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Abstract

Targeted Learning in Estimating Heterogeneous Effects and Transporting Direct and

Indirect Effects

by

Jonathan M. Levy

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Alan E. Hubbard, Chair

Targeted learning offers a framework for applying state-of-the-art machine learning in com-
puting estimates, while providing reliable measures of uncertainty for non-parametric and
semi-parametric models. Often when applying data adaptive estimation necessary for ac-
curate prediction to reduce bias we lose the ability to bootstrap non-parametrically for
inference. This is where targeted maximum likelihood estimators succeed in providing valid
inference under conditions we detail, through very inexpensive computation of the standard
deviation of the efficient influence curve approximation. We apply the framework mainly
to three new parameters of interest, particularly relevant to the field of causal inference
and heterogeneous response to treatment. The first two are the variance and cumulative
distribution function of the stratum-specific treatment effect function (VTE and TE CDF).
The third is transporting from one site to another treatment effects in the presence of an
intermediate confounder as well as a mediator, known as stochastic direct and indirect effects
(SDE and SIE). We mainly consider SDE and SIE defined by the data in that the stochastic
intervention on the mediator is defined by an estimate of the mediator and intermediate con-
founder mechanisms. We also consider SDE and SIE for both a restricted and unrestricted
model that are relevant in practice. We prove efficiency and robustness properties for all the
estimators used in this paper as well as software and provide extensive simulations to verify
the properties and compare performance with other estimators.

This manuscript contains a generalized method of deriving efficient influence functions central
to applying targeted learning for these parameters and others for large models, including for
the fixed transported stochastic direct and indirect effects parameters for both restricted and
unrestricted models, where the stochastic intervention is defined by the true mechanisms for
the mediator and intermediate confounder. The method comes out of a tutorial, featuring
the necessary tools of measure theory, integration, functional analysis and efficiency theory,
which enables statisticians to embrace estimation for large models often realistic for practical
scientific questions. Lastly, this paper implements a new way to perform the targeting in
the TMLE process via the discovery of the canonical least favorable submodels (CLFM’s)
which, are one-dimensional submodels applicable for high dimensional parameters. CLFM’s,
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used in this paper for estimating many points on the TE CDF, are not only fast but also
hold promise for mitigating practical positivity violations. Finally, we employ an easily
implementable CV-TMLE procedure, applied on real data for estimating the VTE, that
we show retains the attractive properties of Zheng and van der Laan’s original CV-TMLE
formulation.
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TE Variance and TE CDF: Non
Doubly Robust Parameters

1.1 Background and Motivation

A clinician might observe highly variable results for a treatment and want to know how much
of this variation is due to confounders, thus motivating more precision in how treatment is
assigned. In terms of evaluating public policies, we also might want to know if there are
significant portions of the population who receive substantial benefit or harm from an inter-
vention on average. The stratum-specific treatment effect or TE function is defined as the
average treatment effect for a randomly drawn stratum of measured patient characteristics
and therefore captures heterogeneous average response to treatment. To address the above
questions, we first construct the targeted maximum likelihood estimator (TMLE)(van der
Laan and Daniel Rubin 2006; van der Laan and Rose 2011) and its cross-validated counter-
part (CV-TMLE) (Zheng and van der Laan 2010), to simultaneously estimate the average
treatment effect (ATE) and the variance of the TE function (VTE), which gives a sense of
the spread of the TE function. With VTE, for instance, one may apply chebyshev’s inequal-
ity to tail bound the TE distribution.

We then consider the cumulative distribution of the TE function which, tells us the portion
of the population whose average effect is below a threshold. The TE CDF is not pathwise
differentiable and thus, we will estimate a kernel smoothed version of the parameter, which
we will refer to as the smoothed TE CDF, which will depend on the bandwidth used for
the kernel. We will provide precise conditions under which we are guaranteed asymptotic
efficiency for estimating the smoothed parameter for fixed bandwidth as well as conditions
for obtaining a normal limiting distribution when allowing the bandwidth to approach 0 with
increasing sample size.

1.1.1 Previous considerations

Much consideration has been given to the distribution of Y1−Y0, where Ya is the counterfac-
tual outcome under the intervention to set treatment to a ∈ {0, 1}, as per the Neyman-Rubin
potential outcomes framework (Neyman 1923; Donald Rubin 1974). Knowing the distribu-
tion of Y1 − Y0 would give an analyst the individual response to treatment. However, such
estimation hinges on recovering the joint distribution of Y1 and Y0, a fact Neyman, 1923,
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realized when computing standard errors for estimating the mean of Y1−Y0 in small samples.
Assumptions needed to estimate the joint distribution are, in turn, hard to verify. Fisher,
1951 suggests one can essentially leap frog over the issue to create the counterfactual Y1−Y0

by careful design. Heckman and Smith, 1998 estimate the quantiles of Y1 − Y0 via the as-
sumption of quantiles being preserved from Y1 to Y0 given a strata of confounders. Using tail
bounds (Frechet 1951) to estimate the quantiles of Y1 − Y0 via the marginals of Y1 and Y0

tends to leave too big of a measure of uncertainty to be useful (Heckman and J. Smith 1997).

var(Y1 − Y0), in the event it is not 0, is similarly hard to identify. Heckman, 1997 mentions
combining the results of Cambanis, 1976 and Frechet, 1951 to tail bound var(Y1 − Y0) =
var(Y1) + var(Y0)− 2γY1,Y0var(Y1)var(Y0) as a means to test if the lower bound of the con-
fidence interval includes a variance of 0. For randomized trial data, Ding, Feller et al., 2016,
construct a Fisher randomization test of the null hypothesis that var(Y1−Y0) = 0 under the
untestable assumption that there exists a universal τ so that Y1 = Y0 + τ . However, testing
this hypothesis is not helpful when it comes to assigning treatment based on confounders.
Cox, 1958, assumes var(Y1 − Y0) = 0 for predefined homogeneous subgroups, essentially
assuming the distribution of Y1 − Y0 is the same as the distribution of E[Y1 − Y0 | W ] for
a finite set of W . The variance and CDF of E[Y1 − Y0 | W ] is what we aim to estimate,
requiring none of the aforementioned assumptions.

A basic example

As a simple case to give intuition as to what VTE captures, consider W = indicator of male or
female, and binary outcome indicating survival if the outcome is 1. Suppose the men have a
TE value of E[(Y1−Y0)|W = male] = −0.3 and the females, E[(Y1−Y0)|W = female] = 0.7.
Assuming men and women are of equal proportion for the population at hand, then the VTE
is 0.25 and ATE is 0.2. This would mean the patient gains from treatment an average 20%
with a standard deviation of 50%. One should be reminded that the VTE gives a more per-
sonal measure of what to expect from treatment, but not an individual effect variance. For
instance, within the male subgroup one might have a high or low varying random variable,
(Y1 − Y0 | male) and such does not count toward the VTE. Hence a clinician’s perception
of highly varying outcomes does not mean the VTE is high. Rather one would want to
estimate VTE to see if the varying outcomes were due to lack of precision in applying the
treatment. A similar intuition applies for the TE CDF (although our TE CDF is assumed
to be continuous) in that we might have E[I(Y1−Y0 ≤ −0.5)] = 0.3. However, the TE CDF
is 0 at the TE value of -0.5 in that Pr (E[Y1 − Y0 | W ] ≤ −0.5) = 0. In other words, on
average, neither men nor women have an effect below -0.5, even though there might be a
chance some individuals will have an effect below -0.5.

Estimating VTE and the smoothed TE CDF with a plug-in estimator naturally depends
on using an estimate of the outcome model, E[Ya|W ], from which to estimate the TE func-
tion, E[Y1|W ] − E[Y0|W ]. If one knows the TE function, for instance, one would know an
optimal dynamic rule for treatment (A. Luedtke and van der Laan 2016). One could also
find subgroup specific treatment effects via the TE function. Lu et al (Tian et al. 2014)

2



offered a way to isolate interactions of treatment with confounders in a randomized trial by
transforming the predictors of a parametric model. The main idea is to form a variable,
z = 2A − 1, where A is the usual treatment indicator, and then put the interaction of this
variable with the predictors in the outcome regression. This enables direct estimation of the
TE function from which one could obtain a point estimate of the VTE and TE CDF. One
could also employ recursive partitioning to divide the data into homogeneous subgroups as
far as treatment effects (Athey and Imbens 2016) as well as employ random forests (Athey
and Imbens 2015). We could use such subgroups to compute the VTE and smoothed TE
CDF but as noted in (Bitler, Gelbach, and Hoynes 2014), establishing too rough subgroups
can miss detecting treatment effect heterogeneity. In applying the CV-TMLE or TMLE, our
estimators of choice, we also may use tree regression methods within our machine learning
ensemble but we are only interested in the predictive power of these methods in eliminating
second order remainder term bias, as we will discuss at length.

1.2 Commonalities Between VTE and TE CDF

We will generally follow the roadmap to estimation (van der Laan and Rose 2011), the first
steps of which are very similar for VTE and TE CDF. The general TMLE conditions will
also be common for all parameters we discuss in this paper.

1.2.1 Full Data Statistical Model and the link to the Observed
Data

The system which generates the full data can be used, ideally, to generate counterfactuals
(Donald Rubin 1974), i.e. to generate a world under treatment and a parallel world under
control and observe every individual’s outcome under treatment versus control. This is the
ideal situation we would like to have in order to determine causal parameters of interest we
precisely define shortly. In this case, our full-data is the same for VTE and the TE CDF.

Our full data, including unobserved measures, is assumed to be independent identically
distributed data, generated according to the following structural equations (S. Wright 1921;
Strotz and Wold 1960; Pearl 2000). We can assume a joint distribution, U = (UW , UA, UY ) ∼
PU , an unknown distribution of unmeasured variables. X = (W,A, Y ) are the measured vari-
ables. In the time ordering of occurrence we have W = fW (UW ) where W is a vector of
confounders, A = fA(UA,W ), where A is a binary treatment and Y = fY (UY ,W,A), where
Y is the outcome, either binary or continuous. We thusly define a distribution PU,X , via
(U,X) ∼ PU,X .

Ya is a random outcome under PU,X where we intervene on the structural equations to set
treatment to a ∈ {0, 1}, i.e. Ya = fY (UY , a,W ). The full model,MF , consists of all possible
PUX . The observed data model,M, is linked toMF in that we observe X = (W,A, Y ) ∼ P
where X = (W,A, Y ) is generated by PUX according to the structural equations above.
Our true observed data distribution is an element of the statistical model, M, which will
be non-parametric. In the case of a randomized trial or if we have some knowledge of the
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treatment mechanism, M is considered a semi-parametric model and we will incorporate
such knowledge, which we will see is much more helpful for estimating ATE than for VTE
or the TE CDF.

We can scale a continuous outcome to be in [0, 1] via the transformation Ys = Y−a
b−a where a

and b are minimum and maximum outcomes respectively, obtained from the data or known a
priori. A given distribution P in our model defines an outcome model with conditional mean,
Q̄(A,W ) = EP [Y | A,W ], and loss function, L(P )(w, a, y) = − log pY (y | a, w), where pY is
the conditional likelihood of Y given A and W . We also define P0 as the true distribution.

L(P )(w, a, y)dP0 = −
(
y log(Q̄(a, w)) + (1− y) log(1− Q̄(a, w))

)
(1.1)

is commonly called quasibinomial loss for a continuous outcome scaled between 0 and 1.
Whether the outcome is continuous or binary EP0L(P )(W,A, Y ) is minimized at the true
outcome model (Wedderburn 1974; McCullagh 1983). The targeting portion, which uses
either quasibinomial or log-likelihood loss in a logistic regression fluctuation model (see
section 1.3.1), will thusly remain the same for binary or scaled continuous outcome. After
the CV-TMLE or TMLE algorithm is complete, one may convert the outcomes back to their
original scale and they will be naturally constrained within a and b (Gruber and van der
Laan 2010). We can then form confidence bands for the parameter of interest on the original
scale, for which we offer instruction.

1.2.2 Identification of the Parameters of Interest

We define the stratum-specific treatment effect function or TE function as bPUX (W ) =
EPUX [Y1|W ] − EPUX [Y0|W ]. For simultaneously estimating ATE and VTE our parameter
of interest is considered to be a mapping MF to R2 defined by

ΨF (PUX) = (EPUXbPUX (W ), varPUXbPUX (W ))

For the TE CDF, we define the parameter mapping from MF to Rd defined by

ΨF (PU,O) = (EPU,OI(bPUX (W ) ≤ t1),EPU,OI(bPUX (W ) ≤ t2), ...,EPUX I(bPU,O(W ) ≤ td))

Under the randomization assumption (Robins 1986; Greenland and Robins 1986), Ya ⊥ A|W
as well as positivity, 0 < EP [A = a | W ] < 1 for all a and W we have that bP (W ) =
EP [Y |A = 1,W ]− EP [Y |A = 0,W ] = bPUX (W ). We can now identify the ATE and VTE as
a mapping from the observed data model, M, to R2 via the gcomp formula (Robins 1986)
Ψ(P ) = (EP bP (W ), varP bP (W )) = Ψ(P F

UX).

The TE CDF is identified via

Ψ(P ) = (EP I(bP (W ) ≤ t1),EP I(bP (W ) ≤ t2), ...,EP I(bP (W ) ≤ td)) = (F (t1), ..., F (td))

where F is the CDF of the TE function with respect to P . Ψ is not pathwise differentiable
(van der Vaart 2000) so instead we consider the smoothed version of the parameter mapping,
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using kernel, k, with bandwidth, δ, which is pathwise differentiable and hence, provides a
strategy for providing inference for the smoothed TE CDF as well as the TE CDF itself.
Here we will suppress k in the notation for convenience and define the ith component of the
d− dimensional parameter mapping as

Ψδ,ti(P ) = EW
∫
x

1

δ
k

(
x− ti
δ

)
I(b(W ) ≤ x)dx =

∫
x

1

δ
k

(
x− ti
δ

)
F (x)dx

so we can write the parameter mapping as

Ψδ(P ) =

(∫
x

1

δ
k

(
x− t1
δ

)
F (x)dx,

∫
x

1

δ
k

(
x− t2
δ

)
F (x)dx, ...,

∫
x

1

δ
k

(
x− td
δ

)
F (x)dx

)
= (Fδ(t1), ..., Fδ(td))

where Fδ(ti) is a shortened notation for the smoothed CDF, F (ti).

1.2.3 Estimation Methodology

For all the parameters in this report we construct TML estimators. The CV-TMLE involves
cross-validating the targeting step, which we detail in 1.3.1 and 3.5. CV-TMLE and TMLE
are an integral part of the broad spectrum of targeted learning (van der Laan and Rose 2011),
where we employ ensemble machine learning to break from unrealistically narrow parametric
model assumptions which, cause large bias and poor coverage. We will see the CV-TMLE
has an advantage over the TMLE in that it does not require a donsker condition on the
initial predictions for the relevant nuisance parameters, enabling more flexibility in the en-
semble learning we employ. In the case of our prediction methods being costly, TMLE and
CV-TMLE save considerable time over a non-parametric bootstrap approach to inference,
since our inference will be obtained by taking a sample standard deviation of the efficient
influence curve approximation. In addition, without the targeting step in our estimator,
as outlined in sections and , the non-parametric bootstrap might not even guarantee valid
inference for our plug-in estimates (van der Vaart and Wellner 1996).

Despite clear advantages of targeted learning, we will see that estimating VTE and the
smoothed TE CDF lacks the desirable robustness properties present when estimating ATE.
Particularly for a randomized trial, our CV-TMLE estimate for ATE is consistent where as
knowledge of the treatment mechanism does not guarantee consistent VTE or smoothed TE
CDF estimates. The lack of robustness is due to stubborn second order remainder terms
which, we will discuss in detail.

1.2.4 General TMLE Conditions for Asymptotic Efficiency

We refer the reader to the Targeted Learning Appendix (van der Laan and Rose 2011) as
well as (van der Laan 2016; van der Laan and Gruber 2016; van der Laan and Daniel Rubin
2006) for a more detailed look at the theory of TMLE and the use of targeted learning that
yields our algorithm below. We offer the reader a brief overview in service of our estimation
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problems at hand.

In our general discussion, we consider our case of a d-dimensional efficient influence curve,
D?

Ψ(P ) = (D?
Ψ1

(P ), ..., D?
Ψd

(P )), where d = 2 for ATE and VTE and the number of estimated
points on the curve for TE CDF. The efficient influence curve is defined at a distribution, P ,
and is a function of the observed data, O ∼ P . The variance of D?

Ψj
(P ) gives the generalized

Cramer-Rao lower bound for the variance of any regular asymptotically linear estimator of
Ψj (van der Vaart 2000). We will shorten the notation to D?

i (P ) for the ith component of
the efficient influence curve.

We will employ the notation, Pnf , to be the empirical average of function, f(·), and Pf
to be EPf(O). We define a loss function, L(P )(O), which is a function of the observed
data, O, and indexed at the distribution on which it is defined, P , such that EP0L(P )(O) is
minimized when P = P0, the true data generating distribution. The TMLE procedure maps
an initial estimate, P 0

n ∈ M, of the true data generating distribution to P ?
n ∈ M such that

PnL(P ?
n) ≤ PnL(P 0

n) and such that PnD
?(P ?

n) = oP (n−0.5)d×1. P ?
n is called the TMLE of the

initial estimate P 0
n . We can then write an expansion with second order remainder term, R2,

as follows: Ψ(P ?
n)−Ψ(P0) = (Pn − P0)D?

Ψ(P ?
n) +R2(P ?

n , P0).

Theorem 1.2.1. Define the norm ‖f‖L2(P ) =
√
EPf 2. Assume the following TMLE condi-

tions:

1. D?
j (P

?
n) is in a P-Donsker class for all j, where D?

j . This condition can be dropped in
the case of using CV-TMLE (Zheng and van der Laan 2010). We show the advantages
to CV-TMLE in our simulations.

2. Second order remainder condition: R2,j(P
∗
n , P0) is op(1/

√
n) for all j, where R2,j is the

jth component of remainder term.

3. D?
j (P

?
n)

L2(P0)−→ D?
j (P0) for all j. This condition will follow from the previous item so

usually is not a necessary condition in and of itself for asymptotic efficiency.

then
√
n(Ψ(P ?

n)−Ψ(P0))
D

=⇒ N [02×1, covP0(D?
Ψ(P0)d×d] where covP0(D?

Ψ(P0)(O) is a d× d
matrix in our case with the (i, j) entry given as EP0D

∗
i (P0)(O)D∗j (P0)(O). The ith diagonal

of covP0(D?
Ψ(P0)(O) is the variance of the D∗i (P0) and the limiting variance of

√
n(Ψi(P

∗
n)−

Ψi(P0)) under TMLE conditions. Thus, our plug-in TMLE estimates and individual CI’s
are given by

Ψj(P
?
n)± zα ∗

σ̂n(D?
j (P

?
n))

√
n

will be as small as possible for any regular asymptotically linear estimator at significance
level, 1 − α, where Pr(|Z| ≤ zα) = α for Z standard normal and σ̂n(D?

j (P
?
n)) is the sample

standard deviation of {D?
j (P

?
n)(Oi) | i ∈ 1 : n} (van der Laan and Daniel Rubin 2006).

Theorem 1.2.2. Note, that if the TMLE conditions hold for the initial estimate, P 0
n , then

they will also hold for the updated model, P ?
n , thereby placing importance on our ensemble

machine learning in constructing P 0
n (van der Laan 2016).
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Now that we have identified the parameters of interest and reviewed the basic requirements
for our estimators to be asymptotically efficient, we will delve into the details of the estima-
tors for each parameter.

1.3 The Variance of the Stratum-Specific Treatment

Effect Function, VTE

1.3.1 One-step CV-TMLE Algorithm for ATE and VTE

The reader may consult van der Laan and Gruber, 2016 , for more detail on the one-step
TML algorithm, which employs a universal least favorable submodel (ulfm). In section 3.4
we introduce a new iterative analog to the one-step TMLE procedure which also uses one-
dimensional parametric submodels, called canonical least favorable submodels (clfm) (Levy
2018c), from which we also define the universal least favorable submodel. van der Laan
and Rubin, 2006, constructed a TMLE based on a locally least favorable submodel (lfm)
that utilizes parametric submodels of dimension the same dimension as the parameter of
interest. TMLE’s based the clfm or the lfm require iteration in certain cases, where as the
one step TMLE does not. It has therefore been conjectured that the one-step TMLE may
better preserve the properties of the initial fit, P 0

n , than the iterative versions, thereby lead-
ing to better finite-sample behavior of the second-order remainder term R2(P ∗n , P0) (van der
Laan and Gruber 2016). If this conjecture is correct, then we would expect similar gains by
using the one-step TMLE in our setting, however, in our simulations we found no apprecia-
ble differences. For the ATE and VTE estimation we will employ the one-step TMLE but
when speed is an issue as with the smoothed TE CDF, we will employ the clfm-based TMLE.

The efficient influence curve for Ψ(P ) = (Ψ1(P ),Ψ2(P )), i.e. ATE and VTE, has two
components given by

D?
1(P )(W,A, Y ) =

2A− 1

g(A|W )
(Y − Q̄(A,W )) + bP (W )−Ψ1(P )

D?
2(P )(W,A, Y ) = 2(bP (W )− EP bP )

2A− 1

g(A|W )
(Y − Q̄(A,W )) + (bP (W )− EP bP )2 −Ψ2(P )

where W is a possibly high dimensional set of confounders, A is a binary treatment in-
dicator and Y is a binary outcome or a continuous outcome scaled between 0 and 1.
bP (W ) = EP [Y | A = 1,W ] − EP [Y | A = 0,W ]. The reader may visit 3.1.5 for the
derivation.

The ”Learning” Part of Targeted Learning: Obtaining Initial Estimates To per-
form a TMLE we use an ensemble learning package such as sl3 (Coyle, Malenica, et al.
2018a) or SuperLearner (Polley et al. 2017) to construct the initial fit, Q̄0

n, of outcome model
EP [Y | A,W ], and the initial fit, gn, of the treatment mechanism, EP [A | W ], thus providing
the estimates Q̄0

n(Ai,Wi) and gn(Ai | Wi), i ∈ 1 : n, i.e., for all n subjects.
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Initialize Targeting Step Compute the negative log-likelihood loss for our outcome pre-
dictions. Note, Yi is the true outcome:

PnL(P 0
n) = − 1

n

n∑
i=1

[
YilogQ̄0

n(Ai,Wi) + (1− Yi)log(1− Q̄0
n(Ai,Wi))

]
= L0 our starting loss

Compute H0
1 (Ai,Wi) = 2Ai−1

gn(Ai|Wi)
and H0

2 (Ai,Wi) = 2
(
b0
n(Wi)− 1

n

∑n
i=1 b

0
n

) (
2Ai−1

gn(Ai|Wi)

)
and

note H1 will stay fixed for the entire process for this parameter. Note b0
n(W ) = Q̄0

n(1,W )−
Q̄0
n(0,W ). Compute ‖PnD?

Ψ(P 0
n)‖2, where ‖ · ‖2 is the euclidean norm and

PnD
∗
Ψ(P 0

n) = Pn
(
D∗1(P 0

n), PnD
∗
2(P 0

n)
)

=

(
1

n

n∑
i=1

H0
1 (Ai,Wi)(Yi − Q̄0

n(Ai,Wi)),
1

n

n∑
i=1

H0
2 (Ai,Wi)(Yi − Q̄0

n(Ai,Wi))

)

Our initial estimate of the parameter is ( 1
n

∑n
i=1 b

0
n(Wi),

1
n

∑n
i=1(b0

n(Wi)− 1
n

∑n
i=1 b

0
n(Wi))

2),
our sample mean and variance of our estimated TE function values.

The Targeting Step step 2: If |PnD?
j (P

m
n )| < σ̂n(D?

j (P
m
n ))/n for j ∈ {1, 2} then P ?

n =
Pm
n and go to step 4. σ̂n(·) denotes the sample standard deviation as in Theorem 1.2.1. This

insures that we stop the process once the bias is second order as recursions after this occurs
are not fruitful. If |PnD?

Ψj
(Pm

n )| > σ̂/n, then m = m+ 1 and go to step 3.
step 3
Define the following recursion, using euclidean inner product notation, 〈·, ·〉2, the same as a
dot product:

Q̄mn (A,W ) = expit

(
logit(Q̄m−1

n (A,W ))− dε
〈

(Hm−1
1 (A,W ), Hm−1

2 (A,W )),
Pn(D∗Ψ(Pm−1

n )

‖Pn(D∗(Pm−1
n )‖2

〉
2

)
(1.2)

where dε is set to 0.0001 (going smaller only costs more without improving accuracy).
This recursively defines an estimate, Q̄m

n (A,W ), of the true outcome model, Q̄0(A,W ) =
EP0 [Y | A,W ]. Compute Lm = −

∑n
i=1

[
YilogQ̄m

n (Ai,Wi) + (1− Yi)log(1− Q̄m
n (Ai,Wi))

]
. If

Lm ≤ Lm−1 then return to step 2. Otherwise Q̄m
n = Q̄∗n and continue to step 4.

step 4

Our estimate for ATE and VTE is
(

1
n

∑n
i=1 b

∗
n(Wi),

1
n

∑n
i=1

(
b∗n(Wi)− 1

n

∑n
i=1 b

∗
n(Wi)

)2
)

,

where b∗n(Wi) = Q̄?
n(1,W1)−Q̄?

n(0,Wi). If the outcome was scaled as Y−a
b−a (see section 2, para-

graph 1), then ATE and VTE is
(
b−a
n

∑n
i=1 b

∗
n(Wi),

(b−a)2

n

∑n
i=1

(
b∗n(Wi)− 1

n

∑n
i=1 b

∗
n(Wi)

)2
)

.

We compute the standard error estimates by computing the sample standard deviation of
the influence curve approximation for each component (see Theorem 1.2.1) i.e. the standard
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error estimate for the jth component of the estimate is given by
σ̂n(D?j (P ?n))
√
n

. If the outcomes

were scaled according to Ys = Y−a
b−a , then the standard error estimates for ATE and VTE are

multiplied by b−a and (b−a)2, respectively. We can then use the standard normal quantiles
zα as detailed in the previous section (1.96 for 95% CI) for individual confidence bounds or
follow the procedure detailed for simultaneous confidence bounds below.

Performing a CV-TMLE

We will adjust the original CV-TMLE procedure (Zheng and van der Laan 2010) for ease
of computation without losing any theoretical properties or finite sample performance. The
convenience here is that once we obtain initial estimates, there is no difference between CV-
TMLE and TMLE as far as implementation is concerned. The reader may consult section 3.5
for the difference between this procedure and the originally defined CV-TMLE (Zheng and
van der Laan 2010) regarding our parameter of interest and why neither require condition 1
in Theorem 1.2.1.

To perform a CV-TMLE we would define a split, Bn, which is a mapping on 1 : n, such
that Bn(i) = 1 means the ith observation is in the training set and Bn(i) = 0 means the ith

observation is in the validation set. We usually define 10 splits for which the validation sets
are disjoint and comprise all n observations, as in typical 10-fold cross-validation. A CV-
TMLE is defined as an average across the splits of estimates computed on the validation sets.

On the training set of each split Bn, we would use an ensemble learning package such as
sl3 (Coyle, Malenica, et al. 2018a) or SuperLearner (Polley et al. 2017) to construct the
initial fit, Q̄0

n,Bn
, of outcome model EP [Y | A,W ], and the initial fit, gn,Bn , of the treatment

mechanism, EP [A | W ]. We would then predict the outcome and treatment probabilities
on the validation set defined by Bn. For all i ∈ 1 : n, we therefore provide an estimate
Q̄0
n(Ai,Wi) and gn(Ai | Wi) for when observation i was in the validation set of one of the

splits. With these predictions we can proceed with steps 2 through 4 above, yielding a
CV-TMLE.

Simultaneous Estimation and Confidence bounds

We often want to provide confidence intervals that simultaneously cover all the coordinates
of Ψ(P0) at a given significance level. The following is an added benefit of having the efficient
influence curve at hand for we can account for correlated estimates in a tighter manner than
a bonferroni correction (Dunn 1961). The reader may note we offer the general d-dimensional
version here and thus, for (ATE, VTE) d = 2. After completing the above algorithm we have,
D∗Ψ(P ∗n)(Oi) = (D∗1(P ∗n)(Oi), ..., D

∗
d(P

∗
n)(Oi)), for each subject indexed by i ∈ 1 : n. Consider

the d-dimensional random variable Zn = (Zn,1, ..., Zn,d) ∼ N(0d×1,Σn), defined by two by
two matrix, Σn, the sample correlation matrix of D∗Ψ(P ?

n). Let qn,α be the αth quantile of
the random variable Mn = max(|Zn,d|, ..., |Zn,d|). Let Z = (Z1, ..., Zd) ∼ N [0d×1,Σ], where
Σ is the correlation matrix of D?

Ψ(P0). Let qα be the αth quantile of the random variable
M = max(|Z1|, ..., |Zd|), i.e., the αth quantile of the random variable giving the max number
of standard deviations over the coordinates of Z. We monte-carlo sample 5 million draws
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from the random variables Mn to find qn,α. We note that 5 million is a sufficient number to
guarantee very little error in finding the true qn,α. Applying the continuous mapping theorem
(van der Vaart and Wellner 1996) assures us under TMLE conditions that Zn,i ± qα covers
Zi for all i ∈ 1 : d, at (1− α)× 100%. Then we can apply the continuous mapping theorem
again to assure us qn,α −→ qα. qn,α is therefore an estimate of the number of standard errors
needed to simultaneously cover both true parameter values at (1− α)× 100%. This results
in the confidence bands

P̂ sij,n ± qn,α ∗
σ̂n(D?

j (P
?
n))

√
n

which, will asymptotically cover all coordinates, Ψj(P0) of Ψ(P0), simultaneously at the sig-
nificance level, 1 − α. The reader may note qn,α is very close to the bonferroni correction
(Dunn 1961) if Σn is the identity matrix.

Remark. From here on, all theorems will apply to either TMLE or CV-TMLE so we will use
the lighter TMLE notation where we need not keep track of the splits, Bn.

1.3.2 The Unforgiving Remainder Term in VTE Estimation

Computation of the remainder term is in the section 3.2.1 and is accompanied by more
rigorous analysis. Here we provide the reader with the necessary results for our discussion.
For convenience we define the true outcome model to be Q̄0(A,W ) = EP0 [Y | A,W ] and the
true treatment mechanism as g0(A | W ) = EP0 [A | W ]. Let Q̄0

n be the initial estimate of
Q̄0, and gn be the estimate for g0. For estimating ATE and VTE, we will fluctuate an initial
outcome model fit, Q̄0

n to Q̄∗n but gn will not change. b∗n(W ) = Q̄∗n(1,W )−Q̄∗n(0,W ). We also
note, that we have used the empirical distribution, QW,n, to estimate QW , the distribution
of W , which also remains fixed as in van der Laan and Rubin, 2006. The second order
remainder term for VTE is:

R2(P ∗n , P0) = Ψ(P ∗n)−Ψ(P0) + P0 (D?
Ψ(P )) (1.3)

= (E0b0(W )− Pnb∗n(W ))2 (1.4)

+ E0

[
2 (b∗n(W )− Pnb∗n(W )) ∗

(
g0(1|W )− g(1|W )

g(1|W )
∗

(
Q̄0(1,W )− Q̄∗n(1,W )

)
− g0(0|W )− g(0|W )

g(0|W )

(
Q̄0(0,W )− Q̄∗n(0,W )

))]
(1.5)

− E0 (b0(W )− b∗n(W ))2 (1.6)

Considering (1.4) and (1.5) above, we need

‖Q̄∗n − Q̄0‖L2(P0)‖gn − g0‖L2(P0) (1.7)

to be oP (n−0.5). If the first factor is oP (nrQ̄) and the second is oP (nrg), then rQ̄ + rg ≤ −0.5
will satisfy the TMLE remainder term condition 2 of Theorem 1.2.1. It is notable the terms
disappear in the case of a randomized trial where we incorporate the known g0. (1.7) is also
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a generous upper bound for the first two terms, which depend on
∫

(Q̄∗n − Q̄0)(gn − g0))dP0

because the integrand can change sign. However, (1.6) is not generous in this way because
the integrand is a square. Precisely, we require ‖Q̄∗n − Q̄0‖L2(P0) to be oP (n−0.25) with no
help provided by knowing the treatment mechanism. Hence, VTE estimation is not doubly
robust. In an randomized clinical trial, the TMLE or CV-TMLE estimate for ATE will be
consistent but such is not the case for VTE. We can apply a large data adaptive ensemble
of state-of-the-art machine learning algorithms to mitigate this remainder term but we still
have found it can cause bias leading to poor coverage.

1.3.3 Simulations for VTE

We performed two different kinds of simulations, the first primarily to verify the remainder
conditions in the theory of TMLE (condition 2, Theorem 1.2.1). The rest were performed
to get a sense of what might occur with real data. Inference for all TMLE’s used the sample
standard deviation of the efficient influence curve approximation to form confidence intervals
as per section 2. For logistic regression plug-in estimators of ATE and VTE, confidence bands
were formed by using the delta method and the influence curve for the beta coefficients for
intercept, main terms and interactions (see section 3.3.3). SuperLearner initial estimates
had no accompanying measure of uncertainty since there is little theory for such, even if
non-parametrically bootstrapping (van der Vaart and Wellner 1996).

Simulations with Controlled Noise

Instead of drawing W then A and then Y under a data generating distribution and then
trying to recover the truth with various predictors or SuperLearner as we do later, we directly
add heteroskedastic noise to Q̄0 in such a way that the conditions of TMLE hold and then
use the noisy estimate as the initial estimate in the TMLE process. This does not necessarily
match what happens in practice because the noise we add is not related to the noise in the
draw of Y given A and W . However, it is a valid way to directly test the conditions of
TMLE in that we can control the noise so that the TMLE conditions hold and watch the
asymptotics at play. We also note that we will assume g0 is known because the other second
order terms for VTE, involving bias in estimating g0, are dependent on double robustness
in the same way as for the ATE, for which the properties of TMLE are already well-known
(van der Laan and Daniel Rubin 2006; van der Laan and Rose 2011).

Simulation Set-up W1 ∼ uniform[−3, 3], W2 ∼ binomial(1, .5), W3 ∼ N [0, 1] and W4 ∼
N [0, 1]. We define g0(A|W ) = expit(.5∗(−0.8∗W1 +0.39∗W2 +0.08∗W3−0.12∗W4−0.15))
, which is the true density of A given W. We kept our propensity scores between about 0.17
and 0.83 so as to avoid poor performance from positivity violations (Petersen et al. 2012).
E0[Y |A,W ] = Q̄0(A,W ) = expit(.2 ∗ (.1 ∗ A + 2 ∗ A ∗ W1 − 10 ∗ A ∗ W2 + 3 ∗ A ∗ W3 +
W1 +W2 + .4 ∗W3 + .3 ∗W4))} which defines the density of Y given A and W for a binary
outcome. Define the TE function as b(W ) = E0[Y |A = 1,W ] − E0[Y |A = 0,W ] and we
have Ψ(P0) = var0(b(W )) = 0.0636. This is a substantial VTE to avoid getting near the
parameter boundary at 0.
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Below we illustrate the process for one simulation. For each sample size, n, we performed
the simulation 1000 times. We note that rate is some number which we will set to less than
-1/4 (-1/3 in this case) in order to satisfy TMLE conditions.

1. define bias(A,W, n) = 1.5nrate(−.2 + 1.5A+ 0.2W1 +W2 − AW3 +W4)

2. define heteroskedasticity: σ(A,W, n) = 0.8nrate|3.5+0.5W1+0.15W2+0.33W3W4−W4|

3. define b(A,W, n, Z) = bias(A,W, n) + Z × σ(A,W, n) where Z is standard normal

4. draw {Zi}ni=1 and {Xi}ni=1 each from standard normals

5. Q̄0
n(1,Wi) = expit

(
logit

(
Q̄0(1,Wi)

)
+ b(1,Wi, n, Zi)

)
6. Q̄0

n(0,Wi) = expit
(
logit

(
Q̄0(0,Wi)

)
+ 0.5b(1,Wi, n, Zi) +

√
0.75b(0,Wi, n,Xi)

)
7. Q̄0

n(A,W ) = A ∗ Q̄0
n(1,W ) + (1− A)Q̄0

n(0,W )

We note that we placed correlated noise on the true Q̄0(1,W ) and Q̄0(0,W ) so as to
make the TE function“estimates” of similar noise variance as the initial “estimates” for
Q̄0(A,W ). By a Taylor series expansion about the truth, it is easy to see the above proce-
dure will satisify the remainder term conditions of Theorem 1.2.1. We have that Q̄0

n(1,W ) =
Q̄0(1,W )+Q̄0(1,W )(1−Q̄0(1,W ))b(1,W, n, Z)+O(b2(1,W, n, Z)) and likewise for Q̄0

n(0,W )

and thus trivially,
√

E0 (b0
n(W )− b0(W ))2 is of order nrate with rate < −1/4. As previously

mentioned, we need not worry about any second order terms but E0 (b0
n(W )− b0(W ))

2
be-

cause we are using the true g0. Condition 1 of Theorem 1.2.1 is easily satisfied and Condition
3, the donsker condition, is satisfied since our “estimated” influence curve, D∗(Q̄0

n, g0), de-
pends on a fixed function of A and W with the addition of independently added random
normal noise.

The simulation result, displayed in 1.1, is in alignment with the theory established for the
TMLE estimator of VTE but how fast the asymptotics come into play is an important issue
as to the relevance of the asymptotic theory.
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Figure 1.1

Simulations That Are More Realistic

We will stick with binary outcome and treatment, though the results will be comparable for
continuous outcome. Unless otherwise noted, sample size n = 1000 and the number of sim-
ulations = 1000. Throughout the simulations we generated the covariates as follows: W1 ∼
uniform[−3, 3], W2 ∼ standard normal, W3 ∼ standard normal and W4 ∼ standard normal.
These simulations are more realistic in that we try to recover via machine learning, an ”un-
known” treatment mechanism and outcome model. When we specify the models correctly
we are considering a ”best case” scenario where our regressions achieve parametric rates of
convergence to the truth. When we misspecify a model in the data generating system, we
try to recover its non-linear functional form with ensemble machine learning, in the event
that a linear model including interactions (to pick up heterogeneity) is catastrophic for esti-
mating VTE. If we are going to estimate VTE, a main terms linear model will assume VTE
is essentially 0, so comparing ensemble learning methods with such is not very informative.

