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Abstract of the Dissertation

Extended Hubbard Model: Studies on Quantum Information and Disorder

by

Jon David Spalding

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, September 2020

Dr. Shan-Wen Tsai, Chairperson

The simplest way to add interactions to a single-band model of spinful electrons hopping

on a crystal lattice is the Hubbard model, and the next simplest model is the extended

Hubbard model (EHM). The EHM is useful for modeling superconductive electron pairing

and emergent insulating phases including a dimerized phase called the ”Bond Order Wave”.

In this thesis, I present two projects. In the first, I applied the numerical method of Density

Matrix Renormalization Group to study the entanglement entropy at critical points of the

clean EHM in one dimension near the BOW phase. In the second project, I applied analyt-

ical renormalization group approaches to study the phase diagram of the one dimensional

model with weak disorder at weak coupling.
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A Numerical Study of the

Extended Hubbard Model
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Chapter 1

Introduction

The one-dimensional Hubbard model is the minimal model for the study of inter-

acting fermions with spin [2] and has applications in a number of effectively one-dimensional

materials including organic conductors, conjugated polymers, and carbon nanotubes [3–6]

as well as quantum simulators including fermionic cold-atoms [7–10] and now quantum dot

arrays [11]. At least in the cold-atom experiments, methods have been demonstrated for

measuring the 2nd Renyi entropy [12].

In addition to the 2nd Renyi entropy, many other measures of entanglement have

been conceived as means of characterizing the quantum-mechanical properties of interacting

many-body systems. The most well-established, the von-Neumann entanglement entropy,

is the focus of this paper, but our analysis extends to the higher Renyi entropies. The

von-Neumann entanglement entropy is defined as
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SvN (x) = TrA (ρB log(ρB)) (1.1)

where x ∈ (0, L) defines a spatial bipartition of the wavefuction into subsystem A and

subsystem B, and ρA(B) represents the density matrix for subsystem A(B). SvN (x) quantifies

the inability to write the wavefunction as a simple product over single-particle states in the

spatial basis. At quantum criticality, the focus of this paper, SvN (x) grows logarithmically

for ground state many-body wavefunctions. The importance of quantum-information to

many-body physics is most apparent in the modern Matrix Product State formulation of

the Density Matrix Renormalization Group (DMRG) method [13, 14]. As a variational

method, DMRG includes a tensor network bond dimension (referred to here as M) that sets

the amount of quantum information to keep during the ground state optimization [15].

By adding to the Hubbard model a term for interactions between electrons on

neighboring sites, the Hubbard model becomes the Extended Hubbard Model (EHM), which

has been simulated using gated quantum dot arrays [11]. The nearest-neighbor interaction

may also be simulated using cold dipolar atoms [16–21] and polar molecules [22–28] in

one-dimensional optical lattices. The EHM is described by the Hamiltonian

HEHM = − t
∑
i,s

(c
†
i,sci+1,s + c

†
i+1,sci,s)

+ U
∑
i

ni,↑ni,↓ + V
∑
i

nini+1

(1.2)

where in second-quantized notation, ni = ni,↑+ni,↓ represents the site occupancy, c
†
i,s (ci,s)

represents a creation (annihilation) operator with spin s, and we set t = 1 throughout this

3



Figure 1.1: A schematic of the known phase diagram in the repulsive region of the 1D
extended Hubbard model at half filling. We focus on the two starred critical points: a BKT
point at (4,1.88) and a Gaussian transition at (4,2.16). The blue, single dash represents
BKT transitions that span from the origin to the multicritical point (9.25,4.76). The red
dash-dot-dot lines represent 1st-order transitions, and the black solid curve is a set of second-
order transitions. The black solid and red dash-dot-dot curves meet at (5.89, 3.10). Values
are from reference [3].
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paper. This model hosts highly nontrivial many-body physics, even in one dimension, and

cannot be studied using analytical means at intermediate coupling.

The phase diagram for the half-filled, repulsive case shown in figure 1.1 has been

studied and repeatedly updated over four-decades of investigations and became hotly de-

bated once compelling evidence for a thin Bond Order Wave (BOW) region was demon-

strated with exact diagonalization and later renormalization group arguments [29–31] (for

clarity the region is magnified here in figure 1.1). The BOW phase is characterized by a

ground state with gapped excitations and alternating bonds between neighboring sites; it

is separated from a Spin Density Wave (SDW) region by a Berezinskii-Kosterlitz-Thouless

(BKT) transition and from a Charge Density Wave (CDW) region by a second-order transi-

tion curve that changes at a tricritical point into a 1st-order transition before terminating at

a multicritical point [3, 29, 32–38]. In this study, we restrict ourselves to U = 4 in an effort

to identify the second-order critical point, herein referred to as VGauss, and the BKT-critical

point, VBKT (denoted by star symbols in figure 1.1).

The phase diagram has been studied with a wide range of methods and has moti-

vated innovations such as parallel tempering for Quantum Monte Carlo (QMC) [33]. The

studies based on DMRG have gradually improved independently of the developments in

QMC. Starting in 2002, an early study concluded that the BOW phase appears infinites-

imally close to the line U = 2V. This work used the relatively high bond dimension (M)

of 1200 and system sizes up to L = 1024 sites [39]. In another DMRG study in 2004, the

BKT transition was predicted [34] to be at V = 2.01 as extrapolated from moderate (96 to

256) system sizes using peaks in the BOW structure factor, but with the relatively low M
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of only 500. In 2007, large L up to 1000 and large M up to 3000 were used to locate this

transition at VBKT ≈ 1.877 using standard order-parameter approaches scaled in L [3] which

agreed closely with the high-accuracy QMC result of VBKT = 1.89(1) [33]. More recently

in 2015, with M ≤ 1024 and L ≤ 180 with open boundaries, a careful study used a finite-

size corrected spin-gap at U = 4 to get VBKT = 2.08 [40] which adds controversy to this

difficult-to-locate BKT critical point. Note that in general, scaling DMRG measurements

in L or M can each fail outside of critical regions of (L,M)-space [41] which likely accounts

for the inconsistencies of prior works. We avoided these issues through very conservative

DMRG convergence as well as checking the consistency of results with different M for fixed

L.

A recent study [42] using a continuous unitary transformation (CUT) approach

[43] agrees with the numerical values for the CDW/BOW transition and interprets that

transition as the condensation of singlet excitons [42].

The phase transitions shown in figure 1.1 have previously been studied using tran-

sition measures based on quantum mechanical many-body properties. Energy-level-crossing

methods such as “fidelity susceptibility” and “excited state fidelity” can accurately iden-

tify phase transitions [44], and entanglement has been demonstrated as a central tool in

the study of quantum phase transitions [45]. Peaks and discontinuities in various entan-

glement entropies are useful for models with no a-priori order parameter. The half-chain

von-Neumann entanglement entropy (from now on, we refer to the von-Neumann entangle-

ment entropy as simply the “entropy”), 2-site entropy, and 1-site entropy were previously

computed using DMRG to produce an Extended Hubbard model ground state phase dia-
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gram [46]. The different methods agreed with Refs. [3, 33] with some small discrepancies.

These discrepancies can, we conclude, be overcome in the EHM using universal results from

conformal field theory, previously applied to identification of BKT transitions in the J1-J2

model from the ground state entanglement with periodic boundary conditions (PBC) [47].

In this paper we extend the method demonstrated in Ref. [47] to open boundary conditions

(OBC) for the EHM by taking a logarithmic derivative of the entropy for even and odd

sites seperately before averaging them to overcome the bond-alternation effects. Using the

peak in the central charge, we feel we have successfully identified the BKT transition.

Recently, a direct curve fit of the CFT predictions was used to study small lattices,

to demonstrate the feasibility of detecting the central charge and the Luttinger exponent

directly from the 2nd Renyi entropy in cold-atom experiments [48]. In Refs. [49, 50], CFT

predictions were verified for a one-dimensional bosonic Hamiltonian that acts as a quantum

simulator for the O(2) model in 1+1 dimensions, using the midpoint of the chain as the

optimal location to sample the open-boundary DMRG ground state because there the finite-

size effects as well as boundary effects are minimized, a feature previously exploited in Ref.

[51]. However, extracting useful information at the chain midpoint requires a large number

of system sizes.

Likewise, it may be prohibitive to repeat an experiment with multiple system sizes,

and one-dimensional lattice experiments will usually have a symmetric but inhomogeneous

confining potential. Hence for any numerical or experimental 1D critical models with open

boundaries, especially with symmetric but non-uniform potentials, the methods we develop

below, which we call “scaling to the middle,” should be of value for extracting the most

7



accurate measurements at the midpoint. In short, we re-fit the universal CFT formula for

entropy at a 1D quantum critical point to open boundary entropy data for every possible

domain centered on the chain midpoint, before extrapolating the curve fit parameters to a

domain of 0. This is effectively scaling the curve fitted values in the size of the system block.

For the EHM, we combine this curve-fitting algorithm with a simple variance minimum for

the CFT curve fit to identify a Gaussian critical point (VGauss) with high accuracy for

small system sizes. Compare our value of VGauss = 2.158 (2.160) from a 64 (128)-site

lattice OBC calculation to the best published values of 2.160 from 1000-site QMC [33] and

2.164 from 1000-site DMRG [52]. We postpone further application and validation of the

method, including inhomogeneous potentials, to a future work focused on a simpler model.

