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Abstract

Visual attention requires the selection of salient re-
gions and their remapping into a position-invariant
format. We propose the dynamic-gating model ca-
pable of autonomous remapping. It combines the lo-
calization network of Koch and Ullman (1985) with
a modified shifter-circuit network ( Anderson & Van
Essen, 1987). Autonomous selection and remapping
of salient regions result [rom local gating dvnamics
and local connectivity, implying that scaling to large
problem sizes is straightforward.

1. Introduction

The visual system is equipped with a highly flex-
ible process that enables the allocation of compu-
tational resources to a restricted part of the reti-
nal image. When operating independently of eye
movements, this process is called covert attention
(Posner and Presti, 1987). This contribution pro-
poses a neural model of covert attention. In order
to allow scaling to large problem sizes (e.g., vision),
we impose the implementational restrictions of lo-
cal processing and local connectivity. By distribut-
ing task load and executing computations in par-
allel we aim at achieving a performance matching
that of the human visual system (Nelson & Bower,
1990). Section 2 discusses behavioral findings on
covert attention. In Section 3, dynamic remapping
is suggested to play an important role in the vi-
sual system. Section 4 presents the dynamic-gating
model and Section 5 gives some simulation results.
Finally Section 6 evaluates the model.

*IBM is acknowledged for their hardware support under
the Joint Study Agreement DAEDALOS (#289651).

2. Covert attention

A common metaphor for covert attention is of a
spotlight illuminating part of the retinal image. The
processing of stimuli captured by the spotlights’
beam is enhanced at the cost of the processing of
stimuli lying outside the beam. Behavioral studies
revealed that covert attention indeed behaves much
like a spotlight. Sagi and Julesz (1986), for instance,
found performance on the detection of a test flash to
be enhanced when attention was directed on a to-be-
identified stimulus in its vicinity. The enhancement
was strongest at the stimulus location and dropped
gradually at increasing eccentricity. Other findings
indicate that the attentional beam can be expanded
to cover larger retinal regions (Eriksen, 1990), co-
incided by an enhancement that is inversely pro-
portional to the size of the attended area. Appar-
ently, then, the computational resources invoked in
covert attention are limited causing a trade-off be-
tween resolution and viewing angle.

The speed of moving the spotlight to new loca-
tions has been reported to exceed the speed of eye
movements (even 4 to 5 times, Saarinen & Julesz,
1991). Other findings (Remington & Pierce, 1984;
Kwak, Dagenbach, & Egeth, 1991) show that atten-
tion jumps in a lime invariant fashion (i.e., with a
speed proportional to distance) suggesting an un-
derlying mechanism reminiscent of the saccades as-
sociated with overt attention (Posner, 1980).

Covert attention is here assumed to be based
on two processes: localization and identification.
In localization, a conspicuous area is selected very
rapidly in order to align the attentional beam with
it. In identification, the contents at the attended
region are matched against internal object represen-
tations. Such a matching requires the computation
of an object-centered frame of reference. We will
focus on how localization and the construction of
an object-centered frame of reference can be mod-
eled given our implementational restrictions of local
processing and local connectivity.
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3. Dynamic remapping

Detailed visual analysis of complex patterns re-
quires the allocation of large computational re-
sources. It is not feasible to allocate multiple rec-
ognizers for all positions in the visual field. Rather
a single dedicated recognition module, dynamically
linked to a (spatially contiguous) part of the reti-
nal input (cf. the attentional spotlight), is a much
more parsimonious solution (¢f. Van Essen, An-
derson, & Felleman, 1992). Recent neurophysio-
logical findings suggest such a process to operate
in concert with visual attention. Duhamel, Colby
and Goldberg (1992) found receptive fields of neu-
rons in the parietal cortex to shift in anticipation
of eye movements. As a result, the internal repre-
sentation of the visual scene is remapped to match
the retinal pattern after saccade completion. Des-
imone, Moran and Spitzer (1989) found attention-
ally modulated receptive-field shifts in inferior tem-
poral cortex. Considering the common functional
distinction of a “where” (occipitoparietal) pathway
dealing with the task of encoding spatial relations
and a “what” (occipitotemporal) pathway involved
in the task of object recognition (e.g., Mishkin &
Appenzeller, 1987; Goodale & Milner, 1992), a ten-
tative view holds that dynamic remapping accounts
for maintaining constancies appropriate for the task
at hand.