Well-specified TMLE Initial Estimates, Skewing

Here we apply logistic regression to the correct functional form for both outcome model,
E[Y |A,W ] = Q̄(A,W ) and treatment mechanism, E[A|W ] = g0(A,W )), thus achieving
parametric rates of convergence. The only point of these simulations is to show that TMLE
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preserves well-specified initial estimates and also to show approximately what size sample
will lead to skewing (and therefore bias) of the sampling distribution for TE variance when
the truth is near the lower parameter bound of 0. We can say as a rule of thumb, a sample
size of 500 or more is probably needed to even hope to get reliable estimates for TE variances
in the neighborhood of 0.025 (15.8% standard deviation), a rule confirmed by figures 1.2,
1.3 and 1.4. Q̄(A,W ) = expit(0.14(2A + W1 + aAW1 − bAW2 + W2 −W3 + W4)) for the
outcome regression, varying a and b to adjust the size of the TE variance. E[A|W ] = g0 =
expit(−0.4 ∗ W1 + 0.195 ∗ W2 + 0.04 ∗ W3 − 0.06 ∗ W4 − 0.075) was the true treatment
mechanism and we avoid positivity violations here by keeping our propensity scores mostly
between 0.10 and 0.90.

Figure 1.2
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Figure 1.3
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Figure 1.4

SuperLearner Details For Remaining Simulations

Targeted learning (van der Laan and Rose 2011) features the use of data adaptive prediction
methods optimized by the ensemble learning R packages, such as SuperLearner (Polley et
al. 2017), H2O (LeDell 2017) or the most recent sl3 (Coyle, Malenica, et al. 2018a). Super-
learner, which picks the best single algorithm in the library, as decided by the cross-validation
of a valid loss function, has risk that converges to the oracle selector at rate O (log (k(n)) /n)
where k(n) is the number of candidate algorithms, under very mild assumptions on the li-
brary of estimators (van der Laan, Polley, and Hubbard 2007). Generally the best or nearly
best learner in the library is the optimal convex combination of algorithms that forms the
SuperLearner predictor which, might be more familiar to the reader as a form of model
stacking (Wolpert 1992).

Use of Highly Adaptive Lasso: Making Initial Predictions Q̄0
n and gn

It is notable that if we use the highly adaptive lasso (HAL) (van der Laan 2016; Benkeser
and van der Laan 2016) for our nuisance parameter fits (outcome model and treatment mech-
anism, if treatment mechanism is unknown), we will yield asymptotically efficient TMLE’s,
assuming the true models are right-hand continuous with left-hand limits and have variation
norm smaller than a constant M (van der Laan 2016). In finite samples, however, some
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machine learning algorithms might be better suited for prediction and so we rely on en-
semble learning with HAL as one of the candidate estimators, thus still retaining the above
guarantee.

SuperLearner Library 1, termed SL1, Avoiding Overfitting

This library will be indicated by ”SL1” in the simulation results.

1. SL.gam3, a gam (Hastie 2017) using degree 3 smoothing splines, screening main terms,
top 10 correlated variables with the outcome and top 6.

2. SL.glmnet 1, SL.glmnet 2 and SL.glmnet 3 (Friedman, Hastie, and Tibshirani 2010)
performed a lasso, equal mix between lasso and ridge penalty and ridge regressions.

3. nnetMain screen.Main (Venbles and B. D. Ripley 2002) is a neural network with decay
= 0.1 and size = 5 using main terms.

4. earthMain (Milborrow 2017) is data adaptive penalized regression spline fitting method.
They allow for capturing the subtlety of the true functional form. We allowed degree
= 2, which is interaction terms with the default penalty = 3 and a minspan = 10
(minimum observations between knots).

5. SL.glm (R Core Team 2017) logistic regression and we used main terms, top 6 correlated
variables with outcome and top 10 as well as a standard glm with main terms and
interactions (glm mainint screen.Main)

6. SL.stepAIC (R Core Team 2017) uses Akaike criterion in forward and backward step
regression

7. SL.hal is the highly adaptive lasso (Benkeser, Kennedy, and Sofrygin 2016)

8. SL.mean returns the mean outcome for assurance against overfitting

9. rpartPrune (Therneau, Atkinson, and B. Ripley 2017) is recursive partitioning with
cp = 0.001 (must decrease the loss by this factor) minsplit = 5 (min observations to
make a split), minbucket = 5 (min elements in a terminal node)

SuperLearner Library 2 termed SL2, More Aggressive, overfits a little

This library will be indicated by ”SL2” in the simulation results. This library is identical
to Library 1, except we added the following learners, which were tuned to maximize cross
validated loss on a few draws from case 2a data generating distribution. Thus these additions
do not severely overfit, in general.

1. SL.ranger (M. N. Wright and Ziegler 2017): A random forest which picked 3 features
at a time formed 2500 trees and had a minimum leaf size set to 10.
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2. SL.xgboost (Chen et al. 2017): One xgboost fit on all main terms and interactions with
stumps (depth 1 trees), allowing a minimum of 3 observations per node, a learning rate
of 0.001 and summing 10000 trees. We also included an xgboost using depth of 4 trees
on main terms only with same shrinkage and minimum observations per node but only
2500 trees.

Case 1: Well-Specified Treatment Mechanism, Misspecified Outcome

The following example, encapsulated in figure 5, demonstrates three things

1. Enormous gains possible with flexible estimation. Using a logistic regression
with main terms and interactions plug-in estimator and the delta method for inference,
yielded a bias of -0.065 (the truth is 0.079), missing almost the entire TE variance and
covering at 0%. The TMLE could not help the initial estimates using the same logistic
regression so reliance on a parametric model can be a disaster as opposed to ensemble
learning.

2. Difference in robustness between estimating causal risk difference and TE variance.
The severely misspecified logistic regression with main terms and interactions initial
estimate for the outcome model and well-specified treatment mechanism yielded a
TMLE for causal risk difference (which is doubly robust) that covered at 95.6%, where
as for TE variance it never covers the truth.

3. The advantage of CV-TMLE over TMLE. The same SuperLearner used for initial
estimates yields some skewing and bad outliers as well as bigger bias and variance for
TMLE as opposed to a normally distributed CV-TMLE sampling distribution. Just
some overfitting by random forest about 20% of the time out of the library of 18 learners
managed to cause outliers for TMLE, ruining normality of the sampling distribution
and causing higher bias and variance, where as CV-TMLE appeared unaffected by
the overfitting. Overfitting means essentially that the metric entropy of the class of
functions considered by random forest was too big. To give some intuition behind the
donsker TMLE condition, an example of a large donkser class is the set of functions
of bounded variation (van der Vaart and Wellner 1996) meaning the function class
is smooth in some sense, not allowing unlimited ups and downs between predictions,
such as overfitting allows. Since the influence curve approximation is defined partially
in terms of the mean outcome model, overfitting causes the class of functions for
the influence curve approximation to be non-donsker as well. When trying to do a
good job estimating the mean outcome model as in this simulation, CV-TMLE allows
highly adaptive machine learning we need to minimize the second order remainder bias
without paying a big price for overfitting.

Simulation Set-up, Case 1

E[Y |A,W ] = Q0 = expit(0.28 ∗A+ 2.8 ∗ cos(W1) ∗A+ cos(W1)− 0.56 ∗A ∗ (W22) + 0.42 ∗
cos(W4) ∗A+ 0.14 ∗A ∗W12). E[A|W ] = g0 = expit(−0.4 ∗W1 + 0.195 ∗W2 + 0.04 ∗W3−
0.06 ∗W4− 0.075), which we will specify model correctly in all cases with a linear logisitic
fit. True Causal Risk Difference = 0.078. True CATE Variance = 0.085.
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Table 1.1: Performance of the Estimators, Case 1

var bias mse coverage

TMLE LR 0.00001 -0.08207 0.00675 0
LR plug-in 0.00005 -0.07134 0.00514 0
CV-TMLE SL2 0.00028 -0.00930 0.00037 0.87375
CV-TMLE SL2∗ 0.00028 -0.00924 0.00037 0.88577
TMLE SL2 0.00057 0.01584 0.00082 0.83100
TMLE SL2∗ 0.00057 0.01591 0.00082 0.86000
TMLE SL1 0.00033 0.00802 0.00040 0.93193
TMLE SL1∗ 0.00033 0.00804 0.00040 0.93994

* indicates causal risk difference and TE variance estimated
simultaneously with 1step tmle covering both parameters for 95%
simultaneous confidence intervals. LR indicates logistic regression
with main terms and interactions. SL1 Library did not overfit
out 20% of the time with one out of 18 algorithms, still causing
outliers, necessitating CV-TMLE as a precaution.

Figure 1.5
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1.3.4 Mixed Results Pointing to a Need for Future Refinements

We again demonstrate how employing targeted learning with CV-TMLE can recover a mis-
specified treatment mechanism as well as outcome models when parametric models are ter-
rible, but coverage is below nominal and at times very poor, depending on the situation.
This is not a problem solely for the case of an observational study as the authors have found
the main culprit in poor coverage to be the second order remainder term consisting of the
integral of true TE function minus estimated TE function squared (section 1.3.2). Standard
parametric models are again disastrous for both cases 2 and 3, never covering the truth
and missing almost all of the VTE as in case 1. Only in case 2 does CV-TMLE, using a
pretty small superlearner library of 8 algorithms including, xgboost, neural networks, glm
with main terms and interactions, earth, sample mean and the highly adaptive lasso (van der
Laan 2016), achieve decent coverage of 83% and reduces bias of the initial estimate from -
0.015 to -0.009. In case 3, CV-TMLE with the same SuperLearner library only covers at 32%.

For both case 2 and case 3 we used the following model for the true treatment mechanism:
E0[A | W ] = expit(.4 ∗ (−0.4 ∗W1 ∗W2 + 0.63 ∗W22 − .66 ∗ cos(W1)− 0.25))
Case 2 true outcome model:

E0[Y | A,W ] = expit(0.1 ∗W1 ∗W2 + 1.5 ∗ A ∗ cos(W1)+

0.15 ∗W1− .4 ∗W2 ∗ (abs(W2) > 1)− 1 ∗W2 ∗ (abs(W2 <= 1)))

Case 3 true outcome model:
E0[Y | A,W ] = expit(0.2∗W1∗W2+0.1∗W22− .8∗A∗(cos(W1)+ .5∗A∗W1∗W22)−0.35)

Supplementary Results

The reader may visit Jonathan Levy’s github for instructions and software on how to re-
produce the results obtained in this paper, as well as more detailed results that were not
included in this manuscript.

1.3.5 Demonstration on Real Data

The CV-TMLE estimator, as detailed in this paper, was applied to a real dataset. GER-INF
is a placebo-controlled randomized trial published in 2002 that evaluated the impact on mor-
tality of low dose steroid administration in patients hospitalized in the intensive care unit
(ICU) for septic shock (Annane et al. 2002). This study was performed in 19 ICUs in France
and enrolled a total of 299 patients. Because steroid supplementation in this context was
expected to be beneficial in patients with relative adrenal insufficiency, a corticotropin stim-
ulation test was performed in all patients. A pre-specified subgroup analysis was planned in
patients who were nonresponders to the corticotropin stimulation test (relative adrenal in-
sufficiency) and in those responders to the corticotropin stimulation test (no relative adrenal
insufficiency). In this sample, 7 days of low dose hydrocortisone associated with fludrocorti-
sone were associated with a reduced risk of death in patients with septic shock. As expected,
this reduction was significant in patients with relative adrenal insufficiency as reflected by a
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lack of response following the corticotropin stimulation test. Because of the apparent hetero-
geneity in treatment effect, at least partially explained by the presence of a relative adrenal
insufficiency, we used the proposed estimator to quantify treatment effect variability (VTE)
across the strata of patients.

We controlled for the following confounders in fitting the outcome model: IGS2 or SAPS2
severity score (Simplified Acute Physiology Score to assess mortality), Sequential Organ Fail-
ure Assessment (SOFA) severity score at baseline, lactate level (LACTA), cortisol level before
corticotropin (CORT0), an indicator of responding to the corticotropin stimulation test (RE-
SPONDER), site of infection (site), mechanical ventilation at baseline (VM0), patient origin
(hospital acquired infection or not) (origine), indicator of medical, elective surgery or ur-
gent surgery (typeadmission), maximum difference in cortisol concentration before and after
stimulations (DELTA CORTmax), indicator of use of etomidate for anesthesia (drug known
to alter the adrenal function), blood sugar and the pathogen responsible for the infection
(GLYC) and the responsible pathogen (GERME). In this case, the treatment assignment
was random and thus we can identify VTE from the data as a measure of how much of the
heterogeneity in treatment effect is due to confounders normally used to assign treatment.
We note, in the case of variables missing data, we create an indicator of missingness and use
the median or, in the case of categorical variables, the most popular category as an imputed
value. The table below summarizes our data.
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GER-INF Summary, N=299

Variable

Outcome: Renal Failure
Yes 173
No 126

Treatment: Rec. Steroid
Yes 150
No 149

Age in yrs 60.8 (16.1)
IGS2 62.6 (23.6)
SOFA0 11 (3.2)

missing 24
LACTA 4.4 (3.3)
CORT0 23.3 (30.9)
DELTA CORTmax 6.1 (22.3)
RESPONDER
GLYC 175.8 (106.2)

missing 6
Yes 70
No 229

VMO
Yes 298
No 1

origine
Yes 112
No 187

etomidate
Yes 76
No 213

site
Multiple 144
Lung 89
GI 31
Soft Tissue 16
Bacteremia 6
Other 12
missing info 1

typeadmission
1: 179
2: 10
3: 110

GERME
type 1 72
2 38
3 4
4 2
5 24
6 9
7 150

We provide estimates below for ATE and VTE simultaneously and used the delta method to
also give a confidence interval for the

√
V TE, because such is on the scale of measurement

of ATE. We can see the left bounds of the confidence interval for VTE and
√
V TE strayed

into the negative numbers, which are not possible estimates for such parameters. Log-scaling
the confidence intervals only make them excessively large and therefore not useful due to
the unscaled confidence bands centering close to 0. If we reference our discussion about
skewing in section 3.2.1, we see that if the true VTE were as small as our estimate, then
our sampling distribution under the best case scenario of well-specified outcome model is
skewed. We would need a true VTE of around 0.06 to have any hope of having normal
sampling distributions for estimating VTE. There is also the issue of second order remain-

22



der term bias as we discussed, which could account for missing a truly larger VTE in our
estimates. The second order remainder term in Theorem 1.2.1 is the square of the L2 norm
bias in estimating the TE function so, prioritizing the TE function in our outcome model
estimation is the subject for future work to improve TE function estimation in finite samples.

Table 1.2: CV-TMLE Results for Simultaneous Estimation of ATE, VTE and sqrt(VTE)

est se lower upper

ATE -0.088 0.050 -0.199 0.023
VTE 0.002 0.004 -0.008 0.012

sqrt(VTE) 0.045 0.048 -0.061 0.152

SuperLearner

We used a SuperLearner library consisting of 40 algorithms, including main terms and inter-
actions when applying any regression methods, such as logistic regression, bayes generalized
linear models, lasso and ridge regressions (combinations of L1 and L2 penalty) and earth,
which uses data adaptive regression splines. For boosting trees (xgboost), we used depth 2
trees to allow interaction as well as depth 1 trees with main terms and interactions as the
covariates. Also for boosting, we used different hyperparameters for the number of trees in
combination with different learning rates. We used recursive partitioning and random forest,
which are tree methods and therefore account for interactions, as well as neural networks
which are more non-parametric approaches. We also applied k nearest neighbors for predic-
tion. In addition we applied screening of the top 25 correlated variables with the outcome
in conjunction with then running the machine learning algorithm and did the same for the
top 5 variables when running bayes generalized linear models as well as glm. The convex
combination of learners, or SuperLearner, had the lowest cross-validated risk (negative log-
likelihood) of 0.536 with random forest algorithms and the lasso with all interactions included
as variables performing equally well. The discrete SuperLearner (Polley et al. 2017), or the
one that chooses the lowest risk algorithm to use for each fold’s validation set predictions,
had a cross-validated risk of 0.57. Without knowing which algorithm would perform the
best a priori, we can see SuperLearner did the job it was supposed to do in combining our
ensemble in an optimal way, according to cross-validated risk.

1.3.6 Discussion

We can see there are two great challenges in estimating VTE, one being the fact the pa-
rameter is bounded below at 0, skewing and biasing the estimates when the true variance
is too small for the sample size. In the future we might develop an improvement over log-
scaling to form adjusted confidence bounds if they stray into the negative zone. To our eyes,
this problem is not as crucial as obtaining reliable inference when the true variance is large
enough to be estimated for the sample size. On this front the second order remainder term,
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−E0 (b0(W )− b(W ))2, has proven difficult to contain in finite samples. We are certain for
larger samples we can show that a Superlearner library including the highly adaptive lasso
(Benkeser and van der Laan 2016) will achieve the necessary rates of convergence for this
term to be truly second order, however, such is not trivial to show conclusively via very
time-consuming and computer intensive simulations and besides, a sample size of 1000 for
4 covariates and treatment is certainly of practical importance. To this end, the authors
plan to propose in a follow-up paper, a novel way to estimate the TE function that will also
yield estimates of the outcome predictions that are necessarily between 0 and 1, all the while
performing asymptotically as good as just fitting the outcome model. We need TE function
estimates, b(W ), that are compatible with the outcome predictions in order to perform the
crucial targeting step of the TMLE procedure. i.e., we need b(W ) = Q̄(1,W )− Q̄(0,W ).

Another approach to yielding better coverage would be to account for the second order
remainder term via the use of the new highly adaptive lasso (HAL) non-parametric bootstrap
(van der Laan 2017), to form our confidence intervals. HAL, as mentioned previously in this
paper, guarantees the necessary rates of convergence of the second order remainder terms
under very weak conditions and is thus guaranteed to yield asymptotically efficient TMLE
estimates (van der Laan and Gruber 2016), using the empirical variance of the efficient
influence curve approximation for the standard error. However, in finite samples such a
procedure yields lower than nominal coverage due to the unforgiving second order remainder
term of non-doubly robust estimators as we have for VTE. We feel the HAL CV-TMLE,
using a non-parametric bootstrap addresses this issue and accounts for the second order
bias, the subject of more future work. Perhaps best will be performing the novel TE fitting
procedure with the HAL bootstrap.

1.4 TE CDF

Ψ(P ) = EP I(b(W ) ≤ t) for P∈M

Ψ is not pathwise differentiable (van der Vaart 2000) so instead we consider the smoothed
version of the parameter mapping, using kernel, k, with bandwidth, δ, which is pathwise
differentiable, as a strategy to obtain inference for both the smoothed parameter of the TE
CDF itself. Here we will suppress k in the notation for convenience:

Ψδ,t(P ) = Ew
∫
x

1

δ
k

(
x− t
δ

)
I(b(W ) ≤ x)dx =

∫
x

1

δ
k

(
x− t
δ

)
F (x)dx

NOTE: We assume throughout this paper, Pr(b(W ) = x) = 0 for all values, x. In other
words, our TE distribution function is continuous.

A Brief Note on Pathwise Differentiability

Taken from van der Vat, 2000: A parameter, Ψ, is pathwise differentiable relative to the
tangent space of P , if for every submodel Pt with score function, g, in the tangent space,
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there exists a continuous linear map from Ψ̇P : L2(P )→ Rk such that as t vanishes

Ψ(Pt)−Ψ(P )

t
−→ Ψ̇P (g)

A classic case of a non pathwise differentiable parameter is the density for a continuous
distribution (in the absence of any parametric assumptions) at a point which, depends on
a set of measure 0. In our case, the pathwise derivative for the TE CDF at a given value,
t, does not exist because the indicator function is not differentiable where it jumps at the
value of t. Many of the TE values far away from t will not be very helpful in estimating
the CDF at t with much precision, so we focus on a bandwidth of TE values around t in a
similar manner to a kernel density estimator. As n becomes larger we want to decrease the
bandwidth so as to minimize the mean squared error.

The pathwise derivative defined above has a representation as
∫
gD∗(P )dP , where D∗(P ) is a

unique element of the tangent space called the efficient influence curve or canonical gradient,
whose variance is the cramer-rao lower bound (minimum variance possible) for any regular
asymptotically linear estimator of the parameter. KnowingD∗(P ) enables the construction of
estimators for non-parametric and semi-parametric models, that are asymptotically efficient
in that asymptotically their variance attains the cramer-rao lower bound. Examples of such
estimators are the one-step estimator and targeted maximum likelihood estimator (TMLE)
or its cross-validated counterpart, CV-TMLE (van der Laan and Daniel Rubin 2006; Zheng
and van der Laan 2010; van der Laan and Rose 2011). We prefer the CV-TMLE and
TMLE, because they have the advantage of being substitution estimators and, therefore,
obey natural parameter bounds which, has been shown to improve stability in finite samples
(van der Laan and Rose 2011). For our case, if we plug in a model for many points on the
TE CDF, we will be guaranteed that the estimates with be both monotonic and bounded
within [0,1], where a non-substitution estimator holds no such guarantees. As we will see,
CV-TMLE only requires one condition for asymptotic linearity as opposed to two for the
TMLE and thus, it is our preferred estimator here.

1.4.1 The Cross-Validated Targeted Maximum Likelihood Esti-
mator, CV-TMLE

Scaled continuous outcomes

Referring to section 1.2.1, the scaling of continuous outcomes changes nothing of importance
because when we evaluate our parameter on the original scale we are smoothing the TE CDF
E(b(W ) ≤ t) = E(b(W )/(M−m) ≤ t/(M−m)), the parameter mapping for scaled outcomes.

Here, we will construct a clfm-based TMLE (see section 3.4). As discussed in section 1.3.1, we
noticed no appreciable difference in performance for the three basic options in constructing a
TMLE, however, the clfm-based TMLE here is considerably faster than the one-step TMLE.
Both clfm TMLE and one-step TMLE both employ a one-dimensional submodel, which
might prove useful in dimension reduction for high dimensional parameter. To construct our
TMLE we need to know the efficient influence curve of our parameter of interest (van der
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Vaart 2000) which, is a d-dimensional curve (for each of the d components of the parameter
mapping), where the ith component is given by

D?
Ψδ,ti

(P0)(O)=
−1

δ
k

(
b0(W)− ti

δ

)
∗

2A− 1

g0(A|W)
(Y − Q̄0(A,W))+

∫
1

δ
k

(
x− ti

δ

)
I(b0(W) ≤ x)dx−Ψδ,ti (P0)

where ti is a given TE value (average treatment effect level), k is the kernel and bandwidth
is δ. The reader may find the proof in theorem 3.1.8, section 3. From here we will shorten
the notation and refer to D∗ as the d−dimensional efficient influence curve with components
D?
i = DΨδ,ti

. We define a clfm as follows from Levy, 2018c:

Definition 1.4.1. A canonical 1-dimensional locally least favorable submodel (clfm) of an
estimate, P 0

n , of the true distribution, P0 is

{P 0
n,ε s.t

d

dε
PnL(P 0

n,ε)

∣∣∣∣
ε=0

= ‖PnD?(P 0
n)‖2, ε ∈ [−δ, δ]} (1.8)

where P 0
n,ε = P 0

n and ‖ · ‖2 is the euclidean norm.

We remind the reader, the initial estimate, P 0
n , of P0 is defined by Q̄0

n(A,W ) an estimate
of the outcome regression, Q̄0, gn, an estimate of the treatment mechanism, g0, and QW,n,
the empirical distribution, which estimates QW,0, the distribution of W . We denote the
empirical density as qW,n, which esimtates the true density, qW,0, of W . We can then define
the d-dimensional curve

H0(A,W ) = (H0
1 (A,W ), H0

2 (A,W ), ...,H0
d(A,W ))

=
1− 2A

δgn(A|W )

(
k

(
b0n(w)− t1

δ

)
, k

(
b0n(w)− t2

δ

)
, ..., k

(
b0n(w)− td

δ

))

where b0
n(Wi) = Q̄0

n(1,W ) − Q̄0
n(0,W ). The initial empirical risk for the outcome model is

given by

PnL(Q̄0
n) = − 1

n

n∑
i=1

[
YilogQ̄0

n(Ai,Wi) + (1− Yi)log(1− Q̄0
n(Ai,Wi))

]
Our efficient influence curve approximation at the initial estimate is given by D∗(P 0

n). Now
define the elements of the clfm of initial estimate, P 0

n , by keeping gn and qW,n fixed and
defining

Q̄0
n,ε(A,W ) = expit

(
logit(Q̄0

n(A,W )) + ε

〈
H0(A,W ),

PnD
∗(P 0

n)

‖PnD∗(P 0
n)‖2

〉
2

)
We can then verify this satisfies the definition of clfm above when we use quasibinomial loss
for a scaled continuous outcome or negative log-likelihood loss for a binary outcome. This
then gives rise to the iterative procedure detailed below in steps 1 through 4 below, which
will cover both CV-TML and TML estimators. The CV-TMLE will be the same algorithm
as that by Zheng and van der Laan, 2010 when using a pooled regression to fit the fluctuation
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parameter (the εk’s below).

1.4.2 TML Algorithm

step 1: Obtaining Initial Estimates We obtain initial estimates of the data generating
distribution identically to section ??.
step 2:
Starting with m = 0:
If |PnD∗j (Pm

n )(O)| < log(n)σ̂(D∗j (P
m
n )(O))/n1/2 for all j then P ?

n = Pm
n and go to step 4.

Otherwise go to step 3. σ̂(·) refers to the sample standard deviation of values taken over
the data. To provide some clarity: If n = 1000 then log(n) ≈ 7, so the above stopping
criterion ensures any bias is second order at that point. More iterations after this are only
time-consuming and do not help with coverage to any appreciable extent.

step 3:
Y as the outcome, offset = logit(Q̄m

n )(A,W ) and so-called clever covariate is computed as〈
(Hm−1(A,W ),

PnD
∗(Pm

n )

‖PnD∗(Pm
n )‖2

〉
2

.

where 〈·, ·〉2 is the dot-product or euclidean inner product. Assume εm is the coefficient
computed from the logistic regression defined by

Q̄m+1
n (A,W ) = expit

(
logit

(
Q̄m
n (A,W )

)
+ εmnH

m(A,W )
)

We then update the models by the following:

Q̄m+1
n (A,W ) = expit

(
logit(Q̄mn (A,W ))− εmn

〈
(H1(Pmn )(A,W ),

PnD
∗(Pmn )

‖PnD∗(Pmn )‖2

〉
2

)
(1.9)

set m = m+ 1 return to step 2.

step 4:
The TMLE procedure yields Q̄∗n(A,W ) and our estimator is then a plug-in estimator, with
jth component:

Ψδ,tj(P
?
n) =

1

n

n∑
i=1

1

δ

∫
k

(
x− tj
δ

)
I(b(Wi) ≤ x)dx

and standard errors are given by

σ̂n(D∗j (P
∗
n))

√
n

where σ̂n(D∗j (P
∗
n)) is the sample standard deviation of {D∗j (P ∗n)(Oi) | i ∈ 1 : n} and

b(Wi) = Q̄∗n(1,Wi)− Q̄∗n(0,Wi), the TE function estimate.
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Performing a CV-TMLE

To perform a CV-TMLE, we apply the same procedure as in section 1.3.1 and continue with
steps 2 through 4.

Simultaneous Estimation and Confidence Bounds

Simultaneous confidence intervals are obtained in the identical way as for (ATE, V TE),
discussed in section 1.3.1

1.5 TMLE conditions for Estimating Ψδ(P0)

importance of the TMLE mapping is we then have

Theorem 1.5.1.

Ψδ,tj(P
?
n)−Ψδ,tj(P0) = (P 0

n − P0)D∗j (P
?
n) +Rj,2(P ?

n , P0)

where R2(P ∗n , P0) is given by

−1

δ

∫ [
k

(
b∗n(w)− t

δ

)((
g0(1|w)

gn(1|W )
− 1

)(
Q̄0(1, w)− Q̄∗n(1, w)

)
−
(
g0(0|w)

gn(0|w)
− 1

)(
Q̄0(0, w)− Q̄∗n(0, w)

))]
dQW,0(w)

+
1

δ

∫ [∫ b0(w)

b(w)
k

(
x− t
δ

)
dx+ k

(
b(w)− t

δ

)
(b(w)− b0(w))

]
dQW,0(w)

Our remainder term can be bounded is as follows:

R2,i(P
0
n , P0) =

1

δ
O
(
‖gn − g0‖L2

P0
‖Q̄0

n − Q̄0‖L2
P0

)
+

1

δ
O
(
‖b0
n − b0‖2

∞
)

or
1

δ
O
(
‖g0

n − g0‖L2
P0
‖Q̄0

n − Q̄0‖L2
P0

)
+

1

δ2
O
(
‖b0
n − b0‖2

L2
P0

)
The reader may see section 3.2.3 for the proof.

The Use of Highly Adaptive Lasso

When using the highly adaptive lasso (HAL) (van der Laan 2016; van der Laan and Gruber
2016) to perform the initial estimates, we are guaranteed ‖Q̄0

n− Q̄0‖L2(P0) and ‖gn−g0‖L2(P0)

are oP (n−0.25) under the conditions that Q̄0 and g0 are of bounded sectional variation norm
and continuous from the right with left-hand limits. The use of HAL along with the previous
theorem and Theorems 1.2.1 and 1.2.2 yield the following corollary:

Corollary. When using HAL to form initial estimates of Q̄0 and g0, the TML estimator of
Ψδ,ti(P0) (fixed bandwidth, δ) will be asymptotically efficient.

The reader may note that this parameter does not allow for doubly robust estimation.
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1.5.1 Allowing the Bandwidth, δ, to Vanish for n Large

The reader may notice that below we bound the remainder term in two different ways in
Theorem 1.5.1, one of which has δ in the denominator and the other which has δ2 in the
denominator. If we let δ approach 0 as a function of n, then we would prefer to only have δ
in the denominator so as to allow δ to approach 0 faster and hence, a lower mean squared
error. However, that condition is more difficult to guarantee as we will point out.

We will refer to the following facts, where P 0
n is an initial fit of P0 and P ∗n is a TMLE update

of P 0
n .

1. The asymptotic variance of
√
n(Ψδ,ti(P

∗
n)−Ψδ,ti(P0)) is of order 1/δ. See the proof of

this fact in theorem 3.2.4.

2. The bias between unsmoothed TE CDF value at ti and the smoothed parameter,
Ψti(P0) − Ψδ,ti(P0), is of order δJ , where J is the order of the kernel (power of the
kernel’s first non-zero moment) and we assume the TE CDF to have J continuous
derivatives. The reader may see the proof of this fact in theorem 3.2.5 in the Appendix.

Theorem 1.5.2. Assume the TE CDF has J continuous derivatives. Assume we allow our
bandwidth = δn = O(n−1/(2J+1)). Referring to corollary 1.5, then if rgn + rQ̄n ≤

J+1
2(2J+1)

and
either of

• A1: ‖Q̄0
n − Q̄0‖∞ = oP

(
− J+1

2(2J+1)

)
• A2: ‖Q̄0

n − Q̄0‖L2(P0) = oP

(
− 2J+3

4(2J+1)

)
√
δnnR2(P 0

n , P0)
p−→ 0

This statement follows immediately from Theorem 1.5.1 at the beginning of this section.

Theorem 1.5.3. If using bandwidth of order δn = O(n−1/(2J+1)) and HAL to form initial
predictions then if we use a kernel of order J > 4r+3

2
and the TE CDF has J continuous

derivatives,
√
δnnR2(P 0

n , P0)
p−→ 0.

The statement follows from the fact HAL guarantees ‖f0 − f 0
n‖L2(P0) = OP (n−1/4−1/8(r+1)),

when fitting a function, f0 of finite sectional variation norm that is continuous from the right
with left-hand limits (van der Laan 2016).

Remark. The motive for this theoerm is that if we wanted to minimize the MSE based on
items 1 and 2 above (theorems 3.2.5 and 3.2.4 in the appendix) as for a kernel density
estimator, we would want δn = O(n−1/(2J+1)). However, we also want the remainder term to
become truly second order when blown up by

√
δnn in order for

√
δnn(Ψδn,ti(P

∗
n)−Ψδn,ti(P0))

to have a limiting distribution. Thus, perhaps higher order kernels can be useful in relaxing
the requirements of theorem 1.5.2 in fitting the treatment mechanism and, especially, the
outcome model. For fitting nuisance parameters that are functions of variables of dimension
5, we would need a kernel of order 12 or greater to guarantee theorem 1.5.1. If HAL were
to guarantee ‖f0 − f 0

n‖L∞ = OP (n−1/4−1/8(r+1)) then using a kernel of order J > 2r+1
2

and
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assuming necessary smoothness on the TE CDF, would guarantee
√
δnnR2(P 0

n , P0)
p−→ 0.

Thus, if r = 5, we only require a kernel of order 6 and hence, only 6 continuous derivatives
for the TE CDF.

The reader may consult Appendix 3.2.2 to see how the polynomial kernels used in this
paper were constructed. These kernels enabled very fast estimation because they could be
integrated exactly in closed form and one would need to compute as many integrals as the
sample size for each iteration of the CV-TMLE algorithm.

1.5.2 Simulations for Fixed Bandwidth and When Using Band-
width Selection

Well-specified Models

For well-specified logistic models where the data generating system is given by the following:
W is a random normal, Pr(A = 1 | W ) = g(A | W ) = expit(.2 + .2 ∗W ) and E[Y | A,W ] =
expit(A+2.5∗A∗W+W ). The TMLE’s using the MLE as an initial estimate performed very
well, with normal sampling distributions, nominal coverage (93% or higher) of the smoothed
parameter, as expected, and did so for all kernels if we used bandwidth n−1/(2J+1) where J
is the order of the kernel we and let n attain values of 1000, 2500, 5000, 10000, 25000 and
50000. The MSE was lowest for the well-specified MLE plug-in, also as expected, but not
appreciably. In the highly unlikely scenario that we correctly specify the outcome model
with a parametric form, TMLE performance appears very reliable for covering the smoothed
parameter and yields vanishing standard errors as sample size grows.

A Method for Choosing Bandwidth for a Given Kernel

We would like to form confidence bounds for the non-pathwise differentiable parameter or
unsmoothed ”true” parameter, Ψ(P ) = EP I(b(W ) ≤ t) for P ∈ M, and propose using
some of the concepts in Chapter 25 of Targeted Learning in Data Science: Causal Inference
for Complex Longitudinal Studies by van der Laan and Rose, 2018. We start with a
largest bandwidth of size n−1/(2J+1) where J is the order of the kernel. Then we divide the
bandwidth into 20 equal increments from n−1/(2J+1)/20, 2n−1/(2J+1)/20, ..., n−1/(2J+1). We
then find the smallest set of 5 or more consecutive bandwidths that are monotonic estimates
with respect to the bandwidth. If no such 5 or more consecutive bandwidths are found
then we choose the bandwidth n−1/(2J+1). Let us call the consecutive bandwidth sequence,
Bc = {h1, ..., hc}, where h1 is the smallest. We also monotonize the variance so as to force it
to be increasing as the bandwidth gets smaller. We then form confidence intervals using the
monotonized variance for each bandwidth in Bc. If the sequence of estimates is decreasing
(increasing) as bandwidth decreases (for bandwidths in Bc), then we choose the confidence
interval with the minimum (maximum) right (left) bound. The idea is that we are minimizing
the MSE while maintaining nominal coverage, assuming that the smoothed parameters are
monotonic for the bandwidths in Bc and that this monotonicity represents the monotonicity
as the bandwidth approaches 0. We still need to refine the theory as our increments for
the bandwidth (20 in this case) and definition of being monotonic (5 consecutive or more
as described above) are somewhat arbitrary. On the positive side, we noticed coverage of
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the smoothed parameter maintained nominal levels as n grew to 50,000 when applying our
bandwidth selector. Similar results held for lesser order kernels as well. Figure 1.6 below
displays the heuristic behind our bandwidth selector.

Table 1.3: coverage of smoothed parameter, kernel is order 10

n = 1000 n = 2500 n = 5000 n = 10000 n = 25000 n = 50000

TE meth fixed meth fixed meth fixed meth fixed meth fixed meth fixed

−0.145 0.907 0.947 0.920 0.949 0.916 0.941 0.935 0.948 0.944 0.949 0.944 0.948
−0.085 0.911 0.953 0.950 0.946 0.939 0.934 0.958 0.962 0.942 0.947 0.955 0.950
−0.025 0.925 0.944 0.950 0.960 0.958 0.948 0.949 0.948 0.947 0.941 0.948 0.945
0.035 0.916 0.940 0.929 0.949 0.942 0.966 0.949 0.959 0.952 0.954 0.939 0.937
0.095 0.934 0.951 0.934 0.949 0.946 0.942 0.943 0.943 0.944 0.948 0.944 0.947
0.155 0.933 0.952 0.942 0.946 0.936 0.948 0.944 0.952 0.942 0.946 0.948 0.942
0.215 0.927 0.958 0.927 0.951 0.932 0.941 0.934 0.942 0.953 0.954 0.951 0.939
0.275 0.893 0.955 0.913 0.955 0.905 0.951 0.914 0.935 0.926 0.942 0.938 0.949

meth means we applied the bandwidth selection method, fixed means we used bandwidth

n−1/(2J+1) where J is the kernel order.

