
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Mathematical Model for Studying Combined Effect of Individual Cell Behavior on Developing 
Tissue Shape in Plants

Permalink
https://escholarship.org/uc/item/4gg300fr

Author
Banwarth-Kuhn, Mikahl

Publication Date
2019
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4gg300fr
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
RIVERSIDE

Mathematical Model for Studying Combined Effect of Individual Cell Behavior on
Developing Tissue Shape in Plants

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Mathematics

by

Mikahl Banwarth-Kuhn

March 2019

Dissertation Committee:

Dr. Mark Alber, Chairperson
Dr. Weitao Chen
Dr. Amir Moradifam



Copyright by
Mikahl Banwarth-Kuhn

2019



The Dissertation of Mikahl Banwarth-Kuhn is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I want to extend my deepest gratitude to my advisor Dr. Mark Alber for taking me on as

a student during his first year at UC Riverside and investing countless time and resources

into helping me grow as a student, researcher and academic. Without him I would not have

found myself along my current path. I would also like to acknowledge every professor in

the Math department at University of Portland during 2009-2011, especially Dr. Hannah

Highlander and Dr. Chris Lee who were instrumental in convincing me I was capable of

successfully completing a PhD in math and helping me apply to graduate programs. In

addition, I would like to thank all the members of the applied math research group at UC

Riverside, including Dr. Ali Nematbakhsh who provided invaluable support while I began

my research and continued to provide extremely helpful insight throughout my time as a

graduate student, Andrew Whitaker who spent his summer teaching me C++, and all the

members of Dr. Venu Reddy’s lab in the Department of Botany and Plant Sciences at UC

Riverside. Finally, I would like to thank the humans that made my days so much brighter

during my time at UC Riverside, Sam and Jolene Britton, Adam Yassine, Kevin Tsai, Josh

Buli, Bryancito, Ryan and Bree Moruzzi, and Eddie Voskanian, I could not have asked

for better colleagues to learn and study alongside and it has truly been an honor creating

lifelong friendships with each of you.

iv



To my wife and family, Bayley, Mom, Dad, Cletus and Brynna, for unconditional

love and support every day of my life.

v



ABSTRACT OF THE DISSERTATION

Mathematical Model for Studying Combined Effect of Individual Cell Behavior on
Developing Tissue Shape in Plants

by

Mikahl Banwarth-Kuhn

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, March 2019

Dr. Mark Alber, Chairperson

The development of an organ or organism is a complex process that includes many interact-

ing components. Scientific inquiries in developmental biology have motivated the creation

of novel mathematical tools to better understand how distributions of cellular identities

and phenotypes are attained through spatiotemporal regulation of cell behaviors and gene

regulation. One of the central problems in animal and plant developmental biology is deci-

phering how chemical and mechanical signals interact within a tissue to produce organs of

defined size, shape, and function. Plant development is much different from animals since

the majority of organs are continually produced throughout the life of the plant and the

presence of the cell wall imposes a unique constraint on cell behaviors. How exactly cell wall

mechanical properties influence cell behaviors that lead to stem cell maintenance and cor-

rect organ formation is still largely unknown. To address this problem, a novel, subcellular

element model of growth of stem cells within the multilayered shoot apical meristem (SAM)

of Arabidopsis thaliana is developed and calibrated in this thesis using experimental data.

Novel features of the model include separate, detailed descriptions of cell wall extensibility
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and mechanical stiffness, deformation of the middle lamella, and increase in cytoplasmic

pressure generating internal turgor pressure. The model is used to test novel hypothesized

mechanisms of formation of the shape and structure of the growing, multilayered SAM based

on WUS concentration of individual cells controlling cell growth rates and layer-dependent

anisotropic mechanical properties of subcellular components of individual cells determining

anisotropic cell expansion directions. Model simulations also provide a detailed prediction

of distribution of stresses in the growing tissue which can be tested in future experiments.
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Chapter 1

Introduction

1.1 Review of mathematical modeling of development

The development of an organ or organism is a complex process that includes many

interacting components. Starting from an initially symmetric and almost homogeneous tis-

sue, such as an embryo in the early stages of development, cells acquire different identities,

patterns and new structures emerge, and ultimately organs form in the correct shape, size,

location and orientation within the body. The highly complex nature of biological systems

raises many unique challenges that have not been addressed by mathematical models in

other areas of application. In particular, scientific inquiries in developmental biology have

motivated the creation of novel mathematical tools to better understand how distributions of

cellular identities and phenotypes are attained through spatiotemporal regulation of cell be-

haviors and gene regulation. During the last few decades, experiments have provided a large

amount of information about the genetic composition of multicellular organisms including

how genes interact, where various genes are expressed within a tissue and identification
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of the primary genes involved in different developmental processes. Novel mathematical

models incorporate observations from experiments to further investigate how biochemical

signals interact with biophysical processes to produce the pattern and form seen in nature.

