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On the contact region of a diffusion–limited
evaporating drop: a local analysis

S. J. S. MORRIS †,
Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA

(Received 28 October 2013)

Motivated by experiments showing that a sessile drop of volatile perfectly–wetting liq-
uid initially advances over the substrate, but then reverses, we formulate the problem
describing the contact region at reversal. Assuming a separation of scales, so that the
radial extent of this region is small compared with the instantaneous radius a of the
apparent contact line, we show that the time scale characterizing the contact region is
small compared with that on which the bulk drop is evolving. As a result, the contact
region is governed by a boundary–value problem, rather than an initial–value problem:
the contact region has no memory, and all its properties are determined by conditions at
the instant of reversal. We conclude that the apparent contact angle θ is a function of the
instantaneous drop radius a, as found in the experiments. We then non–dimensionalize
the boundary–value problem, and find that its solution depends on one parameter L, a
dimensionless surface tension. According to this formulation, the apparent contact angle
is well–defined: at the outer edge of the contact region, the film slope approaches a limit
that is independent of the curvature of bulk drop. In this, it differs from the dynamic
contact angle observed during spreading of non–volatile drops. Next, we analyse the
boundary–value problem assuming L to be small. Though, for arbitrary L, determining
θ requires solving the steady diffusion equation for the vapour, there is, for small L, a
further separation of scales within the contact region. As a result, θ is now determined
by solving an ordinary differential equation. We predict that θ varies as a−1/6, as found
experimentally for small drops (a < 1 mm). For these drops, predicted and measured
angles agree to within 10–30%. Because the discrepancy increases with a, but L is a
decreasing function of a, we infer that some process occurring outside the contact region
is required to explain the observed behaviour of larger drops having a > 1 mm.

Key words:

1. Introduction1

In recent experiments (Poulard et al. 2005; Guéna et al. 2007a,b), a sessile drop of pure2

liquid evaporates into a mixture of its own vapour and an inert gas at a rate controlled3

by vapour diffusion. The temperature T can be assumed uniform in space and time. The4

total gas pressure pT is uniform; far from the drop, the partial pressure pv approaches5

the constant ps − ∆pv; ps is the saturation pressure at temperature T , and ∆pv > 0.6

Though perfectly wetting, this system exhibits an apparent contact angle: θ is defined7

experimentally to be the slope measured at the inflexion point on the drop profile; it is8

a property of the small–scale flow induced by evaporation, and vanishes for ∆pv = 0.9

Under certain conditions, a drop spreads over the substrate until evaporation forces10

† Email address for correspondence: morris@berkeley.edu



2 S. J. S. Morris

the apparent contact line to retreat. During reversal, the contact line is stationary; see11

figure 2.1 of Guéna (2007, p.35). (We note that, unlike a, the contact angle decreases12

monotonically over the drop lifetime: as shown by figure 2.10 of Guéna (2007, p.50), the13

decrease is rapid during spreading, but much slower during retreat.) Here, we treat only14

the stationary contact line.15

Guéna et al (2007a, figures 6 and 3) show experimentally that, for a given liquid,16

θ and the drop radius a at reversal are each functions of initial drop volume v, even17

when v is varied 1000–fold. As shown in figure 11 of Guéna et al. (2007), eliminating v18

between those relations gives θ as a function of a. The absence of dependence on initial19

conditions suggests that θ is a property of the contact region at the instant of reversal,20

and is independent of the history of that region.21

To interpret the θ–a relation, Poulard et al.(2005, equation 9) outline a model, referred22

to in their subsequent papers as the ‘wedge model’. Assuming that the system is isother-23

mal and that, within the contact region, the flow is quasi–steady, the authors use scaling24

to obtain a relation between θ and a. In essence, θ is assumed to form within a region25

having two defining properties: capillary pressure balances disjoining pressure and, at26

same scale, the divergence of the mass flux along the film balances the evaporative mass27

flux given by equation (5) of Deegan et al.(2000). According to equation (14) of Poulard28

et al. (2005), θ ∝ a−1/6: because larger drops have a smaller gradient in chemical poten-29

tial within the vapour, θ varies inversely with drop size. According to Guéna et al.(2007a,30

§6.1), for a < 1 mm (roughly), measured angles obey the one–sixth rule predicted by the31

wedge model.32

For larger drops, a stronger dependence on a is observed. Cazabat (pers. comm.) has33

pointed out that for these drops, buoyant convection within the gas is likely to affect mass34

transfer at the drop scale. Kelly–Zion et al. (2013) report measured values of evaporation35

rates from sessile drops of a liquid whose vapour phase is denser than air; the contact line36

was pinned. Comparing their figures 3 and 4, we see that for a heptane droplet with a = 837

mm, the evaporation rate is about 3 times that expected from pure diffusion. Because, at38

the scale of the whole drop, buoyant convection influences the mass transfer, it is useful39

to separate the problem of determining θ from that of the large–scale dynamics.40

Here, we formulate and analyse the boundary–value problem defining the contact re-41

gion. Our formulation is local in the sense that we exploit the separation of length scales42

existing between this small region, and the macroscopic drop: the radial dimension of43

the contact region is small compared with the radius a of the apparent contact line.44

We make the following assumptions. (a) Within the gas, mass transfer occurs by steady45

diffusion, even when buoyant convection is significant at the drop scale. This is a good46

approximation provided the Péclet number based on the dimension of the contact region47

is small compared with unity. (b) The system is isothermal; for the Guéna experiments48

this assumption is justified because the thermal conductivity of the silicon substrate is49

three decades larger than that of the liquid. (c) Within the contact region, the liquid50

motion is quasi–steady: at each instant, the divergence of the radial mass flux balances51

the evaporative mass flux into the gas. This is subsequently shown to be a good approx-52

imation whenever there is a separation of length scales. (d) Because, in the experiments,53

θ ≪ 1, boundary conditions on the liquid–gas interface are transferred onto the plane54

y = 0. (For brevity, we continue to call these the ‘interfacial’ conditions, even after their55

transfer to y = 0.)56

Together, assumptions (a) to (d) allow us to replace the initial–value problem governing57

the whole drop by a boundary–value problem; the contact angle and distribution of58

evaporative mass flux are determined by the solution of this problem. To complete its59
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formulation, the partial pressure pv of vapour must be imposed as a outer boundary60

condition holding on a large semi–circular arc bounding the contact region.61

This outer condition is not arbitrary. Far from the apparent contact line, the interfa-62

cial conditions simplify. Towards the macroscopic drop, they require pv to approach the63

saturation pressure appropriate to the system temperature; towards the molecular scale64

wetting film, they require the evaporative mass flux to vanish. Together with the Laplace65

equation for pv, these conditions constrain the variation of pv along the perimeter of the66

semicircle bounding the contact region. By separation of variables, we find that pv must67

be expressible as a superposition of certain basis functions. Matching to an outer solu-68

tion, specific to the mass transfer process at the drop scale, requires pv to take the form69

of one of these basis functions. The drop–scale transport process selects that function,70

and determines its amplitude.71

To illustrate our formulation, we work out the details for a drop sufficiently small for72

mass transfer to be by pure diffusion, even at the scale of the whole drop. In §2, the73

boundary–value problem is stated without derivation, but with the underlying assump-74

tions identified. In §3, the problem is non–dimensionalized. With the scales in hand, in75

§4 the underlying assumptions are shown to hold provided the radial scale of the contact76

region is small compared with the radius a of the apparent contact line; this is also the77

condition under which the notion of an apparent contact line has meaning.78

The boundary–value problem contains one parameter: L is a dimensionless surface79

tension and is a decreasing function of a. In §5 the solution of the boundary–value80

problem is analysed in the limit as L → 0; the corresponding expression for θ is given in81

§6. Because this expression corresponds to a physical picture of the contact region, in §782

scaling is used to summarize that picture. In §8, we compare predicted and experimentally83

values of both the angle and the film thickness at which it is formed. There, we also discuss84

carefully the relation between the the theory and the observations. In §9, we summarize85

the main points of the paper, and we discuss the relation between our asymptotic analysis86

for small L and an approximation made by Eggers & Pismen (2010) in their a numerical87

simulation of an evaporating sessile drop.88

In this work, the swung dash ∼ denotes an asymptotic relation: in a specified limit, a ∼89

b ⇔ a/b → 1. The symbol ≈ is used where scaling arguments are used for interpretation.90

2. Formulation91

Figure 1 shows the geometry of the problem. The origin O is at the apparent contact92

line defined by extrapolating the tangent from infinity. Subscripts l, v denote the liquid93

and vapour phases. The unknowns are the vapour partial pressure pv, liquid pressure pl94

and film thickness h. The droplet planform radius a is assumed large compared with the95

radial dimension ℓ0 of the contact region. This allows us to assume plane flow within the96

contact region.97

In the experiments, θ is small (less than 0.08), allowing the use of lubrication theory98

to describe the liquid film. The liquid and vapour flows are coupled through the usual99

interfacial conditions. Because the drop is thin and the solution pv(x, y) of the Laplace100

equation varies on the radial length scale ℓ0, boundary conditions on the vapour can be101

transferred from y = h to y = 0 with error vanishing with the ratio h0/ℓ0 of characteristic102

film thickness h0 to ℓ0. By contrast, for the flow within the thin liquid film, the length103

scale in y is the thickness scale h0. Consequently, boundary conditions on the liquid flow104

can not be transferred from y = h to y = 0; instead lubrication theory must be used to105

account for the internal structure of the film. As a result, the unknowns pv, pl and h are106
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Figure 1. Contact region: scales h0 and ℓ0 are defined by (7).

determined by solving the Laplace equation for pv in the half space y > 0, subject to107

boundary conditions on y = 0.108

2.1. Governing equations109

These are stated, then interpreted. The unknowns pl(x), pv(x, y) and h(x) satisfy the
following problem. For y > 0, and −∞ < x < ∞,

