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Employing User Feedback for Fast, Accurate,

Low-Maintenance Geolocationing ?

Ezekiel S. Bhasker, Steven W. Brown, William G. Griswold
Department of Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093-0114

febhasker,sbrown,wggg@cs.ucsd.edu

Abstract. One way to improve inferences on sensor data is to tune the algorithms through an offline procedure. A

potentially less expensive and more accurate method is to use an online procedure based on feedback from users,

who often know best what the data means to them. We present a method for user-assisted location inference based

on 802.11b wireless signal strengths. A user ‘corrects’ system geolocations by clicking on a map, recording a

‘virtual access point’ (VAP) at the selected point for future inferences. A best VAP is selected using simple criteria,

including the VAP’s creator. This permits using other’s VAPs while getting their own if one exists, capturing user-

specific behavior. Indoor experiments in our environment show over 10 times improvement in accuracy.

1 Introduction

Inferring accurate information about an entity from sensor data is fraught with problems stemming from

noise in the environment or the data itself. Inferences made from idealized models often can be dramatically

inaccurate. A typical solution is to survey the environment for its characteristics. This survey data can be

used in at least two ways. One is to build a de facto model of the environment for interpreting data gathered

later. Another approach is to use the survey to subtract environmental effects that deviate from an ideal

mathematical model. Such methods, although effective, are labor intensive and sometimes cannot capture

the unique characteristics of individual entities in the environment. The UC San Diego wireless environment

covers several square miles with nearly 1000 access points.

We have been investigating solutions to interpreting sensor data for the problem of location inference

(or geolocationing) of wirelessly networked devices in 802.11b environments. Taking advantage of the fact

that our applications involve human users, we have developed an on-line, incremental, user-assisted mecha-

nism for improving the precision of device locations. For the user, the mechanism is simple: When a user’s

inferred location is displayed incorrectly, the user clicks on the correct location and selects a menu option

for correcting the location. The system then takes the corrected location and the IDs of the currently visible

wireless access points to construct a virtual access point. Future location computations in the vicinity may

then be derived from this virtual access point, instead of using the default locationing method. Similarity-

based policies are used to choose a most applicable correction, including similarity of the signal strengths

and the owner of the correction. The latter permits a user’s corrections to both reflect their idiomatic move-

ments and replace corrections that have become outdated, while still benefiting from others’ corrections

where a correction of one’s own is lacking.

? This work is supported in part by a gift from HP, support from the California Institute for Telecommunications and Information

Technology (Cal-(IT)2), and the ActiveWeb project, funded by NSF Research Infrastructure Grant 9802219.
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We have implemented and deployed this locationing mechanism in the ActiveCampus ubiquitous com-

puting environment on the UC San Diego campus, and measured its effects in several locales. Without the

correction mechanism, the location error is an average of 33 feet indoors, and about 75 feet outdoors. Al-

though still useful to users (e.g., they can find colleagues), the name of the reported location (e.g., a person’s

office) is rarely correct. Outdoor locations are often reported indoors in the building the wireless access

points normally reside. In our indoor experiments, corrections dramatically reduce these errors, resulting in

a correctly-named location about 90% of the time. The results can be improved further when the owner of

the correction is used, but it strongly depends on the user’s habits.

The following sections discuss related work (Section 2), present our method for fast, accurate, low-

maintenance geolocationing (Section 3), and describe experimental results (Section 4) before a discussion

and conclusion.

2 Related Work

There has been much recent research on location detection. Indoor location positioning research includes

systems like Active Badge [WHFG92], ActiveBat [ACH+01], and PinPoint [Tec02], which require the

user to wear a transmitter that periodically emits a pulse picked up by a grid of receivers whose posi-

tions are known and computes the RF time of flight to determine position. SCADDS also uses acoustic

ranging [HSI+01]. The Ad Hoc Positioning System makes use of the number of hops for a message to get to

receiving stations whose positions are known [NN01]. The SmartHome uses multi-modal sensing (optical,

audio, mobile, embedded, and other sensors) and data fusion to detect a persons location [San00,Ess00].

Hightower and Boriello provide an in-depth survey of these and other approaches [HB01].