Model results are then used to identify important properties of the biological system, suggest

underlying general principles for development and motivate new experiments. The results

of such experiments help refine models and lead to more precise predictions. In this way,

modeling, combined with experiment, has become a powerful investigative tool in helping

better understand complex systems in developmental biology.

1.1.1 Pattern formation and morphogenesis

Pattern formation and morphogenesis constitute a fascinating area of developmen-

tal biology with many unanswered questions. Pattern formation refers to the developmental

process in which cells acquire different identities according to their spatial position within

the tissue so that new organs and tissue structures develop in the correct location and ori-

entation within the organism. This complex organization of cell fates in space and time is

achieved through cell-cell signaling mechanisms that change cell identity without changing

the spatial arrangement of cells. Morphogenesis is the developmental process that causes

tissues and organs to develop in the shape and size necessary for proper function. This pro-

cess is achieved through cell behaviors such as division, cell-cell adhesion, and cell migration

that happen in response to different signals.

The first person to develop general principles for how variations in the form and

structure of different organisms could emerge was D’Arcy Thompson. In his work ”On

Growth and Form,” D’Arcy Thompson characterized morphogenesis in terms of physical
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forces and mechanics [118]. Since then, many different modeling approaches have been

developed to address the role of biomechanics in developmental processes. These models

help to better understand the underlying physical mechanisms of important developmental

processes such as tissue folding, invagination, and intercalation.

Over the past few decades, molecular level studies have revealed that a wide range

of developmental phenomena are regulated by complex networks of cellular and molecular

interactions [108, 114, 84, 87, 81]. The vast range of intricate pigmentation patterns and

complex skeletal structures seen in both plants and animals raises the question of what

type of molecular interactions are necessary to generate such elaborate patterns and form.

Dynamical systems models in which cells produce and interact with diffusible signals, com-

monly referred to as morphogens, have served as useful models to explain self-regulated

pattern formation in developmental processes.

1.1.2 Partial differential equations models

Reaction-diffusion systems

Partial differential equations (PDE) models describe concentrations of species mov-

ing through a spatial domain that is either fixed or changes throughout time. For example,

PDE models have been used to describe the movement of chemical signals such as molecules,

proteins and nutrients throughout a developing tissue. In particular, reaction-diffusion sys-

tems that capture the dynamics of two or more interacting chemicals have attracted a lot

of interest as possible mechanisms for pattern formation in biology ever since they were for-

mally introduced by A.M. Turing in the middle of the last century [120]. In these systems,
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each chemical species has an associated diffusivity and the concentration of each chemical

changes through specified biochemical reactions. These systems include both positive and

negative feedbacks since there is an activator chemical that activates the production of itself

and other chemicals and an inhibitor chemical that inhibits the production of the activator.

The simple mathematical model first proposed by Turing showed that a system of

chemical reactions with stable, spatially uniform dynamics in the absence of diffusion could

be driven unstable in the presence of diffusion and ultimately lead to spatially nonuniform

patterning. Turing’s ideas were later generalized and reinforced as a possible biological

mechanism for pattern formation when Gierer and Meinhardt published a realistic reaction-

diffusion system that undergoes this type of instability and reproduces patterns seen in

experiments [42]. The equations below for a one-dimensional example describe the changes

in concentrations in space and time as functions of the local concentration of the relevant

substances being modeled. More specifically, the following set of equations describes the

local change of the concentration of the activator chemical a and the concentration of the

inhibitor chemical h per unit time [42].

∂a

∂t
=
ρa2

h
− µa+Da

∂2a

∂x2
(1.1)

∂h

∂t
= ρa2 − νh+Dh

∂2h

∂x2
(1.2)

The above equations can be interpreted in the following way. Equation (1.1) states

that the concentration change of the activator chemical a per unit time is proportional to a

nonlinear autocatalytic production term (a2). In this model, autocatalysis is slowed down

by the action of the inhibitor chemical which is represented in the equation by the term

1/h. The term ρ, referred to as the source density, describes the ability of cells to perform
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the autocatalytic reaction. Asymmetries in the source density term can have a strong

influence on the orientation of the emergent pattern. The second term in the equation

(−µa) represents the degradation of the chemical a. The number of activator molecules

that disappear per unit time is proportional to the number of activator molecules present.

This is similar to population models that model changes in the total population as a function

of the current population. For this reason, the autocatalysis term (a2) must be nonlinear

since it must have a greater overall effect on the system than disappearance by linear decay

(−µa). The concentration change of a and h also depend on the exchange of molecules

with neighboring cells. This exchange is assumed to occur by simple diffusion which are

represented by the diffusion coefficients Da and Dh. Equation (1.2) can be interpreted in a

similar way.