At the BKT point, our best result is based on curve fitting to extract the central charge

maximum before scaling in 1/L for the largest systems (128 and 256) to yield VBKT =

1.91(3). This compares well to our favorite published values of 1.877 and 1.89(1) [3] [33]

especially considering that our methods have never been attempted in this setting before

and that our system sizes are limited.

In this study, we demonstrate our approaches to finding critical points with OBC

ground states and apply them to the EHM at half-filling with a cut along the phase diagram

at U = 4. Along the way, we expand upon the method developed in Ref. [47] for identifying

BKT critical points, but for open-boundary wavefunctions, demonstrated by identifying

VBKT for our model. We characterize the nature of finite-size and boundary effects that

occur for this model at VGauss and in the CDW phase. This includes observations of

a degeneracy-induced charge soliton that increases the CFT central charge from 1 to 2 at

8



VGauss, and simple on-site U pinning to eliminate it for both OBC and PBC. We also observe

a growth of entropy oscillations away from open boundaries at VGauss, contradicting the

usual decay of oscillations as observed for Luttinger Liquids, due to the same CDW soliton

that increases c from 1 to 2.
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Chapter 2

Methods

The existence of a mapping between classical critical points in two dimensions and

quantum critical points in one dimension implies that the results of conformal field theory

also apply for one-dimensional quantum critical points [53–55].

Using this mapping and field theory techniques, it was shown that the entangle-

ment entropy of quantum critical points takes a logarithmic form [56–58], and for open

boundaries, the ground state entanglement entropy was derived using CFT as [59]

SvN = S0 +
c

6
log (

2L

π
sin

πx

L
) (2.1)

For periodic boundaries, the factor of 1/6 is replaced with a factor of 1/3 and the

2L changes to L. It was later shown numerically that the entropy takes the form [60]

SvN = S0 +
c

6
log (

2L

π
sin

πx

L
) +

α(−1)x

(2L
π sin πx

L )K
(2.2)

for systems with open boundaries [61]. Although the oscillatory term doesn’t appear in the

Von-Neumann entropy with PBC, it does appear for Renyi entropies, and this can add a

10



coefficient to K [49]. The coefficient α is non-universal, and in subsequent tables 3.1 and

3.2 we replace the overall coefficient on the oscillatory term with A ≡ α
(2L/π)K

.

These details are important for interpreting numerical results. Note that the third

term predicts a decay of oscillations away from the boundary, with a universal exponent K

called the Luttinger exponent. The Luttinger exponent appears analytically in the weak-

coupling bosonization treatment of equation (1.2) [31]. Even though the analytical bosoniza-

tion treatment fails at intermediate couplings, the Luttinger Liquid picture is expected to

hold in all the critical phases we studied.

2.1 Scaling to the middle for improved measurements

Since the DMRG is best with open boundaries, but open boundaries induce various

edge effects, it is desirable to take measurements at or near the midpoint of a lattice [49–

51]. Many open-boundary effects may be improved by performing measurements at the

midpoint for many L and then scaling in L [60].

Here we test a complementary approach that improves the accuracy for any single-

system-size curve fit measurement performed on open boundary condition data [60, 62, 63]

and explain it through an example.

We illustrate the method by computing central charge for a 64-site lattice in the

critical SDW phase, at U = 4 and V = 1, which is expected to have similar entropy to the

critical antiferromagnetic XXZ model with open boundaries. We remind the reader that the

entire SDW phase is characterized by the strong-U Hubbard model, which in the infinite-U

11
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Figure 2.1: “Domain, D” defined for curve fitting the entropy. Here U = 4 and V = 1 in
the SDW phase and compares well to a critical antiferromagnetic XXZ spin chain [60]. For
comparison to figure 3.1, the curve fit for D = 32 is plotted in blue. Below that, we show
the absolute value of the oscillations along with the oscillatory part of the curve fit.
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limit becomes the Heisenberg model. The critical entanglement entropy of the antiferro-

magnetic XXZ model with OBC was studied for the first time in reference [60], which is the

source for equation 2.2. Indeed, S(x) for the SDW in figure 2.1 exhibits an algebraic decay

of entropy oscillations away from the boundaries superimposed on logarithmic growth of

entropy away from the boundary, in full agreement with equation 2.2 1.

Figure 2.1 shows the centered domain D, which is curve fitted by equation 2.2 to

extract a value of c(D). This is repeated for all D before fitting the values of c vs D using

an even function. By evaluating this c(D) curve fit at D = 0, we can extract a “best value”

for this lattice size as illustrated in figure 2.2. This method of measuring c removes the

ambiguity over which is the best domain for curve fitting equation 2.2 with open boundaries.

Note that overfitting and strong edge effects are clearly visible in the plot of c(D), and allow

one to quickly select which values of D are used in the curve fit.

Lastly, we comment that figure 2.3 demonstrates the utility of “scaling to the

middle” in checking finite-size and curve-fit domain effects. It shows the unsuccessful results

of locating VBKT using the variance minimum and scaling to the middle for entropy fit 2.2.

This equation is lacking in higher order corrections that are needed at VBKT . We discuss

this failure further in the next section.

2.2 Variance minimum for finding critical points

The conformal entropy formula 2.2 only fits at critical points. Therefore, a plot

of any measure of the quality of the curve fit, as a function of coupling constants along a

1The Variance is low for the entire SDW phase; see figure 2.4
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cut in the phase diagram, will exhibit a clear minimum when such a critical point separates

two gapped phases (for instance, along U = 4 from BOW to CDW). Here we used the

“Estimated Variance”, or just “Variance”, defined as

variance ≡
D∑
i=1

(yi − ŷi)2

D − p
(2.3)

where D is the number of data points included in the curve fit (also the domain) and p is

the number of curve fit parameters; yi is a data point and ŷi is the corresponding value

predicted with the curve fit, and yi - ŷi is a residual 2. From now on we refer to this as the

variance of the curve fit.

This works very well for all of the system sizes we studied and provides an ex-

tremely sharp, reliable transition indicator, with very low error even for small system sizes,

as illustrated for 16 sites in figure 2.4. This plot was generated by fixing D to the middle

half of the data. Figure 2.5 which shows the entropy at the 5 regions of interest in figure

2.4, that is, the SDW phase, the BOW phase, the CDW phase twice (V ≈ 2.5 and 3), and

the two critical points including the apparent BKT point. All of the features in figure 2.5

are studied in greater detail later on.

We can combine the “Scaling to the middle” technique with the “Variance Mini-

mum” method, as shown in figure 2.6. Each of the data points in that figure is the VGauss

corresponding to the variance minimum for a particular D (example variance in the inset).

This collection of critical points is then curve fitted and extrapolated to an effective D of

0. This final step requires care, since if D is too small, overfitting disrupts the curve fit,

2The “Estimated Variance” is implemented in Mathematica’s NonlinearModelFit function, and is gener-
ated automatically.
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Figure 2.5: Entropy for L = 16 with a CFT curve fit (black curves) for representative values
of V from figure 2.4, including the two local minima. Red bars indicate the domain of the
curve fit.
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Figure 2.6: Illustration of the combined “scaling to the middle” and “variance minimum”
procedure applied to identifying a critical point for 64-site data. The constant term in the
polynomial fit is the value of interest; in this case it is the critical point, VGauss. First,
for each domain D, the minimum variance is used to identify the critical point (shown in
subplot) and these critical points are then fitted as a function of D with an even polynomial.
The constant in the curve fit, here 2.158, is the best estimate for the critical point. A
conservative error estimate is ±0.001.

and when D is too large, edge effects disrupt the curve fit, so the curve fit is restricted to

the smooth part of the data. This step requires visual inspection of the data. Contrast

figure 2.6, demonstrating the successful extrapolation of VGauss using scaling to the middle,

with figure 2.3; in the former, a clear convergence in D is visible, and this convergence is

consistent for all system sizes (see table 3.1); in the latter, there is no convergence in D for

larger systems, and the different sizes disagree with each other.

The method worked well when there is a transition from gapped to gapped phases

separated by a gapless transition point. Yet the BKT phase transition point divides a
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gapless region from a gapped region, so that the variance is not expected to produce a clear

minimum. Rather, we hoped for some kind of a step feature. Unexpectedly, we still found

a minimum in our data (figure 2.4) that we pursued to its dead end.