∇2pv = 0. (1a)

On y = 0

pv − ps =
ρs

ρl
(pl − pT ), (1b)

pT − pl = γ
d2h

dx2
+

A

h3
, (1c)

0 =
1

3νl

∂

∂x

[

h3 ∂pl

∂x

]

+
Dv

RvT

∂pv

∂y
. (1d)

The conditions on h are

lim
x→−∞

h = 0, lim
x→∞

dh

dx
= θ, (1e, f)

where θ is to be determined as part of the solution. In these equations, the parameters are110

vapour diffusivity Dv, surface tension γ, dispersion constant A, the kinematic viscosity111

νl and density ρl of the liquid, saturation pressure ps, saturation vapour density ρs, and112

the ratio Rv of the molar gas constant to vapour molar mass M . The temperature T is113

uniform in space and time. Material properties are given in Appendix B.114

According to (1b), at each point on the interface, the partial pressure pv of vapour is115

related to the pressure pl on the liquid side by the linearized Gibbs–Thomson relation116

(Gibbs 1876, equation 287; Thomson 1872). For (1b) to hold, it is necessary that the117

liquid and its vapour be in local thermodynamic equlibrium across their interface; that118

being so, the local values of pl and pv are related by the nonlinear Gibbs–Thomson119

relation. That expression can be linearized for our purpose because, within the region of120

interest, the change in vapour density ρv proves to be small compared with the saturation121

vapour density ρs. (This statement is justified in §4.)122

Local thermodynamic equilibrium is assumed without explanation by Doumenc and123

Guerrier (2010, equation 13) and by Eggers and Pismen (2010, equation 4). By scaling124

the interfacial mass balance, Njante (2012, Appendix A) shows that if the system is125

effectively isothermal, so that evaporation is diffusion–limited, the liquid and its vapour126

are in local equilibrium whenever the continuum approximation holds in the gas.127

According to the Laplace–Young equation (1c), the difference between the total pres-128

sure pT in the gas, and the liquid pressure pl balances the resultant of the forces exerted129

by surface tension, and Van der Waals forces. For the latter (‘disjoining pressure’) we use130

the form appropriate to the non–retarded potential for non–polar molecules. Levinson131

et al. (1993, figure 3) show experimentally that for an octane film on oxidized silicon,132
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disjoining pressure varies as h−3 for film thicknesses lying (roughly) in the range 1–3 nm;133

see also Truong and Wayner (1987, figure 6). We return to this assumption at the end of134

§8.135

The Reynolds equation (1d) expresses the film mass balance for quasi–steady flow: it136

has been assumed that there is no slip at the wall, and that the shear stress vanishes137

at the gas–liquid interface. For the latter condition to hold, surface tension γ must be138

uniform: Guéna (2007, pp.83–84) discusses the precautions taken to realize this condition139

in his experiments.140

Although, to describe the evolution of the whole droplet, we would need to augment the141

Reynolds equation (1d) by adding the appropriate unsteady term, that term is negligibly142

small within the contact region. There, the gradient terms displayed in (1d) are large,143

whereas the magnitude of the unsteady term is determined by the slow evolution of the144

whole droplet. Section 4 contains a more detailed discussion.145

Growth condition (1e) states that within the region described by problem (1), the film146

thickness is large compared with that characterizing the wetting film to the left of the147

origin in figure 1. This is a good approximation for the Guéna experiments in which the148

partial pressure vanishes far from the drop: because a liquid film can not coexist with149

a vacuum, the thickness of the wetting film then vanishes far from the drop. Lastly, in150

(1f), θ is to be determined as part of the solution.151

Using (1b), we express (1c) and (1d) in terms of pv: on y = 0,

ρl

ρs
(ps − pv) = γ

d2h

dx2
+

A

h3
, (1c′)

0 =
∂

∂x

[

h3 ∂pv

∂x

]

+ 3L2 ∂pv

∂y
. (1d′)

The Reynolds length L, defined by

L2 =
ρsνlDv

ρlRvT
, (2)

is the dimension at which the two terms in (1d′) would balance if x, y and h were152

all comparable. Using the material properties given in Appendix B, we find that for the153

fluids used by Guéna et al. (2007a), γL2/A takes the following values: 0.19 (nonane), 0.37154

(octamethyltrisiloxane OMTS), 0.49 (octane) and 1.55 (hexamethyldisiloxane HMDS).155

2.2. Outer boundary condition156

To complete the formulation, we must prescribe pv on a semicircle of radius R ≫ ℓ0; in157

its present form, (1) is incomplete because it contains no information about the potential158

difference ∆pv driving evaporation.159

This matching condition must be compatible with growth conditions (1e) and (1f); it160

must also be compatible with the solution of the outer (Deegan et al.) problem. Unlike161

the boundary–value being formulated here, that Deegan problem accounts for overall162

drop geometry, but does not describe the structure of the contact region itself.163

We first consider the implications of the growth conditions. Because the volume flow
along the film is proportional to h3, we assume and then verify (equation 17), that the
first condition (1e) requires the volume flow to vanish as h → 0. The Reynolds equation
(1d′) then requires that

lim
x→−∞

∂pv

∂y

∣

∣

∣

y=0
= 0. (3a)

Similarly, the second condition (1f) and the Laplace–Young condition (1c′) together
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require that

lim
x→∞

(pv − ps)
∣

∣

y=0
= 0. (3b)

In the first instance, (3a) and (3b) hold on the gas–liquid interface; they are, however,164

transferred to y = 0 using the argument given in §2, ¶2.165

We digress to note that (3a) and (3b) are obtained by taking the outer limit of boundary166

conditions holding throughout the contact region. In their interpretation, (3a) and (3b)167

differ from similar conditions imposed by Deegan et al. on the outer problem, that is, their168

diffusion model of mass transfer at the drop scale. Viewed at that scale, the droplet has169

a triple junction at which all 3 components are in contact. On the gas–solid interface, a170

no–flux condition is applied, whereas on the gas–liquid interface, pv = ps; each condition171

is applied at all points on the appropriate interface. By contrast, because our inner172

problem resolves the structure of the contact region, no more than 2 components are173

ever in contact. Consequently, there is no triple junction, and conditions (3a), (3b) apply174

only in the limits stated.175

Returning to the main argument, we use (3) to determine the most general form which
the solution of (1) could take far from the apparent contact line. Because this form must
be consistent with the growth conditions (1e) and (1f), it must satisfy the outer limit (3)
of the boundary conditions (1c′) and (1d′), rather than the full conditions. By separation
of variables, the general solution of the b.v.p. comprising (1a), (3a) and (3b) is a linear
combination of basis functions

pn = rn+1/2 sin(n + 1

2
)φ, (4)

(integer n). To interpret these modes, we note two properties. First, although ∂p0/∂r > 0176

for 0 < φ < π, for n > 1, ∂pn/∂r changes sign; whereas the zeroth mode represents a177

mass flow that would be outward at each point (for evaporation), higher modes permit178

inflow and might be expected to occur in systems in which condensation occurs at some179

points on the film. Second, for each n,
� π

0
(∂p/∂r) rdφ 6= 0; though higher order modes180

describe both outflow and inflow, each mode contributes to the radial mass flow. This181

determines the outer limit of the inner solution.182

For sufficiently small droplets, mass transport at the scale of the whole drop occurs183

by steady diffusion. In this case, the distribution of vapour pressure outside the contact184

region is given by the b.v.p. posed by Deegan et al.(2000, equation 4). In the limit as185

θ → 0, the solution of that outer problem is given by the Weber formula (Landau–Lifshitz186

1960, p.27; Cazabat and Guéna 2010. Appendix 1). Consequently, the Weber solution can187

be used to determine the outer boundary condition for the inner problem (1) determining188

θ, even though the Weber solution itself is independent of θ.189

According to Landau–Lifshitz (1960, p.27), for r ≪ a, the Weber formula simplifies to

pv − ps ∼ −k∆pv

√

r

a
sin

φ

2
, (5a)

k = 2
√

2/π. (5b)

Comparing (5) with the pressure modes pn defined by (4), we see that the solution of190

the inner problem (1) will match to the outer (Weber) solution provided (1) is solved191

subject to the outer boundary condition defined by (5). This completes the formulation.192

When buoyant convection is significant at the drop scale, the numerical constant k must193

replaced by a function of the parameters controlling the convective motion. Depending194

on the transport process operating at the drop scale, another member of the family (4)195

might also be selected; I have not investigated this.196



Evaporating sessile drop 7

∆2p  =0v

→h     0 b→h x

outer b.c.(10d)

.

.

r >>1

Reynolds and Laplace−Young eqs (10b,c)

Figure 2. Summary of problem (10) defining the contact region.

