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Abstract

We propose a new tool, the Generalized Autocontour (G-ACR), as the basis for a battery
of dynamic specification tests that are applicable (in-sample or out-of-sample) to univariate or
multivariate random processes. We apply this methodology to the modeling of a multivariate
system by specifying the dynamics of the marginal distributions of each process in the system
and a copula that ties up the marginals to produce their multivariate distribution. We work with
the probability integral transforms (PIT) of the system that, under correct specification of the
conditional model, should be i.i.d. U[0,1]. The dimensionality of the system is not a constraint
because the information contained in the vector of PITs is condensed into an indicator, which is
the basis of the proposed tests. We construct hyper-cubes of different sizes within the maximum
hyper-cube formed by a multidimensional uniform density[0, 1]n, and we assess the location of
the empirical PITs (duplex, triplex, n-plex of observations ) within the corresponding population
hyper-cubes. If the conditional model is correct, the volumes of the population hyper-cubes must
be the same as those in their empirical counterparts. This approach allows the researcher to focus
on different areas of the conditional density model to assess those regions of interest. We estimate
a trivariate model for a very large number of trades on the stocks of three large U.S. banks and
find that the contemporaneous dependence among institutions is asymmetric, which implies that
when liquidity drains (lack of trading) in one institution, we should expect a concurrent effect
among similar institutions. On the other hand, when liquidity is plenty (dense trading), the trades
on the stocks of the institutions are not correlated. We assess the performance of the models by
evaluating the one-step-ahead density forecasts of trades.

Key Words: Autocontour, Copula, Specification Testing, Multivariate Dynamic Models, Density
Forecast.

JEL Classification: C01, C32, C34.



1 Introduction

The Generalized Autocontour (G-ACR) is a generalized version of the autocontour methodology

proposed by González-Rivera et al. (2011) (GR2011) to detect misspecification in the dynamics

of a time series model and departures from the assumed conditional density model. The G-ACR

will overcome some limitations of the original methodology in GR2011. First, when the condi-

tional density of interest departs from standard densities in financial econometrics, e.g. Normal,

Student-t, Exponential, etc., the analytical expressions of the autocontours may be mathemati-

cally cumbersome to obtain and we need to resort to numerical methods to compute their density

mass. The difficulty is compounded when the system is multivariate (González-Rivera and Yoldas,

2012). In contrast, the G-ACR is very easy to obtain for any density because it is based on the

probability integral transforms (PIT) instead of standardized innovations, which are the basis of

the original ACR. Second, GR2011 considers only univariate stochastic processes with dynamics

restricted to the conditional mean and conditional variance, and a time-invariant functional form

of the density of the standardized innovations of the model. The advantage of G-ACR is that

it is applicable to univariate or multivariate random processes. In a multivariate framework, the

dimensionality of the system is not a constraint because the information contained in the vector

of PITs is condensed into an indicator, which constitutes the basis of the proposed tests. Fur-

thermore, the components of the multivariate system may have different marginal densities, which

could be individually tested, but more importantly, the multivariate density, obtained as a cop-

ula function linking the marginals, can also be jointly tested. As a result, our statistics based

on G-ACR are also useful diagnostics for correct copula specification. G-ACR does not restrict

the dynamics of the model to any particular moment(s) and it is also applicable to cases when

the predictive density does not have a closed form solution, e.g. a multistep predictive densities

in nonlinear models, and we have to resort to simulation or nonparametric methods, but yet we

could obtain the PIT process from the simulated density. Third, the tests proposed in GR2011

have asymptotic variance-covariance matrices that do not all enjoy closed-form solutions, some

combining parametric and nonparametric expressions. In contrast and because of the simplicity

of G-ACR, the asymptotic variances of the tests have all closed formulations that depend on only
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one parameter, the a priori specified probability level associated with the G-ACR.

As a brief introduction to G-ACR, explained in detail in the forthcoming sections, suffices to

say that the basis of our testing techniques is the construction of hyper-cubes of different sizes

within the maximum hyper-cube formed by a multidimensional uniform density [0, 1]n. We assess

the location of the empirical PITs (duplex, ..., n-plex of observations ) within the corresponding

population hyper-cubes. If the multivariate model is correct, the volumes of the population hyper-

cubes must be the same as those of their empirical counterparts. Our tests evaluate these differences

statistically to either reject or fail to reject the proposed density model. This approach also permits

to focus on different areas of the conditional density to assess those regions of interest. There is

also a graphical visualization aspect of our approach that is very helpful for guiding the modeling.

As an illustration of the proposed methodology, we will specify a multivariate model for the

number of stock trades of three large U.S. banking institutions: Bank of America, JP Morgan

Chase, and Wells Fargo. Though the number of trades is a discrete random variable, these three

big banks enjoy an almost continuous trading so that, for a given interval of time, the number

of trades is so large that the data can be considered to be almost continuous. For instance, at

the 5-minute frequency (from January 3 to June 30, 2011), the median number of trades is 1,757

trades for Bank of America, 1,300 for JP Morgan, and 1,210 for Wells Fargo. Dynamic trading is

important because it reflects arrival of news and it is intimately related to issues of liquidity risk

and market microstructure, see O’Hara (1995) and Madhavan (2000) among others. We proceed

by specifying an autoregressive system for the number of trades of each bank. We will entertain

different distributional assumptions for the marginal densities of each component of the system but,

most importantly, we are interested in the modeling of contemporaneous correlations of the trades

as those may have implications for the risk that these large institutions pose to the banking system

and beyond. We use a copula function to understand the contemporaneous correlation among the

three banks. Heinen and Rengifo (2007) also implemented a copula approach but they restrict

themselves to a normal copula where the dependence is contained in a correlation coefficient.

As the recent crisis has shown, the correlation among institutions varies during episodes of low or

high liquidity. We explore the possibility of asymmetric contemporaneous correlation such that the

correlation may be different when the number of trades is large (the market is very active) or when
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the number is small (the market is slow). We assess the model in an out-of-sample environment

by evaluating the one-step-ahead density forecasts of the number of trades. This modeling and

forecasting exercises will allow us to showcase the proposed testing methodology and, in particular,

the use of visualization techniques to drive the specification exercise.

The paper is organized as follows. In section 2, we introduce G-ACR and present the testing

methodology for univariate and multivariate models. In section 3, we offer extensive Monte Carlo

simulations to assess the size and power of the tests within the context of multivariate processes

with and without contemporaneous correlation. In section 4, we provide an empirical illustration

dealing with a trivariate system for the number of trades for the three large banks mentioned

above, and in section 5 we conclude. The appendix contains mathematical proofs.

2 Generalized Autocontour and Test Statistics

We introduce a device -the generalized autocontour- as the basis to construct statistical tests for

the null hypothesis of a well-specified conditional density model either univariate or multivariate.

2.1 Generalized Autocontour: G-ACR

Following Diebold, Gunther, and Tay (1998) among others, if the proposed predictive density model

for Yt, i.e. {f ∗t (yt|Ωt−1)}Tt=1 coincides with the true conditional density {ft(yt|Ωt−1)}Tt=1, then the

sequence of probability integral transforms (PIT) of {Yt}Tt=1 w.r.t {f ∗t (yt|Ωt−1)}Tt=1 i.e. {ut}Tt=1

must be i.i.d U(0, 1)where ut =
∫ yt
−∞ f

∗
t (vt|Ωt−1)dvt. Thus, the null hypothesis H0 : f ∗t (yt|Ωt−1) =

ft(yt|Ωt−1) is equivalent to the null hypothesis H
′
0 : {ut}Tt=1 is i.i.d U(0, 1).

We construct the G-ACR under i.i.d. uniformity for univariate and multivariate predictive

densities. We start with the univariate case. Within the process {ut}Tt=1, we choose any vector

(ut,ut−k) ⊂ R2. Under H
′
0 : {ut}Tt=1 i.i.d U(0, 1), the G-ACRαi,k is defined as the set of points in the

plane (ut, ut−k), i.e. B(ut, ut−k) such that the square with
√
αi side contains αi% of observations,

i.e.,

G-ACRαi,k = {B(ut, ut−k) ⊂ <2‖ 0 ≤ ut ≤
√
αi and 0 ≤ ut−k ≤

√
αi, s.t. : ut × ut−k ≤ αi}

3



We will call the proposed cutting of the domain ‘symmetric’ as we impose the same upper bound
√
αi for each u in the vector (ut, ut−k) . However, it is possible to cut the domain in many different

ways. The symmetric cutting will be very advantageous on computing the variance-covariance

matrix of the test statistics that we present in the forthcoming sections, and it will also facilitate

the construction of the uniform autocontours in the multivariate case, as we explain shortly.

