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Novel alcohol-related genes suggest shared genetic 
mechanisms with neuropsychiatric disorders

A full list of authors and affiliations appears at the end of the article.

Abstract

Excessive alcohol consumption is one of the main causes of death and disability worldwide. 

Alcohol consumption is a heritable complex trait. We conducted a meta-analysis of genome-wide 

association studies (GWAS) of gram/day (g/d) alcohol consumption in UK-Biobank, AlcGen and 

CHARGE+ consortia accumulating 480,842 people of European descent to decipher the genetic 

architecture of alcohol intake. We identified 46 novel, common loci, and investigated their 

potential functional significance using magnetic resonance imaging data and gene expression 

studies. Our results identify genetic pathways associated with alcohol consumption and suggest 

shared genetic mechanisms with neuropsychiatric disorders including schizophrenia.

Excessive alcohol consumption is a major public health problem that is responsible for 2.2% 

and 6.8% age-standardized deaths for women and men respectively1. Most genetic studies of 

alcohol use focus on alcohol dependency, although the population burden of alcohol-related 

disease mainly reflects a broader range of alcohol consumption behaviors2. Small reductions 

in alcohol consumption could have major public health benefits; even moderate amounts of 

alcohol/day may have significant impact on mortality3.

Alcohol consumption is a heritable complex trait4, but genetic studies to date have robustly 

identified only a small number of associated genetic variants 5–8. These include variants in 

the aldehyde dehydrogenase (ADH) gene family, a group of enzymes that catalyze the 

oxidation of aldehydes9, including a cluster of genes on chromosome 4q23 (ADH1B, 
ADH1C, ADH5, ADH6, ADH7)6.
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Here, we report a GWAS meta-analysis of alcohol intake (log transformed g/day) among 

people of European ancestry drawn from UK Biobank (UKB)10, the Alcohol Genome-Wide 

Consortium (AlcGen) and the Cohorts for Heart and Aging Research in Genomic 

Epidemiology Plus (CHARGE+) consortia. Briefly, UKB is a prospective cohort study of 

~500,000 individuals recruited between the ages of 40 and 69 years. Participants were asked 

to report their average weekly and monthly alcohol consumption through a self-completed 

touchscreen questionnaire10. Based on these reports, we calculated the g/d alcohol intake 

(Methods). Participants were genotyped using a customized array with imputation from the 

Haplotype Reference Consortium (HRC) panel11, yielding ~7 million common single 

nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) ≥ 1% and imputation 

quality score [INFO] ≥ 0.1. After quality control (QC) and exclusions (Methods) we 

performed GWAS of alcohol consumption using data from 404,731 UKB participants of 

European descent under an additive genetic model (Methods and Supplementary Table 1). 

We found that genomic inflation in the UKB analysis was λGC=1.45, but did not adjust for 

inflation as the LD score regression intercept was 1.05, indicating that this was due to 

polygenicity rather than to population stratification12. The estimated SNP-wide heritability 

of alcohol consumption in the UKB data was 0.09.

We also carried out GWAS in 25 independent studies from the AlcGen and CHARGE+ 

consortia including 76,111 participants of European descent for which alcohol g/d could be 

calculated (Supplementary Table 2). Various arrays were used for genotyping, with 

imputations performed using either the 1,000 Genomes Reference Panel or the HRC 

platforms (Supplementary Table 3). After QC, we applied genomic control at the individual 

study level and obtained summary results for ~7 million SNPs with imputation quality score 

≥ 0.3 (Methods).

We combined the UKB, AlcGen and CHARGE+ results using a fixed effects inverse 

variance weighted approach for a total of 480,842 individuals13. To maximize power, we 

performed a single-stage analysis to test common SNPs with MAF ≥ 1%. We set a stringent 

P-value threshold of P < 5 × 10−9 to denote significance in the combined meta-analysis14, 

and required signals to be at P < 5 × 10−7 in UKB, with same direction of effect in UKB and 

AlcGen plus CHARGE+, to minimize false positive findings. We excluded SNPs within 

500kb of variants reported as genome-wide significant in previous GWAS of alcohol 

consumption5,6, identified novel loci by requiring SNPs to be independent of each other (LD 

r2 < 0.1), and selected the sentinel SNP within each locus according to lowest P-value 

(Methods).

We then tested for correlations of alcohol-associated SNPs with Magnetic Resonance 

Imaging (MRI) phenotypes of brain, heart and liver, and gene expression. We tested the 

sentinel SNPs for association with other traits/diseases and Drosophila mutant models were 

used to investigate functional effects on ethanol-induced behavior.

RESULTS

Our meta-analysis identified 46 novel loci associated with alcohol consumption (log 

transformed g/day) (Fig. 1 and Table 1). All inferential statistics for the novel loci are 
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reported in Table 1 whereas heterogeneity metrics are presented in Supplementary Table 4. 

In addition, we discovered a further eight variants in the combined analysis at nominal 

genome-wide significance (P < 1 × 10−8) that may also be associated with alcohol intake 

(Supplementary Table 5). The most significantly associated variant, rs1991556 (P = 4.5 × 

10−23), is an intronic variant in MAPT gene that encodes the microtubule-associated protein 

tau, and was found through Phenoscanner not only to be associated with dementia15 and 

Parkinson’s disease16,17, but also with neuroticism, schizophrenia18and other traits19–21 

(Methods, Fig. 2 and Supplementary Table 6). The second most significantly associated 

variant is rs1004787 (P = 6.7 × 10−17), near SIX3 gene, which encodes a member of the sine 

oculis homeobox transcription factor family involved in eye development22. The third SNP 

is rs13107325 (P = 1.3 × 10−15), a missense SNP in SLC39A8 (https://

www.ncbi.nlm.nih.gov/gene/64116), a gene that encodes a member of the SLC39 family of 

metal ion transporters, which has been associated with schizophrenia23 as well as 

inflammatory bowel disease, cardiovascular and metabolic phenotypes 2425–27 in previous 

GWAS (Fig. 2 and Supplementary Table 6).

Another of our most significant variants, an intronic SNP rs7121986 (P = 6.2 × 10−14) in 

DRD2 (https://www.ncbi.nlm.nih.gov/gene/1813), encodes the dopamine receptor D2 that 

has been associated with cocaine addiction, neuroticism and schizophrenia18. We also found 

significant associations with SNP rs988748 (P = 4.4 × 10−9) in the BDNF gene (https://

www.ncbi.nlm.nih.gov/gene/627, that encodes a member of the nerve growth factor family 

of proteins and rs7517344, which is near ELAVL4 (https://www.ncbi.nlm.nih.gov/gene/

1996) (P = 2.0 × 10−10), the gene product of which is involved in BDNF regulation28. 

Previous studies have suggested that a variant in BDNF is associated with alcohol 

consumption and that alcohol consumption modulates BDNF expression29.

