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Confounding in the Estimation of Mediation Effects

Yan Li,1∗Julia L. Bienias,2 David A. Bennett3,4
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Alzheimer’s Disease Cooperative Study, University of California, San Diego,
2Rush Institute for Healthy Aging, Department of Internal Medicine,
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Summary: A mediation effect explains the relationship of a risk factor and an

outcome through a mediator variable which is a step in their pathway. Under the

assumption of no cycling in the causal relationship, we consider various situations

in which a fourth variable may interfere the estimation of a mediation effect as a

confounding factor. Our asymptotic results, which are supported by a Monte Carlo

study, show that adjusting for confounding factors under certain conditions might

lead to biased estimates. A general guideline is provided for when it is appropriate

to adjust for confounding factors in estimating a mediation effect. We apply the

guideline to the estimation of the mediation effect of Alzheimer’s disease pathology

in the relationship between the Apolipoprotein E ε4 allele and cognitive function

among 125 deceased participants from the Religious Orders Study, a longitudinal,

clinical-pathologic study of aging and Alzheimer’s disease.

∗Corresponding author: Yan Li, 9500 Gilman Dr., Beech building, Room 105, La Jolla,
CA 92093-0645; Telephone 858-534-3606; Fax 858-822-5290; E-mail: graceyanli@ucsd.edu;
The SAS program and a worked example will be available at http://www.rush.edu/radc or
https://biostat.ucsd.edu/˜yli.
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1 Introduction

A mediation model describes how a third variable (M) intervenes in the causal rela-

tionship between an independent variable (X) and a dependent variable (Y ). More

specifically, the mediation model assumes a pathway, in which an independent vari-

able (X) affects a mediator (M), which then affects a dependent variable (Y ). We

represent this pathway schematically as X → M → Y . Our interest lies in the

mediation effect: the effect of X on Y through the mediator M .

A general approach to evaluating the mediation effect is based on the product of

coefficients associated with each path in a path model (Alwin and Hauser, 1975; Baron

and Kenny, 1986; Bollen, 1987; Fox, 1980; Sobel, 1982). Consider as an example the

following model

M = cM + α0X + εM , (1)

Y = cY + β0M + τX + εY , (2)

where εM is a mean zero random variable that is independent of X and εY , εY is a

mean zero random variable that is independent of X and M , and cM and cY represent

constant intercepts. Here α0 is the coefficient associated with the pathway X → M

while β0 is the coefficient associated with the pathway M → Y after controlling for X.

The mediation effect (also called “indirect effect”) of X on Y through the mediator

M is defined to be α0β0, under the approach of the product of coefficients. The
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remaining association between X and Y , denoted by τ, is called the “direct effect,”

which may include unidentified indirect effects through some unknown pathways as

well as a direct effect of X on Y if it exists. The summation of the indirect effect and

the direct effect, viz α0β0 + τ , is referred to as the “total effect” of X on Y .

To estimate the mediation effect, one typically estimates α0 and β0 by ordinary

least squares (OLS) regression based on equations (1) and (2). When these two equa-

tions characterize the true causal relationships, the OLS estimator (α̂, β̂) of (α0, β0)

is consistent. As a result, the product of α̂ and β̂ provides a consistent estimate of

the mediation effect α0β0.

The above observation depends crucially on the assumption that no other variables

interfere as a confounding factor in the pathway of the independent variable, the

mediator and the dependent variable. If there is a variable Z that interferes some or

all of the relationships among the three variables (X, M, Y ), then the simple estimator

α̂β̂ described above is no longer consistent. For example, suppose Z → M and

Z → X, then one component of εM is Z. As a result, X is correlated with εM and the

OLS estimator of α0 is biased even in large samples. In a recent paper, Herting (2002)

demonstrates that, without incorporating a confounding factor, it is quite simple to

reject mediation effect when a true form of mediation effect exists.

In this paper, we consider all possible ways that a fourth variable Z can interfere

in the pathway X → M → Y as a confounding factor. We investigate the properties

of various estimators of the mediation effect under all the scenarios we consider.

Asymptotic biases of different estimators are provided. Some simulation experiments

are conducted to evaluate the accuracy of the asymptotic results in finite samples.

Based on the asymptotic results and numerical evidence, we give some guidelines on
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how to choose an estimator in empirical applications.