A classical method of geolocationing that promises extreme accuracy is time-delay measurement for dis-

cerning distance and angle. Such methods, including GPS, require special hardware or extension of existing

standard wireless protocols (e.g., clock synchronization or instantaneous response to pings). Implementation

of such a system would be costly to infrastructure deployers and users, and non-portable, since new access

point and client card hardware or software has to be installed.

In an 802.11b environment, it is natural to exploit access point (AP) signal strengths as perceived by

a device to infer location, as no additional additional hardware or battery power is required to support it.

Therefore, many current algorithms for geolocation concentrate on using the current signal-strength or noise

signature to discern location. However, the potential cost-effectiveness of using 802.11b signal strengths

can come at the expense of accuracy, because 802.11b operates in the 2.5GHz radio band, whose signals

are readily attenuated by line-of-site obstructions, and sometimes reflected [Beu00]. The difference between

algorithms is the way in which potentially unreliable signal-strength information is converted into location

information, and possibly how the signal-strength information affects future calculations. The two most
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common forms of location detection are those that employ geometric models and those that store signal

strength “maps” in a database, as well as hybrids. These are discussed below in greater detail.

Geometrical algorithms are the more adaptable and maintainable of the two. A geometric algorithm

only requires the locations of wireless network access points, and a function that converts from received

signal strength (or alternatively signal-to-noise ratio) to distance from the access point. Since no model of

signal propagation can be accurate enough to consider all geometry possibilities, the accuracy of geometric

methods is limited. Thirty feet accuracy is typical.

Map-based methods, such as RADAR [BP00] on the other hand, involve a labor-intensive process of

creating a signal-strength map of the system’s working area. The map, after being processed offline to

produce nearest-neighbor interpolations of signal strengths, serves as a function to convert signal-strengths

to locations. This method is costly both in human effort and time, and the movement of access points can

require recomputation of the map and its nearest-neighbor interpolations. The benefit is accuracy, measuring

ten feet in experiments. Several maps can be created for different times of day or different traffic levels (e.g.,

human bodies attenuate signals), increasing accuracy to seven feet [BBP00].

Recently, the Location Stack method was developed as a way of combining location information from

multiple sources, for example wireless signals, calendar information, and past behavior [HBB02]. This

method enables determining location from a best available source or combining information from multiple

available sources to disambiguate location information. By incorporating multiple single-source methods it

improves upon them, and the Location Stack method improves if any of the methods it includes is improved.

3 User-Assisted Geolocation

Ideally, we would like a geolocation method with both the low cost of a geometric method and the accuracy

of a map-based method. One way is to incrementally construct the map on-line, using the behavior of the

numerous system users to build the signal-strength map. Our solution has two levels, one geometric, the

other mapped. The first, default method is to use a geometric algorithm that incorporates basic facts about

the physical environment, such as gross signal propagation characteristics and floor heights. The second,

incrementally mapped method remembers users’ explicit corrections on locations computed by the default

method, and computes locations from them where they are present.

There are numerous challenges to making this method practical, such as developing an appropriate

default geometric algorithm, making corrections easy for users, constructing the map efficiently, using the

map to geolocate efficiently, and coping with misleading user behavior as well as the movement of access

points. We address each of these in turn.

Users are motivated to make corrections by seeing inaccurate information being displayed for them (e.g.,

mis-centering on a map) or about them (e.g., wrong location conveyed to colleagues). In our system, virtually

every display conveys the user’s location in some fashion, enhancing one’s awareness of inaccuracies.
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Fig. 1. Diagram of how the baseline geometric and correction-based mapping geolocators operate. On the right appear three access

points: A, B, and C. A user’s PDA observes them with the signal strengths of -23, -35, and -57dBm respectively. The baseline

algorithm would choose to geolocate around AP A, as it has the strongest signal. A search around the circle above the floor on

which AP A is installed (guesses 1 through 5) converges on guess 5 as having the least error. The user notes that this is the wrong

location, and enters a correction, recorded as virtual AP V on the left with its requisite signal-strength signature and owner. A

subsequent geolocation based on signal strengths of -20, -30, and -50dBm is computed as an adjustment off of virtual AP V. The

circles around virtual AP V connote the applicable range of signal strengths that will be recognized as matching V, with the owner

(inner) and without (outer).