Additionally, we found association of alcohol consumption with SNP rs838145 (P = 3.2 × 

10−15), which has been associated with macronutrient intake in a previous GWAS30. This 

variant is nearest IZUMO (https://www.ncbi.nlm.nih.gov/gene/284359) in a locus of around 

50kb that spans a number of genes including FGF21 (https://www.ncbi.nlm.nih.gov/gene/

26291), whose gene product FGF21 is a liver hormone involved in the regulation of alcohol 

preference, glucose and lipid metabolism31. We previously reported significant association 

of alcohol intake with SNP rs11940694 in KLB (https://www.ncbi.nlm.nih.gov/gene/

152831), an obligate receptor of FGF21 in the brain5, and we strongly replicated that finding 

here (P = 3.3 × 10−68).

As well as variants in KLB and in the alcohol dehydrogenase locus (smallest P = 1.2 × 

10−125), we found support (P = 1 × 10−5) for association of common variants in the three 

other alcohol intake-related loci previously reported in GWAS (Supplementary Table 7), 

including SNP rs6943555 in AUTS2 (https://www.ncbi.nlm.nih.gov/gene/26053) (P = 2.9 × 

10−6). In addition, we found a novel alcohol intake-related SNP rs1421085 in FTO (https://

www.ncbi.nlm.nih.gov/gene/79068) in high LD (r2 = 0.92) with a variant reported 

previously as genome-wide significant for association with alcohol dependence32.

Conditional analysis using Genome-wide Complex Trait Analysis (GCTA) did not reveal 

any independent secondary signals related to alcohol consumption. Among ~14,000 
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individuals in the independent Airwave cohort33 (Methods), 7% of the variance in alcohol 

consumption was explained by the novel and known common variants. Using weights from 

our analysis, we constructed an unbiased weighted genetic risk score (GRS) in Airwave 

(Methods) and found a strong association of the novel and known variants on alcohol 

consumption levels (P = 2.75 × 10−14), with mean difference in sex-adjusted alcohol intake 

of 2.6 g/d comparing the top vs the bottom quintile of the GRS (Supplementary Table 8).

Associations with MRI imaging phenotypes

We functionally characterized novel variants by carrying out single-SNP analyses of the 

imaging phenotypes in UKB (Methods), focusing on brain (N=9,702), heart (N=10,706) and 

liver (N=8,479).

With Bonferroni correction (corrected P-value 6.6 × 10−6, corresponding to 0.05/46 

SNPs*164 imaging phenotypes), we found significant positive associations between SNP 

rs13107325 in SLC39A8 and the volumes of multiple brain regions; All inferential statistics 

for these associations are reported in Supplementary Table 9. The strongest associations 

were with putamen (left: P = 2.5 × 10−45, right: P = 2.8 × 10−47), ventral striatum (left: P = 

9.5 × 10−53, right: P = 9.6 × 10−51) and cerebellum (strongest association for left I-IV 

volume; P = 1.2 × 10−9) (Supplementary Table 9); similar findings were recently reported in 

a GWAS on brain imaging in UKB34. The other significant association was for rs1991556 

with the parahippocampal gyrus (P = 1.2 × 10−6).

We then tested these brain regions for association with alcohol consumption and found a 

significant effect for the left (t8601 = −3.7; beta ± SE = −0.0019 ± 0.0005; P = 2.0 × 10−4) 

and right (t8601 = −3.65; beta ± SE = −0.0070 ± 0.0005; P = 2.6 × 10−4) putamen. Finally, 

we used data from N= 8,610 individuals and performed a mediation analysis using a 

standard three-variable path model, bootstrapping 10,000 times to calculate the significance 

of the mediation effect of putamen volume for genetic influences on alcohol consumption 

(Methods). We found evidence that the effect of SNP rs13107325 in SLC39A8 on alcohol 

intake is partially mediated via its association with left (t8601 = −3.03; beta ± SE = −0.27 ± 

0.09; P = 1.9 × 10−3) and right (t8601 = −2.82; beta ± SE = −0.27 ± 0.09; P = 1.7 × 10−3) 

putamen volume (Fig. 3 and Supplementary Table 10). To exclude the possibility of an 

inverse causal pathway we performed additional analyses in UKB non-drinkers (N =589). 

With 10,000 random permutations, associations of rs13107325 with both left and right 

putamen remained significant (left putamen: t541=1.06; P = 0.02; right putamen: t541=0.38; 

P = 0.04) indicating that the association between rs13107325 and putamen regions is not 

mediated by alcohol intake.

We did not find any significant associations of novel SNPs with either cardiac (left 

ventricular mass or end diastolic volume or right ventricular end diastolic volume) 

(Supplementary Table 11) or liver fat measures on MRI (Supplementary Table 12), after 

adjustment for multiple testing.

Effects of SNPs on gene expression

We carried out expression quantitative trait loci eQTL analyses using the Genotype-Tissue 

Expression (GTEx) and the UK Brain Expression Consortium (UKBEC) datasets; 34 of the 
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53 novel and known SNPs associated with alcohol consumption have a significant effect on 

gene expression in at least one tissue, including 33 SNPs that affect gene expression in the 

brain (Supplementary Tables 13 and 14, and Supplementary Figures 1–3). We found that the 

most significant eQTLs often do not involve the nearest gene and that several of the SNPs 

affect expression of different genes in different tissues. For example, SNP rs1991556 in the 

MAPT gene (https://www.ncbi.nlm.nih.gov/gene/4137) affects expression of 33 genes 

overall, with most significant effects on the expression of the non-protein coding genes 

CRHR1-IT1 (also known as C17orf69 or LINC02210) (https://www.ncbi.nlm.nih.gov/gene/

147081) and LRRC37A4P (https://www.ncbi.nlm.nih.gov/gene/?term=LRRC37A4P), near 

MAPT, across a wide range of tissues including brain, adipose tissue and skin (P = 7.2 × 

10−126 to P = 2.5 × 10−6) (Supplementary Figure 2). Similarly, the A-allele at SNP 

rs2071305 within MYBPC3 (https://www.ncbi.nlm.nih.gov/gene/4607) affects the 

expression of several genes and is most significantly associated with increased expression of 

C1QTNF4 (https://www.ncbi.nlm.nih.gov/gene/114900) across several tissues (P = 1.9 × 

10−25 to P = 8.4 × 10−5).

Several of these eQTLs were found to affect expression of genes known to be involved in 

reward and addiction. SNP rs1053651 in the TCAP-PNMT-STARD3 gene cluster affects 

expression of the PPP1R1B gene (also known as DARPP-32) (https://

www.ncbi.nlm.nih.gov/gene/84152) which encodes a protein that mediates the effects of 

dopamine in the mesolimbic reward pathway35. Other known addiction-related genes 

include ANKK1 (https://www.ncbi.nlm.nih.gov/gene/255239) and DRD2 (expression 

affected by SNP rs7121986) implicated in alcohol and nicotine dependence36,37, CRHR1 
(https://www.ncbi.nlm.nih.gov/gene/1394) (affected by SNP rs1991556) involved in stress-

mediated alcohol dependence38,39 and PPM1G (SNP rs1260326) (https://

www.ncbi.nlm.nih.gov/gene/5496) whose epigenetic modification was reported to be 

associated with alcohol abuse40.

Over-representation enrichment analyses based on functional annotations and disease-related 

terms indicated that genes whose expressions are affected by the identified eQTLs are most 

significantly enriched for terms related to abdominal (n=91) and other malignant cancers, 

motor function (n= 5) and cellular homeostasis (n= 22) (Supplementary Figure 4). We 

performed a gene-based analysis and repeated the over-representation enrichment analysis 

adding the new set of identified genes (Supplementary Table 15). The results were similar 

supporting an enrichment for abdominal (n=100) and other cancers, as well as motor 

function (n=5) and cellular homeostasis (n=24) (Supplementary Figure 5).