Our approach is applied to the estimation of a mediation effect in a study of

risk factors for clinically diagnosed Alzheimer’s disease (AD), where age is a possible

confounding factor in the causal pathways. AD is a progressive brain disorder that

gradually destroys a person’s memory and ability to learn new information, reason,

make judgments, communicate and carry out daily activities. Increasing age is asso-

ciated with increased risk of AD. Nearly 5 million people in the US alone have AD

(Hebert et al., 2003), and this number is expected to grow substantially worldwide in

the coming decades as the population ages (Ferri et al., 2005). Recent evidence sug-

gests that the clinical manifestations of AD are a complex function of multiple genetic

and environmental factors interacting with pathological and biochemical changes in

the brain. For example, while the pathologic hallmarks of AD are neuritic plaques and

neurofibrillary tangles, these lesions may add other brain pathologies such as cere-

bral infarctions to cause cognitive impairment (Petrovitch et al., 2005). By contrast,

environmental risk factors may modify the relation of AD pathology to cognition

(Mortimer et al., 2005). The presence of an apolipoprotein E ε4 allele (Apoe ε4, a

common polymorphism of the gene coding for apolipoprotein E) is a major genetic

risk factor for the disease (Tang et al., 1998). The neurobiologic mechanism through

which the ε4 allele is associated with an elevated risk of clinically diagnosed AD is not

well understood. Previous histopathologic studies (e.g., Bennett et al., 2003) suggest

that the effect of the ε4 allele on cognitive impairment may be mediated by an in-

crease in the rate at which AD pathology accumulates. Since AD pathology may add

to or interact with other factors to cause cognitive impairment, a variety of alternate

mechanisms could also account for the association. Because cognition, AD pathology,
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and many risk factors for AD are related to age, it is important to be able to adjust

for the potential confounding effects of age in mediation analysis of common chronic

conditions of older persons. We apply different strategies to evaluate the effect of

the confounding factor, age at death, in the estimation of the mediating effect of AD

pathology in the relationship between the presence of an Apoe ε4 allele and level of

cognitive function before death among 125 subjects in the Religious Orders Study, a

longitudinal, clinical-pathologic study of aging and AD.

The rest of the paper is organized as follows. Section 2 presents all the possible

ways that Z may interfere in the pathway X → M → Y as a confounding factor. In

our application, Z, X, M and Y correspond to age at death, Apoe ε4, AD pathology

and cognitive function, respectively. Section 3 examines the asymptotic properties of

estimators of the mediation effect under different estimation strategies. Simulation

results are reported in Section 4 and an application is included in Section 5. Section

6 concludes and gives some advice on the choice of estimators.

2 Pathway Patterns

We begin by assuming a pathway pattern X → M → Y . We further assume X, M ,

and Y are interrelated in a linear fashion, as illustrated, for example, in equations

(1) and (2). A complete mediation occurs when τ equals zero, where the relationship

between X and Y is fully explained by the mediator M such that X has no direct

effect on Y . In reality, a complete mediation is unlikely and a direct effect term τ is

usually kept in the mediation model even when it is statistically non-significant.

Assuming no cycling in the pathway, where a cycle means that a variable could

5



affect itself through other variables in the pathway, Table 1 provides all possible

combinations of pathway patterns among a fourth confounding factor Z and X, M ,

and Y . The pathway patterns can be classified into four different categories. The

first category, presented as the reference case, consists of Case 0.0, wherein Z has

no association with X, M , and Y . The second category consists of seven patterns

(Case 1.1 – Case 1.7) where the fourth variable Z is at the beginning of the pathway

to X, M , and/or Y . The third category consists of seven patterns (Case 2.1 – Case

2.7) where X, M, and/or Y is at the beginning of the pathway to Z. The last

category consists of the remaining five patterns (Case 3.1 – Case 3.5) that involve

more complicated path relations among Z and X, M, and Y.

Each pathway can be represented by a path diagram. For example, Case 0.0, the

reference, can be simply represented as X → M → Y and the corresponding model

is given in equations (1) and (2). As a second example, Figure 1 provides the path

diagram for Case 3.4, where the independent variable X has an indirect effect on Y

through the mediator M , an indirect effect on Y through the fourth variable Z, and

a direct effect on Y . In addition, the fourth variable Z has a direct effect on the

mediator M . The true model for Case 3.4 can be written as

X = cX + εX , (3)

Z = cZ + γXZX + εZ , (4)

M = cM + α0X + γZMZ + εM , (5)

Y = cY + τX + β0M + γZY Z + εY , (6)

where εX , εZ , εM , εY are mean zero random variables with respective variance σ2
X , σ2

Z ,

σ2
M , and σ2

Y . In the above model, we use a subscript ‘ZM ’ on γ to signify the effect
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of Z on M. The other γ’s are similarly defined. In the application, X is the presence

of ApoE ε4, Y is the level of cognitive function before death, M is the level of AD

pathology, and Z is age at death.

In equations (3) – (6), each of the ε’s is independent of the right hand side vari-

ables in the corresponding equation. This independence is a direct implication of

unidirectional causality. Without this assumption, the ε′s in general depends on the

right hand side variables in the corresponding equation. The assumption of unidi-

rectional causality is the cornerstone of our mediation framework and applies to all

mediation models. We maintain these assumptions throughout the paper.

For most of the pathways, the mediation effect through M is α0β0. There are

few exceptions (Cases 3.1 – 3.4) in which there exist two pathways from X to Y

that go through M. For example, in Case 3.4, the two pathways are X → M → Y

and X → Z → M → Y. In the first pathway, X has a direct effect on M of α0. In

the second pathway, Z acts as a mediator between X and M with an indirect effect

γXZγZM . The total effect of X on M is the sum of the indirect effect γXZγZM and

the direct effect α0. The total effect of X on M multiplied by β0, the direct effect of

M on Y , provides the mediation effect of X on Y through M , denoted by δ0:

δ0 = (α0 + γXZγZM)β0.