The original autocontour proposed in González-Rivera et. al. (2011) was constructed for the

process of (standardized) innovations of a dynamic model, say {εt}Tt=1, with assumed conditional

density f(.). Under the null hypothesis of i.i.d. random variables, the bivariate density function of

any vector, say (εt,εt−k) ⊂ R2 is f(εt,εt−k)=f(εt)f(εt−k), and the autocontour ACRα was defined

as the set of points in the plane (εt,εt−k) ⊂ R2 that will contain α% of observations when we

horizontally slice the bivariate density function at a fixed value fα. Mathematically,

ACRα = {B(εt,εt−k) ⊂ R2|
∫ u

l

∫ uk

lk

f(εt)f(εt−k)dεtdεt−k ≤ α}

Observe that if we were to implement the same approach for the process {ut}Tt=1, under the i.i.d

null hypothesis, the joint probability density is always a constant, i.e. f(ut,ut−k) = f(ut)f(ut−k) =

1×1 = 1 and, unlike the original ACR, we cannot construct the autocontour by horizontally slicing

the joint density. If we horizontally slice f(ut,ut−k) at any level, and project down the resulting

segment on the plane (ut,ut−k) we always obtain a square of area one. For this reason, the proposed

G-ACR ”cuts” the domain of the bivariate uniform density that is a square with unit side.

In the multivariate case, our interest is the modeling of an m × 1 random vector Yt =

(y1,t, y2,t,......ym,t)
′, with a joint probability density ft(Yt|Ωt−1). Let us call {f ∗t (Yt|Ωt−1)}Tt=1 the

sequence of predicted densities. For each t, the joint density can be factorized as the product of

the conditional densities and the marginal density, i.e.

f ∗(Yt|Ωt−1) = f ∗(y1,t, y2,t,......ym,t|Ωt−1) = f ∗(ym,t|y1,t, y2,t,......ym−1,t)×....×f ∗(y2,t|y1,t)×f ∗(y1,t|Ωt−1)

For each element in the factorization we obtain the sequence of PITs, {u1,t, u2|1,t, ..., um|1,2...m−1,t}Tt=1

such that u1,t =
∫ y1,t
−∞ f ∗t (vt|Ωt−1)dvt, u2|1,t =

∫ y2,t
−∞ f ∗y2|y1,t(vt|Ωt−1)dvt, ...... , and um|1,2...m−1,t =
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∫ ym,t
−∞ f ∗ym|y1,y2...ym,t(vt|Ωt−1)dvt.

Under the null hypothesis of a correct density model, the multivariate sequence {u1,t, u2|1,t, ...,

um|1,2...m−1,t}Tt=1 is i.i.d U(0, 1) (Diebold, Hahn, and Tay, 1999); thus the null hypothesis H0 :

f ∗t (Yt|Ωt−1) = ft(Yt|Ωt−1) is equivalent to H
′
0 : {u1,t, u2|1,t, ..., um|1,2...m−1,t}Tt=1 is i.i.d U(0, 1).

Under this null, we construct the autocontour G-ACRαi,k by choosing any two m-dimensional

vectors in the sequence of multivariate PITs that are k periods apart. Thus, G-ACRαi,k is now the

set of points defined in R2m such that the hyper-cube with α
1/2m
i side contains αi% of observations:

G-ACRαi,k = {B(u1,t, u2|1,t, .., um|1,2...m−1,t;u1,t−k, u2|1,t−k, ..., um|1,2...m−1,t−k) ⊂ <2m

‖ 0 ≤ u1,t ≤ α
1/2m
i , 0 ≤ u2|1,t ≤ α

1/2m
i , · · · , 0 ≤ um|1,2...m−1,t ≤ α

1/2m
i

0 ≤ u1,t−k ≤ α
1/2m
i , 0 ≤ u2|1,t−k ≤ α

1/2m
i , · · · , 0 ≤ um|1,2...m−1,t−k ≤ α

1/2m
i

s.t. : u1,t × u2|1,t × · · · × um|1,2...m−1,t × u1,t−k × u2|1,t−k × · · · × um|1,2...m−1,t−k ≤ αi}

(2.1)

Figure 1: Autocontours for the Uniform Density
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In Figure 1, we present 2-dimensional αi-autocontours for the univariate case, B(ut, ut−k) ⊂ <2

(left panel) and 3-dimensional autocontours for a bivariate case (right panel). In the latter, the
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autocontour is a 4-dimensional hypercube B(u1,t, u2|1,t, u1,t−k, u2|1,t−k) ⊂ <4, of which we can only

plot obviously three dimensions.

2.2 Test Statistics

We start by defining an indicator function in the univariate as well as in the multivariate case.

In the univariate case, the indicator will take the value one whenever the observation (ut, ut−k)

falls within the area defined by the G-ACRαi,k and zero otherwise, i.e.

Ik,αit = 1((ut, ut−k) ⊂ G-ACRαi,k) = 1(0 ≤ ut ≤
√
αi, 0 ≤ ut−k ≤

√
αi)

In the multivariate case, the indicator will be defined similarly as follows

Ik,αit = 1((u1,t, u2|1,t, .., um|1,2...m−1,t, u1,t−k, u2|1,t−k, ..., um|1,2...m−1,t−k) ⊂ G-ACRαi,k)

= 1(0 ≤ u1,t ≤ α
1/2m
i , 0 ≤ u2|1,t ≤ α

1/2m
i , .., 0 ≤ um|1,2...m−1,t ≤ α

1/2m
i ,

0 ≤ u1,t−k ≤ α
1/2m
i , 0 ≤ u2|1,t−k ≤ α

1/2m
i , ..., 0 ≤ um|1,2...m−1,t−k ≤ α

1/2m
i )

In both cases, Ik,αit are Bernoulli random variables for which αi% of the observations will fall

inside the G-ACRαi,k and (1− αi)% observations will fall outside. Note that the indicator is also

autocorrelated; it follows a MA process whose order depends on k. Thus, the moments of Ik,αit are

E(Ik,αit ) = αi

V ar(Ik,αit ) = αi(1− αi)

rαih = cov(Ik,αit , Ik,αit−h ) =

 0 if h 6= k

α
3/2
i (1− α1/2

i ) if h = k

The indicator Ik,αit forms the basis of the following test statistics, which are applicable in the

univariate as well as in the multivariate case. The next three propositions follow closely the tests

derived in González-Rivera et. al. (2011). However, the forthcoming tests offer a great advantage

over the previous ones because their asymptotic variance-covariance matrices have closed-form

formulations which depend exclusively on the theoretical probability αi of the autocontour specified
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under the null. The proofs of the following propositions are all relegated to the Appendix.

Proposition 1

Let α̂i =
∑T
t=k+1 I

k,αi
t

T−k be the sample proportion. Under the null hypothesis of i.i.d U(0, 1) PITs,

the sample proportion α̂i is asymptotically normally distributed, i.e.,

√
T − k(α̂i − αi)

σk,αi
→ N(0, 1)

where

σ2
k,αi

= αi(1− αi) + 2α
3/2
i (1− α1/2

i )

In Proposition 1, the lag k and the autocontour αi are fixed. By letting k and i run through

many values, we can construct portmanteau statistics as those in the following propositions.

Proposition 2

For a given contour αi, let `k,αi =
√
T − k(α̂i − αi) and stack `k,αi for k = 1, ....K. Let

Lαi = (`1,αi , ...`K,αi)
′

be the K × 1 stacked vector. Under the null hypothesis of i.i.d U(0, 1) PITs,

the asymptotic distribution of the vector Lαi is multivariate normal, i.e., Lαi → N(0,Λαi) and the

following quadratic form follows asymptotically a chi-square with K degrees of freedom, i.e.,

L′αiΛ
−1
αi
Lαi → χ2

K

where a typical element of the asymptotic covariance matrix Λαi , say λj,k is as follows

λj,k =

 αi(1− αi) + 2α
3/2
i (1− α1/2

i ) if j = k

4α
3/2
i (1− α1/2

i ) if j 6= k

Proposition 3

For a given lag k, let ck,i =
√
T − k(α̂i − αi) and stack ck,i for different contours levels i =

1, 2, ...C. Let Ck = (ck,1, ...ck,C)
′

be the C × 1 stacked vector. Under the null hypothesis of i.i.d

U(0, 1) PITs, the asymptotic distribution of the vector Ck is multivariate normal, i.e., Ck →
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N(0,Ωk) and consequently, the following quadratic form asymptotically follows a chi-square with

C degrees of freedom, i.e.,

C′kΩ
−1
k Ck → χ2

C

where a typical element of the asymptotic covariance matrix Ωk, say ωi,j is as follows

ωi,j =


αi(1− αi) + 2α

3/2
i (1− α1/2

i ) if i = j

αi(1− αj) + 2αiα
1/2
j (1− α1/2

j ) if i < j

αj(1− αi) + 2αjα
1/2
i (1− α1/2

i ) if i > j

2.3 Implementation of Test Statistics for Copula Models

Copula models are useful when we know the marginal distributions of the processes in a random

vector but we do not know the multivariate density function. For instance, in a vector of durations,

some process may be distributed exponential and some other Weibull but if we wish to model the

bivariate system, we need to complete the model by assuming a bivariate distribution. In these

instances, the choice of a copula function to tie up the assumed marginal densities will provide a

full characterization of the model. Next, we explain how to implement the proposed G-ACR-based

tests under Gaussian and Clayton copulas. In the empirical sections, we also entertain Gumbel.