3.1 Baseline Geometric Method

Because the system may go into operation with no corrections, it is the baseline algorithm must deliver

acceptable accuracy. For one, users should not have to constantly correct locations. Two, a poor estimated

location can complicate the user’s process of correction: If the wrong map is displayed, additional clicks are

required to navigate to the correct map before the correction can be issued. Third, the user’s location should

not inexplicably jump as the system switches between using the baseline and mapped methods.

There are two critical elements to accurate geometric geolocationing via signal strengths. The first is the

accurate computation of distances from a user device to each visible access point. The second is combining

those distances into a single location.

Estimating Distances. Theoretical and empirical models can achieve similar results in idealized situations,

and both can behave badly in real environments due to obstructions, reflections, and signal fading. After

attempting to work with theoretical models, we fit several curves to empirical measurements in our environ-

ment. Both quadratic and linear formulae (relative to dBm1) fit our measurements equally well, so we chose

the linear formula for its computational simplicity, code simplicity, and stability under the wild swings in

signal strength that we would see. Its main weakness is underestimating distances when both the user and

the access points are outdoors, where few obstructions are present.

1 dBm is a logarithmic measure of signal strength, with 0 dBm � 1mW . For 802.11b, values from -90 to -20dBm are typical.
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record APLocationInfo extends Location {

float floorHeight;

float userDistance;

}

record CandidateLocation extends Location { float error; }

function gelocateUserGeometric(APInformation apInformation) returns Location {

// Elaborate AP data with location, floor height, and est. distance to user

vector<APLocationInfo> apLocationInfo;

foreach currentMAC = key(apInformation) do

apLocationInfo.insert(

new APLocationInfo(apLocation(currentMAC),

apFloorHeight(currentMAC),

dBmToDistance(apInformation.getValue(currentMAC))));

end

/*

* Identify closest (best) AP and choose circle to search.

*/

APLocationInfo bestAPLocationInfo = findClosest(apLocationInfo);

integer bestZ =

(bestAPLocationInfo.z - bestAPLocationInfo.floorHeight) + DEVICE_HEIGHT;

integer radius = sqrt(squared(bestAPLocationInfo.userDistance) +

squared(bestAPLocationInfo.z - bestZ));

/*

* Compute candidate locations around the circle and store error.

*/

vector<CandidateLocation> candidateLocations;

float angleIncrement = 2*PI/NUM_DIV_CIRCLE;

for currentAngle = angleIncrement to 2*PI by angleIncrement do

currentCandidate = new CandidateLocation(

bestAPLocationInfo.x + radius*cos(currentAngle),

bestAPLocationInfo.y + radius*sin(currentAngle);

bestZ);

float errorDistanceSquared = 0;

foreach apInfo in apLocationInfo do

float actualDistance =

sqrt(squared(currentCandidate.x - apInfo.x) +

squared(currentCandidate.y - apInfo.y) +

squared(currentCandidate.z - apInfo.z));

errorDistanceSquared += squared(actualDistance - apInfo.userDistance);

end

currentCandidate.error = sqrt(errorDistanceSquared);

candidateLocations.insert(currentCandidate);

end

// Pick candidate(s) with least error and average their locations.

return bestXYMatch(candidateLocations);

}

function convertDBMtoDistance (float dbm) returns float {

return -0.4*(dbm + 10);

}

Fig. 2. Pseudo-code implementation of the core elements of the baseline geometric location algorithm.
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Synthesizing Location. Our attempts to use direct methods of geometric location inference failed. They

were either unstable or too mathematically complex. The details of our results revealed two things. First,

the placement of the APs in our environment are optimized for coverage and simplicity of administration.

Most APs were arranged in a plane, meaning that accurate three-dimensional estimates were essentially

impossible, and the power of the direct methods was at least going to waste. Second, as observed above, the

weaker a signal was, the less we could depend on the accuracy of the computed distance. This meant that

methods that worked directly with distances and treated them all as equally valid would be prone to error.

These problems led us to consider alternate methods that would (a) scale gracefully to a large number

of APs and (b) let us readily incorporate physical and logical properties of the environment in the geolo-

cation computation. A simplified variant of directed hillclimbing geolocation [HWB00], which generates

a sequence or set of guesses that are checked against a measure of quality (e.g., minimal error), seemed

natural. The resulting variant is so simple it reduces to a blind search that terminates after a small, fixed

number of guesses.