A necessary component of this model is disparate diffusion rates. More specif-

ically, in order for pattern formation to occur, the activator chemical must diffuse much

more slowly than the inhibitor [42]. The concept of diffusion-driven instability is highly

counter-intuitive because it shows that the interaction of two stabilizing components leads

to instability in the system. Thus, mathematical development of reaction-diffusion systems

provides an example of how mathematical theory was able to motivate the discovery of a

possible mechanism for emergent behavior in biological phenomena that might have other-

wise been very challenging to discover from experimentation only. In addition, this work

led to an important principle of pattern formation, namely, short-range activation and long-

range inhibition. Reaction-diffusion models motivated by experimental observations have

been very useful in better understanding many areas of developmental biology including
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pigmentation patterns of animal skin, feathers, hair follicles and tooth development and

patterning of the limb skeleton. [64, 55, 69, 70, 85, 133, 49, 110, 48]. In particular, the

”local autoactivation-lateral inhibition” (LALI) framework was used by our group to study

vertebrate limb [135, 134] These models drastically changed the way biologists approached

their study of early development.

Another model of developmental processes that has been influential over the past

several decades, treats pattern formation as a downstream readout by cell genomes of spatial

coordinates that are specified by graded concentrations of ”positional information” (PI)

molecules. The French flag model, in which a one-dimensional domain is divided into

three equal parts by a diffusible signal that originates at one boundary, has served as the

classic example of a morphogen-mediated spatial patterning model based on PI molecules

[126, 17]. Gradient models have been extensively studied in Drosophila and [96]. Later, cell

movement models were developed that postulate that cells move in response to chemical

and/or mechanical cues.

Keller-Segel model for chemotaxis

Cell movement models suggest that cells move in response to chemical and me-

chanical cues and form aggregates, a process called chemotaxis. Chemotaxis occurs when

the movement of a species is influenced by chemicals in the environment. It naturally arises

in a wide variety of interesting biological settings, including cancer metastasis, angiogenesis,

immune system function and egg fertilization. The Keller-Segel model was the first model to

consider how cells respond to chemicals by moving up chemical gradients. In this work the

authors built their model by studying aggregation of the unicellular amoeba Dictyostelium
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discoideum (Dd). Aggregation of Dd is a well-known biological phenomenon in which Dd

cells emit waves of chemoattractant (cAMP) which results in the formation of clusters in

space.

This process was first modeled using two coupled differential equations [53]. The

first equation describes the dynamics of the cell population density, denoted by ρ. The

second equation describes the dynamics of the cAMP concentration, denoted by φ. The

explicit form of the Keller-Segel equations is given below.

∂ρ

∂t
= D1∇2ρ− α∇(ρ∇φ) (1.3)

∂φ

∂t
= D2∇2φ− λφ+ βρ (1.4)

These equations can be interpreted in the following way. D1 and D2 are the

effective diffusion constants for the cells and cAMP, respectively, alpha is a measure of the

strength of chemotaxis, λ is the rate of cAMP degradation, and β is a measure of the rate of

production of cAMP by the cells. Although these equations incorporate only the most basic

biology of the system, Keller and Segel showed that this mechanism could explain a large

variety of patterns in bacterial populations. In addition, this system has provided many

useful insights into the aggregation process, such as the existence of a cAMP concentration

threshold for large-scale aggregation. A separate class of models treats cells as discrete

entities.

1.1.3 Cell-based modeling approaches

Due to the complexity of coordinated cell behaviors in developmental processes

PDE model approaches can be very helpful in elucidating the emergent dynamics of thou-
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sands of cells when making predictions about simpler mechanisms and assuming homoge-

neous cell populations. PDE models provide insight at the most coarse-grained level where

cell identities and heterogeneities are ignored or averaged and continuous cell densities are

used to describe the system. Cell densities have also be modeled using finite element meth-

ods. However, when developing a model for the behavior of a system that is composed of

thousands to possibly millions of cells, one must consider where the population is pheno-

typically heterogenous. Usually, cell populations are highly heterogenous and it must be

decided whether or not to include more biological realism at the cellular level which comes

with the computational cost of being limited to smaller numbers of cells.

Recent technological advances have made it possible to identify many of the bio-

chemical signaling pathways that play a role in pattern formation and how they influence

individual cell growth and cell differentiation events that lead to morphogenesis. Individual

cell behaviors are determined by complex processes in which cells respond to extracellular

cues such as interaction with their environment and other cells to make decisions. Exactly

how extracellular cues are established, maintained and transduced by individual cells is

unknown. Molecular and live-imaging experiments investigating development and growth

of multi-cellular tissues provide very large data sets that can be used for the first time to

understand how cell-level processes facilitate large-scale tissue properties. Computational

modeling provides a powerful framework that is complementary to experiments and allows

for the integration of biochemical and biophysical data from experiments to propose and

test novel hypothesized mechanisms of morphogenesis. Unlike continuous descriptions of

tissue dynamics, cell-based models can more easily account for individual cell behavior,

8



heterogeneity in mechanical properties of cells and cell-cell interactions. Also, cell-based

models can be easily extended to incorporate new biological details at the sub-cellular and

cellular levels. For example, cell shape is adaptive to local forces, the number of elements

can be flexibly changed to accommodate different biological components such as actin cor-

tex, or bulk cytoskeleton, and capturing the dynamics of heterogeneous cell populations is

straightforward.