2.3.1 Multivariate Distribution of a Vector with Gaussian Copula

Let (N1, ...Nn) be a random vector, with marginal distributions Fi(Ni). We specify the joint dis-

tribution H(N1,t, ...Nn,t) of the vector by choosing a copula function C such that H(N1,t, ...Nn,t) =

C(F1(N1,t), ..., Fn(Nn,t)). For a Gaussian copula, the multivariate distribution is

H(N1,t, ...Nn,t) = Φn(Φ−1(F1(N1,t)), ...,Φ
−1(Fn(Nn,t)); Σ)

with Φn as the n-dimensional multivariate standard normal with correlation matrix Σ.

Let us call qi,t = Φ−1(Fi(Ni,t)), where Φ is the univariate standard normal distribution. Then

H(N1,t, ...Nn,t) = Φn(q1,t, ..., qn,t; Σ) with corresponding density f(q1,t, ..., qn,t) = φn(q1,t, ..., qn,t; Σ),

which is a multivariate standard normal density with correlation matrix Σ. Suppose that we wish
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to evaluate a predictive density h∗t (Nt|Ωt−1)}Tt=1, generated by a Gaussian copula, for the vector

(N1,t, ...Nn,t). To test the null hypothesis that h∗t (Nt|Ωt−1)}Tt=1 is the correct density model is

equivalent to test that the correct density for (q1,t, ..., qn,t) is multivariate normal, i.e.,

H0 : {f ∗t (q1,t, ..., qn,t|Ωt−1) = φn(q1,t, ..., qn,t|Ωt−1; Σ)}Tt=1

Therefore, we will proceed as follows,

1. Obtain the PIT for each element of the random vector (N1,t, ...Nn,t), i.e., u1,t = F1(N1,t), ...., un,t =

Fn(Nn,t), where Fi is the marginal CDF of the random variable Ni,t.

2. Obtain qi,t for each Ni,t by transforming the PITs as qi,t = Φ−1(Fi(Ni,t)) where Φ is the

univariate standard normal distribution.

3. Factorize the multivariate density of the random vector Qt = (q1,t, ..., qn,t) as the product of

conditional and marginal densities as

f(q1,t, q2,t,......qn,t|Ωt−1) = f(qn,t|q1,t, q2,t,......qn−1,t)× ....× f(q2,t|q1,t)× f(q1,t|Ωt−1)

For a Gaussian copula, ft(q1,t, ..., qn,t|Ωt−1) = φn(q1,t, ..., qn,t|Ωt−1; Σ), the marginal and con-

ditional densities are also normal. Thus, we can now easily obtain the corresponding PITs, i.e.,

u1,t =
∫ q1,t
−∞ fq1,t(vt|Ωt−1)dvt, ....., um|1,2...m−1,t =

∫ qm,t
−∞ fqm|q1,...qm−1,t(vt|Ωt−1)dvt, ...., which under the

null hypothesis of a correctly specified density model, must be i.i.d. U[0,1] random variables.

2.3.2 Multivariate Distribution of a Vector with Clayton Copula

For the Clayton copula, the multivariate distribution of the vector (N1, ...Nn) is given by

H(N1,t, ...Nn,t) = C(F1(N1,t), ..., Fn(Nn,t)) = (1− n+
n∑
i=1

(Fi(Ni,t))
−θ)−1/θ

= (1− n+
n∑
i=1

(qi,t)
−θ)−1/θ

9



where qi,t = Fi(Ni,t), and the corresponding density is given by

c(q1,t, ...qn,t) = (1− n+
n∑
i=1

q−θi,t )−n−
1
θ

∏n

i=1
(q−θ−1i,t {(i− 1)θ + 1})

To obtain the PITs under the null hypothesis of a correct model under Clayton, proceed as follows

1. Obtain the PIT for each element of the random vector (N1,t, ...Nn,t), i.e., q1,t = F1(N1,t), ...., qn,t =

Fn(Nn,t), where Fi is the marginal CDF of the random variable Ni,t.

2. Factorize the multivariate density of the random vector Qt = (q1,t, ..., qn,t) as the product of

conditional and marginal densities as

c(q1,t, q2,t,......qn,t|Ωt−1) = c(qn,t|q1,t, q2,t,......qn−1,t)× ....× c(q2,t|q1,t)× c(q1,t|Ωt−1)

In order to calculate the conditional densities, we exploit the property that all n-marginal dis-

tributions of a Clayton copula are identical, i.e., C(F1(N1.t), ..., Fn(Nn−1,t), 1) = (1 − (n − 1) +∑n−1
i=1 (qi,t)

−θ)−1/θ. With the marginal and conditional distributions in place, we obtain the PITs as

previously described, i.e., u1,t =
∫ q1,t
−∞ cq1,t(vt|Ωt−1)dvt, ....., um|1,2...m−1,t =

∫ qm,t
−∞ cqm|q1,...qm−1,t(vt|Ωt−1)dvt,

and proceed with the implementation of the autocontour-based tests.

3 Monte Carlo Simulations

We perform extensive Monte Carlo simulations to assess the finite sample properties of the tests in

Propositions 1 to 3. We consider a bivariate vector Nt = (N1,t, N2,t)
′ under different multivariate

distributions functions. Previous works dealing with financial data have considered multivariate

normal and multivariate Student-t extensively. Here we depart from these popular distributions

and simulate data from densities like Poisson and Negative Binomial that have not been considered

as widely as the others. Though Poisson and Negative Binomial characterize discrete random

variables, e.g. counts, we simulate data from processes that will generate a large number of counts

10



so that the data can be considered continuous and the proposed tests are readily applicable. 1

3.1 Size of the tests

We consider five models for which the conditional mean of counts, µi,t ≡ E[Ni,t|Ωt−1] for i = 1, 2,

obeys dynamics of order one, i.e.,

E(Nt|Ωt−1) = W + A×Nt−1 +B × µt−1 (3.1)

where Ωt−1 is the information set, and W is a vector and A and B are matrices of parameters

with the following values: W =

35

35

 for Model S1; W =

5

5

 for Models S2 to S5; A = 0.4 0

0.15 0.45

, B =

0.5 0

0 0.45

.

The difference among the following five models lies on the assumed marginal densities and

whether the elements of the vector are contemporaneously correlated or not. We entertain the

following density specifications:

Model S1: Bivariate Conditional Autoregressive Poisson (P ) Model 2

Ni,t|Ωt−1 ∼ P (µi,t), for i = 1, 2

f(nt,i|Ωt−1) =
e−µi,tµ

nt,i
i,t

nt,i!

E[Ni,t|Ωt−1] = µi,t

V ar[Ni,t|Ωt−1] = µi,t

In empirical financial applications, we observe overdispersion in the data very frequently. A

Poisson model does not allow for overdispersion because the mean and the variance are the same.

For this reason, we consider next Negative Binomial marginal densities.

1When the number of counts is very large, a Poisson density converges to a Normal density. The Poisson density
is also a limiting case of the Negative Binomial.