Table 1.4: coverage for true parameter, kernel is order 10

n = 1000 n = 2500 n = 5000 n = 10000 n = 25000 n = 50000

TE meth fixed meth fixed meth fixed meth fixed meth fixed meth fixed

−0.145 0.671 0.001 0.436 0 0.298 0 0.294 0 0.338 0 0.325 0
−0.085 0.612 0.136 0.593 0.024 0.743 0.001 0.836 0 0.870 0 0.878 0
−0.025 0.770 0.166 0.615 0.019 0.405 0.001 0.207 0 0.076 0 0.032 0
0.035 0.850 0.071 0.924 0.001 0.927 0 0.938 0 0.903 0 0.830 0
0.095 0.747 0.070 0.895 0 0.912 0 0.924 0 0.906 0 0.801 0
0.155 0.750 0.251 0.859 0.020 0.903 0 0.907 0 0.911 0 0.945 0
0.215 0.695 0.947 0.717 0.861 0.793 0.692 0.855 0.370 0.867 0.009 0.877 0
0.275 0.858 0.008 0.817 0 0.707 0 0.493 0 0.147 0 0.010 0

meth means we applied the bandwidth selection method, fixed means we used bandwidth

n−1/(2J+1) where J is the kernel order.
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Figure 1.6

1.5.3 Simulations for Misspecified Models

We call these simulations ”misspecified” because we use the highly adaptive lasso or HAL
(van der Laan and Gruber 2016) to recover the model without any specification on functional
forms. The data generating system consisted of the following functions in the order listed.
W is a random normal, Pr(A = 1 | W ) = g(A | W ) = expit(−.1− .5 ∗ sin(W )− .4 ∗ (|W | >
1) ∗W 2) and E[Y | A,W ] = expit(.3 ∗ A + 5 ∗ A ∗ sin(W )2 − A ∗ cos(W )). We simulated
1100 draws from the above data generating system and computed simultaneous TMLE’s for
the TE values -0.098, -0.018 0.062, 0.142, 0.222, 0.302, 0.382 and 0.462 using bandwidth
2500−0.2 and an order 1 polynomial kernel. Similar results held for the uniform kernel.

Here we show the huge advantage of data adaptive estimation in obtaining the initial es-
timates for CV-TMLE, using the highly adaptive lasso. TMLE glm used used logistic re-
gression with main terms and interactions for the initial estimates in CV-TMLE, while
TMLE HAL used HAL for the initial estimates. We can see it is catastrophic to use logis-
tic regression here while using HAL with TMLE procedure achieved very close to nominal
coverage with essentially no bias (see table 1.5). Targeting helped remove bias from the
HAL initial estimates as well, shown in Figure 1.7, for one of eight points on the TE CDF
simultaneously estimated by TMLE HAL. The other seven points had very similar sampling
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distributions and bias.

1.5.4 Software

The reader may visit https://github.com/jlstiles/TECDFsim (Levy 2018d) for procedures
on how to reproduce the results here-in and also visit https://github.com/jlstiles/TECDF
(Levy 2018b) for software on performing the targeting step after obtaining initial estimates.
This estimator is also available in the package https://github.com/tlverse (Coyle, Malenica,
et al. 2018b), where the reader can also perform ensemble learning.

Table 1.5: TMLE with HAL initial estimates vs glm, coverage of smoothed parameter

MSE TMLE hal MSE TMLE glm coverage TMLE hal coverage TMLE glm

TE = -0.098 0.00083 0.02003 0.91727 0
TE = -0.018 0.00089 0.01683 0.92545 0.01818
TE = 0.062 0.00087 0.00528 0.93727 0.58455
TE = 0.142 0.00071 0.00373 0.94909 0.81000
TE = 0.222 0.00061 0.02173 0.96182 0.10455
TE = 0.302 0.00065 0.04723 0.95182 0
TE = 0.382 0.00069 0.05803 0.94455 0
TE = 0.462 0.00067 0.04528 0.94091 0

simultaneous TMLE hal coverage was 90%, TMLE glm coverage was 3%
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Figure 1.7: Smoothed TE CDF Sampling Distributions

1.6 Discussion

We have developed an estimator to efficiently estimate, under conditions, the kernel smoothed
version of the TE CDF and also allow the bandwidth to approach zero and guarantee a nor-
mal limiting distribution for the TE CDF itself. Furthermore, our estimator does not rely
on any parametric assumptions on the data generating distribution. We have shown our
estimator hinges on data adaptive estimation, particularly the use of the highly adaptive
lasso, to make our initial estimates in the targeted learning (van der Laan and Rose 2011)
framework. The TML update helps eliminate bias and provides us with immediate infer-
ence for the smoothed parameter via the sample standard deviation of the efficient influence
curve approximation. Our simulations have shown that for well-specified models, choosing

the bandwidth of optimal order n−
1

2J+1 (and hence a vanishing bandwidth in n), assuming
J continuous derivatives for the TE CDF, provides normal and unbiased sampling distribu-
tions for the smoothed parameter.
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The next step is to develop a way to optimally (smallest MSE possible) select the bandwidth,
δn, and kernel so that the estimator minus the truth blown up by

√
nδn is normally distributed

and covers the TE CDF nominally. Our bandwidth selector in this paper still gives nominal
or near-nominal coverage of the smoothed parameter as the bandwidth vanishes for large n,
but is not yet reliable for covering the TE CDF itself, though we show it is a big improvement

over setting the bandwidth to n−
1

2J+1 . Our bandwidth selector relies on the assumption that
the smoothed parameter is monotonically increasing or decreasing toward the unsmoothed
parameter as the bandwidth vanishes. Our method of determining this monotonicity is
somewhat arbitrary and it also remains to be seen how this monotonicity generally holds for
small bandwidths. For instance, if the monotonicity changes direction for a small bandwidth,
our proposed bandwidth selector might be problematic.
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Transporting Stochastic Direct and
Indirect Effects

2.1 Motivation

Often, an intervention, program, or policy that works in one place or population fails to
replicate in another place or population (Rudolph, Schmidt, et al. 2018) or can even have
unintended harmful effects (Kling, Liebman, and Katz 2007). This is problematic from a
public policy or public health perspective in that the goals of such interventions are to help—
not harm, and problematic from a financial perspective in that limited resources may be not
be spent optimally.

When such initiatives fail to replicate or have unintended effects in new populations, trans-
portability theory and methods offer a chance to understand why. Transportability is the
ability (based on identifying assumptions) to transport a causal effect from a source popu-
lation to a new, target population, accounting for differences between the two populations
(e.g., differences in compositional factors, treatment adherence, etc.) (Pearl and Bareinboim
2014). Previous work developed estimators to transport total effects from a source to target
population (Rudolph and van der Laan 2017) or, similarly, to generalize effects from a sample
to the population (Miettinen 1972; Stuart et al. 2011; Cole and Stuart 2010; Frangakis 2009).

In some cases, examining transportability of the total effect may shed light on reasons for
lack of replication. However, in other cases, transporting the total effect may not identify the
relevant differences and it may be beneficial to go further and examine transportability of
the underlying mediation mechanisms. Although there has been work on the identification
on transported indirect effects (Bareinboim and Pearl n.d.; Pearl and Bareinboim 2014), we
are not aware of any previous work developing estimators for transporting mediation effects
(direct and indirect effects) from a source to target population. Thus, we address this re-
search gap by proposing several different estimators of stochastic direct and indirect effects:
a simple inverse-probability of treatment weighted estimator, a doubly robust estimator that
solves the estimating equation, and a doubly robust, efficient substitution estimator in the
targeted minimum loss-based framework.
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2.2 Data and Model

The full data comes from a structural causal model (SCM) (Pearl 2000) to which we would
like to have access in order to find causal parameters of interest. We can consider a draw
from unknown measurements, U = (US, UW , UA, UZ , UM , UY ) ∼ PU . and then the generation
of variables in the following time ordering.

S = fS(US)

W = fW (UW , S)

A = fA(UA,W, S) in this case, just fA(UA)

Z = fZ(UZ , A,W, S)

M = fM(UM , Z,W, S)

Y = fY (UY , Z,W,M)

Setting O = (Y,M,Z,A,W, S), we may write (U,O) ∼ PUO ∈ MF , the full-data model. As
in the previous paper by Rudolph et. al. on stochastic direct and indirect effects (Rudolph,
Sofrygin, Schmidt, et al. 2017) we consider A to be a randomly assigned instrument which
has no arrow in the directed acyclic graph (Pearl 1995) to Y or M. S indicates the site, Y is
an outcome (either continuous or binary), M is a mediator, Z is a confounder on the causal
pathway from treatment, A, to M and W is a vector of confounders. The observed data is
a random variable (S × Y S,M,Z,A,W, S) ∈ M, the observed data model. We can see the
observed data model is a subset of the full-data model in that we observe (S,W,A, Z,M)
directly out of the full-data but Y is only observed out of the full-data when S = 1. Our full
data model and observed data model are both semi-parametric due to the aforementioned
restrictions but we can also perform the same analysis here-in under non-parametric models,
i.e., as in an observational study where we can allow Y and M to be functions of A as well
as their preceding variables 3.1.2. We will refer to the semi-parametric model as MI and
the non-parametric model as MII .

2.3 Parameter of Interest

In (Rudolf et al.) the authors defined a stochastic intervention parameter for a model not
including S, where the intervention assigns M according to probability defined by

ĝM |a∗,W (M | W ) =
∑
z

Pr(M | Z = z,W )Pr(Z = z | A = a∗,W )

The parameter of interest was defined as Ψ(PUX) = E
[
Ya,ĝM|a∗,W

]
where the expectation is

taken over the full data model and Ya,ĝM|a∗,W is the outcome under the stochastic intervention
after having assigned treatment, a. We wish to transport this parameter to a new site where
the outcome was not observed (S = 0):

ΨF (PUX) = E
[
Ya,ĝM|a∗,W,s | S = 0

]
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where

ĝM |a∗,W,s(M | W ) =
∑
z

Pr(M | Z = z,W, S = s)Pr(Z = z | A = a∗,W, S = s)

where s is either 1 or 0, depending on how one wants to define the stochastic intervention
based on the observed data. The site need not be involved at all in the definition of ĝ but
here we will assume we have defined ĝ based on the data for one of the sites and hence we
will place an s in the subscript of the name of the function to indicate such.
Our parameters of interest are the stochastic direct effect:

ΨF
SDE(PUX) = E

[
Ya=1,ĝM|a∗=0,W,s

| S = 0
]
− E

[
Ya=0,ĝM|a∗=0,W,s

| S = 0
]

Our parameters of interest are the stochastic indirect effect:

ΨF
SIE(PUX) = E

[
Ya=1,ĝM|a∗=1,W,s

| S = 0
]
− E

[
Ya=1,ĝM|a∗=0,W,s

| S = 0
]

2.4 Identifiability

In order to identify the parameter of interest we will need to impose additional non-testable
assumptions on MF and M, listed below.

1. Positivity: For all S and W we need a positive probability of assigning any level of
treatment, A=a. For all combos of S,W and A = a we need to have a positive
probability for any level of Z. For S = 1 and all combos of Z and W we need a
positive probability of any level of the mediator, M .

2. Common model assumption: E [Y |M,Z,W, S = 1] = E [Y |M,Z,W, S = 0].

3. Sequential Randomization: Yam ⊥ A | W,S and Yam ⊥ M | W,A = a, Z, S. We treat
the time ordering as per the structural equations of section 1 and therefore consider
our situation at hand similar to a two-time point longitudinal intervention where at
the first time point, we intervene to set the treatment, A = a. Then we impose the
stochastic intervention for the mediator, M , which plays role of treatment for what
could be considered the second time point. Yam is therefore the potential outcome under
intervening on the structural equations, setting treatment to a and then downstream,
setting the mediator to m.

Note on notation: Any subscript used is only for descriptive purposes and is not to be con-
sidered a variable. For instance, we use a capital letter in pY , the conditional density of Y ,
because it is a density of the random variable Y given the past variables. We use W in the
subscript for ĝM |a∗,W,s because it is a conditional density of random variable M given random
variable W , and values a∗ and s, for which a lower case letter indicates they are fixed and
the same for all participants. As arguments, sometimes we wish to use lowercase variables
as when using the integral notation and at other times we wish to use uppercase letters
when thinking of random variables, as in the expectation notation. We have the following
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identifiability result.

Theorem 2.4.1.

Ψ(P ) = ΨF (PUX) = E
[
E
[
EĝM|a∗,W,s

[
E
[
Y |M,Z,W, S = 1

]
|W,Z

]
|W,a, S = 0

]
|S = 0

]
= E

[
E
[∑

m

[
EY ĝM |a∗,W,s(m | W ) |M = m,Z,A = a,W, S = 1

]
| A = a,W, S

]
| S = 0

]
Proof.

ΨF (PUX) = E
[
Ya,ĝM|a∗,W,s | S = 0

]
=
∑
m

[
EYamĝM |a∗,W,s(m |W )

]
| S = 0

]
assumption 1, 2 and the tower law =⇒

= E
∑
m

E
[
E
[
YamĝM |a∗,W,s(m |W ) | Z,A,W, S = 1

]
| A,W,S

]]
| S = 0

]
assumption 3 then allows intervention on A and M =⇒

= E
∑
m

E
[
E
[
YamĝM |a∗,W,s(m |W ) |M = m,Z,A = a,W, S = 1

]
| A = a,W, S

]]
| S = 0

]
By self consistency we can eliminate ”am” counterfactual subscript =⇒

= E
∑
m

E
[
E
[
Y ĝM |a∗,W,s(m |W ) |M = m,Z,A = a,W, S = 1

]
| A = a,W, S

]]
| S = 0

]
reordering integration =⇒

= E
[
E
∑
m

[
E
[
Y ĝM |a∗,W,s(m |W ) |M = m,Z,A = a,W, S = 1

]
| A = a,W, S

]]
| S = 0

]

And we note, the conditional expectations are well-defined due to the assumption 1.

2.5 Targeted Maximum Likelihood Estimator, TMLE

We now describe how to estimate Ψ(P ) = E
[
Ya,ĝM|a∗,W,s | S = 0

]
using targeted minimum

loss-based estimation (TMLE). This estimation approach uses sequential regression, updat-
ing the conditional outcome model at each stage to both solve the empirical mean of the
influence curve equal approximation equal oP (n−0.5) (IC equation) while also lowering the
empirical negative log-likelihood loss (see section 1.2.1) of the conditional outcome model at
each stage. We will be estimating the parts of the distribution needed to estimate the effi-
cient influence curve so that the empirical mean of the influence curve is 0, much in the same
way as a two time-point longitudinal intervention (van der Laan and Rose 2011). Thus, the
construction of the TMLE depends on the knowledge of the efficient influence curve given
below and proven in theorems 3.1.2 and 3.1.3. We recommend all fitting to be performed
with an ensemble learning package as described in section 1.3.3.
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Define the following function (under model MII):

H(O) =

ĝM |a∗,W,s(M | W )pZ (Z | A = a,W, S = 0) pW (S = 0 | W ) I(S = 1, A = a)

pM (M | Z,W, S = 1) pZ (Z | A = a,W, S = 1) pA (a | W,S = 1) pW (S = 1 | W )PS(S = 0)
(2.10)

If we are assuming MI , then define

H(O) =
ĝM |a∗,W,s(M | W )pZ(Z | A = a,W, S = 0)pS|W (S = 0 | W )I(S = 1)

gM,r(M | Z,W, S)pZ(Z | W,S)pS|W (S | W )pS(S = 0)

Efficient Influence Curve

If we were using the smaller model, MI , we would not include A in the regression formula
for either Y or M .

D∗(P ) = D∗Y (P ) +D∗Z(P ) +D∗W (P ), where

D∗Y (P ) =
(
Y − Q̄Y (M,Z,A,W )

)
H(O)

D∗Z(P ) =
(
Q̄M(Z,A,W, S)− Q̄Z(a,W, S)

) I(S = 0, A = a)

pA (a | W,S) pS(S = 0)
, and

D∗W (P ) =
(
Q̄Z(a,W, S)−Ψ(P )

) I(S = 0)

pS(S = 0)
(notation is explained further below).

(2.11)

Let Q̄0
Y,n(M,Z,A,W ) be an initial estimate of E [Y |M,Z,A,W, S = 1] ĝM |a∗,W,s(M |W )

is a data-dependent stochastic intervention on M . One can estimate ĝM |a∗,W,s(M |W ) =∑1
z=0 P (M = 1|Z = z,W, S = s)P (Z = z|A = a∗,W, S = s), where P (M = 1|Z =

z,W, S = s) can be estimated using a fit of the mean outcome M as a function of Z, W , and
S and getting predicted probabilities for M = 1 setting S = s and separately setting Z = 1
and Z = 0, and where P (Z = z|A = a∗,W, S = s) can be estimated using a fit of the mean
outcomeZ given A, W , and S and getting predicted probabilities for Z = 1 and for Z = 0,
setting A = a∗ and S = s and using observed values for W . Perform a logistic regression
with a weighted intercept model as below, using weights, Ĥn(O) the estimated weights from
2.10.

logit(Y ) = logit(Q̄0
Y,n(M,Z,W )) + ε)

Q̄0
Y,n(M,Z,A,W ) is then updated to Q̄∗Y,n(M,Z,A,W ) = logit(Q̄0

Y,n(M,Z,W ))+ε). We note
that in this first regression the fluctuation model above depends on A, so the predictions
given by Q̄∗Y,n(M,Z,A,W ) will depend on A. We then perform the stochastic intervention
on Q̄∗Y,n(M,Z,A,W ) via the computation Q̄∗M,n(Z,A,W, S) = EĝM|a∗,W,s [Q̄∗n(M,Z,A,W ) |
Z,W, S] and use these as outcomes for a regression on the variables A,W, S. The resulting
fit is the initial estimate Q̄0

Z,n(A,W, S). Then we update this fit by performing the following
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weighted intercept model:

logit(Q̄∗M,n(Z,W, S)) = logit(Q̄0
n,Z(A,W, S)) + ε

using weights HZ(A,W, S) = I(S=0,A=a)
pA(A|W,S)pS(S=0)

. These weights are not estimated because we
know the treatment mechanism for A and we know the predetermined proportion in our
sample from site S = 0. The updated initial estimate will be notated

Q̄∗n,ĝ,a∗,W (A,W, S) = expit(logit(Q̄0
Z,N(A,W, S)) + ε)

We then form our estimate by plugging in to

Ψ̂n =
n∑
i=1

I(S = 0)∑n
i=1 I(S = 0)

Q̄∗Z,n(A = a,Wi, S = 0)

We can easily verify, upon plugging in our updated regression models, Q̄∗Z,n and Q̄∗M,n and
the other estimated portions of the likelihood to the influence curve, that

n∑
i=1

D̂∗(P ∗n)(Oi) = 0

where we evaluate the influence curve at the data generating distribution, P ∗n , given by our
initial fits, P 0

M,n, P
0
Z,nP

0
A,nP

0
S|W,n, the empirical distribution of W , and the TML updates,

Q̄∗M,n and Q̄∗Z,n. The the influence curve is given by D̂∗(P ∗n) = D̂∗Y (P ∗n) + D̂∗Z(P ∗n) + D̂∗W (P ∗n)
and
D̂∗W (P ∗n)(O) =

(
Q̄∗Z(A = a,W, S)− Ψ̂n

)
I(S=0)
pS(S=0)

D̂∗Z(P ∗n)(O) =
(
Q̄∗M(Z,A,W, S)− Q̄∗Z(A,W, S)

) I(S=0,A=a)
pA(A|W,S)pS(S=0)

D̂∗Y (P ∗n)(O) =
(
Y − Q̄∗n(M,Z,A,W )

)
Ĥn(O).

2.5.1 TMLE inference

To compute the standard error for our estimates, we compute the sample standard deviation
of the influence curve approximations over our data, {D∗(P ∗n)(Oi)}ni=1 over root n, which we
will denote σ̂n(D∗(P ∗n))/

√
n. Our 95% confidence bands,

Ψ̂n ± 1.96× σ̂n(D∗(P ∗n)(O))/
√
n

will cover the truth asymptotically at 95% under TMLE conditions in 1.2.1 and will be
asymptotically as small as possible (for any regular asymptotically linear estimator) under
the alternateH, in case we know the model is restricted as in section 2.2, and otherwise will be
as small as possible for either the semi-parametric model with A and/or M mechanism known
or non-parametric model. The stochastic direct effect (SDE) entails setting a∗ to 0 (receive
mediation effects as if under treatment a∗) and taking the difference in estimates between
setting the treatment intervention, a, to 1 and setting a to 0. The corresponding influence
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curve approximation is just a likewise difference of the influence curve approximations for
each parameter. The stochastic indirect effect (SIE) entails setting a = 1 and then taking the
difference in estimates between setting a∗ = 1 and a∗ = 0. The corresponding influence curve
approximations are again a likewise difference of the two influence curve approximations.
For each of the estimators of SDE and SIE, we used the sample standard deviation of their
respective influence curve approximations, divided by

√
n for the standard error estimate.

2.5.2 Robustness Analysis

We compute the second order remainder term as presented in theorem 1.2.1.

R2(Pn, P0) = (Ψn −Ψ(P0)) + P0D
∗(P )

where we consider P as an estimate of P0 for a lighter notation.

Theorem 2.5.1. For model MII , we have the following:

R2(Pn, P0)

=EP0
(Q̄Y − Q̄Y,0)(M̄)

[
h1(O)(gM,0 − gM )(M | Z̄) + h2(O)(pZ,0 − pZ)(Z | Ā)

+ h3(O)(pA,0 − pA)(A | W̄ ) + h4(O)(pS|W,0 − pS|W )(S |W )

]
(2.12)

+ EP0
h5(O)(Q̄Z,0 − Q̄Z)(Ā)(pA,0 − pA)(A | W̄ ) (2.13)

≤k
4∑
i=1

‖Q̄Y − Q̄Y,0‖L2(P0)‖fi,0 − fi‖L2(P0) + k‖Q̄Z,0 − Q̄Z‖L2(P0)‖f3,0 − f3‖L2(P0)

where we substituted the following: f1,0(o) = gM,0(m | z, x, w, s), f2,0 = pZ,0(z | a, w, 1),
f3,0 = pA,0(x = a | w, s), f4,0(o) = pS|W,0(x | w, s). Dropping the subscript, 0, indicates
the estimated counterpart. Also, hi is a bounded function by the positivity assumption (see
section 2.4) and thus the last inequality holds with a sufficiently large k.

Corollary. Assume:

• A1

‖Q̄Y,0 − Q̄Y ‖L2
0(P0)‖pM,0 − pM‖L2

0(P0) =

‖Q̄Y,0 − Q̄Y ‖L2
0(P0)‖pZ,0 − pZ‖L2

0(P0) =

‖Q̄Y,0 − Q̄Y ‖L2
0(P0)‖pA,0 − pA‖L2

0(P0) =

‖Q̄Y,0 − Q̄Y ‖L2
0(P0)‖pS|W,0 − pS|W‖L2

0(P0) =oP (1/
√
n)

• A2

‖Q̄Z,0 − Q̄Z‖L2
0(P0)‖pA,0 − pA‖L2

0(P0) =oP (1/
√
n)

Then
√
nR2(P, P0)

p−→ 0
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The proof is immediate when applying the cauchy-schwarz inequality.

Remark. Such conditions are guaranteed asymptotically when using the highly adaptive
lasso to fit the regressions if the true regressions are of finite sectional variation norm and
are left-hand continuous with right-hand limits (van der Laan 2016).

Remark. If A1 and A2 are satisfied, the TMLE and EE estimators will be consistent. If A1
is satisfied and we know the treatment mechanism, as in an RCT, then the TMLE and EE
estimators are consistent.

The proof is given in section 3, Theorem 3.2.6 where we also prove robustness properties are
the same for the restricted model TMLE and EE estimator.

2.6 Estimating Equation Estimator or One-Step Esti-

mator

Next, we describe another estimating equation (EE) estimator of Ψ(P ), which solves the
efficient influence curve equation, i.e., PnD∗(P 0

n) = 0 via Newton’s method in one step.
Hence, it is sometimes referred to as the one-step estimator, where P 0

n is an initial estimate
of the data generating system the same as that for TMLE. As for the stabilized IPTW
estimator, we adjust the initial estimate we would obtain in the TMLE algorithm, not the
model fits. So our estimate is not a plug-in estimator and therefore is not guaranteed to
obey parameter bounds. We first form an initial estimate

Ψ0
n =

n∑
i=1

I(Si = 0)∑n
i=1 I(S = 0)

Q̄0
Z,n(Ai = a,Wi, Si)

.
identical to the TMLE initial estimate. Then we update this estimate by adding the empirical
mean of the approximated influence curve.

Ψ̂1
n = Ψ̂0

n +
n∑
i=1

D∗(P 0
n)(Oi)

This then leads to a second order expansion

Ψ̂1
n −Ψ(P0) = (Pn − P0)D∗(P 0

n)(O) +R2(Pn, P0)

where R2(Pn, P0) = Ψ̂0
n − Ψ(P0) + P0D

∗(P 0
n)(O). The requirements for consistency and

asymptotic efficiency on D∗(P 0
n) and R2 are then identical to those in section 1.2.1. Thus,

predicated on the identical assumptions, robustness properties of the EE estimator are the
same as for that of TMLE and the proof is virtually identical so we will omit it. We will see
in simulations, however, that the EE estimator can be unstable due to it not being a plug-in
estimator like the TMLE.

The standard errors of the EE estimate is computed as the sample standard deviation of
D∗(P 0

n) divided by
√
n. To obtain inference for the SDE or SIE we just follow the same

instructions given in section 2.5.1.
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2.7 Simulations

2.7.1 Overview

We compare finite sample performance of our three estimators in estimating the transport
SDE and transport SIE using simulation. We show estimator performance in terms of abso-
lute bias, efficiency, 95% confidence interval (CI) coverage, root mean squared error (RMSE),
and percent of estimates lying outside the bounds of the parameter space across 1,000 simu-
lations. For calculating the efficiency and the 95% CI coverage, we use both the IC and the
bootstrap.

We consider three data-generating mechanisms (DGMs) within the structural causal model
described in section 2.2. The DGMs are detailed in Table 2.6. DGM 1 is intended to break
when Y and M models are misspecified, especially. DGM 2 is intended to break when Y and
Z models are misspecified, especially. DGM 3 is intended to break when Y and S models are
misspecified, especially.

Table 2.6: Simulation data-generating mechanisms.

Data Generating Mechanism 1
W1 ∼ bernoulli P (W1 = 1) = 0.5
W2 ∼ bernoulli P (W2 = 1) = expit(0.4 + 0.2W1)
S ∼ bernoulli P (S = 1) = expit(3W2 − 1)
A ∼ bernoulli P (A = 1) = 0.5
Z ∼ bernoulli P (Z = 1) = expit(−3A+−0.2S+ 2W2 + 0.2AW2− 0.2AS+ 0.2W2S+ 2AW2S− 0.2)
M ∼ bernoulli P (M = 1) = expit(1Z + 6W2Z − 2W2 − 2)
Y ∼ bernoulli P (Y = 1) = expit(log(1.2) + log(40)Z − log(30)M − log(1.2)W2 − log(40)W2Z)

Data Generating Mechanism 2
W1 ∼ bernoulli P (W1 = 1) = 0.5
W2 ∼ bernoulli P (W2 = 1) = expit(0.4 + 0.2W1)
S ∼ bernoulli P (S = 1) = expit(3W2 − 1)
A ∼ bernoulli P (A = 1) = 0.5
Z ∼ bernoulli P (Z = 1) = expit(−0.1A+−0.2S+0.2W2+5AW2+0.14AS+0.2W2S−0.2AW2S−1)
M ∼ bernoulli P (M = 1) = expit(1Z+3ZW2 +0.2ZS−0.2W2S+2W2Z+0.2S−0.2ZW2S−W2−2)
Y ∼ bernoulli P (Y = 1) = expit(−6Z + 0.2ZW2 + 2ZM + 2W2M − 2W2 + 4M + 1ZW2M − 0.2)

Data Generating Mechanism 3
W1 ∼ bernoulli P (W1 = 1) = 0.5
W2 ∼ bernoulli P (W2 = 1) = expit(0.4 + 0.2W1)
S ∼ bernoulli P (S = 1) = expit(3W2 − 1)
A ∼ bernoulli P (A = 1) = 0.5
Z ∼ bernoulli P (Z = 1) = expit(−3A+ 2S + 2W2 + 0.2AW2 − 0.2AS + 0.2W2S + 2AW2S − 0.2)
M ∼ bernoulli P (M = 1) = expit(3Z−0.2ZW2+0.2ZS−0.2W2S+2W2Z+0.2S−0.2ZW2S−W2−2)
Y ∼ bernoulli P (Y = 1) = expit(−6Z + 0.2ZW2 + 2ZM + 2W2M − 0.2W2 + 4M + 1ZW2M − 0.2)
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2.7.2 Results

Main Points of the Simulations

Due to the points below, TMLE is the best choice for estimating this parameter.

1. The efficient TMLE and EE estimators for the restricted model gave consistently large
gains in efficiency over the TMLE and EE estimators not respecting these restrictions
and even bigger gains in efficiency over the stabilized iptw estimator. The iptw was
more efficient for the situation of all correctly specified models, except the model for Y.
When estimating SIE, however, it lost in this situation every other time to the efficient
TMLE estimator. It is also notable that TMLE tended to be more efficient than the
EE estimator for this situation as well.

2. The EE estimator shows some instability in finite samples, even catastrophically giv-
ing almost all estimates outside the parameter bounds for DGM 1 under Y and M
misspecified for estimating SDE. There-in lies the advantage of TMLE being a plug-in
or substitution estimator, which always gives an answer within the parameter bounds.

3. Stabilized iptw is not guaranteed to be robust when only getting Y and A models cor-
rect, as expected. For n = 5000 and DGM 2, it never covered the SDE true parameter
value where as TMLE and EE remained consistent for both their respective efficient
and inefficient estimators.

4. The influence curve based inference for when only Y and A models were well-specified
can be liberal and give poor coverage for TMLE and EE estimators even though these
estimators are consistent. We show the bootstrap picks up the true variance of the
estimators and corrects the coverage but in reality, when parametric assumptions fail
and we need data adaptive estimation to make good predictions, the bootstrap will
fail and therefore not be a theoretically sound option. Therefore, for the future, extra
targeting as per Benkeser et al., 2017 , would be a valued added feature to obtain more
reliable inference. Such corrective methodology is not theoretically sound for the EE
method as shown in Benkeser et al., 2017.

Table 2.7: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 1 under well-specified models for sample sizes 100, 500 and 5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 1, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff 0.015 86.77 161.49 0.807 0.959 0.114 0
SDE EE eff 0.016 86.77 9.71 ∗ 109 0.812 0.919 0.112 0
SDE tmle 0.028 201.37 292.39 0.82 0.941 0.252 0
SDE EE 0.024 216.18 4.84∗1011 0.923 0.924 0.210 0

Transport stochastic indirect effect (ΨTransportSIE)

Continued on next page
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Table 2.7 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
SIE tmle eff -0.005 103.450 52.71 0.833 0.961 0.044 0
SIE EE eff -0.004 102.77 2.21∗1011 0.843 0.907 0.038 0
SIE tmle -0.007 126.57 545.44 0.791 0.948 0.056 0
SIE EE -0.004 118.11 158.02 0.829 0.910 0.039 0

DGM 1, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.0005 96.77 101.58 0.945 0.950 0.039 0
SDE EE eff 0.0005 96.81 101.20 0.946 0.948 0.039 0
SDE tmle 0.0002 225.77 236.31 0.933 0.941 0.091 0
SDE EE 0.0003 227.70 226.59 0.948 0.936 0.090 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0 101.96 110.93 0.938 0.940 0.008 0
SIE EE eff 0 102.35 107.99 0.939 0.939 0.008 0
SIE tmle 0.0001 125.37 166.92 0.920 0.949 0.011 0
SIE EE 0.0001 126.16 131.84 0.925 0.940 0.011 0

DGM 1, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.0001 100.39 100.59 0.949 0.949 0.013 0
SDE EE eff -0.0001 100.39 100.59 0.948 0.949 0.013 0
SDE tmle 0.001 227.08 227.72 0.96 0.959 0.028 0
SDE EE 0.001 227.21 227.14 0.96 0.958 0.028 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.0001 101.12 101.44 0.932 0.924 0.002 0
SIE EE eff -0.0001 101.23 101.43 0.932 0.925 0.002 0
SIE tmle -0.0001 130.34 131 0.939 0.940 0.003 0
SIE EE -0.0001 130.50 130.94 0.940 0.941 0.003 0

Table 2.8: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 1 under well-specified models only for Y and A models sample sizes 100, 500 and 5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 1, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff 0.029 60.77 125.16 0.529 0.879 0.139 0
SDE EE eff 0.029 60.38 121.08 0.539 0.873 0.134 0
SDE tmle 0.026 87.39 167.61 0.609 0.922 0.177 0
SDE EE 0.029 93.83 134.66 0.693 0.878 0.159 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.009 54.10 200.16 0.616 0.932 0.076 0
SIE EE eff -0.010 56.47 166.06 0.626 0.919 0.075 0
SIE tmle -0.012 69.12 244.45 0.572 0.923 0.089 0
SIE EE -0.010 77.87 172.43 0.669 0.912 0.079 0

DGM 1, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.005 53.490 100.99 0.643 0.879 0.064 0
SDE EE eff -0.005 53.66 98.63 0.643 0.879 0.063 0

Continued on next page
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Table 2.8 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
SDE tmle -0.007 95.11 141.58 0.747 0.895 0.092 0
SDE EE -0.006 97.42 125.71 0.843 0.920 0.078 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.001 64.72 97.48 0.826 0.948 0.019 0
SIE EE eff 0.0002 65.52 95.96 0.839 0.952 0.018 0
SIE tmle -0.0004 96.56 142.93 0.797 0.932 0.027 0
SIE EE -0.001 101.28 118.11 0.889 0.951 0.023 0

DGM 1, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.0001 48.68 93.50 0.677 0.942 0.019 0
SDE EE eff -0.0002 48.71 93.31 0.676 0.938 0.019 0
SDE tmle -0.0001 94.62 150.35 0.768 0.947 0.030 0
SDE EE -0.0002 94.81 124.45 0.854 0.948 0.025 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.0001 61.13 77.84 0.875 0.947 0.006 0
SIE EE eff 0.0001 61.18 75.11 0.888 0.945 0.005 0
SIE tmle 0.0002 94.19 117.94 0.885 0.955 0.008 0
SIE EE 0.0001 94.53 10 0.941 0.957 0.007 0

Table 2.9: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 1 under well-specified models for all but Y and S models, sample sizes 100, 500 and
5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 1, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff 0.196 99.74 130.55 0.348 0.496 0.229 0
SDE EE eff 0.23 119.11 3.85∗1013 0.275 0.230 0.254 0
SDE tmle 0.195 143.81 234.82 0.556 0.812 0.290 0
SDE EE 0.226 182.88 5.62∗1013 0.487 0.494 0.291 0.100

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.002 221.25 500.77 0.591 0.857 0.070 0
SIE EE eff -0.011 264.85 1,190.67 0.704 0.642 0.061 0
SIE tmle -0.005 249.36 509.35 0.583 0.825 0.073 0
SIE EE -0.011 324.61 1.23 ∗

12013
0.700 0.665 0.075 0

DGM 1, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.11 140.17 175 0.528 0.577 0.149 0
SDE EE eff 0.141 294.11 171.95 0.577 0.546 0.172 0
SDE tmle 0.120 254.54 308.58 0.524 0.571 0.212 0
SDE EE 0.141 454.66 307.74 0.514 0.475 0.235 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.026 290.33 468.23 0.429 0.673 0.040 0
SIE EE eff 0.013 638.03 393.79 0.826 0.664 0.034 0
SIE tmle 0.022 384.49 542.07 0.606 0.803 0.039 0

Continued on next page
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Table 2.9 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
SIE EE 0.013 739.29 525.56 0.810 0.728 0.041 0

DGM 1, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.045 226.69 190.97 0.717 0.512 0.054 0
SDE EE eff 0.078 519.45 183.26 0.910 0.064 0.083 0
SDE tmle 0.051 490.16 587.79 0.854 0.924 0.093 0
SDE EE 0.082 803.98 652.80 0.860 0.834 0.118 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.036 332.17 319.04 0.074 0.106 0.037 0
SIE EE eff 0.028 883.10 278.05 0.554 0.129 0.029 0
SIE tmle 0.035 410.83 458.58 0.136 0.157 0.037 0
SIE EE 0.027 1,059.64 688.37 0.740 0.391 0.031 0

Table 2.10: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 1 under well-specified models for all but the Y and Z models sample sizes 100, 500 and
5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 1, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff 0.195 92.71 116.32 0.395 0.524 0.222 0
SDE EE eff 0.216 113.89 117.45 0.453 0.469 0.241 0
SDE tmle 0.076 261.30 292.91 0.824 0.865 0.323 0
SDE EE 0.082 326.80 293.93 0.921 0.874 0.321 0.100

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.025 155.53 155.39 0.740 0.688 0.055 0
SIE EE eff -0.018 181.09 119.44 0.794 0.665 0.046 0
SIE tmle -0.023 167.73 219.28 0.664 0.756 0.069 0
SIE EE -0.016 219.30 160.33 0.733 0.671 0.060 0

DGM 1, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.182 102.42 114.90 0.016 0.032 0.188 0
SDE EE eff 0.203 112.52 107.23 0.009 0.006 0.208 0
SDE tmle 0.041 322.39 327.28 0.930 0.924 0.144 0
SDE EE 0.039 334.96 319.05 0.942 0.929 0.138 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.006 200.08 124.34 0.903 0.808 0.011 0
SIE EE eff -0.003 212.20 126.88 0.926 0.843 0.010 0
SIE tmle -0.002 241.17 229.07 0.883 0.872 0.016 0
SIE EE -0.003 283.03 231.65 0.892 0.862 0.017 0

DGM 1, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.181 104.08 117.69 0 0 0.181 0
SDE EE eff 0.202 111.38 105.15 0 0 0.202 0
SDE tmle 0.050 327.02 332.07 0.782 0.791 0.064 0
SDE EE 0.047 328.78 317.31 0.805 0.793 0.061 0

Continued on next page
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Table 2.10 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
Transport stochastic indirect effect (ΨTransportSIE)

SIE tmle eff -0.003 179.01 95.78 0.965 0.718 0.004 0
SIE EE eff -0.0004 181.99 101.47 0.994 0.923 0.002 0
SIE tmle 0.001 222.07 192.19 0.975 0.948 0.004 0
SIE EE 0 247.54 198.36 0.987 0.946 0.004 0

Table 2.11: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 1 under well-specified models for all but Y and M models–sample sizes 100, 500 and
5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 1, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff -0.133 245.31 239.69 0.782 0.837 0.283 0
SDE EE eff -1.216 1,423.80 1,532.61 0.895 0.890 1.984 51.100
SDE tmle -0.213 429.80 338.75 0.718 0.790 0.418 0
SDE EE -1.259 1,611.01 1.13∗1013 0.953 0.949 2.078 56.300