The evidence that the combined Variance Minimum and Scaling to the Middle

method is failing in this case comes in two forms: first, the value of interest changes drasti-

cally or is wildly inconsistent for different domains. In figure 2.3, VBKT shifts from 1.6 to 1.9

for 32 sites and 1.8 to 2.03 for 64 sites, and then appears to oscillate as a function of D for

the other two data sets. These wild oscillations don’t appear, for instance, when measuring

c in the SDW phase, as pictured in figure 2.2. Second, the behavior changes drastically

between different system sizes. In this case, the Variance vs. V plots (not shown) for sizes

128 (blue “O”) and 256 (green “+”) have no local minimum to the left of VGauss, so that

the flat sections of data in figure 2.3 are just the lowest V included in the data. In other

words, variance increased monotonically from SDW through BOW before dipping at VGauss

for these large domains. From a theoretical perspective, the methods’ failure is obvious

because curve fit 2.2 is lacking in corrections that appear at BKT points. Although we did

pursue the additional logarithmic corrections (see future paper) for this project we found

easier methods, described next.
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2.3 Modified logarithmic derivative and central charge max-

imum for locating BKT transitions with open boundary

conditions

In our search for a reliable and simple transition indicator at the BKT transition,

we found an approach that is proven to work for ground states with periodic boundaries

[47]. The method depends on the presence of a finite-size correction to central charge, c, at

BKT points. This makes this method ideal for use with DMRG since DMRG is ideal for

finite L. Adapting the method to OBC, as we do here, will make it even more useful, as

DMRG converges best with OBC. In this section, we provide theoretical motivation for the

method before developing an OBC version of the methods of [47]. In the results section we

use these developments to study the EHM and successfully confirm the location of VBKT .

The central charge in formula 2.4 has corrections at BKT transitions of the form

c = 1 + g3 where g is the coupling constant for a marginal operator [64]. This correction

must be purely decreasing in the L→∞ limit (that is, along renormalization group flows)

by Zamolodchikov’s C-theorem [65], which implies conversely that as L decreases, c grows

at BKT points. With this, we can now use our favorite method of extracting c to identify

BKT transitions. The method developed here is the most convenient method available at

the moment, since all that is needed is a set of OBC ground state wavefunctions.

For periodic boundaries, Ref. [47] started from equation 2.1 (with 6 replaced by

3) and took a derivative with respect to the logarithm, evaluated numerically close to the
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chain midpoint. The result is an equation for the central charge:

c(x) = 3SvN (x)log (
2L

π
sin

πx

L
) (2.4)

which must be approximated for a discretized lattice by [47]

c(L/2) = 3
SvN (L/2− 1)− SvN (L/2)

log cos ( πL)
(2.5)

This simple form applies only when there is no oscillatory term, such that the

numerical derivative can be evaluated on nearest neighbor bonds.

Since open boundaries, and higher Renyi index, will both induce oscillations in the

entanglement [60], we propose to use the modified version based on equation 2.2, in which

the finite differences are evaluated on next-nearest-neighbor sites (or nth-order neighbors

for longer, but still commensurate, wavelength oscillations) [32]3. The result is

c(x) ≡ 6
SvN (x+ 1)− SvN (x− 1)

log sin (π(x+1)
L )− log sin (π(x−1)

L )
(2.6)

Two complications arise in this approach: first, even-numbered bonds produce

different values of c(x) than odd bonds, and second, equation 2.6 can behave poorly near

x = L/2 due to inexact canceling of a 0 in the numerator and denominator.

We resolve the first difficulty by curve fitting ceven(x) and codd(x) separately, and

then averaging the curve fits to produce a single function of x. We resolve the second

difficulty by inspecting the data by eye to find aberrant values of c(x) at the chain midpoint

that we exclude from the curve fit. In practice, we cut out from 1 to 3 data points for

every entropy dataset. The resulting curve, evaluated at L/2, provides our best estimate of

c for a given system size L. This process is illustrated for entropy data in figure 2.7. This

3This was also used in reference [32] but for PBC
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Figure 2.7: Numerical log-derivative method for central charge demonstrated for L = 64 at
U = 4 and VBKT = 1.83. The yellow pluses and yellow curve fit correspond to the even-bond
log-derivatives while the blue stars and curve fit correspond to the odd-bond log-derivatives.
Note that the midpoint blue star was removed due to a divergence. Red (middle) curve is
the average of the yellow (upper) and blue (lower) curves. The “W” shape for c(x) is due
to boundary effects; for larger L, c(x) flattens.

midpoint value of c(x) agrees well with the curve-fit scaling to the middle, implying that

the two methods are complementary.

Lastly, as was done in Ref. [47], once we have c(V ) we used the maximum value

to indicate the BKT transition. Of course, we can also use a regular curve fit (if desired,

combined with scaling to the middle) to get c(V ). The methods we developed here for OBC

likely require further refinement (see future publication). Although we did not use scaling

in domain size (i.e. re-fit c(x) for every possible domain of the data D) in combination with
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the log-derivative approach, varying the domain D did provide an estimate of the error in

c and the critical point, as reported in table 3.3.
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Chapter 3

Results

In this section, we report our observations of the entropy for many system sizes.

First, we study the unique form of the entropy at VGauss and present the result of our effort

to identify that point using variance minimum in combination with scaling to the middle.

This includes the observation of strange effects from a proposed charge soliton 1 that creates

an effective bosonic degree of freedom at VGauss. Then we present the results of our study

of VBKT using both the log-derivative and curve fit methods before presenting our best

estimate for VBKT .

3.1 Second-order transition

First we summarize our efforts to identify VGauss using the combined variance

minimum and scaling to the middle method, summarized in table 3.1.

1For a good introduction see [66]
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Table 3.1: CFT curve fit results at the Gaussian critical point as determined by combining
the variance minimum and scaling to the middle for equation 2.2. Observe that K increases
with L, that S0 and A are non-universal, and that A decays with L. The numerical resolution
on V was 0.001 for all system sizes in this table. We report the estimated error in the last
significant figure in parenthesis. The DMRG precision was limited by the values in bold;
for small systems, M was unbounded, while for large systems, M was fixed. ∆E as reported
here is a conservative estimate on the accuracy of the ground state energies achieved in our
DMRG calculations. At VGauss, the soliton significantly increased entanglement, exceeding
that at VBKT , so that here only system sizes 16 and 32 are “exact” in the DMRG sense.

L VGauss S0 c A −K M trunc. ∆E

16 2.12 (2) 0.42(7) 2.0 (2) 0.25(NA) 0.04(NA) 900 5E-14 3E-12
32 2.150 (5) 0.30 (3) 2.12 (5) 0.18 0.12 (1) 2000 5E-14 3E-11
64 2.158 (1) 0.31 (1) 1.97 (1) 0.14 0.20 (1) 3200 1E-13 5E-9

128 2.1605 (5) 0.41 (5) 1.71 (5) 0.12 0.27 (2) 3200 1E-11 3E-7
256 2.160 (5) 0.65 (5) 1.4 (1) 0.10 0.29 (5) 3200 1E-10 3E-6

To quickly review how table 3.1 was produced, for each system size, and each

domain, we identified a critical point from the minimum in the variance. Then, for each

system size, we used “scaling to the middle” to get a best estimate of the critical point at

an effective domain size of 0. This procedure is illustrated in figure 2.6.

One of the advantages of this approach is that it implicitly provides an error

estimate for the measurements taken for a given system size. The errors we report in table

3.1 are estimated conservatively from the plot of a parameter versus fit domain or from the

error in the constant term in the fit. For instance, for 64 sites, the procedure is illustrated

in figure 2.6 which shows that the discretization of V, 0.001, is a good estimate of the error

in the extrapolated value VGauss = 2.158.

Before discussing table 3.1 we look directly at a plot of the entanglement entropy

as a function of cut position at VGauss in figure 3.1. The most obvious feature is that
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Figure 3.1: Main plot: entropy for 64 sites at VGauss = 2.158, and curve fit with D = 32.
Inset: entanglement oscillation envelope. Also see figure 3.3.
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Figure 3.2: Charge density as a function of position at VGauss = 2.158 for 64 sites. Charge
oscillations are distinct from the charge solition in figure 3.5, deep in the CDW phase.
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Figure 3.3: Entropy oscillation envelopes for V = 1 (SDW - purple diamonds and green
dashes), VGauss = 2.158 (red dots and blue curve), V = 10 (CDW - blue triangles and orange
dash-dot) for L = 64 sites. The SDW phase represents normal Luttinger Liquid behavior
for comparison. For each plot, the data points were obtained by subtracting the best curve
fit without the oscillatory component from the original entropy data. The smooth curves
are the absolute value of the oscillatory component of the curve fit. At VGauss = 2.158, the
envelope is a hybrid of the SDW and CDW envelopes. Curve fits were performed with D
= 32 as indicated by blue vertical bars.

the oscillations don’t decay away from the edges as expected at a critical point exhibiting

Luttinger Liquid criticality [60]. The inset of figure 3.1 isolates this effect in an unbiased

way, while figure 3.3 provides a curve-fit biased perspective. Compare figure 3.1 with

figure 2.1 for a direct comparison of the entropy at VGauss and the SDW phase, which is a

representative of normal Luttinger Liquid entropy.

Figure 3.3 is a plot of the raw entropy minus the smooth part of the CFT formula

2.1, fitted to the data for a middle-half domain. For completeness we include the oscillatory
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part of the curve fit, A(−1)x

(sin πx
L

)K
, in the plot. There appears to be a competition between two

separate effects at the Gaussian critical point; after about 16 sites in from the edge of the

lattice, the expected decay of oscillations is overcome by a growth of oscillations.

This leads to a negative oscillation exponent (K in equation 2.2) for curve fit

domains that exclude the 16 edge sites on either side of the chain. Since this growth of

oscillations begins once the usual decay effects die down, we expect that decreasing the

domain will improve the accuracy of the measurement of the value of the effective “K” that

dominates on the interior of the lattice. Scaling to the middle is a good way to estimate this

unexpected exponent. This assertion is supported by figure 3.3 and our experience fitting

the data. If the edges are included in the curve fit, we found that the fit variance worsens

drastically, because the two competing K values cancel each other.