3. Dimensionless boundary–value problem197

3.1. Definition of h0 and ℓ0198

These scales have two defining properties. In the Reynolds equation (1d′), the terms
balance; in the Laplace–Young equation (1c′), the left hand side balances the second
term on the right:

h3
0

ℓ0

= L2, k
ρl

ρs
∆pv

√

ℓ0

a
=

A

h3
0

. (6a, b)

Eliminating h0 between (6a) and (6b), we obtain

ℓ0 = a1/3d2/3/k2/3; h0 = L2/3a1/9d2/9/k2/9. (7a, b)

The disjoining–diffusion length d is defined by

d =
A

νlDv∆ρv
; (8)

on this scale, disjoining pressure balances the shear stress due to a volume flow Dv∆ρv/ρl.199

The notion of an apparent contact line is valid provided ℓ0 ≪ a; according to (7), this200

separation of scales exists provided a ≫ d.201

Using the material properties given in Appendix B, we find that for the fluids used in202

the Guéna experiments d ranges from 0.9 nm (HMDS) to 9 nm (nonane). We note that203

d, h0 and ℓ0 are independent of γ.204

We define dimensionless variables (without asterisks):

{x, y}∗ = ℓ0{x, y}, h∗ = h0h, (9a, b)

p∗v − ps = k ∆pv

√

ℓ0

a
p. (9c)

Substituting (9) into (1) and (5), we find that for y > 0 and −∞ < x < ∞,

∇2p = 0. (10a)

On y = 0

−p = Ld2h

dx2
+ h−3, (10b)

0 =
∂

∂x

[

h3 ∂p

∂x

]

+ 3
∂p

∂y
. (10c)
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As r → ∞,

p ∼ −
√

r sin
φ

2
. (10d)

The conditions on h(x) are

lim
x→−∞

h = 0, lim
x→∞

dh

dx
= b. (10e, f)

In (10f), the constant b > 0 is to be determined as part of the solution. In (10b),
L = γh4

0/(Aℓ2
0); eliminating h3

0/ℓ0 between this definition and (6a), we find that

L =
γL2

A
θ0, (11)

θ0 = h0/ℓ0. Because each of h0, ℓ0 and L is independent of γ, L is proportional to γ; it205

is a dimensionless surface tension.206

Figure 2 summarizes the boundary–value problem. We note that the Weber solution207

enters (10) only as the outer boundary condition on the semi–circle of radius R ≫ ℓ0208

bounding the contact region. The evaporative flux from the liquid film is to be determined209

as part of the solution of (10); it is not obtained from the Weber formula.210

This ends the statement of the boundary–value problem. As to its mathematical nature,211

we note that if h were given, (10a), (10b) and the outer boundary condition (10d) would212

define a Poisson problem for p. The solution of that Poisson problem prescribes the213

distribution flux ∂p/∂y along the x–axis. The function h(x) is to be chosen to make this214

distribution compatible with the remaining condition (10c); this could, of course, be done215

by adding the appropriate unsteady term to the Reynolds equation, and solving (10) as216

an initial–value problem.217

The contact angle is given by

θ = θ0 b(L); (12a)

θ0 =
k4/9L2/3

a2/9d4/9
. (12b)

Equations (7a) and (7b) have been used. Because the unit of slope θ0 is independent of218

γ, the contact angle depends on surface tension only through the slope parameter b.219

Though the solution of (10) depends on the single parameter L, the contact angle220

itself depends on two parameters θ0 and L. By (11), the magnitude of L is determined221

by that of θ0, because γL2/A is at most of the order of unity. Consequently, whenever222

the assumption θ ≪ 1 holds, the parameter L is also small. This fact is exploited in §5.223

We note that θ0 and L vary respectively as A−4/9 and as A−13/9, and A is not known224

precisely. According to Gee et al. (1989, figure 6), for the alkanes on silica A is known to225

within a factor of about 2; similarly, Levinson et al. (1993, p.484) find that the value of A226

measured for an octane film on silica agrees to within a factor of 2 with that predicted by227

Lifshitz theory. As a result of this uncertainty in a material property, the numerical values228

of θ0 and L are themselves uncertain, for a reason entirely separate from the problem229

of the evaporating drop. Moreover, for the conditions of the Guéna experiments, we find230

in §6 that θ in fact depends only weakly on A. Because this uncertainty in material231

properties would swamp the relation being tested, it would be nugatory to try using (12)232

in the form of the similarity principle θ/θ0 = b(L). In this case, solving the boundary–233

value problem provides a result that no amount of dimensional analysis can approach.234

Table 1 collects the chief parameters of the theory.235
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Reynolds length disjoining–diffusion slope unit Laplace parameter Density parameter
Eq.2 length, Eq.8 Eq.12 Eq.11 Eq.48

L =

»

ρsνlDv

ρlRvT

–1/2

d =
A

νlDv∆ρv
θ0 =

L2/3k4/9

a2/9d4/9
L =

γL2

A
θ0 D =

νlDv∆ρv

(γ3Aa2)1/4

Table 1. Chief parameters. As defined by (5b), k = 2
√

2/π, = 0.900 . . ., provided mass
transfer at the drop scale is by pure diffusion.

4. Discussion of assumptions236

4.1. Linearized Gibbs–Thomson relation237

In our problem, a pure incompressible liquid is in contact with a perfect gas mixture238

comprising inert components and the vapour phase of the liquid. According to Gibbs239

(1875, equation 285), when the liquid pressure is increased by an amount dpl, the liquid240

and its vapour phase will remain in thermodynamic equilibrium if the partial pressure241

of vapour is increased by an amount dpv given by d ln pv = dpl/(ρlRvT ).242

As reference state, we use the condition holding on the interface as x → ∞ in figure 1.
There, pl is equal to the total pressure pT in the gas, and the liquid and its vapour coexist
in equilibrium at partial pressure ps. Integrating from this state to the thermodynamic
state in which the liquid pressure is pl, we obtain

pl − pT = ρlRvT ln
pv

ps
. (13)

The total pressure pT has been assumed to be uniform; in the experiments, this is a good243

approximation because the partial pressure is at most about 1% of the total pressure.244

As (1b), we have used the linearized form of (13). This approximation is valid provided245

the change in pv along the interface is small compared with ps. In the Guéna experiments,246

this is not true for the whole drop because ∆pv = ps: at the interface, pv varies from ps247

on the bulk drop to zero above the wetting film far from the bulk drop. Even in those248

experiments, however, the linearization is valid for the local formulation because the249

contact region does not see the entire variation in pv. According to the outer boundary250

condition (5), within the contact region, pv varies by an amount of the order of ∆pv

√

ℓ0/a.251

Even for ∆pv = ps, this scale is small compared with ps because ℓ0 ≪ a.252

We conclude that when the notion of an apparent contact line is applicable, the lin-253

earized Gibbs–Thomson relation (1b) holds within the contact region. Outside that re-254

gion, we must use (13), however. In the Guéna experiments, for example, pv → 0 in255

the laboratory far from the drop; uncritically using (1b) to determine the wetting film256

thickness far from the bulk drop would then lead to the false conclusion that a liquid257

layer of finite thickness coexists with a vacuum.258

4.2. Separation of timescales259

As noted below (8), the notion of an apparent contact line is appropriate provided a ≫ d,260

the disjoining–diffusion length. We now verify that this separation of spatial scales implies261

a separation of time scales: within the small contact region, the flow evolves on a time262

scale short compared with that on which the drop evolves as a whole. This is why there263

is no time derivative in the Reynolds equation (1d) describing the contact region. This264

separation of time scales is commonly assumed without explanation: see, for example,265

Bonn et al. (2009, equations 49, 64); Eggers and Pismen (2010, equation 39). However,266
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as we have discussed in §1, the behaviour of drops having Bond number ρlga2/γ > 1 is267

not understood. For this reason, we verify this approximation carefully.268

Relative to axes fixed in the laboratory, and with the unsteady term included, the
(dimensional) Reynolds equation for the whole drop is

ρl
∂h

∂t
=

1

3νl s

∂

∂s

[

sh3 ∂pl

∂s

]

+ Dv
∂ρv

∂y
; (14)

s denotes radial distance from the symmetry axis of the drop. The ideal gas law pv =269

ρvRvT has been used.270

Balancing the left side of (14) against the second term on the right hand side, we find271

that, for the contact region, the time scale is given by tc = ρlh0(aℓ0)
1/2/(kDv∆ρv). (We272

have used the scales defined by (9).)273

The drop as a whole, however, evolves on the longer time scale tb set by the integral274

mass balance. To obtain that balance, we assume that, within the liquid film, the radial275

mass flow vanishes at the apparent contact line. This is a good approximation because,276

whenever the notion of an apparent contact line is applicable, the mass loss from the277

wetting film is negligibly small compared with that from the bulk drop. (For this, see the278

discussion below (26) and, again, below (50).)279

Multiplying (14) by 2πs, then integrating from s = 0 to a, we obtain the integral mass
balance (Guéna et al. 2007a, equation 3):

2πρl

� a

0

∂h

∂t
s ds = −4Dva∆ρv.

To evaluate the diffusive flux, we have used results for the Weber solution given by280

Cazabat and Guéna (2010, Appendix 1). In using those results, we have assumed that,281

at reversal, the drop is shallow: its maximum height hm is small compared with a. We have282

made no other assumption about drop shape, however. Because, for the drop as a whole,283

∂h/∂t scales as the ratio of hm to the time scale tb, we conclude that tb = ahmρl/(Dv∆ρv).284

The ratio of time scales is given by tb/tc = khma1/2/(h0ℓ
1/2

0 ). Provided hm ≫ h0 and285

a ≫ ℓ0, the bulk drop evolves on a time scale large compared with that of the contact286

region: tb ≫ tc. This conclusion is independent of drop shape.287

4.3. Self–consistency of the outer boundary conditions (3)288

4.3.1. Tapered film: equation(3a)289

We consider the behaviour as r → ∞ within the tapered film to the left of the origin
O in figure 1. Setting φ = π in (10d), we find that as r → ∞

p ∼ −
√

r. (15)

To calculate the corresponding asymptote for h, we note that within the tapered film,
the capillary pressure becomes negligibly small compared with the disjoining pressure.
Using this observation to simplify the Laplace–Young condition (10b), we find that as
r → ∞

h ∼ r−1/6 (16)

the film thickness vanishes asymptotically within the tapered film. This is, of course,290

consistent with the first growth condition (10d) on h.291

It remains to verify that the flux from the tapered film vanishes asymptotically as
h → 0. Using (15) and (16) to calculate the film transport (first term in the Reynolds
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equation 10c), we find that

∂

∂x

[

h3 ∂p

∂x

]

∼ ∂2

∂r2
(lnh3),∼ 1

2r2
. (17)

The Reynolds equation then requires that

lim
x→−∞

∂p

∂y

∣

∣

∣

y=0
= 0, (18)

as stated by (3a).292

4.3.2. Wedge: equation (3b)293

We consider the behaviour as x → ∞ on the interface separating the liquid wedge from
the gas: as discussed above (4), as far the vapour is concerned, this interface is at φ = 0.
Using (9e) to evaluate the vapour flux at the interface, we obtain ∂p/∂y ∼ −1/(2

√
x).