Against our criterion of scaling, hillclimbing is advantageous because computing the location is fast (a

guess), and computing its error is linear in the number of APs. It is a computation of the aggregate difference

between the distances estimated from the observed signal strengths and the distances of the APs from the

guessed location (
p

P

(observed

i

� atual

i

)

2).

Against our second criterion, the search-based nature of hillclimbing permits us to exploit character-

istics of the environment by eliminating some guesses before searching for the best guess. Constraining

the search space also reduces the length of the search, further improving scalability. We currently employ

three constraints, resulting in a simple and fast algorithm (diagrammed on the right side of Figure 1, with

pseudo-code in Figure 2):

1. We restrict guesses to the sphere defined by the estimated distance from the AP with the strongest re-

ceived signal strength. This generally prevents high errors due to strongly attenuated signals: the signals

can only affect the choice of location on the sphere, bounding the error to the size of the sphere.

2. The floor of the location search is chosen before proper hillclimbing takes place. Our current algorithm

chooses the floor on which the AP with the strongest received signal strength resides. This limits “floor

jumping” that can occur when locations on two floors have similar errors. It tends to work well because

floors are thick and hence strongly attenuate AP signals, typically eliminating APs from other floors

from consideration.

3. We further restrict the guesses to a single horizontal circle on the sphere. In particular we expect that

a mobile device is generally a few feet or so above the floor in a user’s hand or pocket–neither on the

floor nor near the ceiling. Thus, the algorithm searches a circle on the sphere that is a three feet above

the chosen floor. This avoids deriving locations that are physically implausible.
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Fig. 3. The user’s perspective on correcting location. The user, looking down at their display, notices either their placement on the

display (center) or the named location (upper right) is incorrect (first image). Perhaps the thick walls are attenuating the signal.

Clicking the correct location on the display results in displaying an action screen, from which the user selects “correct my location”

(second image). This results in creating a virtual access point at the place of correction, and redisplays the user at that location

(third image). The next time this user arrives at this location and the same signal-strength pattern is observed, the VAP will be used

in computing the user’s location.

With these constraints, a few guesses on a single circle are sufficient to produce a plausible set of loca-

tions, permitting us to do a simple exhaustive search, stopping after several guesses, rather than a directed

one. If there are multiple guesses on a floor with nearly the same minimal error, their average is taken to

compute a “best” location for the floor.

This algorithm typically produces indoor accuracy of about 30 feet, with larger errors outdoors, where

fewer APs are typically available to contribute to the estimate. The correct floor is chosen about 95% of

the time. Thus, the system typically produces a useful map–simplifying correction—but often the wrong

detailed location name (e.g., “Rm 4218 at APM” instead of the nearby “Smith’s Office at APM”). Indeed,

the planar deployment of APs virtually guarantees such errors.

3.2 Correction-Based Mapped Method

When the baseline method produces an unsatisfactory location, the user is permitted to enter a correction

that both changes the user’s recorded location and incrementally updates a signal-strength map of the en-

vironment for future use. User corrections are supported by a clickable map interface (Figure 3). The user

corrects the location by clicking on the correct location, which produces a menu of actions, including a

“correct my location” option. Selecting this action captures two pieces of information: the asserted location,

and the observed signal-strength signature (composed of the IDs and signal strengths of the access points),

as seen by the user’s network device. Collectively called a correction, this data is stored in a database along

with the user ID of who created it, the time, and the model of network device that captured the data.

When a user enters an area where corrections have been previously entered, the map-based method

geolocates using these corrections. There are three issues that need to be addressed to achieve an accurate,
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class Location extends Vector3D;

class APInformation HashMap<int /* MAC Address */,

int /* signal strength in dbm */>;

record Correction {

APInformation apSignature;

Location location;

}

function geolocateUserMapped(int userID, APInformation apInformation) returns Location {

Vector3D totalLocationAdjustment;

Correction bestCorrection = getBestCorrection(userID, apInformation);

if (bestCorrection == null) then

return geolocateUserGeometric(apInformation);

/*

* Compute the adjustment off the chosen correction.