Cell-based models have been successfully used to capture passive biomechanical

properties of cells during tissue development and are being extended to investigate the inter-

play between chemical and mechanical signals in tissue morphogenesis. These models have

been extensively used for the study of the mechanical feedback hypothesis in tissue growth

and development, especially for study of the regulation of growth of the Drosophila wing

imaginal disc as detailed in Buchman et. al [14]. As indicated in Fletcher et al. [38], cell-

based modeling frameworks currently range from vertex models that approximate the mem-

brane of each cell by a polygon, to immersed boundary and sub-cellular element models that

allow for more biologically-relevant, emerging cell shapes. Thus, models that incorporate

individual behaviors such as cell-cell interactions, polarity in cell growth direction, cell divi-

sion, differentiation and biochemical signaling events are necessary to quantify the impact

of individual cell processes on overall tissue shape, size and function [88, 122, 28, 73, 18, 78].

For this reason, a class of cell-based modeling approaches has been developed where cells

are modeled as discrete entities [For reviews see 38, 117, 123, 10].
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SCE modeling approach

The sub-cellular element (SCE) modeling approach is an established cell-based

framework for modeling mechanical properties of individual cells as well as their components

and determining their impact on the emerging properties of growing multi-cellular tissue

as well as describing cellular interactions with mediums such as the ECM and fluids [104,

122, 28, 117, 73, 106, 18, 38, 13, 80, 105, 79, 4, 128, 78, 116]. The general approach was

initially developed by Newman et al. [80] for simulating the detailed dynamics of cell shapes

as an emergent response to mechanical stimuli. Recent applications of the SCE modeling

approach show that it is flexible enough to model additional diverse biological processes such

as intercellular chemical kinetics, intercellular signaling, cell differentiation and motion of

cells in fluid.

In the SCE modeling approach, membrane and cytoplasm of each cell are repre-

sented using different sets of elements/nodes and their mechanical properties are described

using viscoelastic interactions between elements/nodes resulting in coarse-grained molecular

dynamics type representation of the cytoskeletal network. Biomechanical and adhesive prop-

erties of cells are modeled through viscoelastic interactions between elements represented by

phenomenological potential functions that simulate close-range repulsion (modeling volume

exclusion of neighboring segments of cytoskeleton) and medium-range attraction between

elements of the same or different cells (modeling the adhesive forces between segments of

cytoskeleton)[76].

One of the important features of the SCE modeling approach is the ability to ad-

just parameters of potential functions describing connections between elements to calibrate
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model representations of biomechanical properties of a particular type of a cell directly

using experimental data. More specifically, the SCE model can be used to perform in silico

bulk rheology experiments on a single cell in order to scale the parameters such that the

passive biomechanical properties of each cell are independent of the number of elements

used to represent each cell [105]. As a result, SCE simulations can capture the underly-

ing biomechanical properties of the real biological system and remain relevant to the real

biological system regardless of the number of elements chosen to represent each cell in the

model.

As indicated in Fletcher et al. [38], computational experiments follow a creep-

stress protocol in which a constant extensile force is applied to the end of an SCE cell

whose opposite end is fixed. Before the extensile force is released, the strain is measured

as the extension of the cell in the direction of the force relative to its initial linear size.

In silico estimates of the viscoelastic properties of cells modeled using the SCE approach

have been shown in many biological applications to agree very well with in vitro rheology

measurements [105, 127]. This indicates that the simple phenomenological dynamics of the

SCE modeling approach are enough to capture low to intermediate responses of cytoskeletal

networks over short timescales (∼ 10s) [127]. Over longer timescales (∼ 100s), cells respond

actively to external stresses by undergoing cytoskeletal remodeling, and this phenomenon

can be incorporated into the SCE modeling approach by inserting and removing sub-cellular

elements of a cell in regions under high or low stress [106].

The SCE modeling approach has been used previously by our group to model

platelets in blood stream, and most recently, for studying swarming of bacteria and epithe-
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lial cells in an embryo [116, 128, 4, 78]. In this work, the general SCE modeling approach

is applied to develop a novel model that describes combined growth of plant cells in a mul-

tilayered structure. The ability of the SCE model to represent heterogenous mechanical

properties on a sub-cellular scale is different from traditional FEM methods that model

the entire meristem as one continuous material. In the FEM and other continuous models,

anisotropic properties are defined by assigning different material constants along indepen-

dent coordinate directions. As a result, all cells or mesh elements in a tissue have the same

mechanical properties. In some continuous models, small regions of cells or subsets of mesh

components are given heterogenous mechanical properties, but there is no variation on the

sub-cellular scale.