As can be seen in table 3.1 the oscillation growth exponent of K increases with

larger system sizes, showing that the soliton oscillation component is enhanced relative to

the Friedel oscillation component when the system size is increased. On the other hand, the

maximum oscillation amplitude A at the lattice midpoint (distinct from the amplitude at the

edges) does decrease with increasing system size, just as the midpoint oscillation amplitude

decreases with system size in a Luttinger Liquid. Table 3.1 also shows that central charge

decreases from 2 with increasing system size (note that reference [67] measured c = 2.17

for L = 10 in the noninteracting case, U = V = 0). Although this statement is made with

some caution, we also observed the central charge decreasing with scaling to the middle.
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When we recognized that the oscillation growth could be due to a charge soliton,

which is known to occur in the CDW phase, we studied the entropy in that region of the

phase diagram (that is, V > VGauss) for comparison with our results at VGauss.

It turns out that the ground state energy is minimized in the CDW phase when

two degenerate CDW’s are present with a π phase shift. The entropy for this topological

soliton defect, for OBC, is plotted in figure 3.4 and the density is plotted in figure 3.5. The

entropy and density both fit well to combinations of sine functions as shown. In a brief

side study on 16-site and 32-site lattices with PBC’s, we found that the CDW phase has

a uniform nonzero entanglement entropy due to the soliton/degeneracy effect. Comparing

the envelopes of the entropy oscillatons in figure 3.3 for the CDW phase to VGauss, it seems

plausible that the soliton is the cause of the growing oscillation envelope at the Gaussian

point. With this knowledge, we can interpret the growth of oscillation amplitude as a result

of combining the CFT scaling of equation 2.1 with the oscillation envelope in the curve fit

used in figure 3.4. We did not pursue further linear combinations (or products) of sin() and

1/sin() to more accurately reflect the competing effects, but this might be useful to support

a theoretical derivation of the entropy we observed.

To further confirm that the charge soliton was the source of the unexpected curve

fit values for c and K, we tried various pinning configurations to select out one of the

interfering degenerate ground states. For OBC, increasing the on-site energy U at site 1,

while decreasing it at site L, is effective for this task and completely eliminates the soliton

deep in the CDW phase as shown in figures 3.4 and 3.5. Likewise, for PBC, the nonzero

entropy is lowered to 0 (i.e. a classical CDW) by increasing or decreasing U at a single site.
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Figure 3.4: Entropy deep in the CDW phase fits well to a combination of sine functions,
as shown here for 32 sites at U = 4 and V = 10 with OBC. The square points show the
entropy without pinning, while the round points show a reduction in entropy with pinning.
Here U = U + 1.0 at the left edge and U = U - 1.0 at the right edge.
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Figure 3.5: Charge density for N = 32 sites, U = 4, V = 10, deep in the CDW phase
with and without pinned edges. Pinning takes the form U + P where P is 0 or ± 1 at the
edges and eliminates a topological defect (a kink-soliton). The envelope of the density fits
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(
π(x−1)
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)2
as shown as a blue curve.
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Next we attempted a similar program of edge pinning at VGauss to eliminate the

increased value of c and negative K. With fine-tuned pinning, in this case with additional

positive U at both site 1 and site L, we were able to recover both a central charge close to

1 (best result was 1.2 for 64 sites) and regular Luttinger Liquid effects (K was about 0.5

for 64 sites, close to the previous Monte Carlo best estimate of 0.44) [33]. This particular

arrangement of fine-tuned pinning softens the boundary conditions and reduces the soliton,

hinting at further work to be explored with alternative boundary conditions [68] applied

to this model, which may combine nicely with “scaling to the middle” to extract accurate

infinite-size values.

The growth of the entropy oscillations we present in figure 3.4 and table 3.1 was

also displayed in Ref. [69] in a different model with charge oscillations, however the authors

did not investigate the growth of the oscillations from the open boundaries.

We briefly studied a 16-site lattice at VGauss with PBC. Although the entropy

oscillations went away, we still found an increased central charge of 2, which further supports

the presence of a soliton for finite-sized chains at this critical point. In the CDW phase

(V > VGauss), for periodic boundaries, the soliton was eliminated easily by increasing U at

a single site. This strategy worked at VGauss as well, bringing the central charge down to

the thermodynamic-limit value of 1, while inducing a small charge oscillation. From these

observations, we propose that the soliton is contributing a second bosonic degree of freedom

for small systems, and that this effect should have experimental consequences.

For open boundary conditions, we can see from our data in table 3.1 that the

central charge of 2, and hence the soliton, is largely unchanged until the system size reaches
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about 100 sites. This is encapsulated by the approximate scaling of c with L, according to

the function c(L) ≈ 1 + tanh(100/L). To arrive at this function, we included preliminary

calculations of large (512 and 1024) sizes; these also showed oscillation growth from the

boundaries. However, our data was incomplete and had large truncation errors relative to

our other sizes, so we chose to hold back on reporting these results, as promising as they

were 2. Our evidence that c decreases to 1 as system size increases could conceivably be

a finite-entanglement effect, since our larger system calculations come with entropy loss

(in other words, more truncation error). These size vs entanglement scaling effects can be

subtle [41] and would require additional effort to resolve unambiguously. As mentioned

previously, scaling to the middle also supports the observation that c decreases to 1.

3.2 BKT transition

It has been known for some time that BKT transitions are difficult to detect

numerically due to the slow closing of the gap for standard order-parameter and energy gap

methods [33]. Previous entanglement entropy studies of the EHM’s BKT transition have

been imprecise: using the two-site and block entropies leads to a discrepancy in VBKT of

about 0.1 from the best published results, even though the system sizes were large (512

sites) and the truncation error low (equivalently, high bond dimension M = 3000) [46]. We

identified an approach that provides a sharper, more accurate transition indicator, based

on the universal scaling law (2.2) for the ground-state entanglement.

2In order to accurately study the critical behavior, we need to first find the critical point precisely. Since
the critical point sharpens as system size increases, and since computational cost grows rapidly with system
size, the necessary scan across many V values is very computationally demanding.
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Table 3.2: Critical point and resulting curve fit parameters as determined by fitting the
entanglement entropy, equation 2.2, and applying the “scaling to the middle” approach for
all parameters to reduce boundary effects. The maximum in c(V ) was used to identify
the critical point. A, defined in the text, is a measure of the amplitude of the oscillatory
component of the entropy. This approach failed for 16 sites, but the log-derivative method
did work for 16 sites, table 3.3. K = 1/2 matches expectations for the Heisenberg model.
For sizes 16 and 32, we did not record the maximum bond dimensions. The bolded values
were used to set the DMRG convergence. When the truncation error (trunc) was used, M
was allowed to grow unbounded; when M was fixed (due to resource limitations) sweeps
were continued until ∆E or trunc was achieved.

L VBKT S0 c A K M trunc ∆E

16 NA NA NA NA NA NA 1E-13 1E-12
32 1.56 (1) 0.776 (5) 0.974 (5) 0.12 (1) 0.5965 (3) NA 1E-13 1E-12
64 1.82 (1) 0.76 (1) 1.0542 (2) 0.10 (1) 0.563 (3) 2000 5E-14 5E-10
128 1.95 (1) 0.780 (5) 1.060 (1) 0.08 (1) 0.492 (9) 3200 1E-12 2E-8
256 1.93 (1) 0.797 (1) 1.028 (1) 0.06 (1) 0.4862 (2) 3200 1E-11 1E-7

As shown in Ref. [47] and citations to that article [70–73], the peak in the central

charge provides a reliable, universal way of identifying BKT transitions from finite-size data.

We demonstrate this approach for the EHM, with two methods: 1) extracting the central

charge for each V with a simple curve fit that has been scaled to the middle, and 2) using

the logarithmic derivative method to extract central charge for each V, as described in the

Methods section, 2.3. The results presented below are to be compared against the most

reliable, found in Refs. [3, 33] which relied on finite-size scaling of up to 1000 sites; for U

= 4, VBKT = 1.877 by DMRG, and VBKT = 1.89(1) by QMC, respectively.

The most obvious way to identify the central charge, and hence the peak, is with

a regular curve fit; we also apply scaling to the middle for further gains in precision. The

values of c(V )max extracted this way are shown in table 3.2. One advantage of this approach

is that all of the curve-fit parameters can be tabulated, including the Luttinger exponent K

and the constant term in the entropy. As a result, as shown in table 3.2, we found that the
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Figure 3.6: Plot of c(V) for all system sizes from log-derivative method. 32 sites has
orange ellipses, 64 sites has red circles, 128 sites has blue triangles, and 256 sites has purple
rectangles. Up to L = 128, cmax and Vmax increase with L, before decreasing from L = 128
to 256.

constant term in the entropy, S0, is size-independent 3. The disadvantage of this approach

is that about 32 sites are required to use scaling to the middle. This implies, for instance,

that if the cold atoms under study are in a symmetric confining potential (for instance

U(x) ≈ U + ∆Ux2), then nearly 32 atoms are needed to use scaling to the middle.