*/

foreach currentMAC = key(apInformation) {

Vector3D locationAdjustment =

computeVectorTowardsAccessPoint(apInformation,

bestCorrection.apInformation,

currentMAC);

totalLocationAdjustment += locationAdjustment;

}

Location userLocation = bestCorrection.location +

totalLocationAdjustment/size(apInformation);

return userLocation;

}

function getBestCorrection(int userID, APInformation apSignature) returns Correction {

Array<Correction> corrections[] = getCorrectionsWithSignatureAP(apSignature);

Correction bestUserCorrection =

selectMostSimilarCorrection(corrections, apSignature, 30dB, userID);

if (bestUserCorrection != null) then

return bestUserCorrection;

Correction bestPublicCorrection =

selectMostSimilarCorrection(corrections, apSignature, 50dB, NONUSERID);

return bestPublicCorrection; // may be null

}

Fig. 4. Pseudo-code implementation of the core elements of the correction-based location algorithm.
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stable, efficient, and scalable solution. How are corrections selected for use in geolocationing? How are

locations computed using corrections? How are corrections added and maintained in the database?

Policies for Choosing a Correction. Our mapped method geolocates based on a single, most appropriate

correction, if one exists. A best correction is one that is most similar to the current situation with respect to

signal-strength signature and owner of the correction. The similarity of signal-strength signature abstractly

captures the similarity of the current location and the location of the correction. If there is low similarity in

the signatures, then the correction-based method is unlikely to be able to improve on the baseline method.

Matching the owner captures the owner’s idiomatic behaviors, such as spending a majority of time in a

given office versus an adjacent one that might contain a similar correction. As discussed above, this is likely

because of both symmetric deployments of access points and signal fading.

To identify a best correction, the geolocation algorithm works as follows (pseudo-code in Figure 4):

1. Match the current signal-strength signature against correction signatures in the database, sorting them by

their distance (in signal-strength space) from the current signature. All corrections matching at least one

access point in the current signature are selected. A missing access point is treated as having negligible

signal strength (e.g., -92dBm).

2. Select the correction with the least distance.

3. Select the user-owned correction with the least distance.

4. If the user-owned correction’s standard deviation is less than 30dB, it is returned, otherwise if the abso-

lute best is less than 50dB, it is returned, otherwise, the baseline value is returned.

The thresholds in step 4 were determined through trial and error. A higher value would widen the applicable

range of corrections, but perhaps lower the accuracy of corrections matched in the upper part of the range.

In establishing a policy for selecting one’s own correction over someone else’s, we are attempting to

determine whether one’s current location is “within range” of the correction—a certain number of feet—

and hence capable of capturing idiomatic behavior. Not knowing the user’s location yet, we use a correction’s

distance in signal space from the currently observed signature as a proxy for physical distance.

Computing Location Using a Correction. The device’s location is computed as an adjustment from the

selected correction’s location, based on the difference between the device’s current signal-strength signature

and the selected correction’s signature. As this is akin to how we geolocate using access points, a correction

can be conceptualized as a virtual access point that acts as an (improved) locationing proxy for the access

points that comprise it (conceptually diagrammed on the left side of Figure 1, pseudo-code in Figure 4).

As with our baseline geometric method, the adjustment is based on distances estimated from the signal

strengths. In particular, the signal strengths for both the current input and the correction are converted to
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distances from their access points, and then subtracted to produce differences in distance. These are then

converted into difference vectors from the correction towards each access point.

These vectors need to get combined into a single vector representing the adjustment. As discussed ear-

lier, a direct geometric solution is complex, computationally expensive (quadratic in the number of access

points), and often doesn’t have a solution (because signal fading is not accounted for). A hillclimbing search

would have to be more general than our simple baseline geolocation case, resulting in many more iterations,

more complexity in choosing the next guess, and a more complex termination case.

Given that the choice of the correction has likely pegged the user’s location quite accurately, we sim-

ply sum the vectors and divide the result by the number of vectors (i.e., compute the average vector). The

resulting approximate difference vector is then added into the correction’s location to produce a final ad-

justed location. This approximation likely underestimates the resulting distance—it’s the average distance,

which is often less than the net distance—and so is essentially conservative by keeping all adjustments in

the vicinity of the correction. This bias avoids “bad” adjustments as a result of from signal fading.

Policies for Adding and Maintaining Corrections. Due to symmetries in the environment’s access point

deployment, two corrections could have similar signal-strength signatures but rather different locations.