The generalized Morse potential functions implemented in our model are com-

monly used in physics and chemistry to model inter-molecular interactions [107] and in

biology to represent volume exclusion of neighboring regions of the cytoskeleton [116, 128,

4, 78, 18, 43]. It is difficult to associate specific potential functions directly with specific

cytoskeletal components of cells. However, computational studies of bulk properties at the

tissue level have suggested that the precise functional form of the potential used in the

model has a small impact on the overall system dynamics [105, 88]. An important feature

of the SCE modeling approach is the ability to adjust parameters of potential functions

describing connections between elements to calibrate model representations of biomechan-

ical properties of a particular type of a cell directly using experimental data [105]. In this

work,the novel SCE model is used to perform simulations of deformation of a single cell

to determine parameter values such that the passive biomechanical properties of each cell
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would be independent of the number of elements used to represent each cell.

Analytical approximations from discrete models

A large body of literature exists for studying continuous limits of point-wise dis-

crete models of biological systems. One main example includes the classic Keller-Segel PDE

model of chemotaxis that was derived from a discrete model with point-wise cells under-

going a random walk. In addition, a system of macroscopic nonlinear reaction-diffusion

equations was derived from the stochastic discrete cellular Potts model (CPM) along with

the existence of global classical solutions to a generalization of that system. Establishing

continuous limits for point-wise discrete models has many important implications for esti-

mating qualitative behaviors of large numbers of cell such as determination of conditions

promoting the formation of aggregation patterns and other self-organizing behavior.
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In addition, existence of global classical solutions provide mathematical justification for

using numerical solutions of discrete systems for modeling cellular behavior.

1.2 Plants Compared to Animals

1.2.1 Basic developmental similarities and differences

Growth control at the level of organs and organisms raises fundamental questions in

both animal and plant biology. The last common ancestor of plants and animals is thought

to be a unicellular ancestor that existed 1.6 million years ago [72]. As a result, plants

and animals have evolved independent developmental strategies. Comprehensive study of

of both plant and animal development not only facilitates a better understanding of gen-

eral developmental mechanisms, but also demonstrates which developmental mechanisms

are lineage specific and which ones are necessary for complex multicellular development.

However, mathematical and computational models used to investigate developmental mech-

anisms have largely focused on animal systems. The differences that exist between plant

and animal systems in processes such as cell-cell signaling or mechanical properties of cells

create unique challenges that warrant the development of new models. Moreover, there are

several very striking differences between the developmental processes in plants and animals

that must be carefully considered.

A major difference between plant and animal development is that in animals, the

body plan and all organ tissues are formed during embryogenesis. This means that animals

are fixed in their growth pattern, i.e. all limbs and tissues are formed as a fetus and

continue to grow for a period of time. In addition, after a certain age animals do not grow
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or reproduce any longer. In plants, the growth and development process is much different.

The plant embryo is very simple and the majority of organs are formed post-embryonically.

Clusters of actively dividing cells called meristems contain pluripotent stem cells which are

maintained throughout the life of the plant. The presence of a constant collection of stem

cells allows for reiterative development and the formation of new structures throughout the

life of the plant. Whereas in animals, the final shape of organism is determined in the womb

and then grows in size, in plants there are indeterminate growth patterns since they are

able to grow and produce new cells during their entire lifespan.

A consequence of extended morphogenesis, is that plant tissue structures and

individual plant cells have tremendous developmental plasticity. For example, on the level

of the organism, if a leaf or branch dies of natural causes, new cells will grow out to replace

the lost part. In addition, whole plants can even be regenerated from some single cells.

On the level of cells, growth direction of cells is highly anisotropic and can change based

on different biophysical and biochemical signals in order to attain necessary tissue growth

patterns and structures. Thus, a plant’s pattern and form including the number of branches,

height, number of fruiting bodies, etc., are greatly influenced by environmental factors such

as light, temperature or predators. As a result, a wide range of morphologies can result

from the same genotype. This high level of plasticity could be a robust developmental

mechanism due to lack of mobility in plants.

On the cellular level, the most drastic difference is the presence of the plant cell

wall. Unlike animal cells, each plant cell consists of a ”membrane bag” or protoplast sitting

inside the cell wall, a mechanically strong and dynamic extracellular matrix that is deposited
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by the cell outside of its plasma membrane. The cell wall separating two neighboring

cells can be viewed as having three separate regions [25], two primary cell wall regions

immediately adjacent to the plasma membrane of each cell sitting on either side of the

middle lamella (Figure 3.3) which acts like a strong glue. Plants respond to chemical

and mechanical signals by reinforcing cell wall components to restrict growth in certain

directions which results in anisotropic cell growth. Due to the glue like nature of the middle

lamella and the mechanical strength of the rigid cell wall, cells do not move relative to one

another during development and the final form and shape of a plant tissues and organs are

due to coordinated patterns of cell polarization, cell growth, cell wall extension, and cell

division. Thus, when and where cell division occurs in different parts of the developing tissue

facilitates the formation of the entire plant body. This process takes the place of gastrulation

in animals. Since the unique mechanical properties of plant cells play a large role in dictating

the behavior or the entire system, two key challenges to modeling plant growth are (i) to

create models that describe the development of complete tissues or organs in terms of

single-cell dynamics and (ii) to integrate chemical signaling models with biophysical models

to create a unified model of self-organization that leads to overall a shape and form.

