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Drylands cover more than 40% of the earth land surface and are home for more than 2 

billion people. Despite the harsh environment and the extreme aridity conditions, drylands are 

among the most diverse ecosystems that contribute to more than 30 % of the global terrestrial net 

primary production. Assessing vegetation dynamics for dryland surfaces remain a challenge due 

to the appearance of soil and non-photosynthetic material that usually cause non-linear scattering 

of light. This aspect of remote sensing is investigated in this dissertation using mechanistic and 

unmixing remote sensing approaches to assess net primary productivity of the Chihuahuan Desert. 

The unmixing approach was demanded by the difficulties associated with assessing vegetation 

productivity with mechanistic remote sensing. We found that including soil and non-
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photosynthetic surface covers contribute to the predictions of NPP with Multiple Endmember 

Spectral Mixture Analysis using Random Forest and stepwise regression.  

Erosion is considered one of the main complex drivers that contribute to vegetation cover 

change. The feedbacks between wind erosion and other environmental, and biological driver have 

not been fully studied. Wind erosion remains one of the most understudied drivers of shrub 

encroachment despite the evidence of the association of aeolian transport with grass cover decline 

and shrub encroachment. In this research, we introduce wind erosion processes as major 

disturbances to vegetation cover in drylands affecting the health and mortality of vegetation 

species. We investigated the damaging effects of wind transport on major vegetation community 

types in the Chihuahuan Desert using a linear wind tunnel. We quantified the damaging effects of 

sandblasting using plant mapping methods to emphasize leaf loss, color change, stem loss and 

plant height change. Our sandblasting experiment shows some similarities between the grasses and 

the shrubs in the response to sandblasting. However, the grasses were more sensitive to 

sandblasting than the shrubs due to their growing point and growth form.  

Aeolian and fluvial processes are fundamental drivers of arid land dynamics because of 

their effects on soil surfaces and microtopographies. In this research we investigate the coupling 

effects of wind and water transport in erosion and deposition in ephemeral streams in Moab, UT 

covering dry and wet periods. We used structure from motion and drone technologies to survey 

stream over 16 months period to investigate the soil surface elevation change due to wind and 

water activities. We performed differencing analysis and quantified soil erosion and deposition 

volume over 5 survey periods. The streams show a significant net soil erosion and deposition over 

the periods which indicate direct interaction between aeolian and fluvial processes in development 

and changes of channel morphologies. 
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Dissertation Outline 

Chapter 1: This chapter introduces the characteristics of dry regions including their location, 

climate, and aridity conditions. In addition, their biological and socio-economic importance are 

also discussed. The chapter introduces major discussion points of soil and vegetation dynamics 

and land cover alterations. 

Chapter 2: Aeolian abrasion increases above-ground biomass stress and reduced productivity for 

some drylands vegetation which may contribute to shrub encroachment. In this study, we 

investigate the damaging effects of sandblasting on native grass (Aristida purpurea, Bouteloua 

eriopoda, and Sporobolus airoides) and shrub (Artiplex canescens, Larrea tridentata and Prosopis 

glandulosa) species in the Chihuahuan Desert. A ten-meter linear wind tunnel was used to simulate 

sandstorms and to expose the plants to different levels of sandflux and wind treatments. We 

quantified the damaging effects of sandblasting using “Plant mapping” techniques over the course 

of six weeks. We measured leaf loss (%), stem loss (%), leaf area loss (%), color change (%) and 

plant height change (%) using two sampling intervals. We found some similarities between 

Bouteloua eriopoda and P. glandulosa in the amount of leaf loss, however, we believe that grasses 

are usually more susceptible to sandblasting damages due to their growing point which doesn’t 

exceed the saltation layer. The highest leaf loss (%), stem loss (%) and leaf color change (%) was 

found for Bouteloua eriopoda. Our results may explain the contribution of aeolian processes to 

shrub encroachment into grasslands. 

Chapter 3: This chapter discusses remote sensing of net primary productivity using mechanistic 

and unmixing remote sensing approaches to estimate and predict NPP for the Chihuahuan Desert. 

Measurements of In situ NPP (2000-2015) from 12 NPP sites monitored by the Jornada Long Term 

Ecological Research Program were selected for this study. MODIS provided primary datasets for 
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our analysis, including GPP (MOD17A2H), NPP (MOD17A3H) and BRDF adjusted reflectance 

product (MCD43A4). We found that MODIS 17 products have no skill in predicting NPP at plot, 

community and landscape scales. Using BRDF, we estimated the fractional cover of seasonal and 

annual green vegetation (GV), non-photosynthetic vegetation (NPV) and soil using Multiple 

Endmember Spectral Mixture Analysis (MESMA), GV, NPV and soil were primary surface covers 

in the NPP predictions using multiple regression, stepwise regression and Random Forest. We 

found that random forest was best in explaining the variations in the annual In situ NPP (up to 

93%) for all vegetation communities and landscape scale.  

Chapter 4: Aeolian and fluvial activities are fundamental drivers of arid land dynamics because 

of their effects of sedimentation processes and erosion. In this chapter we investigate the coupling 

effects of wind and water transport in erosion and deposition in ephemeral streams in Moab, UT 

covering dry and wet periods. An unmanned-aerial vehicle (UAV) was used to survey three 

streams over the course of 16 months. We performed elevation differencing analysis (cm) to 

estimate the changes in soil surface elevation over four survey periods and used Trimble Total 

Station to assess the vertical accuracy of the models. We investigated the morphological traits of 

the streams and identified the spatial distribution of sediment erosion and deposition volume (cm3) 

onto the bed and the walls of the streams. We found that there’s a direct linkage between aeolian 

and fluvial activities in channel development and sediment storage over time. 

Chapter 5: This chapter highlights the long-term of environmental and ecological implications of 

the interactions between vegetation and soil dynamics. 
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Chapter 1: Introduction to drylands 

1.1 Drylands characteristics 

Drylands are found between latitudes 20 degrees north and 40 degrees south and cover 

about 40% of the earth’s land surface (D'Odorico and Porporato 2006). Drylands ecosystems are 

characterized by lack of water, seasonal climatic extremes, and infrequent and unpredictable 

precipitation patterns (Knapp et al. 2008), frequently referred to as “water-limited ecosystems”. 

These ecosystems include scrublands, shrublands, savannas, super deserts, and semi-deserts. 

Aridity is assessed based on climate variables: aridity index (AI) and/or the growing season in 

which water reaches a level that allows plant growth (FAO 2019). The AI is a measure of P/PET 

used to classify drylands into hyper-arid, arid, semi-arid and dry sub-humid, where water loss via 

potential evapotranspiration (PET) is higher than precipitation (P) almost all year long, registering 

P/PET of less than 0.65 (Middleton et al. 1997; World Atlas of Desertification 1997). This 

relationship between P and PET results in a short growing season, often less than 120 days in arid 

and semi-arid lands. 

Table 1. Aridity index of hyper-arid, arid and semi-arid lands. 

Climatic zones Area coverage (%) P/PET ratio Annual precipitation (mm) 

Hyper-arid 7.5 <0.05 60 -100 

Arid 12.1 0.05-0.20 150- 250 

Semi-arid 17.7 0.20-0.50 250 - 600 

75% of the world’s rangelands and roughly one third of the world’s terrestrial biodiversity 

are found within these drylands; and 2 billion of the world’s population depend on the resources 
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drylands provide (MEA 2005). Drylands also store one third of the world’s soil carbon. For these 

reasons, drylands are a crucial player in global climate patterns.  

Figure 1. Drylands distribution around the world (Millennium Ecosystem Assessment 2005). 

Despite the resource limitations and harsh environment, drylands support more than 38% 

of the human population. It was estimated that 10–20% of the drylands suffers from a severe 

ecosystem degradation (Alvaraz et al. 2011). These ecosystems are under increasing 

environmental stress caused by conditions of dryness and human activities. Drylands are 

vulnerable to climatic fluctuations such as droughts and increasing temperatures, while humans 

exacerbate these conditions with urbanization and suburbanization (Allred 1996; Buffington and 

Herbel 1965; Gibbens et al. 2005). This dual effect of disturbances from global climate change 

and anthropogenic factors lead to acceleration in soil erosion, decrease in soil stability, and decline 

in vegetation in arid and semi-arid lands (Schlesinger et al. 1990). Due to the fact that over 2 billion 

people inhabit drylands, these disturbances in turn lead to destabilizing habitats, the economy, and 

public health (Reynold and Stafford 2003). Understanding the dynamics of the controls and drivers 
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that affect these ecosystems will facilitate our understanding of the complex dynamic interactions 

between resources and the biotic and abiotic drivers in drylands. 

1.2 Socio-economic importance 

Dryland ecosystems hold great economic, social, and cultural value locally, regionally and 

globally. Locally, rural and local communities depend on natural resources and services that the 

ecosystem provides as they provide food, fuel, and water, in addition to spiritual and cultural 

values. Drylands support 35% of the world’s population, of which 90% reside in developing 

countries (MEA 2005). In the developing countries, they contribute to the well-being of millions 

of people through sustaining the local livelihood and food production (Reed and Striger 2015). 

Globally, drylands provide not only sustenance to the world’s populations, but also ingredients for 

food, medical, and cosmetic products to multinational businesses (FOA 2019).  

1.3 Biological importance 

Despite high levels of aridity and harsh environmental conditions, drylands include a wide 

range of biodiversity that is highly adapted to its ecology. The Sonora desert is considered the most 

biodiverse and productive dryland worldwide (Davies et al. 2012), including animals and plant 

species that are not found in any other ecosystem, in addition, the Kalahari Desert is also known 

for its biodiverse fauna and wildlife. All drylands combined include about 30% of sites that have 

important biodiversity and 28% of the total area of World Heritage Sites (WHS) (Reed and Striger 

2015). 

1.4 Erosion interactions and implications 

The interactions among abiotic agents and their relative importance in drylands has been 

poorly studied. Abiotic disturbances in drylands are recognized in the high-frequency wind 
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dynamics and the episodic water movement, which are considered critical measures of erosion, 

since they serve as erosive agents (Okin et al. 2006). 

The potential of erosion to cause environmental and climatic alterations has increased by 

17% over the past century due to concentrated expansion of cropland, grazing, and anthropogenic 

activities that account for approximately 60% of all erosion drivers (Yang et al. 2003). Drylands 

in particular are most susceptible to aeolian and fluvial erosion due to the reduction in vegetation 

cover and soil moisture. Large bare soil surfaces provide aeolian and fluvial transport with supply, 

especially since the soil structure of drylands is weak due to low organic matter and weak physical 

and biological crusts (Belnap and Lange 2003; Sivakumar 2007). Today, drylands are known for 

their abundant soil supply of loose and dry soil particles, which are predicted to increase, as climate 

models suggest more intense and frequent wind and water storms in the future (Easterling et al. 

1990; IPCC 2007). 

Wind and water erosion have contributed to two billion tons of soil loss per year in the 

United States (NRCS 2000A; NRCS 2000B), eroding approximately 75 tons of soil annually 

(Pimentel et al. 2005). The case becomes especially problematic as current worldwide 

approximation of soil erosion ranges from 20 to 100 times greater than the average rate of soil 

renewal (Goudie and Middleton 2006).  Changes in land cover, climate, and land use are likely to 

increase soil erosion and intensify the interaction between aeolian and fluvial erosion, leading to 

elevated rates of soil movement and degradation (D'Odorico et al. 2013). The effect of interactions 

in drylands is intensified due to reduction in plant cover, which increases the vulnerability of the 

soil surface, leading to acceleration of soil loss from wind- and water-borne materials (Easterling 

et al. 1990; IPCC 2007). 
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Erosion via water runoff and wind saltation can lead to disruption of micro-habitats, 

damaging soil microbial crusts and above-ground biomass (Schlesingeret al. 2000), causing loss 

of essential materials attached to the soil (Li et al. 2007b; Li et al. 2008; Okin, Gillette & Herrick 

2006), and leading to reduced soil and water quality (Belnap et al. 2011). In addition, saltation of 

surface material on a small scale can initiate large-scale dust storms, which are predicted to 

increase in intensity and frequency by the end of the 21st century due to elevated drought conditions 

(Sheffield and Wood 2007). The expected increase in the rates of dust storms is also affected by 

alterations in vegetation cover, such as decreased vegetation cover and increased sediment uplift 

and transport (Jobbage and Jackson 2000; Li et al. 2007b; Li et al. 2008). A better understanding 

of small-scale mechanisms will allow us to better understand the large-scale events that cause 

climatic alterations. 

Increasing evidence suggests that aeolian and fluvial interactions provide a major source 

of understanding of contemporary aspects of landscape formation such as channel formation and 

development of dunes. Sedimentological evidence shows that aeolian-fluvial interactions are 

important for reconstructing past climate, as their interactions exist in most climate zones, while 

contemporary feedbacks are most apparent in drylands (Belnap et al. 2011; IPCC 2013). 

1.5 Erosion and vegetation 

The frequency and intensity of abiotic factors are the main drivers of many ecological 

processes in dry regions, including activity of biomass, ANPP, nutrient cycling, and others such 

as soil texture and distribution. These abiotic and biotic feedbacks largely modulate the effects of 

climatic changes on drylands functionality and stability (Maestre et al. 2016). On various scales, 

soil erosive particles have been considered a primary driver of the decline in the production of 

vegetation, which has been understudied.  
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Despite difficulties associated with studying soil movement and its impact on soil and 

vegetated surfaces, soil movement has been very well addressed as a source of stress (Okin 2008). 

Shrub encroachment of honey mesquite and creosote bush into perennial grassland has been 

observed widely in Western United States (Van Auken 2000) and is a phenomenon that was the 

highlight of Long-Term Ecological Research (LTER) studies in the Jornada Basin in the early 

1980s (Gibbens et al. 1983). In the Jornada Basin, southern New Mexico, Peters and Gibbons 

(2006) summarized the drivers that contribute to this shift in the ecosystem, which included 

droughts, fire suppression, overgrazing, and climate change, all factors that expand bare soil 

surfaces which in turn increase rates of aeolian transport in regions of low vegetation cover.  

Wind erosion can be responsible for adding stress to perennial species in drylands, as wind 

can carry fine soil materials for long distances and deposit them when it encounters an obstacle or 

becomes weaker. It is observed that wind-carried materials are usually deposited under canopy 

creating a mound of loose materials (Gillette et al. 2006). We hypothesize that this encounter 

between vegetation canopy and soil carried by wind may have a damaging effect on the 

aboveground vegetation biomass; more investigation into this hypothesis would be well grounded. 

Sandblasting soil disturbs the health and mortality of vegetation cover. However, the potential 

contribution of soil erosion has been less frequently investigated in the context of biotic balance 

and stability. From an economic perspective, Baker (2007) and Baker et al. (2009) have concluded 

that sandblasting has damaging effects on cotton seedlings, where it has the potential to reduce 

cotton productions and increase labor cost in countries that depend on cotton production. The 

effects of soil erosion on vegetation productivity may lead to long-term ecological and 

environmental consequences. Biotic and abiotic drivers could strongly impact the net primary 

productivity of vegetation.   
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1.6 Above ground primary production 

 

ANPP is a sensitive biotic stability measure of the ecosystem. It is affected by a number of 

complex feedbacks and interactions such as soil fertility, organic matter, microbial activities, and 

nutrient cycling (Peters et al. 2006; Yahdjian and Sala 2006).  

Net primary production (NPP) represents the net carbon that is fixed (sequestered) by a 

plant community or ecosystem. Collectively, drylands contribute up to 30% of the global net 

primary production (Parton et al. 1995). NPP is the combined product of climatic, geochemical, 

ecological, and human effects. NPP makes up to 120 Pg C yr-1 and GPP 58 Pg C yr-1 globally 

(Hinsinger 2013; Schlesinger 1997). Drylands contribute significantly to global NPP: Savannas 17 

Pg C yr-1, grasslands 5.3, Mediterranean shrublands 1.3 Pg C yr-1, and deserts 3.3 Pg C yr-1 

(Hinsinger 2013; Parton et al. 1995; Schlesinger 1997).    

Despite scientific efforts at providing reliable methods, ANPP measurements and 

estimations in drylands are challenging due to the nature of dryland surface comprised of 

unvegetated surfaces and large soil background. Scientists continue to seek new methods for 

estimating ANPP. Experiments have been conducted on local (Flombaum and Sala 2008), regional 

(Gaitan et al. 2014a), and global (Maestre et al. 2012a) scales and their findings confirm  positive 

relationships between species richness and key ecosystem measures such as ANPP (Havstad et al. 

2006). Grazing, fire, climate, and biotic attributes along natural gradients have compounded 

effects, and it is often difficult to disentangle their independent effects and the interactions among 

them.   There is a need to better understand how biological feedbacks operate in drylands and how 

abiotic agents can contribute to their alterations, as their interactions can affect the ecosystem 

fluctuations and determine the ecosystem’s response to climate change in an untimely manner 

(D'Odorico et al. 2013; Schlesinger et al. 1990). 
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1.7 Vegetation and soil degradation 

The consequences of dryland degradation include loss of vegetation cover, which in turn 

affects the carbon sequential and loss of soil resilience that affects more than one-fifth of drylands 

due to cultivation and grazing. Dryland degradation may have long-term consequences on the 

climate (Okin et al. 2001), i.e., soil degradation and drought together could cause soil movement 

that leads to soil suspension, thereby altering the radiation budget of the atmosphere. This 

atmospheric modification and temperature changes alter rates of evapotranspiration and patterns 

of rainfall frequency and distribution in the drylands. These changes will lead to elevated 

ecological stress (IPCC 1990).  

Abiotic and biotic activities, including anthropogenics elevate the potential of 

environmental stress on drylands ecosystems. Vegetation and soil health are critical aspects of 

drylands functionality and stability, the disturbances on soil and vegetation cover could lead to 

ecosystem failure to sustain a healthy balance in the ecosystem. 
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 Chapter 2. The contribution of aeolian processes to vegetation state change: Damaging 

effects of sandblasting on native shrub and grass species in the Jornada Basin, NM. 