Thus, a device’s location could “bounce” between their locations in adjacent geolocation events, causing

confusion amongst users. In many cases, use of a correction’s owner in selecting a best correction will

avoid this anomaly. The anomaly remains, however, if both corrections are owned by others or both by the

device’s owner. Therefore, to protect against such instability in location computation, we have developed

the following policy when adding a new correction to the correction database:

1. If the new correction is similar to existing corrections added by other users, these similar corrections

are marked private. Private corrections are only visible to the users who added them. Thus, the new

correction essentially replaces these private ones for non-owners. An added benefit of this policy is that

malicious behavior is addressed relatively easily–only one user has to ‘correct’ the bad correction to get

rid of it, although the malicious user can still see the bad correction.

2. If the new correction is similar to existing corrections added by the same user, these existing corrections

are deleted. This policy permits users to remediate a mis-correction or obsolete correction (e.g., the user’s

office has moved, coincidentally to a location with a similar signal-strength signature). This policy has

the added benefit of regulating the size of the correction database.

3. The new correction is added to the correction database and marked public.

The preference given to new corrections over old ones builds in a natural implementation of obsolescence

for corrections.
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These policies require a threshold for determining the similarity of correction signal-strength signatures.

Our experiments have shown that a standard deviation of 10dB permits sufficiently tight packing of cor-

rections without introducing too much ambiguity into which corrections might apply. Because of the wide

variance in received signal strengths a stationary wireless device can see over time, we initially thought this

value should be higher. However, it turns out that the widest variances are also the least frequent to occur. If

a correction is made on one of these outlying corrections, it will still be deleted or privatized if those using

the system provide corrections within the 10dB threshold.

Discussion. The algorithms and retrieval methods described here are conceptually and computationally

simple, and are governed by just a few parameterizable policies. This yields an implementation that is easy

to implement correctly, fast, portable, and easy to customize.

The entire geolocator system is under 700 lines of code. The baseline geometric geolocator is imple-

mented in 339 lines of C++, and about 50 lines of PHP code. The correction-based locator brings the C++

count up to 399 lines and the PHP count up to 276 lines.

The computational complexity of the baseline algorithm is linear: the product of the number of visible

access points (usually a few and never greater than a dozen) and the number of guesses, no greater than

8 in our current implementation. The computational complexity of the correction-based method is on the

order of the number of corrections (virtual access points) within the selectivity threshold (i.e., 50dB) and the

number of access points that comprise the correction signature. In the current implementation, the practical

bottleneck is the database retrieval of the observed or applicable access points. A mechanism for caching

previous (virtual) access point query results would dramatically reduce the number of required database

queries, especially for relatively stationary users.

Different environments or applications might benefit from different thresholds. Most policies for selec-

tion, prioritization, privatization and deletion can be easily customized by changing the threshold or priority

levels. Some policy changes could require writing new code, such as using location proximity in addition to

signal similarity in deleting corrections. Section 5 discusses a range of possible extensions.

4 Experimental Results

Our method is error-driven in that users are prompted to enter corrections by the display of inaccurate

information on their device. In this sense, the method can be no better than the users, but also needn’t be: if

a location is not sufficiently inaccurate, from the user’s perspective, to motivate a correction, then it is not

really inaccurate. In our application, the threshold is being able to assess whether someone is nearby, and

if so, find them easily by walking around the indicated area. As a proxy for these hard-to-assess qualitative

measures, we use the correctness of the reported location name. We also report rather typical distance error

measurements, but these should not be taken seriously, as both our corrections and sample set are derived

from scenarios of use rather than exhaustive measurements in the environment.
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Consequently, we performed several experiments mimicking a variety of user-like scenarios. Corrections

were assessed against data representing both revisits to the offices and nearby, by both visitors and those

who own the corrections. Several of these experiments use the same raw data, but change the owners of

the corrections. Our experiments involved corrections placed in advance in each of 17 offices on the fourth

floor of our building. The building has wireless on all floors, predominantly older Lucent access points. Our

measurements were made with a Windows 2000 laptop with a Lucent Orinoco wireless card. In this space,

the mean error of the baseline method is 33 feet, with the maximum error being about double that distance.

Qualitatively, the correct location name is rarely reported, but is often still useful in tracking someone down,

especially if the user knows that person (Figure 5, white bar, 0 value in the “correct location category”).

