep 

learning framework, it requires backend functions written in TensorFlow or Theano if customized 

loss functions or layers need to be used. As the negative log-likelihood of gaussian distribution is 

not one of the available loss functions in Keras, the network was implemented in TensorFlow.  

2.3.5 Inputs data 

Natural stimuli elicit robust responses of neurons throughout sensory pathways, and 

therefore their use provides unique opportunities for understanding sensory coding. The test 

dataset and, spectrograms to be predicted, consisted of spectrograms of five birdsongs, each about 

one minute long. These stimuli were sampled at a frequency of 44.1 kHz. The neural network was 

trained on another dataset consisting of 14 birdsong spectrograms, (picked randomly, of varying 

lengths), also sampled at a rate 44.1 kHz.  

Spectrograms of birdsongs used in the model were computed using spectrogram function 

in Python with parameters: nfft = 128, Hanning window of length 128, and a 50% segment overlap. 
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Each of the spectrograms were composed of 64 frequency bins and were later downsampled to 

contain 32 frequency bins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Spectrogram windowing for train and test datasets. Train and test datasets are split into input (x) and 

output sets (y) (no at all time bins shown in the figure). In this case, with number of lags equals 2, the first 2-time bins 

were considered input, and the following time bin was considered as corresponding output. With a sliding length of 

1, the next 2-time bins were considered input with corresponding output. This process was continued for the entire 

length of spectrogram.    

 

Datasets were segmented into input sets (x) and output sets (y). For example, for a lag 

number equals 2, a matrix consisting of 2-time bins along all 32 frequency bins was considered to 

be input x, with the vector consisting of the following time bin along all 32 frequency bins being 

considered as the corresponding output y. In this case, x has a shape of 2 x 32, while y has a shape 

of 1 x 32. Similar segmentation was done with number of lags equals 1, 2, 4, 8 and 16 (Fig 2.2).  



15 
 

2.4 Results 

2.4.1 Loss function 

The model was trained over 50 epochs with early stopping criterion (set at 2). Mean and 

variance of each frequency time bin was used in training. Fig 2.3 shows the negative log likelihood 

loss of the model. 

                                                                                     Time (bins) 

Figure 2.3. Loss function. Negative log likelihood loss of test dataset after training the model. This is used in the 

estimation of output value (mean). 

 

2.4.2 Prediction with test datasets 

A prediction spectrogram was estimated using the Deep Gaussian model, and an error 

spectrogram was computed by plotting the difference between signal and predicted spectrograms. 

Spectral power of each time bin was computed by the sum of spectrogram values over all frequency 

bins, and was plotted for signal and prediction spectrograms. 
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Figure 2.4. Spectral and temporal power of signal and prediction. Spectral power computed by the sum of 

spectrogram values for each time bin along all frequencies. The prediction spectrogram captures the temporal 

component of signal. The red portion of spectral power graphs is zoomed in for comparison. The blue trendline 

corresponds to spectral power or signal, while the orange line corresponds to prediction. The last graph compares 

temporal powers; blue indicates signal and orange line indicates prediction. 
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Figure 2.5. Estimated spectrograms. Signal spectrogram and estimated prediction and error spectrograms of five 

birdsongs (about 1 minute each) computed using the Deep Gaussian model. 
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Figure 2.6. Comparison of prediction and error spectrograms to signal. Pearson correlation coefficient values 

computed for prediction and error spectrogram with respect to signal. The graphs are zoomed in for comparison. The 

blue indicates correlation of prediction and orange indicates correlation of error with respect to signal. 
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2.4.2 Comparison of spectrograms 

In order to compare the three different representations of stimuli, cross relation values were 

plotted for prediction and error with respect to signal. The correlation value for each time bin was 

calculated by computing the correlation between the subsets of spectrograms corresponding to that 

time bin. pearsonr function from scipy was used for this calculation in Python. In addition, RMSE 

values for the estimated spectrograms were computed with respect to signal. RMSE values for 

prediction are significantly lower than corresponding values of error spectrogram. A portion of 

these graphs are shown for comparison. We observed that RMSE of prediction is significantly 

lower than RMSE of error (Fig 2.6).  

Spectral power was plotted by summing all the frequency values along the corresponding 

time bin. The temporal power graph similarly was calculated by summing spectrogram values 

across the time-length of spectrogram for corresponding frequency bin. The temporal power of 

prediction is very close to that of signal. However, the difference in spectral power graph shows 

that the spectral component of the signal is not captured in our prediction (Fig 2.4). 