Substituting this expression into the Reynolds equation (10c), then integrating, we obtain

h3 ∂p

∂x
∼ 3

√
x + c0. (19)

The integration constant c0 depends on L.294

For p to approach a constant on the interface, ∂p/∂x must be integrable at infinity; this295

is so if h grows more rapidly than
√

x. But, although existence of an apparent contact296

angle is, therefore, sufficient for ∂p/∂x to be integrable at infinity, it is not necessary.297

For example, in §5, we find that in the limit as L → 0, (10) has an inner–and–outer298

structure. At the outer edge of the inner region, h then grows more rapidly than x and,299

we find that although the contact angle has not yet formed, this rapid growth of h has300

already forced p to vanish on the interface.301

For the moment, we need the simplest example showing that (3b) is consistent, and
that (10) can define a contact angle. For this purpose, we assume, then verify, that an
apparent contact angle has been formed, so that h ∼ bx. Using this to solve (19) for p,
we obtain

p(x, 0) ∼ −2/(b
√

x)3 : lim
x→∞

p = 0, (20a, b)

consistent with (3b).302

To complete the example, we verify that the assumption h ∼ bx is self–consistent.
Substituting (20a) into Laplace–Young equation (10b), then integrating in x, we find
that as x → ∞ (L fixed)

dh

dx
∼ b − 4/(b3

√
x). (21)

Because dh/dx approaches a limit as x → ∞, an apparent contact angle has formed.303

We conclude that the formulation of (10) is self–consistent whenever the notion of an304

apparent contact line is applicable.305

5. Analysis for small Laplace parameter L → 0306

5.1. The picture to be developed307

Figure 3 shows the contact region, as seen at two different scales. Figure 3a shows the308

axisymmetric bulk droplet with its precursor film. As stated in §1, far from the drop309

the dimensional partial pressure approaches the constant value ps − ∆pv in the free air310

in the laboratory. Because the pressure scale adopted in (9c) is asymptotically o
(

∆pv

)

,311

the corresponding dimensionless pressure is large in magnitude and (of course) negative.312
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The precursor film is therefore asymptotically thin compared with the film thickness h0313

characterizing the contact region, now defined as the solution of (10). In figure 3a, this314

region is indicated by the broken rectangle.315

Figure 3b shows the inner–and–outer structure of the contact region existing in the316

limit as L → 0. Because this structure is controlled by the thin liquid film, the film is317

described first. The inner region is defined by taking the limit as L → 0 (h fixed); it318

contains a slender tapered film. Though, within this region, the capillary pressure is neg-319

ligibly small, film curvature proves to increase with increasing h, whereas the disjoining320

pressure falls. Consequently, for any small but fixed value of L, the capillary pressure321

ultimately balances the disjoining pressure. Because L is small, this balance is possible322

only when the film attains a thickness O(h1) which is asymptotically large in L. The323

corresponding scales h1 and ℓ1 are defined quantitatively by (31). The scale h1 locates324

the corner, shown as region abcd in figure 3b. (Though h1 is large, the film, of course,325

remains slender because h0 ≪ ℓ0.) The contact angle is formed within the corner.326

Because the disjoining pressure must be small for the two pressures to balance, the327

pressure within the corner is necessarily close to zero (the saturation pressure). But328

because the flow is quasisteady, mass lost from the long tapered film is balanced by mass329

flowing through the corner from the bulk drop. Within the corner, however, p is small;330

as a result, a pressure–gradient sufficient to drive the mass flow is possible only if the331

streamwise length of the corner is small: O(1/
√

ℓ1), as shown in figure 3b.332

Further simplification is possible. Owing to the small streamwise dimension of the333

corner, the evaporative mass loss from the film abcd proves to be negligibly small. The334

corner merely acts a funnel, transporting liquid from the bulk drop towards the long335

tapered film from which it evaporates. Morover, we find (equation 41) that the integrated336

mass loss from the inner tapered film is determined completely by the outer boundary337

condition on p. The inner film structure must adjust to satisfy the constraint imposed338

by mass conservation and the outer boundary condition.339

In figure 3b, the square cdef indicates the corner for the vapour. Because the Laplace340

equation contains no length scale, this region is equidimensional. In order that the liquid341

film affect the vapour merely as a set of boundary conditions on y = 0 (as displayed in342

problem 10), the dimension of this region perpendicular to the substrate must be large343

compared with the film thickness: 1/
√

ℓ1 ≫ h1θ0. This condition is satisfied provided the344

contact angle is small, because θ ≈ h1θ0/(1/
√

ℓ1). This ends the discussion of figure 3.345

We now give the analysis.346

5.2. Inner limit: L → 0 (fixed h)347

We shall see that within the region surrounding the apparent contact line, point O in
figure 3a, the characteristic film thickness h1 increases as L is reduced. Because h → 0 at
−∞, to keep h fixed as L is reduced, we need only move suitably far to the left along the
thin tapered film. Within this region, we select a new origin O′. As shown in the figure,
we let ℓ1 = |OO′| be the magnitude of the distance between the two origins O and O′.
So x′ is related to the coordinate x defined in figure 1 by

x′ = x + ℓ1. (22)

We assume that ℓ1 → ∞ as L → 0; this assumption is verified below (31).348

In the following, {r′, φ′} denote polar coordinates with respect to O′. In terms of the
dimensionless coordinates {x, y} defined by (9)

r′ =
√

(x + ℓ1)2 + y2, φ′ = tan−1
[ y

x + ℓ1

]

. (23)
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Figure 3. Two views of the contact region. (a) Axisymmetric drop having apparent contact
line of radius a/ℓ0. (b) Contact region showing scales for L → 0: as discussed in the text,
a/ℓ0 ≫ ℓ1 ≫ 1 ≫ 1/

√
ℓ1 ≫ h1θ0. Dimensionless slope unit θ0, and dimensionless scales h1

and ℓ1 are defined by (12) and (31), respectively. Inner and corner regions are defined as the
solutions of problems (24) and (39), respectively. All lengths are expressed in the unit ℓ0.

5.2.1. Inner problem349

In the limit as L → 0 (fixed h), problem (10) becomes

∇2p = 0, for y > 0. (24a)

On y = 0, −p = h−3, (24b)

∂

∂x′

[

h3 ∂p

∂x′

]

+ 3
∂p

∂y
= 0. (24c)

h →
{

0 as x′ → −∞,
∞ as x′ → ∞.

(24d)

As r′ → ∞,

p ∼ −
√

r′ sin 1

2
φ′. (24e)

Problem (24) defines the inner region; by construction, its solution is independent of L.350

We note the following properties of (24). First, because the Laplace–Young equation351

(10b) has been replaced by the algebraic equation (24b), we can not impose the condition352
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(10f), namely h ∼ bx. Here, instead, we impose only the weak growth condition (24d);353

we then determine the asymptotic behaviour of h as x′ → ∞ by analysing (24) itself.354

Second, as (24e), we have imposed the pressure growth–condition (10e) on the solution355

of the inner problem. This step is valid because the growth conditions (24d) on h again356

require that the simplified boundary conditions (3a), (3b) apply, but now far from O′
357

rather than O. The argument leading to (5) still applies, and matching to the outer358

(Deegan) solution yields (24e). Because the dimensional distance |OO′| is small compared359

with the drop radius a, negligible error is made by replacing polar coordinates {r, φ} in360

(5) by {r′, φ′}.361

Third, the maximum evaporative flux from the liquid film is finite, and occurs within
this region. Indeed, we have the following asymptotes:

−∂p

∂y

∣

∣

∣

y=0
∼

{

1/(2x′2) as x′ → −∞
1/(2

√
x′) as x′ → ∞ . (25a, b)

As (25a), we repeat (18); to obtain (25b), we need only use (24e) to evaluate the flux.362

Because the flux vanishes as x′ → ±∞, it attains a maximum within this region. Let this363

maximum be f0. Because f0 is a property of (24), it is independent of L. This numerical364

value corresponds to the maximum in evaporative mass described physically by Guéna365

et al. (2007, p.308).366

According to Fick’s law, the corresponding maximum dimensional flux is given by

−Dv max
x

∂ρ∗v
∂y∗

∣

∣

∣

y=0

= f0Dv
∆ρv√
aℓ0

. (26)

(Asterisks denote dimensional variables. The ideal gas law, and definitions (9a) and (9c)367

have been used.) Because (26) is deduced from the inner problem (24), it holds only in368

the limit as L → 0.369

According to (26), the maximum flux is large compared with that on the surface of370

the bulk droplet, the latter being of the order of Dv∆ρv/a. The total contribution of371

the wetting film to mass loss from the drop is, however, smaller than that from the bulk372

droplet by a factor of the order of
√

ℓ0/a. But, although mass loss from the film is not373

directly significant in the mass balance for the whole drop, by driving the small–scale374

flow determining θ, it controls the maximum radius to which the droplet can spread.375

We note that, according to (25b), as the bulk drop is approached from within the376

tapered film, the evaporative mass flux approaches the value given by the Weber solution377

for the bulk drop. This is occurring even though the tapered film is separated from the378

bulk drop by the corner region in which the contact angle is formed. Though p∗l is now379

sufficiently close to the total gas pressure p∗T that p∗v at the interface differs only slightly380

from the uniform value ps imposed as a boundary condition on the Weber solution, the381

difference p∗T − p∗l proves sufficiently large to generate the contact angle.382

5.2.2. Scales ℓ1 and h1 locating the corner383

To determine the distance ℓ1 = |OO′|, we need only find the outer limit of h as x′ → ∞.
Using (25b) to evaluate the second term in the Reynolds equation (24c), then integrating
in x, we obtain