The results of the second way of extracting c(V )max that we tested, as adapted

from Ref. [47], are presented in table 3.3 and figure 3.6. These results agree very well with

the regular curve-fit method reported in table 3.2 and described above. This method has

3Nishimoto [47] did not study the constant term at BKT transitions because his log-derivative approach
removes it.
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the advantage, over curve-fitting, that fewer sites are needed to extract the critical point,

providing easy access for experiments.

Here we discuss figure 3.6 and put it into context. First, this figure corresponds

to figure 1 in Ref. [47], which shows analogous plots of c(J2/J1) for the J1-J2 model with

periodic boundary conditions near a BKT point. There, three main observations are made:

“cmax” decreases with increasing system size; the critical coupling, (J2/J1)max, decreases

with increasing system size; and in the infinite size limit, c(J2/J1) approximates a unit

step function (c takes the value 1 in the critical phase and drops off in the gapped phase).

The sizes presented were 32, 64, 96, and 128. In our figure 3.6 and table 3.3, we find the

opposite trend for sizes 16 (not plotted), 32, and 64 sites; we see cmax increases, and Vmax

increases, as L increases. Then, this trend reverses, and for 128 and 256 sites, both cmax

and Vmax decrease. We see the step function behavior, as c is nearly 1 in the SDW phase

before peaking at the BKT transition and then dropping sharply in the BOW phase.

This more complicated behavior has two apparent causes. First, the BKT point

is not immune to the CDW effects studied at VGauss. As revealed in the previous section,

we expect those effects to dominate up to system sizes about 100 sites, but also to push the

effective critical point to lower V (as seen here) as the CDW survives at the boundaries and

breaks the symmetry of the critical point. In this way, the BKT point has CDW boundary

effects that decay with system size up to about 100 sites. The second cause could be the

worse truncation errors for larger systems, which could account for both the scatter in the

data as well as the decrease in c. We tested this hypothesis by recreating the plots with

bond dimension M decreased from 3200 to 1600, and observed no changes in the locations of
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the peaks for any of the sizes presented. With this accuracy check, we can safely state that

the behavior is a real finite-size effect, and that our larger L = 128 and 256 are exhibiting

the finite-size behavior shown in fig. 1 of Ref. [47]. Future studies of this BKT point should

avoid sizes below L = 100. Since L = 128 and 256 have reached the scaling regime, we feel

confident claiming VBKT < 1.94 in the infinite-size limit (or 1.93 from table 3.2).

Now we may also resolve the issue of the apparent scatter in the plots for larger L

in figure 3.6, which is not due to DMRG, but rather the log-derivative. For larger systems,

S(x) data near the lattice midpoint is very flat, which introduces extreme sensitivity in the

numerical log-derivative. This scatter in the data in figure 3.6 leads to larger error estimates

in table 3.3. However, with refinement of the method, the scatter could be reduced.

Table 3.3: The BKT point, determined by finding a maximum in central charge c as a
function of V, which was computed with the modified logarithmic derivative method. Raw
data is plotted in figure 3.6.

L V mid
BKT cmidBKT

16 1.29(2) 0.89(1)
32 1.57(3) 0.975(2)
64 1.83(3) 1.052(2)
128 1.95(2) 1.058(2)
256 1.94(2) 1.027(2)

We conclude this section by making our final and best estimate of the critical

point, VBKT , based on the c-max method. As done in Ref. [47] (see figure 2), we can

linearly fit Vmax vs 1/L and extrapolate to 1/L = 0 to get VBKT . For 128 and 256 sites,

using the data from Table 3.2, this yields VBKT = 1.91(3). The error of 0.03 was estimated

by re-fitting the line at the bounds of VBKT . As a range, we find that 1.88 < VBKT < 1.94,

in agreement with previous publications and in support of VBKT < U/2.
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Chapter 4

Conclusions, Acknowledgements,

and Follow-Up Work

4.1 Conclusions

We have successfully demonstrated the identification of quantum critical points

for the Extended Hubbard Model in 1D for both the second-order and the Berezinskii-

Kosterlitz-Thouless transitions using nothing but the ground state von-Neumann entangle-

ment entropy and results from Conformal Field Theory. Along the way we have introduced

two refined methods for resolving quantum phase diagrams: “Scaling to the Middle” which

provides improved measurement accuracy of any spatial curve fit on open boundary data,

and an extended log-derivative approach for the study of central charge from open bound-

ary data. Since the central charge exhibits a finite-size-effect peak at BKT transitions, it
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can then be used to identify such transitions from experimentally realistic system sizes. In

combination with a CFT-fitted variance minimum, these tools enable reliable small-scale

studies of numerical and experimental (i.e. cold-atom) entropy data.

In addition, we have identified the role played by soliton physics at the Gaussian

critical point in the Extended Hubbard Model at half-filling; namely, it leads to an additional

bosonic degree of freedom that appears as an addition to the central charge for systems up

to about 100 sites in length. This same soliton effect is also responsible for entanglement

entropy oscillations that grow, rather than decay, from open boundaries, in contrast to the

expected Luttinger Liquid oscillations.
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4.3 Follow-Up Work

Since the publication of this work in 2019, additional work was completed to add

to the study of the observations reported here.
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Part II

Analytical Study of Extended

Hubbard Model with Disorder
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Chapter 5

Analysis and model translations

In this chapter, I present the main theoretical task required to solve the second

problem. Starting from the Hamiltonian of the extended Hubbard model with disorder,

derive a renormalization group flow that can reveal the correct low-energy physics.

Thanks to the long history of studies of the extended Hubbard model, work has

been done on this problem. What follows is essentially an attempt to merge the analyses

of two authors: T+F who studied the U-V model and showed that the BOW phase can be

detected using a weak-coupling analysis. This was done by including high-energy corrections

in g-ology coefficients, and when U u 2V , these corrections lead to breaking an accidental

symmetry (while inducing the coefficients for the spin sector theory to become negative).

F+K showed that for the U-∆ model, there is a transition between a Mott insulator and an

Anderson insulator. T+F provides the necessary high energy corrected g-ology coefficients

which are then input into the RG flows determined by F+K for the EHM with disorder. For

43



Figure 5.1: The needed steps to follow T+F’s derivation of the BOW phase diagram.

me to perform this merger and have confidence in the resulting RG flow equations, I found

it was necessary to repeat for myself as much of T+F and F+K’s derivations as possible,

as well as test and compare the resulting RG flows in the parameter regimes that match.

Having a lack of experience in this subject, I created the flow chart in figure 5.1 to

chart a course to understanding T+F’s paper; the flow chart helped me decide which parts

to focus on in detail and which parts to skim and in what order. This then prepares me to

derive F+K’s flow equations. A similar diagram is provided in the next figure 5.2 below,

roughly outlining how to complete the derivation of F+K’s flows.
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Figure 5.2: The needed steps to follow F+K’s derivation of the disordered Hubbard model

flow equations.
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To begin with, T+F provides an abelian bosonization analysis of their g-ology

coefficients. I start in the first section by ensuring that our choice of notation is consistent

with T+F’s definitions, as well as Nakamura (similar to Giamarchi text). I derive RG

equations for the clean model in this notation.

In the second section, I re-derive the bosonized hamiltonian following conven-

tions from Senechal’s review article. This requires careful comparison to get signs correct.

Senechal’s notation, in terms of currents, provides a quick path to non-abelian bosonization.

This is convenient for comparison with F+K’s methods and RG equations.

Lastly, in the third section, I add a disorder term to the original model in real-

space. I bosonize that in non-abelian notation, with help from Senechal. Then I derive final

RG equations to compare with F+K’s RG equations.

It was important to match the different sign conventions and have “sanity checks”

to compare my RG flows with prior publication results, as well as get a sense for what the

simpler flows are telling us before attempting to interpret the full disordered system flows.

5.1 Consistent notation: Clean Case, Abelian

One of the primary challenges of this project is translating notation from multiple

authors and combining it into the model we are studying. In this section I document the

notation that I use for constructing the clean, abelian, bosonic model from which the BOW
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RG flows can be derived. The Hamiltonian is

H = −t
∑
σ

L∑
i=1

(c†i+1,σci,σ +H.c.) + U
L∑
i=1

ni,↑ni,↓

+V

L∑
i=1

nini+1, (5.1)

.

I start at [75] equation 6, the Bosonic version of 5.1, with δ = 0 and q = 1 at half

filling. By defining Πν = 1
π∂xθν we arrive at notation consistent with Giamarchi’s appendix

D [76],

Hclean =
∑
ν=ρ,σ

vν
2π

∫
dx[Kν (πΠν(x))2 +

1

Kν
∂xφν(x)2] (5.2)

+
2g1⊥

(2πα)2
cos(
√

8φσ(x))

+
2g3⊥

(2πα)2
cos(
√

8φρ(x))

+
2g3‖

(2πα)2
cos(
√

8φρ(x)) cos(
√

8φσ(x)).

This form for the momentum is nice because it leads to a canonical commutator

[φ(x),Π(x′)] = iδ(x − x′). The reference [77] defines both the Lagrangian (Hamiltonian)

without any factors of π and the canonical momentum with a relative factor of −π, but this

won’t concern us here.