The mediation effects for the remaining cases are reported in the second column of

Table 2.
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3 Estimation of the Mediation Effect

Section 2 enumerates 20 causal patterns where a fourth confounding variable could

intervene in the causal pathway X → M → Y . In accounting for the confounding

factor, we consider four different strategies to estimate the mediation effect.

3.1 Four Different Estimation Strategies

The first estimation strategy, called strategy A, is to ignore the confounding factor

and to fit regression equations without the variable Z. The regression equations are

given by

M̂ = ĉM + α̂XMX, (7)

Ŷ = ĉY + β̂MY •XM + τ̂XY •MX, (8)

where the parameter with a hat denotes the OLS estimator and M̂ and Ŷ are the

predictive values of M and Y , respectively, from the OLS regression.

A few words on notation are in order. The subscript ‘XM ’ in α̂XM signifies that

α̂XM is the coefficient for ‘X’ in the regression of ‘M ’ on ‘X’; and the subscript

‘MY •X’ in β̂MY •X signifies that β̂MY •X is the coefficient for ‘M ’ in the regression of

‘Y ’ on ‘M ’, adjusting for ‘X’. We use the same convention in the rest of the paper.

We refer to regression (7) as the first stage regression and regression (8) as the second

stage regression. With the OLS estimators α̂XM and β̂MY •X , the estimated mediation

effect is

δ̂A = α̂XM β̂MY •X .

The second estimation strategy, called strategy B, is to ignore the confounding
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variable in the X → M causal path. The regression equations for strategy B are

given by:

M̂ = ĉM + α̂XMX,

Ŷ = ĉY + β̂MY •XZM + τ̂XY •MZX + γ̂ZY •XMZ.

The estimated mediation effect is

δ̂B = α̂XM β̂MY •XZ .

The third estimation strategy, called strategy C, given by:

M̂ = ĉM + α̂XM•ZX + γ̂ZM•XZ,

Ŷ = ĉY + β̂MY •XM + τ̂XY •MX,

ignores the confounding variable in the M → Y causal path. The resulting estimate

of the mediation effect is

δ̂C = α̂XM•Z β̂MY •X .

Finally, the fourth estimation strategy, called strategy D, includes the confounding

variable Z in both regression equations, leading to

M̂ = ĉM + α̂XM•ZX + γ̂ZM•XZ,

Y = ĉY + β̂MY •XZM + τ̂XY •MZX + γ̂ZY •XMZ.

The estimated mediation effect is

δ̂D = α̂XM•Z β̂MY •XZ .

In application, usually one of the four estimation strategies is applied without

knowledge of the relationship between the confounding factor Z and the X → M → Y
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causal pathway. In the next subsection, we present the probability limits of δ̂A, δ̂B,

δ̂C , and δ̂D for all of the possible causal patterns given in Table 1.

3.2 Asymptotic Biases

For each causal pattern, we derive the probability limit of each estimator. The differ-

ence between this limit and the true mediation effect is defined to be the asymptotic

bias. According to this definition, when the asymptotic bias is zero, the estimator is

consistent for the true mediation effect, given in the second column of Table 2.

We first use Case 3.4 to demonstrate the derivation of the asymptotic bias. Using

equations (3) – (4), we can deduce that

M = cM + γZMcZ + (α0 + γXZγZM)X + γZMεZ + εM ,

where X is independent of the composite error term γZMεZ + εM . Because the OLS

estimator is consistent for the underlying model parameter, the probability limit of

the OLS estimator obtained by regressing M on a constant and X is

p lim
n→∞

α̂XM = α0 + γXZγZM . (9)

The above limit applies to strategies A and B as both ignore Z in their first stage

regression. When Z is included in the first stage regression as in strategies C and D,

using equation (5), we can deduce that

p lim
n→∞

α̂XM•Z = α0. (10)

We now turn to the second stage regression. Strategies B and D incorporate

covariate Z into the regression. In this case, the probability limit of the OLS estimator
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is

p lim
n→∞

β̂MY •XZ = β0. (11)

For strategies A and C, covariate Z is omitted from the regression. The probability

limit of the OLS estimator is p limn→∞ β̂MY •X

p limn→∞ τ̂XY •M

 =

 V ar(M) Cov(M, X)

Cov(M, X) V ar(X)


−1  Cov(M, Y )

Cov(X,Y )

 . (12)

It follows from equations (3) – (6) that

V ar(M) = σ2
X (α0 + γXZγZM)2 + γ2

ZMσ2
Z + σ2

M , (13)

V ar(X) = σ2
X ,

Cov(M, X) = σ2
X (α0 + γXZγZM) ,

Cov(M, Y ) = τCov(M, X) + β0V ar(M) + γZY Cov(M, Z),

Cov(X, Y ) = τV ar(X) + β0Cov(M, X) + γZY γXZσ2
X .