2.1 Abstract 

 

 The effects of windblown soil particles remain unquantified despite scientific efforts at 

addressing the role of aeolian processes in vegetation state change. The goal of our study was to 

examine and quantify the above-ground biomass damages caused by sandblasting in the absence 

of other disturbances. A total of 216 plants of native grass (Aristida purpurea, Bouteloua eriopoda, 

and Sporobolus airoides) and shrub (Artiplex canescens, Larrea tridentata and Prosopis 

glandulosa) species in the Jornada Basin NM, USA were used to examine the effects of sand blown 

by wind at six different treatments. We used a ten-meter-long wind tunnel to expose the plants to 

two wind frequency for the control treatments (low frequency: every other week, and high 

frequency: every week), with two sand flux (high flux: 120 g cm-1 minute-1, and low flux: 60 g cm-

1 minute-1) for the sand flux treatments for six weeks. Morphological features of the plants were 

measured two days before the experiment to record the plants’ morphological characteristics in 

their healthy state; then they were undestructively examined at the time of the sandblasting 

experiment during the 3rd and 7th weeks after exposure. For assessing the above-ground biomass 

damage we recorded the amount of leaf loss, leaflet loss, stem loss, leaf area reduction and 

observations of production using traditional sampling methods. The results displayed leaf loss up 

to 95% for Bouteloua eriopoda, 79% for Sporobolus airoides, and 81% for Aristida purpurea. B. 

eriopoda was the only grass species that experienced a considerable amount of stem loss. In the 

shrub category, Prosopis glandulosa recorded the largest amount of leaf loss (up to 94%) and 

leaflet loss (up to 95%); Larrea tridentata recorded up to 79% leaf loss; Artiplex canescens did 

not experience any major leaf loss (up to 10%). With increasing sand flux (high), the percentage 
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of leaf and leaflet loss increased. Leaflet loss for Prosopis glandulosa was also positively 

associated with sand flux and wind treatments, explaining about 81% of the relationship. The 

plants experienced reduction in leaf area (%) in response to increasing sand flux with the high 

frequency sand flux treatments. Our results support the hypothesis that aeolian processes are 

responsible to some degree for above-ground biomass damage, depending on the severity and the 

intensity of the aeolian events. 

2.2 Introduction 

Drylands cover more than 40% of the earth’s land surface and are home to more than two 

billion people (MEA 2005; Reynold et al. 2007). Over the past 150 years, drylands in the United 

States and elsewhere have experienced drastic changes in vegetation cover observed in the form 

of shrub encroachment (Archer 1989; Bestelmeyer, et al. 2004; Bestelmeyer et al. 2015; 

Buffington & Herbel 1965; Gibbens et al. 2005; Okin et al. 2009; Peters & Herrick 2001; Peters 

et al. 2006; Turnbull, et al. 2002). This change in vegetation cover, from grasslands to shrublands, 

has been attributed to a number of environmental feedbacks including droughts, grazing, warming, 

and high levels of atmospheric CO2 (Archer et al. 1995; D'Odorico et al. 2012; Gibbens et al. 1983; 

Gibbens & Beck 1987; Gibbens et al. 2005; Knapp et al. 2008; Okin et al. 2009; Peters et al. 2006). 

The shifts not only impact populations living in drylands and the possible land use therein, but 

might also have large-scale environmental and climatic implications. For instance, Knapp et al. 

(2008) found that the shift from grassland to shrubland alters the amounts and controls of carbon 

inputs into the ecosystem independent of those alterations in climatic drivers or resource levels. 

Grasslands account for 30 - 35% of global terrestrial net primary productivity (Field et al. 1998); 

thus, any changes in the patterns or controls of carbon inputs in grasslands will have global 

implications. Likewise, increases in shrub cover at the expense of grass cover has the potential to 
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increase atmospheric input of dust (e.g., Bergametti and Gillette 2010; Breshears et al. 2012; 

Gillette and Pitchford 2004) which could impact dust loading in the atmosphere with its attendant 

climatic and health consequences (Wiggs et al. 2003). 

Despite the many proposed triggers for grass-to-shrub change, in most theoretical 

conceptualizations of the process, grazing and drought are implicated in processes that promote 

and enforce shrub encroachment (Van Auken 2000; Okin et al. 2009; Okin et al. 2015; Okin et al. 

2018). The feedback between grazing and vegetation cover is very well-understood (e.g., 

D'Odorico et al. 2012). Grazing and drought tend to reduce fuel mass and thus reduce the ability 

of fires to limit shrub dominance (Peters et al. 2006). Droughts and extensive grazing cause 

reduction in vegetation cover and increase bare soil cover, thus increasing the rates of water erosion 

(Bullard and Livingstone 2002; Muhs and Holiday 1995) and aeolian transport (Okin et al. 2001; 

Gillette & Pitchford 2004; Li et al. 2007). Transport of soil resources by wind and water enforces 

islands of fertility (Schlesinger et al. 1990; Wainwright et al. 1999; Wainwright et al. 2002; Li et 

al. 2009).  

The impact of plants on aeolian transport has been well-documented in literature, 

emphasizing the structural characteristics of plant communities such as their lateral cover and 

distribution, or the gap size between plants (Bhattachan et al. 2014; Gibbens et al. 2001; Li et al. 

2007; Okin & Gillette 2001; Okin et al. 2006; Ravi et al. 2010; Ravi et al. 2011). Other things 

being equal, aeolian transport increases with increasing gap size (bare soil areas), meaning that, as 

vegetation is lost and the physical structure of the plant communities changes, aeolian transport 

increases (Gibbens et al. 2001; Li et al. 2007). However, beyond just movement of soil resources, 

aeolian processes have been implicated in direct impacts on vegetation that may promote shrub 

encroachment (e.g., Okin et al. 2006). In particular, it has been suggested that the low growing 
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points, relatively thin leaves, and shallow roots make grasses more susceptible to aeolian damage 

than shrubs.  

In this study, we focus on above-ground biomass response to aeolian transport as a major 

ecosystem disturbance that could cause changes in the vegetation cover. Specifically, we 

investigate the impact of sandblasting on plant architecture. Sandblasting is a product of saltation 

which is the movement of aeolian material roughly in the range 70-200 um (Kok et al. 2012). The 

effect of saltation on above-ground plant health and productivity has not been investigated in 

relation to shrub encroachment. In fact, there are few measurements of the effect of sandblasting 

on native vegetation, which is different from studies on agricultural plants (Baker et al. 2009).  

Our overall goal is to test one component of the hypothesis that positive feedbacks 

associated with aeolian processes drive shrub encroachment in arid grasslands with wind-erodible 

soils. A positive feedback in this case requires aeolian processes to decrease vegetation cover, in 

a way that increases aeolian transport. We hypothesize that the different impacts of aeolian 

transport on grasses and shrubs, with grasses being more susceptible and shrubs being less 

susceptible, contributes to this feedback. Thus, we study the effect of sandblasting on plant 

architecture after periods of exposure to saltation in a linear wind tunnel. The elevated stress caused 

by aeolian processes may differ between shrub and grass communities, as some species may be 

more resilient than others and can adapt and reproduce despite high levels of imposed stress. We 

expect shrubs to be more tolerant to sandblasting than grasses; this finding will contribute to 

understanding feedbacks controlling shrub encroachment. 
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2.3 Methods 

2.3.1 Study area 

 Our study took place in the Jornada Experimental Range (JER), outside of Las Cruces, 

New Mexico (32.6°N, -106.7°E), which has an elevation of around 1,300 meters. The JER is 

representative of hot desert ecosystems worldwide with a well-documented history of ecosystem 

disturbances and shrub encroachment. Three different shrub species – Prosopis glandules (PRGL), 

Larrea tridentata (LATR), Atriplex canescens (ATCA) – and grass species – Bouteloua eriopoda 

(BOER), Sporobolus airoides (SPAI), and Aristida purpurea (ARPU) – were selected for the 

aeolian sandblasting experiment (Table 1). These species are common in the JER and are 

representative of many other dryland vegetation types in the Western United States and around the 

world (Dodson 2012; Ramawat 2010). Each species was given a four-letter identifier consisting of 

the first two letters of the genus and species names. 

Table 2. Native Chihuahuan desert shrub and grass species and their characteristics. The shrub 

species have high root mass compared to the grass species. 

 

2.3.2 Plant material   

  Seeds for the selected shrub and grass species were obtained from local native plant 

nurseries (Plants of the Southwest 2017) and the NRCS Plant Material Center (USDA 2017). The 

seeds were planted in a greenhouse at The University of Arizona and maintained for three months 

until they reached a suitable height (average: shrub = 18 cm, grasses = 14 cm) for the sandblasting 

 
                                                               Species 

Type                            Shrub                         Grass 

Sci-name  Prosopis 

glandulosa  

Larrea 

tridentata  

Atriplex 

canescens 

Aristida 

purpurea  

Bouteloua 

eriopoda  

Sporobolus 

airoides  

Common name  Honey 

mesquite  

Creosote bush  Fourwing 

saltbush  

Purple 

threeawn  

Black grama  Alkali 

sacaton  

Tag name PRGL LATR ATCA ARPU BOER SPAI 
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experiment. The plants were then relocated to a common garden in the JER and were maintained 

for four weeks before they were sandblasted. The four-week transition between the greenhouse 

and the common garden allowed the plants to adapt to the new natural environment. A total of 216 

plants were protected in a fenced area and were provided with a controlled amount of water for six 

weeks throughout the experiment period. The plants were given 0.5 liters (grasses, 3.9-liter pot), 

and 1 liter (shrubs, 7.6-liter pot) of water daily. 

2.3.3 Wind tunnel treatments 

A B 

Figure 2. A 10-meter long wind tunnel was used treat 6 different treatment. (B) The hopper 

(green) was used to feed the wind tunnel with abraders. 

   We used a suction mode wind tunnel (10 m x 0.5 m x 0.5 m) to simulate sand storms and 

to expose the plants to different levels of sand flux and wind treatments over the course of six 

weeks. The wind tunnel design was modified from Aeolian Simulation Lab wind tunnel at the Ben 

Gurion University of the Negev (Katra et al. 2016). The tunnel was placed on a leveled table (11 

m x 0.75 m x 0.75 m) allowing the pots to be below the table surface level and the plants at table 

surface level (Figure 2).  The working section included an opening in the bottom to accommodate 

the plants. 
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  Since the surface of the wooden table where the wind tunnel is placed was flat and smooth, 

the airflow was tripped by two arrays of wooden dowels at the entrance of the tunnel. The first 

array consisted of 3.5-cm diameter wooden dowels, cut to 10-cm height, and placed in an offset 

grid pattern with a density of 30 dowels occupy 1 cm2 that spanned the width of the tunnel and 

was approximately 50-cm in length.  The second array was placed just downwind of the first, and 

consisted of 3.5-cm diameter wooden dowels, cut to 7-cm height, and placed in an offset grid 

pattern with a density of 35 dowels occupy 1 cm2 that spanned the width of the tunnel and was 

approximately 50-cm in length.   

  Abraders, consisting of sandy loam soils from the JER sieved using a 1 mm mesh, were 

added to the airflow across the full width of the tunnel to simulate sandblasting by aeolian 

sediment. Abraders were placed in a hopper located approximately 3 m upwind of the plants. The 

sediments were manually introduced into the wind tunnel for each run, the flow of sediments was 

monitored to ensure continuous dispersal of abraders.  

   Our experiment included six total treatments, including controls. The treatment 

combinations allowed separation of sandblasting from wind-only effects. All treatments and 

controls lasted 5 minutes, with a wind speed in the center of the tunnel, measured with a pitot tube, 

of ~11 m s-1. With the tripping roughness, this translated to shear velocities of ~ 0.50 m s-1 at the 

plants (zo = 5.25 × 10-6 m).  Each treatment included 6 replicates. Control treatments did not include 

abraders and were conducted with two wind frequencies: 1) low frequency, every other week 

(LFC), 2) high frequency wind, every week (HFC). The treatments with sand included two levels 

of sand flux conducted at the same frequency: 1) low flux, low frequency (LflLfr); 2) low flux, 

high frequency (LflHfr); 3) high flux, low frequency (HflLfr); and 4) high flux, high frequency 

(HflHfr). The target horizontal flux for low flux treatments was 60 g cm-1 min-1 and the target 
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horizontal flux for the high flux treatments was 120 g cm-1 min-1. The low flux was chosen to 

imitate natural fluxes measured in mesquite dune areas the JER where approximately 10 g cm-1 d-

1 has been measured on average over an entire year by Gillette and Pitchford (2004), assuming that 

that flux occurred during 10 stormy days and had transport for 10 minutes in each of those days: 

(10 
g

cm d
)

365 d

yr

1 yr

10 storm days
≈ 30 

g

cm min
 for 10 min                                       (1) 

  High flux was set to twice the low flux. In practice, we found that it was more reliable to 

run our experiments for 5 minutes instead of 10 minutes, and therefore, to keep the total flux the 

same over the treatment, the low flux treatment was ultimately 60 g cm-1 min-1 for 5 min and the 

high flux treatment was 120 g cm-1 min-1 for 5 min. We assumed that doubling the flux while 

halving the time would, in addition to keeping the total flux per treatment the same as the above 

calculation, also keep the total damage to the plants the same. Bridges et al. (2005) found, for 

instance, that the total amount of aeolian abrasion to rocks scaled linearly with the total kinetic 

energy of the abrading particles. Because kinetic energy scales linearly with mass (as opposed to 

velocity, which we kept the same for all treatments and controls), we concluded that halving the 

time while doubling the mass flux would not change the total kinetic energy of the abraders. 

  To quantify the actual flux experienced by the plant, a 25-cm high wedge-shaped aeolian 

sediment trap based on the design of Nickling & Neuman (1997) was placed on the table behind 

the plants. The sediment samples were collected and weighed for each run, the total abrader mass 

(TAM; g cm-1) was calculated using: 

𝑇𝐴𝑀 =
𝑡𝑜𝑡𝑎𝑙_𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡  

𝑤𝑖𝑑𝑡ℎ
        (2) 

where the 𝑡𝑜𝑡𝑎𝑙_𝑆𝑒𝑑𝑖𝑚𝑒𝑛𝑡 is the total mass of the sediments (g) collected in the sediment trap 

during the run and width is the width of the trap opening (1 cm). The sediment samples were 

weighed for each replicate after every run.  
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  Because we had six species, each day of the week was assigned to one species; treatments 

were repeated in the wind tunnel on a weekly basis, totaling six sandblasting events for each 

species over six weeks from July 1st, 2018 to October 1st, 2018. 

2.3.4 In situ measurements 

   A total of 30 individuals for the same species chosen for wind tunnel treatments were 

selected for comparison from sites known for high erosion rates at the Jornada Basin: the Nutrient 

Effects of Aeolian Transport (NEAT: closest to the center of control (0 % grass cover removal) 

and upwind (50 % grass cover removal) and downwind perpendicular to the upwind location in 

block 3) experiment (Okin et al. 2001a), the “Scraped Site” (samples were selected closest to the 

center of downwind for treatment and upwind for control; Okin et al. 2001a; Alvarez et al. 2012), 

mesquite dune sites northwest of the JER headquarters, the controls located in this area were 

protected in a fenced site established in 2008 while the treatment samples were selected in the field 

of mesquite dunes. These sites were selected based on their history of aeolian transport, dominant 

species, and soil. The NEAT experiment and Scraped Site were established to study aeolian 

transport, with the NEAT experiment specifically designed to study the competition between grass 

and shrub species under conditions of increased aeolian transport. The mesquite dune sites were 

chosen because of the high rate of aeolian transport in these communities (Gillette and Pitchford 

2004). The sites were flagged and individual plants were tagged indicating replicate order, location 

and orientation. We selected one branch (Figure 3) from each plant to where we counted leaves 

and leaflets to estimate leaf and leaflet loss over 6 weeks (Equation 3). The first measurements 

were made on June 28th, 2018 and then repeated on September 30th, 2018. Due to the difficulties 

in determining wind and sandblasting magnitude and frequency in each site, plants were not 



30 
 

assigned to treatments of different intensities and wind frequencies, but  rather: 1) wind and no 

abrasion effect (control), and 2) plants under the effect of abrasion and wind. 

A B 

Figure 3. In situ samples of (A) P. glandulosa and (B) A. canescens. 

 

2.3.5 Quantification and mapping of above-ground biomass 

   To assess the impacts of aeolian transport on plant architecture, physical characteristics 

were measured such as the number of leaves and leaflets, leaf area, leaf color, and seed production 

in a process we called “plant mapping”. The mapping was done twice, before the first sandblasting 

trial on July 1st, 2018 and after the last sandblasting trial on October 1st, 2018. The downwind 

(down-tunnel) direction of the plants was marked so that the plant mapping is always done from 

the same direction.  
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  In our plant mapping, each leaf, node, thorn and minor stems was given a code (consisting 

of letters and numbers) as an identifier to follow the progress of the plants throughout the 

treatments (e.g., Figure 4). Different processes were used for grasses and shrubs. For shrubs, 

photos were taken of the plants with a grid of known line separation in the background, from which 

scale can be determined (Figure 3). The distance between the nodes was measured to keep track 

of the overall growth. Codes were created to track the changes throughout the treatments, i.e., for 

a P. glandulosa, the code  0701:N8:L15G,4CM,20LL:L16G,5CM,22LL:2T indicates that the date 

of the mapping is July 1st (0701), at the 8th node (N8) leaf number 15 (L15) was healthy green (G) 

and was 4 cm, this leaf had a count of 20 leaflets (20LL), node 8 also included leaf 16 which was 

also green and was 5 cm with 22 leaflets, node 8 had 2 thorns. P. glandulosa was the only bipennate 

plant, and therefore had leaflets. For the other shrub species, the ‘LL’ part of the code was omitted. 

A                                                                               B 

Figure 4. A diagram showing a plant map for P. glandulosa. B: A photo from field 

notes showing a plant map for A.  purpurea. 

Thorn 

Node 

Leaf (L) 
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To differentiate between leaves that grow from the same node, we always used the same leaf order 

for mapping and used markers to reduce confusion when needed. Then, after the last sandblasting 

trail, a second code is created (e.g., 1001:N8:L16Y,3.9CM,12LL:L15B,5CM,19LL:1T) indicating 

morphological changes. To illustrate, the code created on October 1st indicate that leaf 15 turned 

yellow (L15Y) and lost 8 leaflets (12LL), while leaf 16 turned brown and lost 3 leaflets.  

  Leaf color was also quantified since each leaf was given a color code (G and B). leaf color 

is the total number of leaves that changed in color (%) by the end of the sandblasting experiments, 

lost leaves are included in the color quantification. Leaf area (cm2) was roughly estimated using 

traditional methods: length and width of the leaves using a millimetric ruler and gridded paper.  

   

  For grasses, photos with a grid were also taken (Figure 4). The grass mapping for B. 

eriopoda differed from the mapping for S. airoides and A. purpurea, B. eriopoda leaves grow at 

nodes above the ground level, while bunchgrass leaves grow mostly at ground level (Figure 4). 

Therefore, bunchgrass mapping, especially S. Airoides did not always include stem measurements. 

A B C 

Figure 5. Leaf growth form for S. Airoides (A), A. purpurea (B), B. eriopoda (C). 
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The orientation of the mapping was indicated with labels and markings on the pots. The same 

coding technique used for the shrubs is followed for the grasses (Figure 4), (e.g., ARPU: 

0701:GRND:L1G,14CM, 0.2CM then updated to 1001:GRND:L1B,13CM, 0.2CM). The code 

indicates that Leaf 1 (L1) was green and grows at ground level (GRND) and is 14 cm long and 0.2 

cm wide, then turned brown (B) and decreased in length (13 cm) later in October. We selected one 

plant in each pot for mapping since more than one plant grew in the same pot (Figure 5A). The 

total height of the plants was also measured with a millimetric ruler to record the overall plant 

growth progress. 