Construction of perceptual reference frames (e.g.,
object-centered or viewer-centered) may proceed by
appropriate sampling of retinally contiguous spa-
tial (and feature) patterns. Such selective sampling
can effectively be realized by dynamic remapping.
Two complementary neural models using dynamic
remapping have been proposed in the literature.
One model deals with the localization of conspicu-
ous patterns, the other accounts for the remapping
of patterns into an appropriate reference frame. Be-
low, we briefly discuss these models integrated in
the dvnamic-gating model presented in Section 4.

The shifter-circuit network

The remapping of patterns has been hypothesized
to occur through dynamic routing by Anderson
and Van Essen (1987). The shifter-circuit net-
work shown in Figure la consists of a hierarchy
of three concatenated shiffer circuils accommodat-
ing the routing of a contiguous pattern in the in-
put towards the output. Each shifter circuit shifts
incoming patterns to the left or to the right by se-
lectively enabling the transmission lines pointing in
one direction while disabling the lines pointing in
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the other direction. Patterns presented at the bot-
tom of a shifter circuit are, therefore, remapped
without distorting the internal pattern structure.
Critical for proper functioning of a shifter circuit is
the requirement to align enabled (disabled) trans-
mission lines. To fulfil this requirement Anderson
and Van Essen (1987) introduced one shifi-control
module for each shifter circuit. A shift-control mod-
ule contains two neurons, one contacting all trans-
mission lines pointing leftwards and one contacting
all transmission lines pointing rightwards. At any
time only one of the shift-control neurons is active,
effectively disabling signal flow through all the lines
it contacts. A shifter-circuit architecture with L
layers (i.e., shifter circuits) and k shifting directions
(k = 2 in Figure la) is capable of remapping a sub-
pattern of length i from any position in an input
layer of length i 4+ kX — 1 towards the output layer.

The localization network

Koch and Ullman (1985) proposed a hierarchical
network that enables localization and detection of
conspicuous features. The structure of their model
is depicted in Figure 1b. It consists of L layers
with k' links in layer I (I = 1 is the top layer,
k = 2 in Figure 1b). A Winner-Take-All (WTA,
Feldman & Ballard, 1982) competition among k
adjacent transmission lines (neurons) within a sub-
tree results in the selection of a local maximum in-
put value. After selection, the “winning” value is
propagated (remapped) to the next layer upwards.
The maximum value is available at the top layer.
Figure 1b (bottom) shows the localization of the
maximum by a concatenated sequence of “winning”
transmission lines (arrows). A feedback network of
auxiliary units (each associated with a single up-
ward transmission line) determines the position of
the maximum. After the maximum has reached the
top layer, auxiliary elements compare the state of
their associate transmission line with the state of
the one directly above. A unit becomes active if
both lines are winners, otherwise it remains inac-
tive. Consequently, activated auxiliary units trace
the concatenated winning-line sequence in the re-
verse direction.

4. The dynamic-gating model

The localization and shifter-circuit networks can be
combined to form an autonomous “spotlight” that
orients towards conspicuous regions. A salient pat-
tern detected by the localization network can steer
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Figure 1: (a) The shifter-circuit network proposed by Anderson and Van Essen (1987, top) and its selec-
tion/remapping of a pattern of length 4 (bottom). (b) The localization network proposed by Koch and Ullman
(1985. top) and its localization of the martmum wput ralue.

the shifter-circuit network so that the pattern is
routed towards its top layer where it can be matched
against prototypical object representations. Our
implementational constraints of locality of process-
ing and connectivity guide the successive modifica-
tions necessary for full integration. This approach
manages to retain the neurophysiological plausibil-
ity of its component networks. In particular the
combination provides a model for dynamic remap-
ping within the occipitotemporal pathway.

Network structure

Although the network structures shown in Figure 1
have similar characteristics they are still incompat-
ible since the magnitude of shifts in localization
networks increase (when going upward) whereas in
shifter-circuit networks they decrease. To maintain
local connectivity, similar functions (i.e., localizing
and remapping) must be executed in adjacent areas
(e.g., Nelson & Bower, 1990). Therefore we have
modified the shifter-circuit network into a struc-
ture that matches the localization network by re-
versing the order of shifter circuits (the reversed
shifter-circuit network). As shown in Figure 2a
and b, the reversed shifter-circuit network matches
the structure of the localization network. Although
the reversed network employs a larger number of
transmission lines in comparison to the original,
it achieves the same remapping capacity given an
equal number of layers. (Both the standard and
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reversed network shown in Figure la and 2a can
remap a pattern of length 4 out of an input of length
11.) Both networks sample the same input, but the
localization network samples at a lower resolution
(see below).