Plugging the above expressions into (12) yields

p lim
n→∞

β̂MY •X = β0 +
γZMγZY σ2

Z

σ2
M + σ2

Zγ2
ZM

:= β∗. (14)

Combining (9), (10), (11) with (14), we obtain the probability limit of each estimator:

p lim
n→∞



δ̂A

δ̂B

δ̂C

δ̂D


=



α0 γXZγZM 0 0

0 0 α0 γXZγZM

α0 0 0 0

0 0 α0 0





β∗

β∗

β0

β0


=



(α0 + γXZγZM) β∗

(α0 + γXZγZM) β0

α0β
∗

α0β0


.

Let δ0 = (α0 + γXZγZM) β0 be the true mediation effect, then the asymptotic bias of
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each estimator is given by

p lim
n→∞

δ̂A − δ0 = (α0 + γXZγZM)

(
β0 +

γZMγZY σ2
Z

σ2
M + σ2

Zγ2
ZM

)
− δ0

= (α0 + γXZγZM)
γZMγZY σ2

Z

σ2
M + σ2

Zγ2
ZM

,

p lim
n→∞

δ̂B − δ0 = 0,

p lim
n→∞

δ̂C − δ0 = α0

(
β0 +

γZMγZY σ2
Z

σ2
M + σ2

Zγ2
ZM

)
− δ0

=

(
γZMγZY σ2

Z

σ2
M + σ2

Zγ2
ZM

α0 − γXZγZMβ0

)
,

p lim
n→∞

δ̂D − δ0 = α0β0 − δ0 = −γXZγZMβ0.

Therefore, δ̂B is asymptotically unbiased while δ̂A, δ̂C , and δ̂D are asymptotically

biased with the bias depending on the underlying model parameters.

To understand the bias properties of different estimators, note that in the con-

struction of δ̂B, Z is correctly included in the second stage regression. Had Z been

omitted, the effect of M on Y would be inconsistently estimated by the second stage

OLS regression. This is the case for estimators δ̂A and δ̂C , which explains their incon-

sistency. On the other hand, Z is not included in the first stage regression of strategy

B. Given that Z causes M and X causes Z, the first stage OLS estimator α̂XM that

ignores the effect of Z seems to suffer from the omitted variable bias. However,

our objective is to estimate the total effect of X on M. When Z is omitted, the first

stage OLS estimator α̂XM captures not only the direct effect of X on M but also the

indirect effect of X on M through the intermediate Z. Hence α̂XM delivers exactly

what we want. In contrast, by including Z in the first stage regression, the first stage

OLS estimator α̂XM•Z captures only the direct effect of X on M . As a result, the

estimator δ̂D, which is based on α̂XM•Z , is inconsistent for the true mediation effect.
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Next, we consider the general cases. The probability limits of estimators under

the four estimation strategies for the different causal patterns are summarized in the

last four columns of Table 2. As most of the probability limits have complicated

forms, only a few examples are given in Table 2. These probability limits equal the

limit of the first stage OLS estimator multiplied by that of the second stage OLS

estimator. If either of the two estimators is inconsistent, the resulting estimator for

the mediation effect is inconsistent. The configurations that lead to the inconsistency

of the two estimators can be described as follows.

First, the first stage estimator α̂XM is inconsistent only when the causal diagram

contains 
X → M

↖ ↑

Z

 ,

in which case the omitted covariate Z affects M and is correlated with the included

covariate X in the first stage regression. Omitting Z leads to the well-known omitted-

variable bias.

Second, the first stage estimator α̂XM•Z is inconsistent only when the causal

diagram contains one of the following
X → M

↘ ↑

Z

 ,

or

(X → M → Z) , or (X → M → Y → Z) .

The first case is easy to understand. α̂XM•Z is inconsistent for α0 + γXZγZM , the
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total effect of X on M , because α̂XM•Z converges to α0, the direct effect of X on M.

See also the discussion for Case 3.4 above. For the last two cases, Z is at the end

of the causal chain X → M . Including Z in the first stage regression confounds the

causal relationship between X and M. Because M causes Z, M and Z are statistically

correlated. Regressing M on X controlling for the effect of Z gives us the statistical

association between X and M but not the causal relationship that X causes M.

Therefore, including Z as a regressor invalidates the causal interpretation of the

regression coefficients in the first stage regression. As a result, α̂XM•Z does not

provide an asymptotically unbiased estimator of the causal relationship from X to

M.

Third, the second stage estimator β̂MY •X is inconsistent only when the causal

diagram contains 
M → Y

↑ ↗

Z

 ,

in which case the omitted variable bias is present.

Finally, the second stage estimator β̂MY •XZ is inconsistent only when the causal

diagram contains one of the following
M → Y

↓ ↗

Z

 , or M → Y → Z.

In the first case, the OLS estimator β̂MY •XZ only accounts for the direct effect of M

on Y and ignores the indirect effect through Z. In the second case, Z is at the end

of the causal chain M → Y → Z. The same reason for the asymptotic bias of α̂XM•Z
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applies to β̂MY •XZ .