  The first plant mapping was done two days before the first sandblasting trial, July 1st, 2018, 

and one week after the 6th (and last) sandblasting trial, October 1st, 2018. Percent change to 

measured plant characteristics was calculated as: 

Change (%) =  
Measurement July− MeasurementOctober

 MeasurementJuly
× 100   (3) 

where Measurement July is the measurement in July and Measurement October is the 

measurement in October.  Leaf (leaflet) loss (%) was calculated using the measured total number 

of leaves (leaflets) for each plant. Leaf area change (%) was calculated using the measured total 

leaf area for the plants. Stem loss (%), using the measured number of stems, was calculated for B. 

eriopoda because there was a considerable amount of stem loss for some treatments for this plant. 

Leaf color change (%) is the total number of leaves that turned brown for each plant, and plant 

height increase (%) is the overall growth of each plant during the 6-week period of the experiment. 
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2.4 Results 

2.4.1 Total Abrader Mass (TAM) 

Table 3. TAM (mean ± standard deviation; g cm-1) experienced by plants in four species over six 

weeks. 
Species LflLfr LflHfr HflLfr HflHfr 

PRGL 806.4 ± 134.1 884.0 ± 36.5 2573.1 ± 159.1 3320.3 ± 195.5 

ATCA 1474.7 ± 168.1 929.9 ± 129.4 2537.3 ± 403.3 2633.5 ± 345.0 

LATR 782.5 ± 78.3 900.9 ± 274.5 2639.4 ± 239.7 3274.7 ± 337.7 

BOER 941.3 ± 37.4 1137.7 ± 100.5 2937.2 ± 147.0 3058.7 ± 156.4 

SPAI 948.3 ± 119.6 919.3 ± 77.7 2492.7 ± 175.0 3201.5 ± 225.3 

ARPU 598.3 ± 81.4 842.2 ± 96.3 2993.2 ± 281.1 3214.8 ± 346.9 

Given the final manner in which abraders were introduced into the wind tunnel, the TAM 

for each species fall into two main groups (Table 3). Plants in the LflLfr and LflHfr treatments 

experienced 598-1475 g cm-1 whereas plants in the HflLfr and HflHfr treatments experienced 

2492-3320 g cm-1 TAM. The considerable variability between individual plants, furthermore, 

meant that some individuals experienced considerably higher TAM than other individuals, even in 

the same treatment. Therefore, we pursued two approaches to statistical analysis of results. Two-

factor ANOVA is consistent with the original layout of the experiment. Regression analysis using 

individual-plant information was used as an alternative to account for within-group abrader 

variability. 

2.4.2 Response of Plant Architecture to Aeolian Abrasion 

 Physical damage caused by sandblasting was apparent at the end of the sandblasting 

experiment for some species, but not others (Figures 6 and 7).  
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A                                                                     B 

Figure 6. (A) B. eriopoda LflHfr replicate showing stem loss. (B) B. eriopoda, (C) S. 

airoides, (D) A. purpurea treatments. Photos taken on October 1st, 2018. 

 

C      D 
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A                                                                           B 

Figure 7. (A) A. canescens LflHfr replicate showing no indications of damage,  (B) A. 

canescens, (C) L. tridentata, (D) P. glandulosa treatments. Photos were taken on October 

1st, 2018. 
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2.4.2.1 Leaf and leaflet Loss 

Table 4. Leaf loss ANOVA analysis for each species and leaflet loss for p. glandulosa. 
Specie Source of 

variation 

Df Sum of squares Mean square F P > F 

P. 

glandulosa 

Flux 2 1.74 0.87 101.2 4.6E-14 

Frequency 1 0.76 0.76 88.1 2.0E-10 

Flux: Frequency 2 0.04 0.02 2.28 1.2E-01 

Residual 30 0.26 0.01   

p. 

glandulosa 

(Leaflet) 

Flux 2 1.77 0.90 102.5 3.5E-12 

Frequency 1 0.72 0.72 83.6 1.8E-12 

Flux: Frequency 2 0.04 0.02 3.11 1.3E-02 

Residual 30 0.30 0.01    

A. canescens Flux 2 0.0003 0.0001 0.30 7.4E-01 

Frequency 1 0.0005 0.0005 0.99 3.2E-01 

Flux: Frequency 2 0.0006 0.0003 0.65 5.3E-01 

Residual 30 0.0143 0.0005    

L. 

Tridentata 

Flux 2 1.25 0.62 106.9 2.3E-14 

Frequency 1 0.14 0.14 24.7 2.5E-05 

Flux: Frequency 2 0.15 0.08 12.8 9.3E-05 

Residual 30 0.18 0.01    

S. airoides Flux 2 1.74 0.87 211.2 2.0E-16 

Frequency 1 0.30 0.30 71.9 1.8E-09 

Flux: Frequency 2 0.03 0.02 4.10 2.8E-02 

Residual 30 0.12 0.004    

A. purpurea Flux 2 1.22 0.61 82.5 6.4E-13 

Frequency 1 0.22 0.22 29.7 6.6E-06 

Flux: Frequency 2 0.04 0.02 3.01 6.5E-02 

Residual 30 0.22 0.01    

B. eriopoda Flux 2 1.31 0.65 44.1 1.2E-09 

Frequency 1 0.22 0.22 14.5 1.0E-03 

Flux: Frequency 2 0.01 0.004 0.29 6.0E-03 

Residual 30 0.44 0.02    

 

 ANOVA indicated significant effects of flux and frequency for the different groups for all 

species except A. canescens. All other plants exhibited significant interactive flux/frequency 

effects (at  = 0.05) except P. glandulosa leaves (not leaflets) and A. purpurea though, for A. 

purpurea, the interactive effect was close to significant at  = 0.05. 

In the regression context, all species except A. canescens indicated a significant response 

to sand flux (P > 0.01), with > 50% leaf loss for all species (except A. canescens) at the higher 

sand flux treatments (Figure 7,8). For those species with significant responses, the intercepts of 

the regressions of leaf loss against TAM varied. For P. glandulosa, L. tridentata, and S. airoides, 
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the intercept was about 20 %, whereas for A. purpurea, it was slightly higher. B. eriopoda exhibits 

the highest intercept, as well as the highest leaf loss for the wind-only treatments. B. eriopoda also 

experienced the highest amount of leaf loss for all other treatments, compared to the other species. 

 

 

 

  

 

 

Figure 8. Average leaflet loss % in response to sandblasting at sand flux treatments  g  cm-

1  and control for six species over six weeks. 
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Figure 9. Average leaf loss % in response to sandblasting at sand flux treatments g  

cm-1 and control for six species over six weeks. 
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2.4.2.2 Total Leaf Area 

 Total leaf area characterizes the total amount of surface area is available for photosynthesis, 

and it is thus a good indicator of the impact that changes to plant architecture have on plant 

productivity. ANOVA analysis (Table 5) indicates significant effects associated with flux and 

frequency of treatments, as well as significant interactive effects (P < 0.01), for almost all species, 

except A. canescens. A. canescens did exhibit a significant response to flux ( = 0.05), but not 

frequency.  

Table 5. Leaf area loss ANOVA test for each species. 
Specie Source of 

variation 

Df Sum of squares Mean square F P > F 

P. 

glandulosa 

Flux 2 0.31 0.16 3.55 4.0E-03 

Frequency 1 1.00 1.00 23.2 3.9E-05 

Flux: Frequency 2 1.01 0.51 11.7 1.7E-04 

Residual 30 1.30 0.04   

A. canescens Flux 2 0.02 0.01 4.31 2.0E-02 

Frequency 1 0.01 0.01 3.22 9.0E-02 

Flux: Frequency 2 0.01 0.003 1.71 2.0E-01 

Residual 30 0.05 0.002    

L. 

Tridentata 

Flux 2 0.96 0.48 54.8 9.7E-11 

Frequency 1 0.14 0.14 16.3 3.5E-04 

Flux: Frequency 2 0.06 0.03 3.60 4.0E-02 

Residual 30 0.26 0.01    

S. airoides Flux 2 0.18 0.09 9.60 6.0E-04 

Frequency 1 1.04 1.04 112.5 1.1E-11 

Flux: Frequency 2 0.33 0.16 17.8 8.2E-06 

Residual 30 0.28 0.01    

A. purpurea Flux 2 0.18 0.09 22.2 1.2E-06 

Frequency 1 0.73 0.73 180.2 3.2E-14 

Flux: Frequency 2 0.42 0.21 52.3 1.7E-10 

Residual 30 0.12 0.004    

B. eriopoda Flux 2 0.06 0.03 3.95 3.0E-03 

Frequency 1 1.72 1.72 233.9 1.0E-15 

Flux: Frequency 2 0.66 0.33 45.0 9.3E-10 

Residual 30 0.22 0.01    

 

 As with leaf loss, regression analysis indicates that all plants exhibited significant (P < 

0.05) responses to the treatments except A. canescens. The intercepts for these relationships, 

however, were generally lower than their counterparts in leaf loss, except for P. glandulosa. For 

the grasses, an important component of leaf area loss was the loss of individual stems due to the 
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treatments. This is particularly clear in B. eriopoda which exhibits the highest degree of leaf area 

loss, with some plants in the strongest treatments exhibiting nearly 100% leaf area loss (Figure 

10). However, some P. glandulosa individuals also exhibited nearly complete leaf area loss due to 

the denudation of leaflets from the leaves.  

 

 

 

 



42 
 

   

    

Figure 10. Leaf area loss (%) in response to sandblasting at sand flux treatments g cm-1 

and control for six species over six weeks. 
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2.4.2.3 Other responses  

Table 6. Leaf color ANOVA test for each species. 
Specie Source of 

variation 

Df Sum of squares Mean square F P > F 

P. 

glandulosa 

Flux 2 1.66 0.83 291.9 5.2E-10 

Frequency 1 0.11 0.11 37.8 3.5E-07 

Flux: Frequency 2 0.00 0.002 0.62 5.4E-02 

Residual 30 0.09 0.003   

A. canescens Flux 2 5.0E-05 2.5E-05 0.14 8.7E-01 

Frequency 1 0.0002 0.0001 1.50 2.3E-01 

Flux: Frequency 2 0.001 0.0003 1.36 2.7E-01 

Residual 30 0.006 0.0004    

L. 

Tridentata 

Flux 2 0.42 0.21 135.9 1.6E-06 

Frequency 1 0.01 0.01 7.38 1.1E-02 

Flux: Frequency 2 0.01 0.01 3.95 3.0E-02 

Residual 30 0.05 0.002    

S. airoides Flux 2 1.05 0.52 199.8 3.3E-08 

Frequency 1 0.03 0.03 10.4 3.0E-03 

Flux: Frequency 2 0.01 0.002 0.87 4.3E-01 

Residual 30 0.08 0.003    

A. purpurea Flux 2 1.22 0.61 187.9 6.1E-07 

Frequency 1 0.004 0.004 1.38 2.5E-01 

Flux: Frequency 2 0.05 0.02 6.91 3.0E-03 

Residual 30 0.09 0.003    

B. eriopoda Flux 2 1.91 0.94 154.2 7.2E-06 

Frequency 1 0.01 0.01 2.37 1.3E-01 

Flux: Frequency 2 0.02 0.01 1.27 3.0E-01 

Residual 30 0.20 0.01   
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Table 7. Plant height ANOVA test for each species. 
Specie Source of 

variation 

Df Sum of squares Mean square F P > F 

P. 

glandulosa 

Flux 2 0.04 0.02 1.99 0.15 

Frequency 1 0.05 0.05 4.15 0.05 

Flux: Frequency 2 0.11 0.06 5.19 0.01 

Residual 30 0.32 0.01   

A. canescens Flux 2 0.01 0.01 0.39 0.68 

Frequency 1 0.0001 0.001 0.02 0.89 

Flux: Frequency 2 0.01 0.003 0.17 0.85 

Residual 30 0.53 0.018   

L. 

Tridentata 

Flux 2 0.04 0.02 6.82 0.004 

Frequency 1 0.01 0.01 3.27 0.08 

Flux: Frequency 2 0.001 0.0001 0.13 0.88 

Residual 30 0.08 0.003   

S. airoides Flux 2 0.004 0.002 3.64 0.04 

Frequency 1 0.0003 0.0001 0.23 0.64 

Flux: Frequency 2 7.2E-5 3.6E-5 0.06 0.94 

Residual 30 0.02 0.001   

A. purpurea Flux 2 0.001 0.001 0.75 0.48 

Frequency 1 0.001 0.001 1.97 0.17 

Flux: Frequency 2 0.01 0.004 5.80 0.01 

Residual 30 0.02 0.001   

B. eriopoda Flux 2 0.05 0.02 2.92 0.07 

Frequency 1 0.0003 0.0002 0.05 0.82 

Flux: Frequency 2 0.024 0.01 1.51 0.20 

Residual 30 0.24 0.01   
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Figure 11. Leaf color change (%) in response to sandblasting at sand flux treatments g cm-1  

and control for six species over six weeks. 
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Figure 12. Plant height increase (%) in response to sandblasting at sand flux treatments g cm-1 

and control for six species over six weeks. Negative response indicate reduction in height. 
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  ANOVA indicates significant effects of flux on the percent of leaves that changed color 

for all species except A. canescens, which exhibited no significant effects. A. purpurea and B. 

eriopoda were the only other plants that did not exhibit a significant frequency effect. Regression 

analysis indicates that the color change in response to flux was significant and positive for all 

species except A. canescens. As with leaf number and leaf area loss, B. eriopoda displayed the 

highest intercept for the regressions, indicating the strongest effect of wind-only treatments. The 

effect of treatments on plant height were less clear. Though ANOVA indicates some significant 

responses, the regression analysis indicates very low correlation with TAM. In most cases, the 

slope of these relationships is negative indicating that higher TAM led to reduced growth. Only B. 

eriopoda appeared to get shorter after the treatments.  

No flower and seed production was observed for any of the plants except L. tridentata 

which most of its leaves remained green by the end of the experiment. In general, normal plant 

growth is observed in plant height increase (%) for all species except some replicates of B. 

eriopoda (Figure 12) which could be attributed to stem loss. Plant height response is insignificantly 

associated with treatments, regardless of the frequency and the flux treatments, the plants exhibit 

growth (Table 7). 

2.4.3 In situ plants 

 Plants measured in situ showed some agreement in patterns of leaf loss with plants in the  

wind tunnel treatments (Table 8). In the grass category, the highest leaf loss was found for B. 

eriopoda (44 - 49%) for the wind and abrasion effect sites (T), while control (C) was 31 - 34% and 

no stem loss was observed.  A. purpurea (T = 12 - 20% and C = 4 - 9%) and S. airoides (T = 19 -

21% and C = 9 - 13%) displayed lower leaf loss, but the treatment plants did exhibit more loss 

than the control plants. In the shrub category, P. glandulosa recorded the highest leaf loss (T = 63 
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- 78% and C = 22 - 34%) among all shrub species at all sites, A. canescens had leaf loss between 

17 and 22% at C and 21-62% at T sites.  

Table 8. Species, site, and average leaf loss (%) at sites of wind and abrasion effect (T) and control 

(C) standard deviation (STDEV) and coefficient of variance (CV) for plants in natural conditions. 
species Location Leaf Loss % STDEV CV Leaflet 

Loss % 

STDEV CV 

P. glandulosa NEAT C 34 10.8 0.3 31 13.0 0.2 

T 63 12.1 0.2 56 15.3 0.3 

Scraped C 22 13.5 0.6 44 13.4 0.3 

T 69 10.3 0.3 48 15.1 0.3 

Shrub dune C 31 9.0 0.3 67 16.1 0.1 

T 78 11.0 0.1 66 15.3 0.2 

A. canescens NEAT C 22 10.4 0.2   

T 42 12.6 0.3   

Scraped C 17 5.5 0.3   

T 21 10.5 0.5   

Shrub dune C 21 11.7 0.5   

T 62 35.5 0.6   

T 36 7.6 0.2   

A. purpurea NEAT C 9 1.1 0.1   

T 20 13.5 0.6   

Scraped C 4 1.7 0.4   

T 12 1.5 0.1   

S. airoides NEAT C 13 8.1 0.6   

T 19 8.5 0.5   

Scraped C 6 4.0 0.7   

T 21 13.1 0.5   

B. eriopoda NEAT C 31 11.2 0.2   

T 49 15.5 0.3   

Scraped C 34 24.2 0.7   

T 44 12.5 0.3   

 

2.5 Discussion  

 Our results demonstrate unequivocally the damaging effects of sandblasting and wind on 

above-ground biomass. At plant level, the growth form determines the vulnerability to 

sandblasting, especially as saltation flux decreases with height. In general, our plants’ heights were 

below 25 cm and fell within the saltation boundary in the wind tunnel. Among the grasses B. 

eriopoda appeared to be the most sensitive in all measures, to wind and abrasion. Among the 

shrubs, it was clear that the treatments had almost no impact on A. canescens by any measure. In 
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all measures except plant height change, A. purpurea appeared to be more sensitive to both wind 

and abrasion than L. tridentata. Overall, this variability makes it impossible to say whether, given 

the measures made here, grasses or shrubs were more susceptible to wind and abrasion effects.  

Due to the limitations of the experiment, namely the need to place plants inside a 50 cm x 

50 cm wind tunnel, individuals used in this study were necessarily smaller than mature adults 

found in situ. Despite the fact that our experiments did not exhibit any obvious differences between 

the response of grasses and shrubs to wind and abrasion (with the exception of A. canescens), we 

do not take them as a refutation of the idea that aeolian processes impact grasses and shrubs 

differently at the level and lifetime of a whole plant. In particular, grasses rarely grow higher than 

30 - 40 cm, with the exception, perhaps of elevated flower/seed stalks. The shrubs that we have 

studied here, on the other hand, can exceed 1 m height as mature adults. The perennial grasses we 

worked with start regrowing leaves at the beginning of the season close to the base of the plant, 

whereas the leaves on shrubs are typically toward the end of woody branches that can be elevated 

above the ground. P. glandulosa is, furthermore, deciduous meaning that leaf and leaflet loss that 

occurs during the growing season will be replaced in the following year.  

With the exception of B. eriopoda, all of the plants increased in height during the 6 weeks 

of the experiment. For the grasses on an interannual timeframe, this does not matter. However, for 

the shrubs, their ability to grow (even if reduced) means that they will, eventually, grow out of the 

saltation zone. Thus, even though A. purpurea and L. tridentata plants appeared to be impacted 

considerably by wind, our results do not provide any reason to believe that, with time, these plants 

would not be able to grow to heights where the photosynthetic material is out of the saltation zone. 

