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1. Introduction 

Several heavy—ion accelerators throughout the world are presently 

able to deliver beams of heavy nuclei with kinetic energies in the 

range from tens to hundreds of MeV per nucleon, the so—called medium 

or intermediate energy range. At such energies a large number of final 

channels are open, each consisting of many nuclear fragments. The 

disassembly of the collision system is expected to be a very compli-

cated process and a detailed dynamical description is beyond our 

present capability. However, by virtue of the complexity of the 

process, statistical considerations may be useful. A statistical 

description of the disassembly yields the least biased expectations 

about the outcome of a collision process and provides a meaningful 

reference against which more specific dynamical models, as well as the 

data, can be discussed. 

When the interest is focused on inclusive observables the 

statistical description can be based on the grand canonical approxima-

ti on . 1_5 ) However, it is now possible to detect electronically 

practically all charged fragments emerging from a collision and thus 

good—quality, nearly exclusive data can be obtained. [One such detec-

tion system is the Plastic Ball complex located at the Bevalac in 

Berkeley. 6 ] Therefore theory must also address exclusive quantities. 

The proper. basis is then the microcanonical approximation where the 

conservation laws are obeyed event by event (and not just on the 

average as in the grand canonical approximation). 
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This lecture presents the essential tools for formulating a 

statistical model for the nuclear disassembly process. We consider the 

quick disassembly ("explosion' 1 ) of a hot nuclear system, a so-called 

source, into multifragment final states, which compete according to 

their statistical weight. First some useful notation is introduced. 

Then the expressions for exclusive and inclusive distributions are 

given and the factorization of an exclusive distribution into inclusive 

ones is carried out. In turn, the grand canonical approximation for 

one-fragment' inclusive distributions is introduced. Finally, it is 

outlined how to generate a statistical sample of complete final 

states. 7 	On this basis, a model for statistical simulation of 

complete events in medium-energy nuclear collisions has been 

developed. 8  

2. The event set 

An ideal exclusive measurement yields complete information on all 

fragments in the final state. An event f is then characterized by the 

multiplicity n of the various fragment species a:n,p,d,t,... 

together with their four-momenta: 

= 	p a 	 (1,n ) 	 (1) 
a 	a 	a a 

The n fragments of the species a are arbitrarily labeled by 

2. E (1,n) and their four-momenta are denoted by P a  = ( 	Ea  )• 

Because of the identity of the fragments within a given species the 

actual labeling is without significance, i.e., f is invariant under 

arbitrary permutations of the labels 

The total multiplicity of the event f is given by flf =na. 

Furthermore, its total baryon number, charge, and four-momentum are, 

respecti vely, 



A = S' nA 
f 	L.J aa 

a 

Zf = 	
nZ 

a 

n 
a 

P f = 
a a 

where A and Z denote the baryon number and charge characterizing
CL  

the fragment species a. It is often convenient to use the brief 

notation i[f] for {A fZ f Pf } collectively. Rather than the charge 

Z, it is often preferable to use the isospin projection I = A/2 - Z. 

The set of all such events, the event set 	= {f}, has certain 

notationally convenient algebraic properties. Most importantly, it is 

possible to define an addition i n CY. Thus, for any two events  

we have f = 	+ f jff fl = j + 	Va and 	E (1,n )} = 

E ( 1 fl a ) '' 	Za E (1ia)} i.e., the sum event f is obtained by 

simply extending the event f by the event f, as shown in the figure. 

The event set cr is an abelian semi—group with respect to addition and 

the null event, f = 0, which has n = 0 Va, is the neutral element. 

When f = 	+ T we may also write T = f - , which is often 

convenient. We note that the function i[f] defined above is 

additive: i[? + f] = i[?] + 

It is also possible to introduce a partial ordering in the event 

set T. We shall write 	< f (or equivalently, f > fl, iff 3 TET: f 
= 	+ T. In words: f encompasses f iff f can be extended to f. 

Obviously, this order relation is reflexive (f < f Yf), transitive (f 

< f' A  f' < f" 	f < f") and anti—symmetric (f < f' A f' < f 	f = 

f'), as it should be. 