1.2.2 Review of current models for plant growth and development

Multiple modeling approaches have been used to study various aspects of plant

growth and development [For reviews see 2, 16, 51, 90]. The general concept of single

cell growth due to cell wall yielding was first formalized by Lockhart [60]. He used rate

equations for osmotic uptake of water and the irreversible expansion of the cell wall to

model one dimensional (1D) elongation of a single plant cell. In his model, the cell wall is
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represented as a viscoplastic material that behaves as a rigid body at low stress and flows as

a viscous fluid at high stress. Experimental validation of Lockhart’s theory confirmed that

single cell growth and expansion in plant cells can be entirely described in terms of internal

turgor pressure and the mechanical properties of the cell wall. Lockhart’s model was later

extended by Dumais et al. [29] to account for anisotropic cell wall properties. This model

was used to describe tip growth in cells such as root hairs and pollen tubes.

More recently, several groups have developed two dimensional (2D) and three

dimensional (3D) computational models for simulating growth and expansion of plant tissues

[21, 22, 33, 40, 71, 75]. These models incorporate the basic physical principals of single cell

growth as well as the mechanical interactions between cells. Cell-centered models represent

individual cells as mass points connected to each other by 1D mechanical elements, such as

springs. This approach has been used to model meristem growth in 3D [46, 52]. However, in

simulations individual cells were found to slide alongside each other which is never observed

in experiments. Vertex-based models provide a solution for restricted cell movement at low

computational cost [40]. In this class of models, each cell is represented as a polygon with

edges shared by neighboring cells. The edges represent the cell walls and are modeled by

mechanical elements such as 1D or 2D springs or rods that connect cell vertices in two or

three dimensions. For example, Dupuy et al. model cell walls as 1D beam elements that

can be stretched or bent by external loads [32, 31, 30] . The strain rate of a beam is directly

proportional to the turgor-induced stresses in the walls. This model was used to analyze

the distribution of stresses and strains during the emergence of a primordium at the SAM.

Another approach used for modeling tissue growth and expansion in plants is the
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finite-element method (FEM) [74, 82]. Hamant et al. [45] used FEM to model stress-

strain patterns in the L1 layer of the SAM and correlate results to the behavior of cortical

microtubule arrays in individual cells. In their model, the dome structure of the SAM

was represented by a surface made up of 2D polygonal cells in 3D space. The cells in the

deeper layers of the SAM were abstractly represented as a uniform pressure being applied

to the surface from below. Boudon et al. [11] modeled the SAM as a dome structure made

from polyhedrons that represent the rigidly connected 3D cells. Cell walls are represented

by the faces of the polyhedrons and are composed of 2D elastic triangular elements. In

their model, growth depends on the local modulation of cell wall mechanical properties and

turgor pressure. Using flower development as a case study, Boudon et al. [11] showed how

a limited number of gene activities controlling cell wall mechanical properties can explain

the complex shape changes that accompany organ outgrowth.

1.2.3 Justification for using SCE model

In this work, we extend the SCE modeling approach to develop a novel detailed

SCE model of multi-layered development of plant tissues (See [5] for details). To the best of

our knowledge, the SCE method has never been used to model plant cells and tissue. Plant

cells differ from animal cells because of, among other things, the presence of the cell wall,

which imposes unique mechanical constraints. One of the advantages of the newly devel-

oped SCE model is that cellular and cell wall mechanical properties are calibrated directly

using experimental data. In addition, there exists a large amount of heterogeneity in cell

properties across different plant tissues. Thus, modeling development in plants warrants

the use of a cell-based model to capture the impact of individual cell behaviors. Specif-
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ically in this work, the use of the SCE modeling approach allows detailed representation

of important sub-cellular properties that are hypothesized to have a large contribution to

overall tissue shape and form. These properties include: 1) cell wall mechanical properties

controlling anisotropic cell expansion, 2) middle lamella of the cell wall, and 3) increase in

cytoplasmic pressure to generate turgor pressure.
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Chapter 2

Biological Background

2.1 Overview of shoot apical meristems of plants

The shoot apical meristems (SAMs) of plants provide an ideal system for studying

cell behavior in a morphogenetic and physiological context. Their essential function is to

produce a constant population of stem cells that differentiate into cells for the development

of all above-ground organs such as leaves, stems and branches (Figure 2.1).

2.1.1 Cell behaviors important to the determination of tissue shape

The SAM in model plant Arabidopsis is a multi-layered dome like structure con-

sisting of about 500 cells that is subdivided into different layers and zones (Figure 2.1 B and

C). The outermost L1 layer and the subepidermal L2 layer are single cell layers in which

cells divide perpendicular to the SAM surface (anticlinal). Below the L1 and L2 layers, cells
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Figure 2.1: Structure and organization of the SAM. (A) The SAM is located at the growing

tip of the plant. (B) Higher magnification side experimental image of the SAM showing

cell layers, cell boundaries (magenta), and WUSCHEL (WUS) expression domain (green)

in deeper layers. (C) Diagram showing different functional zones and the three distinct cell

layers- L1, L2 and the deeper L3 layers. Scale bar is 25µm.
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divide both perpendicular to the SAM surface and parallel to the SAM surface (periclinal)

to form multiple internal layers collectively called the deeper L3 layers or corpus.