For grasses, this will never be the case.  
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Among grasses B. eriopoda appeared to be most sensitive to wind and abrasion. This helps 

explain, perhaps, why the loss of this grass has been so extensive across the Chihuahuan Desert, 

whereas other grasses, including Aristida spp. and Sporobolus spp. have managed to maintain 

higher cover even in the face of the opening of bare gaps and increases in aeolian transport. B. 

eriopoda has an additional disadvantage in that it is a stoloniferous grass meaning that it spreads 

through vegetative reproduction using stolons that grow close to the ground, where they would be 

most susceptible to damage from aeolian transport. Thus, aeolian transport has the potential to not 

only damage existing biomass, but to damage the plant’s means of reproduction as well, limiting 

future expansion.  

2.6 Conclusion 

 Our experiments clearly indicated that many species of grass and shrub were susceptible 

to damage due to both wind-only effects and sandblasting. These results support the hypothesis of 

Okin et al. (2006) that aeolian transport directly effects biomass and may close a positive feedback 

loop whereby increased aeolian transport damages plants, which reduces vegetation cover and 

therefore increases aeolian transport. Although we originally hypothesized that grasses would be 

more susceptible than shrubs to the damage due to aeolian transport, this was only clearly true for 

B. eriopoda helping explain, perhaps, why loss of this grass (and grasses of this genus) has been 

so extensive in the perennial grasslands of the southwestern US. Nonetheless, the ability of shrubs 

to continue growing (and therefore increasing the height of their leaves and growing point) despite 

considerable damage argues that their functional type gives them an intrinsic advantage over 

grasses even if small shrubs are as susceptible to damage as grasses.    
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2.7 Future plans 

This work is part of a 3-year project that focuses on aeolian processes as major disturbances 

to the ecosystem encouraging state change from grassland to shrubland in collaboration with the 

University of Arizona, Dr. Steve Archer. The plants were transported back to the greenhouse in 

Tuscan, AZ in October 2018 and have been monitored since. Many of the plants have survived the 

dormant winter season and have started to grow again. In Summer, 2019 new treatments using the 

same plants, as well as new ones, will be continued, and the suite of measurements described here 

will be repeated.  

Two important changes will be made to the experiments done in Summer, 2019.  First, a 

shortage of plants in Summer, 2018 precluded the ability to do two wind-only treatments while 

also having a no-wind control. At the time, we were interested in investigating whether there was 

a significant wind effect. Our results indicate that there is, and yet, cannot clarify fully whether 

some of the damage observed in the wind-only treatments was due only to transportation of plants 

to/from the wind tunnel and manipulation required to do the measurements. In Summer, 2019, a 

set of control plants that will provide the opportunity to observe this potential effect will be 

included. In addition, although the TAM used in these experiments were consistent with 

measurements by Gillette and Pitchford (2004), the experimental impact on the plants was 

surprisingly high. Therefore, in Summer, 2019 lower flux treatments will be used. This will require 

some changes to the experimental set up including replacement of the hopper system to allow for 

lower and more carefully controlled flux rates.  
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Chapter 3. Remote sensing of net primary productivity of Chihuahuan Desert vegetation: 

Evaluation of data retrieval and statistical approaches. 

3.1 Abstract  

An accurate assessment of net primary productivity (NPP) would be of great utility for regional 

and global studies of vegetation dynamics in drylands. We used two different remote sensing 

retrieval approaches and several statistical approaches to determine the ability of remote sensing 

to predict in situ estimates of NPP in the Chihuahuan Desert. We use Moderate Resolution Imaging 

Spectrometer (MODIS) estimates of vegetation productivity from the GPP (MOD17H3) and NPP 

(MOD17H2) products. In addition, we used a linear unmixing approach with MODIS nadir BRDF-

adjusted reflectance (NBAR; MCD43A4) to retrieve cumulative estimates of green vegetation 

(GV), non-photosynthetic vegetation (NPV) and soil cover at seasonal and annual scales using 

multiple-endmember spectral mixture analysis (MESMA). Several statistical approaches were 

utilized to make predictions of in situ NPP, with this given set of remote sensing inputs, including 

simple regression, multiple regression, stepwise regression, and machine learning (Random 

Forest; RF). Our results indicate a very poor relationship between in situ NPP and standard NPP 

estimates from MODIS, though MODIS GPP was strongly correlated with in situ NPP with an 

overall coefficient of determination (R2) of 0.52. When in situ NPP was regressed against MODIS 

GPP to allow a correction of MODIS-derived GPP, the overall root mean squared error (RMSE) 

was 64 g m-2 y-1. The correlations, corrections and associated errors varied were, nonetheless, 

different for each community type. MESMA-retrieved fractions were used to predict in situ NPP 

with multiple regression (with and without NPV) with the best R2 (0.76) using annual average 

covers. Using stepwise regression, correlations between in situ NPP and predicted values improved 

significantly, the best correlation was found using annual estimates of tarbush cover (R2=0.91, 
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RMSE = 5.5 g m-2 y-1). Random Forest using annual estimates of GV, NPV, and soil produced the 

best estimates of cover at community scale (R2  = 0.75 - 0.93), at seasonal landscape (R2  = 0.86, 

RMSE = 19.6 g m-2 y-1) and annual landscape (R2  = 0.92, RMSE = g m-2 y-1) scales.  RF was 

capable of capturing patterns of diversity and examining the complex relationship between in situ 

NPP and MESMA-derived fractions.  

3.2 Introduction 

As the main energy input to terrestrial ecosystems, net primary productivity (NPP) reflects 

the capacity of ecosystems to sustain life (Jobbagy et al. 2002; Sala et al. 1988; Yahdjian and Sala 

2006). NPP is a primary factor in determining the amount of carbon sequestered in an ecosystem, 

and therefore it also controls an ecosystem’s interplay with the global carbon cycle. As in other 

biomes, the response of NPP to climate is a key determinant of the functioning of the world’s 

drylands (Baudena et al. 2007; Peters et al. 2006; Yahdjian and Sala 2006). In many regions of the 

world, including drylands, which cover ~ 40% of the Earth’s terrestrial surface (Millenium 

Ecosystem Assessment 2005), environmental and climatic changes influence changes in 

vegetation productivity (Chapin et al. 2000; Havstad et al. 2006; Peters et al. 1995; Peters et al. 

2006). 

As a result, scientists and natural resource managers have called for new and more powerful 

approaches to identify and forecast trends in the dynamics of vegetation (Helman et al. 2014; Sims 

et al. 2007; Turner et al. 2006). Remote sensing is widely used to study vegetation structure and 

dynamics by monitoring the Earth surface. In the world’s drylands, assessing vegetation structure 

and dynamics through remote sensing is a particular challenge because of specially-adapted leaf 

properties (leaf hairs, thick cuticles, heliotropism) that impact the spectral signature, low leaf area 

overall, and high soil cover that leads to multiple scattering (Huete 1988; Okin et al. 2001: Roberts 
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et al. 1997). In addition, heterogeneity of the soil spectral signature, which can be considerably 

greater than that of the green vegetation (GV) and nonphotosynthetic vegetation (NPV) 

components, can contribute to variability in drylands where the soil component tends to dominate 

spectral reflectance (Escafadel and Huete 1991; Okin 2010; Okin et al. 2012; Smith et al. 1990). 

The difference in spectral signature between soil and vegetation has made the estimation of 

productivity from the world’s drylands using remote sensing especially difficult. Reeves et al. 

(2006), for example, found the presence of significant NPV material as a source of error and 

suggested that NPP in grasslands is best estimated during years of high productivity. Turner et al. 

(2006) found that estimation of gross primary productivity (GPP), a fundamental input for 

estimating NPP, in dryland sites was often affected by poor estimation of the fraction of 

photosynthetically active radiation that is absorbed (FPAR), possibly due to contamination by the 

soil signature. Sims et al. (2007) have also reported that FPAR is underestimated in regions where 

the surface is heterogeneous. The MODIS NPP algorithm is primarily dependent on live woody 

and biomass respiration at 20°C and leaf annual growth respiration (Running and Zhao 2015). 

MODIS NPP has been reported to unreliably estimate biomass productivity at regions of high 

temperature and low vegetation cover, which is to say, hot deserts (Sims et al. 2007).  

In this paper, we revisit the ability to adequately estimate NPP in drylands using optical 

remote sensing using a unique, relatively long time series of in situ aboveground NPP 

measurements that coincide with the MODIS era. We utilize aboveground NPP data from 

Chihuahuan Desert shrub and grass communities in the Jornada Basin in south-central New 

Mexico, USA, where, as part of the NSF Long Term Ecological Research (LTER) program, where 

NPP has been measured for nearly three decades (Huenneke et al. 2002; Huenneke et al. 2003; 

Peters et al. 2006). 



61 
 

To emphasize the need for new approaches, we first examine standard MODIS GPP and 

NPP products (MOD17A2H and MOD17A3H, respectively). The MODIS NPP product includes 

both above and belowground components of annual productivity, whereas our in situ data only 

estimate aboveground annual productivity. Despite this, we anticipate that, if the MODIS NPP 

product is making useful estimates, linear relationships with aboveground in situ NPP will appear. 

Because spectral contamination by NPV and the soil has been implicated in degrading the 

ability of optical remote sensing to estimate NPP in drylands (Reeves et al. 2006), we hypothesize 

that approaches that include these components may be able to improve dryland NPP estimates. 

Linear spectral unmixing (Shimabukuro and Smith 1991) is a common approach for separating the 

spectral contributions of GV, NPV, and soil (Asner and Heidebrecht 2002; Guerschmann et al. 

2009; Okin et al. 2001; Roberts et al. 1998). Considerable variability in spectral reflectance, 

particularly of NPV and soil, is a challenge to simple spectral unmixing in drylands (Okin et al. 

2001). Therefore, in this study, we use multiple endmember spectral mixture analysis (MESMA), 

which was developed to deal with spectral variability of endmember classes (Dennison and 

Roberts 2003; Roberts et al. 1998). 

Because the fractional covers of GV, NPV, and soil have not been put into a mechanistic 

framework for estimating NPP, we rely on empirical approaches here, including simple regression, 

multiple regression, stepwise regression, and machine learning. Machine learning comprises a 

relatively new set of tools for finding relationships in data. Here, we use Random Forest (RF; 

Breiman 1996) which, because of its bagging (i.e., bootstrap aggregating) approach, allows even 

small dataset to be sampled multiple times, making RF models resilient to sample insufficiency 

(Breiman 2001).  
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3.3 Methods 

3.3.1 Study site  

The Jornada Basin LTER site is in the northern Chihuahuan Desert, approximately 25 km 

northeast of Las Cruces, NM around 32.6°N, -106.7°E at an elevation of 1315 meters. The Jornada 

is one of the premier sites globally to study changes in dryland ecosystems especially the 

conversion of grasslands to shrublands, often considered a form of land degradation (Fredrickson 

et al. 2005; Havstad et al. 2006). At the Jornada, over the past 150 years, grassland communities 

have become increasingly dominated by shrubs, with honey mesquite (Prosopis glandulosa) and 

creosote (Larrea tridentata) being the most widespread grass-replacing species (Gibbens et al. 

2005; Peters et al. 2006). 

 

Figure 13. Locations of the NPP sites in the Jornada Experimental Range 

(JER) and the Chihuahuan Desert Rangeland Research Center (CDRRC), 

both located in the Jornada Basin, NM (Havstad et al. 2006; Huenneke et 

al. 2002). 
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Most of the annual precipitation (80%) at Jornada occurs during the summer monsoon 

season, with little spring rainfall (Oliver 2008; Wainwright et al. 1995). The basin has a mean 

annual precipitation of ~240 mm, and average temperatures that range between 13°C (winter) and 

36°C (summer) (Alvarez et al. 2011; Dodson 2012; Gibbens et al. 2005; Peters et al. 2006). Our 

study includes seven plots located in the 78,266-acre Jornada Experimental Range (JER) operated 

by USDA Agricultural Research Service, and five plots at the Chihuahuan Desert Rangeland 

Research Center (CDRRC) (Figure 13; Havstad et al. 2006; Huenneke et al. 2002). At these 12 

long-term NPP sites, NPP of the entire community has been measured since 1989 (Peters et al. 

2006). There are three plots in each of five vegetation communities dominated by either grass, 

mesquite, creosote, tarbush, or playa vegetation. Individual sites are labeled with a first letter 

indicating the vegetation community (e.g., M for mesquite) and an additional four-letter identifier. 

Some plots indicate soil type such as C-GRAV, which refers to gravel soil. We did not include the 

playa sites in this study because the playas are smaller compared to the size of a 500-m MODIS 

pixel. When these sites were installed, they were not chosen as replicates, but rather to represent 

the diversity of sites with different communities across the basin (Table 9). In this sense, they are 

ideal for the present study because of this variability.  
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Table 9. Site, dominant plants, soil type and year of fencing of our study sites. Each community 

includes three plots of most common plant communities. Fences were built to protect the plots 

from grazing and human interruption (Havstad et al. 2006; Huenneke et al. 2002). Average NPP 

over 15 years for each plot (g m-2 y-1). 
Site Dominant Plants Soil Type Year 

Fenced 

Average NPP 

Creosote Bush  

Caliche 

(CALI) 

Larrea tridentata 

Xaathocephalum 

microplalum 

Aristida wrightii 

Algerita 1970s 41.1 

Gravel 

(GRAV) 

L. Tridentata  

Prosopis glandulosa 

Muhlenbergia partieri 

Casito-Terino 1970s 95.2 

Sand (SAND) L. tridentate 

Muhlenbergina porter 

Opuntia imbricata 

Onite-Pajarito 

loamy soil 

1982 129.5 

Grasslands  

Basin (BASN) Bouteloua eriopoda 

Sporabalus cryptandurus 

Ephedra trifurca 

Berino-Dona 

Ana sandy loam 

1982 151.2 

IBP (IBPE) Yucca elata 

B. eriopoda 

S. flexuosus 

Onite-Pajarito 

loamy sand 

1962 140.9 

Summerford 

(SUMM) 

Y. elata 

B. eriopoda 

 E. trifurca 

Alladin gravel-

sandy loam 

1970s 184.2 

Mesquite  

North (NORT) P. glandulosa 

X. saranthrae 

M. porteri 

Onite-Pintura 

loamy sand 

1931 130.4 

Rabbit 

(RABB) 

P. glandulosa 

Portulaca retusa 

Salsala kali 

Onite-Pintura 

loamy sand 

1931 151.4 

West Well 

(WELL) 

P. glandulosa 

X. saranthae  

M. porteri 

Wink-

Harrisburg 

sandy loam 

1989 136.2 

Tarbush  

East (EAST) Flourensia cernuo  

M. porter  

Lycium berlandieri 

Stellar  

clay loam 

1989 88.9 

Taylor Well 

(TAYL) 

F. cernuo  

Scleropagan brevifolius M. 

porteri 

Dona Ana-

Reagan 

sandy loam 

1989 71.0 

West (WEST) F. cernuo 

Scleropagan brevifolius 

Pleuraphis mutica 

Stellar clay 

loam 

1989 69.0 
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3.3.2 Field data 

Our analysis includes 15 years of NPP data from 2000 to 2015 for 12 NPP measurement 

sites that overlap the MODIS era, which began in 2000. Each NPP site is a 70 m x 70 m grid of 49 

permanent 1-m2 quadrats separated by 10-m in each cardinal compass direction. Sampling occurs 

three times per calendar year and is done on a per-species basis. Additional information on the 

sampling methods can be found in Huenneke et al. (2002). In this study, NPP summed over all 

species in the plots was used and thus represents community-wide productivity. The mean annual 

in situ NPP over all communities of the 15-year record (2000-2015) was 120 g m-2 y-1. 

3.3.3 MODIS Data products 

The MODIS 500-m resolution annual NPP product (MOD17A2H) as well as the 16-day 

500-m GPP product (MOD17A3H) were downloaded from NASA’s EarthData tool 

(https://search.earthdata.nasa.gov) and were used as the benchmark for our accuracy assessment. 

The MODIS17 products are based on the radiation use efficiency and assumes the productivity of 

vegetation under stable moisture and fertilization conditions is related to the amount of absorbed 

solar radiation (Turner et al. 2006; Zhao et al. 2004). Daily GPP estimates are based on the 

conversion of the fraction of photosynthetically active radiation to gross carbon uptake via a 

biome-specific efficiency parameter (light use efficiency), minimum temperature, vapor pressure 

deficit, and incoming shortwave radiation (Zhao et al. 2004). Annual NPP is the sum of daily rates 

over the growing season, once estimated biome-specific respiration costs have been deducted.  

Pixels containing each NPP site at Jornada were extracted from images (i.e., nearest 

neighbor) for the appropriate time periods. NPP data are available as annual estimates. Annual 

GPP values were calculated as the sum of 16-day GPP composite estimates over each year.  
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A linear correction was applied in which in situ NPP was regressed against the uncorrected 

estimates of GPP (GPPU) using linear least squares to obtain a gain and offset term so that corrected 

NPP (𝑁𝑃𝑃𝐶) could be calculated:  

 𝑁𝑃𝑃𝐶  = 𝑜𝑓𝑓𝑠𝑒𝑡 +  𝑔𝑎𝑖𝑛 ∗ 𝐺𝑃𝑃𝑈.        (3) 

3.3.4 Spectral unmixing of MODIS NBAR  

MESMA is a variant of spectral mixture analysis that unmixes each pixel with many 

models (i.e., sets of spectral endmembers) and chooses the best model based on some criterion 

(here, the spectral root mean squared error). The basic unmixing equations is:  

𝜌′ =  ∑ 𝑓𝑖 ∗  𝜌𝑖 +  ɛ𝑚
𝑖 = 1 ,        (4) 

 where 𝜌′ is the pixel spectrum, 𝜌𝑖 is the reflectance spectrum of endmember 𝑖,  𝑓 𝑖 is the fraction 

of each endmember, and m is the number of endmembers. The residual is expressed as ɛ which 

represents the unmodeled spectral error, from which a spectral root mean squared error (RMSES) 

can be calculated.  

Here, we used three sets of endmembers representing GV, NPV and soil. In our analysis, 

we normalized the estimated GV, NPV and soil by dividing each endmember fraction by the sum 

of all three endmember fractions to force the endmember fractions to sum to one after linear least 

squares unmixing. Details on the unmixing approach used in this study can be found in Okin and 

Gu (2015).  

To generate models for MESMA, an extensive library of endmember spectra of GV, NPV, 

and soil is needed (Adams et al. 1993; Bell et al. 2002; Dennison and Roberts 2003; Okin et al. 

2001; Okin et al. 2012). Our library consisted of 326 spectra of GV, 330 spectra of NPV, and 160 

spectra of soil. Spectra were derived from a combination of our own field measurements (Meyer 

and Okin 2015) and field and laboratory spectra available in several datasets, including the USGS 
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Spectral Library (Kokaly et al. 2017), the ASTER spectral library (Baldridge et al. 2009) and the 

ISRIC soil spectral library (ISRIC 2010). A total of 1000 three endmember models, randomly 

selected from all possible combinations among the GV, NPV, and soil endmember spectra were 

used in these computations. 