It is easy to see that, with respect to the two binary operations 

intersection, n, and union, U, acting on the sets (1) characterizing 

the events, 5 has the properties of a complete lattice, i.e., any 

non—empty subset {f,f' .... } of T has a least upper bound and a 

greatest lower bound. These are given by 

Sim 

(2) 



n 

r!j IN 

a 

{Pp )P p Pd'Pa 7Pa 'P 6 Li} 

= tP n PpPa  1 P 9BeJ 

I I 	2 	3 	I 	I 	23 	I 	I 
f ff •= Pn' Pp 1  PpPp Pd Pa' Pa'Pa' P 6 Lj , P9 Be 

Figure caption 

Illustration of_event addition: The events f (containing six 
fragments) and f (containing four fragments) are added to form the 
event f (containing all ten fragments). 



sup {f,f',...} = f U f' U 

inf {f,f',...} = f nf '  n 

respecti vely. 

It is important to note that the event set has the partition T= 

V Ti  , where the disjoint subsets 	are defined by 
10 	0 	

= 	i[f] = i0} 	
° 	

( 4) 

For given initial conditions, characterized by the quantities 

{A0 Z 0 P 0 } = i 0 , only events f E T are physically accessible, due to 1 0  
the conservation of baryon number, charge, and four-maientum. 

Events with unit total multiplicity are elementary objects in the 

event set. Any event f can be decomposed in terms of elementary 

events: 

flf  

Vf3{fk} : 	 Vk 	 (5) 

This decomposition is unique (apart from permutations of the labels k). 

In the discussion above, an event f is defined in terms of the 

four-momenta of the fragments irrinediately after the explosion (see 

eq. (1)). It is important to recognize that the specification of such 

an f actually characterizes an entire class of different final states, 

f = {F}, each final state being of the form 

F = 	
pa , 
	€ ( 1,n) 

a 	
(6) 

where the Lorentz vector Q 	denotes the position of the fragment in 

space-time shortly after the explosion. In our statistical model it 

is assumed that the disassembly occurs at a definite time within a 

certain characteristic volt.sie. The space-time information is then 

given by the spatial positions 	of the fragments at the disassembly 

time. Since any further interaction between the fragments after the 

explosion is neglected, all final states F differing only in the 

spatial configuration of their fragments at the time of disassembly 

emerge with the same set of four-momenta and thus belong to the same 

event f. 	In the statistical model all such final states are equally 

-5- 

(3) 



20 

probable* , and the appropriate measure on the event set Tcan there-

fore be obtained by properly enumerating the different spatial 

fragment configurations in a given event f. 

This task is generally complicated and we resort to the 

approximation introduced in ref. 	the integration over a given 

fragment's position is approximated by an effective volume: 

fd
9..

R 	* xc20 	 (7) 

Here 2 is a suitable reference volume, usually equal to A 0 /p 0  where A 0  

is the number of baryons in the source and 
°0 

0.17 fm 3  is the standard 

nuclear matter density. The model parameter X, which is of the 

order of unity, controls the average effectively available volume and can be 

related approximately to the "break-up" density as discussed in ref. 8)• 

Thus it follows that the sum over final states F can be reduced to a sum over 

events (classes of final states) f: 

n
f  

(x20). 

This defines the proper measure onT. 

It follows from the above discussion that an event f may also be 

thought of as specifying a macrostate of the system, characterized by 

the quantities i[f] = {A fZ f P f }, while F enumerates the corresponding 

microstates. 

3. Exclusive and inclusive distributions 

Consider now a disassembling source characterized by the 

quantities {A 0 Z Q P 0 } = i 0 . In the statistical model all final states 

compatible with the conservation of these quantities are equally 

probable (ignoring the additional constraints associated with the * 
center-of-mass position and the total angular momentum. 

Therefore, the relative probability that the system 

*I n  the present treatment conservation of the overall center-of-mass 
position and the total angular momentum is neglected, since these 
effects are expected to be rather small and their inclusion would 
complicate the treatment disproportionately. 

(8) 

11 
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disassembles into a final state belonging to a specified event f is 

given by 

p(i0f) = ( x 0 ) 	(i 0  - i[f])/(i 0 ) 	 (9) 

As discussed above, the volume factor expresses the statistical weight 

of the different spatial configurations of the n f  fragments in f. 

The normalization constant is determined from the requirement that p 

be normalized, 

fl 

io 	

f 
= 	(xc) 	(i 0  - i[f]) 	 (10) 

f 

This quantity is often referred to as the phase-space integral. 