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.001 233.32 208.17 0.735 0.712 0.141 0
SIE EE eff 0.075 394.06 367.59 0.834 0.830 0.215 0.700
SIE tmle -0.044 166.40 205.14 0.539 0.575 0.139 0
SIE EE 0.018 382.64 295.24 0.664 0.627 0.227 1.300

DGM 1, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.260 303.14 180.27 0.482 0.163 0.272 0
SDE EE eff -1.181 1,040.61 1,021.97 0.080 0.066 1.272 76.400
SDE tmle -0.309 670.04 318.17 0.823 0.439 0.349 0
SDE EE -1.238 1,290.55 1,219.61 0.360 0.305 1.354 77.100

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.095 305.14 220.10 0.712 0.467 0.108 0
SIE EE eff 0.137 442.19 306.25 0.806 0.424 0.156 0
SIE tmle 0.060 334.84 297.52 0.892 0.808 0.094 0
SIE EE 0.112 591.83 473.35 0.965 0.828 0.163 0

DGM 1, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.272 280.08 149.17 0 0 0.273 0
SDE EE eff -1.110 852.67 735.38 0 0 1.118 99.210
SDE tmle -0.272 698.69 321.77 0.147 0.001 0.276 0
SDE EE -1.111 1,093.33 877.83 0 0 1.121 98.410

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.104 249.26 173.89 0 0 0.106 0
SIE EE eff 0.135 336.39 227.03 0 0 0.137 0
SIE tmle 0.103 370.51 279.70 0.036 0.016 0.106 0
SIE EE 0.137 535.91 413.33 0.054 0.016 0.141 0
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Table 2.12: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 1 under well-specified models for all but the Y model–sample sizes 100, 500 and 5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 1, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff 0.045 157.49 170.41 0.872 0.893 0.143 0
SDE EE eff 0.050 232.07 5.58∗1013 0.894 0.872 0.149 0
SDE tmle 0.010 282.54 314.26 0.876 0.912 0.273 0
SDE EE 0.022 355.18 4.90∗1013 0.950 0.902 0.258 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.019 161.13 174.95 0.722 0.777 0.046 0
SIE EE eff -0.019 177.84 7.31∗1013 0.751 0.710 0.044 0
SIE tmle -0.020 175.47 241.36 0.638 0.742 0.055 0
SIE EE -0.017 211.04 3.08∗1013 0.705 0.668 0.051 0

DGM 1, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.013 185.58 128.33 0.983 0.918 0.053 0
SDE EE eff 0.014 240.63 137.63 0.990 0.915 0.056 0
SDE tmle -0.0001 339.55 291.55 0.975 0.939 0.112 0
SDE EE 0.002 370.42 288.90 0.988 0.939 0.112 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.002 217.44 131.94 0.930 0.880 0.010 0
SIE EE eff -0.003 251 128.78 0.926 0.842 0.010 0
SIE tmle -0.003 255.86 222.71 0.883 0.879 0.015 0
SIE EE -0.004 308.32 222.67 0.885 0.833 0.016 0

DGM 1, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.0002 191.06 118.82 0.999 0.965 0.014 0
SDE EE eff -0.0004 240.26 126.67 0.999 0.968 0.015 0
SDE tmle 0 354.81 288.79 0.984 0.954 0.035 0
SDE EE -0.0002 374.95 291.49 0.992 0.957 0.035 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0 186.27 102.20 0.995 0.914 0.002 0
SIE EE eff 0 237.87 103.75 0.997 0.919 0.002 0
SIE tmle 0.0001 239.35 186.41 0.986 0.942 0.004 0
SIE EE 0.0002 302.49 216.48 0.991 0.945 0.004 0

Table 2.13: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 2 under well-specified models for sample sizes 100, 500 and 5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 2, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff 0.003 102.26 139.52 0.970 0.992 0.064 0
SDE EE eff 0.004 102.13 1.37∗1013 0.974 0.989 0.060 0
SDE tmle 0.007 293.07 375.10 0.852 0.945 0.218 0
SDE EE 0.005 316.03 8.83∗1013 0.957 0.930 0.186 0
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Table 2.13 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
Transport stochastic indirect effect (ΨTransportSIE)

SIE tmle eff -0.003 93.01 132.95 0.878 0.944 0.033 0
SIE EE eff -0.003 93.03 113.13 0.878 0.924 0.033 0
SIE tmle -0.001 99.85 158.57 0.865 0.952 0.041 0
SIE EE -0.002 99.09 7.10∗1012 0.871 0.915 0.036 0

DGM 2, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.0003 101.37 105.16 0.946 0.957 0.028 0
SDE EE eff -0.0003 101.40 104.51 0.946 0.957 0.028 0
SDE tmle -0.004 319.08 327.43 0.929 0.936 0.089 0
SDE EE -0.004 321.97 316.56 0.947 0.935 0.088 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.001 99.56 104.59 0.926 0.929 0.012 0
SIE EE eff -0.001 99.58 101.11 0.926 0.929 0.012 0
SIE tmle -0.0005 101.74 106.99 0.928 0.935 0.012 0
SIE EE -0.0005 101.94 103.39 0.932 0.930 0.012 0

DGM 2, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.0003 100.17 100.42 0.955 0.957 0.008 0
SDE EE eff -0.0003 100.21 100.42 0.955 0.957 0.008 0
SDE tmle 0.001 321.02 321.92 0.945 0.942 0.027 0
SDE EE 0.001 321.27 321 0.946 0.942 0.027 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.0001 99.98 100.46 0.942 0.942 0.004 0
SIE EE eff -0.0001 100.01 100.46 0.942 0.942 0.004 0
SIE tmle -0.0001 101.75 101.99 0.942 0.942 0.004 0
SIE EE -0.0001 101.69 101.95 0.942 0.943 0.004 0

Table 2.14: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 2 under well-specified models for Y and A models only–sample sizes 100, 500 and 5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 2, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff 0.001 90.70 108.20 0.918 0.988 0.062 0
SDE EE eff 0.001 90.72 108.25 0.918 0.988 0.062 0
SDE tmle 0.007 191.08 235.80 0.861 0.956 0.141 0
SDE EE 0.004 207.43 191.55 0.957 0.951 0.121 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.002 51.42 132.19 0.575 0.927 0.082 0
SIE EE eff 0.002 51.31 128.88 0.577 0.920 0.080 0
SIE tmle 0.002 96.11 158.41 0.721 0.892 0.099 0
SIE EE 0.002 109.50 151.53 0.779 0.897 0.098 0

DGM 2, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.0002 99.14 105.22 0.946 0.969 0.028 0
Continued on next page
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Table 2.14 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
SDE EE eff 0.0002 99.14 105.22 0.946 0.969 0.028 0
SDE tmle -0.002 222.27 220.01 0.941 0.947 0.061 0
SDE EE -0.002 224.49 199.30 0.971 0.952 0.055 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.0004 51.46 110.33 0.622 0.934 0.032 0
SIE EE eff -0.0005 51.46 109.03 0.625 0.933 0.032 0
SIE tmle 0.001 110.16 133.88 0.850 0.921 0.044 0
SIE EE 0.0003 114.19 136.01 0.871 0.926 0.047 0

DGM 2, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0 98.78 100.01 0.956 0.960 0.008 0
SDE EE eff 0 98.80 100.03 0.956 0.960 0.008 0
SDE tmle 0.001 228.37 231.43 0.939 0.941 0.020 0
SDE EE 0.001 228.50 203.24 0.966 0.942 0.018 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.0005 54.95 100.51 0.727 0.938 0.010 0
SIE EE eff 0.0004 54.95 100.46 0.732 0.939 0.010 0
SIE tmle 0.001 129.68 136.04 0.879 0.920 0.014 0
SIE EE 0.001 130.08 137.03 0.891 0.930 0.014 0

Table 2.15: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 2 under well-specified models for all models except Y and S models–sample sizes 100,
500 and 5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 2, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff -0.048 198.25 193.84 0.903 0.921 0.146 0
SDE EE eff -0.102 315.28 3.45∗1013 0.946 0.875 0.181 0
SDE tmle -0.057 317.69 365.58 0.819 0.880 0.245 0
SDE EE -0.102 554.59 8.79∗1012 0.960 0.811 0.340 1.100

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.142 362.76 392.68 0.589 0.652 0.200 0
SIE EE eff 0.189 708.70 9.86∗1013 0.940 0.517 0.246 0
SIE tmle 0.118 368.02 420.49 0.606 0.748 0.201 0
SIE EE 0.184 749.61 2.09∗1012 0.944 0.682 0.267 0

DGM 2, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.162 309.07 214.95 0.395 0.121 0.170 0
SDE EE eff -0.219 453.68 234.34 0.553 0.029 0.227 0
SDE tmle -0.173 519.71 423.35 0.712 0.599 0.206 0
SDE EE -0.226 758.85 619.39 0.817 0.613 0.281 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.220 529.14 274.22 0.016 0.012 0.222 0
SIE EE eff 0.277 1,080.48 309.93 0.203 0.006 0.280 0
SIE tmle 0.213 600.82 434.83 0.060 0.052 0.219 0
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Table 2.15 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
SIE EE 0.278 1,253.70 726.29 0.442 0.132 0.292 0

DGM 2, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.164 285.91 168.14 0 0 0.165 0
SDE EE eff -0.220 415.64 191.91 0.22 0
SDE tmle -0.164 511.22 399.63 0.019 0.010 0.167 0
SDE EE -0.218 699.90 586.82 0.029 0.023 0.224 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.222 507.95 186.55 0 0 0.223 0
SIE EE eff 0.278 1,033.84 216.14 0 0 0.279 0
SIE tmle 0.222 600.12 343.91 0 0 0.222 0
SIE EE 0.278 1,201.77 675.26 0 0 0.279 0

Table 2.16: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 2 under well-specified models for all but Y and Z models–sample sizes 100, 500 and
5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 2, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff 0.028 73.84 84.89 0.881 0.976 0.053 0
SDE EE eff 0.031 81.31 95.66 0.884 0.969 0.058 0
SDE tmle 0.146 892.01 513.89 0.914 0.847 0.360 0
SDE EE 0.576 1,247.94 1,341.48 0.935 0.923 0.966 24.300

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.046 165.05 120.15 0.815 0.728 0.086 0
SIE EE eff -0.029 249.13 155.58 0.819 0.747 0.105 0
SIE tmle -0.068 413.29 276.43 0.799 0.695 0.132 0
SIE EE -0.003 724.66 686.48 0.825 0.837 0.467 5

DGM 2, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.031 74.57 78.71 0.647 0.693 0.038 0
SDE EE eff 0.033 79.85 84.01 0.658 0.697 0.040 0
SDE tmle 0.179 1,002.95 559.87 0.991 0.735 0.224 0
SDE EE 0.555 1,171.51 1,116.10 0.584 0.545 0.626 6.800

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.015 200.43 101.69 0.960 0.728 0.019 0
SIE EE eff 0.017 329.17 147.24 0.993 0.808 0.026 0
SIE tmle -0.040 469.27 531 0.853 0.667 0.064 0
SIE EE 0.075 931.81 763.34 0.909 0.817 0.156 0.200

DGM 2, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.032 75.49 77.35 0 0 0.032 0
SDE EE eff 0.033 80.22 81.92 0 0 0.034 0
SDE tmle 0.188 973.02 463.63 0.223 0.003 0.192 0
SDE EE 0.545 1,112.09 1,008.79 0 0 0.552 0
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Table 2.16 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
Transport stochastic indirect effect (ΨTransportSIE)

SIE tmle eff -0.014 192.60 92.53 0.380 0.004 0.014 0
SIE EE eff 0.018 307.60 121.67 0.767 0.029 0.019 0
SIE tmle -0.040 492.45 143.03 0.185 0 0.040 0
SIE EE 0.066 911.65 686.60 0.447 0.231 0.072 0

Table 2.17: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 2 under well-specified models for all but Y and M models–sample sizes 100, 500 and
5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 2, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff 0.028 122.23 210.47 0.825 0.985 0.114 0
SDE EE eff 0.055 561.86 2.01∗1014 0.905 0.998 0.724 8
SDE tmle 0.034 797.09 552.54 0.834 0.825 0.412 0
SDE EE 0.026 1,816.94 2.62∗1014 0.974 0.972 1.374 29.500

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.030 283.99 172.61 0.842 0.780 0.092 0
SIE EE eff -0.030 534.83 7.88∗1013 0.885 0.908 0.345 3.300
SIE tmle -0.030 252.15 207.16 0.686 0.734 0.110 0
SIE EE 0.034 517.82 8.40∗1014 0.839 0.830 0.415 3.100

DGM 2, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.038 79.10 179.89 0.506 0.918 0.061 0
SDE EE eff 0.077 208.62 728.54 0.299 0.970 0.195 0
SDE tmle 0.033 1,209.81 582.41 0.991 0.968 0.138 0
SDE EE 0.077 1,870.98 1,799.55 0.987 0.990 0.430 3.200

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.036 213.86 103.92 0.525 0.230 0.041 0
SIE EE eff -0.018 252.81 228.74 0.395 0.324 0.097 0
SIE tmle -0.035 290.63 159.72 0.681 0.399 0.043 0
SIE EE -0.017 354.25 346.99 0.588 0.565 0.102 0

DGM 2, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.039 72.52 169.93 0.039 0.211 0.042 0
SDE EE eff 0.074 116.09 615.71 0.073 0.715 0.090 0
SDE tmle 0.040 1,191.15 425.74 1 0.780 0.055 0
SDE EE 0.077 1,623.22 1,278.49 0.955 0.889 0.135 0
SDE iptw 0.026 710.95 429.68 0.992 0.874 0.046 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.037 130.59 63.97 0.002 0 0.037 0
SIE EE eff -0.020 126.70 105.49 0.178 0.129 0.034 0
SIE tmle -0.036 176.50 85.45 0.005 0 0.037 0
SIE EE -0.020 164.23 147.83 0.232 0.206 0.034 0
SIE iptw -0.030 134.37 83.04 0 0 0.031 0
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Table 2.18: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 2 under well-specified models for all but the Y models–sample sizes 100, 500 and 5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 2, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff 0.016 117.52 135.93 0.928 0.991 0.071 0
SDE EE eff 0.017 134.03 3.23∗1013 0.971 0.994 0.069 0
SDE tmle -0.005 437.29 464.11 0.856 0.888 0.296 0
SDE EE 0.003 510.08 1.11∗1014 0.971 0.887 0.270 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.015 154.70 134.11 0.741 0.759 0.061 0
SIE EE eff -0.016 158.75 111.49 0.752 0.711 0.059 0
SIE tmle -0.013 170.37 205.62 0.649 0.798 0.076 0
SIE EE -0.015 185.12 8.34∗1011 0.700 0.667 0.072 0

DGM 2, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.001 119.51 107.23 0.981 0.978 0.026 0
SDE EE eff -0.001 122.98 106.84 0.990 0.978 0.026 0
SDE tmle -0.002 527.31 463.49 0.974 0.950 0.115 0
SDE EE -0.0005 539.36 468.44 0.981 0.957 0.116 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.0002 207.84 113.29 0.993 0.962 0.012 0
SIE EE eff 0.0003 204.81 112.47 0.993 0.962 0.012 0
SIE tmle -0.0001 243.79 185.49 0.979 0.951 0.020 0
SIE EE -0.0001 240.52 177.94 0.978 0.944 0.021 0

DGM 2, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.0003 111.40 100.18 0.963 0.936 0.009 0
SDE EE eff -0.0003 111.55 100.18 0.968 0.937 0.009 0
SDE tmle 0.002 508.10 414.57 0.984 0.947 0.034 0
SDE EE 0.002 508.50 414.73 0.984 0.947 0.034 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.0001 195.72 101.34 0.999 0.941 0.004 0
SIE EE eff -0.0001 189.44 101.82 0.999 0.942 0.004 0
SIE tmle -0.0002 231.77 163.22 0.992 0.954 0.006 0
SIE EE -0.0002 220.13 155.51 0.993 0.958 0.005 0

Table 2.19: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 3 under well-specified models for sample sizes 100, 500 and 5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 3, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff -0.020 93.10 158.60 0.823 0.955 0.115 0
SDE EE eff -0.017 93.22 5.82∗1010 0.828 0.896 0.099 0
SDE tmle -0.030 126.80 239.56 0.809 0.951 0.199 0
SDE EE -0.020 139.54 7.75∗1011 0.890 0.875 0.140 0
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Table 2.19 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
Transport stochastic indirect effect (ΨTransportSIE)

SIE tmle eff 0.011 90.59 159.14 0.803 0.929 0.114 0
SIE EE eff 0.008 90.40 1.59∗1011 0.809 0.905 0.104 0
SIE tmle 0.018 90.81 173.84 0.742 0.907 0.152 0
SIE EE 0.009 95.89 2.02∗1011 0.782 0.886 0.107 0

DGM 3, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.002 99.42 106.45 0.931 0.948 0.043 0
SDE EE eff -0.002 99.45 106.04 0.931 0.947 0.043 0
SDE tmle -0.003 168.58 169.76 0.933 0.939 0.080 0
SDE EE -0.003 177.72 170.88 0.960 0.941 0.085 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.0005 100.48 107.39 0.928 0.937 0.045 0
SIE EE eff -0.0005 100.48 106.91 0.927 0.937 0.045 0
SIE tmle -0.001 107.84 116.48 0.926 0.937 0.050 0
SIE EE -0.001 108.51 114.77 0.930 0.938 0.048 0

DGM 3, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.001 100.04 126.93 0.941 0.962 0.015 0
SDE EE eff -0.0005 100.02 113.84 0.943 0.955 0.014 0
SDE tmle 0.001 214.33 238.29 0.961 0.965 0.032 0
SDE EE 0.0003 215.45 222.18 0.964 0.964 0.031 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0 100.07 118.92 0.939 0.938 0.015 0
SIE EE eff -0.0002 100.07 100.78 0.940 0.936 0.014 0
SIE tmle -0.0004 108.04 125.46 0.938 0.946 0.016 0
SIE EE -0.0005 108.09 108.55 0.944 0.944 0.014 0

Table 2.20: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 3 under well-specified models for only the Y and A models–sample sizes 100, 500 and
5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 3, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff -0.013 71.12 119.65 0.744 0.896 0.097 0
SDE EE eff -0.013 71.11 119.59 0.745 0.896 0.097 0
SDE tmle -0.011 95.20 159.52 0.781 0.942 0.124 0
SDE EE -0.012 95.46 131.92 0.844 0.920 0.106 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.005 29.99 132.19 0.390 0.899 0.050 0
SIE EE eff 0.005 30.01 131.03 0.389 0.898 0.050 0
SIE tmle 0.003 38.27 150.41 0.438 0.915 0.054 0
SIE EE 0.005 38.70 132.89 0.468 0.901 0.051 0

DGM 3, N=500
Transport stochastic direct effect (ΨTransportSDE)
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Table 2.20 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
SDE tmle eff -0.002 69.65 106.13 0.796 0.955 0.042 0
SDE EE eff -0.003 69.61 106.09 0.797 0.954 0.042 0
SDE tmle -0.002 95.76 142.10 0.792 0.934 0.057 0
SDE EE -0.002 95.89 121.23 0.868 0.946 0.048 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.001 27.56 106.69 0.371 0.930 0.023 0
SIE EE eff -0.0004 27.57 106.65 0.368 0.930 0.023 0
SIE tmle -0.001 37.31 113.59 0.464 0.930 0.024 0
SIE EE -0.0004 37.46 108.94 0.489 0.933 0.023 0

DGM 3, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.0004 66.47 110.54 0.804 0.962 0.013 0
SDE EE eff -0.0005 66.45 110.18 0.805 0.961 0.013 0
SDE tmle -0.0004 93.90 152.31 0.802 0.966 0.018 0
SDE EE -0.0005 93.90 125.67 0.890 0.963 0.015 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.0002 26.08 109.30 0.382 0.937 0.007 0
SIE EE eff 26.090 106.07 0.385 0.940 0.007 0
SIE tmle -0.0002 35.98 113.49 0.497 0.929 0.007 0
SIE EE 0.0001 36 107.81 0.491 0.949 0.007 0

Table 2.21: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 3 under well-specified models for all but the Y and S models–sample sizes 100, 500 and
5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 3, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff -0.213 74.55 170.93 0.230 0.654 0.266 0
SDE EE eff -0.254 88.47 1.52∗1013 0.115 0.274 0.279 0
SDE tmle -0.180 119.92 267.80 0.519 0.819 0.297 0
SDE EE -0.238 150.22 6.71∗1013 0.453 0.574 0.284 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.124 43.16 105.06 0.274 0.492 0.185 0
SIE EE eff 0.164 53.82 2.61 ∗ 108 0.194 0.120 0.193 0
SIE tmle 0.120 44.87 109.68 0.273 0.478 0.186 0
SIE EE 0.162 58.43 5.01∗1013 0.226 0.178 0.192 0

DGM 3, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.142 93.50 153.26 0.236 0.334 0.160 0
SDE EE eff -0.197 202.02 148.83 0.287 0.284 0.219 0
SDE tmle -0.136 204.33 296.39 0.477 0.717 0.195 0
SDE EE -0.191 371.54 301.70 0.301 0.280 0.260 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.088 60.27 94.55 0.111 0.350 0.101 0
SIE EE eff 0.139 73.44 42.17 0.008 0 0.144 0
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Table 2.21 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
SIE tmle 0.087 63.54 112.34 0.169 0.472 0.102 0
SIE EE 0.139 79.94 53.53 0.020 0 0.144 0

DGM 3, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.056 203.22 244.19 0.477 0.548 0.065 0
SDE EE eff -0.070 875.83 342.74 0.962 0.596 0.082 0
SDE tmle -0.062 518.76 616 0.813 0.889 0.111 0
SDE EE -0.074 1,340.79 935.49 0.862 0.865 0.162 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.125 147.45 105.41 0 0 0.126 0
SIE EE eff 0.133 67.89 35 0 0 0.134 0
SIE tmle 0.122 158.62 145.54 0 0 0.124 0
SIE EE 0.133 74.73 47.12 0 0 0.134 0

Table 2.22: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 3 under well-specified models for for all but the Y and Z models–sample sizes 100, 500
and 5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 3, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff -0.155 79.58 135.64 0.422 0.658 0.195 0
SDE EE eff -0.150 117.23 136.56 0.580 0.714 0.188 0
SDE tmle 0.005 264.09 290.02 0.806 0.874 0.287 0
SDE EE 0.028 380.69 299.92 0.939 0.880 0.292 0.300

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.047 111.60 126.11 0.640 0.639 0.086 0
SIE EE eff 0.038 170.70 110.67 0.863 0.755 0.070 0
SIE tmle 0.046 120.45 151.05 0.626 0.640 0.094 0
SIE EE 0.032 195.13 146.58 0.691 0.639 0.088 0

DGM 3, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.103 111.77 124.79 0.307 0.383 0.112 0
SDE EE eff -0.106 158.80 114.52 0.526 0.266 0.114 0
SDE tmle 0.116 397.58 376.82 0.799 0.735 0.192 0
SDE EE 0.120 481.43 371.48 0.942 0.746 0.191 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.002 141.83 125.67 0.977 0.954 0.022 0
SIE EE eff 0.0002 214.39 101.32 0.993 0.953 0.018 0
SIE tmle -0.008 151.37 186.26 0.892 0.923 0.035 0
SIE EE -0.004 269.77 193.99 0.973 0.938 0.036 0

DGM 3, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.098 105.11 103.48 0 0 0.099 0
SDE EE eff -0.104 144.61 97.28 0 0 0.104 0
SDE tmle 0.128 387.96 351.80 0.210 0.178 0.135 0

Continued on next page

58



Table 2.22 – continued from previous page
Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
SDE EE 0.127 440.62 351.63 0.282 0.183 0.134 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.005 122.10 87.11 0.959 0.826 0.007 0
SIE EE eff -0.001 180.44 76.76 1 0.932 0.005 0
SIE tmle -0.014 143.41 146.80 0.602 0.626 0.017 0
SIE EE -0.005 230.11 164.35 0.992 0.931 0.011 0

Table 2.23: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 3 under well-specified models for all but the Y and M models–sample sizes 100, 500
and 5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 3, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff -0.038 130.75 184.19 0.744 0.913 0.157 0
SDE EE eff -0.035 198.80 8.27∗1013 0.805 0.873 0.184 0.200
SDE tmle 0.055 197.50 318.16 0.574 0.859 0.338 0
SDE EE -0.006 409.96 5.23∗1014 0.876 0.876 0.414 2.200

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.097 108.17 131.11 0.573 0.583 0.196 0
SIE EE eff 0.078 203.97 1.18∗1014 0.656 0.628 0.197 0.100
SIE tmle 0.109 109.89 121.39 0.533 0.512 0.204 0
SIE EE 0.082 207.74 6.31∗1014 0.622 0.575 0.211 0.100

DGM 3, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.001 170.79 155.19 0.958 0.948 0.058 0
SDE EE eff 0.011 252.72 167.82 0.991 0.963 0.059 0
SDE tmle 0.079 443.35 490.67 0.569 0.642 0.266 0
SDE EE -0.010 909.43 847.53 0.984 0.707 0.427 1.800

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.017 110.82 158.64 0.871 0.949 0.066 0
SIE EE eff -0.031 308.72 178.99 0.985 0.929 0.081 0
SIE tmle -0.010 125.30 181.72 0.876 0.948 0.076 0
SIE EE -0.028 328.96 226.06 0.962 0.928 0.098 0

DGM 3, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff 0.004 157.81 131.85 0.975 0.931 0.018 0
SDE EE eff 0.013 215.88 125.17 0.994 0.844 0.021 0
SDE tmle 0.013 628.84 586.62 0.942 0.945 0.076 0
SDE EE 0.015 777.41 723.73 0.952 0.920 0.091 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.017 107.69 110.40 0.738 0.761 0.024 0
SIE EE eff -0.029 248.66 133.17 0.992 0.644 0.035 0
SIE tmle -0.017 121.09 124.46 0.789 0.806 0.025 0
SIE EE -0.029 271.57 175.39 0.983 0.775 0.039 0

59



Table 2.24: Simulation results comparing estimators of ΨTransportSDE and ΨTransportSIE for
DGP 3 under well-specified models for all but the Y models–sample sizes 100, 500 and 5000

Estimator Bias Efficiency 95%CI Cov RMSE % Out of Bds

IC Bootstrapping IC Bootstrapping
DGM 3, N=100

Transport stochastic direct effect (ΨTransportSDE)
SDE tmle eff -0.067 114.03 177.02 0.731 0.893 0.158 0
SDE EE eff -0.095 153.08 9.73∗1015 0.766 0.817 0.161 0
SDE tmle 0.019 189.07 312.17 0.598 0.876 0.314 0
SDE EE -0.063 335.43 2.51∗1014 0.857 0.854 0.335 1.600

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.093 107.56 142.73 0.533 0.582 0.200 0
SIE EE eff 0.094 172.64 1.18∗1014 0.612 0.562 0.185 0
SIE tmle 0.101 109.75 138.89 0.516 0.532 0.203 0
SIE EE 0.096 180.93 2.42∗1014 0.604 0.545 0.193 0

DGM 3, N=500
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.007 147.33 140.13 0.954 0.949 0.054 0
SDE EE eff -0.025 215.05 133.32 0.971 0.923 0.056 0
SDE tmle 0.066 411.77 462.31 0.607 0.674 0.238 0
SDE EE -0.025 729.40 644.29 0.992 0.752 0.314 1

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff -0.009 113.07 157.65 0.898 0.955 0.060 0
SIE EE eff 0.004 270.99 147.05 0.985 0.959 0.058 0
SIE tmle -0.005 126.18 184.44 0.896 0.958 0.068 0
SIE EE 0.003 293.04 190.52 0.970 0.950 0.074 0

DGM 3, N=5000
Transport stochastic direct effect (ΨTransportSDE)

SDE tmle eff -0.0002 147.13 118.60 0.984 0.947 0.015 0
SDE EE eff -0.001 250.94 124.08 0.992 0.950 0.014 0
SDE tmle 0.006 574.32 554.59 0.925 0.910 0.076 0
SDE EE -0.002 716.64 643.04 0.947 0.910 0.087 0

Transport stochastic indirect effect (ΨTransportSIE)
SIE tmle eff 0.0001 130.82 108.84 0.984 0.952 0.014 0
SIE EE eff 0.001 220.90 108.07 1 0.939 0.015 0
SIE tmle -0.0001 146.59 126.90 0.955 0.939 0.017 0
SIE EE 0.001 240.50 147.62 0.999 0.938 0.020 0

2.8 Conclusion

In this paper, we defined and identified parameters that transport stochastic direct and
indirect mediating effects from a source population (S = 1) to a new, target population
(S = 0). Identification of such parameters rely on the typical sequential randomization and
positivity assumptions of other stochastic mediation effects (Rudolph, Sofrygin, Zheng, et al.
2017; Zheng and M. v. d. Laan 2017; VanderWeele and Tchetgen Tchetgen 2017) as well as a
common outcome model assumption, described previously for transport estimators (Rudolph
and van der Laan 2017), which can be tested nonparametrically (A. R. Luedtke, Carone, and
M. J. v. d. Laan 2015). Such parameters enable the prediction of mediating effects in new
populations based on data about the mediation mechanism in a source population and the
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differing distributions of compositional characteristics between the two populations. Thus,
transport SDE and SIE parameters contribute to understanding how and why interventions
may work differently and/or have differing effects when applied to new populations.

We proposed five estimators for such effects: A stabilized weighted IPTW estimator, TMLE
and one-step estimator (EE) using the efficient influence curve for both the restricted and
unrestricted models. As expected, when we simulated by generated data from the restricted
model, the restricted TMLE and EE had very considerable gains in efficiency. Overall,
TMLE matches the coverage and MSE of the one-step estimator with greater stability in
finite samples in that it never strays outside the parameter bounds. In a couple of instances,
the EE gave almost 100% of its estimates outside the realm of possibility.
We also saw both the TMLE and EE are consistent when only the outcome model and the
treatment mechanism is known, while IPTW is not. However, in such circumstances we
might get the influence curve wrong and thus invalid inference when using the approximated
influence curve variance for the standard errors. This was corrected with the bootstrap
here because we used logistic regressions which can be non-parametrically bootstrapped
and therefore, recover the true variance. In practice, when we use highly adaptive predic-
tion methods that are necessary to reduce bias, the non-parametric bootstrap does not give
proper standard error estimates. Therefore, we can look to the future to employ the doubly
robust inference procedures as in Benkeser et al, 2017 where we perform extra targeting of
the variance of the influence curve in order to both use great prediction methodology and
obtain valid influence curve approximations for the inference.

The estimators we propose are limited in that they consider a stochastic intervention on
mediator, M , that is assumed known and estimated from observed data. However, we plan
to extend them to a true, unknown stochastic intervention in the future. The author has
already derive the efficient influence curve for this parameter (see section 3.1.10). Another
limitation is that the parameters are only identified if one assumes a common outcome model
across the source and target populations. There will be some research questions for which
it is not possible to establish evidence for or against this assumption, as in questions about
predicting a long-term outcome in a new population. However, when the research question
instead focuses on establishing the extent to which mechanisms are shared across popula-
tions, and the full set of data O = (S,W,A, Z,M, Y S) is observed for both populations, one
can empirically test whether there is evidence against such a shared outcome model (A. R.
Luedtke, Carone, and M. J. v. d. Laan 2015).

In the main text, we focused on transporting mediation estimates where an instrument, A,
was statically intervened on and mediator M was stochastically intervened on. Moreover,
we were primarily concerned with a statistical model that imposed instrumental variable
assumptions such as the exclusion restriction assumption. However, we describe how each
estimator can be easily modified to accommodate statistical models that do not impose
instrumental variable assumptions, allowing for a direct effect of A on M and of A on Y , in
scenarios where A is randomly assigned only conditionally on W,S, and for data generating
mechanisms that do not include an intermediate variable, Z. Thus, our transport mediation
estimators can be applied to a wide-range of common data generating mechanisms.
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Theory, Derivations and
Implementation

3.1 Tutorial: Deriving Efficient Influence Functions for

Large Models

This section aims to provide the reader with a useful tutorial on how to derive efficient
influence functions for non-parametric and semi-parametric models, while providing some
necessary background for the reader so as to understand the core concepts involved in the
process. It is the author’s aim that this paper unifies the derivation procedure for a very
broad class of parameters in a simple way so as to draw the broader statistics community
into embracing statistical techniques for large models. It is also the aim of this paper for it
to be self-contained, only indicating places where the reader might explore concepts in more
detail but such exploration is not at all needed.

3.1.1 The Hilbert Space

The efficient influence function can be seen as an element of a Hilbert space, which generalizes
familiar geometrical properties to allow for infinite dimensional spaces.

Definition 3.1.1. A Hilbert space, H, has an inner product, denoted by 〈·, ·〉, which takes
as arguments any two elements of H and obeys the following:

1. 〈x, y〉 = 〈y, x〉 where a is the complex conjugate of a. However, for this paper, we are
only considering real-valued inner products, so x and y are simply reversible in the
inner product as in, 〈x, y〉 = 〈y, x〉.

2. 〈x+ z, y〉 = 〈x, y〉+ 〈z, y〉

3. The norm ‖ · ‖ of any x ∈ H is given by 〈x, x〉 = ‖x‖2. The norm must obey the
natural notion of distance as mathematically defined here:

(a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, the triangle inequality

(b) |a|‖x‖ = ‖ax‖
(c) ‖x‖ = 0 ⇐⇒ x = 0

4. a〈x, y〉 = 〈ax, y〉 = 〈x, ay〉 for scalar a.
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A Hilbert space is complete with respect to the norm, which means the space includes
the limit of all cauchy sequences under the norm. Cauchy sequences are sequences where
the elements get closer and closer together, which is a fundamental distinction but more
fundamental than we need in order to proceed with clarity. For more background on the
basics of Hilbert spaces, the reader may consult Folland,1999. Here are two examples of
Hilbert spaces, the second of which forms the basis of this paper (no pun intended):

Example 3.1.1. R2

The points on the cartesian plane form a 2-dimensional Hilbert space and it is equipped with
an inner product more familiarly known as the dot product. If x = (x1, x2) and y = (y1, y2),
then 〈x,y〉 = x · y = x1y1 + x2y2.

This example is sufficient to convey a few of the key geometrical properties of Hilbert spaces
we will use.

• Orthogonality:

If the inner product of any two elements is 0, we say they are orthogonal. In R2 we
can see this fits our visual notion of such.

• Unique Projection: We notate the projection of (x, y) on the subspace, X =
{(x, 0)|x ∈ R}, as follows:

∏
((x, y)‖X). We see, just by regarding the shadow of

(x,y) on the x-axis, that the projection is (x, 0) and it is unique. We have a more
general formula for projecting any vector on a subspace but this example suffices to
illustrate that any projection must satisfy the following two properties:

• Two Properties of Projections

1. The projected item must be in the space onto which it is projected: (x, 0) is in
{(x, 0)|x ∈ R}), which it obviously is.

2. The projected element minus its projection must be perpendicular to the projec-
tion. This means the projection is the closest element in the space to the projected
element. This is easy to verify for this basic example because (x, y)−(x, 0) = (0, y)
and (0, y) ⊥ (x, 0) because the dot product 〈(0, y), (x, 0)〉 = (0, y) · (x, 0) = 0. We
can see in the plane that these two vectors are perpendicular. Such a geometrical
interpretation of projection also follows for infinite dimensional Hilbert spaces.

• Direct Sum Decomposition: Coming from the fact we have unique projections, we
can decompose R2 into 2 orthogonal subspaces, X⊕Y = {(x, 0)|x ∈ R} ⊕ {(0, y)|y ∈
R}. Any (x, y) ∈ R2 can be written as unique sum of projections,

∏
((x, y)‖X) +∏

((x, y)‖Y). More generally, if Z were any subspace such as any arbitrary line through
the origin, then its orthogonal complement, i.e., the perpendicular line through the
origin, Z⊥ would also decompose R2 as Z⊕Z⊥ and (x, y) =

∏
((x, y)‖Z)+

∏
((x, y)‖Z⊥).

If a Hilbert space has direct sum decomposition, H = H1 ⊕H2 ⊕ ... ⊕Hm, then all
h ∈ H can be written as the unique sum h =

∏
(h‖H1) +

∏
(h‖H2) + ...+

∏
(h‖Hm).

Example 3.1.2. L2
0(P )
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L2
0(P ) is the hilbert space of mean 0 functions of finite variance with respect to P , i.e. for

all f ∈ L2
0(P ), EPf(O) = 0 and EPf(0)2 <∞. The inner product of two elements, f and g

in L2
0(P ) is defined as 〈f, g〉 = EP [f(O)g(O)]. Thus two elements are considered orthogonal

if their covariance is 0. L2
0(P ) is an infinite dimensional Hilbert space we will focus upon

exclusively for this tutorial. The reader can consult Folland, 1999, section 5.5 for more detail
on Hilbert spaces.

A Note on Integration and Measure Theory

A measure, ν, is a non-negative mapping defined on a σ-algebra, which we will consider as
a set of subsets from a larger set. The trio, consisting of larger set, σ-algebra and mea-
sure, define a measure space, denoted by (X ,A, ν). Let the larger set X = R and let
ν be the Lebesgue measure, which simply measures the length of any interval, (a, b), i.e.,
ν((a, b)) = b − a. This is the measure used for introductory integration. The σ-algebra we
consider for Lebesgue measure is naturally the borel σ-algebra, B, which is the set of all
countable unions and intersections of intervals of the form (a, b). We could have also used
closed or half-open intervals to generate B as well. B also includes singleton sets of points
because {a} = ∩∞i=1(a − 1/i, a + 1/i), i.e., the countable intersection of ever smaller open
intervals about a.

Naturally we should have the following equivalence: ν({a}) = ν (∩∞i=1(a− 1/i, a+ 1/i)) =
lim
i→∞

ν(a − 1/i, a + 1/i) = lim
i→∞

2/i = 0, since the set {a} has length 0. In order that the

measure of a limit of nested intersections is a limit of the measures of the sets (and likewise
for nested unions), we could not have included all sets of real numbers in A. Though this
fact is surprising and intriguing in its own right, we need not delve into it further. For more
about the necessity of σ-algebras and a complete mathematical construction of measures,
the interested reader may consult Folland, 1999, chapters 1 and 2.