On the basis of the asymptotic bias, the 20 causal patterns can be grouped into

seven categories, listed in the second column of Table 3. More details are given in

Section 4.2.

4 Simulation

We use SAS R© (Version 9.1) for all statistical simulation and analysis. Variables

are generated from the normal distribution using the SAS RANNOR function with

seed=1,000,000. We consider sample sizes of 100, 200, 500 and 1000. For simplicity,

we assume that all the path coefficients between Z and X, M , and Y are the same

and equal γ. In reality, this assumption certainly does not hold. Adopting the

procedures by MacKinnon et al. (2002), parameter values α0, β0, and γ are chosen to

correspond to effect sizes of small (2% of partial variance in the dependent variable),

medium (13% of partial variance in the dependent variable), and large (26% of the

partial variance in the dependent variable), as described in Cohen (1988, pp. 412-

414). These parameters are 0.14, 0.39, and 0.59, corresponding to partial correlations

of 0.14, 0.36, and 0.51, respectively. The direct effect τ is chosen to be 0 (complete

mediation) and 0.2 for a partial mediation. Variables M , Y , and Z are simulated as

continuous variables following a normal distribution. The independent variable X is

assumed to follow either a normal distribution or a Bernoulli distribution with success

probability 0.3. In the application, the probability of having at least one Apoe ε4

allele is 0.29. Because the intercept does not affect the estimation of the mediation

effect, without loss of generality, we set all the intercepts to be zero in the simulation
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of data generation, but include them in the model fitting. All the random noise terms

are assumed to be independent, identically and normally distributed with mean zero

and variance one.

In summary, the simulation uses a 3 × 3 × 3 × 2 × 2 × 4 × 20 factorial design.

We vary the factors of effect size of path α0 (0.14 for small, 0.39 for medium, and

0.59 for large), effect size of path β0 (0.14 for small, 0.39 for medium, and 0.59 for

large), effect size of path γ (0.14 for small, 0.39 for medium, and 0.59 for large),

direct effect τ (0 and 0.2), distribution of X (standard normal and Bernoulli with

probability 0.3), sample size (100, 200, 500, and 1000), and the 20 causal patterns

in Table 1, for a total of 8640 different data generating processes (DGP). For each

DGP, 500 replications are conducted. To compare bias across different levels of the

mediation effects, we calculate the empirical relative bias, defined by

rbias =

∑500
i=1 δ̂i

500× δ0

− 1,

where δ0 is the true indirect effect, as defined in Section 3. The relative bias are taken

across 500 replications to evaluate the empirical performance of the four estimators

under each causal pattern, summarized in Section 4.2.

4.1 Example

We use Case 3.4, shown in Figure 1, to illustrate how the data are generated. When

α0 = 0.14, β0 = 0.39, γ = 0.59, τ = 0.2, and X follows a standard normal distribution,
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the sample is generated by

X = εX (15)

Z = 0.59X + εZ

M = 0.14X + 0.59Z + εM

Y = 0.2X + 0.39M + 0.59Z + εY

where εX , εZ , εM , εY ∼ i.i.d.N(0, 1). To generate a binary variable X, the distribution

of X, in equation (15), is replaced by X ∼ Bernoulli(0.3).

4.2 Results

The simulation results for different effect sizes of α0, β0, and γ are similar across each

of these 20 causal patterns. Regardless of the magnitude of the effect sizes, or the

distribution of the independent variable, or the magnitude of the direct effect (0 or

0.2), the relative bias demonstrates similar patterns for each casual pattern and the

results are quite stable even at sample size 100. In Figure 2, we plot the asymptotic

relative bias and the empirical relative bias (500 replications) of various sample sizes

for Case 3.4 when α0 = 0.14, β0 = 0.39, γ = 0.59, τ = 0.2, and X follows a standard

normal distribution. Only strategy B is asymptotic unbiased. For all estimation

strategies, the empirical relative bias is very close to the asymptotic relative bias.

Strategy A overestimates the causal relationship of M → Y and thus overestimates

the mediation effect; strategy C underestimates the causal relationship of X → M ,

overestimates the causal relationship of M → Y , and in combination underestimates

the mediation effect; strategy D underestimates the causal relationship of X → M

and thus underestimates the mediation effect. Table 3 presents the relative bias when
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α0 = 0.14, β0 = 0.39, γ = 0.59, τ = 0.2, n = 1000, and X follows a standard normal

distribution, for all 20 causal patterns.