The distribution p(i 0 f) pertains to the ideal situation where 

the specification of the event f is complete, corresponding to an 

exclusive measurement. Hence p is referred to as the exclusive 

distribution. When only partial specification of the event is made, 

as is most often the case in practice, the relevant quantity is the 

corresponding inclusive distribution P. This distribution can be 

obtained from the exclusive distribution by integrating over the 

unspecified quantities. 

In particular, when the partial specification is such that 

complete information is given for some of the fragments and none for 

the rest, the inclusive distribution is given by 

P(i 0 If) = E p(iIf) = E  p(il + T) 	 (11) 

Here the event f characterizes the partial specification and the sum 

is over all events f that encompass f. [For example, if only one 

fragment is specified we have f = f 1 , where f 1  is an elementary 

(i.e. one-fragment) event and the sum is over all f whose 

decomposition (5) into elementary events contain f 1  as a term.] The 

second equation in (11) follows by employing T = f - f as the 

i ndependent van able. 

It is possible to express inclusive distributions in terms of the 

phase-space integrals (10): 



me 

= 	p(i 	+ 

T 

n_+n_ 

= 	(xc2) 	- i[] - i[fl)I(i0) 
T 

n 
= (xc20) i Vio - i[?])/(i 0 ) 

n 

	

i.e. the reduced inclusive probability P(i 0 If)/(x %) 	for 

obtaining the partial event f is equal to the complementary 

phase-space integral (i 0  - i[]) divided by the total phase space 

integral (i 0 ), as one would intuitively expect. 

By combination of (9) and (12) it is possible to factorize the 

exclusive distribution p( 1 0 1f) into simpler quantities. Thus, for 

any decomposition f = f + T, we have 

p(0If) = ( x 0 )
f 
 6(i 0  - i[f])I(i0) 

= (xc20) 
f  f

(i0  

= (X0)(i0 - i[])/00 ) 

(x 0 ) 	( i 0  - i[] - 
	

- i[fl) 

= 	(Ij0) p(i0 - 

This relation expresses the fact that the exclusive probability for 

obtaining the event f is equal to the inclusive probability for 

obtaining some specified part f <T of the event f times the exclusive 

probability for also obtaining the remaining part of the event  

f, given that ? has already been obtained. 

By repeated use of the above relation (13), it is possible to 

factorize the exclusive distribution p into inclusive quantities. In 

particular, by decomposing the specified multi-fragment event f in 

terms of elementary events f k' p(i 0 f) can be factorized into 
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one—fragment inclusive distributions. Thus, for f = Efk, 

fl f 	 flf  

p(i Jf = F, f= P(i f 1 ) p011 	= k=1 	 k=2 
(14) 

flf  

TT = 	 P(iIO) 
k=1 

Here we have defined 'k 
	'k—i - '1k for k 

E  (1,flf ). The 

exclusive factor p(i 
nf 

 10) vanishes unless the quantities specified 

by i n  all vanish, thus guaranteeing that the event f is in fact 

accesible by the disassembling system characterized by 1 0 . 

4. The grand canonical approximation 

Consider a system whose macrostate is specified by the 

(conserved) quantities i 0  = A 0Z 0P 0 E 0 . The associated phase 

space integral is the number of microstates F having i[F] = i, 

= 	(i[F] - i ) = 	( xc1) 
flf 	

(i[f] - i 0 ) 	( 15) 
F 	 f 

The phase space integrals for systems whose macrostates differ only 

relatively slightly from the above one can be obtained by a local 

expansion of(i 0 ). Thus, for i 	i we have 

x(i 	i—i ) 
(i) 	(i 0 ) e 	

).( 	
(16) 

where 

x(i) 	aln 	(i) 

	

ai 
	

(17) 

is the multidimensional derivative of the phase space integral with 

respect to the conserved quantities. 

It is therefore possible to obtain a simple approximate 

expression for the inclusive distribution P(fli 0 ) when the specified 

partial event f forms a small part of the system, i.e., when i[] << 

i 0 . Indeed, we may write 

n 	 n 	—x(i ).i[] 
P(ji 0 ) = ( xc20 ) 	(i 0  - i[])/(i 0 ) 	( x20 ) 	e 	(18) 
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This result is recognized as the grand canonical approximation. 

In order to determine the quantity x, use can be made of the 

i de n t i ty 

i o = 	i[f] p(fji 0 ) = 	 i[f 1 ]p(fIi 0 ) = 	i[f1]P(f11i0) 	(19) 
f i  

where f 1  is an elementary (i.e. one-fragment) event. Insertion of 

(18) for the inclusive distribution on the right-hand side then yields 

an equation for x involving only elementary events. 