Other traits and diseases

Using LD score regression12, we assessed genetic correlations between alcohol consumption 

and 235 complex traits and diseases from publicly available summary GWAS statistics 

(Methods). All results including their statistics (i.e. rg, standard errors, z value and P value) 

are included in Supplementary Table 16. The strongest positive genetic correlations based on 

false discovery rate P < 0.02 were found for smoking (rg= 0.42, P = 1.0 × 10−23) and HDL 

cholesterol levels (rg= 0.26, P = 5.1 × 10−13). We also found negative correlations for sleep 

duration (rg= −0.14, P = 3.8 × 10−7) and fasting insulin levels (rg= −0.25, P = 4.5 × 10−6). A 
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significant genetic correlation was also found with schizophrenia (rg= 0.07, P = 3.9 × 10−3) 

and bipolar disorder (rg= 0.15, P = 5.0 × 10−4) (Supplementary Table 16). Over-

representation enrichment analysis using WebGestalt41 (http://www.webgestalt.org) showed 

that our list of novel and known variants is significantly enriched for several diseases and 

traits including developmental disorder in children (P = 7.3 × 10−5), epilepsy (P = 1.4 × 

10−4), heroin dependence (P = 5.7 ×10−4) and schizophrenia (P = 8.4 × 10−4) 

(Supplementary Figure 6). The result of the Mendelian randomization analysis (Methods) to 

assess a potential causal effect of alcohol on schizophrenia risk, using the inverse variance 

weighted approach, was not significant (P = 0.089), with large heterogeneity of the estimates 

of the tested variants.

Functional studies in Drosophila

Based on our GWAS and brain imaging findings we took forward SNP rs13107325 in 

SLC39A8 (alias Zip8 gene) for additional testing in Drosophila, which employ conserved 

mechanisms to modulate ethanol-induced behaviors42,43. First, we overexpressed human 

Zip8 using a Gal4-driver that included expression in neurons involved in multiple ethanol-

induced behaviors43. Flies carrying icsGal4/+ UAS-hZip8/+ showed a slight, but significant, 

resistance to ethanol-induced sedation compared to control flies (t30 = 2.3; Hedge’s g = 0.80; 

95% CI: 0.08 – 1.53; P = 0.026; N = 16 per genotype). Ethanol tolerance, induced with 

repeat exposures spaced by a 4-hour recovery, was unchanged in these flies (t = 1.0; P = 

0.33; Fig. 4a). We next used the same Gal4-driver to knock down the endogenous 

Drosophila ortholog of hZip8, namely dZip71B. This caused the flies to display naïve 

sensitivity to ethanol-induced sedation (t14 = 3.98; Hedge’s g = −1.84; 95% CI: −0.67 – 

−3.01; P = 0.0014; N = 8 per genotype), and in addition, these flies developed greater 

tolerance to ethanol upon repeat exposure (t14 = 4.80; Hedge’s g = 2.29; 95% CI: 1.03 – 

3.55; P = 0.0003; Fig. 4b). To corroborate this phenotype, we then tested flies 

transheterozygous for two independent transposon-insertions in the middle of the dZip71B 
gene (Supplementary Figure 7) and found that these dZip71BMi / MB flies also displayed 

naïve sensitivity (t14 = 3.23; Hedge’s g = −1.54; 95% CI: −0.42 – −2.65; P = 0.006) and 

increased ethanol-induced tolerance (t14 = 2.39; Hedge’s g = 1.13; 95% CI: 0.07 – 2.18; P = 
0.032) compared to controls (N = 8 each) (Fig. 4c).

DISCUSSION

Our discovery utilizing data on common variants from over 480,000 people of European 

descent extends our knowledge of the genetic architecture of alcohol intake, increasing the 

number of identified loci to 46. We found loci involved in neuropsychiatric conditions such 

as schizophrenia, Parkinson’s disease and dementia, as well as BDNF where gene 

expression is affected by alcohol abuse. Our findings illustrate that large-scale studies of 

genetic associations with alcohol intake in the general population, rather than on alcohol 

dependency alone, can provide additional insights into genetic mechanisms regulating 

alcohol consumption.

We highlight the role of the highly pleiotropic MAPT and SLC39A8 genes in the genetics of 

alcohol consumption. MAPT plays a key role in tau-associated dementia44 and both genes 

Evangelou et al. Page 6

Nat Hum Behav. Author manuscript; available in PMC 2020 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.webgestalt.org/


are also implicated in other neuropsychiatric conditions including neuroticism, 

schizophrenia and Parkinson’s disease16–18. The SLC39A8 gene encodes a member of the 

SLC39 family of metal ion transporters. The encoded protein is glycosylated and found in 

plasma membrane and mitochondria, and is involved in the cellular transport of zinc, 

modulation of which could affect microglial inflammatory responses45. Our gain- and loss-

of-function studies in Drosophila indicate a potential causal role of SLC39A8 in alcohol 

drinking behavior, even though results should be interpreted with caution due to small 

sample size in our experiment. The MRI brain imaging demonstrates a significant 

association of SNP rs13107325 in the SLC39A8 gene and putamen volume differences, and 

these structural differences appear to partially mediate associations of rs13107325 with 

alcohol consumption. The putamen has been associated with alcohol consumption and the 

withdrawal syndrome after chronic administration to rodents and non-human primates46. 

Our mediation analysis is suggestive of a plausible causal pathway linking rs13107325 in 

SLC39A8 with alcohol intake via an effect on putamen volume, but follow-up work is 

needed to conclusively demonstrate causal links. Putamen volume differences have also 

been associated with both schizophrenia and psychosis47,48 and robust association between 

SNP rs13107325 in SLC39A8 and schizophrenia was reported in a previous GWAS23.

We also report SNP rs7121986 near DRD2 as a novel alcohol intake variant in GWAS. The 

gene product of DRD2, D2 dopamine receptor, is a G protein-coupled receptor on post-

synaptic dopaminergic neurons that has long been implicated in alcoholism49. In addition, 

we identify SNP rs988748 in BDNF as a novel alcohol intake variant; BDNF expression is 

differentially affected by alcohol exposure in animal models50,51. Both genes (along with 

PPP1R1P) are centrally involved in reward-mediating mesocortico-limbic pathways and 

both are implicated in the development of schizophrenia. For example, there is a robust 

GWAS association between schizophrenia and SNP rs4938021 in DRD2 (in perfect LD with 

our novel alcohol intake-related variant rs7121986) and DRD2 appears to be pivotal in 

network analyses of genes involved in schizophrenia52. Taken together, our results suggest 

that there are shared genetic mechanisms between the regulation of alcohol intake and 

susceptibility to schizophrenia, as well as other neuropsychiatric disorders. In this regard, 

large prospective epidemiological studies report a three-fold risk of schizophrenia in relation 

to alcohol abuse53.