1

3
h3 dp

dx′
∼

√
x′ + c2. (27)

The integration constant c2 is determined by mass conservation. Equation (27) represents
the inward mass flow per unit within the liquid film. This flow equals the outward flow
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per unit time within the vapour; that flow is given by

−
� π

0

∂p

∂r′
r′dφ, =

√
r′. (28)

Equation (24e) has been used. Comparing (27) with (28), we see that c2 = 0.384

(We note that, according to (28), the total evaporation from the tapered film is de-385

termined by mass conservation, and the outer boundary condition (24e). This result is a386

consequence of the inner–and–outer structure existing in the limit as L → 0.)387

Eliminating p between (24b) and the equation obtained by setting c2 = 0 in (27), then
integrating in x′, we find that as x′ → ∞

h ∼ c3 exp
[

2

3
x′ 3/2

]

. (29)

By the remark following (24), the integration constant c3 is independent of L.388

According to (29), as x′ → ∞, the film thickness asymptotically increases exponen-
tially: the disjoining pressure decreases exponentially, whereas the Laplace pressure in-
creases. As a result, the corresponding terms in the Laplace–Young equation balance for
sufficiently large h. Using (29) to evaluate d2h/dx′2, we find, without further approxi-
mation, that

Lh3 d2h

dx′2
∼ Lh4

(

x′ + 1

2
x′−1/2

)

. (30)

According to (30), the capillary and disjoining pressures balance when h and x′ satisfy389

Lh4x′ ≈ 1; of course, the second term in parentheses in (30) is negligibly small for large390

x′.391

We therefore define scales h1 and ℓ1 by

Lℓ1h
4
1 = 1, (31a)

ℓ1 =
(

3

2
lnh1

)2/3
. (31b)

(Equation (31b) follows by solving (29) for x′ in terms of h; we do not include the constant392

c3 in the definition of the scales.) The scales {h1, ℓ1} give the dimensionless film thickness393

and location at which capillary pressure balances disjoining pressure. By determining the394

distance ℓ1 = |OO′| in figure 3b, equation (31) locates the corner and the characteristic395

film thickness within it.396

The argument leading from (22) to (31) is self–consistent: it is premised on the condi-397

tion ℓ1 ≫ 1 and, according to (31), ℓ1 is logarithmically large in the small parameter L.398

(Roughly speaking, h1 ≈ L−1/4 and ℓ1 ≈ | lnL|2/3.)399

5.2.3. Dimensions of the corner400

Though (31) locates the corner, it does not determine the increments ∆x, ∆p and ∆h
occurring across that region. To determine these, we impose two conditions: within the
corner, the capillary pressure is to balance the disjoining pressure; and the mass flow
there is to match to that within the inner region. Because, within the inner region, the
mass flow is given by −h3 d

dxh−3, = d

dx lnh, we have the following:

1

h3
1

= ∆p = L ∆h

∆x2
; (32a, b)

h3
1

∆p

∆x
=

√

ℓ1. (32c)

We have used (27) to evaluate the mass flow at the outer edge of the inner region.401
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Solving (32), we obtain

∆x = 1/
√

ℓ1, ∆h = 1/ 4

√

Lℓ1, (33a, b)

∆p = (Lℓ1)
3/4. (33c)

In the form h1 = 1/ 4
√
Lℓ1, equation (31a) has been used. We note that because these402

scales are obtained from the Laplace–Young condition and the film mass balance, they403

describe the liquid film within the region shown as abcd in figure 3b.404

According to (33a), the x–dimension of the corner is vanishingly small compared with405

the length ℓ1 of the tapered film. This is so because the total mass evaporated from406

the long tapered film is O(
√

ℓ1), by (32c). Because the film thickness and streamwise407

pressure difference ∆p across the corner satisfy h3
1∆p = 1, mass conservation requires408

the streamwise length of the corner to be O(1/
√

ℓ1). This is the basis of the physical409

explanation given in the discussion of figure 3b.410

Variables (with circumflexes) for the corner are defined accordingly:

{x, y} = {x̂, ŷ}/
√

ℓ1, h = ĥ/ 4

√

Lℓ1, (34a, b)

p = (Lℓ1)
3/4p̂. (34c)

In (34a), we are using the origin O at the apparent contact line; the translated origin O′
411

has been used only to describe the inner region.412

For use below, we give the relations between the corner variables (34) and dimensional
quantities:

{x∗, y∗} =
(ad2)1/3

k2/3ℓ
1/2

1

{x̂, ŷ}, (35a)

h∗ =
(ad2)1/6

k1/3ℓ
1/4

1

(A

γ

)1/4

ĥ. (35b)

The pressure difference across the interface is given by

p∗l − pT = k
νlDv∆ρv

a1/2

( γ

A

)3/4

ℓ
3/4

1 p̂. (35c)

5.2.4. Existence of a separation of pressure scales413

Before using the corner variables to manipulate the governing equations, we discuss the414

physical significance of the pressure equation (34c). First, because the pressure boundary415

condition (24e) underlies the entire structure of the corner, we verify that the magnitude416

of the pressure within the corner is consistent with the boundary condition used to obtain417

(24e): namely limr′→∞ p = 0.418

To do so, we compare the pressure scale ∆p = (Lℓ1)
3/4 in (34c) with the maximum

pressure pmax within the vapour at the same distance ℓ1 from the origin O′. According to
(24e), for fixed r, the maximum pressure within the vapour occurs along the tapered film

at φ′ = π. Consequently, at r′ = ℓ1, pmax ≈ ℓ
1/2

1 , and ∆p/pmax ≈ (ℓ1L3)1/4. Because ℓ1

is only logarithmically large in the small parameter L, we see that

lim
L→0

∆p/pmax = 0 : (36)

within the corner, the pressure in the vapour is vanishingly small compared with the419

maximum pressure in the vapour at that radius ℓ1. Equation (34c) is therefore consistent420

with the boundary condition on which (24e) is based.421

Second, although the pressure in the corner abcd is small compared with the maximum422
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pressure within the vapour, it is large compared with the estimate that we would obtain423

for p by evaluating the outer boundary condition (24e) at the liquid–vapour interface.424

This important condition ensures that, in the corner, the flow within the liquid film does425

not see a pressure–gradient imposed by the flow outside the film. Instead, the pressure426

within the film adjusts to supply the mass being evaporated within the inner (tapered427

film) region.428

To prove this condition, we first note that, within the corner, the film thickness is429

≈ h1θ0, as shown in figure 3b. From figure 3b, we estimate that, within the corner at430

the liquid–vapour interface, φ′ ≈ h1θ0/ℓ1, where θ0 = h0/ℓ0 is given by (12b) and h1 by431

(31a).432

Using this estimate for φ′ to evaluate the outer boundary condition (24e) at the liquid–
vapour interface, and denoting by pest. the pressure estimate so obtained, we have

pest. ≈ θ0

h1

ℓ
1/2

1

,≈ (L/ℓ1)
3/4 A

γL2
. (37)

Equation (31a) has been used to eliminate h1; also (11) has been used in the form433

θ0 = AL/(γL2);434

Comparing (37) with the corner scale (33c), we see that pest./∆p ≈ ℓ
−3/2

1 . Because ℓ1

is logarithmically large in the small parameter, it follows that

lim
L→0

pest./∆p = 0, (38)

the limit being taken with γL2/A fixed. As claimed, the pressure estimated from (24e) is435

vanishingly small compared with the pressure scale (33c) set by the mass balance within436

the liquid film. Were this not so, the film flow within the corner would interact with the437

vapour flow outside and, to represent that interaction, we would need to include in (34c)438

an additional additive pressure scale.439

Equations (36) and (38) can be summarized by stating that for L → 0, there is sepa-440

ration of pressure scales: pest. ≪ ∆p ≪ pmax. Because the pressure within the film (and441

adjacent vapour) is small compared with the maximum pressure at the radial location442

of corner, it does not modify the external pressure field whose asymptotic form for large443

r′ is given by (24e). At the same time, when evaluated at the liquid–vapour interface,444

the external pressure (24e) is small compared with the pressure in the film; as a result,445

it does not perturb the liquid flow. We will now see the implication of this separation of446

scales.447

5.3. Vapour flow in the corner448

5.3.1. Governing equations and self–consistency449

Expressing (10a) to (10c) in terms of the corner variables, without approximation, we
find that within the rectangular domain cdef in figure 3b, the vapour pressure p̂ satisfies

∇̂2p̂ = 0. (39a)

On ŷ = 0

−p̂ =
d2ĥ

dx̂2
+ ĥ−3, (39b)

∂

∂x̂

[

ĥ3 ∂p̂

∂x̂

]

+ 3(ℓ1L3)1/4 ∂p̂

∂ŷ
= 0. (39c)

(Because growth conditions (10e) and (10f) are unchanged, they are not repeated here.)450

Together (39b) and (39c) provide the boundary condition for p̂ along the base cd of the451
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rectangular domain shown in figure 2b; conditions on the other three sides of the domain452

would be provided as matching conditions on p̂.453

We need not enter into that detail, however. Because ℓ1 is only logarithmically large454

in the small parameter L, the coefficient of ∂p̂/∂ŷ in (39c) vanishes as L → 0. Conse-455

quently, the mass flux along the film is independent of position within the corner. This456

is reasonable because the corner is small, and the mass transport varies only slowly in x457

at the outer edge of the inner region. Because the simplified boundary conditions (39b)458

and (39c) no longer contain derivatives normal to the boundary, they form a pair of459

simultaneous equations determining p̂(x, 0) and ĥ. Within the rectangular region cdef460

shiwn in figure 3b, the diffusion field therefore responds passively to the perturbation461

pressure imposed along side cd by the liquid film. Because we are concerned with contact462

angle, we need not discuss boundary conditions for (39a) on the other three sides of the463

domain.464

Integrating the simplified form of (39c), we obtain

ĥ3 ∂p̂

∂x̂
= c4. (40)

The constant c4 is determined by matching the mass flow.465

At the outer edge of the inner tapered film, the mass flow is given by (27):

1

3
h3 ∂p

∂x′
=

√
x′. (27′)

Without approximation, we use (22) and the definitions (34) to express (27) in terms of
corner variables:

1

3
ĥ3 ∂p̂

∂x̂
=

(

1 + x̂/ℓ
3/2

1

)1/2
.