The bosonic constants, Kρ, vρ, Kσ, and vσ, can be derived by substituting the

fermion to boson mapping. The appendix in [75] provides these (equation A1) but leaves
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out the definitions of the g’s. The relationships provided by [75] are

vν =

√
u2
ν −

( gν
2π

)2
(5.3)

Kν =

√
2πuν + gν
2πuν − gν

uν ≡ vF +
g4‖ ± g4⊥

2π

gν ≡ g1‖ − g2‖ ∓ g2⊥

g1,⊥ = gσ

where the upper and lower sign is for charge, ρ and spin, σ fields, respectively.

The paper [75] builds off of the notation in [78] and so we continue with that notation here.

For convenience I list the above formulas with the bare g-ology substituted, but

not yet in terms of U and V:

vσ =

√(
vf +

g4‖ − g4⊥

2π

)2

−
(
g1‖ − g2‖ + g2⊥

2π

)2

(5.4)

Kσ =

√
2πvf + g4‖ − g4⊥ + g1‖ − g2‖ + g2⊥

2πvf + g4‖ − g4⊥ − g1‖ + g2‖ − g2⊥

vρ =

√(
vf +

g4‖ + g4⊥

2π

)2

−
(
g1‖ − g2‖ − g2⊥

2π

)2

Kρ =

√
2πvf + g4‖ + g4⊥ + g1‖ − g2‖ − g2⊥

2πvf + g4‖ + g4⊥ − g1‖ + g2‖ + g2⊥
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We also list the definitions of the g’s from [78], repeated below, consistent with

the notation in [75] used above:

g1⊥ = U − 2V (5.5)

g1‖ = −2V

g2⊥ = U + 2V

g2‖ = 2V

g3⊥ = U − 2V

g3‖ = −2V

g4⊥ = U + 2V

g4‖ = 2V

With these definitions substituted into 5.3, the coefficients become

Kρ =

√
πvf − V

πvf + U + 5V
, (5.6)

vρ =

√
v2
f +

(U + 4V )vf
π

− V (U + 5V )

π2
,

Kσ =

√
πvf − V

πvf − U + V
,

vσ =

√
v2
f −

vfU

π
+
V (U − V )

π2
.

Note that g1⊥ and g3⊥ do not enter into these parameters at all. They only appear

in the symmetry breaking cosine terms in the Hamiltonian.

This bosonic model and set of coefficients will not lead to a BOW phase unless

corrected g1,⊥ and g3,⊥ are incorporated into equations 5.5 as explained in [79]. I repeat
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these crucial corrections here:

g1⊥ = (U − 2V )

[
1− C1

4π
(U − 2V )

]
− C2V

2

π
(5.7)

g3⊥ = (U − 2V )

[
1 +

C1

4π
(U + 6V )

]
+
C2V

2

π

C1(Λ) ≡ 2 ln(cot(Λ/2))

C2(Λ) ≡ 2 cos(Λ).

With these corrections, we can quickly understand the (mathematical) source of

the BOW phase when U = 2V. Looking at equations 5.2, the symmetry breaking cosine

terms will have a coefficient of 0 when U = 2V . This line was previously thought to be a

single phase transition. However, with the corrections, the cosine for the charge field has a

positive coefficient when U = 2V , and the cosine for the spin field has a negative coefficient

when U = 2V . In a mean-field sense, the symmetry breaking for the spin field will favor

values nπ while the charge field will favor (2n+ 1)π/2 close to U = 2V . I review this later

in the notation of [79] in section 6.1, where I also reproduce the clean BOW weak-coupling

phase diagram as practice.

5.2 Consistent notation: Disorder added to Abelian model

I add the following on-site disorder,

Hdis =
L∑
i=1

εini (5.8)

=

L∑
i=1

∑
σ=↑,↓

εi(c
†
i,σci,σ) (5.9)

to the hamiltonian 5.1, with the gaussian-distributed disorder εi that is compatible

with a replica trick.

50



I re-emphasize that the purpose of this section is to provide notational continuity

to avoid errors. To that end, notice there is a sign conflict between two of our references for

the disorder contribution to the bosonic model; compare equation 9.29 in [76], which has a

(-) on the forward-scattering disorder term, to equation 4 in [80] which lacks this sign.

What is the origin of this sign difference, and will it affect our eventual RG flows?

The answer to the latter question is no, because performing a replica trick will square any

coefficients on the disorder to treat it as a source of fluctuations. So we won’t waste time

worrying about the source of the sign difference.

Sticking with [76] notation, we have

Hdis = −
√

2

π

∫ L

0
dxη(x)∇φρ(x) (5.10)

+
1

2πα

∫ L

0
dxξ∗(x)ei

√
2φρ(x) cos

(√
2φσ(x)

)
+ h.c. (5.11)

One difference between [76] and [80] is that [76] implicitly includes the +2kf scat-

tering in the definition of the backscattering amplitude (see equation 9.22 [76]).

5.3 Consistent notation: Clean, Non-Abelian spin sector

In this section, we systematically derive the non-abelian spin Hamiltonian, equa-

tion 3 in [80], from equations 5.2 above. This is a useful exercise for purposes of translating

between the two forms of the Hamiltonian which we then need for use in the flow equations.
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Repeating here the spin-sector components of equations 5.2,

Hclean =
vσ
2π

∫
dx[Kσ (πΠσ(x))2 +

1

Kσ
∂xφσ(x)2] (5.12)

+
2g1⊥

(2πα)2
cos(
√

8φσ(x))

+
2g3‖

(2πα)2
cos(
√

8φρ(x)) cos(
√

8φσ(x)).

Now, we’d like to rewrite this in terms of SU(2) invariant currents. Although

this translation is simple in principle, it is complicated by the task of translating between

different authors’ definitions of the bosonic model. At this point, a messy accounting job is

required that bridges the gaps left by several sets of equivalent notation.

1.

Write down Senechal’s hamiltonian in terms of currents (including interactions).

Then translate back into bosonic form; compare with equations 5.2 above.

Hs =
2πv + 2vg4,s

3
[ ~JL(x) · ~JL(x) + ~JR(x) · ~JR(x)] (5.13)

+ −2vg1

(
JxRJ

x
L + JyRJ

y
L

)
+ 4vg2,sJ

z
RJ

z
L

We apply g1 = −2g2,s which is for now in the notation of [77], we write this as

Hs =
2πv + 2vg4,s

3
[ ~JL(x) · ~JL(x) + ~JR(x) · ~JR(x)]

− 2vg1

(
JxRJ

x
L + JyRJ

y
L + JzRJ

z
L

)
(5.14)

This can be re-written as

Hs =
2πv + 2vg4,s

3
[ ~JL(x) · ~JL(x) + ~JR(x) · ~JR(x)]

− 2vg1
~JR(x) · ~JL(x) (5.15)
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Next I apply Senechal’s equations 7.1 for the right-moving currents. (although

first I derived the forms of the left-moving currents.) The components of the spin currents

are derived by substituting the bosonization formulas for the spinful fermion fields, and I

don’t show the uninteresting details. Since the currents with opposite chirality commute

we don’t need point splitting to get these.

First, the right-moving z component is

JRz =
i√
2π
∂zϕs(x) (5.16)

and the left-moving component is

JLz =
−i√
2π
∂z̄ϕs(x) (5.17)

where the partial derivatives are defined in [77] equations 2.4, with respect to

z = −i(x − vt) and z̄ = i(x + vt) respectively, and ϕ(x) = φL(z̄) + φR(z) is a sum of left

and right moving bosonic spin fields.

For the x components of the current I find

JRx =
i

2π
η↑η↓ sin

(√
8πφR

)
(5.18)

JLx =
−i
2π
η̄↑η̄↓ sin

(√
8πφL

)
(5.19)

and finally for the y components I get

JRy =
−i
2π
η↑η↓ cos

(√
8πφR

)
(5.20)

JLy =
−i
2π
η̄↑η̄↓ cos

(√
8πφL

)
(5.21)

in which ησ ensures fermionic statistics.
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After substituting these into Hs above, I get

Hs =
2v + 2vg4,s

3
[ ~JL(x) · ~JL(x) + ~JR(x) · ~JR(x)]

−2vg1

(
−1

(2π)2
cos
(√

8πϕs(x)
)

+
1

2π
∂zϕs(x)∂z̄ϕs(x)

)
(5.22)

The first term comes from [77] equation 6.64, yielding

Hs = −(v +
vg4,s

π
)[(∂zϕs(x))2 + (∂z̄ϕs(x))2]

−2vg1

(
−1

(2π)2
cos
(√

8πϕ
)

+
1

2π
∂zϕs(x)∂z̄ϕs(x)

)
. (5.23)

By completing the conversion to real-space and time coordinates (using [77] equa-

tions 2.4), we should return ourselves to the original sine-gordon luttinger model with cosine

term given in [77] eq. 5.60 and luttinger coefficients defined for the hamiltonian in [77] eq.s

6.4 and 6.5. I do so by first putting the above derivative terms into real-space,

Hs =
(v

2
+
vg4,s

2π

)
[(∂tϕs(x)/v)2 + (∂xϕs(x))2]

+
vg1

2π

(
1

π
cos
(√

8πϕs(x)
)