2This DGP generates an average (over the time series) number of counts of 349 for N1t and of 874 for N2t. These
numbers are large enough to consider the data continuous.
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Model S2: Bivariate Conditional Autoregressive Negative Binomial (NB) Model (κi = 4) 3

Ni,t|Ωt−1 ∼ NB(µi,t), for i = 1, 2

f(nt,i|Ωt−1) =
Γ(nt,i + κi)

Γ(κi)Γ(nt,i + 1)

(
κi

κi + µi,t

)κi ( µi,t
µi,t + κi

)nt,i
E[Ni,t|Ωt−1] = µi,t

V ar[Ni,t|Ωt−1] = µi,t(1 +
µi,t
κi

)

Because κi > 0 and µi,t > 0, the conditional variance is greater than the conditional mean, thus

the model generates overdispersion in the data (Cameron and Trivedi, 2005). When 1/κi → 0, the

Negative Binomial converges to the Poisson density.

The three following models allow for contemporaneous dependence among the elements of

the vector. The dependence is modeled by a copula function. We consider three one-parameter

Archimedean copulas (Nelsen, 2005): a Normal copula for which the dependence is summarized

by the correlation coefficient, and the Clayton and Gumbel copulas that allow for asymmetric

dependence among the elements of the vector.

Model S3: Bivariate Conditional Autoregressive Negative Binomial with Gaussian Copula

Model (correlation coefficient ρ=0.8).

This model has the same marginal distributions as in Model S2 but the contemporaneous

cross-correlation between the vector components is generated by using the Gaussian copula, which

functional form is described in section 2.3.1.

Model S4: Bivariate Conditional Autoregressive Negative Binomial with Clayton Copula

Model (copula parameter θ = 2).

This model has the same marginal distributions as in Model S2 but the contemporaneous cross-

correlation between the vector components is generated by using the Clayton copula, which allows

for stronger correlation at low values than at high values of the data. The functional form of the

Clayton copula is described in section 2.3.2.

Model S5: Bivariate Conditional Autoregressive Negative Binomial with Gumbel Copula

3Models S2 to S5 generate an average (over the time series) number of counts of 50 for N1t and of 123 for N2t,
which are large enough for the data to be considered continuous.
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Model (copula parameter θ = 2).

This model has the same marginal distributions as in Model S2 but the contemporaneous cross-

correlation between the vector components is generated by the Gumbel copula, which allows for

stronger correlation at high values than at low values of the data. Gumbel functional form is

C(u1, u2, ..., un) = exp(−
[
(− lnu1)

θ + (− lnu2)
θ + ...+ (− lnun)θ

]1/θ
), θ > 0

We have estimated the five models S1 to S5 by maximum likelihood. The log-likelihood func-

tion is constructed according to the distributional assumptions specified in each model. For models

with a copula function we follow a two-stage estimation procedure as in Patton (2006) by first esti-

mating the parameters in the marginal model, and secondly using these estimates to estimate the

copula parameter. Since parameter uncertainty is more important in-sample testing, we conduct

the experiments in sample. We obtain the PITs associated with the one-step-ahead conditional

expectation of the count vector following the procedures explained in section 2.3, and proceed to

implement the tests described in Propositions 1 to 3. We have implemented a parametric bootstrap

procedure to approximate the asymptotic variance of the tests.4 We obtain bootstrap samples for

each model by replacing the true value θ0 with the the estimate θ̂T , computing the conditional

mean µi,t, and making draws Ni,t from the specified parametric distributions. This is a standard

procedure to overcome the difficulties of estimating asymptotic variances when parameter uncer-

tainty is relevant. The following experiments will show that bootstrapping the variance of the tests

and using standard asymptotic critical values provides statistics with the right size.

In Tables 1 and 2, we show the size of the tests for different sample sizes T = 250, 500 and 1000

observations. The overall performance of the tests is very good. Across models and across sample

sizes, the average empirical size is 5%. We do not observe any instance in which the tests are

grossly over- or undersized. In Table 1, we also include the size of the test for model S1 without

bootstrapping the variance of the test. As we expected, the size is very distorted and the tests

4When testing in-sample specification, ignoring parameter uncertainty may cause severe distortions in the size
of the tests. When testing out-of-sample specification, the importance of parameter uncertainty will depend on the
forecasting scheme and on the size of the estimation sample (R) relative to the prediction sample (P ). Under the
assumption of

√
R-consistent estimators, if R → ∞, P → ∞, and P/R → 0 as T → ∞, parameter uncertainty is

asymptotically negligible and no adjustment is needed in the tests provided in Propositions 1 to 3.
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are all uniformly under-sized so that the tests do not reject the null hypothesis as much as they

should. These results support the practice of implementing a bootstrap procedure when parameter

uncertainty is a concern.

Table 1: Size of tk,αi-statistics for 13 autocontours (Nominal size 5% and k = 1)

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7 t1,8 t1,9 t1,10 t1,11 t1,12 t1,13

T Model S1

250 0.031 0.033 0.042 0.067 0.066 0.065 0.067 0.063 0.043 0.052 0.063 0.043 0.068
500 0.035 0.038 0.048 0.056 0.065 0.063 0.061 0.061 0.057 0.053 0.057 0.057 0.061
1000 0.042 0.059 0.049 0.054 0.06 0.06 0.059 0.055 0.057 0.047 0.047 0.055 0.049

T Model S1 (no bootstrapped variance)

250 0.034 0.021 0.012 0.006 0.006 0.014 0.017 0.015 0.02 0.023 0.021 0.034 0.032
500 0.037 0.023 0.012 0.008 0.007 0.018 0.022 0.015 0.024 0.026 0.024 0.035 0.034
1000 0.033 0.024 0.018 0.007 0.009 0.016 0.019 0.018 0.023 0.029 0.023 0.04 0.035

T Model S2

250 0.036 0.037 0.065 0.063 0.043 0.064 0.047 0.059 0.067 0.047 0.067 0.037 0.068
500 0.041 0.045 0.042 0.049 0.058 0.061 0.049 0.062 0.063 0.056 0.065 0.054 0.043
1000 0.046 0.052 0.051 0.05 0.051 0.052 0.054 0.05 0.06 0.055 0.056 0.052 0.053

T Model S3

250 0.06 0.047 0.045 0.045 0.036 0.045 0.04 0.05 0.05 0.059 0.063 0.037 0.069
500 0.053 0.046 0.055 0.045 0.047 0.042 0.043 0.042 0.047 0.056 0.059 0.053 0.059
1000 0.052 0.045 0.049 0.045 0.048 0.049 0.046 0.046 0.043 0.043 0.042 0.047 0.049

T Model S4

250 0.037 0.037 0.044 0.049 0.062 0.066 0.043 0.04 0.046 0.043 0.066 0.039 0.045
500 0.056 0.04 0.04 0.041 0.05 0.053 0.047 0.046 0.044 0.045 0.049 0.04 0.056
1000 0.052 0.047 0.042 0.043 0.053 0.045 0.049 0.042 0.056 0.053 0.054 0.055 0.047

T Model S5

250 0.048 0.038 0.044 0.046 0.066 0.06 0.044 0.056 0.042 0.061 0.055 0.034 0.064
500 0.043 0.04 0.052 0.049 0.043 0.046 0.045 0.053 0.058 0.058 0.056 0.047 0.044
1000 0.045 0.059 0.054 0.053 0.051 0.057 0.052 0.05 0.051 0.054 0.047 0.052 0.045

Notes: The 13 autocontours are C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.0.9, 0.95, 0.99].
1000 Monte Carlo replications and 500 bootstrap samples.
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Table 2: Size of tk,αi , Lαi, Ck statistics (Nominal size 5%)

t1,7 t2,7 t3,7 t4,7 t5,7 L2,7 L3,7 L4,7 L5,7 C1,13

T Model S1

250 0.067 0.047 0.042 0.046 0.049 0.053 0.058 0.058 0.067 0.064
500 0.061 0.056 0.058 0.061 0.056 0.059 0.062 0.056 0.058 0.049
1000 0.059 0.046 0.055 0.054 0.052 0.051 0.055 0.055 0.058 0.055

T Model S2

250 0.047 0.041 0.038 0.043 0.041 0.055 0.048 0.05 0.052 0.054
500 0.049 0.062 0.059 0.058 0.063 0.052 0.063 0.054 0.053 0.05
1000 0.054 0.057 0.051 0.055 0.057 0.05 0.053 0.052 0.056 0.045

T Model S3

250 0.04 0.039 0.043 0.045 0.049 0.056 0.055 0.054 0.054 0.048
500 0.043 0.047 0.047 0.05 0.049 0.046 0.053 0.044 0.051 0.054
1000 0.046 0.047 0.046 0.043 0.053 0.056 0.041 0.05 0.048 0.047

T Model S4

250 0.043 0.049 0.046 0.048 0.049 0.051 0.054 0.052 0.058 0.059
500 0.047 0.04 0.047 0.047 0.05 0.049 0.046 0.047 0.049 0.059
1000 0.049 0.041 0.044 0.041 0.041 0.04 0.046 0.046 0.045 0.053

T Model S5

250 0.044 0.046 0.049 0.052 0.045 0.043 0.063 0.058 0.058 0.046
500 0.045 0.053 0.056 0.053 0.05 0.054 0.063 0.056 0.052 0.05
1000 0.052 0.052 0.055 0.049 0.053 0.052 0.055 0.053 0.051 0.048

Notes: tk,7 for k = 1, 2, ...5, and 7 refers to the 50% autocontour.
Lk,7 for k = 2, ....5 stacking lags up to k and considering the 50% autocontour.
C1,13 stacking all 13 autocontours for lag k = 1.
1000 Monte Carlo replications and 500 bootstrap samples.