The examples below cover the situations we will encounter, essentially binary or continuous
conditional distributions.

1. Counting measure: Let X = {0, 1} and consider σ-algebra A = {{0}, {1}, {0, 1}}.
The ”measure space”, (X ,A, ν), is thusly defined via ν({0}) = ν({1}) = 1 and
ν({0, 1}) = 2. For X = N, the counting numbers and A the set of all subsets of
N, the counting measure does the same thing in that it counts the number of elements
in a set.

2. Lebesgue measure, 2-d: We might have ν on the σ-algebra generated by countable
unions and intersections of all boxes in R2 as in 2-d college calculus. Here B is generated
by countable unions and intersections of boxes on the plane and the measure space
(R2,B, ν) is defined by ν giving each 2-d box a measure equal to its area.

3. Lebesgue with counting measure: Let X = R ∪ {0, 1} and A = all sets generated
by countable unions and intersections of sets of the form {(a, b), z)} where z can be 0 or
1. In this case, ν puts a weight of b−a on each of these sets, which will define Lebesgue
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measure isolated to when z = 1 or z = 0. We might do the same, using X = R2∪{0, 1}
where ν maps each 2-d box to its area or the equivalent for X = Rd ∪ {0, 1}.

Integral Notation

ν is said to dominate P (P << ν) or is a dominating measure of P if whenever ν(A) is 0,
so is P (A) for two measure spaces, (X ,A, ν) and (X ,A, P ). This leads to P having a unique
Radon-Nikodym derivative (Folland 1999) of P with respect to ν, otherwise known as the
density of P , notated with the lowercase, p. For a measure space, (X ,A, P ), we write, for
a set A ∈ A, P (A) =

∫
A
p(x)dν(x), which is sometimes written as P (A) =

∫
A
dP (x). One

might connect this with our intro calculus notation for a continuous 1-dimensional random
variable, X, and Lebesgue measure, ν, where dP

dν
(x) = dP

dx
(x) = p(x), a standard derivative.

Then we would have P (A) =
∫
A
dP
dx

(x)dx as in the fundamental theorem of calculus. How-
ever, the intro calculus notion of derivative and integral breaks down if random variable X is
discrete, say, or a combination of discrete and continuous variables, so the Radon-Nikodym
derivative is much more general and less confining. We will always use the symbol, ν, as the
dominating measure in this tutorial.

It is best to illustrate, via some basic examples, the computational fluidity measure theory
provides. We will use these basic ideas throughout the tutorial:

1. Let Y be the outcome with continuous conditional distribution, PY (Y | X) for a
random variable, X. The dominating measure of PY (Y | X), will be Lebesque measure,
ν, and the density is written pY (y | x). The mean of Y given X is given by E[Y | X]
which we notate as

∫
ypY (y | X)dν(y) =

∫
ypY (y | X)dy as we might be most familiar

from intro calculus. Here we think of integrating as a limiting process of finer and finer
reimann sums.

2. Let Y be a binary outcome conditional on X with binary conditional distribution,
PY (Y | X). The dominating measure of PY will be the counting measure, ν. The
mean of Y given X is given by

∫
ypY (y | X)dν(y) = 1pY (1 | X)dν(1) + 0pY (0 |

X)dν(0) = pY (1 | X) as we expect for a binary. Notice, dν(y) is the same as v({y}) =
1 for y = 0 or 1. In other words, for the counting measure dν and ν are interchangeable
for a set of one element and the integral wrt a counting measure is just a sum. That
is, for a discrete random variable, Y , taking values {yi}mi=1, where m might be infinite,
as in a Poisson distribution, we can write the conditional mean of Y | X as

∫
ypY (y |

X)dν(y) =
∑m

i=1 yipY (yi | X)dν(yi) where dν(yi) = 1 = ν(yi). In other words, this
sum is as fine-grain as we can get and hence, is equivalent to the integral.

3. Multiple Integrals

Consider random variable O = (X, Y ) ∼ P with density, p. The density factors as
p(o) = pY (y | x)pX(x), where pY and pX are the conditional densities. Consider
function f defined by f(x, y) for some formula basic formula like exp(x + y) or a
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polynomial.

Ef(X, Y ) =

∫
f(x, y)p(x, y)dν(x, y)

=

∫
f(x, y)pY (y | x)pX(x)dν(x, y)

note the equivalence with a double integral: we will use this frequently

=

∫ ∫
f(x, y)pY (y | x)dν(y)︸ ︷︷ ︸

can integrate here

pX(x)dν(x)

=

∫ ∫
f(x, y)pY (y | x)dν(y)pX(x)dν(x)︸ ︷︷ ︸

can integrate outside first wrt x

If Y is, say, binary and X is continuous or for joint distribution of X and Y, we tech-
nically cannot use the same symbol, ν, for all of their dominating measures, but we
will not worry about that and abuse the notation for convenience. This doesn’t affect
our computation in that for the double integral we will understand which dominat-
ing measure (for our purposes either counting measure or Lebesgue measure) we are
considering by the variable we are integrating with respect to. It is also notable that
whether we integrate the expression via the inner integral then the outer or vice-versa,
both come out the same as integrating the single integral directly. This is the substance
of the fubini-tonelli theorem (Folland 1999), which the reader may look into further.

Remark. Computations in this tutorial will be with respect to densities of single vari-
ables and only involve the counting measure as the dominating measure.

4. Common tricks we will use: Consider the previous item with continuous conditional
distribution of Y given X and X binary.∫

ypY (y | 1)dν(y)

=

∫ ∫
ypY (y | x)dν(y)

x

pX(x)
pX(x)dν(x)

∫
y(pY (y | 1)− pY (y | 0))dν(y)

=

∫ ∫
ypY (y | x)dν(y)

2x− 1

pX(x)
pX(x)dν(x)

The reader may verify these facts.

5. Instructive Advertisement for Measure Theory:

Though we never need to consider this case, it is instructive for the reader so as
to understand the nice generality afforded by measure theory in integrating as well

66



as the notion of a unique density (the radon-nikodym derivative) corresponding to a
probability distribution and its dominating measure. This takes us beyond what we
need for our computations but will provide confidence in using the notation. Let the
distribution Y be given by the distribution function,

F (y) =

{
y/2 0 ≤ y < 1/2

y/2 + 1/2 1/2 ≤ y ≤ 1

Notice, F is not continuous. We have thusly defined a measure space, ([0, 1],B[0,1], P )
where P ((a, b)) = b−a

2
+ 1

2
I(1/2 ∈ (a, b)). Say our dominating measure is ν((a, b)) =

b − a + I(1/2 ∈ (a, b)). Then our unique radon-nikodym derivative is the density
p(y) = 1/2 for 0 ≤ y ≤ 1 .

To see this, notice for the latter density that we have:∫
p(x)dν(x) =

∫
[0,1/2)

p(x)dν(x) +

∫
{1/2}

p(x)dν(x) +

∫
(1/2,1]

p(x)dν(x)

= 1/4 + p(1/2)× ν({1/2}) + 1/4 = 1

Hence we are forced into defining the density so that p(1/2) = 1/2 for the total proba-
bility to be 1. We also see “area under the density” interpretation for probability of a
set fails because the area under the density is 1/2, not 1, if we use Lebesgue measure.

If ν((a, b)) = b− a+ 1
2
× I(1/2 ∈ (a, b)) then

p(y) =


1/2 0 ≤ y < 1/2

1 y = 1/2

1/2 1/2 < y ≤ 1

.

To see this, notice for the latter density we have:

∫
p(x)dν(x) =

∫
[0,1/2)

p(x)dν(x) +

∫
{1/2}

p(x)dν(x) +

∫
(1/2,1]

p(x)dν(x)

= 1/4 + p(1/2)× ν({1/2}) + 1/4 = 1

Hence we are forced into defining the density so that p(1/2) = 1. Thus for any
probability measure P and accompanying dominating measure, ν, we have a unique
radon-nikodym derivative we can use for integrating. The general result is proven in
Folland, 1999.

3.1.2 Tangent Spaces and Factorization of Densities

Now that we have taken care of some necessary notational considerations we are ready to
illustrate the general technique of deriving efficient influence curves. We therefore discuss
some important objects in efficiency theory.
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Tangent Space for Nonparametric Model

First, we consider the model, M, to be the set of all possible distributions for our true
distribution. Since we assume nothing about this set of models we will call it non-parametric.
We will consider observed data, which for a single observation is written as, O ∈ Rd, and
O ∼ P ∈M. The density of P factors as follows:

p(o) =
d∏
i=1

pOi(oi | ōi−1)

where o = ōd = (od, ..., o1), where the reader may note that we order the variables moving
backward in time from left to right, when we write them. We will generally establish a time
ordering of variables and use the subscript notation to represent the conditional densities.
So pOi is the conditional density of oi given the previous variables, ōi−1.
Pulling from van der Vaart, 2001, we define a path through P as a 1-dimensional submodel
that passes through P at ε = 0 in the direction, S.

{Pε ∈M, pε = (1 + εS)p s.t.

∫
S(o)p(o)dν(o) = 0,

∫
S2(o)p(o)dν(o) <∞ and Pε=0 = P}

The tangent space, T , at a distribution, P , is the closure in the L2
0(P ) norm of the set of

scores, S for the all the paths through P . This turns out to be the entirety of the Hilbert
space L2

0(P ) since L2
0(P ) is already complete. We write:

T = {S|EPS(O) = 0,EPS(O)2 <∞} = L2
0(P )

where the overbar represents the closure of the set.

1. The reader may quickly verify that for a given submodel, S = d
dε
logpε

∣∣∣∣
ε=0

. Thus scores

retain the intuitive notion of derivative of log likelihood as with parametric models.
The only difference is here, we have infinitely many score directions that span an
infinite dimensional space.

2. Another useful observation is that every element of the submodel in a non-parametric
model for our d-dimensional data, O, has a density that also factors as follows: pε(o) =∏d

i=1 pOi,ε(oi | ōi−1), where ōi−1 = (oi−1, ..., o1) where pOi,ε(oi | ōi−1) = pOi(oi | ōi−1) at
ε = 0. This implies

S(o) =
d∑
i=1

d

dε
log pOi,ε(oi | ōi−1)

∣∣∣∣
ε=0

=
d∑
i=1

SOi(ōi)
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and the reader may also verify SOi and SOj have covariance 0, i.e., SOi ⊥ SOj in L2
0(P )

for i 6= j.

3. SOi ∈ TOi = {g | E[g(O) | Oi−1] = 0, E[g2(O)] ≤ ∞} and TOi forms a subspace of T .
EXERCISE: The reader may verify that TOi ⊥ TOj for i 6= j. That is, all elements
of TOi have covariance 0 with those of TOj .

4. The projection of S on TOi is given by
∏

(S | TOi) = E[S(O) | Ōi] − E[S(O) | Ōi−1].
EXERCISE:The reader may verify that this is indeed a projection by verifying the
projection is in the set upon which it is projected and that (S −

∏
(S | TOi)) ⊥∏

(S | TOi), i.e. has covariance 0 with respect to P . This exercise is good preparation
for the rest of the tutorial.

5. T = TOd ⊕ ... ⊕ TO1 . Any score, S, is thusly a unique sum of its projections on the d

tangent subspaces and those projections are given by SOi = d
dε

log pOi,ε(oi | ōi−1)

∣∣∣∣
ε=0

.

We thus have the following convenient identity we will call upon for all derivations of efficient

influence curves. Noting the introductory calculus fact by the chain rule, d
dx

log f(x) =
df
dx

(x)

f(x)
,

we arrive at the following identity:

A Key Identity

d

dε
pOi,ε(oi | ōi−1)

∣∣∣∣
ε=0

= pOi(oi | ōi−1)
d

dε
log pOi,ε(oi | ōi−1)

∣∣∣∣
ε=0

= SOi(o)pOi(oi | ōi−1)

=⇒ d

dε
pOi,ε(oi | ōi−1)

∣∣∣∣
ε=0

=
(
E[S(O) | Ōi = ōi]− E[S(O) | Ōi−1 = ōi−1]

)
pOi(oi | ōi−1)

(3.14)

Parametric connection

Consider a parametric model containing elements Pθ for 1-dimensional θ. Let γ be differen-
tiable with respect to ε at ε = 0 and γ(0) = θ. Let r = γ′(0) and regard the path through
Pθ defined by Pγ(ε) . If the likelihood, pθ is differentiable wrt θ, we have for any given o:

taylor series =⇒ for small ε

pγ(ε)(o) = pθ+rε+O(ε2)(o) = pθ(o) +
dpθ
dθ

(o)rε+O(ε2) ≈ pθ(o)

(
1 + εr

d

dθ
log pθ(o)

)
We can see the score as the mean 0 function next to the ε similarly to the paths for the

non-parametric case. Such is really a result of the chain rule where we have d
dε

log pγ(ε)

∣∣∣∣
ε=0

=

r d
dθ

log pθ = Sθ, the familiar ”derivative of log-likelihood” score we know from parametric
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statistics. Our scores form a 1-dimensional tangent space, {r d
dθ

log pθ s.t. r ∈ R}, a sub-
space of L2

0(Pθ), assuming r d
dθ

log pθ is of finite variance. The reader may verify the fact
r d
dθ

log pθ has mean 0 with respect to Pθ. Very similar reasoning follows for k-dimensional
parametric models, where we will have a k-dimensional tangent space as a subspace of L2

0(Pθ),
{rT∇θ log pθ s.t. r ∈ Rk}, that is, all linear combinations of the k partial derivatives.

The Efficient Influence Curve

Consider a parameter mapping on the model,M, which, for simplicity, we will consider as a
mapping to the reals given by Ψ(P ). We can borrow from van der Vaart, 2000, who defines
the pathwise derivative as a continuous linear map from T to the reals given by

lim
ε→0

(
Ψ(Pε)−Ψ(P )

ε

)
−→ Ψ̇P (S) (3.15)

We note to the reader, we imply a direction, S, when we write Pe, which has density p(1+εS),
but generally leave it off the notation as understood.

By the riesz representation theorem (Riesz 1909) for Hilbert Spaces, if the functional defined
in (3.15) is a bounded and linear functional on the tangent space, T , it can be written in
the form of an inner product 〈D∗Ψ(P ), S〉L2

0(P ) =
∫
D∗Ψ(P )(o)S(o)p(o)dν(o) where D∗Ψ(P ) is a

unique element of T , which we call the canonical gradient or efficient influence curve. The
efficient influence curve is defined at a distribution ,P , according to the parameter mapping,
Ψ, and is a function of the data, O.

It is possible to have a gradient not in T if T is a proper subspace L2
0(P ), i.e., it is possible

to have a D(P ) ∈ L2
0(P ) such that for all S ∈ T , Ψ̇P (S) = 〈D,S〉.

EXERCISE: Prove this element has a larger variance than D∗(P ) by using the basic prop-
erties of inner products and the uniqueness of D∗(P ) in T . Because all regular asymptotically
linear estimators have a corresponding gradient, this proves the efficient influence curve has
a variance that is the general cramer-rao lower bound for any regular asymptotically linear
estimator (van der Vaart 2000).

Parametric connection

Again, returning to our parametric model, define the parameter mapping as Ψ(Pγ(ε)) = γ(ε),
for which we let γ′(0) = r, i.e., assuming differentiability of the parameter mapping in
the ordinary sense of introductory calculus. Now we can notice, using the L2

0(P ) norm,
‖f‖2 =

∫
f(o)2pθ(o)dν(o), which implies the following:

r =

∫
r( d

dθ
log pθ(o))

2pθ(o)dν(o)

‖ d
dθ

log pθ‖2

70



=

∫ d
dθ

log pθ(o)

‖ d
dθ

log pθ‖2
r
d

dθ
log pθ(o)︸ ︷︷ ︸

the score Sθ

pθ(o)dν(o)

=

∫ d
dθ

log pθ(o)

‖ d
dθ

log pθ‖2
Sθ(o)dν(o)

=

〈 d
dθ

log pθ

‖ d
dθ

log pθ‖2
, Sθ

〉

And thus the efficient influence curve is given by
d
dθ

log pθ(o)

‖ d
dθ

log pθ‖2
, whose variance we can see is the

inverse of the Fisher Information, 1/‖ d
dθ

log pθ‖2, which we know to be the cramer-rao lower
bound and attainable via maximum likelihood estimation, under regularity assumptions.

Remark. For a note on regularity, see Kale, 1985, where Hodges classic example of irregularity
is discussed.

The General Technique

The general approach to derive the efficient influence curve for a given parameter will be to
compute the derivative of the parameter mapping along a path, i.e. compute Ψ̇P (S) above
via taking a derivative and write it as an inner product with the score, S, via use of the
key identity (3.14). Since this functional will be bounded and linear for the parameters we
encounter, then by the previous paragraph, this will tell us exactly what the efficient influ-
ence curve is. Precisely the efficient influence curve will be the function with the score, S, in
the inner product, which means the efficient influence curve will be the function multiplied
by the score in the integral with respect to P . We will start with easy examples and grow
progressively more involved, including influence curves for new parameters derived by the
author.

3.1.3 Example 1:
∫
F (x)2dx

Let Ψ(P ) =
∫
F (x)2dx, the parameter mapping for P ∈ M, the set of continuous distribu-

tions, where F is the CDF.

d

de
Ψ(Pe)

∣∣∣∣
e=0

=
d

de

∫ (∫ x

0

pe(z)dz

)2

dx

∣∣∣∣
e=0

=

∫
2

∫
I(z ≤ x)p(z)dz

d

de

∫
I(z ≤ x)pe(z)dz

∣∣∣∣
e=0

dx

(3.14)
=

∫
2F (x)

∫
I(z ≤ x)(E[S(Z) | z]− ES(Z))p(z)dzdx

=

∫
2F (x)

∫
I(z ≤ x)E[S(Z) | z]p(z)dzdx
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−
∫

2F (x)

∫
I(z ≤ x)ES(Z)p(z)dzdx

reverse integration order to write as an integral wrt the density, p

=

∫ ∫
2F (x)I(z ≤ x)dxS(z)p(z)dz − E[S(Z)

∫
2F (x)2dx]

= E[S(Z)

∫
2F (x)(I(Z ≤ x)− F (x))dx]

So the efficient IC is 2
∫
F (x)(I(Z ≤ x)− F (x))dx

3.1.4 Example 2: Treatment Specific Mean

This influence curve is very well-known and can be derived in many ways but it will serve
as a good flagship example for the general technique.

STEP 1

Define the data and distribution as well as the factoring: O = (W,A, Y ) ∼ P . P has density,
p(o) = pY (y | a, w)pA(a | w)pW (w). We will assume A is binary. We also employ the
notation, Q̄(A,W ) = E[Y | A,W ].

STEP 2

Define the parameter as a mapping from M to the real numbers. Ψ(P ) = EP [EP [Y | A =
1,W ]]

STEP 3

Take derivative of parameter mapping along path in the score direction at P . Write the
derivative in terms of a derivative of pY,e(y | a, w) and pW,e(w). Then employ (3.14). We will
be very thorough in our steps here.

d

de

∣∣∣∣
e=0

Ψ(Pe) = EPe [EPe [Y | A = 1,W ]]

dom.convergence
=

∫ ∫
y
d

de

∣∣∣∣
e=0

(pY,e(y | a = 1, w)dν(y)pW,e(w))dν(w)

=

∫ ∫
y
d

de

∣∣∣∣
e=0

pY,e(y | a = 1, w)dν(y)pW (w)dν(w) +

∫ ∫
ypY (y | a = 1, w)dν(y)

d

de

∣∣∣∣
e=0

pW,e(w)dν(w)

=

∫ ∫ ∫
y
d

de

∣∣∣∣
e=0

pY,e(y | a,w)dν(y)
apA(a | w)

pA(a | w)
dν(a)pW (w)dν(w) (3.16)

+

∫ ∫
ypY (y | a = 1, w)dν(y)

d

de

∣∣∣∣
e=0

pW,e(w)dν(w) (3.17)
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Now (3.14) establishes the following identities:

d

dε
pY ε(y | a,w)|ε=0 = (E[S(o) | w, a, y]− E[S(W,A, Y ) | w, a]) pY (w | a,w)

= (S(w, a, y)− E[S(W,A, Y ) | w, a]) pY (w | a,w) (3.18)

d

dε
pWε(w)|ε=0 = (E[S(W,A, Y ) | w]− ES(W,A, Y )) pW (w) (3.19)

Now we continue from (3.16) and (3.17):

(3.18) and (3.19)
=

∫ ∫ ∫
y

[
E[S(O) | w, a, y]− E[S(O) | w, a]pY (y | w, a)

]
dν(y)

apA(a | w)

pA(a | w)
dν(a)pW (w)dν(w)

+

∫ ∫
ypY (y | a = 1, w)dν(y)

[
E[S(O) | w]− E[S(O)]pW (w)

]
dν(w)

Splitting up the first integral and noting E[S(O) | w, a, y] = S(O) :

=

∫ ∫ ∫
yS(O)pY (y | w, a)dν(y)

apA(a | w)

pA(a | w)
dν(a)pW (w)dν(w)

−
∫ ∫ ∫

yE[S(O) | w, a]pY (y | w, a)dν(y)︸ ︷︷ ︸
integrate wrt y

apA(a | w)

pA(a | w)
dν(a)pW (w)dν(w)

+

∫ ∫
ypY (y | a = 1, w)dν(y)︸ ︷︷ ︸

integrate wrt y

[
E[S(O) | w]− E[S(O)]pW (w)

]
dν(w)

integrate the 2nd and 3rd integrals wrt y

=

∫ ∫ ∫
yS(O)pY (y | w, a)dν(y)

apA(a | w)

pA(a | w)
dν(a)pW (w)dν(w)

−
∫ ∫

Q̄(w, a)E[S(O) | w, a]
apA(a | w)

pA(a | w)
dν(a)pW (w)dν(w)

+

∫
Q̄(1, w)

[
E[S(O) | w]− E[S(O)]pW (w)

]
dν(w)

replacing expectations with integrals we get:

=

∫ ∫ ∫
yS(o)pY (y | w, a)dν(y)

apA(a | w)

pA(a | w)
dν(a)pW (w)dν(w)

−
∫ ∫

Q̄(1, w)

∫
S(o)pY (y | w, a)dν(y)

apA(a | w)

pA(a | w)
dν(a)pW (w)dν(w)

+

∫
Q̄(1, w)

∫
S(o)pY A(y, a | w)dν(y, a)pW (w)dν(w)−

∫
S(o)p(o)dν(o)

∫
Q̄(1, w)pW (w)dν(w)

Note the first term becomes a single integral as discussed section 3.1.1

=

∫
yS(o)

a

pA(a | w)
pY (y | w, a)pA(a | w)pW (w)︸ ︷︷ ︸

p(o)

dν(o)

−
∫ ∫ ∫

Q̄(1, w)S(o) pY (y | w, a))dν(y)
apA(a | w)

pA(a | w)
dν(a)pW (w)dν(w)︸ ︷︷ ︸

a
pA(a|w)

p(o)dν(y)dν(a)dν(w)

+

∫
Q̄(1, w)

∫
S(o) pY A(y, a | w)dν(y, a)pW (w)dν(w)︸ ︷︷ ︸

p(o)dν(y,a)dν(w)

−
∫
S(o)p(o)dν(o)

∫
Q̄(1, w)pW (w)dν(w)︸ ︷︷ ︸∫

S(o)p(o)Ψ(P )dν(o)

the second and third terms become single integrals (see section 3.1.1) yielding:

=

∫
S(o)

a

pA(a | w)
yp(o)dν(o)−

∫
S(o)

a

pA(a | w)
Q̄(w, a) pY (y | w, a)pA(a | w)pW (w)︸ ︷︷ ︸

p(o)

dν(o)

+

∫
S(o)Q̄(1, w)p(o)dν(o)−

∫
S(o)Ψ(P )p(o)dν(o)
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=

∫
S(o)

[
a

pA(a | w)
(y − Q̄(w, a)) + Q̄(1, w)−Ψ(P )

]
p(o)dν(o)

Now we notice the last expression is an L2
0(P ) inner product of the score, S and the function

defined by the formula:

D∗(P )(O) =
A

pA(A | W )
(Y − Q̄(A,W )) + Q̄(1,W )−Ψ(P )

and D∗(P ) is therefore the efficient influence curve, assuming 1/pA(a | w) does not blow up
anywhere to make derivative functional unbounded.

Remark. If one follows the guidelines of section 3.1.1, the derivation takes care of itself. One
should keep one’s mind’s eye on making sure the full density is under the integral, meaning
all factors of the likelihood, so as to have a properly defined L2

0(P ) inner product. There

is also the trick of multiplying by apA(a|w)
pA(a|w)

dv(a) within the integral so as to be able to write
this full density.

Regarding Semi-Parametric Models With Known Treatment Mechanism

Our parameter mapping does not depend on the treatment mechanism, g, and also TA ⊥
TY ⊕ TW which, means our efficient influence curve must therefore be in TY ⊕ TW for the
nonparametric model. Therefore, our efficient influence curve will have two orthogonal com-
ponents in TY and TW respectively. We have no component in TA, which is why we need not
perform a TMLE update of the initial prediction, gn, of g0. Such also teaches us that for
the semi-parametric model, where the treatment mechanism is known, the efficient influence
function will remain the same.

3.1.5 Example 3: Efficient Influence Curve of TE Variance, VTE

Let P ∈ M, non-parametric for the same data structure as in section 3.1.4. Then define
bP (W ) = EP [Y | A = 1,W ] − EP [Y | A = 0,W ]. We note, this also covered in Levy, 2018
tech report on the VTE (Levy et al. 2018).

Theorem 3.1.1. Let Ψ(P ) = varP (b(W )). The efficient influence curve for Ψ at P is given
by:

D?(P)(W,A,Y) =2 (b(W)− Eb(W))

(
2A− 1

pA(A|W)

)(
Y − Q̄(A,W)

)
+ (b(W)− Eb)

2 − Ψ(P)

where Q̄(A,W ) = E(Y |A,W )
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Proof.

d

dε
Ψ(Pε)(S)

∣∣∣∣
ε=0

=
d

dε
EPε
(
bPε(W )− EPεbPε(W )

)2∣∣∣∣
ε=0

=
d

dε

∫ (
bPε(w)− EPεbPε(W )

)2

pε(o)dν(o)

∣∣∣∣
ε=0

=

∫
2

(
bPε(w)− EPεbPε(W )

)
d

dε

(
bPε(w)− EPεbPε(W )

)
p(o)dν(o)

∣∣∣∣
ε=0

+

∫ (
bP (w)− EP bP (W )

)2
d

dε
pW,ε(w)

∣∣∣∣
ε=0

dν(w)

note that

∫
2

(
bPε(w)− EPεbPε(W )

)
d

dε
(EPεbPε(W )) p(o)dν(o)

∣∣∣∣
ε=0

= 0 so we have:

(3.19)
=

∫
2

(
bP (w)− EP bP (W )

)
d

dε
bPε(w)p(o)dν(o)

∣∣∣∣
ε=0

+

∫ (
bP (w)− EP bP (W )

)2

(E[S(W,A, Y ) | w]− ES(W,A, Y )) pW (w)dν(w)

=2

∫ (
bP (w)− EP bP (W )

)
d

dε

[ ∫ (
ypY ε(y|a = 1, w)− ypY ε(y|a = 0, w)

)
dν(y)

]
pW (w)dν(w)

∣∣∣∣
ε=0

+

∫ (
bP (w)− EP bP (W )

)2 ∫
S(o)pY,A(y, a | w)dν(y, a)pW (w)dν(w)

−
∫
S(o)Ψ(P )p(o)dν(o)

=2

∫ (
bP (w)− EP bP (W )

)∫ (
y
d

dε
pY ε(y|a,w)

∣∣∣∣
ε=0

2a− 1

pA(a|w)
pA(a|w)dν(y, a)︸ ︷︷ ︸

trick

pW (w)dν(w) (3.20)

+

∫ [(
bP (w)− EP bP (W )

)2

−Ψ(P )

]
S(o)p(o)dν(o)

Now continuing with the term (3.20).

(3.18)
= 2

∫ (
bP (w)− EP bP (W )

)[∫
y

(
EP [S(O) | y, a, w]

− EP [S(O) | a,w]

)
pY (y | a,w)

2a− 1

pA(a|w)
pA(a|w)dν(y, a)

]
pW (w)dν(w)

splitting into separate integrals

=2

∫ (
bP (w)− EP bP (W )

)∫
S(o)ypY (y | a,w)

2a− 1

pA(a|w)
pA(a|w)dν(y, a)︸ ︷︷ ︸

an integral wrt a,y

pW (w)dν(w)

− 2

∫ (
bP (w)− EP bP (W )

)∫ ∫
ypy(y|a,w)dν(y)︸ ︷︷ ︸

Q̄(a,w)

EP [S(O) | a,w]
2a− 1

pA(a|w)
pA(a|w)dν(a)pW (w)dν(w)

replace expectations with integrals

2

∫ (
bP (w)− EP bP (W )

)∫
S(o)ypY (y | a,w)

2a− 1

pA(a|w)
pA(a|w)dν(y, a)︸ ︷︷ ︸

an integral wrt a,y

pW (w)dν(w)
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− 2

∫ (
bP (w)− EP bP (W )

)∫
Q̄(a,w)

∫
S(o)pY (y | a,w)dν(y)

2a− 1

pA(a|w)
pA(a|w)dν(a)pW (w)dν(w)

fubini
= 2

∫ (
bP (w)− EP bP (W )

)
(2a− 1)

pA(a|w)
yS(o)p(o)dν(o)− 2

∫ (
bP (w)− EP bP (W )

)
(2a− 1)

pA(a|w)
Q̄(a,w)S(o)p(o)dν(o)

=2

∫ (
bP (w)− EP bP (W )

)
(2a− 1)

pA(a|w)
(y − Q̄(a,w))S(o)p(o)dν(o)

And we can see the unique reisz representer (the function in the L2
0(P ) inner product with

the score, S) is given by

2 (b(W )− Eb(W ))

(
2A− 1

pA(A|W )

)
(Y − Q̄(A,W )) + (b(W )− Eb)2 −Ψ(P )

completing the proof.

Remark. From here on out we will avoid the double and triple integrals and take them as
understood because otherwise the notation is too clumsy.

3.1.6 Example 4: Affect Among the Treated

We have the identical data structure as before. However, to avoid confusion and maintain
notation, we will factor the density as follows:
p(w, a, y) = pY (y | a, w)g(a | w)pW (w) so g(a | w) takes the place of pA(a | w). We

will use PA to be the marginal density of A, which is binary. Thus the score d
de
pA,e

∣∣∣∣
e=0

=

SAmarginal(a)pA(a) as in the step before establishing, the key identity, (3.14). But then we
see the obvious that the score for a binary marginal is just I(A = a) − pA(a), so we get

d
de
pA,e

∣∣∣∣
e=0

= (I(A = a)− pA(a))pA(a) and this can be used below when we take derivatives.

The author will start the reader with a couple of crucial steps. First

Ψ(P ) = EP [(EP [Y | 1,W ]− EP [Y | 0,W ]) | A = 1]

The efficient influence curve is given in van der Laan and Rose, 2011 as

D∗(P ) =

(
A

PA(A)
− (1− A)g(1 | W )

PA(1)g(0 | W )

)
[Y − Q̄(A,W )] +

A

PA(A)
[Q̄(1,W )− Q̄(0,W )−Ψ(P )]

The reader is encouraged to derive this fact after being given a few first steps as follows:
We write the parameter mapping as an integral for a path along score, S, whose notation is
supressed here as usual. S will appear later when we apply (3.14).

Ψ(Pe) =
∫
y(pY,e(y | 1, w)− pY,e(y | 0, w))

ge(0|w)pW,e(w)

pA,e(0)
dv(y, w)

and when you differentiate at e = 0 you get four terms: d
de

∫
y(pY,e(y | 1, w) − pY,e(y |

0, w))g(0|w)pW (w)
pA(0)

dv(y, w)

∣∣∣∣
e=0

d
de

∫
y(pY (y | 1, w)− pY (y | 0, w))ge(0|w)pW (w)

pA(0)
dv(y, w)

∣∣∣∣
e=0
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d
de

∫
y(pY (y | 1, w)− pY (y | 0, w))

g(0|w)pW,e(w)

pA(0)
dv(y, w)

∣∣∣∣
e=0

d
de

∫
y(pY (y | 1, w)− pY (y | 0, w))g(0|w)pW (w)

pA,e(0)
dv(y, w)

∣∣∣∣
e=0

Any density that is being differentiated must be rewritten in its full conditional form, i.e.,
without any specific numbers in the conditional so you have pY,e(y | a, w), pA,e(a | w), pW,e(w)
and pA,e(a). Thus we apply the usual trick to do so:

d
de

∫
y(pY,e(y | a, w) (2a−1)g(a|w)

g(a|w)
g(0|w)pW (w)

pA(0)
dv(y, a, w)

∣∣∣∣
e=0

d
de

∫
pY (y | a, w)(Q̄(1, w)− Q̄(0, w))ge(a | w) a

g(a|w)
pW (w)
pA(0)

dv(y, a, w)

∣∣∣∣
e=0

d
de

∫
pY (y | a, w)(Q̄(1, w)− Q̄(0, w))g(a | w)

g(0|w)pW,e(w)

pA(0)
dv(y, a, w)

∣∣∣∣
e=0

d
de

∫
ypY (y | a, w)(Q̄(1, w)− Q̄(0, w))pW |A(w | a) apA(a)

pA,e(a)
dv(y, a, w)

∣∣∣∣
e=0

Now the reader is ready to proceed and carefully integrate, using (3.14).

3.1.7 Example 5: Efficient Influence Curve for Transporting
Stochastic Direct and Indirect Effects
Non-parametric Model

Here we consider data of the form O = (Y S,M,Z,A,W, S) where we consider M,Z,A, S as
binaries and W as a vector of covariates. Y S indicates we only see an outcome for when
S = 1, i.e., for when the site of our population is taken from site 1. The observed data
likelihood factors as below, assuming the non-parametric model.

p(O) = pY×S(Y × S |M,Z,A,W, S)gM (M | Z,A,W, S)pZ(Z | A,W,S)gA(A |W,S)pW |S(W | S)pS(S)

We perform an intervention on A for a population at both sites, S = 1 and 0. Z can be
considered an intermediate confounder and M , a mediator. Here we consider a data adaptive
parameter where ĝM |a∗,W,s(m | W ) =

∑
z ĝM(M | z, a∗,W, s)(M | W ) is the stochastic

intervention on M marginalized over Z and defined for a fixed value of A = a∗ and S = s.
ĝM |a∗,W,s can be considered as estimated from the data and thus, it can be considered as a
given. That is, it defines the parameter below data adaptively.