In this chapter, we successfully observed that our predictive coding model captures the 

temporal component of the signal. This is critical in the case of temporal processes. The model, 

however, does not compute good predictions in the frequency dimension. Although there may exist 

other machine learning models that probably obtain a better performance, this is a good starting 

point to show predictive coding in a single neuron.  

In the next chapter, we introduce a technique used to further compare the performance of 

our predictive coding model. The MNE technique will allow us to predict the response of this 

neuron when different stimuli are presented; signal, prediction and error in this case. We then go 
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on to compare the responses obtained from the model to the actual responses, to better understand 

what components of the signal are translated into our prediction. The Deep Gaussian predictive 

model was developed with the help of Marvin, a PhD student in the Gentner Lab. 
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3. MNE 

3.1 Introduction 

Selectivity of high-level neurons for processing complex, behaviorally relevant natural 

stimuli is poorly understood. These neurons are sensitive to conjunctions of features. To 

understand the principles underlying these process, receptive fields of neurons in the caudo-medial 

nidopallium (NCM) of the European starling (Sturnus vulgaris) were characterized. 

Complex receptive fields are a fundamental property of the sensory system, and they map 

multidimensional stimuli to various behaviors. Individual neurons in the higher-level auditory 

cortex of starlings have composite receptive fields with several independent features. The 

representation of features of multidimensional natural stimuli like the starling song is captured by 

composite receptive fields [16].  

Development of dimensionality reduction techniques like spike-triggered covariance 

(STC) and maximally informative dimensions (MID) have facilitated this discovery. Standard 

statistical tools only identify one or two features but not complete sets, whereas these techniques 

involve extracting a hierarchy of features in order to obtain a selective and invariant categorical 

representation useful for behavior. STC can identify many relevant features for stimuli whose 

parameters are distributed in Gaussian manner but fail when natural stimuli are used, while MID 

works well for arbitrary stimuli but requires exponentially larger data sets to find more than a few 

features [17]. 

Multiple distinct acoustical features can be explored in individual auditory neurons in 

songbirds using Maximum Noise Entropy (MNE) technique. The MNE model maximizes the noise 

entropy of the conditional response distribution. This statistical method is constrained by a given 
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set of stimuli-response correlations, but is otherwise as unbiased and random as possible. This 

enables a robust, statistically optimal, representation of complex, real-world signals such as 

birdsong, speech, or music [16]. 

In this chapter, the performance of composite receptive fields with respect to signal 

spectrograms (signal MNE), prediction spectrograms (prediction MNE) and error spectrograms 

(error MNE) were compared in NCM. 

3.2 Receptive Field 

Receptive field is a term used to describe the firing properties of the sensory neurons. 

Receptive fields in the auditory system are modeled as spectrotemporal patterns, which are specific 

patterns in the auditory domain that modulate the firing rate of a neuron. 

The spectro temporal response field (STRF) of a neuron is a useful measure that represents 

which type of stimuli excite or inhibit a neuron. STRF is the linear characterization of the complex 

stimulus-response transformations seen in sensory neurons [18,19]. 

Linear STRFs are created by first calculating a spectrogram of the acoustic stimulus. Firing 

rate is modeled over time for the neuron, using a histogram combined over multiple repetitions of 

the acoustic stimulus. Linear regression is used to predict the firing rate of that neuron as a 

weighted sum of the spectrogram. The weights learned by the linear model are the STRF and 

represent the specific acoustic pattern that causes modulation in the firing rate of the neuron. 

STRFs can also be understood as the transfer functions that map acoustic stimulus input to firing 

rate response output. It can be generalized to capture a rich variety of nonlinear and contextual 

features observed in sensory neurons. It does not require prior knowledge such as frequency tuning 
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or threshold and is distinguished from other measures by its broader descriptive power (dynamics 

and spectral selectivity) [18,20]. 

 

Fig 3.1. Composite receptive field of an auditory neuron. Composite receptive field of an auditory neuron in NCM 

of auditory cortex computed using MNE method. 

 

3.3 MNE 

3.3.1 Introduction 

To minimize the bias of the system, the noise entropy was maximized subject to constraints 

on the stimulus/response moment. It was shown that logistic functions not only maximize noise 

entropy for binary outputs but provide minimum mutual information solutions when the average 

firing rate of a neuron is fixed. This idea was used to study single neuron coding to discover what 

statistics of the inputs are encoded in the outputs [21]. 

To begin, a system was considered which at each moment in time receives a D-dimensional 

input x(t) = (x1(t), ….., xD(t)) from a distribution P(x), such as a neuron receiving a sensory 
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stimulus or synaptic potentials. The system then performs computations to determine the output 

y(t) according to its response function P(y|x). 