Similar to the asymptotic relative bias results, we can classify our simulation

results for these 20 causal patterns into seven different groups, listed in the second

column of Table 3. Group “A” contains six causal patterns (Case 2.3, 2.4, 2.5, 2.7, 3.1,

and 3.2) where only estimator δ̂A is consistent; group “AB” consists of three causal

patterns (Case 2.2, 2.6, and 3.3), for which δ̂A and δ̂B are consistent; group “ABCD”

consists of seven causal patterns (Case 0.0, 1.1, 1.2, 1.3, 1.5, 2.1, and 3.5), for which

all four estimators are consistent; group “B” consists of one causal pattern (Case 3.4)

where only δ̂B provides a consistent estimate of the mediation effect; group “BD”

consists of one causal pattern (Case 1.4) where both δ̂B and δ̂D provide consistent

estimates; group “CD” consists of causal pattern Case 1.6 where both δ̂C and δ̂D are

consistent; the last group “D” describes one causal pattern, Case 1.7, where only δ̂D

is consistent. In summary, not a single estimation strategy is unbiased for all causal

patterns.

Notice that under Cases 3.3 and 3.4, the confounding factor contributes to the to-

tal mediation effect as part of the causal pathway. When the investigator is interested

in estimating the partial mediation effect that does not go through the confounding

factor, strategy D provides asymptotically unbiased estimate.

5 Application

As demonstrated in Section 4, there is no gold standard strategy currently available

for the adjustment of potentially confounding factors when estimating a mediation
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effect. Thus, the choice of strategy depends on a variety of factors. In this section, we

present an application to illustrate one potential approach for selecting an appropriate

estimation strategy.

The clinical manifestations of Alzheimer’s disease (AD) are a complex function of

multiple genetic and environmental factors causing or interacting with the pathology

of AD, and other pathological and biochemical changes in the brain. Bennett et

al. (2003) used data from 125 deceased persons participating in the Religious Orders

Study, a longitudinal, clinical-pathologic study of aging and AD, to test the hypothesis

that the Apoe ε4 allele, a known risk factor for clinical AD, is associated with level of

cognitive function through an association with measures of AD pathology rather than

other brain lesions. In their analysis, the independent variable was the presence of

one or two Apoe ε4 alleles, the mediator was AD pathology defined as neuritic plaques

and neurofibrillary tangles standardized and combined into a composite measure of

global pathology score, and the dependent variable was level of cognitive function

before death defined as 19 cognitive function tests standardized and combined into a

composite global measure of cognition. In summary, the hypothesized causal path is

Apoe ε4 → AD Pathology → Cognitive Function.

While younger people may get AD, the disease usually begins after age 65 and

risk increases substantially with age. Fewer than 5 percent of men and women ages

65 to 74 have AD, and nearly half of those age 85 and older may have the disease

(Evans et al., 1989). It is important to note, however, that AD is not a normal part

of aging. In the Apoe ε4 → AD Pathology → Cognitive Function association, age

is strongly related to both AD pathology and cognitive function and constitutes a

major confounding factor.
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In this section, we provide estimates of the mediation effect of Apoe ε4 through

AD pathology by using all four estimation strategies, and we use this example to

illustrate an approach to choosing an appropriate estimation strategy to adjust for

the potential confounding effects of age in the estimation of the mediation effects in

the study of common chronic age related conditions. The general approach is sum-

marized into three steps. In the first step, one needs to identify all possible causal

patterns between the confounding factor age and Apoe ε4, Pathology, and Cognitive

Function conceptually. A person is born with or without Apoe ε4, thus the causal

link age (Z) → Apoe ε4 (X) does not hold and, in reference to Table 1, Cases 1.1,

1.5, 1.6, and 1.7 can be excluded. By contrast, because there is evidence that Apoe

ε4 is related to mortality (Hayden et al., 2005), we cannot entirely exclude the pos-

sibility of Apoe ε4 → age (Cases 2.1, 2.5 – 2.7, 3.2 – 3.5 in Table 1). At the same

time, increasing age is associated with both the accumulation of AD pathology (M)

and loss of cognitive function (Y ). This identifies Case 1.4 and Case 3.4 (Table 1)

as two possible casual patterns. In the second step, one needs to identify the ap-

propriate estimation strategies for the identified causal patterns. According to Table

3, for Case 1.4, both estimator B and estimator D provide unbiased estimates. For

Case 3.4, estimator B provides an unbiased result, but estimator D has an asymp-

totic bias of −γXZγZMβ0. This asymptotic bias is created by the mediation effect

through the causal path X → Z → M → Y , which was inappropriately adjusted

for in the first estimation stage. In the third step, we obtain the four estimates, and

then compare them to see whether estimates B and D are close to one another, and

markedly different from estimates A and C. Finding similar results from estimates B

and D and different results from estimates A and C would provide strong evidence
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in favor of the conceptual causal pattern 1.4 identified in the first step. In our appli-

cation, the estimates B (−0.387, 95% CI (−0.611,−0.182)) and D (−0.378, 95% CI

(−0.606,−0.177)) are quite close, and are very different from estimates A (−0.445,

95% CI (−0.707,−0.221)) and C (−0.435, 95% CI (−0.699,−0.209)). Confidence in-

tervals are obtained using the bootstrap method. The results appear to confirm our

conceptual understanding of the relationship between age and Apoe ε4, AD Pathol-

ogy, and Cognitive Function. An appropriate point estimate of the mediation effect

would be −0.387 (estimate B). The difference between estimates D and B (0.009)

would be an empirical estimate of −γXZγZMβ0 in Case 3.4, and random noise in

Case 1.4. Because strategy D over-adjusts the effect of the confounding factor in

Case 3.4, one should choose strategy B to estimate the mediation effect (−0.387).