For spectral unmixing, we used 16-day 500 m MODIS nadir BRDF-adjusted reflectance 

(NBAR) data (MCD43A4) available on EarthData. Pixels containing each NPP site at the Jornada 

Basin were extracted from images (i.e., nearest neighbor). All dates (i.e., 46 images per year) from 

2000 to the end of 2015 were unmixed using MESMA for NBAR pixels corresponding to each of 

the 12 NPP sites. Two approaches were used to obtain yearly GV, NPV, and soil values that could 

be compared with the annual in situ NPP estimates. In the first approach (called hereafter 

‘seasonal’), total growing season fractional cover was estimated by summing MESMA 

endmember fractions derived by unmixing 16-day composite NBAR data for which the first day 

of the 16-day composite falls between April 1st to October 31st (28 values per year). In the second 

approach (called hereafter, ‘annual’), MESMA endmember fractions were summed over the entire 

year (46 values per year). 

3.3.5 Estimating NPP from MESMA fractions 

Three approaches were used to estimate NPP from MESMA-derived GV, NPV, and soil 

fractions: multiple regression, stepwise regression, and random forest (RF). Seasonal and annual 

estimates of total fractional cover were utilized separately so that we could assess the best provided 

estimates. Regression models treated in situ NPP as the dependent variable and either seasonal or 

annual estimates of total fractional cover of GV, NPV and soil as the independent variables. 

Analysis were done at plot, community, landscape scales. In the plot-level analyses, 

separate models were made for each NPP plot utilizing the 15 years of data for each plot (n =15). 
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In the community-level analyses, plots representing the same communities (i.e., creosote, 

mesquite, grass, tarbush) were pooled using all years of data (n = 3 x 15 = 45). In the landscape 

level analyses, all plots were pooled, regardless of community and year (n = 12 x 15 = 180). 

 Multiple regression was performed in two ways. In the first, we used the fractional cover 

of GV, NPV, and soil as predictors: 

𝑁𝑃𝑃𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 = 𝑐0 + 𝑐𝐺𝑉  𝑓𝐺𝑉 + 𝑐𝑁𝑃𝑉 𝑓𝑁𝑃𝑉 +  𝑐𝑠𝑜𝑖𝑙 𝑓𝑠𝑜𝑖𝑙,              (5) 

where 𝑐0 is a constant, c are coefficients and f refer to the fractional cover (annual or seasonal 

totals) estimates for GV, NPV, and soil. Exploratory analysis indicated that NPV contributed least 

to the multiple regression predictions of NPP and had the lowest R2 when correlated with in situ 

NPP. Since the fractions must sum to one, and therefore removal of one endmember does not 

necessarily result in a loss of information, a second set of multiple regression estimates were made 

using only GV and soil fractions. 

Stepwise Regression utilizing the forward selection process was used (Efroymson 1960). 

Stepwise regression is designed to find the most useful variables to include in the regression model 

by exhausting all possible combinations of predictor variables without losing a significant portion 

of the explanatory power of the dataset. Here we use all three variables (fractional cover of GV, 

NPV, and soil) as inputs to the stepwise regression model. At each step, an independent variable 

is added based on its ability to improve root mean squared error (RMSE) of the estimates:  

𝑅𝑀𝑆𝐸 = (∑ (𝑁𝑃𝑃𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑗

− 𝑁𝑃𝑃𝑖𝑛 𝑠𝑖𝑡𝑢
𝑗

)
2

𝑛
𝑗=1 )

1 2⁄

     (6) 

where 𝑁𝑃𝑃𝑗  represents the NPP estimate for the jth pixel or plot from either the regression 

(‘Estimated’) or field estimate (‘in situ’), respectively, and n is the total number of plot-years under 

consideration. The value of n varied depending on whether analyses were being done at the plot, 

community, or landscape levels.   
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Random forest (RF; Breiman 2001), a machine learning algorithm, is an ensemble method 

often used for non-linear regression analysis in various disciplines (Pal 2007). RF has three 

qualities that make it useful in this study. Specifically, it is resilient to sample insufficiency, 

relatively insensitive to outliers, and robust against overfitting (Breiman et al. 2006). 

  RF is characterized by a bagging approach which depends on creating a set of bootstrapped 

samples as training data. RF builds multiple trees independently by using different bootstrapped 

sample subsets of the training data. Each tree in the forest consists of nodes, where each node in a 

tree splits by using a randomly chosen independent variable among the entire set of the 

independent variables in the dataset. After one tree is built, the model chooses the best split at each 

node which is determined based on the homogeneity measures (here, mean squared error; Auret 

and Aldrich 2012; Breiman 2001). After all trees are built, the average values of the prediction of 

each tree are recorded and outputted as the final result. 

In this study, we treated GV, NPV, and soil cover (either seasonal or annual) as independent 

variables while in situ NPP was treated as the dependent variable. Analyses were done at 

community and landscape levels. Each forest contained 50 trees. We used a 70%/30% split 

between training and out-of-bag (OOB) data for cross validation. 

3.3.5.1 Estimation of Error 

For all predictions, RMSE (Eq. 7) and coefficient of determination (R2) were calculated.  

In addition, we calculated mean error (ME), which is an indicator of bias:  

𝑀𝐸 = ∑ (𝑁𝑃𝑃𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝑗

− 𝑁𝑃𝑃𝑖𝑛 𝑠𝑖𝑡𝑢
𝑗

)𝑚
𝑗=1 .       (7) 

For all correlations between in situ and predicted values we estimated the significance (i.e., p-

value) of the relationship using an F-test for the significance of the slope.  
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3.4 Results 

3.4.1 Standard MODIS GPP and NPP products 

We found no correlation between in situ NPP estimates and MODIS-derived NPP 

(MOD17A3H) at the plot, community or landscape scales, with R2 not exceeding 0.08 in any case 

(Table 10).  
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Table 10. Plot, community and landscape estimates of NPP, and “n” points of observation 

in each correlation in these scales. Coefficient of determination (R2), y-intercept (b), slope 

of the regression between in situ NPP (Y) and MODIS NPP (X, left side of table) and 

MODIS uncorrected GPP (X, right side of table), RMSE (g m-2 y-1), and ME (g m-2 y-1) of 

the regressions between corrected MODIS GPP (GPPC) and in situ NPP at plot, community 

and landscape scales. The regression between in situ NPP and corrected GPP is determined 

to be significant: p-value < 0.01 at all scales. 

Site n R2 b Slope R2 b Slope RMSE ME 

  NPP   GPP  GPPC 

  TWEST 15 0.04 114 <0.1 0.65 99 0.97 112 0.5 

  TEAST 15 0.01 117 <0.1 0.69 100 0.92 90 0.4 

  TTAYL 15 0.02 110 0.1 0.46 98 0.57 61 0.5 

Tarbush 45 0.01 112 <0.1 0.53 89 0.87 26 0.5 

  MRABB 15 0.01 180 <0.1 0.46 86 0.53 83 16 

  MWELL 15 0.02 126 <0.1 0.62 91 0.54 110 7.3 

  MNORT 15 0.06 146 <0.1 0.69 99 0.64 119 -16 

Mesquite 45 0.04 130 <0.1 0.61 96 0.57 51 1.2 

  GIBPE 15 0.01 143 <0.1 0.25 74 0.31 57 0.1 

  GSUMM 15 0.07 130 0.1 0.42 79 0.33 48 14 

  GBASN 15 0.07 104 0.1 0.86 76 0.82 110 2.0 

Grass 45 0.03 140 0.1 0.43 88 0.42 53 5.0 

  CCALI 15 0.03 145 <0.1 0.36 84 0.35 84 10 

  CSAND 15 0.08 164 <0.1 0.34 80 0.78 60 -5.0 

  CGRAV 15 0.03 132 <0.1 0.73 119 0.72 72 7.0 

Creosote 45 0.02 137 <0.1 0.34 77 0.36 44 1.0 

Landscape 180 0.05 98 0.2 0.52 85 0.94 64 0.2 
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In contrast, coefficients of determination between in situ NPP estimates and MODIS-

derived GPP (MOD17A2H) were considerably higher, ranging from R2 = 0.25 – 0.86 at the plot 

scale, and R2 = 0.34 – 0.61 at the community scale (Table 10). High variability in the correlation 

between in situ NPP and MODIS-derived GPP was observed among plots within communities,  

ranging, in the extreme case (grass), from R2 = 0.25 (GIBPE), the lowest correlation seen among 

all plots, to R2 = 0.86 (GBASN), the highest correlation seen among all plots. Using all plots, at 

the landscape scale, MODIS GPP explained about half of the variance in the in situ data (R2 = 

0.52). The coefficients of determination of the regression of in situ NPP against MODIS-derived 

GPP varied from 0.34 – 0.61 at the community level. The landscape level, R2 = 0.52.  In all cases, 

the intercepts of these regressions were positive with some slopes close to 1 (Table 10).  

Since only linear correction was applied on MODIS-derived GPP, R2 of the corrected 

MODIS GPP regressed against in situ NPP were identical to those found in the correlation between 

in situ NPP and uncorrected MODIS GPP at plot, community and landscape scale (Table 10). 

  

Figure 14. The overall correlation between in situ NPP and MODIS GPP at landscape 

scale (left), and the corrected NPP using MODIS GPP and in situ NPP (Right). The R2 

remained the same since only linear correction was applied. 
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RMSE at the plot scale ranged between 48 – 112 g m-2 y-1 and 26 – 53 g m-2 y-1 at community level. 

At landscape level, RMSE was 64 g m-2 y-1 with very low ME (0.2 g m-2 y-1).  

3.4.3 Multiple regression  

Generally, GV and NPV fractions showed positive correlations with in situ NPP, whereas 

soil showed negative correlations with NPP (Table 11). The individual correlations between in situ 

NPP values and MESMA-derived GV and soil fractions were more frequently significant than 

those of NPV fractions, regardless of whether annual or seasonal MESMA results were used. This 

is true at the plot, community, and landscape scales. 
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Table 11. Site, variable correlation coefficient (R2), variable slope (cvariable), variable significance (pvariable), y-

intercept (b), RMSE, R2 and the significance of the 3-variable multiple regression models between in situ NPP 

and GV, NPV and soil (seasonal and annual) at plot community type and landscape scales. 

Site GV cGV pGV NPV cNPV pNPV Soil csoil psoil b RMSE R2 

TWESTseasonal 0.45 937 <0.01 0.19 519 0.09 0.30 146 <0.01 -214 27.5 0.55 

TEASTseasonal 0.51 1331 <0.01 0.19 614 0.09 0.28 350 <0.01 -371 25 0.65 

TTAYLseasonal 0.03 140 0.12 0.05 -318 0.20 0.04 721 0.80 19.5 38.8 0.41 

Tarbushseasonal 0.3 275 <0.01 0.31 290 <0.01 0.22 172 0.01 -98 30.3 0.27 

MRABBseasonal 0.29 2183 <0.01 0.1 550 0.06 0.21 -608 0.01 -315 78.5 0.37 

MWELLseasonal 0.44 2026 <0.01 0.2 254 0.04 0.25 285 <0.01 -329 53.4 0.46 

MNORTseasonal 0.48 3023 <0.01 0.1 750 0.06 0.21 640 0.01 -729 64.2 0.54 

Mesquiteseasonal 0.44 796 <0.01 0.01 104 0.20 0.2 -271 0.01 140 36.6 0.29 

GIBPEseasonal 0.1 -97 0.09 0.01 -118 0.20 0.14 -395 0.02 634 59.8 0.28 

GSUMMseasonal 0.35 1562 <0.01 0.1 1859 0.05 0.14 454 0.02 322 13.9 0.70 

GBASNseasonal 0.26 -142 <0.01 0.02 -1106 0.05 0.41 -936 <0.01 875 39.4 0.35 

Grassseasonal 0.48 24 <0.01 0.25 -29 <0.01 0.36 -20 <0.01 142 33.6 0.33 

CCALIseasonal 0.07 193 0.07 0.33 -209 <0.01 0.21 -139 0.01 170 16.1 0.28 

CSANDseasonal 0.24 726 <0.01 0.01 -71 0.60 0.07 -289 0.80 208 35.8 0.38 

CGRAVseasonal 0.17 380 0.11 0.05 -260 0.70 0.07 -97 0.70 174 40.8 0.22 

Creosoteseasonal 0.14 151 0.12 0.01 48 0.70 0.05 -99 0.60 106 41.9 0.23 

Landscapeseasonal 0.18 107 0.11 0.1 26 0.03 0.1 -131 0.04 96 51.6 0.49 

TWESTannual 0.34 1075 <0.01 0.19 676 0.10 0.3 197 <0.01 -274 35.4 0.36 

TEASTannual 0.44 1729 <0.01 0.12 892 0.80 0.28 488 <0.01 -512 29.7 0.58 

TTAYLannual 0.35 1508 <0.01 0.02 567.6 0.06 0.06 291 0.70 -334 44.8 0.52 

Tarbushannual 0.37 1398 <0.01 0.10 642 0.04 0.23 274 <0.01 -329 29.8 0.42 

MRABBannual 0.41 2162 <0.01 0.17 1013 0.09 0.25 419 <0.01 -519 74.1 0.45 

MWELLannual 0.49 3043 <0.01 0.10 370 0.05 0.37 801 <0.01 -683 55.4 0.51 

MNORTannual 0.62 1378 <0.01 0.25 27 <0.01 0.37 -341 <0.01 -683 80.8 0.37 

Mesquiteannual 0.35 1972 <0.01 0.15 385 0.07 0.27 55 <0.01 -182 44.5 0.37 

GIBPEannual 0.21 2.3 0.09 0.05 -845 0.70 0.12 -

1036 

0.03 815 57.3 0.53 

GSUMMannual 0.73 2512 <0.01 0.08 -15 0.50 0.38 230 <0.01 207 75.3 0.62 

GBASNannual 0.41 1219 <0.01 0.03 -31 0.90 0.34 -307 <0.01 178 41.1 0.53 

Grassannaul 0.31 1675 <0.01 0.13 282 0.70 0.06 1675 0.70 -75 71.5 0.36 

CCALIannual 0.39 546 <0.01 0.10 144 0.06 0.18 -37 0.04 -39 12.9 0.47 

CSANDannual 0.43 1070 <0.01 0.10 -289 0.07 0.21 -389 0.01 283 33.1 0.53 

CGRAVannual 0.26 1118 <0.01 0.12 650 0.70 0.1 -107 0.04 -74.8 31.9 0.24 

Creosoteannual 0.22 83 0.08 0.10 -128 0.06 0.12 -58 0.03 124 32.6 0.32 

Landscapeannual 0.18 766 0.09 0.13 111 0.60 0.38 420 <0.01 206 55.1 0.50 
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The three-variable multiple regressions, utilizing MESMA-derived fractions of GV, NPV, 

and soil, showed higher overall R2 when using annual MESMA-derived fractions than when using 

seasonal MESMA-derived fractions. The tarbush community showed the best overall model (R2 = 

0.42, RMSE = 29.8 g m-2 y-1, Table 11), with creosote community not yielding a significant model 

at all. The overall correlations for the grass and mesquite communities were approximately the 

same. Pooling all communities at the landscape scale, there was almost no difference in the amount 

of variance explained by the seasonal (R2 = 0.49, RMSE = 51.6 g m-2 y-1) and annual (R2 = 0.50, 

RMSE = 55.1 g m-2 y-1) MESMA-derived variable, with both providing significant overall models 

(p < 0.01).  

Because NPV did not appear to be significantly correlated with in situ NPP (Table 11), we 

calculated multiple regressions between MESMA-derived fractions of GV and soil (excluding 

NPV fractions) and in situ NPP. The results of these two-variable multiple regressions (Table 12) 

indicate higher correlations and lower RMSEs for the overall model compared to the three-variable 

regressions utilizing NPV. We did not calculate Akaike Information Criteria (AIC) values in 

comparison of two- and three-variable models because prediction improvement associated with 

removal of a variable clearly indicates that the two-variable models are better (that is, more 

parsimonious and better predictors). The biggest improvement in this case appears to be for the 

creosote community, where the overall model R2 went from 0.23 (p = 0.73) to 0.62 (p < 0.01) 

when using seasonal MESMA-derived fractions and from 0.32 (p = 0.50) to R2 = 0.77 (p < 0.01) 

when using annual MESMA-derived fractions. These two-variable multiple regression model 

results explain 62% - 88% of the variance in observed in situ NPP. At the landscape scale, modest 

improvement was seen compared to the three-variable models, with the overall best landscape-
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scale model being the two-variable model utilizing annual MESMA-derived fractions of GV and 

soil (R2 = 0.76, RMSE = 31.2 g m-2 y-1).  
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Table 12. Site, variable correlation coefficient (R2), slope (cvariable), variable significance (pvariable), y-intercept 

(b), RMSE, R2 and the significance of the 2-variable multiple regression model between in situ NPP and GV 

and soil (seasonal and annual) at plot community type and landscape scales. 