3.2 Power of the tests

To study the power properties of the tests we consider as a null hypothesis Model S3: a bivariate

autoregressive model of order one as in (3.1) for the vector of conditional means, with negative bi-

nomial marginal densities (κi = 4) and a normal copula function with contemporaneous correlation

ρ = 0.8. We consider four data generating mechanisms:

Model P1: Conditional Autoregressive Poisson Model with Normal Copula ( ρ = 0.8). In this

case, we maintain the same dynamic structure with parameters W =

35

35

, A =

 0.4 0

0.15 0.45

,
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B =

0.5 0

0 0.45

 , and the same copula characteristics. We study departures from the hypothe-

sized marginal densities.

Model P2: Conditional Autoregressive Negative Binomial Model with a Clayton copula

(θ = 2). We maintain the same dynamics and marginal densities and study departures from

the hypothesized copula, and in particular, detecting asymmetric contemporaneous dependence.

Model P3: Conditional Autoregressive Negative Binomial Model with a Gumbel copula (θ =

2). This case is similar to the previous one but the contemporaneous asymmetric dependence in

Gumbel runs in opposite direction to that of Clayton.

Model P4: Conditional Autoregressive Negative Model with Normal Copula (ρ = 0.8) with

high order dynamics in the conditional means, i.e.,

E(Nt|Ωt−1) = D + A1 ×Nt−1 + A2 ×Nt−2 + A3 ×Nt−3 + A4 ×Nt−4 +B × µt−1

where D =

 5

5

, A1 =

 0.45 0

0.25 0.35

 , A2 =

 0.09 0

0.045 0.06

 , A3 =

 0.03 0

0.01 0.02

,

A4 =

 0.005 0

0.006 0.003

, and B =

 0.4 0

0 0.38

. We study departures from the hypothesized

dynamics and maintain the distributional assumptions on the marginal densities and the copula.

We present the power results in Tables 3 and 4. In Table 3, we analyze the behavior of the

t-statistics, tk,αi for a fixed lag k = 1 and 13 autocontours that span the entire uniform density.

The Poisson case, model P1, is very easy to detect because of the property of overdispersion

generated by the Negative Binomial densities. The power is one regardless of sample size not

only for the t-statistics but also for the portmanteau tests Lαi and Ck reported in Table 4. In

general, the tests are more powerful at detecting departures from distributional assumptions than

at detecting misspecified dynamics. In models P2 and P3, we find very high power even with

small sample sizes. In model P4 we need a large sample (above 500 observations) to find power

above 50%. At the lowest autocontours, i.e. 1, 5, or 10 %, and the highest autocontour 99%,

and mainly for small samples (T = 250), the power is lower because there are only a few (or a
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lot) observations within each autocontour and, consequently there is not much variability in the

indicator function, which is at the core of the tests. The power for model P2 (Clayton) is lower

than that for model P3 (Gumbel) for the intermediate autocontours around the 10- 40% level,

which is expected as the correlation of the observations in this range for a Clayton copula is closer

to that of the hypothesized Normal than the correlation of those observations generated by Gumbel

copula. The opposite happens when we examine the high autocontours 50-99% precisely because

of the opposite reason, the Gumbel correlation for observations in the upper contours is closer to

the Normal correlation than that generated by the Clayton.

Table 3: Power of tk,αi-statistics for 13 autocontours (Nominal size 5% and k = 1)

t1,1 t1,2 t1,3 t1,4 t1,5 t1,6 t1,7 t1,8 t1,9 t1,10 t1,11 t1,12 t1,13
T Model P1 (Poisson/Normal)

250 0.53 1 0.344 1 1 1 1 1 1 1 1 1 1
500 0.999 1 0.44 1 1 1 1 1 1 1 1 1 1
1000 1 1 0.62 1 1 1 1 1 1 1 1 1 1

T Model P2 (Negative Bin/Clayton)

250 0.07 0.075 0.046 0.143 0.186 0.289 0.455 0.515 0.713 0.84 0.86 0.857 0.869
500 0.095 0.086 0.065 0.178 0.204 0.474 0.686 0.87 0.925 0.951 0.952 0.984 0.982
1000 0.179 0.283 0.218 0.385 0.548 0.661 0.922 0.99 0.992 0.99 0.997 1 1

T Model P3 (Negative Bin/Gumbel)

250 0.021 0.17 0.188 0.245 0.247 0.364 0.421 0.461 0.478 0.521 0.395 0.444 0.366
500 0.045 0.211 0.239 0.381 0.451 0.593 0.502 0.61 0.634 0.649 0.733 0.632 0.594
1000 0.085 0.342 0.416 0.517 0.627 0.787 0.692 0.805 0.827 0.859 0.924 0.918 0.854

T Model P4 (Dynamic Misspecification)

250 0.045 0.056 0.075 0.073 0.134 0.172 0.152 0.252 0.35 0.375 0.35 0.33 0.39
500 0.053 0.06 0.083 0.105 0.241 0.39 0.33 0.424 0.418 0.421 0.43 0.37 0.42
1000 0.063 0.072 0.169 0.225 0.39 0.465 0.42 0.53 0.516 0.524 0.531 0.543 0.495

Notes: The 13 autocontours are C = [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8.0.9, 0.95, 0.99].
1000 Monte Carlo replications and 500 bootstrap samples.
The null hypothesis is a bivariate conditional autoregressive model with Negative Binomial marginal
densities and a Normal copula function.

In Table 4, we present the power of the t-statistics, tk,7 , and of the portmanteau statistics

Lk7 and C13
k for several values of k. In general, the power is excellent across models and sample

sizes. The overall findings are similar to those from Table 3. The tests C13
k are obviously the
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most powerful as they collect information for all the autocontours. However, if the researcher is

interested in partial aspects of the densities, such as a quantile or a collection of quantiles, it would

be more informative examining the Lkαi statistics, where we fix the level of the quantile αi, and the

individual t-statistics that provide information about the quantile desired.

Table 4: Power of tk,αi, Lαi, Ck statistics (Nominal size 5%)

t2,7 t3,7 t4,7 t5,7 L7
2 L7

3 L7
4 L7

5 C13
1 C13

2 C13
3 C13

4 C13
5

T Model P1 (Poisson/Normal)

250 1 1 1 1 1 1 1 1 1 1 1 1 1
500 1 1 1 1 1 1 1 1 1 1 1 1 1
1000 1 1 1 1 1 1 1 1 1 1 1 1 1

T Model P2 (Negative Bin/Clayton)

250 0.485 0.477 0.468 0.472 0.497 0.405 0.477 0.374 0.875 0.967 0.916 0.868 0.921
500 0.698 0.696 0.689 0.692 0.752 0.748 0.769 0.852 0.969 0.974 0.962 0.964 0.973
1000 0.905 0.898 0.875 0.894 0.883 0.849 0.813 0.789 1 0.999 0.999 1 1

T Model P3 (Negative Bin/Gumbel)

250 0.435 0.449 0.431 0.442 0.331 0.34 0.313 0.331 0.736 0.728 0.727 0.723 0.705
500 0.505 0.514 0.607 0.606 0.545 0.531 0.517 0.509 0.912 0.887 0.892 0.889 0.898
1000 0.717 0.693 0.7 0.697 0.679 0.685 0.695 0.692 1 1 0.99 0.99 0.994

T Model P4 (Dynamic Misspecification)

250 0.156 0.149 0.146 0.15 0.161 0.159 0.159 0.156 0.36 0.323 0.32 0.345 0.365
500 0.291 0.3 0.286 0.31 0.324 0.34 0.34 0.354 0.56 0.554 0.561 0.563 0.57
1000 0.4 0.42 0.432 0.412 0.451 0.429 0.445 0.467 0.71 0.692 0.692 0.72 0.734

Notes: tk,7 for k = 2, ...5, and 7 refers to the 50% autocontour.
Lk7 for k = 2, ....5 stacking lags up to lag k and considering the 50% autocontour.
C13
k stacking all 13 autocontours for lags k = 1, ...5.