In these experiments, we expected there to be occasionally large errors due to the selection of the

“wrong” correction, caused either by signal-fading effects on the data sample or the correction itself. We

expected correction ownership to rectify many of the poor selections. Finally, we expected our conservative

method of adjusting off of corrections to underadjust, but be adequate.

Fig. 5. Bar chart comparing our baseline geometric algorithm’s accuracy to correction algorithm scenarios that do not and do use

correction ownership.

For the experiment ignoring ownership, 17 corrections were created by randomly selecting one of 10

samples taken at each office location. All 17 corrections were made public regardless of their similarity.

These same 10 samples at each office were then used exhaustively as user inputs, with the ownership not

used in selecting corrections. This configuration covers two scenarios. One is the preconfiguration by a
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system administrator (without the benefit of averaging several samples); the other is a zealous user who

makes corrections wherever they go, for their own purpose.

Of the 170 office data points, 157 (92%) had no error (correct location name, less than one foot from

the actual location), and the remaining 13 data points (8%) had an error sufficient to report the wrong office

location, with a mean error of 18.4 feet (Figure 5, hatched bar). Three of those 13 data points matched

with a correction diametrically opposite to the correct location relative to the column of access points in the

vicinity, with an average error of 51.4 feet. Against the 15 locations in the hallway outside the offices, 146

(97%) matched the correct correction, with a mean error of 7.6 feet. For completeness, replaying the 170

office data points resulted in a mean error of 1.4 feet; the average of the two is 4.5 feet.

To get a sense of how correction ownership affects geolocationing, in particular its ability to exploit

idiomatic behavior, we assigned each correction to the owner of the office and privatized corrections within

the threshold of similarity (Figure 5, dark bar). We assessed two user scenarios, combined unweighted in the

figure. In the first, the office datasets were re-run, with the assumption that each office occupant generated

the 10 datapoints in their office. This captures the typical scenario of office occupants spending the vast

majority of their time in their own offices. In this scenario, all 170 points selected the right correction and

the correct location. In the second scenario, each office occupant wandered among all 17 offices and 15

hallway locations. In this scenario, with 320 samples per user, 5440 samples all told, 2934 samples (54%)

produced the correct location, while the remaining 2506 (46%) had a mean error of 49.7 feet, all choosing

the “wrong” correction. For completeness, the mean error for all 5440 samples is 23 feet.

In looking more closely at the data from this last scenario, we found that, for each user, an average of

7 corrections in other offices that had been previously been available for geolocation had been privatized,

forcing the selection of a less appropriate correction.

5 Discussion

Data interpretation. What we observe from these experiments is that the basic correction-based mapping

method can dramatically improve the accuracy of a simple geometric geolocation method. Computing cor-

rections from an average of several samples does not increase accuracy, thus the extra effort does not seem

warranted, at least in our context.

In about 10% of our samples, using correction-based mapping produced anomalous results, caused by

geolocating from the “wrong” correction. Our method for overcoming these anomalies, correction owner-

ship, can improve geolocation accuracy in spaces frequently occupied by a user, but dramatically decreases

accuracy in other areas. Thus, if a user has a highly constrained routine, then our method of using correction

ownership is effective, otherwise it is highly uneffective.
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Improvements to the correction-ownership policy are possible. For example, we could drop the privati-

zation/deletion threshold to 5dB. We could also restrict to privatizing/deleting corrections whose locations

did not correlate with the owner’s correction location. In looking at our data set, reducing the threshold to

5dB would drop the number of privatizations from 7 to 2 on average. Including correction location in priva-

tization decisions would typically prevent 2 nearby corrections from being privatized. We have yet to assess

the effects of these alternate policies.

We have yet to formally assess the effectiveness of our method outdoors. In one preliminary experiment,

we applied corrections along one wall outside our building where students typically hang out. These correc-

tions were effective in pulling the reported location outside the building and showing an outdoor map rather

than the building maps.

In our day-to-day use of our geolocation system, we have had very satisfactory experiences. Our id-

iomatic patterns typically take us between a laboratory, office, and a conference room, but not among many

offices in the same area. Outdoor locationing has proven quite satisfactory, for example correctly placing us

in cafe areas when we go out for lunch or coffee. However, we note that sometimes a few corrections have to

be entered at a location to achieve stable, predictable geolocationing. This is no doubt due to the variations

incurred by signal fading. We anticipate that the necessity to enter several corrections at a location would be

confusing to end users unfamiliar with the properties of wireless communications. An interesting extension

of our approach would be to recognize the patterns of variation as belonging to a location, thus helping to

better disambiguate two locations that sometimes have the same signal strength.