Site GV cGV pGV Soil csoil psoil b RMSE R2 p-value 

TWESTseasonal 0.45 605 <0.01 0.30 -142 <0.01 78 30.9 0.62 <0.01 

TEASTseasonal 0.51 853 <0.01 0.28 -58 <0.01 20 29.8 0.71 <0.01 

TTAYLseasonal 0.03 454 0.12 0.04 -157 0.80 18 40.8 0.44 <0.01 

Tarbushseasonal 0.3 271 <0.01 0.22 -53 0.01 51 20.8 0.81 <0.01 

MRABBseasonal 0.29 1709 <0.01 0.21 -379 0.01 95 79.6 0.51 <0.01 

MWELLseasonal 0.44 1859 <0.01 0.25 141 <0.01 -175 52.5 0.55 <0.01 

MNORTseasonal 0.48 2226 <0.01 0.21 091 0.01 -67 67.9 0.48 <0.01 

Mesquiteseasonal 0.44 144 <0.01 0.2 -72 0.01 58 34.7 0.76 <0.01 

GIBPEseasonal 0.1 419 0.09 0.14 -336 0.02 241 53.2 0.28 <0.01 

GSUMMseasonal 0.35 1909 <0.01 0.14 129 0.02 -110 13.6 0.73 <0.01 

GBASNseasonal 0.26 538 <0.01 0.41 -412 <0.01 288 44.2 0.51 <0.01 

Grassseasonal 0.48 38 <0.01 0.36 -49 <0.01 89 35.1 0.83 <0.01 

CCALIseasonal 0.07 90 0.07 0.21 -85 0.01 71 14.8 0.42 <0.01 

CSANDseasonal 0.24 790 <0.01 0.07 -251 0.80 167 35.9 0.48 <0.01 

CGRAVseasonal 0.17 -17 0.11 0.07 647 0.70 67 31.1 0.37 <0.01 

Creosoteseasonal 0.14 36 0.12 0.05 -81 0.60 166 41.9 0.62 <0.01 

Landscapeseasonal 0.18 32 0.11 0.1 -44 0.04 81 48.6 0.64 <0.01 

TWESTannual 0.34 590 <0.01 0.3 -166 <0.01 95 35.2 0.42 <0.01 

TEASTannual 0.44 865 <0.01 0.28 -151 <0.01 83 27.7 0.67 <0.01 

TTAYLannual 0.35 1069 <0.01 0.06 -159 0.70 62 44.8 0.66 <0.01 

Tarbushannual 0.37 820 <0.01 0.23 -151 <0.01 77 13.6 0.88 <0.01 

MRABBannual 0.41 2438 <0.01 0.25 -229 <0.01 19 65.9 0.62 <0.01 

MWELLannual 0.49 2696 <0.01 0.37 502 <0.01 -406 22.9 0.58 <0.01 

MNORTannual 0.62 1340 <0.01 0.37 -372 <0.01 187 71.3 0.43 <0.01 

Mesquiteannual 0.35 1699 <0.01 0.27 -261 <0.01 99 22.1 0.87 <0.01 

GIBPEannual 0.21 572 0.09 0.12 -401 0.03 247 41.4 0.58 <0.01 

GSUMMannual 0.73 3245 <0.01 0.38 411 <0.01 -335 52.7 0.69 <0.01 

GBASNannual 0.41 1259 <0.01 0.34 -293 <0.01 159 38.8 0.55 <0.01 

Grassannaul 0.31 1299 <0.01 0.06 -164 0.70 089 30.2 0.73 <0.01 

CCALIannual 0.39 414 <0.01 0.18 -66 0.04 22 12.8 0.58 <0.01 

CSANDannual 0.43 1251 <0.01 0.21 -279 0.01 153 22.7 0.50 <0.01 

CGRAVannual 0.26 873 <0.01 0.1 -90 0.04 78 28.6 0.43 <0.01 

Creosoteannual 0.22 80 0.08 0.12 -33 0.03 86 24.3 0.77 <0.01 

Landscapeannual 0.18 97 0.09 0.38 -313 <0.01 188 31.2 0.76 <0.01 
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3.4.5 Stepwise Regression 

Improved overall model performance is observed for every community (and at the 

landscape scale) in stepwise regressions (Figure 15:A) compared to multiple regressions, 

regardless of whether three variables (MESMA-derived fractions of GV, NPV, and soil) or two-

variable (MESMA-derived fractions of GV and soil) were used. Using the annual MEMSA derived 

fractions, grass and mesquite show identical R2 = 0.85 with RMSE = 22.5 g m-2 y-1 (grass) and 

RMSE = 12.5 g m-2 y-1 (mesquite). While using the seasonal MESMA derived fractions, grass 

coefficient is identical to that found in the two-variable regression (R2 = 0.83), however, shows 

improvement in RMSE from 35.1 m-2 y-1 to 29.8 m-2 y-1. MESMA-derived annual fractional cover 

values produced better models in nearly all cases in the community scale (higher R2, lower RMSE) 

than seasonal fractional cover values, but with nearly same landscape coefficient determination 

(R2 = 0.73 and 0.75).  

Seasonal Annual 

A  
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C 

Figure 15. (D) Community level stepwise regression analysis at seasonal (left) and annual 

scales (right). (E) Community level Random Forest analysis at seasonal (left) and annual 

scales (right). (F) Landscape level stepwise regression analysis (SW) and Random Forest 

analysis (RF) at seasonal (left) and annual scales (right). The annual scale display R2 higher 

than the seasonal scale at most of the community types and at landscape (RF) levels. 
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3.4.6 Random Forest 

Table 13. Site, out-of-bag mean error, RMSE, normalized RMSE, relative error and RMS-relative 

error (g m-2 y-1) at community and landscape scales using seasonal and annual derived-MESMA 

fractions. 
Site Seasonal Annual 

 ME RMSE Normal 

RMSE 

Rel-

error 

RMS-Rel 

error 

ME RMSE Normal 

RMSE 

Rel-

error 

RMS-Rel 

error 

Tarbush 0.81 14.6 0.16 0.77 0.16 0.18 11.6 0.19 0.18 0.25 

Mesquite 0.21 12.1 0.24 0.33 0.28 0.21 13.4 0.23 0.20 0.21 

Grass 0.16 42.4 0.23 0.16 0.19 0.13 37.8 0.17 0.13 0.13 

Creosote 0.29 10.2 0.24 0.29 0.28 0.19 26.5 0.2 0.19 0.26 

Landscape 0.21 19.6 0.22 0.14 0.23 0.14 24.2 0.23 0.14 0.23 

 

OOB errors for RF were extremely low (Table 13), typically below 1 g m-2 y-1. However, 

OOB errors often overestimate the quality of RF models (Pal 2005), while predictions based on 

the final model are a better indicator of the quality of RF model performance. Final RF models 

indicate that RF model predictions were universally higher for all community types, regardless of 

whether seasonal or annual MESMA-derived fractions were used (Figure 15). Using the annual 

MEMSA derived fractions, tarbush, creosote and mesquite show similar R2 with low RMSE, while 

grass display lowest R2 (0.89) and highest RMSE (37.8 g m-2 y-1). Using the seasonal MESMA-

derived fractions mesquite (R2 = 0.93) and creosote (R2 = 0.92) prediction models show high 

improvement than when using stepwise regression (R2 = 0.79 and R2 = 0.77) with reduced RMSE, 

where with RF, these models RF explain up to 93% of the variance in the in situ NPP. The overall 

best landscape scale model was the RF prediction using annual MESMA-derived fractions with an 

overall R2 = 0.92 and RMSE = 24.2 g m-2 y-1. 

3.5 Discussion 

In our study, we compared several statistical methods for estimating NPP using MODIS-derived 

land cover estimates. Our results indicate that MESMA-derived GV, NPV and soil worked well 

with stepwise regression and RF in providing the best estimations of NPP.  
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3.5.1 Standard MODIS NPP and GPP products 

There have been several studies that suggest that remote sensing of NPP in drylands may 

be compromised by contamination of the soil signature (Turner et al. 2006), surface homogeneity 

(Sims et al. 2007), water content and leaf cycle (Ryu et al. 2011), and high temperature (Running 

and Zhao 2015). Therefore, MODIS17 products generally, are found to be less reliable in dry 

regions where the water content of roots and leaves is minimal (Friedl et al. 2000). Indeed, our 

results indicate that the standard MODIS NPP product had no skill in predicting NPP at the plot, 

community, or landscape scales. The fact that MODIS GPP estimates were more correlated with 

the in situ estimates of NPP indicates that the problem lies more with the failure of the NPP 

algorithm to correctly predict respiration losses. In particular, the complexity of the respiration 

calculations in the standard NPP product appears to be unnecessary, as a deduction of ~100 g m-2 

y-1 from GPP to account for respiration would be sufficient to provide rough estimates of NPP at 

the landscape scale. 

The MODIS estimates of GPP product depends on radiation conversion efficiency, ɛ, 

which determines the maximum fraction of absorbed photosynthetically active radiation (fPAR) 

that can be converted to a carbon product (Running et al. 2004). This parameter is primarily 

dependent on temperature and vapor pressure deficit (VPD), and since the MODIS algorithm uses 

the temperature of cool regions, it is not surprising to find erroneous estimates for hot and dry 

regions. In our data, differences in slope at the community scale (Table 10), which vary from 0.36 

to ~1, suggest different values of ɛ for different community types. The tarbush community 

apparently has a value of ɛ close to that used by the GPP algorithm (i.e., with the slope closest to 

1), and creosote having a value of ɛ that is the most different from that used by the GPP algorithm. 

Even then, there are considerable differences within communities among individual plots. Overall, 
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at the landscape scale (94%), the value of ɛ is approximately close to that assumed by the GPP 

algorithm (Figure 14, Table 10).  

A specific plot by plot comparison between the MODIS NPP and in situ NPP show that 

MODIS NPP overestimates the productivity of vegetation at the basin. We couldn’t find a 

particular pattern of overestimation; however, in years of low productivity, MODIS NPP had 

overestimated the productivity of vegetation. For example, in 2003, a dry year, MWELL 

experienced reduced productivity of 46.7 g m-2 y-1, whereas MODIS NPP estimated high NPP of 

195.2 g m-2 y-1, which is more representative of years of high productivity. Generally, the pattern 

of overestimation agrees with the conclusions of Turner et al. (2006), who found that MODIS NPP 

and GPP overestimate productivity at low productivity sites due to elevated values of LUE in the 

MODIS algorithm. 

3.5.4 The utility of MESMA-derived fractions 

Conclusions by others that contamination by NPV and soil potentially lead to poor 

estimates of NPP in dryland regions (e.g., Turner et al. 2006; Sims et al. 2007) suggest that 

including these terms in estimates of NPP may result in strong and predictive correlations. Our 

results bear out this conclusion, as even simple regressions including only GV and soil provided 

RMSEs in the estimation of NPP that were approximately half the corrected NPP estimates derived 

from MODIS GPP. The utility of GV fractional cover in the prediction of NPP is clear: the fraction 

of GV represents the portion of the surface that is covered by photosynthetic material, and therefore 

should be closely correlated with FPAR, a main mechanistic determinant of photosynthesis. The 

value of soil fractional covers in the prediction of NPP is somewhat less clear. Generally, negative 

correlations between soil cover and in situ NPP require that the complement of soil (i.e. 1-soil 

cover) must be positively correlated with NPP. The complement of soil cover is equivalent to total 
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vegetation (GV plus NPV) cover. This suggests that there is an element of cover that is not 

completely green (as GV is) that also contributes to productivity. This is unclear, but it may be 

related to functional traits of dryland plants that are useful in preventing overheating and water 

loss (Okin 2007). Leaves tilted away from the sun in open canopies within which considerable 

multiple scattering occurs may be part of this relationship. That is, there may be photosynthetic 

material that is hidden from the nadir view (the satellite’s perspective) by non-photosynthetic 

material. We hypothesize that this photosynthetic material contributes to plant productivity, but is 

only represented in the nadir view by the total vegetation cover.  

The fact that estimates of GV, NPV, and soil fractional cover at annual scales generally 

predicted NPP better than seasonal fractional cover estimates perhaps reflects the fact that, in these 

communities, growth can begin in response to moisture from winter storms as soon as temperatures 

rise, which may be in some years, before April 1st. Additionally, the productivity of grasses and 

shrubs may continue past October 31st in some years, depending on the amount of moisture in the 

soil and the fall temperatures (Huenneke et al. 2002). We have provided (Table 7) parameters for 

the calculation of NPP from GV, NPV, and soil fractional cover so that they may be used by other 

investigators. Unless individual communities can be delineated in a specific study, we suggest the 

use of landscape-scale parameters (using annual cover estimates) for NPP estimation in 

Chihuahuan Desert locations.    

More sophisticated regression techniques provide generally better estimates of NPP than 

simple multiple regression techniques, suggesting the utility of these approaches in the prediction 

of NPP in drylands. Random Forest, in particular, produced landscape-scale estimates of NPP that 

had an error of only approximately 5% of the total range of values, compared to the best landscape-

scale stepwise regression model, with an error of approximately 8% of the total range. Unlike the 
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simple multiple regression models which were associated with high prediction errors. We attribute 

this to the way that these algorithms work, rather than to the fact that seasonal values capture 

information that annual values do not.  Indeed, since seasonal and annual values are calculated as 

sums, the annual value includes more information than the seasonal value by definition. The 

improvements in NPP predictions that appear when using simple multiple regression with annual 

values suggest that this information is not extraneous. Nonetheless, the complex nature of the 

stepwise and RF approaches, and specifically how they are designed to minimize error, may have 

resulted in over-optimization on one set of data (seasonal vs. annual), regardless of intrinsic utility 

or information content.  

3.6 Conclusion 

Based on a unique set of long-term in situ NPP measurements, this study shows that it is 

possible to develop relationships that allow prediction of NPP in hot deserts from MODIS data. 

Although these relationships are not mechanistic, i.e., based on the physics of NPP, they succeed 

where the mechanistic algorithms fail. Indeed, our relationships work better even than the 

mechanistic MODIS algorithms for GPP, which are mostly dependent upon light absorption by 

chlorophyll (Zhang et al. 2005), a quantity which is relatively simple estimate from remotely 

sensed data. This appears to be, in part, because our relationships directly account for factors 

known to influence the quality of GPP estimates in deserts such as variable soil background and 

the presence of NPV. Although it is possible that mechanistic algorithms that consider plant 

architecture, the presence of nonphotosynthetic material, and the effect of the soil background, for 

the time being, empirical relationships such as the ones produced here must suffice for the 

production of adequate estimates of NPP in deserts such as the Chihuahuan.   
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Of course, one of the benefits of mechanistic remote sensing algorithms is that the 

mechanisms are inferred to be similar in different geographic locations, and therefore there is 

optimism that mechanistic algorithms can produce robust estimates regardless of location, 

provided sufficiently complex models and adequate input data. At least in the current version of 

the MODIS NPP algorithm, this condition has not been met. The advantage of an empirical 

relationship, in contrast, is that they are easy to produce and provide direct estimates, often 

associated with estimates of error. The trade-off, however, is there is no guarantee that these 

relationships will be the same in other geographic locations. In our work, by distilling the surface 

into component parts (GV, NPV, and soil) that are present everywhere, production of fractional 

cover estimates that are not susceptible to potentially idiosyncratic factors (e.g., soil color), by 

including data from years with a range of weather conditions, and by examining communities with 

often dissimilar composition, we have some optimism that our methods might be, at least, 

extensible to other portions of the Chihuahuan Desert, if not other hot deserts worldwide. 

Additional testing using independent data is required to determine whether these empirical 

relationships are adequate elsewhere.  
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Chapter 4. Drone-based monitoring of hillslope-channel coupling by aeolian processes. 

4.1 Abstract 

There has been an increase in interest in the interaction between aeolian and fluvial 

processes in drylands over the past several decades and yet, there has been relatively little work 

investigating how aeolian processes working on hillslopes interact with fluvial features in a form 

of hillslope-channel coupling. This study used imagery from unmanned aerial vehicles (UAVs) to 

conduct high-resolution, repeated topographic mapping to study hillslope erosion and 

sedimentation processes. The purpose of this study was to investigate the contributions of wind 

and water in soil surface elevation change over the course of 16 months. Detailed analysis indicated 

that the estimated heights of ground control points (GCPs) were consistent enough to allow 

calculation of height differences to produce for sediment volume calculations. We compared the 

elevation values between the total station and the DEMs at ten ground control points (GCP) at 

three locations for accuracy assessment. We found strong vertical agreement between the UAV 

and total station for all survey dates over 16 months for three locations (NW, SW, and NE streams). 

In addition, we classified the morphology of the streams into east and west wall and bed to 

characterize the effects of wind and water on these sub-morphologies. We found that the majority 

of the erosion events accrued at the NW and NE stream walls while deposition events at the bed 

of the NW stream over the course of 16 months. 

4.2 Introduction 

Drylands are water-limited ecosystems that range from hyperarid to subhumid lands and 

cover more than 40% of the earth’s land and are a home for more than 2 billion people (Reynold 

et al. 2007). Due to low and discontinuous vegetation cover, drylands are susceptible to both wind 

and water erosion (Okin et al. 2009). Eighty percent of the world’s drylands may be affected by 
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moderate to severe soil degradation (Lal et al. 2003; Pimentel 1993), much of which has a 

component of wind and water erosion (Belnap et al. 2011; Field et al. 2009). Both types of erosion 

have contributed to one billion ton of soil loss per year in the United States (NRCS 2000A; NRCS 

2000B). The combined effects of wind and water erosion in the U.S. are estimated to cost about 

9.6 and 7.4 billion dollars per year due to on-site and off-site agricultural impacts (Pimentel et al. 

1995). The coupled effect of wind and water has major long-term impacts on dryland degradation 

that could lead to various environmental, ecological, and economic consequences.  

From a scientific perspective, there has been an increase in interest in the interaction 

between aeolian and fluvial processes in drylands over the past several decades (Bullard and 

McTainsh 2003;  Maroulis et al. 2007; Okin et al. 2009; Field et al. 2009; Belnap et al. 2011; 

Sankey & Draut 2014; Okin et al. 2018). Much of the work that has been done has concerned the 

interaction of dunes and river systems in both modern and ancient systems (Bullard & McTainsh 

2003; Maroulis et al. 2007; Sankey & Draut 2014) or the influence of fluvial sediment delivery to 

dry lakes on dust emission (Reheis 1997; Reheis 2006; Okin & Reheis 2001; Bullard & McTainsh 

2003; Schepanski et al. 2012). Other work has focused on processes, either aeolian or fluvial, at 

work on hillslopes and potential feedbacks with vegetation (Field et al. 2009; Stewart et al. 2014;  

Okin et al. 2009; Okin et al. 2018).  

There has been relatively little work at the intersection of all these areas: how aeolian 

processes working on hillslopes interact with fluvial processes occurring in channels inset in those 

hillslopes (Belnap et al. 2011; Sankey & Draut 2014). This is a potentially revealing area of 

research which may indicate more extensive and more consequential interactions between fluvial 

and aeolian processes than generally acknowledged due to the ubiquity of inset channels on 

hillslopes and generally higher rates of aeolian transport than expected in the few locations where 
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it has been measured together with hillslope water transport. (Breshears et al. 2003a; Breshears et 

al. 2003b; Field et al. 2011; Whicker et al. 2002). For instance, sediment blown by wind into 

ephemeral, inset channels and then subsequently cleared during flooding events, represents a 

coupling that is rarely considered (but see Belnap et al. 2011), but that represents a potentially 

important mechanism of hillslope-channel coupling through aeolian mechanisms. 

The purpose of this study is to investigate the coupling of hillslopes and channels through 

aeolian transport. Due to the episodic nature of both wind and water transport, a strategy of 

infrequent surveys of coupled channel systems was devised, using novel drone-based methods for 

accurate estimation of changes in surface height that are due to transport events. In particular, we 

investigate the effects of wind and water transport in erosion/deposition in ephemeral streams in 

Moab, UT. Our investigation of the cumulative effect of sediment flow occurred during dry and 

wet periods, which helps guide interpretation of changes in microtopography in terms of the 

dominant process (aeolian or fluvial) responsible for changes to surface elevation and sediment 

storage. 

4.2.1 Background 

 The relationship between aeolian and fluvial processes has been observed at various spatial 

and temporal scales (Bullard & McTanish 2003; Field 2009). The interactions between wind and 

water transport are deeply linked and controlled by landscape and land formations (Belnap 1995). 

Soil particles under the effect of one type of erosion, either wind or water, can become available 

for another type of erosion over time, which may intensify the amount of soil loss, redistribution, 

and contributing to long-term pedogenesis, including the development of desert pavements 

(McFadden & Well 1987; Wells et al. 1995). For example, sand dunes can encroach drainages 

during dry periods and deposit sediments directly into channels (Field 2009). The aeolian 
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sediments can be stored until the next rainfall events, where rain transport sediments downstream 

by surface runoff (Belnap et al. 2011). Aeolian transport of fluvial deposits in drylands can occur 

in a variety of settings, including re-working of material deposited in dry lakes (Reheis 1997; 

Reheis 2006), aeolian transport of bar sediments (Sankey & Draut 2014), and aeolian transport of 

delta sediments (Belnap et al. 2011; Okin et al. 2001). 