1000 Monte Carlo replications and 500 bootstrap samples.
The null hypothesis is a bivariate conditional autoregressive model with Negative Binomial marginal
densities and a Normal copula function.

4 Empirical Illustration: Trading Activity in Large Banks

We illustrate our testing methodology and the use of visualization techniques that drives the

specification and forecasting exercises. We estimate a multivariate model for the trades of three

large U.S. banks: Bank of America, JP Morgan Chase, and Wells Fargo. We are interested in

exploring models that produce asymmetric contemporaneous correlation among banks in times of
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intense versus low trading activity. In an out-of-sample environment, we calculate the multivariate

one-step-ahead density forecasts and evaluate the performance of the various models.

4.1 Data Description

We collect transaction data from the TAQ database for three U.S. large commercial banks: Bank of

America (BOA), JP Morgan Chase (JPM), and Wells Fargo (WF), trading in the New York Stock

Exchange, from January 3rd to June 30th, 2011 for a total of 125 trading days. We record the

number of trades at the 5-minute frequency and remove any trades before 9:30 am (opening time)

and after 4:00 pm (closing time) for a total of 9,750 observations per bank. In Table 5, we present

the descriptive statistics of the three series. The three banks exhibit high level of trading activity

with BAC leading to WFC and JPM. For each bank, the average number of trades is very large

(above 1,500 trades) so we can treat them as a continuous variable. The overdispersion is evident

as the variance is substantially larger than the mean. In Figure 2, we plot the histograms of the

number of trades; they show evidence for overdispersion as there is a large tail to the right with

most of the observations concentrated around the mean. The range in the number of trades is very

wide, from minima in the 100s trades to maxima in the 20,000s. The pairwise contemporaneous

correlation is high with coefficients of around 0.60, and there is substantial autocorrelation in

the series as the Q-statistics show. In order to evaluate the one-step-ahead density forecasts, we

split the total sample by choosing the first 8034 observations (103 trading days) as the estimation

sample and the last 1716 observations (22 trading days) as the prediction sample. The evaluation

of the one-step-density forecast is performed under a fixed scheme where the models are estimated

only once; for every period in the prediction sample, the one-step forecast is calculated based on an

information set that expands one observation at the time until the prediction sample is exhausted.

It is very common to find intra-day seasonality in high frequency data. Trading activity is

intense at the the beginning and towards the end of the trading day and substantially lighter

during the mid-day hours, which gives rise to a U-shaped curve of diurnal effects. We take care of

these effects by estimating a set of half-hour dummies.
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Figure 2: Histograms of the data
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Table 5: Descriptive Statistics

BAC WFC JPM

Mean 2280.03 1527.99 1636.72
Median 1757.50 1210.00 1300.00

Maximum 25409 17314 25877
Minimum 167 103 175
Std.Dev 1858.67 1204.04 1250.72
Skewness 2.82 3.74 4.12
Kurtosis 16.79 29.30 43.76

No. of trades 22230258 14897909 15957994
Q(10) 25947 27007 23489
Q(20) 29629 30799 26916

Contemporaneous correlation

BAC 1.00 0.58 0.65
WFC 0.58 1.00 0.68
JPM 0.65 0.68 1.00

4.2 Dynamic Models and Forecast Evaluation

We estimate several dynamic models for the conditional mean µi,t ≡ E[Ni,t|Ωt−1] for i = 1(BAC),

2(WFC), 3(JPM) under different distributional assumptions. To illustrate how our methodology

works, we will present our results in a sequential fashion. First, we will show the results of the

Poisson model and the Negative Binomial Model ignoring contemporaneous correlation. Though
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a priori we know that the Poisson model will not fit our data because of overdispersion, it is

interesting to contrast the estimation results with those of a Negative Binomial model and observe

the behavior of the corresponding PITs and the generalized autocontour-based specification tests.

Secondly, we will introduce contemporaneous correlation by estimating the dependence parameters

under Gaussian, Clayton, and Gumbel copulas, and we will show the specification improvements by

analyzing the autocontour-based specification tests and the responses of the corresponding PITs.

4.2.1 Models with no contemporaneous correlation

In Table 6, we present maximum likelihood estimates for the parameters of the best dynamic model

for the conditional mean of trade counts with Poisson and Negative Binomial marginal densities

and without contemporaneous correlation. We have experimented with different lag structures

and, through standard specification tests on the Pearson residuals, we finally settled in a low order

model such as µt ≡ E(Nt|Ωt−1) = w+A×Nt−1 +B×µt−1 where Nt is a 3× 1 vector of trades, A

is a 3× 3 matrix, not necessarily symmetric, with typical element {ai,j}, and B is 3× 3 diagonal

matrix with typical element {bi,i}.

For each equation in the system, the trading dynamics for each bank are mainly driven by the

most recent activity of the bank itself as we can see in the magnitude of the estimates of ai,i and bi,i.

The effect of trading in the other institutions, i.e. estimates of ai,j, are much smaller in magnitude

although statistically significant at the conventional levels. The overall system is stationary as the

eigenvalues of the matrix A + B are inside the unit circle. The overdispersion parameter 1/κi is

evidently different from zero, as we expected. The last panel of Table 6 provides some descriptive

statistics of the Pearson residuals, i.e. (Ni,t− µi,t)/σi,t. If the model is well specified, the residuals

should have mean zero and standard deviation one. This is not the case for the Poisson model

because of the overdispersion in the data. The Q-statistics are now substantially smaller than

the raw Q-statistics, indicating that the estimated dynamics are adequate. As expected, we find

enough evidence to reject the Poisson model in favor of the Negative Binomial.
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Table 6: Estimation Results. Maximum Likelihood Estimates

Poisson Model Negative Binomial Model

Parameter BAC WFC JPM BAC WFC JPM
w 157.79 135.52 168.56 262.46 179.92 36.38

(29.69) (23.05) (22.32) (25.83) (22.74) (8.99)
a1,1 0.418 0.425

(71.67) (38.92)
a1,2 0.0232 0.006

(4.85) (2.00)
a1,3 0.078 0.07

(3.68) (5.69)
a2,1 0.006 0.0099

(2.13) (2.14)
a2,2 0.480 0.4561

(13.37) (36.31)
a2,3 0.0329 0.021

(3.78) (2.57)
a3,1 0.0273 0.031

(8.04) (6.25)
a3,2 0.0329 0.0466

(3.05) (6.70)
a3,3 0.463 0.431

(13.14) (34.52)
b1,1 0.431 0.381

(32.76) (31.13)
b2,2 0.379 0.363

(17.78) (22.14)
b3,3 0.35 0.456

(9.61) (28.46)
Dispersion

1/κ1 0 0.192
(38.46)

1/κ2 0 0.159
(40.66)

1/κ3 0 0.138
(46.70)

Pearson Residuals
mean 0.0607 0.1197 -0.075 0.014 -0.0003 0.011

std.deviation 21.02 16.12 16.91 1.48 1.20 1.34
Q(10) 10.56 68.73 137.60 5.26 29.26 17.70
Q(20) 56.85 107.50 176.19 17.11 63.91 21.49

Note: t-statistics in parenthesis. The models also include five dummies to take
care of diurnal effects. The Pearson residual is defined as (Ni,t − µi,t)/σi,t.
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Table 7: Autocontour-based Tests on One-step-ahead Density Forecasts:

Negative Binomial Model with no Contemporaneous Correlation

t-tests Lαi
αi lag 1 lag 2 lag 3 lag 4 lag 5 lag 2 lag 3 lag 4 lag 5
1% 11.87 12.87 13.04 14.70 10.89 231.24 311.43 391.74 396.22
5% 12.03 11.55 11.84 13.93 11.99 185.04 207.91 252.90 262.57
10% 12.81 12.48 11.83 12.34 12.08 195.17 204.19 215.78 218.75
20% 10.80 10.79 10.08 10.72 10.10 134.68 135.64 139.51 139.51
30% 8.28 8.59 7.72 8.20 7.29 78.58 78.59 80.13 81.08
40% 7.48 7.63 6.79 7.037 6.47 61.42 61.89 61.89 63.36
50% 5.39 5.38 4.59 5.09 4.54 30.43 32.71 32.87 34.53
60% 3.90 3.84 3.41 3.94 3.67 15.48 16.47 17.58 17.59
70% 2.37 2.58 2.07 2.44 2.44 7.73 8.47 8.76 9.05
80% 0.76 0.62 0.25 0.60 0.41 5.82 5.16 5.27 5.73
90% -3.03 -3.51 -3.60 -3.58 -3.39 29.11 25.26 27.55 28.00
95% -4.76 -5.03 -5.20 -5.06 -4.85 38.87 39.78 40.26 43.58
99% -8.56 -8.72 -8.73 -8.69 -8.69 80.79 85.20 85.20 85.21

Ck

339.37 333.01 330.57 383.99 318.77
Notes: t-tests critical values: ± 1.96 (5% level), ± 2.58 (1%), ± 3.5 (0.05%).