Gating dynamics

The elements of both networks have a combined gat-
ing and competition (selection) function. The gat-
ing element (or gate, represented by a circle in Fig-
ure 2) proposed herein performs both functions si-
multaneously. It competes with the links in its local
neighborhood and, if it wins the WTA-competition,
gates a local input value to its output. The dynam-
ics of the attentional spotlight requires considerable
and rapid flexibility. Many WTA-schemes react rel-
atively slowly to any change in the input. For this
reason we proposed local stochastic gating dynam-
ics based on the neuron model of Little (e.g., Little
& Shaw, 1975; Postma, van den Herik, & Hudson,
1992). The intrinsic noise of a gate is exploited to
enable it to respond rapidly to changing input. At
the same time there is a limit; too much flexibility
causes inherent instability (see below).

Horizontal connectivity

The nature of a gate's horizontal interactions (i.e.,
its local neighborhood) differs for the two networks.
In the localization network winners are determined
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Figure 2: (a) Reversed shifter-circuil network. (b) Localization network. (c) Integrated dynamic-gating
network. The circles represent open (black) or closed (white) gates.

locally, whereas in the remapping network winners
are determined over the length of the output pat-
tern. These opposing characteristics are directly re-
lated to the distinct functions of both networks and
should be reflected in the definition of the neigh-
borhood of the gates. The horizontal lines in Fig-
ure 2 illustrate the appropriate connectivity pattern
of both networks. In the localization network, con-
nectivity is restricted to non-overlapping local clus-
ters of 2 gates (for the one-dimensional network and
k = 2), i.e., each gate is inhibited by a single neigh-
bor (cf. Koch & Ullman, 1985). In the remapping
network each gate is inhibited by 2 neighbors, i.e.,
neighborhoods overlap. In two dimensions, horizon-
tal interactions within a layver form a field of inde-
pendent clusters in the localization network and a
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lattice structure in the remapping network. Within
each cluster, there is a single open gate. In the lat-
tice, a regular spatial pattern of open gates (each
surrounded by a circular neighborhood of closed
gates) reflects aligned gating within a single layer.
The latter represents a special case of the Ising Lat-
tice of statistical mechanics and exhibits global gat-
ing behavior on the basis of local interactions (see
Postma, van den Herik, & Hudson, 1992, for a more
detailed treatment of these issues).

Integration

In the integrated dynamic-gating model, the auxil-
iary units clamp a small subset of gates within a
layer of the remapping network. A single active



auxiliary unit effects the proper gating over a large
range (of order 1) in the lattice. Figure 2c illustrates
this: the common input at the bottom is sampled
at a course resolution by the localization network
and sampled at a high resolution by the remap-
ping network. The winning chunk (the grey box at
the bottom of Figure 2¢) is found by the localiza-
tion network in the input pattern I. The sequence
of concatenated upward pointing arrows are paired
with active auxiliary units (not shown). These units
sparsely clamp the appropriate gates in the remap-
ping network so that the contents of the selected
pattern is remapped into the output pattern O.

5. Simulations

The integrated dynamic-gating model has been
tested by simulations. Here we confine ourselves
to illustrating the localization performance of the
network. One input in a 16 x 16 two-dimensional
input field is assigned a value of 1.0 (target) and
the rest randomly distributed values on the interval
[0.0,0.9] (distractors). Figure 3 shows the localiza-
tion performance (number of localizations per 1000
iterations) for all positions in the input field. The
number of target-localizations is specified near the
target bar. The three graphs show localization per-
formance for different magnitudes of the intrinsic
noise: low noise (left), medium noise (middle), and
high noise (right). Although target localization oc-
curs most frequently in all three cases, performance
is best at a medium noise level. At low-noise levels,
localization tends to “stick” to local maxima (dis-
tractors) whereas at high-noise levels it becomes un-
stable. The optimal (intermediate) noise level com-
bines stability against input noise with vigilance for
input change.

6. Evaluation

In conclusion we may state that we have succeeded
in formulating a neural model of the attentional
spotlight. DBy obeying the implementational re-
quirements of locality of processing and connec-
tivity, we arrived at an architecture that can be
scaled to large visual inputs. As a direct contin-
uation we are currently studying the performance
of the dynamic-gating model on a range of covert-
attention tasks.
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