Theorem 3.1.2. Consider a non-parametric model or semiparametric model with one or
both the treatment and mediator mechanisms known (mechanisms for A and M). Consider
the parameter defined by

Ψ(P ) = E
[
E
[∑

m

[
EY ĝM |a∗,W,s(m |W ) |M = m,W,Z,A = a, S = 1

]
| A = a,W, S

]
| S = 0

]
where the expectations are taken with respect to P . Then the efficient influence curve is

given by
D∗(P )(O) = D∗Y (P )(O) +D∗Z(P )(O) +D∗W (P )(O)
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where

D∗Y (P )(O) = (Y − E [Y |M,Z,A,W ]) ∗
ĝM |a∗,W,s (M |W ) pZ (Z | A,W,S = 0) pS|W (S = 0 |W ) I(S = 1, A = a)

gM (M | Z,A,W, S) pZ (Z | A,W,S) gA (A |W,S) pS|W (S |W )PS(S = 0)

D∗Z(P )(O) =
(
Q̄M (Z,A,W )− Q̄Z(A,W,S)

) I(S = 0, A = a)

gA (A |W,S) pS(S = 0)

D∗W (P )(O) =
(
Q̄Z(A = a,W, S)−Ψ(P )

) I(S = 0)

pS(S = 0)

Proof. (3.14) implies the following, replacing our usual score name, S, currently occupied by
the site variable, S, with γ:

d

dε

(
pY,ε(Y × S |M,Z,A,W, S)

)∣∣∣∣
ε=0

= (γ(O)− E [γ(O) |M,Z,A,W, S]) pY (Y × S |M,Z,A,W, S) (3.21)

d

dε

(
pZ,ε(Z | A,W,S)

)∣∣∣∣
ε=0

= (E [γ(O) | Z,A,W, S]− E [γ(O) | A,W,S]) pZ(Z | A,W,S) (3.22)

d

dε

(
pW |S,ε(W | S)

)∣∣∣∣
ε=0

= (E [γ(O) |W,S]− E [γ(O) | S]) pW |S(W | S) (3.23)

Our parameter of interest is given by

Ψ(P ) =

∫
ypY (y | m, z, a, w, s = 1)ĝM|a∗,W,s (m | w) pZ (z | a,w, s = 0) pW |S (w | s = 0) dν(y,m, z, w)

We then take the pathwise derivative for a path along score, γ. We can note to the reader
that this derivative is unaffected by knowledge of the treatment mechanism, E[A | S,W ],
or the mediator mechansim, E[M | Z,A,W, S], due to the estimand not depending on these
models as well as the fact that scores, γA and γM are orthogonal (have 0 covariance) to
γY , γZ , γW ) in the Hilbert Space L2(P ). This is why for a semi-parametric model where the
M and/or A mechanisms are known, the efficient influence curve will be the same as that
for the non-parametric model.

d

dε
Ψ(Pε)

∣∣∣∣
ε=0

=
d

dε

∫
ypY,ε(y | m, z, a, w, s = 1)ĝM|a∗,W,s (m | w) pZ,ε (z | a,w, s = 0) pW |S,ε (w | s = 0) dν(y,m, z, w)

∣∣∣∣
ε=0

=
d

dε

∫
ypY,ε(y | m, z, a, w, s = 1)ĝM|a∗,W,s (m | w) pZ (z | a,w, s = 0) pW |S (w | s = 0) dν(y,m, z, w)

∣∣∣∣
ε=0

(3.24)

+
d

dε

∫
ypY (y | m, z, a, w, s = 1)ĝM|a∗,W,s (m | w) pZ,ε (z | a,w, s = 0) pW |S (w | s = 0) dν(y,m, a, z, w)

∣∣∣∣
ε=0

+
d

dε

∫
ypY (y | m, z, a, w, s = 1)ĝM|a∗,W,s (m | w) pZ (z | a,w, s = 0) pW |Sε (w | s = 0) dν(y,m, z, w)

∣∣∣∣
ε=0

The first term in 3.24:

d

dε

∫
ypY,ε(y | m, z, a, w, s = 1)ĝM|a∗,W,s (m | w) pZ (z | x = a,w, s = 0) pW |S (w | s = 0) dν(y,m, z, w)

∣∣∣∣
ε=0

=

∫
y
d

dε
pY,ε((y × s) | m, z, x, w, s)

∣∣∣∣
ε=0

ĝM|a∗,W,s (m | w)
gM (m | z, w, s)
gM (m | z, w, s)

pZ (z | x = a,w, s = 0)
pZ (z | x,w, s)
pZ (z | x,w, s)
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∗
I(s = 1, x = a)gA (x | w, s)

gA (x | w, s)
pW |S (w | s = 0)

pW |S (w | s)
pW |S (w | s)

pS(s)

pS(s = 1)
dν(y,m, z, x, w, s)

(3.21)
=

∫
y (γ(o)− E [γ(o) | m, z, x, w, s]) pY ((y, s) | m, z,w, s)ĝM|a∗,W,S (m | w)

gM (m | z, w, s)
gM (m | z, w, s)

pZ (z | x = a,w, s = 0)

∗
pZ (z | x,w, s)
pZ (z | x,w, s)

I(s = 1, x = a)gA (x | w, s)
gA (x | w, s)PS(s = 1)

pW |S (w | s = 0)
pW |S (w | s)
pW |S (w | s)

pS(s)dν(y,m, z, x, w, s)

=

∫
γ(o)

(
y − E

[
y | m, z, x, w, s

])
×

ĝM|a∗,W,s(m | w)pZ(z | a,w, s = 0)pS|W (s = 0 | w)I(s = 1, x = a)

gM (m | z, w, s = 1)pZ(z | x = a,w, s = 1)gA(a | w, s = 1)pS|W (s = 1 | w)pS(s = 0)
p(o)dν(o)

= 〈γ,D∗Y (P )〉L2
0(P )

where

D∗Y (P )(O) = (Y − E [Y |M,Z,A,W ])
ĝM|a∗,W,s (M |W ) pZ (Z | A,W,S = 0) pS|W (S = 0 |W ) I(S = 1, A = a)

gM (M | Z,A,W, S) pZ (Z | A,W,S) gA (A |W,S) pS|W (S |W )PS(S = 0)

The reader may notice D∗Y (P )(O) is not a mean 0 function of Y | M,Z,W because it
also depends on the variable, A. Hence, it is not an element of the tangent space under the
restricted model where the mechanism for M and Y do not depend directly on A. Therefore,
D∗(P )(O) has an extra orthogonal component in addition to the efficient influence curve for
the restricted model so any efficiently constructed estimator based on this influence curve
will not be efficient for the restricted semi-parametric model. The second term in 3.24:

d

dε

∫
ypY (y | m, z,w, s = 1)ĝM|a∗,W,s (m | w) pZ,ε (z | a,w, s = 0) pW |S (w | s = 0) dν(y,m, z, w)

∣∣∣∣
ε=0

=

∫
ypY (y | m, z, x, w)ĝM|a∗,W,s (m | w)

d

dε
pZ,ε (z | x,w, s)

∣∣∣∣
ε=0

I(s = 0)I(x = a)

gA (x | w, s) pS(s = 0)

∗ gA (x | w, s) pW |S (w | s) pS(s)dν(y,m, z, x, w, s)

(3.22)
=

∫
ypY (y | m,x, z, w)ĝM|a∗,W,s (m | w) (E [γ(o) | z, x, w, s]− E [γ(o) | x,w, s]) pZ(z | x,w, s)

∗
I(s = 0)I(x = a)

gA (x | w, s) pS(s = 0)
gA (x | w, s) pW |S (w | s) pS(s)dν(y,m, z, x, w, s)

=

∫
γ(o)

(
EĝM|a∗,W,s

(
E
[
Y |M,A,Z,W

]
| z, x, w, s = 1

)
−

EPZ|A,W,S

[
EĝM|a∗,W,s

(
E
[
Y |M,Z,AW

]
| Z,A,W, S = 1

)
| x,w, s

])
∗

I(s = 0, x = a)

gA (x | w, s) pS(s = 0)
p(o)dν(o)

= 〈γ,D∗Z(P )〉L2
0(P )

We substitute

Q̄M(z, x, w) = EĝM|a∗,W,s (E [Y |M,A,Z,W ] | z, x, w)

Q̄Z(x,w, s) = EPZ|A,W,S
[
EĝM|a∗,W,sQ̄M(Z,A,W ) | x,w, s

]
and since x represents the treatment, A, in the integrals above, we get
D∗Z(P)(O) =

(
Q̄M(Z,A,W)− Q̄Z(A,W,S)

) I(S=0,A=a)
gA(A|W,S)pS(S=0)

The third term in 3.24:

d

dε

∫
ypY (y | m, z, a, w, s = 1)ĝM|a∗,W,s (m | w) pZ (z | a,w, s = 0) pW |S,ε (w | s = 0) dν(y,m, z, w)

∣∣∣∣
ε=0
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=

∫
ypY (y | m,a, z, w)ĝM|a∗,W,s (m | w) pZ (z | a,w, s)

d

dε
pW |S,ε (w | s)

∣∣∣∣
ε=0

I(s = 0)

pS(s = 0)
pS(s)dν(y,m, z, x, w, s)

(3.23)
=

∫
ypY (y | m,a, z, w)ĝM|a∗,W,s (m | w) pZ (z | a,w, s) (E [γ(o) | w, s]− E [γ(o) | s])

∗ pW |S(w | s)
I(s = 0)

pS(s = 0)
pS(s)dν(y,m, z, x, w, s)

=

∫
S(o)

(
Q̄Z(x = a,w, s)−Ψ(P )

) I(s = 0)

pS(s = 0)
p(o)dν(o)

= 〈γ,D∗W 〉L2
0(P )

where D∗W(P)(O) =
(
Q̄Z(A = a,W,S)−Ψ(P)

) I(S=0)
pS(S=0)

Thus the efficient influence curve is the sum of its orthogonal components:

D∗(P )(O) = D∗Y (P )(O) +D∗Z(P )(O) +D∗W (P )(O)

Regarding Semi-Parametric Models With Known Treatment and Mediator Mech-
anisms

Our parameter mapping does not depend on the treatment mechanism g or the mediator
mechanism, gM . Also, TA, the tangent space of mean 0 functions of A given W,S, as well as
TM , the tangent space of mean 0 functions of M given Z,A,W, S are both perpendicular to
the subspace of the tangent space containing D∗W , D∗Z and D∗Y . Thus we would not perform
a TMLE update of the initial fits for the mediator mechanism, E[M | Z,A,W, S], and the
treatment mechanism, E[A | W,S], just as we would not do so for the treatment mechanism
at any time point for a longitudinal TMLE for the treatment specific mean (van der Laan
and Rose 2011). If our stochastic intervention was not data adaptive in the sense that our
parameter depends on our fit of ĝM |a∗,W,s but rather we defined ĝM |a∗,W,s as the fixed true
mechanism we were estimating from the data, then our parameter mapping would depend
on gM and we would have a component in the efficient influence curve in TM .

3.1.8 Example 6: Efficient Influence Curve for Transporting
Stochastic Direct and Indirect Effects
Restricted Model

Now we will derive the efficient influence curve for same parameter as the previous section,
except, we will assume the restricted semi-parametric model where M and Y mechanism do
not depend directly on the instrument, A.

Theorem 3.1.3. The efficient influence curve for our restricted model, where M and Y do
not depend directly on A, is given by

D∗(P )(O) = D∗Y,r(P )(O) +D∗Z(P )(O) +D∗W (P )(O)
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where

D∗Y,r(P )(O) =

(
y − E

[
y | m, z,w

])
ĝM |a∗,W,s(m | w)pZ(z | a0, w, s = 0)pS|W (s = 0 | w)I(s = 1)

gM,r(m | z, w, s)pZ(z | w, s)pS|W (s | w)pS(s = 0)

Proof. We can note that our only task here is to project D∗Y (P ), our component of the
influence curve in TY , onto the subspace of TY given by
TY,r = {γ(O | Y S,M,Z,W, S) : E(γ(O) | Y S,M,Z,W, S) = 0}.
Consider observed data density argument o = (ys,m, z, x, w, s) and the corresponding ran-
dom variable, O = (Y S,M,Z,A,W, S), where we will retain the variable ordering in all
the notation. pY S is the conditional density ys given m, z, a, w, s and pM is the conditional
density of m given z, x, w, s, i.e., given all varibles to the right and we will stay with that
convention in naming other densities. Note, a is fixed here (the intervention on A) and x is
the variable for the treatment in the density (playing the role of random variable A). pY S,r is
the conditional density ys given m, z, w and pM,r is the conditional density of m given z, w, s
in the restricted model, i.e. we don’t put the instrument, a, in the conditional statement.
M̄ = m, z, x, w, s, i.e. all past variables from most recent backward.
Notice the following:

pA|Ȳ S,r(x | ys,m, z, w, s = 1) =
pĀ,r(x, ys,m, z, w, s = 1)

pO/A(ys,m, z, w, s = 1)

=
pY,r(y | m, z, w)pM,r(m | z, w, s = 1)pZ̄(z, x, w, s)

pY,r(y | m, z, w)pM,r(m | z, w, s = 1)pZ̄(z, w, s = 1)

=
pZ̄(z, x, w, s = 1)

pZ̄/A(z, w, s = 1)
(3.25)

pA,Y S,r(x, ys | m, z, w, s = 1) =
pȲ ,r(ys, x,m, z, w, s = 1)

pM̄,r(m, z, w, s = 1)

=
pY,r(y | m, z, w)pZ̄(z, x, w, s = 1)

pZ̄/A(z, w, s = 1)
(3.26)

Thus from 3.25 and 3.26 and referencing item 4 in section 3.1.2:∏
(D∗Y ‖TY,r)

= E(D∗Y (O) | Y S,M,Z,W, S)− E(D∗Y (O) |M,Z,W, S)

= E(D∗Y (O) | Y S,M,Z,W, S)

=

∫ (
y − E

[
y | m, z,w

])
×

ĝM |a∗,W,s(m | w)pZ(z | a,w, s = 0)pS|W (s = 0 | w)I(s = 1, x = a)

gM,r(m | z, w, s = 1)pZ(z | a,w, s = 1)gA(a | w, 1)pS|W (1 | w)pS(0)
pA|Ȳ S,r(x | ys,m, z, w, s)dν(x)

−
∫ (

y − E
[
y | m, z,w

])
×

ĝM |a∗,W,s(m | w)pZ(z | a,w, s = 0)pS|W (s = 0 | w)I(s = 1, x = a)

gM,r(m | z, w, s = 1)pZ(z | a,w, s = 1)gA(a | w, 1)pS|W (1 | w)pS(0)
pA|Ȳ S,r(x, ys | m, z,w, s)dν(x, ys)
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remembering we are integrating wrt x and all else is fixed in the first integral

All is fixed but x and ys in the second integral. Since I(s=1), ys = 1 and s = 1

=

∫ (
y − E

[
y | m, z,w

])
×

ĝM |a∗,W,s(m | w)pZ(z | a,w, s = 0)pS|W (s = 0 | w)I(s = 1, x = a)

gM,r(m | z, w, s = 1)pZ(z | a,w, s = 1)gA(a | w, 1)pS|W (1 | w)pS(0)
pA|Ȳ S,r(x | ys,m, z, w, s = 1)dν(x)

−
∫ (

y − E
[
y | m, z,w

])
×

ĝM |a∗,W,s(m | w)pZ(z | a,w, s = 0)pS|W (s = 0 | w)I(s = 1, x = a)

gM,r(m | z, w, s = 1)pZ(z | a,w, s = 1)gA(a | w, 1)pS|W (1 | w)pS(0)
pA|Ȳ S,r(x, ys | m, z,w, s = 1)dν(x, ys)

use (3.25) and (3.26) for the 1st and 2nd integrals respectively, which kills the 2nd integral:

=

∫ (
y − E

[
y | m, z,w

])
×

ĝM |a∗,W,s(m | w)pZ(z | a,w, s = 0)pS|W (s = 0 | w)I(s = 1, x = a)

gM,r(m | z, w, s = 1)pZ(z | a,w, s = 1)gA(a | w, 1)pS|W (1 | w)pS(0)

pZ̄(z, x, w, s = 1)

pZ̄(z, w, s = 1)
dν(x)

−
∫ (

y − E
[
y | m, z,w

])
pY,r(y | m, z,w)dν(y)︸ ︷︷ ︸

is 0

×

∫
ĝM |a∗,W,s(m | w)pZ(z | a,w, s = 0)pS|W (s = 0 | w)I(s = 1, x = a)

gM,r(m | z, w, s = 1)pZ(z | a,w, s = 1)gA(a | w, 1)pS|W (1 | w)pS(0)

pZ̄(z, x, w, s = 1)

pZ̄/A(z, w, s = 1)
dν(x)

=

(
y − E

[
y | m, z,w

])
ĝM |a∗,W,s(m | w)pZ(z | a,w, s = 0)pS|W (s = 0 | w)I(s = 1)

gM,r(m | z, w, s)pZ|W,S(z | w, s)pS|W (s | w)pS(s = 0)

And the proof is complete since the other components of the unrestricted model’s influence
curve will remain the same. The reader may note that pZ|W,S(z | w, s) = pZ(z | 1, w, s)gA(1 |
w, s) + pZ(z | 0, w, s)gA(0 | w, s), so we need not perform any additional regressions for this
restricted model.

3.1.9 Example 7: Efficient Influence Curve for Transporting
Stochastic Direct, Fixed Parameter, Non-parametric Model

According to our general technique of section 3.1.2, our observed data is of the form,
O6, O5, ..., O1 = Y S,M,Z,A,W, S, and thus our we will have corresponding orthogonal tan-
gent spaces TY S, TM , TZ , TA, TW , TS. The orthogonality and the fact our parameter mapping
does not depend on the treatment mechanism gA, tells us the efficient influence curve for
the unrestricted model, which is non-parametric, will be the same as for the model with a
known treatment mechanism.

Let us define our parameter by the mapping from the observed data model to the real
numbers by Ψf (P ) and retain the identical definition as in theorem 3.1.2 but bear in mind
we are including the true ĝM |a∗,W,s∗ in the definition. Therefore our parameter of interest
depends on the true models for PZ and PM . Thus the efficient influence curve for this
parameter in both the unrestricted and restricted models will have components in the tangent
space subspace, TM and an additional component in TZ to what we had before for the data
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adaptive parameter. In other words, this parameter is fixed, not data adaptive as in the
previous two examples.

Theorem 3.1.4. The efficient influence curve for the unrestricted model at distribution, P ,
is given by D∗f (P ) = D∗f,Y (P ) +D∗f,M(P ) +D∗f,Z(P ) +D∗f,W (P ) where

D∗f,Y (P ) = D∗Y (P )

D∗f,M (P ) = (M − gM (1 | Z,A,W, S))
(Q̄a,0(1,W )− Q̄a,0(0,W ))pS|W (0 |W )I(A = a∗, S = s∗)

gA(A |W,S)pS|W (S |W )P (S = 0)

D∗f,Z(P ) = D∗Z(P )

+ (Z − pZ(1 | A,W,S))
(Q̄Za,0(1, A,W, S)− Q̄Za,0(0, A,W, S))pS|W (0 |W )I(A = a∗, S = s∗)

gA(A |W,S), pS|W (S |W )P (S = 0)

D∗f,W (P ) = D∗W (P )

D∗Y , D∗Z and D∗W are the same as for the data adaptive parameter and we define

Q̄(M,Z,A,W ) = E[Y |M,Z,A,W ]

Q̄a,0(M,W ) =
∑
z

Q̄(M, z, a,W )pZ(z | a,W, 0)

Q̄Z
a,0(Z,A,W, S) =

∑
m

Q̄a,0(m,W )(M,Z, a,W )pM(m | Z,A,W, S)

Proof. According to the general approach of section 3.1.2, we will compute a pathwise deriva-
tive of the parameter mapping. From equation (3.14) we obtain

d

dε

∣∣∣∣
ε=0

gM,ε(m | z, x, w, s) = (E[γ(O) | m, z, x, w, s]− E[γ(O) | z, x, w, s]) gM(m | z, x, w, s)

(3.27)
where γ is the score along which the pathwise derivative is being computed. Everything stays
identical to theorem 3.1.2, except we will have the following extra piece of the derivative:

d

dε

∣∣∣∣
ε=0

∫
ypY (y | m, z, a, w, s = 1)

∑
c

[
gM,ε(m | c, a∗, w, s∗)pZ,ε(c | a∗, w, s∗)

]
pZ(z | a,w, 0)pW (W | 0)dν(o)

=
d

dε

∣∣∣∣
ε=0

∫
ypY (y | m, z, a, w, s = 1)

∑
c

[
gM,ε(m | c, a∗, w, s∗)pZ(c | a∗, w, s∗)

]
pZ(z | a,w, 0)pW (W | 0)dν(o) (3.28)

+
d

dε

∣∣∣∣
ε=0

∫
ypY (y | m, z, a, w, s = 1)

∑
c

[
gM (m | c, a∗, w, s∗)pZ,ε(c | a∗, w, s∗)

]
pZ(z | a,w, 0)pW (W | 0)dν(o) (3.29)

To compute 3.28 we have

d

dε

∣∣∣∣
ε=0

∫
ypY (y | m, z, a, w)

∑
c

[
gM,ε(m | c, a∗, w, s∗)pZ(c | a∗, w, s∗)

]
pZ(z | a,w, 0)pW (w | 0)dν(y,m, z, w)

=
d

dε

∣∣∣∣
ε=0

∫
Q̄a,0(m,w)

∑
c

[
gM,ε(m | c, a∗, w, s∗)pZ(c | a∗, w, s∗)

]
pW (w | 0)dν(m,w)

=
d

dε

∣∣∣∣
ε=0

∫
Q̄a,0(m,w)gM,ε(m | z, x, w, s)pZ(z | x,w, s)I(x = a∗, s = s∗)∗
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pA,S|W (x, s | w)pS|W (0 | w)pW (w)

pA,S|W (x, s | w)P (s = 0)
dν(m, z, x, w, s)

(3.27)
=

∫
γ(o)

(
Q̄a,0(m,w)−

(
Q̄a,0(1, w)gM (1 | z, x, w, s) + Q̄a,0(0, w)gM (0 | z, x, w, s)

))
∗

I(x = a∗, s = s∗)pS|W (0 | w)

pA,S|W (x, s | w)P (s = 0)
p(o)dν(o)

=

∫
γ(o)(m− gM (1 | z, x, w, s))

I(x = a∗, s = s∗)(Q̄a,0(1, w)− Q̄a,0(0, w))pS|W (0 | w)

gA(x | s, w)pS|W (s | w)P (s = 0)
p(o)dν(o)

=〈γ,D∗f,M (P )〉L2(P )

To compute 3.29 we have

d

dε

∣∣∣∣
ε=0

∫
ypY (y | m, z, a, w)

∑
c

[
gM (m | c, a∗, w, s∗)pZ,ε(c | a∗, w, s∗)

]
pZ(z | a,w, 0)pW (w | 0)dν(m, z,w)

=
d

dε

∣∣∣∣
ε=0

∫
Q̄a,0(m,w)

∑
c

[
gM (m | c, a∗, w, s∗)pZ,ε(c | a∗, w, s∗)

]
pW (W | 0)dν(m,w)

=
d

dε

∣∣∣∣
ε=0

∫
Q̄a,0(m,w)gM (m | z, x, w, s)pZ,ε(z | x,w, s)I(x = a∗, s = s∗)∗

pA,S|W (x, s | w)pS|W (0 | w)pW (W )

pA,S|W (x, s | w)P (s = 0)
dν(m, z, x, w, s)

(3.22)
=

∫
γ(o)

(
Q̄Za,0(z, x, w, s)−

(
Q̄Za,0(1, x, w, s)pZ(1 | x,w, s) + Q̄Za,0(0, x, w, s)pZ(0 | x,w, s)

))
∗

I(x = a∗, s = s∗)pS|W (0 | w)

pA,S|W (x, s | w)P (s = 0)
p(o)dν(o)

=

∫
γ(o)(z − pZ(1 | x,w, s))

I(x = a∗, s = s∗)(Q̄Za,0(1, x, w, s)− Q̄Za,0(0, x, w, s))pS|W (0 | w)

gA(x | w, s)pS|W (s | w)P (s = 0)
p(o)dν(o)

=〈γ,D∗f,Z(P )〉L2(P )

by the general approach in section 3.1.2 we have finished the proof.

3.1.10 Example 8: Efficient Influence Curve for Transporting
Stochastic Direct, Fixed Parameter, Restricted Model

We will now derive the efficient influence as per the previous section parameter but we will
assume the M and Y mechanisms do not directly depend on A, i.e., A is an instrument.

Theorem 3.1.5. The efficient influence curve for the unrestricted model at distribution, P ,
is given by D∗f (P ) = D∗f,Y,r(P ) +D∗f,M,r(P ) +D∗f,Z(P ) +D∗f,W (P ) where

D∗f,Y,r(P ) = D∗Y,r(P )

D∗f,M,r(P ) = (M − gM (1 | Z,A,W, S))
(Q̄a,0(1,W )− Q̄a,0(0,W ))pS|W (0 |W )I(S = s∗)pZ(Z | a∗,W, S)

pZ(Z |W,S)pS|W (S |W )P (S = 0)

D∗f,Z(P ) = D∗Z(P ) + (Z − pZ(1 | A,W,S))∗
(Q̄Za,0(1, A,W, S)− Q̄Za,0(0, A,W, S)pS|W (0 |W )I(A = a∗, S = s∗)

gA(A |W,S), pS|W (S |W )P (S = 0)

D∗f,W (P ) = D∗W (P )
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where D∗Y,r remains the same as for the restricted model and the data adaptive parameter in
theorem 3.1.3 because this portion of the influence curve is not affected by the scores in TM
due to it being orthogonal to TM . D∗f,Z and D∗f,W are the same as for the fixed parameter
and unrestricted model because TM is orthogonal to TZ, TW and TS.

Proof. We will utilize the following facts, very similarly to equations 3.25 and 3.26:

pA,Y S,r(a, ys | m, z, w, s) =
pY S,r(ys | m, z, w, s)pZ̄(z, x, w, s)

pZ̄/A(z, w, s)
(3.30)

pA,Y S,M,r(a, ys,m | z, w, s) =
pY S,r(ys | m, z, w, s)pM,r(m | z, w, s)pZ(z | x,w, s)

pZ̄/A(z, w, s)
(3.31)

We will project onto the tangent space D∗f,M(P ) onto the tangent space of mean zero function
of O given Z,W, S.

D∗f,M,r(P ) =
∏

(D∗f,M (P ) | TA,Y S,M )

=E[D∗f,M (P )(O) |M,Z,W, S]− E[D∗f,M (P )(O) | Z,W, S]

(3.31)
= E[D∗f,M (P )(O) |M,Z,W, S]

=

∫
(m− gM (1 | z, x, w, s))

I(x = a∗, s = s∗)(Q̄a,0(1, w)− Q̄a,0(0, w))pS|W (0 | w)

gA(x | s, w)pS|W (s | w)P (s = 0)
∗

pA,Y S,r(a, ys | m, z,w, s)dν(a, ys)

(3.30)
=

∫
(m− gM (1 | z, x, w, s))

I(s = s∗)(Q̄a,0(1, w)− Q̄a,0(0, w))pZ(z | a∗, w, s)pS|W (0 | w)

pZ|W,S(z | w, s)pS|W (s | w)P (s = 0)

Since x plays the role of A in the integrand, so as to not confuse a lower case a with the
fixed values, the proof is complete.

3.1.11 Example 9: Influence Mean Under Stochastic Intervention
for Longitudinal Data

Let us assume we have longitudinal data of the form L(0) = baseline confounders, A(0), treat-
ment given at baseline, followed by time varying confounders, L(1) and treatment at time
point 1, A(1) so that our observed data is O = (L(0), A(0), L(1), A(1), ..., L(K), A(K), Y )
where Y is the outcome. We will use the shorthand notation L̄(j) = (L(0), ..., L(j)) and
likewise for Ā(j) so that O = (L̄(K), Ā(K), Y ), for the treatment or exposure variable. Note,
a(−1) and l(−1) are null and there is no treatment mechanism at time K + 1. We define
the conditional probability distributions, PL(i), the conditional distribution of L(i) given the
past as well as PA(i), the conditional distribution of A(i) given the past. The corresponding
respective densities to these conditional distributions have the same subscripted notation,
pL(i) and gA(i), where we use the letter g to distinguish the treatment mechanism densities
it from the conditional densities of the confounders, L(i). L̄(i) = (L(i), ..., L(0)), the con-
founder history through time, i, and likewise for Ā(i), the treatment history through time, i.
As usual we use lower case letters for these equivalent variables when using integral notation.
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Theorem 3.1.6. The efficient influence curve for the mean under stochastic intervention
given by

g(Ā) =
K∏
i=0

g∗i (A(i) | L̄(i), Ā(i− 1))

is given by the function

D∗(P )(O) = D∗(P )(L̄(K + 1), Ā(K)) (3.32)

=

K+1∑
j=0

(
j−1∏
i=0

g∗i (A(i) | L̄(i), Ā(i− 1))

gi(A(i) | L̄(i), Ā(i− 1))

)(
Q̄L(j)(L̄(i), Ā(i− 1))− EPL(j)

[Q̄L(j) | L̄(i− 1), Ā(i− 1)]
)

(3.33)

where starting with Y = Q̄L(K+1)

we set EPg∗
[
Q̄L(K+1) | L̄(K), Ā(K − 1)

]
= Q̄L(K)(L̄(K), Ā(K − 1))

and we continue to recursively set
Q̄L(i)

(
L̄(i), Ā(i− 1)

)
= EPg∗

[
Q̄L(i+1) | L̄(i), Ā(i− 1)

]
Proof. we have for a path, Pε through P :

d

dε
Ψ(Pε)

∣∣∣∣
ε=0

=
d

dε

∣∣∣∣
ε=0

∫
y
K+1∏
i=0

pL(i),ε

(
l(i) | ā(i− 1), l̄(i− 1)

)
g∗i
(
a(i) | ā(i− 1), l̄(i)

)
dv(o)

Regarding Semi-Parametric Models With Known Treatment Mechanism

We already notice that we will have only parts of the score corresponding to pL(i),ε parts of
the likelihood and not the treatment mechanism since the parameter does not depend on
these factors. This will automatically make the efficient influence curve only in the part of
the tangent space defined by the mean 0 functions of L(i) given the past, i.e., the efficient

influence curve will only have components of the form d
dε
logpL(i),ε

∣∣∣∣
ε=0

and thus, since these

components are orthogonal to the mean 0 functions of A(i) given the past, i.e. d
dε
logpA(i),ε

∣∣∣∣
ε=0

,

the efficient influence curve for the model with known treatment mechanism will be the same
as for the non-parametric model. Now we can shorten things with subscripts indicative of
the variable the conditional probabilities are functions of. We can notice that (3.14) implies

d

dε
pL(i),ε(l(i) | ā(i− 1), l̄(i− 1))

∣∣∣∣
ε=0

= pL(i)(l(i) | ā(i− 1), l̄(i− 1)) ∗ (E
[
S(O) | ā(j − 1), l̄(j)

]
− E

[
S(O) | ā(j − 1), l̄(j − 1)

]
)

d

dε

∣∣∣∣
ε=0

∫
y

K+1∏
i=0

pL(i),ε

(
l(i) | ā(i− 1), l̄(i− 1)

) K∏
i=0

g∗A(i)

(
a(i) | ā(i− 1), l̄(i)

)
dv(o)

(3.14)
=

K+1∑
j=0

∫
y

K+1∏
i=j

pL(i)(l(i) | ā(i− 1), l̄(i− 1))g∗A(i−1)(a(i− 1) | ā(i− 2), l̄(i− 1))E
[
S(O) | ā(j − 1), l̄(j)

]
∫ j−1∏

i=0

pL(i)(l(i) | ā(i− 1), l̄(i− 1))g∗A(i)(a(i) | ā(i− 1), l̄(i))dv(o)
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−
K+1∑
j=0

∫
y

K+1∏
i=j

pL(i)(l(i) | ā(i− 1), l̄(i− 1))g∗A(i−1)(a(i− 1) | ā(i− 2), l̄(i− 1))E
[
S(O) | ā(j − 1), l̄(j − 1)

]
j−1∏
i=0

pL(i)(l(i) | ā(i− 1), l̄(i− 1))g∗A(i)(a(i) | ā(i− 1), l̄(i))dν(o)

=

∫ K+1∑
j=0

Q̄L(j)(l̄(j), ā(j − 1))(l̄(j), ā(j − 1))pL(j)(l(j) | ā(j − 1), l̄(j − 1))EP
[
S(O) | ā(j − 1), l̄(j)

]
j−1∏
i=0

pL(i)(l(i) | ā(i− 1), l̄(i− 1))g∗A(i)(a(i) | ā(i− 1), l̄(i))dν(o)

−
K+1∑
j=0

∫
EPL(j)

[Q̄L(j)(l̄(j), ā(j − 1)) | l̄(i− 1), ā(i− 1)]EPg∗
[
S(O) | ā(j − 1), l̄(j − 1)

]
j−1∏
i=0

pL(i)(l(i) | ā(i− 1), l̄(i− 1))g∗A(i)(a(i) | ā(i− 1), l̄(i))dν(o)

fubini
=

K+1∑
j=0

∫
Q̄L(j)(l̄(j), ā(j − 1))(l̄(j), ā(j − 1))pL(j)(l(j) | ā(j − 1), l̄(j − 1))EP

[
S(O) | ā(j − 1), l̄(j)

]
j−1∏
i=0

pL(i)(l(i) | ā(i− 1), l̄(i− 1))g∗A(i)

gA(i)

gA(i)

(a(i) | ā(i− 1), l̄(i))dν(o)

−
K+1∑
j=0

∫
EPL(j)

[Q̄L(j)(l̄(j), ā(j − 1)) | l̄(i− 1), ā(i− 1)]EPg∗
[
S(O) | ā(j − 1), l̄(j − 1)

]
j−1∏
i=0

pL(i)(l(i) | ā(i− 1), l̄(i− 1))g∗A(i)

gA(i)

gA(i)

(A(i) | ā(i− 1), l̄(i))dν(o)

fubini
=

K+1∑
j=0

E

j−1∏
i=0

g∗
A(i)

gA(i)

(A(i) | Ā(i− 1), L̄(i))

(Q̄L(j)

(
L̄(j), Ā(j − 1)

)
− EP [Q̄L(j) | L̄(j − 1), Ā(j − 1)]

)
S(O)

=

〈K+1∑
j=0

j−1∏
i=0

g∗
A(i)

gA(i)

(Q̄L(j) − EP [Q̄L(j) | ·, ·]
)
, S

〉
L2

0(P )

And the proof is complete by the riesz representation theorem.

3.1.12 Example 10: Survival Under a Dynamic Rule

We can also perform a similar analysis with right censored survival data. In this case, we
observe an event time, T̃ = min(C, T ) and ∆ where ∆ = 1 indicates the death was observed,
i.e., that T̃ = T . Otherwise we observe the censoring time, C. We also have observed
confounders, W , and a treatment assignment, A, given at baseline. Thus our observed data
is of the form:

O = (W,A, T̃ ,∆) ∼M, non-parametric

Our parameter mapping is defined as

Ψ(P ) = E
t0∏
t=0

(1− EP [dN(t) | A = d(W ),W,N(t− 1) = A2(t− 1) = 0])

where A2(t) indicates whether the subject was censored at time t or before and N(t) is an
indicator of whether the subject has died or not. The ordering of the variables is as follows
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for some discretization of time which, WLOG, we just set to 0, 1, 2, ...etc of time: W =
confounders, A = treatment assignment, A2(0) = indicator of censoring in which case, C =
1, dN(1) = indicator of failure at time 1, A2(1), then dN(2), A2(2) ,etc. We note that this
is an alternate form of the observed data structure for discretized time

To place this in the framework of our general method, we can notice we have conditional
densities of death, given the past. Define, dN(t) as the indicator of death at time t. Then
the conditional density of death at time, t, given the past is denoted pdN(t). Therefore, by
(3.14) we get

d

dε
pdN(i),ε(dN(t) | N(t) = 0, A,W )

∣∣∣∣
ε=0

= pdN(i)(dN(t) | pa(A2(t))) ∗ (E [S(O) | pa(A2(t))]− E [S(O) | pa(dN(t))]) (3.34)

and
d

dε
pW ),ε(w)

∣∣∣∣
ε=0

= pW (w) ∗ (E [S(O) | w]− ES(O)) (3.35)

where pa(A2(t)) are all the preceding variables to the censoring mechanism at time, t, in-
cluding dN(t) Using the same principles as previously described we can differentiate the
parameter mapping along a path defined by the score, S, at the truth, P , as follows. We will
proceed by differentiating the parameter mapping as in the previous section and once we
have written the derivative as an inner product of a function with the score, that function
will be our efficient influence curve. We note sc(t | A,W ) is the probability of being censored
after time, t − 1, having received treatment A and with confounders, W . s(t | A,W ) is
the conditional probability of survival past time t, given A and W . We note to the reader
that survival estimates can be obtained for sc from those who were censored at the various
time points, such as with a pooled logistic regression where all participants contribute a
line of data for each time point they are uncensored and a time for each of those lines of
data. Similarly we can get estimates of the conditional survival hazard, λ(· | A,W ). The
regressions are then fit and we can estimate the probability of being censoring beyond time,
t, as sc(t | A,W ) =

∏t
c=0(1 − λC(c | A,W )) where our regression estimates λ(c | A,W ) for

all of the discrete times, c.