Lαi stacks lags up to 2, 3,4,5 for αi autocontour. Critical values at 5% level:

5.99 (2 lags), 7.81 (3 lags), 9.49 (4 lags) and 11.1 (5 lags).

Ck stacks all 13 autocontours for lag k.

Critical values: 22.4 (5% level), 27.7 (1%), 34.5 (0.1%).

Based on these estimation results, we proceed to construct the one-step-ahead density forecasts

of trades and to evaluate them with the generalized autocontour-based specification tests proposed

in section 2 for the Negative Binomial model with no contemporaneous correlation. In Table 7,

we present the values of the t-tests for 5 lags and 13 autocontours, the Lαi tests stacking up to 2,

3, 4, and 5 lags for a given autocontour αi, and the Ck tests stacking the 13 autocontours for a

given lag k = 1, · · · , 5. The t-tests reject very strongly the model at the lower and middle (1 to

60% ) and upper (95 and 99%) autocontour levels. At the lower levels, the test indicate that the

number of observations within the autocontours is much larger than what we should expect given

the assumed dynamics and contemporaneously independent Negative Binomial marginals. At the

upper levels, the opposite happens, there are fewer observations than expected. However, since

the t-tests show similar values across lags, the rejection of the model is not due to misspecified
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dynamics but to the assumed distributional assumptions. The umbrella tests Lαi and Ck, which

aggregate over lags or over contours, strongly confirm the message delivered by the t-tests.

Figure 3: Contemporaneous PITs:

Poisson model (left), Negative Binomial with No Contemporaneous Correlation (right)
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The graphs in Figure 3 reveal why the rejection of the Negative Binomial model with no

contemporaneous correlation is so strong. We plot the 3-dimensional vector of contemporaneous

PITs {ut,i} (from the prediction sample) for the Poisson model (left panel) and for the Negative

Binomial model (right panel) for three autocontours, the 10% level (red dots), the 10-80% levels

(blue dots), and the 80-100% levels (green dots). The rejection of Poisson is very evident because

most of the points are distributed along the boundaries of the contour levels, whose location is very

far from where we expect the i.i.d. uniform observations to fall. The unmodeled overdispersion

drives the location of the observations towards the boundaries of the cube. The Negative Binomial

model corrects this problem as the observations are more evenly distributed within the cubes

associated with the levels considered. Nevertheless, we observe an elliptic concentration of the

observations towards the diagonals of the cubes, which is the reason why the autocontour-based
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tests reject this model and, more importantly, it points out the need to model the contemporaneous

dependence among the components of the vector.

4.2.2 Models with contemporaneous correlation

We model the contemporaneous dependence of trades by using copula functions, which offer great

flexibility to account for the dependence structure among several series regardless of the speci-

fication of the their marginal distributions. We have selected three copula functions: Gaussian,

Gumbel, and Clayton. These functions summarize the dependence of the data with one param-

eter. The Gaussian copula characterizes dependence through the correlation coefficients and, as

such, they provide a global measure of dependence for the entire collection of observations. On

the contrary, the dependence parameters in the Gumbel and Clayton copulas allow for stronger or

weaker dependence in different regions of the observations. Clayton (Gumbel) produces stronger

(weaker) dependence for low values and weaker (stronger) dependence for large values of the ob-

servations. We also consider the inverse Gumbel copula (also known as the survival copula), which

by inverting its shape, delivers an asymmetric dependence similar to that of Clayton. 5

The maximum likelihood estimates of the correlation matrix for the Gaussian copula are pre-

sented in Table 8. The pairwise contemporaneous correlation is significant and it runs between

0.34 and 0.43. The maximum likelihood estimates of the dependence parameter for the inverse

Gumbel copula is θ = 1.38 with a t-ratio of 161.78, and for the Clayton copula θ = 0.54 with a

t-ratio of 43.75. These values suggest very strongly that the dependence is asymmetric.

Table 8: Copula-based Correlation Matrix

BAC WFC JPM

BAC 1.00 0.35 0.34
WFC 0.35 1.00 0.43
JPM 0.34 0.43 1.00

With the estimated copula and the estimated model, we calculate the one-step-ahead density

forecasts, and as before, we evaluate them with the autocontour tests. In Table 9, we present

5We are grateful to Andrew Patton for suggesting the inverse Gumbel copula to us. If {ut} are the PITs from
Gumbel, {1− ut} will be the corresponding PITs in the inverse Gumbel copula.
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the results of the autocontour-based t-tests for the Negative Binomial model with contemporane-

ous correlation modeled by Gaussian, inverse Gumbel, Clayton, and a mixture of Inverse Gum-

bel/Clayton copulas. By comparing these results with those in Table 7, we observe the substantial

overall reduction in the values of the t-tests, which indicates the need to model the contempora-

neous dependence among the series. Focusing on the results from the Gaussian copula, the tests

fail to reject the density model in the lowest (1% and 5%) and central autocontours (50% to 80%

levels). At the upper autocontours 90% to 99%, however, there is a strong rejection as the model

imposes more dependence between large trades than what is granted in the data. For the upper

autocontours, the Clayton copula is more responsive to the needs of the data and the values of

the tests are significantly lower than those in the Gaussian case. However, the Clayton copula

imposes too much dependence on the observations in the lower autocontours so that the model

is also rejected. The Inverse Gumbel copula offers a much better fit than the Gaussian or the

Clayton copulas; from the 1% to 90% autocontours we fail to reject the model at the conventional

levels, it is only for the 90%, 95% and 99% autocontours that the t-tests from Inverse Gumbel are

larger than those from Clayton.

Table 9: Autocontour-based t-tests on One-step-ahead Density Forecasts:

Negative Binomial Model with Contemporaneous Correlation

Gaussian Copula Inv. Gumbel Copula Clayton Copula Inv.Gumbel/Clayton

αi lag 1 lag 2 lag 3 lag 1 lag 2 lag 3 lag 1 lag 2 lag 3 lag 1 lag 2 lag 3
1% 0.61 0.61 0.74 -0.74 -0.69 -0.75 1.91 1.85 1.86 0.43 0.49 0.48
5% 2.22 2.19 1.99 1.32 1.58 1.21 5.51 4.90 4.49 1.24 1.31 1.26
10% 3.62 3.63 3.46 2.12 2.01 1.92 6.43 6.16 5.92 2.03 2.19 2.02
20% 4.48 5.14 4.57 2.03 2.23 2.02 7.38 7.26 6.45 2.21 2.19 1.98
30% 3.89 3.61 3.76 2.24 2.12 1.85 6.31 6.24 5.67 2.44 2.38 1.93
40% 3.46 3.57 3.56 1.96 2.17 1.82 5.07 5.57 4.93 2.04 2.28 1.91
50% 2.81 2.70 2.26 1.97 2.06 1.92 4.54 4.67 4.22 2.13 2.20 2.02
60% 1.72 1.57 1.55 1.09 1.04 1.06 4.40 4.30 4.07 1.23 1.16 1.17
70% 0.38 -0.32 0.32 0.29 0.24 0.22 2.53 2.59 2.09 0.60 0.72 0.57
80% -1.12 -1.14 -1.10 -0.34 -0.44 -0.66 1.21 1.29 1.15 0.31 0.21 -0.11
90% -3.08 -3.59 -3.70 -2.58 -2.87 -2.75 -1.42 -1.62 -1.64 -1.55 -1.71 -1.75
95% -5.71 -5.71 -5.67 -5.49 -5.58 -5.36 -3.79 -3.70 -4.05 -3.84 -3.92 -4.17
99% -10.28 -10.47 -10.71 -7.10 -7.51 -7.22 -7.05 -7.09 -7.10 -6.89 -7.04 -6.98
Notes: t-tests critical values: ± 1.96 (5% level), ± 2.58 (1%), ± 3.5 (0.05%).
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In Figure 4, we plot 2-dimensional contours of several copula functions with Negative Binomial

marginal densities (1/κi = 0.2) and dependence parameters similar to the estimates obtained for

this data. Observe the characteristics that prompt the rejection discussed above. The contours

of the Gaussian copula exhibit the most elliptical shapes compared to those from the remaining

copulas. The rejection of this copula is due to too much correlation imposed by the model on the

observations in the upper north-east corner; the inverse Gumbel and Clayton relax the dependence

in this area at the expense of imposing stronger dependence in the lower south-west region.