Information about the identity of the input can be obtained by observing the output 

quantified by the mutual information I(y;x) = Hresp – Hnoise. The first term is the response entropy 

given by 𝐻𝑟𝑒𝑠𝑝 = −ʃ𝑑𝑥𝑃(𝑥), which captures the overall uncertainty in the output. The second term 

is the so-called noise entropy [21].  

𝐻𝑛𝑜𝑖𝑠𝑒 = − ʃ𝑑𝑥𝑃(𝑥) ʃ𝑑𝑦𝑃(𝑦|𝑥)ln𝑃(𝑦|𝑥)  

3.3.2 Model 

The stimulus features must be correlated in some way with the neural response 

corresponding to the spiking activity of the neuron. The specific stimulus/response correlations, 

such as the spike-triggered average (STA), the spike triggered covariance (STC), or the mutual 

information can be obtained from: 

𝐼(𝑦; 𝑥) = ∑ ∑ 𝑃(𝑥)𝑃(𝑦|𝑥)log 
𝑃(𝑦|𝑥)

𝑃(𝑦)
𝑥

𝑦

 

This equation provides a full measure of the dependence between stimulus and response. 

These estimates can be used to construct a model of the conditional response probability P(y|x) by 

constraining to match a given set of observed correlations such as the STA and STC methods. The 

minimal model of P(y|x) is the one that is consistent with the chosen set of correlations but is 

otherwise as random as possible, making it minimally biased [17]. 
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3.3.3 Logistic function 

This model can be obtained by maximizing the noise entropy < − log 𝑃(𝑦|𝑥) >, where 

<…> denotes an average over P(y,x) = P(x)P(y|x). For a binary spike/ no spike neuron consistent 

with an observed average firing rate, as well as the correlation of the neural response with linear 

and quadratic moments of the stimulus, the minimal model is the logistic function [22,17].  

𝑃𝑚𝑖𝑛(𝑠𝑝𝑖𝑘𝑒|𝑥) =
1

1 + exp (𝑎 + ℎ. 𝑥 + 𝑥𝑇𝐽𝑥)
 

3.3.4 Parameters a, h, J 

The parameters a, h and J are given by the mean firing rate, experimentally observed spike-

triggered average (STA) and spike-triggered covariance (STC) of the model. The relevant stimulus 

features can be found by diagonalizing the J matrix. The equation can include higher orders of x 

if correlations between a spike and higher order moments of the stimulus are measured. 

The contours of constant probability of the minimal second order models are quadric 

surfaces, defined by the quadratic polynomial 𝑓(𝑥) =  𝑎 + ℎ. 𝑥 + 𝑥𝑇𝐽𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. The 

diagonalization of f(x) involves a change of coordinates such that 

𝑓 = 𝑎 + ∑ 𝑥𝑖𝑧𝑖

𝐷

𝑖=1

+  ∑ 𝛽𝑖𝑧𝑖𝑧𝑖

𝐷

𝑖=1

 

This is accomplished through the diagonalization of the matrix J, yielding D eigenvectors 

{zi} with corresponding eigenvalues {βi}. The eigenvectors are the principal axes of the constant 

probability surfaces, and the magnitude of the eigenvalue along a particular direction is indicative 

of the curvature, and hence the selectivity of the surface in that dimension [17,22]. 
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3.4 Experimental setup 

3.4.1 Stimuli 

The stimuli were downsampled to 24 kHz and converted into spectrograms using a 

spectrogram function in Matlab with parameters: nfft = 128, Hanning window of length 128, and 

a 50% segment overlap. The DC component was removed, and the adjacent 64 frequencies were 

averaged pair-wise to obtain 32 frequency bands. These spectrograms were passed through a Deep 

Gaussian model to obtain the predicted spectrograms, also with 32 frequency bands. For all 

spectrograms, the adjacent frequencies were again averaged pair-wise to finally obtain 16 

frequency bands ranging from 750 Hz to the Nyquist frequency (12 kHz). 

The adjacent time bins were averaged three times for a final bin size of 21 ms. 20-time bins 

were usually used to compute MNE receptive fields. If 32 frequencies were to be used instead of 

16 frequencies, a different number of time bins (10, 16, 32) can be used to compute receptive fields 

with similar results. All spectrograms were converted into the logarithmic scale. 