1 ] 
i 0 = 	i[f1]xc20e 

(i0 	
(20) 

f i  

Due to Lorentz invariance the phase space integral of the system 

depends only on the total four-mcfflentum through the combination 
2 - 22 	22 

Ef  - P f 
 c = (Mf C ) 

. Consequently, the Lagrange multipliers for energy 

and momentum are related: 

	

- ln - (Mc2 ) 3ln 	- E 
XE - 3E - 	aE 	(Mc2) - 

- 

-*ln 	(Mc2 ) 	ln 	- - P 

XP = a 	= 	a 	(Mc 2 ) - 

where B 	aln/a(Mc 2 ), and (Mc 2 ) is the proper level density of the 

system, i.e., the level density evaluated in the rest frame. We note 
22 2 	2 

that XE - - 
 -

X p /C = B 

The inclusive probability for a fragment with energy e 1  and 

momentum p, is then 

D P 1  -XftA1  _X TT 
P(f Ii ) = X 

lo 	
2 
0 
 e 
 

-B(E0e1-P0cP1C)/MC2 - XAA1_XTT1 
= X2 e 

-B  
= X2 e 	

(E1-A1--vT1) 
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Here we have used the fact that the invariant quantity 

(E 0 e 1- 0c' 1 c)/Mc 2  is equal to the fragment energy E 1  as seen in the CM 

	

frame, where 	vanishes. We have also introduced the chemical 

potentials p = -XT and v = _ATT where T = 1/0 is the temperature. 

The four constraint equations (20) for the total four-momentum 

= 	e P(f11i 0 ) 

	

0 	

f1  

= 	
i 

1 

can be combined to a single equation for s: 

Mc2  = (E - Pc 2 )/M0c 2  

- 	
-  = 1 2 
	(E

0 e 1  - P0cp1c) P(i 
0 If) 	

(21) 
M 

0 
 c f 1  

-B( E 1 -pA 1 -vT 1 ) 
= 	E X2 e 

f i  

where (M0 c 2 ) 2  = E - Pc 2 . Thus, Lorentz invariance reduces the 

number of Lagrange multipliers associated with the four-momentum to 

one single multiplier B associated with the rest energy of the system, 

and the standard form of the grand canonical approximation holds when 

the four-momenta are referred to the rest frame. 

The remaining two constraint equations (20) referring to the 

total baryon number and charge (or isospin projection rather) read 

-@ ( E-uA-vT) 
A 0 = 	A 1 Xc20 e 

f l. 

(22) 
-B(E 	-vT ) 

T 0 =T1 xc2 e 	1 	1 	1 

1 

For given initial conditiors, as specified by {M 0A 01 0 }, the 

three equations (21) and (22) are to be solved for the quantities 
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B,U,V. Then eq. (18) yields the inclusive probability for a single 

fragment {E 1A1 T1 }, 

-B ( E 1-.A 1 -'uT 1 ) 
P(i01f1) = X20  e 	 (23) 

5. Statistical event generation 

The factorization (14) of the exclusive multi-fragment 

distribution p into inclusive one-fragment distributions is 

particularly convenient when one seeks to generate a statistical 

representation of p, i.e., a sample {f} of multi-fragment events that 

are statistically distributed in the event subset T. according to 
•1 0 

the probability density p(fIi 0 ). To accomplish this task, one may 

proceed as follows. 

Each event f is considered as a sum of elementary one-fragment 

events, f = Ef. To generate an event f, one first makes a random 

selection of the term f 1  on the basis of the inclusive probability 

distribution P(f11i0).  Once f 1  has been selected, the remaining 

part of the event is known to be characterized by the quantities i 1  

= 10 - i[f1 1 . The next term f 2  is subsequently selected on the 

basis of P(f21i1),  and the further reduced residual event can be 

characterized. This procedure is repeated until no residual system 

remains. [That this is guaranteed to happen at some point follows 

from the fact that only actually accessible events are constructed by 

this procedure: In eq. (11) the inclusive probability P is 

nonvanishing only if in fact the specified event 	is part of an 

actually accessible event f, and therefore f has a counterpart f such 

that f + T = f.] In this way a single event f is constructed. By 

employing the procedure repeatedly, a statistical sample {f} E T. 
0 

of desired size can be generated.  