Superimposed on this layered organization, cells are also organized by functional

zones. The central zone (CZ) harbors a set of stem cells that span all three cell layers

(Figure 2.1 C). Stem cell progeny are pushed away laterally into the peripheral zone (PZ)

where cells divide at a faster rate and differentiate at specific locations to form leaves or

flowers. In addition, stem cell progeny located beneath the CZ in a region termed the rib

meristem (RM), also gradually differentiate along the apical-basal axis to form the stem

of the plant. Despite this process of constant displacement and subsequent differentiation,

the relative ratios of cells in the CZ, the PZ, and the RM are maintained [119]. This

requires a balance between two competing processes, stem cell maintenance and stem cell

differentiation. Each one of these processes is regulated by a set of mechanisms controlling

individual cell behaviors such as rate of growth and division, growth direction, and division

plane orientation [63, 115, 129].

2.1.2 Chemical signals controlling cell behaviors

Molecular and genetic analysis has revealed critical regulators of SAM growth,

stem cell maintenance, and organ differentiation [6, 92, 93, 131, 94, 52, 112, 27]. However,

despite the importance of each of these factors in regulating growth and gene expression, our

understanding of their feedback mechanisms is incomplete because the underlying dynamics

are not well understood. Early studies show that WUSCHEL (WUS), a homeodomain

transcription factor (TF) which is expressed in the RM (Figure 2.1C), is responsible for

providing cues for stem cell specification in the overlying CZ [58, 67].
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WUS protein migrates from the RM into the overlying CZ and specifies stem

cells by repressing differentiation promoting genes (Figure 2.2) [130, 132]. In addition,

WUS restricts its own transcription by directly activating a negative regulator called CLV3

(Figure 2.2) [39, 12, 89]. CLV3 encodes a small secreted peptide that activates membrane

bound receptor kinases in order to restrict WUS transcription in the L1 and L2 layer and

reduce WUS expression levels in the deeper L3 layers [19, 83]. Transient depletion of CLV3

results in radial expansion of the WUS expression domain as well as a radial increase in

cell division rates among stem cell daughters in the PZ [93].

Additional experiments have shown further that WUS can perform multiple func-

tions depending upon its levels and location of expression. Misexpression of WUS in the

CZ not only induces expansion of the CZ, but also results in increased cell division rates in

cells of the PZ where there is low WUS accumulation [131]. Alternatively, over-activation

of CLV3 leads to a smaller CZ and an associated reduction in cell division rates. Classi-

cally, this could be correlated to a decrease in WUS levels due to down-regulation of WUS

transcription [12, 77].

However, recent studies show that despite higher synthesis of the WUS protein in

the RM of clv3-2 null mutants, these meristems fail to accumulate higher levels of WUS

in the CZ [89]. This suggests a second function for CLV3 -mediated signaling in regulating

WUS protein levels post-translationally [For details see Figure 4L in Perales et al. 89]. The

presence of extremely high WUS in the inner layers and extremely low WUS in the outer

layers may lead to overproliferation of epidermal cells in the outer layers along with growth

restriction of centrally located cells in the deeper layers causing tissue folding and irregular
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Figure 2.2: Regulatory factors in SAM growth and stem cell maintenance. Cytokinin (CK)

signaling stabilizes the WUSCHEL (WUS) protein in the apical L3 layers in the RM likely

through activation of TypeB ARABIDOPSIS RESPONSE REGULATOR1 (ARR1). WUS

protein migrates into the CZ where it activates CLV3 and also represses differentiation-

promoting factors. In the CZ, high levels of WUS decrease cell growth and division rates

either directly through an unknown mechanism or indirectly by regulating CZ identity.

Similarly in the PZ, low levels of WUS are associated with an increase in cell growth and

division rates.
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SAMs seen in experiments. Together, these experiments suggest a more complex regulation

of the WUS protein gradient, and indicate that there is no strict correlation between WUS

transcription and WUS protein accumulation.

In addition, misexpression of WUS in the CZ results in protein instability that

leads to very low, uniform accumulation of WUS and highly enlarged, dome-shaped SAMs

[For details see Figure 5E in Perales et al. 89]. This suggests that lower WUS accumulation

could be responsible for increased growth rates in the PZ as documented in Yadav et al.

[131]. However, an increased number of slow growing cells in the central region of the SAM

could either be due to expansion of the CZ identity, or to a transient, higher accumulation

of WUS which was not detected in experiments because observations were made at steady-

state conditions in terminal SAMs.