3.4.2 Signal Recording 

Under a protocol approved by the Institutional Animal Care and Use Committee of the 

University of California, San Diego, experiments were performed on adult male European starlings 

(Sturnus vulgaris). For physiological testing, birds were anesthetized (urethane, 7 ml/kg) and head-

fixed to a stereotaxic apparatus mounted inside a sound attenuation box. The use of urethane was 

necessary to obtain the long-stimulus presentation epochs required in this study and is unlikely to 

alter selectivity significantly.  
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Songs were played to the subjects at 60-dB mean-level while we recorded action potentials 

extracellularly using 32-channel electrode arrays (NeuroNexus Technologies) inserted through a 

small craniotomy into the NCM.  

Neural responses to five different 1-minute long songs were recorded, each repeated 20 

times. Stimulus presentation, signal recording, and spike sorting were controlled through a PC 

using Spike2 software (CED). Extracellular voltage waveforms were amplified (model 3600 

amplifier, A-M Systems), filtered, and sampled with a 50-μs resolution and saved for offline spike 

sorting. 

3.4.3 Spike Sorting and identification of clusters 

After preprocessing, sorting was performed on the spike events using an automated 

clustering approach with the novel cluster quality metrics MountainSort. Clusters were either 

accepted or rejected in the automatic annotation phase based on the computed cluster metrics, and 

then consolidated. The new, efficient, nonparametric, density-based clustering algorithm is termed 

ISO-SPLIT [23].  

The algorithm compromises a series of nonparametric statistical tests for unimodality and 

makes no assumptions about the shape of clusters. It involves only a few adjustable parameters, 

and one essentially only needs to specify a statistical threshold for rejecting the null hypothesis for 

unimodality. The same set of parameters were used for all recordings. The algorithm did not need 

a priori information about the expected number of clusters nor the expected cluster densities. 

Two metrics were used that are specifically suited for spike sorting: isolation and noise 

overlap. A measure of cluster signal-to-noise ratio (SNR) (large-amplitude extracellular action-
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potential waveforms) was also used to exclude clusters contaminated by artifacts. Clusters were 

categorized into three groups: “single unit”, “noise”, and “non-isolated”. 

Of all “single unit” clusters, few were chosen for further analysis based on the quality of 

their raster plots. These plots were computed using Python scripts. An example of a “good” raster 

plot is shown in the figure 3.2. This shows that an NCM neuron usually responds to a variety of 

motifs. 

3.4.4 Response Data  

Spiking data was divided into two sets for training and testing; the testing set contained 

one-tenth of the data. Parameters were estimated ten times, each time using a different segment of 

data for training and testing, and averaged. Early stopping was used for regularization to prevent 

overfitting. As in STC, diagonalizing the matrix J yields quadratic features with the same time and 

frequency dimensions as the original stimuli that drove spiking. 

3.5 Results 

3.5.1 Composite receptive fields 

The second-order MNE model’s matrix J for each neuron together with the first-order term 

defined its receptive field. The composite RF describes the spectrotemporal structure in the 

stimulus that drives activity at a particular site. This resulting representation was used with relevant 

stimulus features such as STA and STC from the neural responses.  
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Figure 3.2. Spike raster plots. Spike raster plots showing the response of one neuron in NCM to a birdsong (used 

here as stimuli). On the top is the waveform, followed by spectrogram of the stimulus. The third plot shows neuron 

firing in 20 trials, and trial average is calculated in the last plot. This is inputted into the MNE model for training. 

 

The STA is computed by analyzing the change in the mean between the stimulus 

distribution conditional on a spike and the distribution of all stimuli that were presented in the 

recording. STC is computed in two steps. First, the difference between the covariance matrix of 

all stimuli and that of stimuli that elicit a spike. Covariance is encoded in the eigenvalues of this 

difference matrix. 

The stimulus (around 5 minutes) is jackknifed i.e. split 10 times. Training is performed on 

9 subsets and responses are predicted on the remaining set not used in parameter estimation. 

Parameters a, h and J are estimated for each jackknifed and then averaged across all 10 jackknives. 

An example of the final parameters of a trained model of one jackknife for a cell with respect to 

signal is shown in Figure 3.3.   
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Figure 3.3. Composite receptive field of a single NCM neuron. Top row shows h and J matrices, and eigenspectrum 

of the matrix J for one NCM neuron. Eigenvectors were normalized for comparison with the data. Second row shows 

top three excitatory (negative) and last row shows top three inhibitory (positive) features obtained from the same 

neuron.  
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Figure 3.4. Prediction of responses to stimuli using linear MNE model. Full distribution of correlation coefficients 

obtained with the linear components of MNE model for prediction and error plotted against those obtained with the 

signal. The diagonal line indicates unity. 