+
1

2

(
(∂tϕs(x)/v)2 − (∂xϕs(x))2

))
(5.24)

and then we simplify, use the relation g1 = −2g2,s, and define the momentum to

be Πs(x) = ∂tϕs(x)/v to get

Hs =
v

2

(
1 +

g4,s − g2,s

π

)
Π2
s +

v

2

(
1 +

g4,s + g2,s

π

)
(∂xϕs)

2 (5.25)

+
vg1

2π2
cos
(√

8πϕs

)
At the end of this comparison we end up with the following conversion between

Senechal’s model, equation 7.19, and Nakamura or Giamarchi’s model reproduced above in

equation 5.2, through the following equivalences. The terms on the left are in Senechal’s
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notation while the terms on the right are Nakamura’s.

v = vf (5.26)

g4s =
g4‖ − g4⊥

2vf

g2s =
g1‖ − g2‖ + g2⊥

2vf

g1 =
g1⊥
vf

g4c =
g4‖ + g4⊥

2vf

g2c =
g1‖ − g2‖ − g2⊥

2vf

g3 =
g3⊥
vf

ϕs =
φσ√
π

ϕc =
φρ√
π

In [80], the spin-sector of the model is

Hs =

∫
dx

2πvs
3

[ ~JL(x) · ~JL(x) + ~JR(x) · ~JR(x)]

+ λ

∫
dx ~JL(x) · ~JR(x). (5.27)

By direct comparison with [77] equations 7.18 to 7.20, we can determine the trans-

lation from [80] coefficients to [77], and then to the coefficients used in [75] and finally, in

terms of the coefficients in the EHM, U and V.
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First, let’s translate from [80] to [77]. Below, the left side is [80] notation while

the right side is [77].

vs = v
(

1 +
g4s

π

)
(5.28)

λ = 4vg2,s

U =
vg3

2π2

vc = vc

Kc = Kc

φc = ϕc

Now we substitute the translations from [77] to [75], contained in equations 5.26,

to get the translation from [80] to [75]:

vs = vf +
g4‖ − g4⊥

2π
(5.29)

λ = 2vfg1⊥

= 2vf (g1,‖ − g2,‖ + g2,⊥)

U =
g3⊥
2π2

vc = vρ

Kc = Kρ

φc =
φρ√
π

I’m using Senechal’s definitions for the currents. Note that the relationship for λ

implies that we have a redundant coefficient in our g-ology, which originates in the SU(2)

symmetry of the spin sector. Now, I’ll write out these coefficients in terms of the g-ology
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notation of [75]:

vs = vf +
g4‖ − g4⊥

2π
(5.30)

λ = 2vfg1⊥

= 2vf (g1,‖ − g2,‖ + g2,⊥)

U =
g3⊥
2π2

vc =

√(
vf +

g4‖ − g4⊥

2π

)2

−
(
g1‖ − g2‖ + g2⊥

2π

)2

Kc =

√
2πvf + g4‖ − g4⊥ + g1‖ − g2‖ + g2⊥

2πvf + g4‖ − g4⊥ − g1‖ + g2‖ − g2⊥

where the corrected coefficients useful to our study were defined above in equation

5.7. This should now be sufficient to use [80]’s flows and our new initial conditions to

begin running RG flows and see the BOW phase; if I trust the disorder part and the RG

calculation, I can get straight to our full flows.

Completing the substitutions, including the corrected g-ology, we have

vs = vf −
U

2π
(5.31)

λ = 2vfg1⊥

UFK =
g3⊥
2π2

vc =

√
(vf −

U

2π
)2 −

(
2g1⊥
π

)2

Kc =

√
2πvf − U + 4g1⊥
2πvf − U − 4g1⊥

.

One important point about equations 5.32 above is that vs IS NOT the same as

the usual spin field velocity that appears in bosonization, but instead it is just a coefficient
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on the squared spin-current term in the Hamiltonian. As a result of this formulation, there

is no need for Ks, a luttinger constant in the spin sector.

By comparing these coefficients with those presented in chapter 15 of [? ], I modify

them as follows:

vs = vf −
U

2π
(5.32)

λ = 2g1⊥

UFK =
g3⊥
2π2

vc =

√
(vf −

U

2π
)2 −

(
2g1⊥
π

)2

Kc =

√
2πvf − U + 4g1⊥
2πvf − U − 4g1⊥

.

5.4 Consistent notation: Disordered non-abelian model

In this section we derive the non-abelian form of the disorder backscattering in

[80].

For this we need to know how the fundamental representation of SU(2) Lie algebra,

g(x), relates to the cosine of the spin field (although from [80] it is simply tr(g))

5.5 Exercise: Incorporate high-energy modes into corrected

g-ology

Following [79], I derive the corrected g-ology coefficients that split the single phase

transition at U = 2V into two transitions, revealing a third phase between the two tran-

sitions. Also based on [81]. The value of this exercise is to gain general familiarity and
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practice using Feynman diagrams at one loop and an overview from [81] of Fermi-liquid

theory.

5.6 Exercise: Derive Sine-Gordon flow using OPE

This section will be based mostly on [77].

The main advantage of the technique colloquially called ”operator product expan-

sions” is that it uses results from conformal field theory to get to second order (1-loop) RG

flow equations very quickly, bypassing the need for Feynman diagrams. I start by repeating

equations A.1 to A.3 of [77] which is the bare minimum starting point needed to derive for

myself the flow equations for the Sine-Gordon model.

Equation A.1 tells us a prescription for writing a perturbed action with the nota-

tion of “operators” (generally, functions of fields, derivatives of fields, or products of these):

S(ϕ) = S0(ϕ) +
∑
i

gi

∫
dxdτOi(x, τ) (5.33)

Then, conformal feild theory says that products of operators can be rewritten as a series of

operators multiplied by universal coefficients and an inverse power of distance between the

points of application of the two operators:

Oi(x)Oj(x′) =
∑
k

CkijOk(x′)
1

|x− x′|∆i+∆j−∆k
. (5.34)

The constants in the sum specify the quadratic terms in the RG flow:

β(gk) =
dgk
d`

= (2−∆k)gk −
∑
i

Cijkgjgk. (5.35)
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This set of equations above provides us with a prescription to get directly from

a perturbed Hamiltonian to an RG flow, and all we need for this is to get the coefficients

from the operator product expansion.

Now I will complete this exercise for an interacting, bosonized hamiltonian (which

results in a sine-Gordon model). I’ll start with the generic bosonized lagrangian, equation

6.6 from [77], with the index removed, including a general interaction, equation 5.66. [77].

L =

∫
dx

[
1

2K

(
1

v
(∂tϕ)2 − v (∂xϕ)2

)
−
vfg

2π2
cos
(√

8πϕ
)]

(5.36)

Note the distinction between vf and v – v has been altered from vf due to the

interactions incorporated into the bosonic theory.

Now I’ll manipulate this into a sum of coefficients times perturbing operators. In

order to force K and v into the role of operator coefficients (parameters that participate in

the RG flow), I’ll peel the factor of 1/K off the “unperturbed” lagrangian and turn it into

a perturbation:

L0 =
1

2

∫
dx

[
1

v
(∂tϕ)2 − v (∂xϕ)2

]
(5.37)

L′ =

∫
dx

[
1−K

2K

(
1

v
(∂tϕ)2 − v (∂xϕ)2

)
−
vfg

2π2
cos
(√

8πϕ
)]

This model has two operators. The free field portion ofH can be defined as a single operator

in the complex plane (see [77] appendix A)

O1 = ∂zφ∂z̄φ (5.38)

with a corresponding coefficient 2k. The cosine term gives our second operator,
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O2 = cos(φ) (5.39)

.

with corresponding coefficient u. Next we need the scaling exponents for the two operators,

∆i, and the universal OPE coefficients, Cnmk.

Starting with the free-field term, it has scaling dimension 2, which is by design (it

sets the definition of relevant and irrelevant).

∆1 = 2 (5.40)

Next, the scaling dimension of the cosine is the same as that of a vertex operator

(exponential operator), which I evaluated using equations 5.32 of [77] to give

∆2 =
1

4π
(5.41)

5.7 Exercise: Use the OPE to derive Sine-Gordon RG

Here I use [82][83] for the 2D XY model and derivations in [77], section 6.4 and

Appendix A, and [84], chapter 4 to develop an understanding of the sine-Gordon renor-

malization group flow equations. With this understanding, I can derive the correct flow

equations for our problem of interest.

First we start with the bosonic form of the spin-sector Hamiltonian density, in-

cluding a term for the g1,⊥ interaction (since g1,‖ is incorporated into forward scattering,

we let g1 ≡ g1,⊥) that becomes a sine-Gordon model ([77] eq. 6.25)
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Hspin =
vs
2

[KsΠs(x)2 +
1

Ks
∂xϕs(x)2] +

vsg1

2π2
cos(
√

8πϕs(x)) (5.42)

.

The fields can then be rescaled to remove the spin stiffness constant Ks from the kinetic

portion (see [? ] equation 6.7).

Hspin =
vs
2

[Π′s(x)2 + ∂xϕ
′
s(x)2] +

vsg1

2π2
cos(

√
8πKsϕ

′
s) (5.43)

For the rest of this section, set vs equal to 1, since it won’t affect this particular RG analysis.