Taking the limit as ℓ1 → ∞ (x̂ fixed, possibly large), we find that

ĥ3 ∂p̂

∂x̂
= 3, (41)

at the outer edge of the inner region. With equation (41), we establish the claim made466

in §5.1: the total evaporation–rate from the inner tapered film is determined completely467

by mass conservation, and the outer boundary condition (24e). Further, comparing (41)468

with (40), we see that the mass flow is matched provided c4 = 3.469

Using the separation of pressure scales existing for small L, we have shown that deter-470

mining the contact angle does not require solving the Laplace equation for the corner.471

Instead the problem reduces to that of solving an ordinary differential equation. With-472

out this simplifying property of the limit as L → 0, the liquid and vapour flows are fully473

coupled throughout the domain illustrated in figure 2, and the Laplace equation must be474

solved simultaneously with the other members of (39).475

5.3.2. Boundary–value problem for ĥ.476

Substituting (39b) into (40), we find that for −∞ < x̂ < ∞

1

3
ĥ4 d3ĥ

dx̂3
=

dĥ

dx̂
− ĥ (42a)

As x̂ → −∞,
dĥ

dx̂
− ĥ → 0. (42b)

As x̂ → ∞,
d2ĥ

dx̂2
→ 0. (42c)
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Equation (42b) expresses the condition that, within the liquid film, the pressures are
matched within the overlap region connecting the corner to the inner region. To prove

this, we first express (22) in the form x′ = ℓ1 + x̂/ℓ
1/2

1 . Substituting this expression,
without approximation, into (29), we find that at the outer edge of the inner tapered
film, the film thickness is given by

h ∼ c3 exp
[

2

3
ℓ
3/2

1

(

1 + x̂/ℓ
3/2

1

)3/2
]

. (43)

Using (34b) to express (43) in terms of the corner variable ĥ and noting that (31) can

be written as (Lℓ1)
1/4 exp(2

3
ℓ
3/2

1 ) = 1, we obtain

ĥ ∼ c3 exp
[

2

3
ℓ
3/2

1

[(

1 + x̂/ℓ
3/2

1

)3/2 − 1
]

]

,

without approximation. It follows that in the limit as ℓ1 → ∞ (fixed x̂)

ĥ ∼ c3e
x̂. (44)

This is equivalent to (42b).477

Because problem (42) is invariant under translation in x̂, boundary condition (42b) is478

sufficient to ensure that the corner film thickness could be matched to (44) for the value479

of c3 imposed by the solution of the inner problem (24). Because the film thickness can480

be matched, and p ∼ −h−3 within the overlap region, so too can the pressure.481

Problem (42) can be expressed as equivalent problem determining film slope dĥ/dx̂ as482

a function of film thickness ĥ; for this reason, we do not need the constant c3 entering483

into (44). Appendix A describes the method used to compute the solution of (42).484

6. Predicted contact angle485

Figure 4 shows dĥ/dx̂ computed as a function of film thickness ĥ from (42). According
to equation (A.6)

lim
ĥ→∞

dĥ

dx̂
= c6, = 1.47758 . . . . (45)

At ĥ = 10, dĥ/dx̂ is within about 4% of the limiting value (45); at that point, p̂ =486

−0.1045 . . ..487

The contact angle here differs in one essential from that occurring during isothermal488

spreading. According to (45), at the outer edge of the contact region of the stationary489

evaporating meniscus, the slope approaches a limit. This is also true for the stationary490

meniscus when evaporation is limited by heat conduction through the liquid (Morris491

2001). In both cases, the slope approaches a limit because the volume flow rate along492

the liquid film is independent of position at the outer edge of the contact region, causing493

d3h/dx3 to vary asymptotically as h−3. As a result, h is asymptotically a linear function494

of x. For these two problems in which the apparent contact line is stationary, the contact495

angle is independent of the large–scale geometry of the interface; this is so, provided496

the pressure difference across the interface at the outer edge of the corner region is497

small compared with the pressure difference (35c) within the corner. If this condition is498

satisfied, problem (10) completely determines θ, and the outer geometry affects θ only499

through the outer boundary condition (10d).500

The behaviour is different when the contact line moves relative to the substrate. Rel-501

ative to axes moving with the contact line, the volume flow rate then increases linearly502

with film thickness, causing d3h/dx3 to vary asymptotically as h−2 (Morris 2001, p.28).503
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Figure 4. Solid curve, numerical solution of (42); broken curves, asymptotes: (A.3), ĥ → ∞

and (A.5), ĥ → 0; broken line, limiting value (45).

As a result, the film thickness grows more rapidly than x, and the contact angle is always504

influenced by the geometry of the large–scale interface. For the problem of isothermal505

spreading, this is discussed in the review article of Bonn et al. (2009, p.766).506

For L → 0, the contact angle is given in terms of the dimensional quantities h∗ and x∗

by

lim
ĥ→∞

dh∗

dx∗

∼ c6k
1/3 A1/4

γ1/4a1/6d1/3
ℓ
1/4

1 . (46)

Equations (35a) and (35b) have been used. As stated in §1, in this work, the swung dash507

is used only to indicate an asymptotic relation.508

Equation (46) holds if mass transfer occurs by pure diffusion at the drop scale. As noted509

below (5), when buoyant convection is significant at that scale, the factor k becomes a510

function of the parameters controlling that convection. According to table 1, the value511

of L is also affected by k, through the slope unit θ0; that effect is secondary because in512

(46) only ℓ1 depends on L and, as stated below (31), that dependence is weak.513

Substituting for d from (8) and using c6k
1/3 = 1.427, we obtain

θ ∼ 1.427D1/3 4

√

ℓ1; (47)

as given in table 1,

D =
νlDv ∆ρv

(Aγ3a2)1/4
. (48)

With equation (47), we have overcome the difficulty described at the end of §3. Though,514

in general, θ depends on two parameters, L and θ0, each depending significantly on A, we515

have shown that for small L, these parameters combine to form the density parameter D.516

Whereas the general relation (12) permits θ to depend on A in an arbitrary fashion, this517

dependence is weak in the experimentally interesting case: according to (47), θ ∝ A−1/12.518
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This is significant because the value of A is affected by contamination of the surface, as519

discussed e.g. by Truong and Wayner (1987) and Israelachvili (1991, p.196).520

Although θ depends to a first approximation only on the parameter D, it continues to521

depend weakly on L through the factor 4
√

ℓ1 in (47). As discussed in the context of figure522

5, below, this dependence on L can be noticeable under some conditions.523

7. Interpretation using scaling524

The formula for θ corresponds to a definite picture of the contact region. As the525

Laplace parameter is reduced, at a fixed value of film thickness, the disjoining pressure526

dominates the capillary pressure. Because the capillary pressure is essential to contact527

angle formation, that process can occur, for small L, only once the film has become528

relatively thick. As a result, there is a long section of precursor film from which liquid529

can evaporate; in comparison with the evaporation from the precursor film, that from530

the region generating the contact angle is negligibly small.531

To consolidate this picture, we combine it with scaling to obtain the form of (47). Let pl,532

h and ℓ be the dimensional liquid pressure, and characteristic dimensions of the corner533

region within which the angle is formed. This region has two defining characteristics.534

First, the capillary pressure balances the disjoining pressure: pl ≈ γh/ℓ2 ≈ A/h3, the535

latter equation requiring h to be the geometric mean of ℓ and (A/γ)1/2. Second, within536

the liquid film, the mass flow rate J per unit length of contact line is independent of537

position: h3pl/(νlℓ) ≈ J . These three equations determine the unknowns {pl, h, ℓ} in538

terms of the constant J .539

Solving for h and ℓ, we obtain

h ≈ A3/4

γ1/4(νlJ)1/2
, ℓ ≈ A

νlJ
. (49a, b)

According to equation (27) of the small–L analysis, J scales with the fundamental

units h0 and ℓ0, but is increased by a factor ℓ
1/2

1 reflecting the length of the tapered film:

J ≈ h3
0

νlℓ0

( ρl

ρs

√

ℓ0

a
∆pv

)

ℓ
1/2

1 .