In general, the magnitude of the combined effect of soil erosion is dependent on the speed 

of wind and of the amount and intensity of rainfall, as well as physical characteristics of soil, such 

as texture, hydrophobicity, crusting, and wetness (Ravi et al. 2010). Due to the temporal separation 

and spatial scale differences, wind and water have been often studied in separation (Breshears et 

al. 2003; Toy et al. 2002; Visser et al. 2004). The magnitude of transport is different between 

aeolian and fluvial processes (Whicker et al. 2002) and is dependent on the magnitude and 

frequency characteristics of transport events. In particular, aeolian transport events may be more 

frequent than fluvial transport events, however, the amount of material transported in a single, 

infrequent fluvial transport event can be much greater than the amount of material transported in 

strong aeolian events (Okin et al. 2018). 

Another important difference between wind and water transport processes is the 

directionality of transport. Aeolian transport, observed throughout the year, is omni-directional, 

controlled by wind speed and direction which, in many locations, can be any direction. Wind speed 

and direction are typically not strongly affected by hillslope characteristics. Water transport, on 

the other hand, is strongly directional since water flows downslope carving its way into channels 

within watershed boundaries (Ravi et al. 2010). In practice, these differences mean that while water 

can only move sediment within a channel or down a hillslope, wind can move sediment orthogonal 

or even opposite to the direction of water flow. 
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Despite the relative isolation in the combined study of the two transport mechanisms in 

research, numerous attempts have been made to re-evaluate this separation (Breshears et al. 2003; 

Bullard and Mctanish 2003; Visser et al. 2004). Various techniques have been developed to 

estimate soil erosion and deposition by detecting changes in soil surface elevation due to multiple 

processes (Capolupo et al. 2015; Gillan et al. 2017). Although there are other methods used for 

quantifying sediment transport, such as sediment traps, there is no standard method for 

simultaneously measuring both wind and water transport from trapped sediment. Indeed, attempts 

to measure both wind and water transport simultaneously (Breshears et al. 2002; Whicker et al. 

2003) have been criticized due to the differences in measurement techniques and different temporal 

characteristics of transport. 

Detecting soil surface elevation change does not quantify soil mass transport, but can 

provide valuable information about spatial distribution of sediments following erosion events, 

which can be used to infer transport using a mass-balance approach. Due to their high accuracy, 

terrestrial laser scanners are commonly used to detect soil loss and microtopographic change on 

various scales (Elner et al. 2014). However, the high cost of hardware acquisition limits their user 

base (Niethammer et al. 2012). Methods using topographical data derived from unmanned aerial 

vehicles (UAVs, also called drones) are potentially an efficient alternative for monitoring micro-

topography and soil loss at various scales (Elner et al. 2014). Recent advances in computer vision 

and digital 3D surface reconstruction have resulted in developments in structure-from-motion 

(SfM) techniques that employ drone-based photography (Elner et al. 2014). SFM technologies are 

dependent on camera positions and matching points of multiple images, using real world and 

translated coordinates and UAVs are efficient tools that can be used for producing such imagery 

in order to derive repeatable soil surface elevation estimates (Gillan et al. 2016; Gillan et al. 2017). 
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The low cost of UAV acquisition and maintenance and the availability of SfM software have 

expanded the usage and applications of SfM (Westoby et al. 2012). Digital surface models from 

drone imagery potentially provide a reliable alternative for estimating the changes in surface height 

and can be used in detecting temporal changes in microtopography (Gillan et al. 2016). 

4.3 Methods 

4.3.1 Study area 

Three streams located in the outskirts of Moab, UT (38° 33′ 26.34″ N, 109° 30′ 28.8″ W) 

were selected as study plots for our UAV surveys (Figure 16). The area has a mean elevation of 

~1,370 meters, a mean annual rainfall of ~235 millimeters, and mean annual wind speed of ~3.5 

meters per second (USGS Moab, UT). The windy season starts in late February and ends in early 

July, while the monsoon season starts in early July and ends in late September. Each of the three 

streams are given a label in reference to their direction (Table 14; Figure 16). The largest (widest) 

stream is the NW and smallest is the NE (Table 14). The width is the mean of three transect 

measurements. 

Table 14. Stream location reference direction, field transect measurements of length of survey 

(m) and mean width (m). 
Stream Length (m) Width (m) 

NW 151 4.3 

SW 98 2.5 

NE 96 2.9 
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Figure 16. (A) A map of the Western United States showing the location of Moab, UT. (B) 

Satellite image (Google Earth assessed on 12/19/2018) showing the location of our study 

site. Bottom panel, orthomodels of the three streams. The NW stream image collection 

shown here was taken at  sunrise 6:40 am (local time) which caused the appearance of deep 

shadow. 

NW     SW               NE  

Moab 

A      B  



98 
 

Five surveys spanning a period of 16 months from July 2017 to November 2018 were 

made: (1) July 1, 2017, (2) September 24, 2017; (3) March 10, 2018; (4) May 10, 2018 and (5) 

November 20, 2018, each survey date is given a number to represent the order of the survey, these 

orders are used to clarify soil ∆h calculation. The area experienced an intense storm cycle from 

September 9th, 2017 to September 15th, 2017 (i.e., between acquisition 1 and 2) and recorded a 

total of ~ 67.5 mm of rain (Utah Water Science Center 2017), causing visible flow in these streams 

(J. Belnap, personal communication). Maximum wind gusts of 29.3 m s-1 were recorded for the 

same period of time (Table 15), with south being the predominant wind direction (ASOS Network 

2017). 

Table 15. Survey dates, max wind speed (m s-1), 95th percentile wind speed (m s-1), total rainfall 

(mm), number of days with maximum windspeed > 7 m/s (WS>7), and number of days with 

more than 10 mm rainfall (R>10) during the survey periods from Canyonland Weather Station 

near Moab, UT  (ASOS Network 2017). Numbers in parentheses represent the percent of days 

during a time period with WS>7 and R>10. 

 

4.3.2. Ground control point (GCP) 

Ten unique GCPs were established for each plot using bars of rebar driven at least 80 cm 

into the ground with 30 cm above the surface to orient the drone flights and register the 3D models: 

five on each side of the streams. During the surveys, 58 cm diameter prints of coded targets 

(Agisoft LLC St. Petersburg, Russia), mounted on wooden plates, were placed on each of the poles. 

Care was taken to ensure that the same target was placed on the same pole for every flight at each 

plot. The coded targets can be automatically identified by PhotoScan Pro software to aid automated 

matching of photographs. We used Trimble Net R9 with 2-cm accuracy (Trimble Sunnyvale, CA) 

Survey period Max wind 

speed 

95th percentile 

wind speed 

Total 

rainfall 

WS> 7 R>10 

July 1, 2017 - September 24, 2017 29.3 6.7 108 59 (69%) 11 (13%) 

September 24, 2017 - March 10, 2018 21.9 6.2 119 56 (34%) 5 (3%) 

March 10, 2018 - May 10, 2018 18.6 7.2 48.8 44 (72%) 2 (3%) 

May 10, 2018 - November 20, 2018 19.4 8.2 71.3 66 (34%) 4 (2%) 
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to collect high-accuracy GPS locations for each of the GCPs. The GPS coordinates were used to 

georegister the models. The GPS points were all in the WGS 84 geographic coordinate system. 

4.3.2. Image acquisition 

A DJI Phantom 4 equipped with a 4K camera was used for image acquisition (Dà-Jiāng 

Innovations Science and Technology Co. Shenzhen, China). The camera is mounted on an 

adjustable gimbal that allows control of its viewing direction while also reducing vibration. 

Stabilizing the camera position and viewing direction is important to eliminate vibrations and 

motion blur caused by wind and flight speed. For this work, the camera position was always set to 

90 degrees (nadir) during flights. Drone flights were designed (flight height and speed) and 

controlled using Map Pilot V2.6.4 (Drones Made Easy San Diego, CA). A double grid (two 

directions: east-west and north-south) flight design was initially used for our surveys. The double 

grid flight eliminates blind spots and gaps in the models, which in turn increases the accuracy of 

matching viewpoints. Images were taken at ~16 m above the ground with a 75% forward and 75% 

sidelap (Table 16); these overlap parameters are sufficient for most digital elevation model (DEM)-

based surface feature detection, i.e., soil and vegetation models (Daftry et el. 2015; Cunliffe et al. 

2016).  

Table 16. Acquisition and processing parameters used for designing drone flights and generating 

3D models. 

aircraft DJI Phantom 4 

Camera model FC330 (3.61mm) 

Camera type Frame 

FOV (degree) 94 

Image size  4000 x 3000 

Flying height above the ground  (m) 16 

Forward overlap (%) 75 

Side overlap (%) 75 

Image count 80 - 120 

Average point density (points/ m2) 60 

DEM cell size (cm) 2 - 3  

Orthomosaic resolution (mm) 5.8  - 6.2 
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4.3.3. Image processing 

The collected imagery was processed in Agisoft PhotoScan 1.4.4 (Agisoft LLC, St. 

Petersburg, Russia) SFM software to generate DEMs and orthomosaics. We followed the four 

major SFM steps to process images and generate DEMs: 1) photo alignment and spare cloud 

building, 2) GCP identification and spare point cloud optimization, 3) dense point cloud building, 

and 4) building orthomosaics and DEMs.  

We first aligned the photos using “high” accuracy and created spare point clouds for each 

plot separately. The alignment algorithm is designed to search for identifiable features in the 

images and determines the location of the cameras to calculate the 3D coordinates of the surface 

features (Lowe 2004). This step results in a spare cloud that includes features that are matched 

with their calculated x, y, and z geographic coordinates (WGS 84) according to the DJI Phantom 

4 built-in GPS. 

Next, we manually navigated and identified GCPs in the images for each plot. In Photoscan, 

identification of GCP “Add marker tool” enables the software to automatically estimate locations 

of GCPs in all of the uploaded images. The estimated GCPs were checked and adjusted to the 

center pixel of each GCP. Each GCP was assigned the appropriate GPS-derived geographical 

coordinate. 

With these parameters, the final ground resolution of the orthophotos was as small as 5.8 

mm per pixel, with 0.5 cm geometric accuracy. Geometric errors were quantified by comparing 

the ground GPS coordinates of the GCPs to their georeferenced image coordinates at each plot 

(Table 17). 

About 100 images were used to construct a 3D mosaic for each plot with 120,000-125,000 

tie points, and an average point density of 46–60 points/m2. Orthomosaics and DEMs were 

constructed using a “high accuracy” dense point cloud. The coverage area of our models was 5,670 
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m2, 4,270 m2 4,740 m2 with average DEM resolution of 2.6 cm, 2 cm, 2.4 cm for NW, NE and 

SW, respectively.  

4.3.4 Height accuracy/consistency assessment 

Two types of height accuracy assessment were conducted. In the first, relative heights of 

GCPs derived from UAV imagery were compared against an independent set of relative height 

measurements using a total station. In the second, UAV-derived relative heights were compared 

with one another and were tracked through time. For both analyses, the height of the pixel closest 

to the center of each GCP in each UAV imagery was used.  

For the first analysis we collected heights using a Trimble Total Station (Trimble 

Sunnyvale, CA) in each plot on July 1, 2017. The total station measurements were taken at the 

center of each GCP by placing the prism pole on the center of each GCP plate. Using the logic that 

the absolute heights of the Total Station and UAV-derived GCPs would not agree, but the relative 

differences between them should agree, one GCP was chosen as the standard (GCP1 for all plots) 

and in both datasets (Total Station and UAV-derived), this height was subtracted from the others. 

For the first analysis, these relative heights could be compared directly with each other using two 

metrics, the mean absolute difference (MAD), given as:  

𝑀𝐴𝐷 =
|∆ℎ1−∆ℎ2|

𝑁
        (8) 

where ∆ℎ is a measure of height, 1 and 2 refer to the two measures under consideration, and N is 

the number of points used, and the mean difference (MD), given as: 

𝑀𝐷 =
∆ℎ1−∆ℎ2

𝑁
         (9) 

For the comparison between Total Station and UAV heights, ∆ℎ refers to the height 

difference between a GCP and the height of the standard GCP, the index ‘1’ was used for the 

UAV-derived height measures and ‘2’ was used for the Total Station height measures, meaning 
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that a positive MD indicated that the UAV height differences were greater, on average, than the 

Total Station height differences. N, in this case was the number of GCPs (10) minus one because 

one of the GCPs is used as the standard.  

 For the second analysis, in which we compared UAV heights for consistency through time, 

two approaches were used. First, we checked to see that relative heights of individual GCPs 

changed through time; this was quantified by calculating the standard deviation of the UAV-

derived (absolute) height measures for the 5 times the imagery was acquired. Comparison of 

relative heights through time required a slightly different approach from the Total Station-UAV 

comparison. In particular, use of a single GCP as the ‘standard’ could potentially inflate the 

estimate of MAD if the ‘standard’ GCP height measurement was in error. Therefore, the 

differences in height between all possible combinations of GCPs (excluding the height difference 

between a GCP and itself) at each stream was used to calculate MD and MAD, with N in these 

cases equal to 45, the number of possible combinations. In practice, ∆ℎ for MAD and MD 

calculations were calculated as the difference between a GCP’s height on one survey date (index 

2) minus the height of that GCP on the first survey data (index 1). A positive MD indicates that 

the estimated height at the later date was greater than the estimated height on the original date. 

4.3.5 Object classification and differencing analysis 

In the PhotoScan Pro software, we used “Classify Point Cloud” to eliminate vegetation and 

other objects that were not soil; see Cunliff et al. (2016) and Gillan et al. (2017). Next, the DEM 

models were imported into ArcMap 10.5 (ESRI Redlands, CA, USA) and were reprojected to 

UTM.  

The ArcMap “Minus” tool was used to perform a mathematical procedure to identify soil 

surface elevation change (h) on a per-pixel basis according to:  
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∆h𝑡𝑜𝑡𝑎𝑙  =  𝐷𝐸𝑀(1)  − 𝐷𝐸𝑀(5)   (10) 

∆h1  =  𝐷𝐸𝑀(1) − 𝐷𝐸𝑀(2)    (11) 

∆h2  =  𝐷𝐸𝑀(2) −  𝐷𝐸𝑀(3)     (12) 

∆h3  =  𝐷𝐸𝑀(3)  −  𝐷𝐸𝑀(4)    (13)  

∆h4  =  𝐷𝐸𝑀(4) −  𝐷𝐸𝑀(5)    (14) 

Where DEM(X) is the DEM derived from (X) survey date (see survey date orders). To 

analyze patterns of soil erosion and deposition in relation to stream morphology, we partitioned 

the soil elevation differenced maps using three morphological classes: 1) stream bed, 2) stream 

east wall and 3) stream west wall. Due to the fine scale of the surface models, ArcMap could not 

recognize the stream morphologies with watershed tools, therefore masks were created manually 

by tracing the areas of interest. We created masks (Figure 17) for each class to cover the desired 

area at each site, then summed the values of soil h (cm) for erosion and deposition and multiplied 

them by the pixel size (cm2) of each DEM for each class.  

   

Figure 17. Masks were created for NW, SW, and NE streams indicating stream morphologies 

(bed, east wall, and west wall). 
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4.4 Results 

Georeferencing error during SfM construction in the X- and Y- directions was under 0.5 

cm for all streams for all surveys (Table 17). Z-direction errors were less than 0.8 cm for all 

surveys. Overall locational error was less than 0.7 cm for all surveys, with overall locational error 

never greater than 0.08 pixel widths. 

Table 17. X, y and z errors (cm), overall error (cm), and reprojection pixel error of the estimated 

GCP marker positions. 
Stream Survey X error  Y error  Z error  Overall Error Error (pixel) 

NW 

 

July 2017 0.1 0.3 0.5 0.4 0.08 

September 2017 0.4 0.2 0.6 0.5 0.06 

March 2018 0.2 0.5 0.8 0.7 0.08 

May 2018 0.3 0.2 0.7 0.4 0.05 

November 2018 0.4 0.3 0.6 0.3 0.07 

NE 

 

July 2017 0.1 0.3 0.5 0.4 0.08 

September 2017 0.4 0.2 0.6 0.5 0.06 

March 2018 0.2 0.5 0.8 0.7 0.08 

May 2018 0.3 0.2 0.7 0.4 0.05 

November 2018 0.4 0.3 0.6 0.3 0.07 

SW July 2017 0.2 0.3 0.5 0.4 0.04 

September 2017 0.1 0.3 0.6 0.3 0.03 

March 2018 0.3 0.4 0.7 0.4 0.03 

May 2018 0.2 0.1 0.5 0.3 0.02 

 November 2018 0.3 0.4 0.5 0.2 0.06 

Comparisons between Total Station heights and UAV-derived heights indicated that there 

was always more variability in the Total Station heights than UAV heights from the same date 

(Table 18), with MAD ranging from 5.1 – 13.1 cm and |MD| ranging from 1.5 – 12.1 cm. 

Agreement between UAV-derived heights through time indicated considerably less variability, 

with MAD ranging from 1.4 – 2.9 cm and |MD| ranging from 0.2 – 1.6 cm. Overall MAD for the 

three streams was 2.0 – 2.3 mm and overall |MD| for the three streams was 0.2 – 0.5. Average 

standard for (absolute) UAV-derived heights was 1.2 – 1.4 cm (Table 18). To estimate uncertainty 

in UAV-derived heights, we used the overall MAD because, to be conservative, this was greater 
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than the standard deviation (Table 20). Volume uncertainties for each stream were estimates as the 

overall UAV-derived MAD multiplied by the pixel area (Table 19).  