6 Discussion

As presented in our paper, not a single strategy fits all 20 causal patterns. To ease the

strategy selection and estimation of the indirect effect, we provide a general guideline

under various causal patterns. When estimating the indirect effect, one needs to first

consider all possible ways that a fourth variable Z might interfere in the causal path

X → M → Y as a confounding factor. Depending on whether there are one or two

pathways from X to M and then to Y , we offer the following guidelines:

First, consider the cases where there are two pathways. When X → Z → M

but Z 9 Y , δ̂A should be used. One may also use δ̂B in this case but it incurs the

unnecessary cost of collecting Z. When X → Z → M and Z → Y, δ̂B should be

used. When M → Z → Y, δ̂A should be used.
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Second, consider the cases where there is only one pathway. If Z → M and

Z → Y but Z 9 X, both δ̂B and δ̂D could be used. If Z → M and Z → Y and

Z → X, δ̂D should be used; If Z → X and Z → M but Z 9 Y, both δ̂C and δ̂D could

be used. For all other cases, δ̂A is recommended.

In summary, the researcher needs to know, a priori, what the model is or have

a good idea how to restrict the choices before causal modeling can be reasonably

applied. In many instances, such a priori knowledge is unavailable. Using data from

a pilot study, for example, for each potential confounding factor, one can hypothesize

a possible causal pattern, conduct the analysis using all four strategies, and then

examine the 20 causal patterns listed in Table 3 to see whether the actual results are

consistent with the conceptual causal path.

In application, an investigator usually adopts either strategy A, completely ignor-

ing the possible confounding factor, or strategy D, adjusting for the possible confound-

ing factor at every stage of the regression. The common misconception underlying the

selection of strategy D is that an unbiased estimate is obtained only after adjusting

for the potential confounding factor in all regressions. However, one should bear in

mind that strategy A fails in Case 1.4, 1.6, 1.7, and 3.4 where the causal path Z → M

exists and at least another causal path of Z → X or Z → Y exists, and strategy D

fails in Cases 2.2 – 3.4 where Z is at the end of causal path from X, M , and/or Y .

Therefore, adopting estimation strategy A or D without further consideration of the

possible causal patterns can lead to bias.

In a mediation analysis, the investigator should try to collect all possible confound-

ing factors that might directly affect both the mediator and the dependent variable

(Case 1.4 and Case 1.7), or both the independent variable and the mediator (Case
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1.6 and Case 1.7), and adjust for them in the analysis. When a confounding factor

is an intermediate variable between the independent variable and the mediator and

it also affects the dependent variable (Case 3.4), information for this confounding

factor should be collected and adjusted for in the second stage regression. For all

other scenarios, data collection on the confounding factor is unnecessary.

This paper relies on several crucial assumptions: 1) no cycling in the causal path-

way; 2) univariate confounding factor, covariate and mediator; and 3) linear rela-

tionship among variables. We can relax the second assumption by allowing multiple

confounding factors and covariates. To relax the third assumption, we can spec-

ify appropriate link functions in equations (1) – (2) and change the four estimation

strategies accordingly. Further research is warranted to study the property of the

four estimators.

We use the bias patterns in Table 2 to help deduce and confirm the underlying

causal pathways. In the cases that two or more candidate pathways have the same

bias pattern or the four estimators are not distinct, the investigator should resort

to scientific literature to clarify such ambiguities. Notice that incorrectly accounting

for the effect of Z not only biases the point estimate of the mediation effect, but

also affects the standard error. In Figure 2, the standard errors are biggest for

estimator A and smallest for estimator D. Further research is needed to study the

sampling distributions of the mediation effects obtained from four different estimation

strategies. It will be of great interest to investigate whether we can rule out certain

pathways or pin down the correct pathway by comparing the four different estimates.

In practice, the terms mediation, confounder, and confounding are different on

conceptual ground (Baron and Kenny, 1986; Greenland and Morgenstern, 2001;
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MacKinnon, Krull and Lockwood, 2000). In this article, we only consider the situa-

tion that a fourth variable acts as a confounding factor in the estimation of mediation

effect. It might seem that these 20 different causal patterns are exhaustive. However,

in application, the true underlying causal pattern might be much more complicated:

the assumption of no cycling might not hold, the fourth variable might act as an effect

modifier (moderator) or both as an effect modifier (moderator) and a confounding

factor.
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Table 1. Relationship Between Z and X → M → Y Causal Pathway