32 
 

 

 

Figure 3.5. Prediction of responses to stimuli using full MNE model. Full distribution of correlation coefficients 

obtained with the full MNE model for prediction and error plotted against those obtained with the signal. The diagonal 

line indicates unity. 
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3.5.2 Performance of signal, prediction and error MNEs 

To test the performance of predicted and error MNEs with respect to signal, we obtained 

the parameters a, h and J for each neuron with respect to all three MNEs. Using these parameters, 

response predictions were computed using a logistic function. The predictions were then compared 

to the actual response by estimating respective correlation coefficients (CC) using the Matlab 

coerrcoef function. CCs of all three MNEs were plotted to compare their predictability (Fig 3.4). 

In a similar way, responses were predicted considering the linear model, with parameters a and h. 

CCs of all three MNEs (computed from the linear) with respect to the actual response were plotted 

to compare their performance, shown in Figure 3.5. As observed from these figures, CCs of 

prediction and error MNEs are close to that of signal MNEs. Whereas for the full model, the 

correlation coefficients are lower compared to the signal.  

The linear model gives a better predictability than the full model and the difference between 

these models is that J is excluded in the linear model. As J is given by the spike-triggered 

covariance of the model, we can conclude that the STC feature is missing in our prediction from 

the Deep Gaussian model. This information will be helpful in designing predictive coding models 

in the future. However, these results show the advantages of using lower-dimension MNEs for 

prediction of neural responses. The prediction and error stimuli could elicit neural activity that was 

well captured by the MNE.   
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4. Discussion and Future Directions 

In this work, we present three different representations of natural stimuli, birdsong of the 

European starling. We call them signal, prediction and error. We used a feedforward neural 

network called Deep Gaussian model to estimate the prediction and error spectrograms. We 

hypothesize these representations capture stimulus features that are capable of eliciting a neural 

response comparable to the actual signal.  

From the measures used to compare the three representations (spectral power, cross-

correlation, and root mean squared error), it can be concluded that the predicted spectrogram 

captures the temporal component of the signal but fails to capture the spectral component. This is 

captured in the error spectrogram; however a low degree of temporal correlation is observed. The 

prediction spectrogram presents a better estimate of the signal confirmed from the corresponding 

RMSE graphs. The Deep Gaussian model, however, is a good start to explore the predictive coding 

hypothesis in a single neuron. 

MNEs of the three different stimulus representations were computed. The parameters 

obtained from these models were used to predict responses and their correlation coefficients of 

MNEs computed estimated their response ‘predictability’. The full MNE model fails to obtain 

good performance for prediction and error MNEs. However, the linear model shows a positive 

result. The correlation coefficient values of prediction and error MNEs are close to the CC values 

of signal in the linear model, and are much lower in the full model. This proves that the prediction 

and error representations of signal can elicit neural activity comparable to the signal. The spike-

triggered covariance feature of the signal (captured by J) is important for prediction performance, 

as J is excluded in the linear model. 
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Thus far, we obtained different representations of the stimulus using predictive coding 

models. We then validated the Deep Gaussian model by showing that stimulus representations 

obtained from this model are successful at eliciting a neural response close to the actual response 

in the NCM. 

There are other existing machine learning models, for example, convolutional neural 

networks (CNNs), long short-term memory models (LSTMs) especially useful for time-varying 

signals, combinations of both, generative models like contrastive predictive coding (CPC) [35] 

that can produce better predictions compared to our model. Our limited knowledge of predictive 

coding in other areas of the auditory cortex prevents us from drawing strong conclusions about the 

existence and performance of our model or other PC models in those areas. This calls for more 

experiments in areas such as CM or areas upstream in the auditory process that have more 

prominent neuron firing like Field L, since only through comparing different models in each area 

can we ultimately confirm or falsify the organization of appropriate PC models in the auditory 

cortex. 

The next steps for this project, which are currently underway, involve exploring other 

predictive coding models that can give a more accurate prediction of the stimulus. Models such as 

CNNs, which are primarily used with visual stimulus have failed. Models used for image 

processing cannot be used for audio as: 1) discrete sound events do not separate on a spectrogram. 

Instead, they sum together into a distinct whole event; 2) axes of a spectrogram are fundamentally 

different. Offsetting along each axis has a different meaning; 3) the spectral properties of sound 

are non-local; and 4) while images can be regarded to contain large amounts of parallel 

information, sound is highly serial. 
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Models that take the temporal aspect into consideration, such as LSTMs and generative 

models like contrastive predictive coding, will be developed. Performance of multiple models will 

be compared to estimate the model that gives better prediction in the NCM. Finally, this work will 

then be extended to other areas such as CM and Field L, to map prediction models to different 

regions in the higher-level auditory cortex. 
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