Table 18. Comparison between heights (cm) measured with Trimble Total Station (TS) and heights 

retrieved from UAV (cm) for July 2017, and between heights of GCP retrieved from UAV (cm) 

for each survey date and overall for each site, mean difference (MD)  cm, mean difference (MD)  

cm, mean absolute difference (MAD) cm. 
Site Comparison Survey MD MAD 

NW  TS vs. UAV July 2017 -3.0 10.0 

UAV July 2017 -0.4 1.8 

UAV September 2017 0.2 1.8 

UAV March 2018 0.7 2.7 

UAV May 2018 1.3 2.8 

UAV November 2018 1.3 2.8 

UAV overall 0.5 2.3 

SW  TS vs. UAV July 2017 -1.5 5.1 

UAV July 2017 -1.2 1.5 

UAV September 2017 -0.2 1.8 

UAV March 2018 -0.2 2.9 

UAV May 2018 -0.7 2.9 

UAV November 2018 -0.7 2.0 

UAV Overall 2.0 -0.5 

NE  TS vs. UAV July 2017 -12.2 13.1 

UAV July 2017 0.4 1.4 

UAV September 2017 -0.4 2.0 

UAV March 2018 -0.6 2.4 

UAV May 2018 1.6 2.5 

UAV November 2018 1.6 2.5 

UAV Overall 0.2 2.1 

 

Table 19. Height uncertainty (MAD), pixel size, and volume uncertainty for each stream in the 

study. 
Site Overall MAD (cm) Pixel Size (cm2) Volume uncertainty 

(cm3) 

NW 2.1 4.0 8.2 

SW 2.0 5.8 11.6 

NE 2.1 6.8 14.3 
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Table 20. Site, GCP order, GCP heights for each survey date (cm), and standard deviation cm 

(STDEV) for each GCP at all survey dates and average STDEV cm for each site. 
Site GCP  Jul-17 Sep-17 Mar-18 May-18 Nov-18 STDEV 

NW 

 

 

GCP1 51.1 52.1 51.2 52.1 53.6 1.0 

GCP2 58.6 58.4 58.4 56.7 56.6 1.0 

GCP3 56.2 55.7 55.9 56.1 56.1 0.2 

GCP4 44.4 45.6 45.8 47.3 46.5 1.1 

GCP5 52.1 50.4 49.4 49.3 50.7 1.1 

GCP6 59.5 59.4 58.3 58.1 59.8 0.8 

GCP7 51.3 53.5 54.1 54.1 45.7 3.6 

GCP8 57.6 54.1 55.4 54.8 55.3 1.3 

GCP9 55.4 55.3 54.7 52.1 52.7 1.5 

GCP10 55.6 55.8 55.4 55.6 55.5 0.1 

 Average = 1.2 

SW GCP1 40.1 38.7 39.1 38.7 38.1 0.7 

GCP2 36.5 38.5 36.1 38.6 37.3 1.1 

GCP3 36.8 38.8 37.6 39.1 37.5 1.0 

GCP4 34.4 33.3 34.5 38.6 38.5 2.5 

GCP5 41.1 39.1 40.1 41.9 40.1 1.1 

GCP6 40.2 41.3 42.1 43.2 38.7 1.7 

GCP7 42.7 44.3 43.3 43.5 39.5 1.9 

GCP8 44.2 45.4 46.4 44.7 46.1 0.9 

GCP9 47.3 45.3 48.4 48.1 47.1 1.2 

GCP10 44.6 45.2 47.1 47.1 48.6 1.6 

Average = 1.4 

NE GCP1 44.1 44.2 45.1 43.2 50.1 2.7 

GCP2 50.1 49.3 50.7 50.4 51.3 0.7 

GCP3 56.4 56.1 55.7 54.5 55.4 0.7 

GCP4 50.9 49.7 50.8 49.2 49.3 0.8 

GCP5 49.4 49.1 48.7 47.1 47.4 1.0 

GCP6 43.2 44.5 48.1 48.1 45.2 2.2 

GCP7 45.3 43.2 44.9 45.3 44.2 0.9 

GCP8 47.2 47.0 48.2 46.3 45.6 1.0 

GCP9 56.9 59.1 60.1 59.1 55.9 1.7 

GCP10 58.8 58.7 58.6 57.7 58.2 0.5 

Average = 1.2 
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C   

Figure 18. Soil surface elevation change (cm) over 16 months at (A) NW stream, (B) SW 

stream and (C) NE stream. 
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A-1 July-September  

 

A-2 September-March  

A-3 March-May  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A-4 May- November  
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B-1 July-September B-2 September-March  B-3 March-May  B-4 May- 

November  

C-1 July-September 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C-2 September-March  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



110 
 

C-3 March-May 

 

C-4 May- November  

Figure 19. Soil surface elevation change (cm) over four different periods of time at (A-1-4) 

NW stream, (B-1-4) SW stream and (C-1-4) NE stream. 

 

Areas outside of the channels exhibited no discernible change in height (Figure 18 and 19).  

Within the channels, the streams exhibited spatially coherent patterns of erosion and deposition 

over the entire 16 months of the study (Figure 18) and between individual surveys (Figure 19), 

with changes in height up to 20 cm in some locations. The areas of the greatest volume change in 

each stream was typically isolated to a few locations, which remained relatively consistent between 

time periods during which there was significant volume change.  

The NW stream, which has both the longest reach in this study and is the widest stream, 

exhibited the greatest changes in sediment volume in its channel from the beginning to the end of  

the study period, as well as between individual surveys (Table 19). Although the SW and NE 

streams have about the same reach in the study (98 and 96 m, respectively), and are about the same 

width (2.5 and 2.9 m, respectively), the NE stream exhibited considerably less overall volume 

change (-1.2 cm3) than the SW stream (9.2 cm3). 
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For all streams, soil volume changes (erosion and deposition) were greatest between July 

1, 2017 and September 24, 2017  (Table 19). During this period, which also has the greatest number 

of days with > 10 mm rainfall, the highest total rainfall and the highest maximum windspeed, all 

three streams exhibited net erosion. The period from September 24, 2017 and March 10, 2018 

exhibited the next-highest change in channel sediment volume. During this period, the NE stream 

exhibited net erosion, but the other two streams exhibited net deposition. During all other time 

periods, all streams exhibited net deposition.  

Except for SW stream during the period between July 1, 2017 and September 24, 2017, the 

stream beds exhibited net soil volume deposition. The channel walls all exhibited net erosion 

during this period as well. Net erosion was also exhibited on the channel walls of the NW and NE 

streams during the September 24, 2017 and March 10, 2018 period. Net wall erosion for the entire 

16 months of the study period was only experienced by NE stream. 

There were no clear patterns in erosion, deposition, or net sediment storage between the 

east and west channel walls for any of the streams. 

Table 21. Total erosion and deposition (cm3) at different portions of each stream. 
Stream Survey Event Bed East Wall West Wall Total 

NW 

July-September 

Deposition 147.3 25.4 37.2 209.9 

Erosion 115.9 72.6 44.2 232.7 

Deposition-Erosion 31.4 -47.2 -7.0 -22.8 

September-

March 

Deposition 145.5 21.8 26.2 193.5 

Erosion 118.6 32.4 27.6 178.6 

Deposition-Erosion 26.9 -10.6 -1.4 14.9 

March-May 

Deposition 100.1 43 23 166.1 

Erosion 81.9 25.8 19.6 127.3 

Deposition-Erosion 18.2 17.2 3.4 38.8 

May-November 
Deposition 87.4 31.4 20.8 139.6 

Erosion 60.6 25.2 18.8 104.6 

 Deposition-Erosion 26.8 6.2 2.0 35.0 

July-November 
Deposition 125.4 21.6 20.8 167.8 

Erosion 48.3 16.4 15.4 80.1 

  Deposition-Erosion 77.1 5.2 5.4 87.7 
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NE 

July-September 
Deposition 124.3 19.2 15.8 159.3 

Erosion 88.1 66.2 59.6 213.9 

 Deposition-Erosion 36.2 -47.0 -43.8 -54.6 

September-

March 

Deposition 72.7 19.4 24.4 116.5 

Erosion 72.6 50.4 18.8 141.8 

 Deposition-Erosion 0.1 -31.0 5.6 -25.3 

March-May 
Deposition 102.6 19.6 23 145.2 

Erosion 49.6 25.8 13.4 88.8 

 Deposition-Erosion 53.0 -6.2 9.6 56.4 

May-November 
Deposition 69.5 20.2 13.2 102.9 

Erosion 27.7 14.8 10.4 52.9 

 Deposition-Erosion 41.8 5.4 2.8 50.0 

July-November 
Deposition 87.4 29.8 14.4 131.6 

Erosion 54.8 67.2 10.8 132.8 

  Deposition-Erosion 32.6 -37.4 3.6 -1.2 

SW 

July-September 
Deposition 72 25.6 7.2 104.8 

Erosion 81.8 34.8 23 139.6 

 Deposition-Erosion -9.8 -9.2 -15.8 -34.8 

September-

March 

Deposition 55.2 25.4 20.4 101.0 

Erosion 27.1 19.6 17.2 63.9 

 Deposition-Erosion 28.1 5.8 3.2 37.1 

March-May 
Deposition 28.4 15.2 5.6 49.2 

Erosion 22.6 9.8 0 32.4 

 Deposition-Erosion 5.8 5.4 5.6 16.8 

May-November 
Deposition 22.9 5.4 5 33.3 

Erosion 0 0 0 0 

 Deposition-Erosion 22.9 5.4 5.0 33.3 

July-November 
Deposition 58.5 19.6 15.6 93.7 

Erosion 51.3 11 22.2 84.5 

  
Deposition-Erosion 7.2 8.6 -6.6 9.2 

 

4.5 Discussion 

The UAV approach used here appears generally capable of making reliable, repeated 

measures of soil surface height at the scale of ~ 100 m. Changes in UAV-derived heights, whether 

measured as standard deviations of absolute heights during different surveys (Table 19), or as 

overall MAD and MD (Table 18) were considerably smaller than measures of height between the 

Total Station and UAV. Given the complexity of accurately using a Total Station and the difficulty 
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of obtaining high-accuracy angle measurements, we interpret this to mean that the Total Station 

accuracy was actually less than that of the UAV. The repeatability of the UAV-derived height 

estimates is thus between 1 - 2 cm from our measurements, and considerably smaller than many 

of the height differences measured in the streams (Figures 18 and 19).  

Although camera and flight parameters such as overlap and cell size have a major effect 

on accuracy of UAV-derived heights, our results are generally in agreement, if smaller than, other 

estimates of UAV-derived heights. For instance, Glendell et al. (2017) compared vertically 

differenced DEMs using a terrestrial laser scanner against UAV surface models and found a 

vertical difference of 5 to 6 cm. Goncalves and Henriques (2015) reported a vertical difference 

error of 4 cm. Fonstad et al. (2013) reported 18 cm accuracy, whereas Gillan et al. (2017) reported 

difference errors between 2.2 to 4.4 cm.  

The fact no change was observed in areas that were not expected to see significant erosion 

or deposition, such as the hillslopes away from the channels, provides added confirmation that the 

height differences measured within the channel were real. This is further supported by the spatially 

coherent and consistent patterns of erosion and deposition within the streams, which would not be 

expected if there was significant uncertainty or variability in height measurements.   In all but a 

few cases deposition or erosional volume differences were greater than the volume change 

uncertainty (Table 19).  

Thus, with few exceptions, we have confidence that the estimated volume changes are 

representative of reality. Taking them at face value, then, indicates that highly variable sediment 

storage in the observed streams. Our differencing analysis, alone, does not make it possible to 

distinguish the dominant mode of transport (aeolian or fluvial) that led to changes in sediment 

storage. However, local observations indicate that flow within channels only occurred during 



114 
 

September, 2017. And, indeed, we observed evidence of rill erosion in the NE stream during the 

second survey in September 2017, indicating recent flow, consistent with the storm cycle in the 

areas from September 9th, 2017 to September 15th, 2017. The fact that all streams experienced net 

erosion during this period indicates the efficacy of these storms in flushing sediment out of the 

channel reaches that we studied. Although no direct observations of stream flow were made from 

September 24, 2017 to March 10, 2018, there is evidence of net erosion in the NE stream 

suggesting that, perhaps some flow may have occurred during this period.  

The March to May, and May to November periods only experienced 2 and 4 days with > 

10 mm rain, respectively. But, they experienced the strongest 95th percentile wind speeds and 

erosive wind (>7 m/s) were experienced at the Moab ASOS station in nearly three-quarters of the 

days between the March and May surveys and nearly one-third of the days between the May and 

November surveys with significant rain only 3% and 2% of the days, respectively. Thus, we 

interpret the majority of transport that occurred during these two periods as being aeolian.  

The changes in sediment volume in the streams we studied during these aeolian-dominant 

periods could either be due to reworking of sediment within the channel or transfer of sediment 

into/out of the channel from/to the adjacent hillslope. Given the considerable quantities of net 

deposition observed during the March to November time periods in all three streams, and the fact 

that much of that deposition is on the margins of the streams where sand ramps form, we interpret 

these changes in sediment storage to net transfer of sediment into the channel from the hillslope 

through aeolian transport.  

4.6 Conclusion 

The study of three ephemeral streams in Utah using UAV-derived heights indicates highly 

complex changes in sediment storage reflecting a combination of fluvial and aeolian processes. 
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Fluvial processes appear to have flushed considerable amount of sediments from the stream in  

Fall, 2017. However, much of this was replenished in the following months through deposition by 

wind into the channel. One of the streams, in fact, experienced a dramatic net increase in sediment 

storage during the 16-month duration of this study.  

It is impossible to know the exact source of the wind-erodible hillslope sediment that was 

deposited in the channels. The fact that deposition occurred all along the stream reaches studied 

suggests, however, that it may have a diffuse source, rather than coming from a few large sources.  

Regardless, our data suggest an important coupling between the hillslope and its inset channels 

that has received little attention in the geomorphic literature. Although this study spanned only 16 

months, the net sediment balance within the reach of these streams suggests that much of the 

sediment that is flushed out of streams like these may have entered not through overland flow but, 

rather, through aeolian transport. Thus, although aeolian transport, and saltation especially, is often 

seen as a mechanism for small-scale reworking of available sediments, in the context of hillslope-

channel coupling, it could be an important mechanism of overall hillslope erosion.   
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Chapter 5: Discussion and Conclusion 

Drylands account for 41% of the earth’s land surface and 23% of the land surface of the 

United States (Le Houérou 1996). Dryland ecosystems are directly affected by changes in climate 

and land use (Nicholson 2001; Nicholson and Kim 1997). The global climate change and the rapid 

expansion of the human population and their activities cause drylands to experience accelerated 

rates of soil loss via erosion, reduction in productivity of biomass, reduction in resource quality, 

and a decline in potential support for economic activities. Climate models have suggested that 

climate change may reduce soil moisture due to increasing temperature and evaporation (Sheffield 

and Wood 2007). Drier soil might not be sufficient for biogeochemical processes that support 

microbial activities and plant production. It is expected that the supply of wind-borne soil particle 

will increase due to the decrease in vegetation cover and the expansion of bare soil surface. In this 

case, soil movement and dust emission would be more likely to increase, as well. 

Over the past 150 years, most drylands have experienced drastic changes in the vegetation 

cover represented in the form of shrub encroachment into grasslands. Research has been widely 

conducted on grazing, droughts, fires, temperature fluctuations, and precipitation inputs. Many 

LTER studies have highlighted the processes that control patterns of productivity and the 

establishment of grasses versus shrubs (Peters et al. 2006). Least studied has been aeolian erosion, 

due to the complexity of the dynamics and the mechanisms involved with it. The lack of 

understanding of the implications associated with soil movement makes it difficult to assess 

potential consequences of climate change.  

In our sandblasting-vegetation impacts study, we showed, for the very first time, that soil 

movement might have played a major role in shrub encroachment in the United States. Our 

experiment at the Jornada Experimental Range allowed us to cross the traditional boundaries of 
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shrub encroachment studies and explore the role of aeolian processes on biomass health and 

mortality in drylands. Our results have positively supported our hypothesis that aeolian processes 

are responsible for above-ground biomass reduction to varying degrees. In addition, our results 

confirmed that grasses are more vulnerable to damage from sandblasting, due to their sensitive 

leaf and stolon structure and their growing point, while shrubs are more resilient to damage from 

sandblasting and chances of their recovery are higher. Lerrea Tridentata and Artiplex showed high 

resilience to disturbances, which explains their expansion and high rates of establishing in regions 

that were formally occupied by grasses. The damaging effects of aeolian processes found in our 

study can extend the field of shrub encroachment into a comprehensive ecological framework. 

Understanding the dynamics of the controls that dominate shrub encroachment in drylands is of 

great importance, as it helps to understand past climates and thereby predict future ones. 

Changes in vegetation cover have the potential to alter net primary productivity of plants 

and the contribution of drylands’ NPP to global NPP rates. Net primary productivity is a critical 

measure of the ecosystem’s functionality. Drylands are regions of extreme drought that are 

suffering from ongoing degradation; yet they produce about 30% of the global net primary 

production (Parton et al. 1995). The Jornada Basin has a well-documented history of vegetation 

cover changes and shrub encroachment, including plant activities and productivity fluctuations. It 

has been documented that some plant species experience severe stress, which has led to their 

withdrawal. Methods of field-based NPP measurements vary, while remote sensing of NPP is still 

limited due to the nature of dryland surfaces and vegetation characteristics. Our remote sensing 

study of NPP displays a high probability of predicting NPP using advanced remote sensing 

techniques, such as spectral unmixing and non-linear statistical approaches, i.e., a Random Forest.  
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Remote sensing of drylands is rather complicated and is usually associated with an 

overestimation of vegetation productivity. Spectral unmixing approaches facilitate studying 

ground components by spectrally separating them. With this approach, we were able to 

characterize the photosynthetic vegetation cover and the non-photosynthetic vegetation cover, in 

addition to soil. The critical aspect of our study is the characterization of NPV, which remains a 

challenge in most studies. Our findings indicate that long-term NPP prediction could accurately 

represent vegetation activities using sophisticated methods, where basic retrieval of NPP fractions 

using MODIS NPP have yielded erroneous estimations.  

Wind and water activities can accelerate the degradation of drylands. This can lead to major 

environmental consequences worldwide (Bridges and Oldeman 2010; Lal 2001). Changes in 

climate, land use, and land cover are likely to increase the intensity of soil erosion. Climate is 

predicted to be warmer and drier in many dry regions, which will increase environmental stress 

(IPCC 2013). The vegetation cover and distribution is expected to decline as a result of climate 

change (Bridges and Oldeman 2010), which in turn will increase soil surface exposure and soil 

movement. Increased rates of wind and water erosion are found in regions of the world where there 

is expansion of urban areas, cultivation, suburbanization, and increasing populations. Wind and 

water interactions in drylands are more complex than previously anticipated because of rapid 

changes in the climatic variables and dryness conditions. The patterns and intensity of soil 

movement are unpredictable. Our findings indicate that the episodic fluvial events not only 

intensify soil movement by water, but also intensify aeolian activities’ post fluvial events, where 

during flash floods, much of the vegetation that holds the soil in place is stripped, exposing the 

soil to the next wind event. Our study shows that morphological features such as channels could 
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eventually change in shape and size due to the excessive removal of surface material. When wind 

and water encounter loose soil particles without obstacles, the removal of soil increases.  

Methods of studying fluvial and aeolian interactions are limited, and few guidelines and 

frameworks have been introduced in the literature, which makes it difficult to study interactions 

between wind and water and relate them to land use and climate alterations. 

The interactions and feedbacks between dryland ecosystem drivers and environmental 

changes and their impact on the ecosystems have been recognized by academics and policy 

makers.  However, the high spatial and temporal heterogeneity of dryland surfaces require deeper 

investigation to understand the dynamics that control drylands. 
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