Theorem 3.1.7. The efficient influence curve for Ψ(P ) is

D∗(W,A, T̃ ,∆) =

[
t0∑
t=1

I(A = d(W ))I(T̃ > t− 1)s(t0 | A,W )

g(A |W )sc(t− 1|A,W )s(t | A,W )
× (dN(t)− λ(t | A,W )) + s(t0 | A = d(W ),W )−Ψ(P )

]

Proof.

d

dε

∣∣∣∣
ε=0

Ψ(Pε) =Ew
d

dε

∣∣∣∣
ε=0

t0∏
t=1

(1− EPε [dN(t) | A = d(W ),W,N(t− 1) = A2(t− 1) = 0]) +

d

dε

∣∣∣∣
ε=0

EPW,ε
t0∏
t=0

(1− EP [dN(t) | A = d(W ),W,N(t− 1) = A2(t− 1) = 0])

=E
d

dε

∣∣∣∣
ε=0

t0∏
t=1

(1− EPε [dN(t) | A = d(W ),W,N(t− 1) = A2(t− 1) = 0]) +

∫ t0∏
t=0

(1− EP [dN(t) | a = d(w), w, n(t− 1) = a2(t− 1) = 0])
d

dε

∣∣∣∣
ε=0

pW,εdν(w)
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=

∫ t0∑
t=1

t0∏
i6=t

(1− EP [dN(i) | A = d(W ),W,N(i− 1) = A2(i− 1) = 0])×

d

dε

∣∣∣∣
ε=0

EPε [dN(t) | A = d(W ),W,N(t− 1) = A2(t− 1) = 0] +

(from (3.35))∫ t0∏
t=0

(1− EP [dN(t) | a = d(w), w, n(t− 1) = a2(t− 1) = 0])
d

dε

∣∣∣∣
ε=0

(E [S(O) | w]− ES(O))pW dν(w)

=

∫ t0∑
t=1

∏t0
i=1 (1− EP [dN(t) | A = d(w), w,N(i− 1) = A2(i− 1) = 0])

1− λ(t | A = d(W ),W )
×

d

dε

∣∣∣∣
ε=0

∫
dn(t)pdN(τ)ε(dn(t) | A = d(w),W = w, n(t− 1) = a2(t− 1) = 0)

dv(dn(t))dv(w) + E

[
s(O)

t0∏
t=0

(1− EP [dN(t) | a = d(w), w, n(t− 1) = a2(t− 1) = 0])−Ψ(P )

]

=

∫ t0∑
t=1

S(t | A− d(W ),W )

1− λ(t | A = d(W ),W )
×

d

dε

∣∣∣∣
ε=0

∫
dn(t)

I(a = d(w))I(N(i− 1) = A2(i− 1) = 0)

g(a | w)
∏
i=0 gA2(i)(a2(i) | pa(a2(i))

∏t−1
i=1 pdN(i)(dn(i) | pa(dn(i))

×

pdN(t)ε(dn(t) | pa(dn(t)) | pa(dn(i))

×
t−1∏
i=0

gA2(i)(a2(i) | pa(a2(i))g(a | w)pW (w)dv(o)

+ E [s(O)S(t0 | a = d(W ),W )−Ψ(P )]

3.34
=

∫ t0∑
t=1

S(t | a = d(w), w)

1− λ(t | a = d(w), w)
dn(t)

I(a = d(w))I(N(i− 1) = A2(i− 1) = 0)

g(a | w)Sc(t− 1 | a,w)S(t− 1 | a,w)
×

(EP [S | pa(a2(t))]− EP [S | pa(dn(t))]) pdN(τ)(dn(t) | pa(dn(t))×

×
t−1∏
k=1

pdN(i)(dn(k) | pa(dn(k))×
t−1∏
k=0

gA2(k)(a2(k) | pa(a2(k))g(a | w)pW (w)dv(o)+

E [s(O)S(t0 | a = d(W ),W )−Ψ(P )]

=

∫ t0∑
t=1

I(a = d(w))I(N(i− 1) = A2(i− 1) = 0)S(t0 | a,w)

g(a | w)Sc(t− 1|a,w)S(t | a,w)(
dn(t)EP

[
S | pa(a2(t))

]
pdN(τ)(dn(t) | pa(dn(t))− λ(t | a,w)EP

[
S | pa(dn(t))

])
t−1∏
k=1

pdN(i)(dn(k) | pa(dn(k))×
t−1∏
k=0

gA2(k)(a2(k) | pa(a2(k))g(a | w)pW (w)dv(o)+

E [s(O)S(t0 | a = d(W ),W )−Ψ(P )])

fubini
=

∫ t0∑
t=1

I(a = d(w))I(N(i− 1) = A2(i− 1) = 0)S(t0 | a,w)

g(a | w)Sc(t− 1|a,w)S(t | a,w)
× (dn(t)− λ(t | a,w)) s(o)p(o)dv(o)+

E [s(O)S(t0 | a = d(W ),W )−Ψ(P )]

=E
[
s(O)

[ t0∑
t=1

I(A = d(W ))I(N(i− 1) = A2(i− 1) = 0)S(t0 | A,W )

g(A |W )Sc(t− 1|A,W )S(t | A,W )
×
(
dN(t)− λ(t | A,W )

)
+

S(t0 | A = d(W ),W )−Ψ(P )

]]

=

〈[ t0∑
t=1

I(A = d(W ))I(T̃ > t− 1)S(t0 | A,W )

g(A |W )Sc(t− 1|A,W )S(t | A,W )
×
(
I(T̃ = t)− λ(t | A,W )

)

+ S(t0 | A = d(W ),W )−Ψ(P )

]
, S(O)

〉
L2

0(P )

And we can see the influence curve in the inner product with the score and the proof is
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complete. Note, that we can replace dN(t) with I(T̃ = t) because either time, t, is a censored
time or the term is 0. Also, by definition of T̃ , I(N(i−1) = A2(i−1) = 0) = I(T̃ > t−1)

3.1.13 Example 11: TE CDF

Theorem 3.1.8. Assume k is lipschitz and smooth on R. The efficient influence curve for
the parameter, Ψδ,t, is given by

D?
Ψδ,t

(P)(O)=
−1

δ
k

(
b(W)− t

δ

)
∗ 2A− 1

g(A|W)
(Y − Q̄(A,W))+

∫
1

δ
k

(
x− t

δ

)
I(b(W) ≤ x)dx−Ψδ,t

Proof. Define Φ(x) = 1/(1 + exp(x)). We also define bε = EPε [Y | A = 1,W ] − EPε [Y |
A = 1,W ], where Pε and S, the so-called score function, are as previously defined. We will
now compute the pathwise derivative functional on L2

0(P ), writing it as an inner product
(covariance in the Hilbert Space L2(P )), of the score, S, and the efficient influence curve,
a unique element of the tangent space, L2

0(P ). We notate the efficient influence curve as
indexed by the distribution, P , and as a function of the observed data, O ∼ P : D∗(P )(O).
By dominated convergence we have

Ψδ,t(P ) = lim
h→0

EW
∫ 1

−1

1

δ
k

(
x− t
δ

)
Φ(
b(W )− x

h
)dx

lim
ε→0

Ψδ,t(Pε)−Ψδ,t(P )

ε
(3.36)

= lim
ε→0

1

ε
lim
h→0

EW
∫
x

1

δ
k

(
x− t
δ

)(
Φ(
bε(W )− x

h
)− Φ(

b(W )− x
h

)

)
dx

+ EW
(∫

x

1

δ
k

(
x− t
δ

)
I(b(W ) ≤ x)−Ψt,δ(P )

)
S(O)dx

let’s ignore (2) for now

lim
ε→0

1

ε
lim
h→0

EW
∫
x

1

δ
k

(
x− t
δ

)(
1

h
Φ′(

b(W )− x
h

) (bε(W )− b(W ))

)
dx+

+ lim
ε→0

1

ε
lim
h→0

EW
∫
x

1

δ
k

(
x− t
δ

)(
1

2h2
Φ(2)

(
ζ

(
x− b(W )

h

))
(bε(W )− b(W ))

2

)
dx

= lim
ε→0

1

ε
lim
h→0

(
EW

∫
x

1

δ
k

(
x− t
δ

)(
1

h
Φ′(

b(W )− x
h

) (bε(W )− b(W ))

)
dx+R2,h,x(bε, b)

)
(3.37)

We can note that for h(ε) such that ε
h2(ε)
→ 0 as ε→ 0, R2

ε
→ 0 because R2 is order ε2

h2 . To

see this, consider the convenient fact that Φ(2)(x) is bounded.
Let’s now drop lim

ε→0

1
ε

for now and use integration by parts to compute a part of the integrand

in (3.37):

EW lim
a→∞

∫ t+aδ

t−aδ

1

δ
k

(
x− t
δ

)
1

h
Φ′(

b(W )− x
h

)dx (bε(W )− b(W ))

= EW lim
a→∞

(
−1

δ
k

(
x− t
δ

)
Φ(
b(W )− x

h
)

∣∣∣∣t+aδ
t−aδ

+

∫
x

1

δ2
k′
(
x− t
δ

)
EWΦ(

b(W )− x
h

)

)
(bε(W )− b(W )) dx
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= EW lim
a→∞

(
−1

δ
k

(
x− t
δ

)
Φ(
b(W )− x

h
)

∣∣∣∣t+aδ
t−aδ

+

∫
1

δ2
k′
(
x− t
δ

)
EW

[
Φ(
b(W )− x

h
)− I(b(W ) ≤ x)

])
(bε(W )− b(W )) dx

+ EW
∫
x

1

δ2
k′
(
x− t
δ

)
I(b(W ) ≤ x) (bε(W )− b(W )) dx

h→ 0 and Dominated convergence =⇒ 2nd term disappears. k lipschitz =⇒

= EW lim
a→∞

−1

δ
I(b(W ) ≤ t+ aδ)k(a) +

1

δ
I(b(W ) ≤ t− aδ)k(−a))

+
1

δ

(
k(a)− k

(
max(b(W ), t− aδ)− t

δ

)
)

)
I(b(W ) ≤ t− aδ) (bε(W )− b(W ))

= EW
−1

δ
k

(
b(W )− t

δ

)
(bε(W )− b(W ))

We can summarize as follows:

lim
ε−→0

Ψδ,t(Pε)−Ψδ,t(P )

ε
= lim
ε→0

1

ε
EW

(
−1

δ
k

(
b(W )− t

δ

)
(bε(W )− b(W ))

)
+ (3.38)

+ lim
ε→0

lim
h(ε)→0

EW
R2,h,x(bε, b)

ε
(3.39)

+ EW
(∫

x

1

δ
k

(
x− t
δ

)
I(b(W ) ≤ x)−Ψt,δ(P )

)
S(O)dx (3.40)

As previously stated, the term (3.39( disappears by easy choice of h. We then compute the
pathwise derivative along S at ε = 0 to compute term 3.38:

lim
ε→0

1

ε
EW

(
−1

δ
k

(
b(W )− t

δ

)
(bε(W )− b(W ))

)
=

∫ (
−1

δ
k

(
b(w)− t

δ

)∫ (
pε(y|a = 1, w)− d

dε
pY ε(y|a = 0, w)

)
dν(y)

)
pW (w)dν(w)

=

∫ (
−1

δ
k

(
b(w)− t

δ

)∫ ∫
2a− 1

g(a|w)
ypY ε(y|a,w)SY (o)dν(y)

)
g(a|w)pW (w)dν(a,w)

=

∫ (
−1

δ
k

(
b(w)− t

δ

)∫ ∫
2a− 1

g(a|w)
ypY ε(y|a,w) (S(o)− E[S|a,w]) dν(y)

)
g(a|w)pW (w)dν(a,w)

=

∫
−1

δ
k

(
b(w)− t

δ

)
2a− 1

g(a|w)
S(o)p(o)dν(o)−

∫
1

δ
Q̄(a,w)S(o)p(o)dν(o)

= E
[
−1

δ
k

(
b(W )− t

δ

)
2A− 1

g(A|W )
(Y − Q̄(A,W ))S(O)

]
Combining this result with term (3.40), we get

lim
ε−→0

Ψδ,t(Pε)−Ψt,δ(P )

ε
= 〈D?

Ψδ,t
(P ), S〉L2

0(P )

where

D?
Ψδ,t

(P)(O)=
−1

δ
k

(
b(W)− t

δ

)
∗

2A− 1

g(A|W)
(Y − Q̄(A,W))+

∫
1

δ
k

(
x− t

δ

)
I(b(W) ≤ x)dx−Ψδ,t

And this is the efficient influence curve since the canonical gradient is the only gradient for
a non-parametric model.
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3.2 Remainder Term Derivations and Robustness Anal-

ysis

Our remainder term revolves around the fact we have solved the efficient influence curve
equation for the TMLE updated initial estimate, P ∗n , of the true data generating distribution,
P0. We thus obtain a second order expansion by virtue of the fact P ∗nD

?(P ∗n) = 0

√
n (Ψ(P ∗n)−Ψ(P0)) =

√
n(P0 − P ∗n)D?(P ∗n) +

√
nR2(P ∗n , P0) (3.41)

=⇒ R2(P ∗n , P0) =
√
n (Ψ(P ∗n)−Ψ(P0)− P0D

?(P ∗n)) (3.42)

The reader may recall the three conditions assuring asymptotic efficiency of the TMLE
estimator in 1.2.1. Here we will focus on the 2nd condition in section 1.2.1 regarding the
remainder term for each of the three parameters of interest in this paper.

3.2.1 TML Estimator of VTE

Theorem 3.2.1. If P0 is the true distribution, it is necessary to estimate the true TE
function b0 with b∗n so that ‖b∗n− b0‖L2(P0) = oP (n−0.25) in order for TMLE to be a consistent
asymptotically efficient estimator under a known treatment mechanism, g0. If g0 is unknown,
we also need ‖Q̄∗n− Q̄0‖L2(P0)‖gn− g0‖L2(P0) = oP ( 1

n0.5 ). That is, If the first factor is oP (nrQ̄)
and the second is oP (nrg), then we require rQ̄ + rg ≤ −0.5

Proof. For this discussion we will drop the subscript, n, and superscript, ? in P ?
n and merely

consider, P , as an estimate of the truth, P0. We will use b(W ) to denote the TE function
where the conditional expectation is with respect to distribution, P , ie the estimated TE
function, and b0(W ) to be the true TE function. Likewise, E0 is the expectation with respect
to the true observed data distribution, P0, and leaving the subscript, 0, off the expectation
sign means the expectation is with respect to P .

R2(P, P0) = Ψ(P )−Ψ(P0) + P0 (D?(P ))

= E (b(W )− Eb(W ))2 − E0 (b0(W )− E0b0(W ))2 +

E0

[
2 (b(W )− Eb(W ))

2A− 1

g(A|W )

(
Y − Q̄(A,W

)
+ (b(W )− Eb(W ))2 −Ψ(P )

]
= −E0 (b0(W )− E0b0(W ))2 +

E0

[
2 (b(W )− Eb(W ))

2A− 1

g(A|W )

(
Y − Q̄(A,W )

)
+ (b(W )− Eb(W ))2

]
= E0

[
(b(W )− Eb(W ))2 − (b0(W )− E0b0(W ))2

]
+

E0E0

[
2 (b(W )− Eb(W ))

2A− 1

g(A|W )

(
Q̄0(A,W )− Q̄(A,W )

)
|W
]

= E0

[
(b(W )− Eb(W ))2 − (b0(W )− E0b0(W ))2

]
+

+ EPW

[
2 (b(W )− Eb(W ))

(
g0(1|W )

g(1|W )

(
Q̄0(1,W )− Q̄(1,W )

)
−
g0(0|W )

g(0|W )

(
Q̄0(0,W )− Q̄(0,W )

))]
= E0

[
(b(W )− Eb(W ))2 − (b0(W )− E0b0(W ))2 + 2 (b0(W )− b(W )) (b(W )− Eb(W ))

]
+ E0

[
2 (b(W )− Eb(W ))

(
g0(1|W )− g(1|W )

g(1|W )

(
Q̄0(1,W )− Q̄(1,W )

)
−
g0(0|W )− g(0|W )

g(0|W )

(
Q̄0(0,W )− Q̄(0,W )

))]
= (E0b0(W )− Eb(W ))2 − E0 (b0(W )− b(W ))2 (3.43)
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+ E0

[
2 (b(W )− Eb(W ))

(
g0(1|W )− g(1|W )

g(1|W )

(
Q̄0(1,W )− Q̄(1,W )

)
−
g0(0|W )− g(0|W )

g(0|W )

(
Q̄0(0,W )− Q̄(0,W )

))]

We can regard the (E0b0(W )− Eb(W ))2 term in 3.43 and notice that for an unknown, g0,
it is well-known that the double robustness of TMLE in estimating the causal risk dif-
ference, E0b0(W ), implies that if we estimate both g0 and Q̄0 so that the product of the

respective L2 rates of convergence is o(n−0.5), then we obtain
√
n (E0b0(W )− Eb(W ))

D
=⇒

N [0, var0(D?
1(P0))] where D?

1(P0) is the efficient influence curve for the causal risk difference.

We therefore know E0b0(W )− Eb(W )
p−→ 0 and by slutsky’s theorem,

√
n (E0b0(W )− Eb(W ))2 D

=⇒ 0. Therefore this term poses no additional problem to the
rest of the terms.

Now we can address the standard ”double robust” term:

E0

[
2 (b(W )− Eb(W ))

(
g0(1|W )− g(1|W )

g(1|W )

(
Q̄0(1,W )− Q̄(1,W )

)
−
g0(0|W )− g(0|W )

g(0|W )

(
Q̄0(0,W )− Q̄(0,W )

))]
≤KE0

[∣∣∣∣g0(1|W )− g(1|W )

g(1|W )

(
Q̄0(1,W )− Q̄(1,W )

)∣∣∣∣+∣∣∣∣g0(0|W )− g(0|W )

g(0|W )

(
Q̄0(0,W )− Q̄(0,W )

)∣∣∣∣]
≤KE0

∣∣∣∣g0(A|W )− g(A|W )

g(A|W )g0(A|W )

(
Q̄0(A,W )− Q̄(A,W )

)∣∣∣∣
≤K‖g0(A|W )− g(A|W )‖L2(P0)‖Q̄0(A,W )− Q̄(A,W )‖L2(P0)

where the last inequality follows from cauchy-schwarz and the strict positivity assumption
on g0. The difficult term in (11) is E0 (b0(W )− b(W ))2 but if we obtain the required L2 rates
it is obvious this term will be second order and we have proven the theorem.

3.2.2 TML Estimator of Smoothed TE CDF

Let us assume we have computed a CV-TMLE, P ∗n,Bn from initial estimate, P 0
n,Bn

, of the
observed data generating distribution, P0, as defined in section 1.4.1 or a TMLE, P ∗n , for
initial estimate, P 0

n as in van der Laan and Rubin, 2006 or van der Laan and Gruber, 2016.
To lighten the notation, we will just call P ∗n,Bn , P

0
n,Bn

, P ∗n or P 0
n , P , and then the estimated

TE function b(W ) = EP (Y | 1,W ] − EP (Y | 0,W ] = Q̄(1,W ) − Q̄(0,W ) and the true TE
function is b0(W ) = EP0(Y | 1,W ]− EP0(Y | 0,W ] = Q̄0(1,W )− Q̄0(0,W ).

Lemma 3.2.2. Assume lipschitz F0 = 1 − S, where S(t) = EI(b0(W ) > t) and assume
WLOG the support of the kernel is [−1, 1]
then P0I(b0(W ) > t+ δ, b(W ) < t+ δ) = O(‖b0 − b‖∞
proof:

∫
I(b0(w) > t+ δ, b(w) < t+ δ)dPW,0(w)

=

∫
I(b0(w) > t+ δ, b(w) < t+ δ)I(b0(w)− b(w) > b0(w)− (t+ δ))dPW,0(w)

≤
∫

I(b0(w) > t+ δ, b(w) < t+ δ)I(‖b0 − b‖∞ > b0(w)− (t+ δ))dPW,0(w)

≤ Pr(t+ δ < b0(W ) < ‖b0 − b‖∞ + t+ δ)

Lipschitz =⇒ ≤ L‖b0 − b‖∞ +O(‖b0 − b‖2∞)
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QED

Theorem 3.2.3. R2(P, P0) = P0D
∗(P ) + Ψδ,t(P )−Ψδ,t(P0) has the following order:

1. 1
δ
O
(
‖g − g0‖L2

P0
‖Q̄− Q̄0‖L2

P0

)
+ 1

δ
O (‖b− b0‖2

∞) and

2. 1
δ
O
(
‖g − g0‖L2

P0
‖Q̄− Q̄0‖L2

P0

)
+ 1

δ2O
(
‖b− b0‖2

L2
P0

)
and the remainder term is given by

−1

δ

∫ [
k

(
b(w)− t

δ

)
2a− 1

g(a | w)
(g0(a|w)− g(a|w)) (b0(w)− b(1, w))

]
pA,W (a,w)dv(a,w) (3.44)

+
1

δ

∫ [∫ b0(w)

b(w)
k

(
x− t
δ

)
dx+ k

(
b(w)− t

δ

)
(b(w)− b0(w))

]
pW (w)dv(w)

Proof.

R2(P0P ) = P0D
∗(P ) + Ψ(P )−Ψ(P0)

=

∫ [−1

δ
k

(
b(w)− t

δ

)
2a− 1

gn(a|a)

(
y − Q̄(a,w)

)
+

∫
1

δ
k

(
x− t
δ

)
I (b(w) > x) dx−

∫
x

1

δ
k

(
x− t
δ

)
I(b0(w) > x)dx

]
p(o)dv(o)

=

∫ [−1

δ
k

(
b(w)− t

δ

)(
2a− 1

gn(a|w)

(
y − Q̄(a,w)

))
+

∫
1

δ
k

(
x− t
δ

)
(I (b(w) > x)− I(b0(w) > x)) dx

]
p(o)dv(o)

=
−1

δ

∫ [
k

(
b(w)− t

δ

)((
g0(1|w)

g(1|w)

)(
Q̄0(1, w)− Q̄(1, w)

)
−
(
g0(0|w)

g(0|w)

)(
Q̄0(0, w)− Q̄(0, w)

))
+

∫ b0(w)

b(w)
k

(
x− t
δ

)
dx

]
p(o)dv(o)

=
−1

δ

∫ [
k

(
b(w)− t

δ

)((
g0(1|w)

g(1|w)
− 1

)(
Q̄0(1, w)− Q̄(1, w)

)
−
(
g0(0|w)

g(0|w)
− 1

)(
Q̄0(0, w)− Q̄(0, w)

))]
pW (w)dv(w)

(3.45)

+
1

δ

∫ [∫ b0(W )

b(w)
k

(
x− t
δ

)
dx+ k

(
b(w)− t

δ

)
(b(w)− b0(w))

]
pW (w)dv(w) (3.46)

(3.45) becomes (reftermrobust) and will disappear if g0 is known. Otherwise the term is
1
δ
‖g − g0‖L2

p0
‖Q̄− Q̄0‖L2

P0
by cauchy-schwarz. We can now divide the W space into disjoint

parts and integrate (3.46):
a) t− δ < b0(w) < t+ δ:
Assuming F0 is lipschitz, we have as follows and k to have a bounded derivative,

1

δ

∫
I(t− δ < b0(w) ≤ t+ δ) ∗

[∫ b(w)

b0(w)

k

(
x− t
δ

)
dx+ k

(
b(w)− t

δ

)
(b0(w)− b(w))

]
pW (w)dv(w)

taylor expanding k

(
x− t
δ

)
about

b(w)− t
δ

we obtain

1

δ

∫
I(t− δ < b0(w) ≤ t+ δ) ∗

∫ b(w)

b0(w)

k′ (γ (x, b(w), δ))

(
x− b(w)

δ

)
pW (w)dv(w)

where γ (x, b(w), δ) is an intermediary point

≤ C
∫

I(t− δ < b0(w) ≤ t+ δ) ∗
(
b0(w)− b(w)

δ

)2

pW (w)dv(w) which proves 2. (3.47)
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or ≤ C

δ2
(F0(t+ δ)− F0(t− δ)) ∗ ‖b0 − b‖2∞

employing the Lipschitz condition for F0 we arrive at ≤ 1

δ
O(‖b− b0‖2∞)

b) b0(w) > t+ δ, b(w) ≤ t+ δ

1

δ

∫
I(b0(w) > t+ δ, b(w) ≤ t+ δ) ∗

[∫ b(w)

b0(w)

k

(
x− t
δ

)
dx+ k

(
b(w)− t

δ

)
(b0(w)− b(w))

]
pW (w)dv(w)

(3.48)

=
1

δ

∫ [∫ b(w)

b0(w)

(
k

(
b(w)− t

δ

)
+

(
x− t
δ

)
k′ (γ (b(w), x, t, h))

)
dx+ k

(
b(w)− t

h

)
(b0(w)− b(w))

]
∗

I(b0(w) > t+ δ, b(w) ≤ t+ δ)pW (w)dv(w)

≤ 1

δ

∫
I(t+ δ < b0(w) < t+ δ + ‖b0 − b‖∞)

δ
∗ C(b0(w)− b(w))2pW (w)dv(w) which proves 2. (3.49)

or
1

δ
O‖b0 − b‖2∞which proves 1. if we apply lemma 3.2.2 from line 3.48

c) b0(w) ≤ t− δ, b(w) > t− δ This region follows identically to b).
d) for the cases, b(w) and b0(w) < t− δ or b(w) and b0(w) > t+ δ, we can notice[∫ b(w)

b0(w)
k
(
x−t
δ

)
dx+ k

(
b(w)−t
δ

)
(b0(w)− b(w))

]
pW (w)dv(w) = 0.

Theorem 3.2.4. The asymptotic variance of our CV-TMLE estimator is of order 1/δ if we
satisfy the CV-TMLE conditions of section 1.2.1.

Proof. We will compute the variance of the efficient influence curve and show it is of order
1/δ, thus proving the point.

E
1

δ2
k2

(
b(W )− t

δ

)
∗
[

2A− 1

g(A|W )
(Y − Q̄∗n(A,W ))

]2

≤ E
C

δ2
k2

(
b(W)− t

δ

)
= E

C

δ2

d

db(W )

∫ ∞
−∞

I(b(W ) ≤ x)k2

(
x− t
δ

)
dx

= E
C

δ

d

db(W )

∫ ∞
−∞

I
(
b(W )− t

δ
≤ y

)
k2 (y) dy

= O (1/δ)

Now, we assume k has finite support, WLOG, between [−1, 1] and that |k2(x)| ≤M

E
C

δ2
k2

(
b(W)− t

δ

)
≤EC1

δ2
I
(
−1 ≤ b(W)− t

δ
≤ 1

)
=E

C1

δ2
I (−δ + t ≤ b(W) ≤ δ + t)
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=
C1

δ2
[F (δ + t)− F (−δ + t)]

Lipschitz

≤ C2

δ

Theorem 3.2.5. Let Ψt(P ) = EPW I(b(W ) ≤ t), the unsmoothed TE CDF at TE level,
t. The bias, Ψt(P0) − Ψδ,ti(P0) is of order δJ , where J is the order of the kernel (power
of the kernel’s first non-zero moment) and we assume the TE CDF to have J continuous
derivatives. Without smoothness, a lipschitz condition on the TE CDF assures that the bias
is of order δ.

Proof.

EPW I(b(W ) ≤ t)− EPW
∫

1

δ
k

(
x− t
δ

)
I(b(W ) ≤ x)dx

fubini
= F (t)−

∫
1

δ
k

(
x− t
δ

)
F (x)dx

= F (t)−
∫
k (y)F (yδ + t)dy

=

∫
k (y) [F (t)− F (yδ + t)] dy

=

∫
k (y)

[
∞∑
i=1

F (i)(t)(yδ)i/i!

]
dy

Generating Kernels

We generate a kernel of order K + 1 as follows. by generating symmetric polynomial kernels
of finite support, the integration can be obtained via an explicit formula and is thus much
faster and more accurate than numerical integration. We form polynomials of the form
k(x) =

∑K+2
i=0 aix

2i where the support of the kernel is from −R to R. The kernel k(·) is of
course orthogonal to any odd power. To make it order K+1 for K an even positive number,
we solve the following equations.

1. make sure the kernel is 0 at the end pts of the support:

K+2∑
i=0

aiR
2i = 0

2. make sure the kernel has derivative 0 at the end pts of the support in consideration of
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the remainder term analysis:
K+1∑
i=0

2aiR
2i+1 = 0

3. To enforce the necessary orthogonality, we solve for K > 0 and each r in the 2, 4, ..., 2K

2
K+2∑
i=0

ai
R2i+1+r

2i+ 1 + r
= 0

3.2.3 TML Estimator of Transported SDE, SIE, Restricted and
Unrestricted Models

Here we derive the remainder term for the TML estimator of the parameter for the unre-
stricted model introduced in Chapter 2.1, which has influence curve derived in section 3.1.2.
We note, for the same argument used here, the same robustness conditions hold for the
restricted model and corresponding TML estimator using the influence curve in 3.1.3. We
remind the reader that we have a time ordering of variables from most recent as follows:
Y,M,Z,A,W, S. M̄ = (M,Z,A,W, S), i.e., the ”bar” means the variable and its parents.

The remainder term is given by

R2(P, P0) = Ψ(P )−Ψ(P0) + P0D
∗(P )

where we consider P as and estimate of P0, which is either the TMLE updated estimate of
P0 or, in the case of the EE estmator, the initial estimate of P0.

Theorem 3.2.6. For model MII , we have the following:

R2(P, P0)

=EP0(Q̄Y − Q̄Y,0)(M̄)

[
h1(O)(gM,0 − gM )(M | Z̄) + h2(O)(pZ,0 − pZ)(Z | Ā)

+ h3(O)(pA,0 − pA)(A | W̄ )h4(O)(pS|W,0 − pS|W )(S |W )

]
(3.50)

+ EP0
h5(O)(Q̄Z,0 − Q̄Z)(Ā)(pA,0 − pA)(A | W̄ ) (3.51)

≤k
4∑
i=1

‖Q̄Y − Q̄Y,0‖L2(P0)‖fi,0 − fi‖L2(P0) + k‖Q̄Z,0 − Q̄Z‖L2(P0)‖f3,0 − f3‖L2(P0)

where we substituted the following: f1,0(o) = gM,0(m | z, x, w, s), f2,0 = pZ,0(z | a, w, 1),
f3,0 = pA,0(x = a | w, s), f4,0(o) = pS|W,0(x | w, s). Dropping the subscript, 0, indicates
the estimated counterpart. Also, hi is a bounded function by the positivity assumption (see
section 2.4) and thus the last inequality holds with a sufficiently large k.

Proof.

R2 = Ψ(P )−Ψ(P0) + EP0

{(
Y − Q̄Y (M̄

) ĝa∗,W,s(M |W )pZ(Z | A,W,S = 0)pS|W (S = 0 |W )I(S = 1, A = a)

gM (M | Z̄)pZ(Z | Ā)pA(A | W̄ )pS|W (S |W )P (S = 0)

}

+ EP0

{(
Q̄M (Z̄)− Q̄Z(Ā)

) I(S = 0, A = a)

pA(A | W̄ )P (S = 0)

}
+ EP0

{(
Q̄Z(a,W, S)−Ψn

) I(S = 0)

P (S = 0)

}
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≈ EP0

{(
Y − Q̄(M̄

) ĝa∗,W,s(M |W )pZ(Z | A,W,S = 0)pS|W (S = 0 |W )I(S = 1, A = a)

gM (M | Z̄)pZ(Z | Ā)pA(A | W̄ )pS|W (S |W )P (S = 0)

}

+ EP0

{(
Q̄M (Z̄)− Q̄Z(Ā)

) I(S = 0, A = a)

pA(A | W̄ )P (S = 0)

}
+ EP0

{(
Q̄Z(a,W, S)−Ψ0

) I(S = 0)

P (S = 0)

}
= EP0

{
(Q̄Y,0 − Q̄Y )(M̄)

ĝa∗,W,s(M |W )pZ(Z | A,W,S = 0)pS|W (S = 0 |W )I(S = 1, A = a)

gM (M | Z̄)pZ(Z | Ā)pA(A | W̄ )pS|W (S |W )P (S = 0)

}
︸ ︷︷ ︸

term 3

+ EP0

{(
Q̄M,0(Z̄)− Q̄Z(Ā)

) I(S = 0, A = a)

pA(A | W̄ )P (S = 0)

}
+ P0

{(
Q̄Z(a,W, S)− Q̄Z,0(a,W, S)

) I(S = 0)

P (S = 0)

}
︸ ︷︷ ︸

term 4

+ EP0

{
(Q̄M − Q̄M,0)(Z̄)

I(S = 0, A = a)

pA(A | W̄ )P (S = 0)

}
︸ ︷︷ ︸

term 5

We can see term 3.56 in the proof statement is term 4 above, where the positivity assumption
guarantees h5(o) ≤ k for some k <∞. We will now rearrange term 3.55 and prove the result.

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | w)

pW,0(w)

pS(s = 0)

[
gM,0(m | z, x, w, 1)

gM (m | z, x, w, 1))

pZ,0(z | a,w, 1)

pZ(z | a,w, 1)
×

pZ(z | a,w, 0)pA,0(a | w, 1)pS|W,0(1 | w)pS|W (0 | w)

pA(a | w, 1)pS|W (1 | w)
−
pZ,0(z | a,w, 0)pA,0(a | w, 0)pS|W,0(0 | w)

pA(a | w, 0)

]
dv(o)

=

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | w)

pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)

[
gM,0(m | z, x, w, 1)

gM (m | z, x, w, 1))
×

pA,0(a | w, 1)pS|W,0(1 | w)pS|W (0 | w)

pA(a | w, 1)pS|W (1 | w)
−
pA,0(a | w, 0)pS|W,0(0 | w)

pA(a | w, 0)

]
dv(o)

+

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | z)

pW,0(w)pZ(z | a,w, 0)

pS(s = 0)

[
gM,0(m | z, x, w, 1)

gM (m | z, x, w, 1))
×

(pZ,0 − pZ)(z | a,w, s)
pZ(z | a,w, 1)

pA,0(a | w, 1)

pA(a | w, 1)

pS|W,0(1 | w)pS|W (0 | w)

pS|W (1 | w)

=

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | w)

pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)

[
gM,0(m | z, x, w, 1)

gM (m | z, x, w, 1))
×

pA,0(a | w, 1)pS|W,0(1 | w)pS|W (0 | w)

pA(a | w, 1)pS|W (1 | w)
−
pA,0(a | w, 0)pS|W,0(0 | w)

pA(a | w, 0)

]
dv(o) (3.52)

+

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)(pZ,0 − pZ)(z | a,w, s)h2(o)p(o)dv(o)

where by the positivity assumption, h2(o) is bounded. Continuing with term 3.52:

=

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | w)

pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)

[
gM,0(m | z, x, w, 1)

gM (m | z, x, w, 1))
×

pA,0(a | w, 1)pS|W,0(1 | w)pS|W (0 | w)

pA(a | w, 1)pS|W (1 | w)
−
pA,0(a | w, 0)pS|W,0(0 | w)

pA(a | w, 0)

]
dv(o)

=

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | z)

pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)

(gM,0 − gM )(m | z, x, w, 1)

gM (m | z, x, w, 1)
)×

pA,0(a | w, 1)

pA(a | w, 1)

pS|W,0(1 | w)pS|W (0 | w)

pS|W (1 | w)
+

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | z)

pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)
×[

pA,0(a | w, 1)

pA(a | w, 1)

pS|W,0(1 | w)pS|W (0 | w)

pS|W (1 | w)
−
pA,0(a | w, 0)

pA(a | w, 0)
pS|W,0(0 | w)

]
dv(o)
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=EP0
(Q̄Y,0 − Q̄Y )(M̄)(gM,0 − gM )(M | Z̄)h1(O) +

∫
(Q̄Y,0 − Q̄Y )(m̄)ĝa∗,W (m | z)

pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)[
pA,0(a | w, 1)

pA(a | w, 1)

pS|W,0(1 | w)pS|W (0 | w)

pS|W (1 | w)
−
pA,0(a | w, 0)

pA(a | w, 0)
pS|W,0(0 | w)

]
dv(o) (3.53)

where by the positivity assumption, h1 is bounded. Continuing with the integral in term
3.53: ∫

(Q̄Y,0 − Q̄Y )(m̄)ĝa∗,W (m | z)
pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)

pA,0(a | w, s)
pA(a | w, s)[ I(s = 1)pS|W,0(s | w)pS|W (0 | w)

pS|W (s | w)
− I(s = 0)pS|W,0(s | w)

]
dv(o)

=

∫
(Q̄Y,0 − Q̄Y )(m̄)ĝa∗,W (m | z)

pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)

(pA,0 − pA)(a | w, s)
pA(a | w, s)

×[ I(s = 1)pS|W,0(s | w)pS|W (0 | w)

pS|W (s | w)
− I(s = 0)pS|W,0(s | w)

]
dv(o)

+

∫
(Q̄Y,0 − Q̄Y )(m̄)ĝa∗,W (m | z)

pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)
×[ I(s = 1)pS|W,0(s | w)pS|W (0 | w)

pS|W (s | w)
− I(s = 0)pS|W,0(s | w)

]
dv(o)

=EP0
(Q̄Y,0 − Q̄Y )(M̄)(pA,0 − pA)(a | W̄ )h3(O)

+

∫
(Q̄Y,0 − Q̄Y )(m̄)ĝa∗,W (m | z)

pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)
×[ I(s = 1)pS|W,0(s | w)pS|W (0 | w)

pS|W (s | w)
− I(s = 0)pS|W,0(s | w)

]
dv(o) (3.54)

where h3 is bounded by the positivity assumption. Continuing with term 3.54:

∫
(Q̄Y,0 − Q̄Y )(m̄)ĝa∗,W (m | z)

pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)
×[ I(s = 1)pS|W,0(s | w)pS|W (0 | w)

pS|W (s | w)
− I(s = 0)pS|W,0(s | w)

]
dv(o)

=

∫
(Q̄Y,0 − Q̄Y )(m̄)ĝa∗,W (m | z)

pW,0(w)pZ,0(z | a,w, 0)

pS(s = 0)

I(s = 1)(pS|W,0(s | w)− pS|W (s | w))pS|W (0 | w)

pS|W (s | w)
dv(o)

+

∫
(Q̄Y,0 − Q̄Y )(m̄)ĝa∗,W (m | z)

pZ,0(z | a,w, 0)

pS(s = 0)
I(s = 0)

[
pS|W (s | w)− pS|W,0(s | w)

]
pW,0(w)dv(o)

=

∫
(Q̄Y,0 − Q̄Y )(m̄)(pS|W − pS|W,0)(s | w)ĝa∗,W (m | z)

pZ,0(z | a,w, 0)

pS(s = 0)

( I(s = 1)pS|W (0 | w)

pS|W (s | w)
− I(s = 0)

)
pW,0(w)dv(o)

=EP0
(Q̄Y,0 − Q̄Y )(M̄)(pS|W − pS|W,0)(S |W )h4(O)

where h4 is bounded by the positivity assumption.

Corollary. Assume:

• A1

‖Q̄Y,0 − Q̄Y,n‖L2
0(P0)‖pM,0 − pM,n‖L2

0(P0) =

‖Q̄Y,0 − Q̄Y,n‖L2
0(P0)‖pZ,0 − pZ,n‖L2

0(P0) =

‖Q̄Y,0 − Q̄Y,n‖L2
0(P0)‖pA,0 − pA,n‖L2

0(P0) =
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‖Q̄Y,0 − Q̄Y,n‖L2
0(P0)‖pS|W,0 − pS|W,n‖L2

0(P0) =oP (1/
√
n)

• A2

‖Q̄Z,0 − Q̄Z,n‖L2
0(P0)‖pA,0 − pA,n‖L2

0(P0) =oP (1/
√
n)

Then
√
nR2(Pn, P0)

p−→ 0

The proof is immediate when applying the cauchy-schwarz inequality.

Remark. Such conditions are guaranteed asymptotically when using the highly adaptive
lasso to fit the regressions if the true regressions are of finite sectional variation norm and
are left-hand continuous with right-hand limits (van der Laan 2016).

Remark. If A1 and A2 are satisfied, the TMLE and EE estimators will be consistent. If A1
is satisfied and we know the treatment mechanism, as in an RCT, then the TMLE and EE
estimators are consistent.

Robustness for restricted model

Theorem 3.2.7. For model MI , we also have the following:

R2(P, P0)

=EP0
(Q̄Y − Q̄Y,0)(M̄)

[
h1(O)(gM,0 − gM )(M | Z̄) + h2(O)(pZ,0 − pZ)(Z | Ā)

+ h3(O)(pA,0 − pA)(A | W̄ )h4(O)(pS|W,0 − pS|W )(S |W )

]
(3.55)

+ EP0
h5(O)(Q̄Z,0 − Q̄Z)(Ā)(pA,0 − pA)(A | W̄ ) (3.56)

≤k
4∑
i=1

‖Q̄Y − Q̄Y,0‖L2(P0)‖fi,0 − fi‖L2(P0) + k‖Q̄Z,0 − Q̄Z‖L2(P0)‖f3,0 − f3‖L2(P0)

where we substituted the following: f1,0(o) = gM,0(m | z, x, w, s), f2,0 = pZ,0(z | a, w, 1),
f3,0 = pA,0(x = a | w, s), f4,0(o) = pS|W,0(x | w, s). Dropping the subscript, 0, indicates
the estimated counterpart. Also, hi is a bounded function by the positivity assumption (see
section 2.4) and thus the last inequality holds with a sufficiently large k.

Proof. We remind the reader that pZ/A(z | w, s) =
∫
pZ(z | x,w, s)pA(x | w, s)dv(x).