We previously reported genome-wide significant associations of alcohol intake with KLB, 

and identified a liver-brain axis linking the liver hormone FGF21 with central regulation of 

alcohol intake involving β-Klotho receptor (the gene product of KLB) in the brain5. Here, 

we identify a significant variant near FGF21 gene and strongly replicate the previously 

reported KLB gene variant, strengthening the genetic evidence for the importance of this 

pathway in regulating alcohol consumption.

The LD score regression analysis showed a positive genetic correlation between alcohol 

consumption, smoking and HDL cholesterol levels. This confirms previous findings that 

reported an almost identical genetic correlation of alcohol consumption with number of 

cigarettes per day54. Furthermore, the observed genetic correlation with HDL levels is 

consistent with previous observations of an association between alcohol consumption and 

HDL55,56, including results of a Mendelian randomization study that suggested a possible 
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causal role linking alcohol intake with increased HDL levels57. Furthermore, we found a 

genetic correlation (inverse) between sleep duration and alcohol consumption, an association 

previously reported only in a few small epidemiological studies58. We also found a 

significant genetic correlation with schizophrenia and bipolar disorder, a result that is 

supported by a recently published trans-ethnic meta-analysis of case-control studies on 

alcohol dependence59. We could not test for a genetic association between alcohol and risk 

of alcohol-related cancers60 because of limited availability of summary data. However, our 

gene-set enrichment analysis showed a significant enrichment for genes related to abdominal 

as well as other cancers.

Strengths of our study include its size, detailed attention to the alcohol phenotype, dense 

coverage of the genome through imputation, and incorporation of brain and other imaging 

data to explore potential mechanisms. Over 80% of the data came from UKB, which 

combines high-quality phenotypic data and imputed genome-wide genetic data with strict 

attention to quality control61. We adopted a stringent approach to claim novel variants 

involving a conservative P-value threshold, internal replication in UKB and consistent 

direction of effect with the other studies, to minimize the reporting of false positive signals.

However, since alcohol intake is socio-culturally as well as genetically determined, it is 

influenced by other lifestyle and environmental factors which may modify or dilute the 

genetic signal. A key limitation is that assessment of alcohol intake relies on self-report, 

which is prone to errors and biases including recall bias and systematic under-reporting by 

heavy drinkers62,63. Furthermore, questionnaires on alcohol intake covered a short duration 

(e.g. day or week) at a single period, which may not be representative of broader drinking 

patterns of cohort participants. We harmonized data across cohorts by converting alcohol 

intake into a common metric of g/d, with imputation as necessary in UKB for participants 

reporting consumption of small amounts of alcohol. Taking this approach, we were able to 

detect strong genetic associations with alcohol intake that explained 7% of the variance in 

alcohol in an independent cohort, while our GRS analysis indicates that individuals in the 

lower fifth of the GRS distribution were consuming daily approximately one third of a 

standard drink (2.6 g/d alcohol) less compared with those in the upper fifth.

We should also point out that our eQTL analyses are a first step in the identification of 

causal genes. Yet, as the most significant eQTLs affected expression of many genes, not 

necessarily the nearest, there is a need to further prioritize potential causal genes. Unbiased 

strategies that leverage information from multiple data sets including extensive genomic 

annotations and high-throughput functional screening in a broad range of tissues will be 

essential for effective prioritization of genes and uncovering of underlying causal 

mechanisms64. Establishing confidence in the prioritized genes in such a way is a 

prerequisite for performing functional follow-up studies in appropriate model systems, as 

demonstrated by the identification of the causal genes and potential disease mechanisms at 

the obesity- associated FTO locus65.

In summary, in this large study of genetic associations with alcohol consumption, we 

identified common variants in 46 novel loci, with several of the genes expressed in the brain 

as well as other tissues. Our findings suggest that there may be shared genetic mechanisms 
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underpinning regulation of alcohol intake and development of a neuropsychiatric disorders 

including schizophrenia. This may form the basis for greater understanding of observed 

associations between alcohol consumption, schizophrenia66 and other disorders.

METHODS

UK Biobank data

We conducted a Genome Wide Association Study (GWAS) analysis among 458,577 UKB 

participants of European descent, identified from a combination of self-reported and genetic 

data. The details of the selection of the participants has been described elsewhere14. These 

comprise 408,951 individuals from UKB genotyped at 825,927 variants with a custom 

Affymetrix UK Biobank Axiom Array chip and 49,626 individuals genotyped at 807,411 

variants with a custom Affymetrix UK BiLEVE Axiom Array chip from the UK BiLEVE 

study, which is a subset of UKB. For our analyses, we used SNPs imputed centrally by UKB 

using the Haplotype Reference Consortium (HRC) panel.

Alcohol intake—We calculated the alcohol intake as grams of alcohol per day (g/d) based 

on self-reported alcohol drinking from the touch-screen questionnaire. The quantity of each 

type of drink (red wine, white wine, beer/cider, fortified wine, spirits) was multiplied by its 

standard drink size and reference alcohol content. Drink-specific intake during the reported 

drinking period (a week for frequent drinkers defined as: daily or almost daily/once or twice 

a week/three or four times a week; or a month for occasional drinkers defined as: one to 

three times a month/special occasions only) was summed up and converted to g/d alcohol 

intake for all participants with complete response to the quantitative drinking questions. The 

alcohol intake for participants with incomplete response was imputed by bootstrap 

resampling from the complete responses, stratified by drinking frequency (occasional or 

frequent) and sex.

Participants were defined as life-time non-drinkers if they reported ‘never’ on the question 

on alcohol drinking frequency (UKB field 1558) and ‘no’ for the question on former drinker 

(UKB field 3731); they were excluded from further analysis. We considered participants 

with alcohol consumption > 500 g/d as outliers and they were dropped from the analyses. 

We also excluded participants with missing covariates, leaving data on 404,732 individuals. 

We log10 transformed g/d alcohol and sex-specific residuals were derived from the 

regression of log10 transformed g/d alcohol on age, age2, genotyping chip and weight.

UKB genetic analysis

We performed linear mixed modeling using BOLT-LMM software67, under an additive 

genetic model, for associations of measured and imputed SNPs with alcohol consumption 

(sex-specific residuals of the log10 transformed g/d variable). Model building was based on 

SNPs with MAF > 5%, call rate > 98.5% and HWE P > 1 × 10−6. SNPs were imputed using 

the HRC panel with imputation quality INFO score > 0.1. We estimated the LD score 

regression (LDSR) intercept to assess the degree of genomic inflation beyond polygenicity 

as well as the lambda inflation factor λGC
68.
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The Alcohol Genome-Wide Consortium (AlcGen) and the Cohorts for Heart and Aging 
Research in Genomic Epidemiology Plus (CHARGE+) consortia

We analyzed available GWAS data from 25 independent studies (N=76,111) from the 

AlcGen and the CHARGE+ consortia. All study participants were of reported European 

ancestry and data were imputed to either the 1000 Genome Project or the HRC panel. 

Alcohol intake in g/d was computed and the log10 transformed residuals were analyzed as 

described above. Study names, cohort information and general study methods are included 

in Supplementary Table 2 and 3.

All studies were centrally quality-controlled using easyQC69 including filtering for MAF. 