Finally, we observe that our distance computation algorithm and correction adjustment algorithms, al-

though effective in our experiments and daily use, are quite conservative and could be improved. They might

need to be improved in other environments with different application requirements. The direct trigonometric

solution to this problem is computationally expensive, quadratic in the number of access points.

Extensions. Our experiments make some implicit assumptions that do not hold in a production environment.

With the concepts of similarity and correction maintenance that we introduced, several improvements on our

basic mechanisms and policies are possible.

– Similarity. The similarity of corrections can be extended to include the model of network device used, ac-

counting for properties in device implementation (e.g., antenna) that would cause it to perceive different

signal strengths than other device models at the same location.2

Similarity could also include the time of day, which could account for variance in an area’s resident

population, which can affect perceived signal strengths. This is akin to RADAR’s use of different signal-

strength maps at different times of the day [BBP00]. These properties are currently captured but not used

2 Another approach for dealing with differing device implementations that would include access points is to maintain a database

of device characteristics, and then adjust their captured signals to represent a common reference.
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in our implementation. Introducing these properties into correction selection raises the question of prior-

itizing the properties and defining what it means to match. Because ownership of the correction provides

very valuable information about a user’s typical locations, these would remain primary in our scheme.

Second would be device, since the sensitivity amongst network devices varies widely. Third would be

time, for although time effects could be significant, they are also the most unreliable and difficult for the

system to use effectively. For example, class schedules are different on Monday/Wednesday/Friday than

Tuesday/Thursday, holidays and exam schedules vary year to year, etc.

– Coping with movement of access points. An access point may be moved from time to time. When such

a change is made in the access point database, any corrections that depend on that access point’s old

location should be deleted (or perhaps updated, if the move is small). This is trivial to implement since

corrections can already be looked up by access point MAC address.

– Rejection of corrections. As a guard against user malice and mistakes, a correction could be rejected

outright if it was physically impossible, for example if the specified location of the correction is beyond

the range of any or all the APs seen by the network device at the time.

Another possible extension is to use multiple corrections in computing one’s location. This is not done

for a number of reasons, primarily because corrections would lose their ability to exploit a user’s typical

behavior patterns. If both the correction for a user’s office and the office two doors down match reasonably

well, then putting the user in the office in between is not advisable. If the user really is in the office next door,

the user can add a correction for that office, rectifying the inaccuracy. A related anomaly is that combining

corrections could put people in physically impossible locations, like within walls.

6 Conclusion
Inferring accurate information about an entity from sensor data is fraught with problems stemming from

noise in the environment or the data itself. Offline methods can be effective, but they are costly, become

obsolete as the environment changes, and do not capture user-specific characteristics.

We have been investigating the application of online techniques to the problem of accurate location

inference in 802.11b wireless environments. For the user, the mechanism is simple. When a user’s location

is displayed incorrectly, the user clicks on the correct location and selects a menu option for correcting the

location. The system then takes the corrected location and the IDs of the currently visible wireless access

points to construct a “virtual access point”. Future location computations in the vicinity may then be derived

from this virtual AP, instead of using the default locationing method.

Similarity-based policies are used to choose a most applicable correction, including similarity of the

signal strengths and the owner of the correction. This permits a user’s corrections to reflect their idiomatic

movements, while still benefiting from others’ corrections when one’s own is lacking. When two corrections

greatly overlap or conflict, the older correction is either made private to its creator or deleted altogether if the
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same user created both corrections. In this way, the system is self-maintaining with respect to both changes

in the environment and data bloat.

Our measurements show that the quality of locationing in our environment compared to our simple base-

line geometric method is increased qualitatively from almost never reporting a correct location name (e.g.,

a person’s office) to reporting it correctly about 90% of the time. However, our use of correction owner-

ship, while capable of improving the quality of corrections in one’s typical locations, can decrease quality

at nearby locations. Further work is required in tuning the ownership policies. In our personal experience,

the method has worked quite well, as we have fairly structured routines.
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