R2 = Ψ(P )−Ψ(P0) + EP0

{(
y − E

[
y | m, z,w

])
ĝM|a∗,W,s(m | w)pZ(z | a0, w, s = 0)pS|W (s = 0 | w)I(s = 1)

gM,r(m | z, w, s)pZ/A(z | w, s)pS|W (s | w)pS(s = 0)

}

+ EP0

{(
Q̄M (Z̄)− Q̄Z(Ā)

) I(S = 0, A = a)

pA(A | W̄ )P (S = 0)

}
+ EP0

{(
Q̄Z(a,W, S)−Ψn

) I(S = 0)

P (S = 0)

}
= EP0

{(
y − E

[
y | m, z,w

])
ĝM|a∗,W,s(m | w)pZ(z | a0, w, s = 0)pS|W (s = 0 | w)I(s = 1)

gM,r(m | z, w, s)pZ/A(z | w, s)pS|W (s | w)pS(s = 0)

}

+ EP0

{(
Q̄M (Z̄)− Q̄Z(Ā)

) I(S = 0, A = a)

pA(A | W̄ )P (S = 0)

}
+ EP0

{(
Q̄Z(a,W, S)−Ψ0

) I(S = 0)

P (S = 0)

}
= EP0

{(
y − E

[
y | m, z,w

])
ĝM|a∗,W,s(m | w)pZ(z | a0, w, s = 0)pS|W (s = 0 | w)I(s = 1)

gM,r(m | z, w, s)pZ/A(z | w, s)pS|W (s | w)pS(s = 0)

}
︸ ︷︷ ︸

term 3
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+ EP0

{(
Q̄M,0(Z̄)− Q̄Z(Ā)

) I(S = 0, A = a)

pA(A | W̄ )P (S = 0)

}
+ P0

{(
Q̄Z(a,W, S)− Q̄Z,0(a,W, S)

) I(S = 0)

P (S = 0)

}
︸ ︷︷ ︸

term 4

+ EP0

{
(Q̄M − Q̄M,0)(Z̄)

I(S = 0, A = a)

pA(A | W̄ )P (S = 0)

}
︸ ︷︷ ︸

term 5

Identically to theorem 3.2.6, term 4 is handled. Now we can regard terms 3 and 5.

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | z)

pW,0(w)pZ,0(Z | a,w, 0)

pS(s = 0)

[
pZ,0(Z | w, 1)

pZ(Z | w, 1)
×

pS|W,0(1 | w)pS|W (0 | w)

pS|W (1 | w)
−
pA,0(a | w, 0)

pA(a | w, 0)
pS|W,0(0 | w)

]
dv(o)

=

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | z)

pW,0(w)pZ,0(Z | a,w, 0)

pS(s = 0)

pZ,0(Z | w, 1)− pZ(Z | w, 1)

pZ(Z | w, 1)
×

pS|W,0(1 | w)pS|W (0 | w)

pS|W (1 | w)
dv(o)

+

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | z)

pW,0(w)pZ,0(Z | a,w, 0)

pS(s = 0)

[
pS|W,0(1 | w)pS|W (0 | w)

pS|W (1 | w)

−
pA,0(a | w, 0)

pA(a | w, 0)
pS|W,0(0 | w)

]
dv(o)

=

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | z)

pW,0(w)pZ,0(Z | a,w, 0)

pS(s = 0)
×

pZ,0(Z | x,w, 1)(pA,0(x | w, 1)− pA(x | w, 1)) + pA(x | w, 1)(pZ,0(z | x,w, 1)− pZ(z | x,w, 1))

pZ(Z | w, 1)
×

pS|W,0(1 | w)pS|W (0 | w)

pS|W (1 | w)
dv(o)

+

∫
(Q̄Y,0 − Q̄Y )(m, z, x, w)ĝa∗,W (m | z)

pW,0(w)pZ,0(Z | a,w, 0)

pS(s = 0)

[
pS|W,0(1 | w)pS|W (0 | w)

pS|W (1 | w)

−
pA,0(a | w, 0)

pA(a | w, 0)
pS|W,0(0 | w)

]
dv(o)

From here, a very similar argument to theorem 3.2.6 proves the result.

3.3 Logistic Regression Plug-in Estimator Inference

3.3.1 defining the parameter of interest

Let us consider the nonparametric model, M. We will employ basic statistics to obtain the
influence curve for a logistic regression plug-in estimator for both the mean and variance
of the TE function, b(W ) = E[Y | A = 1,W ] − E[Y | A = 0,W ]. We define the plug-in
estimator as plugging in the outcome conditional density given by the MLE for β where

β = argmin
γ

[−EPA,WEPγ,Y |A,W log(pγ(Y | A,W )pA,W (A,W ))]
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Y and A are binary and Pγ(Y | A,W ) is defined as a conditional density,

pγ(Y | A,W ) = expit (m(A,W |γ))Y (1− expit (m(A,W |γ))1−Y

for a fixed function m(·|·).
Ψ1(P ) = EW bβ(W ) and
Ψ2(P ) = EW (bβ(W )−Ψ1(P ))2

and we may consider the two dimensional parameter: Ψ(P ) = (Ψ1(P ),Ψ2(P )).
We note to the reader, that bβ(W ) = expit (m(1,W |β))−expit (m(0,W |β)) is the conditional
average treatment effect under the parametric model for strata, W .

3.3.2 Finding the MLE for the coefficients, β

Now if we take n iid draws of O we get that the likelihood of drawing {Oi}ni=1 is

n∏
i=1

expit (m(Ai,Wi|β)Yi (1− expit (m(Ai,Wi|β))1−Yi pA(Ai|Wi)pW (Wi)

We thus have:

5βlog
n∏
i=1

expit (m(Ai,Wi|β)Yi (1− expit (m(Ai,Wi|β))1−Yi pA(Ai|Wi)pW (Wi) =

∇β

n∑
i=1

[Yilog (expit (m(Ai,Wi|β)) + (1− Yi)log (1− expit (m(Ai,Wi|β))] = (3.57)

n∑
i=1

(
∂m

∂β0,n

,
∂m

∂β1,n

, ...,
∂m

∂βd,n

)T
(Yi − expit (m(Ai,Wi|βn)) = 0 (3.58)

We can now derive the multidimensional influence function via the use of a taylor series
about EPβSβ(O) where

Sβ(O) =

(
∂m

∂β0

,
∂m

∂β1

, ...,
∂m

∂βd

)T
(Y − expit (m(A,W |β))

Also note that the derivative of the log-likelihood or score, Sβ(O), has mean 0 by assumption.
So PβSβ(O) = EPβSβ(O) = 0.
Thus we get by virtue of βn being the MLE:

PnSβn − PβSβ = 0

PnSβn − PβSβ + PβSβn − PβSβn = 0

(Pn − Pβ)Sβn = Pβ
(
Sβ − Sβn

)
√
n(Pn − P )Sβn = −

√
nPβ

(
∇βSβ

)
(βn − β) +

√
nOp‖βn − β‖2 (3.59)

=⇒
√
n(βn − β)

D
=⇒

√
n(Pn − Pβ)

(
−Pβ

(
∇βSβ

)−1
Sβ

)
(3.60)

since we can consider the ‖βn − β‖2 term as second order. Therefore
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ICβn(O) =
(
−Pβ (∇βSβ)−1 Sβ(O)

)
is the influence curve for the maximum likelihood estimator of the truth, β. In the case of
logistic regression we have m(A,W |β) = X(A,W )Tβ where we might have the main terms
linear case, X(A,W )T = (1, A,W )T and we consider β as a column vector of coefficients,
including the intercept, β0. However, X(A,W )T might be any combination of columns of
the covariates, as in any of variables, containing interactions and so forth of the main terms
in the right-hand side of our regression formula. For now we will drop the arguments in
X(A,W) and just use X unless it is necessary.

Sβ(O) = X
(
Y − expit(βTX)

)

∇βSβ(O) =

 ∇T
βSβ,0
.

∇T
βSβ,d

 = expit(βTX)(1− expit(βTX))XXT

3.3.3 Influence curve for MLE estimate of bβ(W0)

Consider the parameter Ψa,w(P ) = expit (m(a, w|β)) for fixed (a, w). expit (m(a, w|β) is
a continuously differentiable function of β, which means we can apply the ordinary delta
method as follows to find the plug-in estimator influence curve estimating Ψa,w(P ).

Q̄βn(a, w)− Q̄β(a, w) = ∇T
β Q̄β(a, w)

n∑
i=1

ICβn(Oi) +R2(Pβ, Pβn)

= expit(βTx)(1− expit(βTx))xT
n∑
i=1

ICβn(Oi) +R2(Pβ, Pβn)

where x = X(a, w) and R2 = op(n
−.5).

We thus have the influence curve for the logistic regression MLE plug-in estimator for
bβ(W0)(O), notated as ICbβn (W0)(O):

ICbβn (W0)(O)

=

[
expit

(
βTX(1,W0)

)(
1− expit

(
βTX(1,W0)

))
X(1,W0)T−

expit

(
βTX(0,W0)

)(
1− expit

(
βTX(0,W0)

))
X(0,W0)T

]
ICβn (O)

=fβ(W0)ICβn (O)

3.3.4 Influence curve for MLE estimate of bβ(W0)
2

by the delta method we easily get
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ICbβn (W0)2 = 2bβ(W0)ICbβ(W0)(O)

3.3.5 Telescoping to find the 2-d influence curve for 2-d parameter
Ψ(P )

Note, that Ψn = (Ψ1,n,Ψ2,n) is the MLE plug-in estimate for Ψ(P ) = (Ψ1,Ψ2).

Ψ1,n −Ψ1 =
1

n

n∑
i=1

(bβn(Wi)−Ψ1)

=
1

n

n∑
i=1

(bβn(Wi)− bβ(Wi)) +
1

n

n∑
i=1

bβ(Wi)−Ψ1︸ ︷︷ ︸
set aside

Now we can ignore the terms that are set aside as they are part of the influence curve in the
tangent space of mean 0 functions of W .

1

n

n∑
i=1

(bβn(Wi)− bβ(Wi))

=
1

n

n∑
i=1

(
1

n

n∑
j=1

ICbβn (Wi)(Oj)

)
+ op(n

−0.5)

=
1

n

n∑
i=1

fβ(Wi)

(
1

n

n∑
j=1

ICβn(Oj)

)
+ op(n

−0.5)

= Pfβ

(
1

n

n∑
j=1

ICβn(Oj)

)
+ (Pn − P ) fβ

(
1

n

n∑
j=1

ICβn(Oj)

)
︸ ︷︷ ︸

op(n−0.5)

+op(n
−0.5)

= Efβ(W )

(
1

n

n∑
j=1

ICβn(Oj)

)
+ op(n

−0.5)

Therefore, the influence for the MLE-based estimate of Ψ1(P ),denoted by ICΨ1,n , is

ICΨ1,n(O) = Efβ(W)ICβn(O)

Ψ2,n −Ψ2 =
1

n

n∑
i=1

(bβn(Wi)−Ψ1,n)2 −Ψ2
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=
1

n

n∑
i=1

[
(bβn(Wi)−Ψ1,n)2 − (bβ(Wi)−Ψ1)2]+

1

n

n∑
i=1

(bβ(Wi)−Ψ1)2 −Ψ2︸ ︷︷ ︸
set aside

regarding the terms not set aside:

1

n

n∑
i=1

[
(bβn(Wi)−Ψ1,n)2 − (bβ(Wi)−Ψ1)2]

=
1

n

n∑
i=1

bβn(Wi)
2 − bβ(Wi)

2 −

(
1

n

n∑
i=1

bβn(Wi)

)2

+ Ψ2
1

=
1

n

n∑
i=1

1

n

n∑
j=1

ICbβ(Wi)(Oj)−
2

n
Ψ1

n∑
i=1

ICΨ1(Oi) + op(n
−0.5)

=
1

n

n∑
i=1

2bβ(Wi)fβ(Wi)
1

n

n∑
j=1

ICβn(Oj)−
2

n
Ψ1

n∑
i=1

ICΨ1(Oi) + op(n
−0.5)

= P (bβfβ)
2

n

n∑
j=1

ICβn(Oj)−
2

n
Ψ1

n∑
i=1

ICΨ1(Oi) + op(n
−0.5)+[

1

n

n∑
i=1

2bβ(Wi)fβ(Wi)− P (bβ(W )fβ(W ))

]
︸ ︷︷ ︸

op(n−0.5)

2

n

n∑
j=1

ICβn(Oj)

= P (bβfβ)
2

n

n∑
j=1

ICβn(Oi)−
2

n
Ψ1

n∑
i=1

ICΨ1(Oi) + op(n
−0.5)

ICΨ2,n(O) = 2E [bβ(W )fβ(W )] ICβn(O)− 2Ψ1ICΨ1(O)

= 2E [(bβ(W )−Ψ1) fβ(W )] ICβn(O)

Thus we arrive at the following influence curve for the plug-in estimator of the two di-
mensional parameter (Ψ1(P ),Ψ2(P )). Note, this IC below is written as a sum of two 2-
dimensional vectors, one for the components of the IC in TY and the other for the components
in TW .

ICΨn (O) = E
(
fβ(W ), 2(bβ(W )−Ψ1(P ))fβ(W )

)
ICβn (O) +

(
bβ(W )−Ψ1(P ), (bβ(W )−Ψ1(P ))2 −Ψ2(P )

)

And we are finished deriving this influence curve for the plug-in logistic regression estimator
of ATE and VTE.
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3.4 Canonical Least Favorable Submodels

Introduction

We offer a new way to construct a targeted maximum likelihood estimator for multidimen-
sional parameters via defining the canonical least favorable submodel (clfm). TMLE is a
plug-in estimator so it follows that we might prefer to use the same model estimate for all
dimensions of a parameter of interest. The obvious example of such is a survival curve,
in order to insure monotonicity of the estimates in time. The clfm leads naturally to the
construction of the one-step TMLE (van der Laan and Gruber 2016). The resulting TMLE
algorithm can be seen as an iterative version of the one-step TMLE in that both TMLE’s
use a single dimensional submodel in their construction.

The TMLE defined here-in can converge much faster than its one-step recursive counterpart
when evaluating the efficient influence curve has a cost. This is due to relatively few logistic
regression fits as compared to very small recursions. The procedure also enables placing the
denominator of the clever covariate as an inverse weight in an offset intercept model, shown
to stabilize large weights caused by near positivity violations. In addition, like the one-step
TMLE, the TMLE based on a clfm involves the use of a one-dimensional submodel, which
avoids high dimensional regressions to perform the targeting step in the algorithm.

3.4.1 Mapping P 0
n to P ?

n : The Targeting Step

The preceding section sketched the framework by which TMLE provides asymptotically
efficient estimators for nonparametric models. Here we will explain how TMLE maps an
initial estimate P 0

n to P ?
n , otherwise known as the targeting step. P 0

n is considered to be the
initial estimate for the true distribution, P0.

Definition 3.4.1. We can define a canonical 1-dimensional locally least favorable submodel
(clfm) of an estimate, P 0

n , of the true distribution as

{P 0
n,ε s.t

d

dε
PnL(P 0

n,ε)

∣∣∣∣
ε=0

= ‖PnD?(P 0
n)‖2, ε ∈ [−δ, δ]} (3.61)

where P 0
n,ε = P 0

n and ‖ · ‖2 is the euclidean norm. We consider a d− dimensional parameter
mapping Ψ :M−→ Rd.

This definition only slightly differs slightly from the locally least favorable submodel (lfm)
defined by Mark van der Laan (van der Laan and Gruber 2016) in that we can define a clfm
with only a single epsilon and where as an lfm is defined so the score with respect to the
loss spans the efficient influence curve and thus will employ an epsilon of dimension at least
that of the parameter of interest.

Definition 3.4.2. A Universal Least Favorable Submodel (ulfm) of P 0
n satisfies

d

dε
PnL(P ε

n) = ‖PnD?(P ε
n)‖2 ∀ε ∈ (−δ, δ)
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and naturally, P ε=0
n = P 0

n .

We can construct the universal least favorable submodel (ulfm) in terms of the clfm if we
use the difference equation Pn(L(P 0

n,dt)− L(P 0
n)) ≈ ‖PnD?(P 0

n)‖2dt, where P dt
n = P 0

n,dt is an
element of the clfm of P 0

n . More generally, we can map any partition t = m × dt for an
arbitrarily small, dt, to an equation Pn(L(P t+dt

n ) − L(P t
n)) ≈ ‖PnD?(P t

n)‖2dt, where P t+dt
n

is an element of the clfm of P t
n. We therefore can recursively define the integral equation:

Pn(L(P ε
n)−L(P 0

n)) =
∫ ε

0
‖PnD?(P t

n)‖2dt and P ε
n will thusly be an element of the ulfm of P 0

n .
For log likelihood loss, which is valid for both continuous outcome scaled between 0 and 1
as well as binary outcomes, an analytic formula for a ulfm of distribution with density, p,
is therefore defined by the density pε = p× exp(

∫ ε
0
‖D∗(P t)‖2dt) (van der Laan and Gruber

2016) where P t+dt is an element of the clfm of P t.

In applying the one-step TMLE, when the empirical loss is minimized at a given ε, we will
have solved, ‖PnD?(P ε

n)‖2 = 0. Therefore, the loss is decreased and all influence curve
equations are solved simultaneously with a single ε in one step. Specifically, PnD

?
j (P

?
n) = 0

for all j. Thus P ?
n = P ε

n and we have defined the required TMLE mapping.

3.4.2 The Iterative Approach Offered in This Paper

With an iterative approach, we first find P 0
n,ε0

= P 1
n , that is an element of the clfm of P 0

n

such that
d

dε
PnL(P 0

n,ε)

∣∣∣∣
ε=ε0

= 0 (3.62)

This initializes an iterative process where by

d

dε
PnL(P j−1

n,ε )

∣∣∣∣
ε=εj

= 0. (3.63)

where P j
n,ε is an element of the clfm of P j−1

n . When εj = 0, we stop the process and our
TMLE is P ?

n = P j−1
n .

3.4.3 CLFM Construction for Generalized Scenario

Assume we have a parameter mapping as defined in the previous section, where the data is of
the formO = (W,A, Y ) ∼ P0 where Y and A are binary andW is a vector of confounders. We
consider the likelihood factored according to p0(w, a, y) = Q̄0(a, w)Y (1− Q̄0(a, w))1−Y g0(a |
w)qW,0(w). We also assume we have efficient inflluence curve for the jth component of the
parameter of the form:

D∗j (P0)(O) = H1,j(p0)(A,W )(Y − Q̄0(A,W )) +H2,j(p0)(A,W )(A− g0(A,W )) +H3,j(A,W )(f(P0)j(A,W )−Ψ(P0))

where Ψ(P0) = E0[H2,j(Oi(f(P0)j(O)] and E0[Hj,2(Oi) = 1 for fixed function Hj,2. Also note
the dependence of the function H1,j(p0) and H2,j(p0) on the distribution. Now assume we
have an initial estimate of P 0

n , of P0, via an estimate, p0
n, of the density p0. We define p0

n
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by estimates of factors of the likelihood. That is, Q̄0
n ≈ Q̄0, gn ≈ g0, and qW,n the empirical

density of W , is used to approximate qW,0. A clfm of P 0
n is defined by leaving qW,n fixed and

defining

Q̄0
n,ε(A,W ) = expit

(
logit(Q̄0

n(A,W )) + ε

〈
H1(P 0

n)(A,W ),
PnD

∗(P 0
n)

‖PnD∗(P 0
n)‖2

〉
2

)
and

g0
n,ε(A | W ) = expit

(
logit(g0

n(A | W )) + ε

〈
H2(P 0

n)(A,W ),
PnD

∗(P 0
n)

‖PnD∗(P 0
n)‖2

〉
2

)
where ‖ · ‖2 is the euclidean norm induced by dot product, 〈·, ·〉. In the usual case we have
PnH2,j(f(P 0

n)j −Ψ(P 0
n)) = 0 and therefore p0

n,ε defines an element, P 0
n,ε, of a clfm of P 0

n .

3.4.4 General TMLE Algorithm using the clfm for Point Treat-
ment Parameters

Initialization
We start the iterative process with our initial estimate p0

n as defined in the previous subsec-
tion.

PnL(P 0
n) = − 1

n

n∑
i=1

[
YilogQ̄0

n(Ai,Wi) + (1− Yi)log(1− Q̄0
n(Ai,Wi))

]
− 1

n

n∑
i=1

[
Ailogg0

n(Ai | Wi) + (1− Ai)log(1− g0
n(Ai | Wi))

]
= L0 our starting loss

The Targeting Step

Starting with m = 0
step 2:
Compute H1(Pm

n )(A,W ), H2(Pm
n )(A,W ) and H2(A,W ) over the data and then check the

following: If |PnD?
j (P

m
n )| < σ̂(D?

j (P
m
n ))/n for all j then P ?

n = Pm
n and go to step 4. This

insures that we stop the process once the bias is second order. Note, σ̂(·) refers to the sample
standard deviation operator. Otherwise set m = m+ 1 and go to step 3.
step 3 We perform a pooled logistic regression with Y as the outcome,
offset = logit(Q̄m−1

n )(A,W ) and so-called clever covariate,〈
(H1(Pm−1

n )(A,W ),
PnD(Pm−1

n )

‖PnD(Pm−1
n )‖2

〉
2

.
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and A as the outcome, offset logit(gm−1
n )(A | W ) and so-called clever covariate,〈

(H2(Pm−1
n )(A,W ),

PnD(Pm−1
n )

‖PnD(Pm−1
n )‖2

〉
2

.

Assume εj is the coefficient computed from the above pooled regression. We then update
the models as per below, using euclidean inner product notation, 〈·, ·〉2:

Q̄mn = expit

(
logit(Q̄m−1

n )− εj
〈

(H1(Pm−1
n )(A,W ),

PnD(Pm−1
n )

‖PnD(Pm−1
n )‖2

〉
2

)
(3.64)

and

gmn (A |W ) = expit

(
logit(gm−1(A |W ))− εj

〈
(H2(Pm−1

n )(A,W ),
PnD(Pm−1

n )

‖PnD(Pm−1
n )‖2

〉
2

)
(3.65)

Possible alternative targeting step to ameliorate near positivity violations

We can alternatively perform a pooled logistic regression as follows. For all observations
we use Y as the outcome, offset = logit(Q̄m−1

n )(A,W ). We denote the denominator of
H1,j(P

m−1
n ) as gj(P

m−1
n ), which, in some cases is a fixed propensity score, g(Pm−1

n ). We can
use its inverse as a weight in a logistic regression model with covariate

g(Pm−1
n )(A | W )−1

〈
(H1(Pm−1

n )(A,W ),
PnD(Pm−1

n )

‖PnD(Pm−1
n )‖2

〉
2

.

We then stack all observations using A as the outcome, offset, logit(gm−1
n )(A | W ) and

so-called clever covariate, 〈
(H2(Pm−1

n )(A,W ),
PnD(Pm−1

n )

‖PnD(Pm−1
n )‖2

〉
2

.

Thus we use a weight of 1 for when A is the outcome because H2(Pm−1
n )(A,W ) generally

does not have large values. We then update the models similarly as before upon solving for
the coefficient εj. With either regression scheme we solve the same score equation so either
are appropriate for the targeting step.

Once we are done with the targeting step we define the distribution, Pm
n , via its density:

pmn (W,A, Y ) = Q̄m
n (A,W )Y (1− Q̄m

n (A,W ))1−Y gmn (A|W )qn(W )

where qW,n is the empirical density. Return to step 2.
step 4
Our estimate is Ψ̂(Pn) = Ψ(P ?

n) which is really only dependent on Q̄?
n and the empirical

distribution.
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R Software employing the clfm

Currently there are three packages which employ the iterative TMLE as presented in this
paper for parameters with influence curves of the form as in this paper. Note to the reader,
we have yet to implement the weighted intercept targeting scheme as discussed in step 3 of
the algorithm in section 4.

• tmle3, https://github.com/tlverse/tmle3 (Coyle, Malenica, et al. 2018c)

There are various parameters for which one can perform a TMLE estimator, including
variable importance measure for continuous variables (Chambaz, Neuvial, and Laan
Mark J 2012), treatment effect among the treated, causal risk difference, treatment
specific mean and more.

• gentmle2, https://github.com/jeremyrcoyle/gentmle2 (Coyle and Levy 2018) The reader
may note this clfm is what is employed in this R package when specifying the approach
as ”line”. An lfm with epsilon the same dimension as the parameter is employed with
the ”full” option. Other than causal risk difference and treatment specific mean, there
is also the variance of treatment effect (catesurvival) as well as the mean under
stochastic intervention (Diaz Muñoz and van der Laan 2012).

• cateSurvival, https://github.com/jlstiles/cateSurvival (cateSurvival)

This package implements a TMLE estimator for Ψk,t(P ) =
∫
k
(
x−t
h

)
EP I(B(W ) >

x)dx which is kernel-smoothed version of the non-pathwise differentiable parameter,
EP I(B(W ) > t), where B(W ) is the treatment effect function or TE function, defined
by EP [Y | A = 1,W ]− EP [Y | A = 0,W ]. The non-pathwise differentiable parameter
gives the probability a subject selected at random will have treatment effect beyond the
level t. It can be thought of as a ”survival” of the treatment effect function because it
is monotonically decreasing. It is also more familiarly, 1 - CDF of the random variable
that gives the treatment effect for a subject drawn at random. The user can select the
kernel according to its support and its order.

3.5 An Easy Implementation of CV-TMLE

Introduction

The original formulation and theoretical results of cross-validated targeted maximum likeli-
hood estimators, CV-TMLE (Zheng and van der Laan 2010), leads to an algorithm for the
CV-TMLE that generally requires 10 targeting steps for each of 10 validation folds for each
iteration in an iterative targeted maximum likelihood estimators or TMLE (van der Laan and
Daniel Rubin 2006). Such can be done in one regression, which solves the efficient influence
curve equation averaged over the validation folds. However, in this pooled regression, we
must keep track of the means used in each fold, making the process different than a regular
TMLE, once the initial predictions have been formed. The formulation of the CV-TMLE
here-in leads to a simpler implementation of the targeting step in that the targeting step can
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be applied identically as for a regular TMLE once the initial estimates for each validation
fold have been computed. The CV-TMLE as discussed here is currently implemented in the
R software package of tlverse (Coyle, Malenica, et al. 2018a).

3.5.1 CV-TMLE Definition for General Estimation Problem

We refer the reader to the following sources (van der Laan 2016; van der Laan and Gruber
2016; van der Laan and Daniel Rubin 2006; van der Laan and Rose 2011) for a more detailed
look at the theory of TMLE and Zheng and van der Laan, 2010 for theory regarding CV-
TMLE. We consider iid data of the form O ∼ P ∈ M, nonparametric or semiparametric
model and parameter mapping

Ψ(Q(·)) :M−→ Rd

Where Q(P ) is a model upon which the parameter depends. If we consider O = (W,A, Y )
with outcome, Y , and treatment and covariates, A andW , then the outcome model Q̄(A,W ) =
EP [Y | A,W ] and distribution ofW , QW , would defineQ(P ). We consider the canonical least
favorable submodel (reference myself) of model estimate Q̂(Pn) defined with one-dimensional
ε:

d

dε
L
(
Q̂(Pn)(ε)

)∣∣∣∣
ε=0

= ‖D∗
(
Q̂(Pn), ĝ(Pn)

)
‖2

This definition coincides with the least favorable submodel if the d = 1 because in that case
we will have

〈 d
dε
L
(
Q̂(Pn)(ε)

)∣∣∣∣
ε=0

〉 ⊃ 〈D∗
(
Q̂(Pn), ĝ(Pn)

)
〉

where the above ‖ · ‖2 is the euclidean norm. We then define a mapping Bn ∈ 0, 1n to be a
random split of 1, .., n. The training set is defined as T = {i : Bn(i) = 0} and the validation
set, V = {i : Bn(i) = 1}. As in Zheng 2010, P 0

n,Bn
and P 1

n,Bn
and the empirical distributions

over T and V respectively.

The CV-TMLE estimator as in Zheng and van der Laan, 2010 is defined as

Ψkn(Pn) = EBnΨ
(
Q̂(P 0

n,Bn)(
→
εn
kn

)
)

where Ψ
(
Q̂(P 0

n,Bn
)(
→
εn
kn

)
)

is the plug-in estimator (usually an average of the plugged-in

model over the validation set).
→
εn
kn

denotes the kth iteration of fluctuation parameters,
where k could always be 1 if we use the one-step TMLE (van der Laan and Gruber 2016).

3.5.2 Illustrative Example, VTE

We will now go through the CV-TMLE algorithm for the VTE, variance of treatment effect.
Here, we notice that we never target the distribution of W , but rather use the unbiased
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estimator, the empirical distribution. This is discussed in Zheng and van der Laan, 2010
so refer the reader there for more detail as to why this is often the case. In short, the
component of the efficient influence curve in the tangent space of mean 0 functions of W
(van der Vaart 2000) is given by D∗W (P ) = (b(P )(W ) − EP b(P )(W ))2 where b(P )(W ) =
EP [Y | A = 1,W ]−EP [Y | A = 0,W ]. For any approximation to this function, its empirical
mean will automatically be zero. We denote the following to avoid heavy notation:

Q̄k
Bn = Q̂(P 0

n,Bn)(
→
εn
k
)

is the approximation of the outcome model at the kth iteration. This fit is entirely dependent
on the training set P 0

n,Bn
observations and the fluctuations to the model, performed on the

corresponding validation set.

Q̄k
1,Bn = Q̂(Pn)(

→
εn
k
)

is the approximation of the outcome model at the kth iteration. We will see it actually

depends on P 0
n,Bn

and P 1
n,Bn

B̂(P 0
n,Bn

)(
→
εn
k
), and hence the entire empirical draw of the data.

b̂kBn(W ) = Q̄k
Bn(1,W )− Q̄k

Bn(0,W )

b̂k1,Bn(W ) = Q̄k
1,Bn(1,W )− Q̄k

1,Bn(0,W )

ĝBn(A | W ) = ĝ(P 0
n,Bn)(A | W )

• STEP 1: Initial estimates

For each split, Bn as in standard 10-fold cross-validation, we use an ensemble learning
package such as sl3 (Coyle, Malenica, et al. 2018a) or SuperLearner (Polley et al. 2017)
to fit a model on the training set, denoting the model as P 0

n,Bn
. In this case we will

fit relevant factors of the likelihood, such as the propensity score and outcome model,
but not the distribution of covariates, W . For those, we use the empirical distribution
as an unbiased estimator and will not target it. The initial fit of the EP [Y | A,W ], for
split, Bn is denoted Q̄0

Bn
and the initial fit of the EP [A | W ], for split, Bn is denoted

gBn . For both procedures the initial fits are all the same.

• STEP 2: Check Tolerance

For each fold evaluate the so-called clever covariate:

Hk
Bn

(A,W ) = 2(b̂kBn(W )− P 1
n,Bn

b̂kBn) 2A−1
ĝBn (A|W )

and the influence curve approximation

D∗k,Bn(O) = Hk
Bn(A,W )(Y − Q̄k

Bn(A,W ))

Our proposed procedure would do

Hk
1,Bn

(A,W ) = 2(b̂k1,Bn(W )− EBnP 1
n,Bn

b̂k1,Bn) 2A−1
ĝBn (A|W )

and the alternate influence curve approximation
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Dk,Bn(O) = Hk
1,Bn(A,W )(Y − Q̄k

1,Bn(A,W ))

Thus, in our procedure we need not keep track of the folds since the average within the
clever covariate is merely taken over the entire sample. Thus the process is identical
to a TMLE once the initial estimates are made. We just stack them on top of each
other and act is if it is all one initial fit as with the regular TMLE.

We then compute the influence curve approximation for each fold and take the sample
mean. Since the TW component, as stated above always has empirical average 0, we
only need to take the mean of the component of the influence curve approximation
in the tangent space, TY = mean 0 functions of Y | A,W , which have finite variance
(van der Vaart 2000). We then check if the mean of the influence curve is below the
tolerance level, σ̂/n where σ̂ is the sample standard deviation of the above influence
curve computations. This assures we stop the process when the bias is second order as
any more fluctuations beyond that point are not helpful. If we are below the tolerance
we go to step 4. Otherwise we continue onward.

• STEP 3: Targeting Step: Run a pooled logistic regression over all the folds with model:

Y = expit(logit
(
Q̄k
Bn(A,W ) + εknH(Q̄k

Bn(A | W )
)

That is, a model which suppresses the intercept and uses and the initial predictions as
the offset. This is identical to our method, except we would use the slightly different
clever covariate as stated above.

Update all the predictions to form Q̄k+1
Bn

(A,W ) or, as with our method Q̄k+1
1,Bn

(A,W ).

• STEP 4: Compute the estimate and CI:

Ψkn(Pn) = EBnΨ
(
Q̂(P 0

n,Bn)(
→
εn
kn

)
)

and estimate the standard error via the standard deviation of the influence curve in
step 3 divided by root n, which we will just call σ̂/

√
n and form the confidence bands

Ψkn(Pn)± zασ̂/
√
n

where zα is the 1 − α/2 normal quantile. This entails computing the parameter sep-
arately per validation set before averaging the 10 estimates, i.e., compute the sample
variance over the validation set for b̂kBn , getting 10 estimates and then average them. In

our procedure we just have a list of n values of b̂k1,Bn and compute the sample variance
over the entire sample.

Thus we can see our procedure simplifies the targeting and, like the original formulation,
solves the efficient influence curve equation, i.e. EBnP

1
n,Bn

b̂kBnD
∗
k(O) andEBnP

1
n,Bn

b̂k1,BnDk(O) ≈
0, leading to the second order expansion as given in section 2.2.
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3.5.3 Donsker Condition

In the original formulation of the CV-TMLE, we view the estimator as 10 plug-in estima-
tors. To compute each of the 10 estimators, the targeting step is performed on the validation
set. Since we can therefore condition on the training set from which the initial estimate is
formed, we essentially have a fixed functions Q̄0

Bn
and ĝBn , which we are fluctuating on the

validation set with a one-dimensional parametric submodel. Thus the entropy is very low
for the class of functions containing Q̄k

Bn
in our above algorithm. With our procedure the

entropy is a little bigger in that the function, Q̄k
1,Bn

, can be viewed as fixed, yet depending on
an average over all validation sets (therefore very slightly inbred before the targeting step) as
well as the fluctuation parameter, ε, determined by the validation set. The influence curve
approximation, Dk,Bn , defined above, will thus have similarly low entropy as if we allowed
another parameter in the parametric submodel.

Consider the following, which we pull out of Zheng and van der Laan, 2010, for the conve-
nience of the reader.

Definition 3.5.1. For a class of function, F , whose elements are functions, f , that map
observed data, O, to a real number, we define the entropy integral:

Entro(F) =

∫ ∞
0

√
log sup

Q
N (ε, ‖F‖Q,2,F , L2(Q)) dε

where N (ε,F , L2(Q)) is the covering number for F , defined by the minimum number of
balls of radius ε under the L2(Q) norm to cover F . F is defined as the envelope of F or a
function such that |f | ≤ F for all f ∈ F .

Consider the following lemma (lemma 2.14.1 in ref van der Vaart and Wellner, 1996) (van
der Vaart and Wellner 1996)

Lemma 3.5.1. Let F denote a class of measurable functions of O. Let Gn =
√
n(Pn − P0).

Then

E(supf∈FGnf) ≤ Entro(F)
√
P0F 2

This lemma then yields the following results in Zheng and van der Laan, 2010. Consider
→kn
εn , a sequence of ε1n, ..., ε

k0
n that are the fluctuation parameters dependent on the draw from

the data. In the lemma below we assume the k0 steps of a parametric fluctuation parameters
converge in probability to a sequence of length k0, a very weak assumption, the same as the
estimated parameters of a parametric model converging to the truth in probability. NOTE:
for the one-step TMLE (van der Laan and Gruber 2016) kn = k0 = 1 so the notation
simplifies a bit.

Lemma 3.5.2. Suppose ‖→knε −→k0
ε ‖ P→ 0. For each sample split of Bn, we consider a class

of measurable functions of O:

F
(
P 0
n,Bn

)
=
{
f→
ε

(
P 0
n,Bn

)
= f

(
→
ε , P 0

n,Bn

)
− f

(
→
ε0P

0
n,Bn

)
:
→
ε
}
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where the index set contains εn with probability tending to 1. For a deterministic sequence
δn → 0, define subclasses

Fδn
(
P 0
n,Bn

)
=
{
f→
ε
∈ F

(
P 0
n,Bn

)
: ‖→ε − →ε0‖ < δn

}
If for deterministic sequence δn → 0 we have

E
{
Entro(Fδn

(
P 0
n,Bn

)
)
√
P0F (δn, P 0

n,Bn
)2
}
→ 0 as n→ 0

where F (δn, P
0
n,Bn

) is the envelope of Fδn
(
P 0
n,Bn

)
, then

√
n(P 1

n,Bn − P0)
{
f(
→
εn, P

0
n,Bn)− f(

→
ε0, P0)

}
= oP (1)

We note to the reader that we keep lemma 3.2 identical to what was in Zheng and van der
Laan, 2010, except we do not condition solely on P 0

n,Bn
when defining F

(
P 0
n,Bn

)
. Such does

not at all affect the truth of the lemma.

Remainder Term

Our estimate minus the truth is, using notation in Zheng and van der Laan, 2010, where
→
kn,

indicates the kn iteration, we have

Ψkn(Pn) = EBnΨ̂Bn(Pn)

The second order remainder, R2(·), can be written:

Ψkn(Pn)−Ψ(P0) = EBn(P 1
n,Bn − P0)D→

kn,Bn
+R2(Pn, P0)

= −EBnP0D→
kn,Bn

+R2(Pn, P0)

Assuming the remainder is oP (1/
√
n), we then get that

Ψkn(Pn)−Ψ(P0) = EBn(P 1
n,Bn − P0)D→

kn,Bn
+ oP (1

√
n) = −EBnP0D→

kn,Bn
+R2(Pn, P0)

since our procedure solves EBnP
1
n,Bn

D→
kn,Bn

= 0. As discussed, we can quite easily sat-

isfy lemma 3.2 for the function class containing D→
kn,Bn

. Again, assuming the remainder is

oP (1/
√
n) our estimator is asymptotically efficient if D→

kn,Bn
converges to the true influence

curve in L2(P0) (van der Laan and Daniel Rubin 2006). For TE variance the remainder term
conditions are no more strict than for the original formulation of the CV-TMLE.

3.5.4 Conclusion

This slight adjustment to the CV-TMLE algorithm is easier to implement and retains the
same theoretical properties, as shown in our example here. It remains to be more formally
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generalized to include a class of TMLE’s for which it is valid but the example used here-in
gives the reader sufficient intuition to understand when such can be done. For one, it is
obvious if any polynomial factor of a mean (assuming the mean converges) appears as a
factor in the clever covariate, then the entropy will be similarly small, so this procedure
covers many examples one might find in practice. The procedure overlaps exactly with the
originally formulated CV-TMLE with many common parameters where the clever covariates
contain no empirical means. It is a subject for future research whether this procedure has
any advantages in finite samples, such as in the case of simultaneously estimating the ATE,
which is then used as the centering in the VTE computation. Such appears to be perhaps
more sensible but simulations have shown no appreciable difference in performance for VTE.
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