Finally, we analyzed data on ~7.1 M SNPs at MAF >1% and imputation quality score 

(Impute [Info score] or Mach [r2]) > 0.3. Genomic control (GC) was applied at study level. 

We synthesized the available GWAS using a fixed effects inverse variance weighted meta-

analysis and summary estimates were derived for AlcGen and CHARGE+.

One-stage meta-analysis

We performed a one-stage meta-analysis applying a fixed-effects inverse variance weighted 

meta-analysis using METAL70 to obtain summary results from the UKB and and the AlcGen 

plus CHARGE+ GWAS, for up to N=480,842 participants and ~7.1 M SNPs with MAF ≥ 

1% for variants present in both the UKB data and AlcGen and CHARGE+ meta-analysis. 

We assessed the observed heterogeneity using Cochran’s Q and we quantified this using the 

I2 metric. We considered a Cochran’s Q P < 1 × 10−4 as significant. The LDSR intercept 

(standard error), in the discovery meta-analysis was 1.05 and no further correction was 

applied. QQ plots of the combined meta-analysis summary results, UK Biobank only as well 

as AlcGen and CHARGE+ only, are presented in Supplementary Figure 8.

Previously reported (known) SNPs

We looked up in the GWAS catalog (http://www.ebi.ac.uk/gwas/) and identified 17 SNPs 

associated with alcohol consumption at genome-wide significance level (P < 5 × 10−8). We 

enhanced the list by reference to a recent GWAS by Clarke et al6 that was not covered by the 

GWAS catalog at the time of the analysis, reporting 14 additional rare and common SNPs. 

Together with a SNP in RASGRF2 shown to be associated with alcohol-induced 

reinforcement71, we found 31 previously reported alcohol consumption related SNPs.

Novel loci

According to locus definition of i) SNPs within ±500kb distance of each other; ii) SNPs in 

linkage disequilibrium LD (r2 > 0.1) calculated with PLINK, we augmented the list of 

known SNPs with all SNPs present within our data, not contained within the previously 

published loci. We further excluded SNPs in the HLA region (chromosome 6, 25–34Mb) 

due to its complex LD structure. We performed LD clumping in PLINK on 4,515 unknown 

SNPs with P < 1 ×10−8 using an r2 > 0.1 and distance threshold of 500kb. We further 

grouped the lead SNPs within 500kb from each other into the same loci and selected the 

SNP with smallest P-value from the locus as sentinel SNP.

To report a SNP as novel signal of association with alcohol consumption:
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i. the sentinel SNP has P < 5 × 10−9 in the one-stage meta-analysis;

ii. the sentinel SNP is strongly associated (P < 5 × 10−7) in the UKB GWAS alone;

iii. the sentinel SNP has concordant direction of effect between UKB and AlcGen 

and CHARGE+ datasets;

iv. The sentinel SNP is not located within any of the previously reported loci

We selected the above criteria i) to iii) to minimize false positive findings including use of a 

conservative one-stage P-value threshold that is an order of magnitude more stringent than a 

genome-wide significance P-value. (The threshold of P < 5 × 10−9 has been proposed e.g. 

for whole-genome sequencing-based studies.) This approach led us to the identification of 

46 sentinel SNPs in total. Regional plots for all 46 sentinel SNPs are presented in 

Supplementary Figure 9.

Conditional analysis

We conducted locus-specific conditional analysis using the GCTA (Genome-wide Complex 

Trait Analysis) software (http://cnsgenomics.com/software/gcta). For each of the 46 novel 

sentinel SNPs, we obtained conditional analysis results for the SNPs with MAF>1% and 

within 500kb from the sentinel SNP after conditioning on the sentinel SNP. The meta-

analysis results of the GWAS in UKB, AlcGen and CHARGE+ were used as input summary 

statistics and the individual-level genetic data from UKB were used as the reference sample. 

Results for a SNP were considered conditionally significant if the difference between the 

conditional P-value and the original P-value is greater than 1.5-fold (-log10P/-

log10(P_conditional) >1.5) and the conditional P-value is smaller than 5 × 10−8.

Gene-based analysis

We performed a gene-based analysis using fastBAT, a method that performs a set-based 

association analysis using summary-level data from GWAS. We used the UKB dataset as a 

reference set for the LD calculation72. Gene-based associations with P < 5 × 10−9 were 

considered significant.

Gene expression analyses

To analyze the impact of genetic variants on expression of neighboring genes and identify 

expression quantitative trait loci (cis-eQTLs; i.e., SNPs associated with differences in local 

gene expression), we used two publicly available databases, the Genotype-Tissue Expression 

(GTEx) database73 (www.gtexportal.org) and the UK Brain Expression Consortium 

(UKBEC) dataset74 (http://www.braineac.org). We searched these databases for significant 

variant-transcripts pairs for genes within 1Mb of each input SNP.

With the GTEx database, we tested for cis-eQTL effects in 48 tissues from 620 donors. The 

data described herein were obtained from the GTEx Portal, Release: V7 and used 

FastQTL75, to map SNPs to gene-level expression data and calculate q-values based on beta 

distribution-adjusted empirical P-values76. A false discovery rate (FDR) threshold of ≤0.05 

was applied to identify genes with a significant eQTL. The effect size, defined as the slope 

of the linear regression, was computed in a normalized space (normalized effect size (NES)), 
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where magnitude has no direct biological interpretation. Here, NES reflects the effects of 

our GWAS A1 alleles (that are not necessarily the alternative alleles relative to the reference 

alleles, as reported in the GTEx database). Supplementary Table 13 lists transcripts-SNPs 

associations with significant eQTL effects.

With the UKBEC dataset that comprises 134 brains (http://www.braineac.org/), we searched 

for cis-eQTLs in 10 brain regions, including the cerebellar cortex (CRBL), frontal cortex 

(FCTX), hippocampus (HIPP), medulla (specifically inferior olivary nucleus, MEDU), 

occipital cortex (specifically primary visual cortex, OCTX), putamen (PUTM), substantia 

nigra (SNIG), thalamus (THAL), temporal cortex (TCTX) and intralobular white matter 

(WHMT), as well as across all brain tissues (aveALL). MatrixEQTL77 generated P-values 

for each expression profile (either exon-level or gene-level) against the respective SNP were 

obtained for the 10 different tissues and overall (aveALL). Supplementary Table 14 lists 

transcripts-SNPs associations with a eQTL P-value < 0.0045 in at least one brain tissue. 

Subsequent data analysis was performed in R (http://www.R-project.org/).

We carried out over-representation enrichment analysis using a list of 146 GTEx eQTL 

genes that were derived from the single-variant analysis and a list of 160 eQTL genes that 

were derived from both single-variant and gene-based analysis. Ingenuity pathway analysis 

(IPA®, QIAGEN Inc.) was performed on these lists using ontology annotations from all 

available databases except those derived from low-confidence computational predictions.

Magnetic Resonance Imaging Data

We used the most recent release of magnetic resonance imaging (MRI) data on brain, heart 

and liver for UKB participants to investigate genetic associations with the 46 novel SNPs for 

alcohol consumption.