(The term in parentheses is the scale for liquid pressure, as given by (9c).) Substituting
for h0 and ℓ0 from (7), we find that

J

Dv∆ρv
≈

(d

a

)1/3

ℓ
1/2

1 ; (50)

d = A/(νlDv∆ρv), as defined by (8).540

To interpret (50), we recall that the rate of mass loss from the bulk droplet is 2

π Dv∆ρv,541

per unit of contact line (Cazabat and Guéna 2010, equation 7). According to (50), the542

additional rate of mass loss across the wetting film is small compared with that from the543

bulk drop provided a ≫ d, that is, provided the notion of an apparent contact line is544

applicable.545

Eliminating νlJ between (49) and (50), we obtain

h ≈ (a2d)1/3
( A

γa2

)1/4

ℓ
−1/4

1 , ℓ ≈ (ad2)1/3ℓ
−1/2

1 . (51a, b)

To within a numerical factor, these results are equivalent to those given by (35).546

The scaling relation θ ≈ D1/3 corresponding to (47) follows on using θ ≈ h/ℓ. Poulard547
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Figure 5. Measured and predicted angles. Symbols, Guéna data: in order of increasing L, •
nonane 0.00046 < L < 0.00075; × OMTS 0.0014 < L < 0.0026; ◦ octane 0.0025 < L < 0.0045;
+ HMDS 0.022 < L < 0.041. Arrows guide the eye from the data to the line showing the angle
predicted by (47) for that fluid. Lines end at a = 2 mm. There are no adjustable parameters.

et al. (2005) also use scaling to obtain a cube root relation, but their physical picture548

differs from ours: theirs contains a triple junction near which the Laplace pressure bal-549

ances the disjoining pressure, and the neighbourhood of that triple junction is assumed550

to influence the observed contact angle.551

8. Comparison with experiment552

8.1. Contact angles553

Figure 5 shows the measured and the predicted values. Only values for drops having554

0.3 < a/mm < 3 are shown; this range was chosen to cover a decade in the logarithmic555

scale, and to include all experimental data showing the a−1/6 scaling identified by Guéna556

et al (2007, p.312). As broken lines, we show the prediction (47); because ℓ
1/4

1 varies557

slightly along each line, the arithmetic mean of the maximum and minimum values was558

used to obtain the coefficient in (47); using this approach, the predicted values of θ/D1/3
559

are 1.60 (octane), 1.62 (OMTS), 1.67 (nonane) and 1.49 (HMDS).560

There are no adjustable parameters in this comparison. Appendix B gives the values of561

material properties used in making the figure. Of these, only the value of A is uncertain562

and, according to (47), θ is insensitive to A. Values for the diffusion coefficient Dv used563

here are, in all cases, about twice those given by Cazabat & Guéna (2010, table 2); there564

is further detail in the appendix.565

The figure caption gives the range of L–values for each fluid. Owing to the differing566

material properties, for a given value of a, L decreases from the top of the figure to the567

bottom. For a given fluid, L decreases from left to right because L ∝ a−2/9, as shown by568

table 1.569

Fair agreement is obtained between measured and predicted angles: for a = 1 mm, the570

ratio of the observed to predicted values is about 0.9 (octane), 0.8 for HMDS and 0.7 for571
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nonane and OMTS. Two properties of the figure suggest that a mechanism not included572

in (10) is needed to explain the detailed behaviour, however. First, for each fluid, the573

data approach the appropriate small–L asymptote towards the left of the figure, where574

the value of L for the fluid is largest (but still less than unity). Though the approach575

occurs in the opposite sense to that expected of an asymptote depending on a single576

parameter, this behaviour is consistent with the suggestion by Cazabat & Guéna (2010,577

§VI.4) that a second scale of motion is needed to explain the behaviour of larger drops.578

Second, the trend from one fluid to another is not monotonic. The gap between the579

asymptote and data decreases from HMDS to octane; this is consistent with L being an580

order of magnitude smaller for octane. For the next fluid OMTS, however, the values581

of L are slightly less than of octane, but the gap is much larger. The gap is also large582

for nonane, even though the values of L for it are about one–third those for OMTS.583

Because octane and OMTS have almost the same values of L, the non–monotonicity can584

not be a consequence of the approximate nature of (47); some effect not included in (10)585

is required.586

8.2. Film thickness at which θ forms587

By (45), at ĥ = 10 the slope is within 4% of its limiting value: the corresponding dimen-
sional film thickness is

hθ = 10k′(ad2)1/6

(

A

γ

)1/4

. (52)

Equation (35b) has been used. The dimensionless factor k′ = k−1/3ℓ
−1/4

1 ; assuming mass588

transfer at the drop scale to be by pure diffusion, k′ + 1 to within about 15% for values589

of L occurring in the experiments.590

In table 2 we give predicted values of hθ for two cases for which experimental values can591

be estimated, at least roughly. Line 1 gives the scales for a 1 mm octane droplet. For this592

case, the uppermost curve in figure 5a of Guéna et al.(2007) gives the corresponding film593

profile measured at reversal; the contact angle appears to be well–defined at the second594

fringe, the corresponding film thickness being of the order of 200–300 nm. Though this595

is about four times the predicted value, more precise agreement is not to be expected596

because for this case there are too few interference fringes to resolve the contact region.597

As we would expect from figure 5, the discrepancy between predicted and observed598

values of hθ increases with drop size. Line 2 gives the scales for 9 mm droplet of OMTS.599

According to figure 5b of Guéna et al. (2007a), for droplets of OMTS having 1 < a/mm <600

9, the angle is observed to form at a thickness hθ ≈ 1–2 µm; the scale increases weakly601

with a. Though the trend is consistent with (52), the observed value is 10–20 times that602

predicted.603

Let us review possible causes of this discrepancy. We have assumed that mass transfer604

at the droplet scale is by pure diffusion. Though, as noted in §1, for 8 mm drop of heptane605

(a fluid with properties comparable with those of OMTS), the Nusselt number Nu ≈ 3,606

this does not seem large enough to explain an order of magnitude discrepancy in hθ,607

particularly because that scale is relatively insensitive to k, varying only as its one–third608

power. (Here, we are of course assuming that the basis function in (5a) is unchanged609

even as Nu increases above unity.)610

Second, our quantitative predictions from (10) are based on the assumption of a sep-611

aration of scales (ℓ1 ≫ 1) holding in the limit as L → 0. According to table 2, however,612

for the experimental conditions ℓ1 ≈ 2. This, however, is also unlikely to explain the613

discrepancy. There is no reason for the assumption ℓ1 ≫ 1 to be adequate for small614
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drops, but to fail for the large ones: because L varies as a−2/9, the approximation should615

improve with increasing drop size.616

Third, the equation Π = Ah−3 for disjoining pressures holds only over a very short617

range of film thicknesses, as discussed below (1). It should, however, be a good approx-618

imation within the thin tapered film in which, according to the discussion in §5.2.1,619

evaporation from the contact region is concentrated. Though for h < 1 nm, the h−3
620

relation begins to fail because the continuum film begins to resemble an adsorbed layer,621

we know from §5 that, in the limit as L → 0, the inner tapered film affects θ only through622

the total rate of evaporation within it. This quantity is, however, itself determined by623

the outer boundary condition, as shown by (41). Because the structure of the tapered624

film adjusts to the constraint imposed by mass conservation and the outer boundary625

condition, failure of the h−3 relation for small film thicknesses seems unlikely to explain626

the discrepancy between predicted values of θ, and those observed for large drops.627

At the other extreme, when h is sufficiently large, retardation becomes significant,628

and the disjoining pressure approaches the asymptote Π ∝ h−4; see Truong and Wayner629

(1987, figure 6), Israelachvili (1992, §11.7). Though this form is likely to be appropro-630

priate within the corner, its effect will be to make problem (42) more nonlinear. This631

should weaken the dependence of θ on a, rather than producing the stronger dependence632

observed for a > 1 mm. (This heuristic argument is readily verified by scaling. Using633

the h−4 relation in the steps leading to (49), but retaining the h−3 relation in (50), we634

find that θ ∝ a−1/7; this is weaker than the dependence given by the original argument.)635

Using another form for disjoining pressure Π seems unlikely to improve the ability of636

theory to predict the behaviour of larger drops.637

Cazabat and Guéna (2010, §VI.4) propose that larger drops depart from the relation638

θ ∝ a−1/6 because the capillary number of the liquid flow at the scale a becomes larger639

than unity; as result, ‘hydrodynamic flow and drop shape are no longer independent,640

and a second intermediate characteristic length scale is clearly required.’ Scaling of (14)641

verifies that if the Bond number ρlga2/γ ≫ 1, gravitational flattening of the drop does642

increase the pressure gradient needed to drive flow towards the contact line.643

Because the slope calculated from the local formulation (10) approaches a limit at644

the outer edge of the contact region, we know the two defining properties of the second645

scale (ℓ2, say) proposed by Cazabat and Guéna. First, for the largest drops (a = 9 mm)646

studied by Guéna (2007), the measured angle is about one–half that predicted by (47); the647

product of ℓ2 with the interface curvature characterizing the second region is, therefore,648

of the order of θ. Second, this curvature is determined by the pressure–difference needed649

to drive the large–scale flow from the centre of flattened drop towards the contact region.650

These conditions characterize the proposed second region.651

Further, because the first interference fringe occurs at a film thickness of the order of652

0.1 µm, comparable with the thickness at which the present analysis predicts θ to form,653

we speculate that two separate contact angles might exist at scales whose separation654

increases with drop size. For the advancing heated meniscus, a similar possibility is655

proposed by Morris (2001, p.28). Detailed analysis of the drop–scale flow is beyond the656

scope of this work, however.657

9. Conclusion658

Motivated by the experiments of Guéna et al. (2007a), we have posed the boundary–
value problem (10) governing the contact region of an evaporating drop at the instant
it reaches its maximum radius a. In §4, we have shown that the formulation is self–
consistent. In particular, the notion of an apparent contact line having a well–defined
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d (nm) L (nm) a (mm) h0 (nm) ℓ0 (nm) L h1 ℓ1 hθ (nm)

octane 3.1 0.15 1 1.7 230 0.00382 3.6 1.5 60
OMTS 5.3 0.15 9 2.5 680 0.00137 4.5 1.7 110

Table 2. Scales for two droplets: hθ is defined by (52).

radius is applicable if there is a separation of length scales:

a ≫ d; (53)

the macroscopic scale a must be large compared with the disjoining–diffusion length659

d = A/(νlDv∆ρv), as defined by (8). We have shown that when (53) holds, there is660

also a separation of time scales: the contact region then evolves on a time scale short661

compared with that on which the bulk drop evolves (at the instant of reversal). As a662

result, there is no time–derivative in (10).663

The solution of (10) depends on one parameter L, a dimensionless surface tension.664

Though the formulation is valid for arbitrary values of L, we have analysed the special665

case L → 0 corresponding to small surface tension. In the experiments L ranges from666

0.0005 to 0.04; for a given fluid, L decreases with increasing drop size.667

In the limit as L → 0, there is a further separation of length scales within the contact668

region itself. Evaporation from this region is now confined to a long thin tapered wetting669

film extending radially outwards from the drop; the dimensionless streamwise length670