When including additional terms to the model, vs is no longer an arbitrary constant.

At this point we want to use the path integral formalism to treat the nonlinear term

perturbatively. Start by transforming the Hamiltonian density to a Lagrangian density; we

get

LSG =
1

2
((∂tφ)2 − (∂xφ)2)− g1

2π2
cos(

√
8πKsφ) (5.44)

Redefine the coefficients and fields‘ so that k = 1/8πKs and u = g1/2π
2 and the model

takes the form

LSG =
k

2
((∂tφ)2 − (∂xφ)2)− u cos(φ) (5.45)

.

With our Lagrangian density we write down a path integral over the field fluctuations

U(xf , tf ;xi, ti) =

∫
D[φ(x, t)]e

i
~
∫ L
0

∫ tf
t0

dxdtL[φ(x,t)] (5.46)
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.

After substituting τ = −it and L explicitly in the action integral exponent, the path integral

takes the form of a partition function for a classical field in two Euclidean dimensions,

U(xf , τf ;xi, τi) =

∫
D[φ(x, τ)]e

−1
~

∫ L
0

∫ τf
τ0

dxdτ( k2 [(∂τφ)2+(∂xφ)2]+u cos(φ)) (5.47)

.

Our goal is to perform a real-space renormalization analysis on the above path integral to

get an effective model. Or more precisely, we want to derive beta functions for the above

model that can then be used to derive the effective low-energy, long-wavelength physics of

the model. Following the methods of both T+F and F+K, we do this using the Operator

Product Expansion method, although the results would be the same as with a momentum-

shell renormalization (that is, using Feynman diagrams, included in the Appendix as an

exercise and comparison).
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Chapter 6

Renormalization Group Flows

First, I present a table of the sanity check results from the flows. The descriptions

of the expected flows are included in the first chapter of this section 3.

Here we present some data tables to summarize the observations.

U < 2V U = 2V U > 2V

∆ < max(U, 2V )

∆ = max(U, 2V )

∆ > max(U, 2V )

U V ∆ Phase Indicators Reference Verified?

0 0 0 Metal

U > 2V 0 SDW - Ref?

U < 2V 0 CDW - Ref?

U 0 ∆ < Mott FK

U ∆ > Anderson FK

U Critical Mott/And FK

U = 2V 0 BOW - TF
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6.1 Practice RG flows for BOW using Abelian model

Here I practice the basic approach for weak coupling, as follows from flow equations

3.1 - 3.3 derived from equations 2.19, following [79].

H0 =
1

2π

∑
p=+,−

[
υρ (∂xθp)

2 + υσ (∂xφp)
2
]

+
gρ

2π2
(∂xθ+) (∂xθ−)− gσ

2π2
(∂xφ+) (∂xφ−)

− gc
2π2a2

cos(2θ) +
gs

2π2a2
cos(2φ)

− gcs
2π2a2

cos(2θ)cos(2φ)− gρs
2π2

(∂xθ+) (∂xθ−) cos(2φ)

+
gcσ
2π2

(∂xφ+) (∂xφ−) cos(2θ)

+
gρσa

2

2π2
(∂xθ+) (∂xθ−) (∂xφ+) (∂xφ−) , (6.1)

For U,V << t, we can neglect all operators with scaling dimension 4 and higher.

This includes terms with a coefficient that has a single subscript (vσ or gs for example).

Meanwhile, all terms with two subscripts couple spin and charge. Reference [79] uses an

operator product expansion to derive renormalization group equations, including all terms

in 6.1.

Here I reproduce one of those operator product expansions (to be completed if

necessary)

By neglecting the dimension 4 operators, the following flow equations result:

∂lGρ(l) = 2Gc(l)
2 (6.2)

∂lGc(l) = 2Gρ(l)Gc(l) (6.3)

∂lGs(l) = −2Gs(l)
2, (6.4)
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with initial conditions determined by

υρ = 2ta+ (g4‖ + g4⊥ − g1‖) = 6V + U

υσ = 2ta+ (g4‖ − g4⊥ − g1‖) = 2V − U

gρ = g2⊥ + g2‖ − g1‖ = 6V + U

gσ = g2⊥ − g2‖ + g1‖ = U − 2V

gc = g3⊥ = U − 2V + δ

gs = g1⊥ = U − 2V − δ (6.5)

In these equations, Gi is just a dimensionless coupling, gi/4πt. The flow initial

conditions, Gi(0), are simply the coefficients in 6.1, which in turn depend on U and V. For

completeness I list these dependencies in equation 6.5. To identify a particular phase, one

runs an iterative differential equation solver and observes (usually by automation (!)) which

coefficients diverge. To extract the correct thermodynamic phase from a flow, [79] considers

the effect the divergent cos() term will have on the fields, θ or φ, locking them to some

multiples of π/2. These locked fields force the order parameters to be 0 except in the phase

of interest. I include the order parameters in equation 6.6 (in Ref. [79] these correspond to

equation 2.18).
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Figure 6.1: A SDW flow

OSDW (x) = cos(θ(x))sin(φ(x))

OCDW (x) = sin(θ(x))cos(φ(x))

OBCDW (x) = cos(θ(x))cos(φ(x))

OBSDW (x) = sin(θ(x))sin(φ(x)) (6.6)

In the SDW phase, a typical flow generated from these equations looks like figure

6.1. The SDW phase is gapped to charge excitations, so we expect gc to diverge, but gapless

to spin excitations, so gs converges to 0. Note that gρ and gc are equal and both diverge. In
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Figure 6.2: A CDW flow

the CDW phase, a typical flow looks like figure 6.2. This flow is characterized by negative

gs which diverges strongly and negative gc which also diverges strongly, while |gs| = gc.

I used an automated loop to compute a grid of 100 by 100 points in the (U,V)

plane and identify the RG flows as CDW or SDW, labeled by a color map. Since there are

no corrections in the g-ology for this flow, there is only a single phase transition and no

BOW phase. This is shown in figure 6.3.

After adding the corrections developed in Ref. [79] to the g-ology, the result is

figure 6.5 reproducing the weak-coupling results in [79]. A typical flow for the BOW phase

is shown in figure 6.4. The BOW phase is characterized by positive umklapp and negative

backscattering coefficients, 4πtGc(0) = gc = g3⊥ and 4πtGs(0) = gs = g1⊥ which both
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diverge. However, in the BOW phase, the negative backscattering coefficient gs will not

grow appreciably until a scale of about l = 50. This implies we have to be careful, as this

coefficient may appear irrelevant while other coefficients diverge, even though it is in fact

relevant.

This is illustrated in figure 6.4, where at the values of scale shown, gs appears to

remain fixed at a small negative value, even though it will eventually diverge. This provides

a clear lesson in the need to interpret RG flows carefully.
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Figure 6.5: Flow results for BOW with corrections
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6.1.1 Exercise: Negative U and V – Standardized notation

We know from prior works [75] that the negative U and V cases lead to various

delocalized, superconducting phases. Studying these will help support investigating the

phases we observe when disorder is added.

6.2 RG for Non-Abelian model with disorder

In the second section, I present the results of RG flows for the non-Abelian, disor-

dered model from [80], with coefficients determined in a previous Chapter 5 equation 5.32.

Below I repeat the RG flows from [80] for ease of reference.

dDξ

dl
= (2−Kρ − 3λ)Dξ (6.7)

dDη

dl
= Dη + 4π2g(u)Dξ

2 (6.8)

dDA

dl
= DA + 4π2g(u)Dξ

2 (6.9)

dU

dl
= (2− 2Kc)U −

4

π2
DηK

2
cU (6.10)

dλ

dl
= −λ

2

2
−Dξ (6.11)

dKc

dl
= −2πK2

cU
2 −

K2
cDξ

2u
(6.12)

dvc
dl

= −
πKcDξvc

2u
(6.13)

du

dl
= −uDξ, (6.14)

where g(x) = [
∫∞
−∞

dy√
1+x2y2(1+y2)Kc/2

]2, D = D/v2
c , U = U/vc, λ = λ/vs, u = vs/vc.
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6.2.1 Check flows when ∆ = 0

In this section I’ll study flows for the above equations when the initial disorder

amplitude, Dξ = Dη = ∆ = 0, and the other initial conditions are set previously in

equations 5.32 for appropriate values of U and V.

SDW, U = 1, V = 0

In the SDW phase, I expect the SDW order parameter to be maximized:

OSDW = (−1)j(n↑,j − n↓,j) (6.15)

This notation needs to be translated into operators appropriate to our model so that we

can evaluate which terms become relevant in the renormaliztion group flows.
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Chapter 7

Outlook

The combination of disorder and interactions provides a challenging forefront for

condensed matter theory. Extensions to this project include “straightforward” extensions to

additional models and parameter regimes; focusing in on particular phase transition lines;

or changing the distribution of the disorder. A less straightforward direction is to formulate

the problem as a functional Renormalization Group calculation.

A more challenging task is to supplement these analytical approaches with DMRG,

which can tackle parameter regimes not approachable analytically, while also providing a

second viewpoint to confirm or reject the observations performed analytically. There are a

large number of DMRG methods adapted to disorder, and I have some thoughts on what

to do for this problem.

Lastly, applying the information theory perspective to the disorder problem would

provide an exciting opportunity.
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