Brain imaging

Brain MRI acquisition and pre-processing—We used the T1 data from UKB to 

elucidate volumetric brain structures, including the cortical and the sub-cortical areas. The 

T1 data were acquired and pre-processed centrally by UKB. The brain regions were defined 

by combining the Harvard-Oxford cortical and subcortical atlases78 (https://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) and the Diedrichsen cerebellar atlas79 (http://

www.diedrichsenlab.org/imaging/propatlas.htm). FAST (FMRIB’s Automated Segmentation 

Tool)80 was then used to estimate the grey matter partial volume within each brain region. 

Subcortical region volumes were also modelled by using FIRST (FMRIB’s Integrated 

Registration and Segmentation Tool). More details about the MRI scanning protocol and 

pre-processing has been provided in UKB documentation (https://biobank.ctsu.ox.ac.uk/

crystal/docs/brain_mri.pdf).

Association Analyses—We performed association analyses on N = 9,702 individuals 

between all novel SNPs and the grey matter volume of brain regions using Pearson 

correlation, adjusting for age, age2, sex, age × sex, age2 × sex, and head size. All, brain 

volume features, log transformed alcohol intake data (g/d), and the confounders were firstly 
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transformed by using a rank-based inverse Gaussian transformation. Significance levels were 

set at P < 0.05 adjusted using the false-discovery rate method for multiple comparisons.

Mediation analysis—To assess if the effect of a SNP on alcohol consumption is mediated 

through a brain region, we performed a single-level mediation analysis based on a standard 

three-variable path model (SNP-brain region-alcohol consumption) with corrected and 

accelerated percentile bootstrapping 10,000 times to calculate the significance of the 

mediation effect. We considered as mediator variable the grey matter volume of brain 

regions that had a significant association on alcohol consumption. We calculated the 

significance of path a, path b and a*b mediation (SNP-brain region-alcohol consumption) 

using a multilevel mediation and moderation (M3) toolbox81,82. To exclude the possibility of 

an inverse causal pathway we performed additional analyses in UKB non-drinkers (N =589). 

performing 10,000 random permutations, associations of rs13107325 with both left and right 

putamen.

Cardiac Imaging

Cardiac MRI acquisition and pre-processing—Details of the cardiac image 

acquisition in UKB are reported previously83. Cardiac MRI was acquired using a clinical 

wide bore 1.5T scanner (MAGNETOM Aera, Syngo Platform VD13A, Siemens Healthcare, 

Erlangen, Germany) with 48 receiver channels, a 45 mT/m and 200 T/m/s gradient system, 

an 18-channel anterior body surface coil used in combination with 12 elements of an 

integrated 32 element spine coil and electrocardiogram gating for cardiac synchronization. A 

two-dimensional short-axis cardiac MRI was obtained using a balanced steady state free 

precession to cover the entire left and right ventricle (echo time, 1.10msec; repetition time, 

2.6msec; flip angle, 80°; slice thickness, 8mm with 2mm gap; typical field of view, 

380×252mm; matrix size, 208×187, acquisition of 1 slice per breath-hold).

The cardiac images were segmented to provide left ventricular mass (LVM), left end-

diastolic (LVEDV), left end-systolic volume (LVESV), and right end-diastolic (RVEDV) and 

right end-systolic volume (RVESV) using a fully convolutional network as described 

previously84. Left (LVEF) and right ventricular ejection fraction (RVEF) were derived from 

(LVEDV–LVESV)/LVEDV×100 and (RVEDV–RVESV)/RVEDV×100, respectively.

Association Analyses—To test associations between cardiac MRI measures and alcohol 

consumption-related SNPs, we carried out a regression of LVM, LVEDV, LVEF, RVEDV, 

and RVEF onto each of the 46 SNPs adjusting for age, sex, height, weight, hypertension 

(defined as systolic blood pressure >140mmHg and or diastolic blood pressure >90mmHg or 

under antihypertensive treatment), diabetes, and smoking history on N=10,706 participants. 

Significance levels were set at P < 0.05 adjusted using the false-discovery rate method for 

multiple comparisons.

Liver Imaging

Liver MRI acquisition and pre-processing—Details of the liver image acquisition 

protocol have been reported previously85. Briefly, all participants were scanned in a Siemens 

MAGNETOM Aera 1.5-T MRI scanner (Siemens Healthineers, Erlangen, Germany) using a 
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6-minute dual-echo Dixon Vibe protocol, providing a water and fat separated volumetric 

data set for fat and muscle covering neck to knees. For liver proton density fat fraction 

(PDFF) quantification, an additional single multi-echo gradient slice was acquired over the 

liver. Liver images were analysed by computing specific ROI for water, fat and T2* by 

magnitude-based chemical shift technique with a 6-peak lipid model, correcting for T1 and 

T2*.

Association Analyses—We performed association analyses between 46 alcohol 

consumption-related SNPs and liver PDFF (%), from 8,479 samples, using a linear 

regression model adjusting for age, age2, sex, T2D, BMI, genotyping chip and first three 

PCs. Liver PDDF was firstly transformed by using a rank-based inverse transformation. 

Significance levels were set at P < 0.05 adjusted using the false-discovery rate method for 

multiple comparisons.

Drosophila experiments

Flies were kept on standard cornmeal/molasses fly food in a 12:12hr light:dark cycle at 

25°C. Transgenc flies were obtained from the Bloomington Drosophila Stock Center: UAS-
hZip8 BL#66125, UAS-dZIP71B-TRiP-RNAiHMC04064 BL#55376, dZip71BMI13940 

BL#59234, and dZip71BMB11703 BL#29928. For behavioral experiments, crosses were set 

up such that experimental and control flies were sibling progeny from a cross, and both were 

therefore in the same hybrid genetic background (w Berlin / unknown). Flies aged 1–5 days 

of adult age were collected, exposed to 100/50 (flowrates) ethanol/air vapor in the Booze-o-

Mat 2 days later, and their loss of righting determined by slight tapping, as described86. For 

tolerance, flies were put back onto regular food after a 30-min initial exposure and were then 

re-exposed to the same vapor 4 hours later. Note that tolerance is not connected to initial 

sensitivity, and flies naively sensitive to ethanol-induced sedation can have no, or a reduced 

tolerance phenotype. Flies overexpressing hZip8 (and their sibling controls) were placed at 

28°C for two days to increase the expression levels of the transgene, as we did not detect a 

phenotype when they were kept at 25°C (data not shown). Data from experimental and 

control flies were compared by two-sided Student’s t-tests. Data were normally distributed 

according to Shapiro-Wilk testing with Bonferroni adjustment for each of the three 

experiments.

Effects on other traits and diseases

We queried SNPs against GWAS results included in PhenoScanner (http://

www.phenoscanner.medschl.cam.ac.uk), to investigate cross-trait effects, extracting all 

association results with genome-wide significance at P < 5 × 10−8 for all SNPs in high LD 

(r2 ≥ 0.8) with the 46 sentinel novel SNPs, to highlight the loci with strongest evidence of 

association with other traits. At the gene level, overrepresentation enrichment analysis 

(ORA) with WebGestalt41 on the nearest genes to all alcohol consumption loci was carried 

out.