Given the results in Table 9 , it seems sensible to think about a model that combines the

properties of different copulas. The most natural mixture is Inverse Gumbel with Clayton because

it will combine the low t-statistics in autocontours 1% to 80% from the Inverse Gumbel and the

lower t-statistics in autocontours 90% to 99%. In the last three columns of Table 9, we report

the results for the t-tests for the Inverse Gumbel/Clayton mixture. We estimated by maximum

likelihood the weights of the mixture and the estimate is 0.34 on the Inverse Gumbel and 0.66

on Clayton. In addition, the estimate of the Inverse Gumbel dependence is larger (θ = 1.9)

than that from the pure Inverse Gumbel model, and the estimate of the Clayton dependence

parameter (θ = 0.43) is smaller than that from the pure Clayton model. This mixture provides

an improvement in the t-tests for all autocontours from 1% to 90% with values that fail to reject

the model at the conventional significance levels, while for the high autocontours 95% and 99%,

the t-tests are lower than those from Inverse Gumbel with a mild rejection of the model in the

95% autocontour. In summary, only in the 99% autoncontour we find a rejection of the model

indicating that in periods with a huge number of trades the dependence in the trading activities

of the three banks is smaller than that predicted by the model.

In Figure 4, we see why the mixture model performs better than the other models. The contours

of the mixture Inverse Gumbel/Clayton show that the correlation in the observations in the south-

west corner is larger than in the Gaussian or in the Clayton copulas, and that the observations in

the north-east corner are less correlated than those in the Gaussian copula; nevertheless we still

need less dependence among the observations in the most upper north-east corner.
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Figure 4: Contours of Copulas with Negative Binomial Marginal Densities
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In summary, the combination of statistical tests and graphical devices offer plenty of evidence on

the highly asymmetric dependence among trades of these three banks. When the number of trades

is low, the dependence is high, and when the number of trades is very large, the dependence is low

or non-existent. This finding is analogous to the Epps (1979) effect in high frequency returns, which
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shows that the sample correlation among stock returns goes to zero as the sampling interval shrinks.

If we translate the number of trades into durations, our findings can be interpreted as an Epps-like

effect: when the durations become shorter (large number of trades), the correlation among trades

goes to zero, and viceversa, for long durations (low number of trades), the correlation is strong.

This empirical effect may be relevant for measurements of liquidity because when liquidity drains

(lack of trading) , we should expect a concurrent effect among similar institutions.

In Figure 5 and for the prediction sample, we plot the 3-dimensional vector of contemporaneous

PITs for the Negative Binomial model with Gaussian, inverse Gumbel, Clayton, and mixture

Inverse Gumbel/Clayton. It is evident that the four models have captured the contemporaneous

dependence among the three series observed in Figure 3 (right panel). Now the observations are

more evenly distributed within the cubes considered, as it is expected from i.i.d. data. With the

Gaussian copula, observe the uneven location of the observations in the contours 80%-99% (green

dots), which is the reason why the tests strongly reject this model for the higher contours. The

Clayton model corrects substantially the distribution of the observations in the upper contours but

at the expense of misplacing observations in the 10%-80% levels (blue dots). The Inverse Gumbel

model provides a very good fit at all contours except for the very top 90-99% levels. The mixture

Inverse Gumbel/Clayton model offers the best fit as it is able to produce the right distribution of

observations in the 10%-90% levels with no so large distortions in the very upper 95%-99% levels.
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Figure 5: Contemporaneous PITs: Negative Binomial Model with Copula Dependence

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Mixture: Inverse Gumbel and Clayton

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Clayton Copula

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Gaussian Copula

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

Inverse Gumbel Copula

5 Conclusions

We have proposed a new tool, the Generalized Autocontour (G-ACR) as the basis for a battery

of dynamic specification tests. G-ACR overcomes some important limitations of the autocontour

methodology proposed in González-Rivera et. al. (2011), and in doing so, G-ACR tests are useful
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diagnostics to assess the conditional density model of random univariate or multivariate processes,

either in-sample or out-of-sample. The tests enjoy standard distributions and have outstanding

finite sample properties, they are correctly sized and are very powerful to detect departures from

the assumed conditional density. In addition, the G-ACR methodology brings a visual aspect to

the modeling exercise that is helpful on driving the specification and forecasting exercises. To

illustrate the usefulness of our approach we have focused on the modeling of a trivariate system of

trades. We have analyzed a high frequency trivariate system of the number of trades in three US

large banks. We have shown the need to specify not only the correct dynamics and the individual

marginal densities of trades but also the contemporaneous dependence of the three banks. We

have modeled such dependence with copula functions and we have found that there is a highly

asymmetric response depending on whether trading activity is dense or thin. When the number of

trades is low, the contemporaneous dependence is stronger than when the number is high, so that

when liquidity dries out in one institution, we should expect similar behavior in the rest.
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Appendix: Mathematical Proofs

At the core of all proofs is the indicator function Ik,αit , which is a Bernoulli random variable

with the following moments: E(Ik,αit ) = αi, V ar(I
k,αi
t ) = αi(1− αi) and covariance

rαih ≡ cov(Ik,αit , Ik,αit−h ) =

 0 if h 6= k

α
3/2
i (1− α1/2

i ) if h = k

When h 6= k there is not common information between the indicators Ik,αit and Ik,αit−h , and since ut’s

are i.i.d., their covariance is zero. When h = k, cov(Ik,αit , Ik,αit−k ) = E(Ik,αit × Ik,αit−k )−α2
i = α

3/2
i −α2

i .

Proof of Proposition 1 Asymptotic normality of the test follows as in González-Rivera et al.

(2011). The asymptotic variance of the test follows directly from the first and second moments of

the indicator function stated above.

Proof of Proposition 2 Asymptotic chi-square distribution of the test follows from the proof

in González-Rivera et al. (2011). The elements λj,k of the asymptotic variance-covariance Λαi are

obtained as follows. When j = k and by invoking Proposition 1, we have

λj,k = cov(`j,αi , `k,αi) = var(
√
T − k(α̂i − αi)) = αi(1− αi) + 2α

3/2
i (1− α1/2

i )

When j > k (and similarly for j < k),

cov(`k,αi , `j,αi) = cov(Ik,αit , Ij,αit ) + cov(Ik,αit , Ij,αit−k ) + cov(Ik,αit−j , I
j,αi
t ) + cov(Ij,αit , Ik,αit−j+k) + o(1)

from which each covariance term is

cov(Ik,αit , Ij,αit ) = E(Ik,αit × Ij,αit )− α2
i = α

3/2
i − α2

i = α
3/2
i (1− α1/2

i )

and taking into account that cov(Ik,αit , Ij,αit ) = cov(Ik,αit , Ij,αit−k ) = cov(Ik,αit−j , I
j,αi
t ) = cov(Ik,αit−j+k, I

j,αi
t ),

the result directly follows.

Proof of Proposition 3 Asymptotic chi-square distribution of the test follows from the proof

in González-Rivera et al. (2011). The elements ωi,j of the asymptotic variance-covariance Ωk are
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obtained as follows. We need to calculate

cov(ck,i , ck,j) = cov(Ik,αit , I
k,αj
t ) + cov(Ik,αit , I

k,αj
t−k ) + cov(Ik,αit−k , I

k,αj
t ) + o(1)

If i = j, by Proposition 1, ωi,i = var(
√
T − k(α̂i − αi)) = αi(1 − αi) + 2α

3/2
i (1 − α1/2

i ). If i < j

(and similarly for i > j), αi ⊂ αj. Then, we have that

cov(Ik,αit , I
k,αj
t ) = E(Ik,αit × Ik,αjt )− αi × αj = αi(1− αj)

cov(Ik,αit , I
k,αj
t−k ) = E(Ik,αit × Ik,αjt−k )− αi × αj = αi × α1/2

j − αi × αj

cov(Ik,αit−k , I
k,αj
t ) = E(Ik,αit−k × I

k,αj
t )− αi × αj = αi × α1/2

j − αi × αj

and the result follows.
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