ℓ1 of this film is asymptotically large in the small parameter L. Within the film, the671

capillary pressure is negligibly small. As the bulk drop is approached, the film thickens672

and, as a result, the disjoining pressure decreases, allowing it to be balanced by the673

capillary pressure within a corner region whose streamwise dimension vanishes as ℓ
−1/2

1 .674

The contact angle is formed within this small region.675

This structure has implications for the distribution of evaporative mass flux. At the676

inner edge of the corner, facing the drop centre, the liquid pressure rises towards the677

total pressure in the gas. As a result, the vapour pressure pv on the interface falls to678

the (constant) saturation value ps, and the evaporative mass flux across the interface679

matches to that given by the Weber disc solution. Within the corner, and wetting film,680

the liquid pressure pl is sufficently low that the vapour partial pressure at the interface681

is coupled to the liquid flow through the Gibbs–Thomson relation. This brings us to the682

key simplifying feature of the small–L analysis.683

In the limit as L → 0, evaporation from the corner proves to be negligibly small. As684

a result, the corner acts as a funnel feeding liquid from the drop to the long thin evap-685

orating film. This has two implications. Within the corner, film thickness is determined686

completely by the liquid flow; consequently, the film profile is determined by an ordi-687

nary differential equation, rather than by a coupled system involving the steady diffusion688

equation for the vapour.689

Further, because evaporation is negligibly small within the corner, and the Gibbs–690

Thomson (Kelvin) effect is negligibly small within the bulk drop, for the purpose of691

calculating the evaporative mass flux the difference between p∗v and ps is significant only692

within the thin tapered film. To evaluate it there, the pressure difference pT − pl across693

the interface can be replaced by the disjoining pressure; see (24b).694

This result illuminates an approximation made by Eggers and Pismen (2010) in their695

simulation of an evaporating sessile drop. In their equation (25) for the evaporative mass696
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flux, it is assumed that the pressure jump across the interface can be approximated by697

the disjoining pressure ‘since van der Waals forces dominate in the contact line region’.698

According to the discussion above, this approximation amounts to assuming, at least699

implicitly, a separation of scales.700

We have made a careful comparison between predicted and measured angles. According701

to the experiments of Guéna et al. (2007a), the contact angle θ measured at the inflexion702

point varies as a−1/6 for a < 1 mm (about); for larger drops, θ ∝ a−n, the exponent n703

then being fluid–specific. For drops obeying the a−1/6 rule, predicted and measured angles704

agree to within 10–30%; the discrepancy increases with drop size, and is fluid–specific.705

Because L varies inversely with drop size for a given fluid, we infer that some effect706

not included in (10) is required to explain the behaviour of larger drops. In particular,707

we note that measured and predicted angles may refer to quantities occurring at scales708

which coincide for small drops, but become increasingly separated with increasing drop709

size. Numerical solutions, of (10) and of the initial–value problem for the whole drop,710

will be made to investigate this possibility.711

I am grateful to Professor C.J. Radke and to the reviewers for comments that helped712

me improve the presentation and, above all, to Professor A.–M. Cazabat for helpful713

discussions about the experiments.714

Appendix A. Solution of (42)715

We introduce dummy variables x and y defined by

x̂ = x, ĥ = 31/4y. (A.1)

Because these variables are used only in this appendix, they can not be confused with716

the coordinates {x, y} used in the text.717

Substituting (A.1) into (42), then introducing y as the independent variable, we find
that z = dy/dx satisfies the following problem. For 0 < y < ∞

y4z
d

dy

[

z
dz

dy

]

= z − y. (A.2a)

As y → ∞, z → c. (A.2b)

As y → 0, z ∼ y. (A.2c)

The constant c is found as part of the solution.718

To find the form of the solution, we let z = c + ζ. Because (A.2b) requires that719

ζ ≪ c for y → ∞, the left side of (A.2a) can be linearized, and the right hand side720

approximated by −y. With these simplifications, we find that y3c2d2ζ/dy2 ∼ −1. So721

ζ ∼ c′0y + c′1 − 1/(2c2y), where (A.2b) requires that the constants c′0 = 0 = c′1. We722

conclude that for y → ∞, the solution of (A.2) depends on the single parameter c,723

and that z ∼ c − 1/(2c2y). (We may also reach this conclusion by linearizing the left724

side of (A.2a) as above, but without approximating the right hand side. This leads to725

the modified Bessel equation; the conclusion then follows from known properties of its726

solutions.)727

So, for y → ∞, the solution of (A.2) has the asymptote

z ∼ c +

∞
∑

n=1

any−n. (A.3)
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Substituting (A.3) into (A.2a), then equating coefficients of y−n, we obtain

a1 = − 1

2c2
, a2 =

4c4 − 5

24c5
, a3 =

28c4 − 41

288c8
, (A.4a, b, c)

a4 = −20c8 − 139c4 + 168

1440c11
, (A.4c, d)

a5 = −4240c8 − 18176c4 + 18207

172800c14
, (A.4e)

a6 =
67200c12 − 1122160c8 + 3457088c4 − 2936031

29030400c17
. (A.4f)

(The open–source program Maxima has been used.)728

Using (A.3) to obtain initial values, we integrate (A.2a) towards y = 0. We find that as
y → 0, z diverges to ±∞ according as c is less than or greater than a critical value c′. As
c → c′, this divergence is confined to a region of decreasing size near O. The numerical
solution consequently overlaps the small–y asymptote

z = y + y5 + 31y9 + 2986y13 + O(y17), (A.5)

as can be seen in figure 4.729

We conclude that 1.12271749510877 < c′ < 1.12271749510879, so

lim
ĥ→∞

dĥ

dx̂
= 31/4c′. (A.6)

Appendix B. Material properties730

Table 3 gives the values of material properties used in this work. According to Caz-731

abat (pers. communication, 2013.03.17), laboratory temperatures ranged from 21–23 ◦C.732

Calculations in the text are based on properties at 22 ◦C (295 K). The conclusions from733

figure 5 would not affected by fluctuations of a few Kelvin about the value of 295 K734

despite the sensitive dependence of ρs on temperature: though for HMDS at 298 K, ρs735

would be almost 16% higher than at 295 K, the value of the independent variable D1/3
736

in figure 5 would be altered by only about 5%.737

Though measured values of Dv were used for the alkanes, those for the linear siloxanes738

in air are not available. Values given in the table were obtained using the first–order739

Chapman–Enskog relation (Chapman and Cowling 1970, equation 14.2.4) and the ex-740

pressions given as correlation (ix) in Tee et al. (1966, table 3). For octane and nonane,741

I found this method to predict the published experimental values of Dv to within 2%742

at the experimental temperature of 295 K. (Discrepancies between prediction and ex-743

periment are, however, appreciable at temperatures higher than those occurring in the744

Guéna experiments; see figures 3 and 5 of Chae et al. 2011.)745

For siloxanes, the Chapman–Enskog prediction has been tested for two systems closely746

related to the one of interest. Park et al. (1987) measured the diffusivity of the cyclic747

molecule octamethylcyclotetrasiloxane OMcTS in air at 298 K; their measured value748

agreed to within about 30% with the Chapman–Enskog prediction. They describe this749

discrepancy as being ‘large’. Maczek and Edwards (1979, table 7) measured the diffusivity750

of both HMDS and OMTS in argon (rather than in air) at 343 K; for both systems, their751

experimental values agreed to within 4% with the Chapman–Enskog prediction. Together,752

those studies suggest that Chapman–Enskog theory is adequate for our purpose.753
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nonane octane HMDS OMTS
Dv mm2/s 5.4a 6.0a 5.5b 4.4b

γ mN/m 23 23 15.8 16.6
η l mPa s 0.67 0.53 0.50 0.88
ρl kg/m3 720 700 760 820
ps kPa 0.420c 1.53c 4.66d 0.415e

M kg/mol 0.1283 0.1142 0.1624 0.2365
ρs kg/m3∗ 0.022 0.071 0.31 0.040
A zJ† 1f 1f 1g 1g

Table 3. Material properties at 295 K. a, Berezhnoi & Semenov (1997), Beverley et al. (1999,
figure 6 and table 2); b, Chapman & Cowling (1970, eq.14.2.4) ; c, Carruth & Kobayashi (1973);
d, Flaningam (1986); e, Lindley & Hershey (1990); f , Gee et al. (1989, fig.6), Levinson et al.
(1993, fig.3); g, Valignat et al.(1993, fig.4), A.–M. Cazabat (pers. comm.), Israelachvili (1991,
table 11.3); *, ideal gas law; † 1 zJ (zeptojoule)=10−21J. No source is given for values on which
there is wide agreement.
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CAZABAT A. M. & GUÉNA G. 2010. Soft Matter, 6 2591–2612 doi:10.1039/B924477H761

CHAE K., ELVATI P. & VIOLI A. 2011. J. Phys. Chem. B 115 500–506.762

DEEGAN R. D., BAKAJIN O., DUPONT T. F., HUBER G., NAGEL S. R. & WITTEN T.763

A. 2000. Phys. Rev. E62 756–765.764

DOUMENC F. & GUERRIER B. 2010. Langmuir 26 13959–13967 doi:10.1021/la1018373765

EGGERS J. & PISMEN L. M. 2010. Phys. Fluids 22 112101 doi:10.1063/1.3491133.766

FLANINGAM O. L. 1986. J. Chem. Eng. Data 31 268–272.767

GEE M. L., HEALY T. W. & WHITE L. R. 1989.J.Colloid Interface Sci. 131 18–23.768

GIBBS J. W. 1875. Trans. Connecticut Acad. 3 108–248. (Collected Works, 1, p.160.)769
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GUÉNA, G., ALLANÇON P. & CAZABAT, A.–M. 2007a. Colloids Surfaces A 300 307–314772

doi:10.1016/j.colsurfa.2007.02.009773
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