The genetic correlations between alcohol consumption and 235 other traits and diseases 

were obtained in the online software LD Hub. LD hub is a centralized database of summary-

level GWAS results and a web interface for LD score regression analysis
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To estimate the potential causal effect of alcohol consumption-related variants on 

schizophrenia, we performed a Mendelian randomization analysis utilizing publicly 

available GWAS data on schizophrenia and the Mendelian randomization package in R. The 

effect was estimated using the inverse-variance weighted (IVM) method. Pleiotropy was 

tested by applying the MR-Egger regression method and heterogeneity statistics were 

obtained. In presence of heterogeneity the random effects inverse-variance method was 

applied87.

Genetic risk scores and percentage of variance explained

We calculated an unbiased weighted GRS in 14,004 unrelated participants in Airwave, an 

independent cohort with high quality HRC imputed genetic data33. All previously reported 

and novel variants were used for the construction of the GRS. We weighted the alcohol-

increasing alleles by the beta coefficients of the meta-analysis. We assessed the association 

of the GRS with alcohol intake and calculated the alcohol consumption levels for individuals 

in the top vs the bottom quintiles of the distribution. To calculate the percent of variance of 

alcohol consumption explained by genetic variants, we generated the residuals from a 

regression of alcohol consumption in Airwave. We then fit a second linear model for the trait 

residuals with all novel and known variants plus the top 10 principal components and 

estimated the percentage variance of the dependent variable explained by the variants.

Statistical analysis

All inferential statistics for the analyses described above are provided in the text or in tables 

and figures. All performed tests were two-sided.

Data availability statement

The UKB GWAS data can be assessed from the UK Biobank data repository (http://

biota.osc.ox.ac.uk/). The genetic and phenotypic UKB data are available upon application to 

the UK Biobank (https://www.ukbiobank.ac.uk). Summary GWAS data data can be assessed 

by request to the corresponding authors and will be available via LDHub (http://

ldsc.broadinstitute.org/ldhub/).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manhattan plot showing P-values from discovery genome-wide association meta-
analysis with alcohol intake (log g/d) among 480,842 individuals across UK Biobank, AlcGen and 
CHARGE+, excluding known variants.
The P-value was computed using inverse variance fixed effects models. The y axis shows the 

–log10 P values and the x axis shows their chromosomal positions. Horizontal blue line 

represents the threshold of P = 5 × 10−9.
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Figure 2. Association of alcohol intake loci with other traits.
Plot shows results from associations with other traits which were extracted from the 

PhenoScanner database for the 46 novel sentinel SNPs including proxies in Linkage 

Disequilibrium (r2 ≥ 0.8) with genome-wide significant associations. Each colored line 

connects a specific variant with the associated traits and diseases.
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Figure 3. Mediation effect of the grey matter volume of bilateral putamen on the relationship 
between SNP rs13107325 and alcohol intake.
The green is for left putamen, and, the red is for the right one. We use ‘a’ for the relationship 

between rs13107325 and putamen, ‘b’ for the relationship between putamen and alcohol 

consumption, ‘c’ for the relationship between rs13107325 and alcohol consumption, ‘c” for 

the relationship between rs13107325 and alcohol consumption after excluding the effect of 

putamen, and ‘ab’ as the mediation effect. The significance tests are based on the 

bootstrapping method (10,000 times). Z- statistics and the corresponding P values are 

provided in parentheses. The brain icon was created using Mango software, version 4.1 

(http://ric.uthscsa.edu/mango/).
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Figure 4. Comparison of Zip8 alcohol phenotypes in Drosophila.
Flies were exposed to 100/50 Ethanol/Air vapor for 30 min for exposure 1, and the time to 

50% loss of righting was determined (ST-50, sedation time). After recovery on food for 4 

hours, flies were re-exposed to the same vapors, and the second ST-50 recorded (left side). 

The resulting increase in ST-50, i.e. tolerance, is shown on the right. In a) overexpressed 

human hZIP8 in ics-expressing cells flies are compared against controls whereas in b) 

knockdown of the fly ortholog dZip71B is compared against controls. In c) flies carrying 

two transposon insertions in the endogenous dZip71B gene are compared against controls. 

Significance levels: ***P <0.001, **P <0.01, *P <0.05. Exact P-values are presented in the 

text.
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Table 1:

Association results of 46 novel alcohol variants identified through the meta-analysis of UK Biobank and 

AlcGen and CHARGE+. Results are ordered by P-value of combined analysis.

leadSNP Combined UKB AlcGen and CHARGE+

Nearest_Gene Annotated 
Gene rsID_LEAD_SNP CP EA EAF BETA SE P BETA SE P BETA SE P

MAPT STH rs1991556 17:44083402 A 0.22 −0.012 0.001 4.5E-23 −0.013 0.001 2.4E-21 −0.011 0.004 4.0E-03

RP11–
89K21.1 SIX3 rs1004787 2:45159091 A 0.54 0.009 0.001 6.7E-17 0.009 0.001 1.1E-15 0.007 0.003 1.4E-02

SLC39A8 SLC39A8 rs13107325 4:103188709 T 0.07 −0.016 0.002 1.3E-15 −0.017 0.002 4.8E-16 −0.006 0.006 3.6E-01

IZUMO1, 
RASIP1, 
FUT1

IZUMO1 rs838145 19:49248730 A 0.55 −0.008 0.001 3.2E-15 −0.009 0.001 2.4E-15 −0.004 0.003 1.7E-01

Na PSMD7 rs1104608 16:73912588 C 0.43 −0.008 0.001 1.2E-14 −0.009 0.001 4.9E-15 −0.003 0.003 2.5E-01

MYBPC3 MYBPC3 rs2071305 11:47370957 A 0.69 0.009 0.001 4.5E-14 0.009 0.001 3.9E-13 0.007 0.003 3.1E-02

Na DRD2 rs7121986 11:113355444 T 0.37 −0.008 0.001 6.2E-14 −0.008 0.001 1.3E-13 −0.005 0.003 1.1E-01

Na DPP6 rs6969458 7:153489725 A 0.47 0.008 0.001 6.4E-14 0.008 0.001 1.3E-12 0.007 0.003 1.5E-02

RP11–
308N19.1 ZNF462 rs74424378 9:109331094 T 0.76 0.009 0.001 1.7E-13 0.009 0.001 4.5E-13 0.006 0.003 8.4E-02

ARHGAP15, 
AC096558.1, 
RP11–
570L15.2

ARHGAP15 rs13024996 2:144225215 A 0.37 −0.008 0.001 4.4E-13 −0.008 0.001 6.6E-13 −0.004 0.003 1.4E-01

MLXIPL MLXIPL rs34060476 7:73037956 A 0.87 −0.011 0.002 5.0E-13 −0.012 0.002 1.4E-13 −0.004 0.004 4.1E-01

Na FAM178A rs61873510 10:102626510 T 0.33 −0.008 0.001 5.1E-13 −0.008 0.001 9.8E-12 −0.008 0.003 1.7E-02

FTO FTO rs1421085 16:53800954 T 0.60 0.008 0.001 9.2E-13 0.007 0.001 1.7E-10 0.010 0.003 9.2E-04

Na PMFBP1 rs11648570 16:72356964 T 0.89 −0.012 0.002 2.1E-12 −0.011 0.002 1.5E-10 −0.013 0.005 3.4E-03