Case X M Y

0.0

1.1 Z → X

1.2 Z → M

1.3 Z → Y

1.4 Z → M Z → Y

1.5 Z → X Z → Y

1.6 Z → X Z → M

1.7 Z → X Z → M Z → Y

2.1 X → Z

2.2 M → Z

2.3 Y → Z

2.4 M → Z Y → Z

2.5 X → Z Y → Z

2.6 X → Z M → Z

2.7 X → Z M → Z Y → Z

3.1 M → Z Z → Y

3.2 X → Z M → Z Z → Y

3.3 X → Z Z → M

3.4 X → Z Z → M Z → Y

3.5 X → Z Z → Y



Table 2. Indirect Effect through Mediator M

True Indirect Probability Limits of Different Estimators

Effect A B C D

0.0 α0β0 α0β0 α0β0 α0β0 α0β0

1.1 α0β0 α0β0 α0β0 α0β0 α0β0

1.2 α0β0 α0β0 α0β0 α0β0 α0β0

1.3 α0β0 α0β0 α0β0 α0β0 α0β0

1.4 α0β0 α0β
∗ α0β0 α0β

∗ α0β0

1.5 α0β0 α0β0 α0β0 α0β0 α0β0

1.6 α0β0 α∗β0 α∗β0 α0β0 α0β0

1.7 α0β0 α∗β∗ α∗β0 α0β
∗ α0β0

2.1 α0β0 α0β0 α0β0 α0β0 α0β0

2.2 α0β0 α0β0 α0β0 α∗β0 α∗β0

2.3 α0β0 α0β0 α0β
∗ α∗β0 α∗β∗

2.4 α0β0 α0β0 α0β
∗ α∗β0 α∗β∗

2.5 α0β0 α0β0 α0β
∗ α∗β0 α∗β∗

2.6 α0β0 α0β0 α0β0 α∗β0 α∗β0

2.7 α0β0 α0β0 α0β
∗ α∗β0 α∗β∗

3.1 α0(β0 + γMZγZY ) α0(β0 + γMZγZY ) α0β0 α∗(β0 + γMZγZY ) α∗β0

3.2 α0(β0 + γMZγZY ) α0(β0 + γMZγZY ) α0β0 α∗(β0 + γMZγZY ) α∗β0

3.3 (α0 + γXZγZM)β0 (α0 + γXZγZM)β0 (α0 + γXZγZM)β0 α0β0 α0β0

3.4 (α0 + γXZγZM)β0 (α0 + γXZγZM)β∗ (α0 + γXZγZM)β0 α0β
∗ α0β0

3.5 α0β0 α0β0 α0β0 α0β0 α0β0

Note: α∗ and β∗ are biased estimates of α0 and β0, respectively. For example,

Case 1.4: β∗ = β0 +
γZY γZMσ2

X

γ2
ZMσ2

Z+σ2
M

, Case 1.6: α∗ = α0 +
γZMσ2

Z

γ2
ZXσ2

Z+σ2
X

,

Case 3.1: α∗ = α0
σ2

Z

σ2
Z+γ2

MZσ2
M

, Case 3.2: α∗ =
α0σ2

Z−σ2
MγXZγMZ

σ2
Z+γ2

MZσ2
M

.



Table 3. Empirical Relative Bias (n = 1000)

α0 = 0.14, β0 = 0.39, γ = 0.59, τ = 0.2, X ∼ N(0, 1)

Relative Bias

CASE GROUP A B C D

Case 2.3 A 0.00 −0.26 −0.17 −0.39

Case 2.4 A 0.00 −0.92 −0.68 −0.97

Case 2.5 A 0.00 −0.26 −0.88 −0.91

Case 2.7 A 0.00 −0.92 −2.38 −1.11

Case 3.1 A −0.01 −0.48 −0.27 −0.62

Case 3.2 A 0.00 −0.47 −2.10 −1.58

Case 2.2 AB 0.00 0.00 −0.26 −0.26

Case 2.6 AB 0.01 0.01 −2.09 −2.09

Case 3.3 AB 0.00 0.00 −0.72 −0.72

Case 0.0 ABCD 0.01 0.01 0.01 0.01

Case 1.1 ABCD 0.00 0.00 −0.01 −0.01

Case 1.2 ABCD 0.00 0.00 0.00 0.00

Case 1.3 ABCD 0.00 0.00 0.00 0.00

Case 1.5 ABCD 0.00 0.01 0.00 0.01

Case 2.1 ABCD −0.02 −0.02 −0.02 −0.02

Case 3.5 ABCD −0.01 −0.01 −0.01 −0.01

Case 3.4 B 0.66 0.00 −0.53 −0.72

Case 1.4 BD 0.64 −0.02 0.64 −0.02

Case 1.6 CD 1.83 1.82 −0.01 −0.02

Case 1.7 D 3.36 1.85 0.53 0.01
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Figure 1: Path Diagram for the Causal Pattern Case 3.4.
Figure 1: Path Diagram for the Causal Pattern Case 3.4.
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Figure 2: Case 3.4: Asymptotic Relative Bias (horizontal line) and Empirical Relative

Bias (horizontal bar ± 1 SD) for Estimators from Strategies A – D, with True Values

α0 = 0.14, β0 = 0.39, γ = 0.59, τ = 0.2, X ∼ N(0, 1).