The procedure outlined above is a mathematically valid way of 

generating a representative sample of the exact many-fragment 

distribution p(fi 0 ). However, the method requires the exact 

one-fragment inclusive distributions, which are cumbersome to 

calculate, particularly when several excitable fragment species are 

included. 
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Saiie degree of approximation is therefore necessary. 

Fortunately, one-fragment distributions, which are the only ones 

required in the procedure, are much easier to approximate than more 

exclusive quantities. It is therefore possible to turn the 

matheiatical procedure into a practical method. The key is to employ 

the grand canonical approximation separately for each of the inclusive 

factors in(14). The grand canonical approximation is accurate for 

one-fragment distributions as long as the fragment considered is only 

a small part of the system (cf. section 4). This condition is 

reasonably well fulfilled for most of the factors in the product (14), 

although it is substantially violated for the last few factors. 

References 7,8)  describe how this idea is implemented and discusses 

the quantitative validity of the approximation, in the context of 

medium-energy nuclear collisions. 

This work was supported by the Director, Office of Energy 

Research, Division of Nuclear Physics of the Office of High Energy and 

Nuclear Physics of the U.S. Deparnent of Energy under Contract 

DE-AC03-76 SF00098. 

*The work reported in this lecture was done in collaboration 

with George Fbi, Roland Etvbs University, Budapest, Hungary. 
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Problem 

Derive the grand partition function Z by summing 

exp{_B[EF - UAF - 
VTF]} over all final states F of the form (6). 

Solution 

Let the sequence (nln2 ... ) denote that particular final channel 

which contains n fragments of the species a. Each such fragment has 
a 

	

position r 1 	and momentum plot  where i = 1,.. ,ri. Its total energy
CL  

	

is (P ) 2 /2M + M C 2  + e 	where c 	is the intrinsic excitation 
a 	a 	 l a  

energy. The associated baryon number is A. (For simplicity the iso-

spin degree of freedom is ignored, since it is straightforward to 

generalize the result afterwards. We also assume that non-relativistic 

kinematics can be used so that the kinetic energy is p 2/2M.) The grand 

partition function is then obtained by adding up exp{_8[EF_4AF]} for 

all such distinct final states F: 

_8[EF_UAF] 
=e 

F 

--( 1) 

= 	
1 	 (1) 	(1) 	

dr 	d 

)d4 	
J 	

1 	i 	(1) 	(1) dc1 
n 1 >O " F 	h3 	 h3 	

) 

-( 2 
Id2d2(2)(2) 	

dr 

	

)d42) 	

J 
"2 

h  3

"2 
o 
 (2) 

(c 
 (2) 

d€'2
n 2 >O"2 	h3 	

1 	•• 	
"2 

1~ ()  2
( (1) ) 2 

I(1 _________ 	_________ 	 (1) 
exp 	—8 L 2M1 	

••• 	

+ n1M1c2 + (1) 
+•••+ 	

- un1A1 

-(2) 2 	((2))2 
(p1 	 _______ ________ 	 ________ 

	

+ 	2M2 	
• 	 2 	

+ n2M2c2 + (2) 	
•+ 

(2) 
e

n 	
- n2A2 
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The division by n 	takes account of the indistinguishability of 

fragments of the same species. Since the exponent is additive, each 

phase space integral over 	 c' ') for a given species a yields 
( i 

the same result, namely 	\ a 	a 	ci  

dr i 
 

((2)( () 	(a) 

3 	h3 	° 	) d 

E (a)) + 2 

exp 

	

a 	Mc2+cc —8 	2M  
a 	 ci 	

I 

2irmT\312 	—BIM 
C 2—A I 

= X 	rA 
 ( h 	

e 	 E A w 
a 

2  ) 
	 Oa 

Here T = 11B is the ensemble temperature. It has been assumed that 

the spatial integrations are independent so that each may be replaced 

by the effective volume Finally, 	() denotes the 

intrinsic partition function for the species a, 

a() = SD (dde e 
 a 

Therefore, 

' (A z = 	- owi) 
n1>O n1  

(Aw) 2 
n 2 >O 2 

Aw +Aw + Aw Aw 

	

=e01e02...=e01 	o2 

so that 

9flZ= Aw 
CE 

Thus, replacing the species index a by AT, we have 

9. 

	_B[MATc2_A_vT] 

3 ( mT

) 3/2  
 e 

nZ= A0 	X 	r0 	
2 	AT AT 	2 h  
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