OTX2, RP11–
1085N6.6 OTX2 rs2277499 14:57271127 T 0.34 −0.008 0.001 2.2E-12 −0.007 0.001 2.4E-09 −0.012 0.003 9.1E-05

PDE4B PDE4B rs2310752 1:66392405 A 0.43 −0.007 0.001 2.8E-12 −0.008 0.001 1.8E-11 −0.006 0.003 4.2E-02

SERPINA1 SERPINA1 rs112635299 14:94838142 T 0.02 −0.025 0.004 3.7E-12 −0.027 0.004 9.8E-12 −0.017 0.010 9.9E-02

Na AJAP1 rs780569 1:4569436 A 0.71 −0.008 0.001 5.2E-12 −0.008 0.001 1.1E-11 −0.005 0.003 1.2E-01

Na VRK2 rs10496076 2:57942987 T 0.37 −0.007 0.001 9.7E-12 −0.007 0.001 1.3E-09 −0.009 0.003 1.6E-03

ACTR10, 
C14orf37 ACTR10 rs71414193 14:58685301 A 0.19 −0.009 0.001 1.8E-11 −0.008 0.001 5.8E-09 −0.013 0.004 4.5E-04

BEND4 BEND4 rs16854020 4:42117559 A 0.13 0.010 0.002 2.9E-11 0.010 0.002 5.8E-09 0.016 0.005 6.4E-04

Na SORL1 rs485425 11:121544984 C 0.45 −0.007 0.001 6.1E-11 −0.007 0.001 7.3E-11 −0.004 0.003 1.9E-01

SEZ6L2 SEZ6L2 rs113443718 16:29892184 A 0.31 −0.007 0.001 7.4E-11 −0.008 0.001 4.5E-11 −0.003 0.003 2.9E-01

CBX5, RP11–
968A15.2 CBX5 rs57281063 12:54660427 A 0.41 0.007 0.001 7.9E-11 0.007 0.001 1.8E-09 0.007 0.003 1.2E-02

Na TNRC6A rs72768626 16:24693048 A 0.94 0.014 0.002 9.7E-11 0.015 0.002 1.7E-09 0.014 0.006 1.8E-02

SYT14 SYT14 rs227179 1:210216731 A 0.59 −0.007 0.001 1.1E-10 −0.007 0.001 1.4E-09 −0.006 0.003 2.8E-02

TCF4 TCF4 rs9320010 18:53053897 A 0.60 0.007 0.001 1.1E-10 0.007 0.001 1.6E-09 0.007 0.003 2.2E-02

SBK1 NPIPB6 rs2726034 16:28336882 T 0.68 0.007 0.001 1.4E-10 0.007 0.001 1.1E-09 0.006 0.003 4.7E-02

ANKRD36 ANKRD36 rs13390019 2:97797680 T 0.87 0.010 0.002 1.6E-10 0.011 0.002 7.0E-11 0.004 0.005 4.5E-01

Na ELAVL4 rs7517344 1:50711961 A 0.17 0.009 0.001 1.9E-10 0.008 0.001 2.5E-07 0.016 0.004 2.1E-05
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leadSNP Combined UKB AlcGen and CHARGE+

Nearest_Gene Annotated 
Gene rsID_LEAD_SNP CP EA EAF BETA SE P BETA SE P BETA SE P

LINC00461 MEF2C rs4916723 5:87854395 A 0.58 0.007 0.001 2.1E-10 0.007 0.001 5.1E-10 0.005 0.003 1.1E-01

ARPC1B, 
ARPC1A ARPC1B rs10249167 7:98980879 A 0.87 0.010 0.002 2.9E-10 0.009 0.002 8.1E-08 0.015 0.004 3.8E-04

EFNB3, 
WRAP53 EFNB3 rs7640 17:7606722 C 0.80 0.008 0.001 4.3E-10 0.009 0.001 1.3E-09 0.006 0.004 9.9E-02

RP11–
501C14.5 IGF2BP1 rs4794015 17:47067826 A 0.41 0.007 0.001 4.3E-10 0.006 0.001 5.4E-08 0.009 0.003 1.2E-03

TCAP, PNMT, 
STARD3 TCAP rs1053651 17:37822311 A 0.27 −0.007 0.001 1.1E-09 −0.008 0.001 8.4E-10 −0.003 0.003 2.8E-01

Na AADAT rs7698119 4:171070910 A 0.49 −0.006 0.001 1.3E-09 −0.006 0.001 1.6E-07 −0.009 0.003 1.6E-03

STAT6, 
AC023237.1 STAT6 rs12312693 12:57511734 T 0.55 −0.006 0.001 1.5E-09 −0.006 0.001 9.5E-09 −0.005 0.003 5.6E-02

SCN8A SCN8A rs7958704 12:51984349 T 0.41 −0.006 0.001 1.6E-09 −0.006 0.001 1.7E-08 −0.006 0.003 3.5E-02

ACSS3 ACSS3 rs11114787 12:81595700 T 0.27 0.007 0.001 2.0E-09 0.007 0.001 2.7E-08 0.007 0.003 2.4E-02

RP11–32K4.1 BHLHE22 rs2356369 8:64956882 T 0.52 −0.006 0.001 2.0E-09 −0.006 0.001 4.1E-08 −0.007 0.003 1.6E-02

ZRANB2-
AS2 ZRANB2 rs12031875 1:71585097 A 0.82 −0.008 0.001 2.2E-09 −0.008 0.001 7.6E-08 −0.010 0.004 8.7E-03

MSANTD1, 
HTT MSANTD1 rs12646808 4:3249828 T 0.66 0.007 0.001 2.4E-09 0.007 0.001 1.1E-09 0.002 0.003 4.7E-01

TENM2 TENM2 rs10078588 5:166816176 A 0.52 0.006 0.001 2.5E-09 0.006 0.001 4.3E-08 0.007 0.003 1.9E-02

IGSF9B IGSF9B rs748919 11:133783232 T 0.79 0.008 0.001 3.3E-09 0.008 0.001 1.0E-08 0.005 0.003 1.1E-01

AC010967.2 GPR75-
ASB3 rs785293 2:53023304 A 0.57 −0.006 0.001 3.3E-09 −0.006 0.001 3.2E-08 −0.006 0.003 3.8E-02

BDNF, RP11–
587D21.4 BDNF rs988748 11:27724745 C 0.21 −0.008 0.001 4.4E-09 −0.007 0.001 1.2E-07 −0.010 0.004 8.3E-03

SNP: Single Nucleotide polymorphism; LocusName: Nearest Gene; rsID_LEAD_SNP: Rs ID number of the lead SNP; CP: Chromosome/Position 
(build hg19/37); EA: Effect allele of the discovered SNP; EAF: Frequency of the effect allele; BETA_comb: Effect size in meta-analysis; 
SE_comb; Standard Error of the effect in meta-analysis; P_comb: Meta-analysis P-value; BETA_UKB: Effect size in UK Biobank analysis; 
SE_UKB: Standard Error of the effect in the UK Biobank analysis; P_UKB: UK Biobank analysis P-value;BETA_AlcGenCHARGE+: Effect size 
in the AlcGen meta-analysis; SE_AlcGenCHARGE+: Standard Error of the effect in the AlcGen meta-analysis; P_AlcGenCHARGE+: AlcGen 
meta-analysis P-value
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