Recent experiments reveal that precise accumulation of WUS in space involves

several interconnected, intracellular processes such as DNA dependent homodimerization,

nuclear retention, and nuclear export which determine nuclear levels that impact WUS

protein stability [95]. These experiments suggest that the spatial distribution of WUS im-

pacts overall shape and size of the SAM and plays a crucial role in maintaining a constant

number of stem cells. However, the exact impact of WUS levels on cell growth and divi-

sion patterns in distinct functional domains and how local events influence morphogenetic

processes contributing to global tissue patterns that regulate stem cell homeostasis is not

well understood. This is because WUS-mediated cell fate specification, and cell growth and

division patterns are spatiotemporally coupled.
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2.2 Cell wall and the role of mechanical stress

In plants, the primary cell wall is composed of cellulose microfibrils cross-linked

by a network of polysaccharides, including hemicelluloses and pectins [23, 25, 111, 59]. The

plasma membrane of individual cells is tightly attached to the adjacent primary cell wall

region through transmembrane proteins and sensors on the plasma membrane act as signals

for to the cell to export new material and facilitate cell wall remodeling [59]. The plasma

membrane provides a physical barrier between the cell and the primary cell wall but does not

add additional mechanical strength [59]. The cell wall separating two neighboring cells can

be viewed as having three separate regions [25], two primary cell wall regions immediately

adjacent to the plasma membrane of each cell sitting on either side of the middle lamella

(Figure 3.3). The pectin-rich middle lamella is the major physical mediator of cell-cell

adhesion in plants.

2.2.1 Cell growth

One of the primary forces acting on the plant cell wall is generated by the internal

turgor pressure which is strictly isotropic. However, given that plant cells often expand

faster in one direction over the other [7], cell wall resistance to stress could be anisotropic.

Growth anisotropy reflects the difference in the growth of a cell along one axis versus an-

other. One way in which the degree of growth anisotropy is quantified is the difference in

growth rates in the maximum direction (gmax) and minimum direction (gmin) divided by

the sum of the growth rates in both directions, i.e., (gmax−gmin)/(gmax+gmin). The meris-

tem exhibits variability in growth anisotropy, but with an overarching pattern of increased
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anisotropic growth along the axis parallel to the surface of the meristem in the L1 and L2

layers, and increased anisotropic growth along the axis perpendicular to the surface of the

meristem in the L3 and deeper layers (Burian,Dumas and Kwiatkowska,Barbier).

In plants, growth direction and anisotropy are dictated by the orientation of cel-

lulose microfibrils in the cell wall. This is largely due to the reinforcement of primary cell

walls by the rigid cellulose microfibrils that have tensile strength comparable to steel [1, 7].

Cellulose microfibrils are long, filamentous structures, directly polymerized at the interface

of the cell wall and plasma membrane by transmembrane cellulose synthase complexes. In

cells with a preferred growth direction, adjacent cellulose microfibrils are deposited into the

wall in such a way that they align parallel to one another and form bundles. As the fibrils

are laid down, growth in that direction decreases [86].

The orientation and level of alignment of microfibril bundles within the cell wall

is often equated to cell wall resistance since the direction of maximal expansion of the cell

is perpendicular to the net orientation direction of the microfibril bundles [7]. Cortical

microtubules (CMTs) guide the deposition of cellulose microfibrils (CMTs) into the cell

wall [86]. Recent literature [45, 102, 103, 121, 125] provides evidence that microtubules in

plant cells align along the main stress direction of the cell and therefore cellulose microfibrils

are deposited into the cell wall along this same well-defined direction. Cortical microtubule

response to stress relies on the dynamics of the microtubules themselves. In particular,

research during the past decade has shown that the cortical microtubule network is a typical

complex system, in which local interactions between individual arrays lead to emergent

properties in the form of more or less aligned networks. More specifically, when they
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encounter each other, and depending on the angle of the encounter, microtubules can cross

each other, shrink, or zip up, and parallel alignments can emerge, as shown through particle-

based simulations and probabilistic models.

Since the orientation and level of alignment of microfibril bundles within the cell

wall influences cell wall resistance, plant cells have the ability to act autonomously to

modify and structurally reorganize the primary cell wall to control anisotropic deformation

to maintain their growth direction along the long axis of the cell and, thus, of the organ.

Although the mechanism through which cortical microtubules perceive tension remains

mysterious, it has been observed that compression promotes microtubule catastrophe (i.e.,

rapid depolymerization), but tension maintains, or even favors, polymerization (Franck,

Landrein). This suggests that mechanical stress feeds back into individual cell behaviors

such as anisotropic expansion direction and division plane orientation that control overall

shape and size of the tissue. In addition to providing mechanical strength, the cell wall also

mediates cell-cell adhesion through the pectin-rich middle lamella [25, 111, 59]. The middle

lamella is primarily composed of pectin, a group of complex polysaccharide-molecules that

cross-link the primary cell walls of neighboring cells. Adjacent pectin chains are cross-linked

by calcium ions which facilitates cell-cell adhesion in plants [25, 111, 59].

2.2.2 Cell division

Regulation of division plane orientation of individual cells is one mechanism mul-

ticellular organisms use to control the shape of their tissues. The orientation of cell division

planes has been thought to rely on cell geometry, i.e. cells usually divide along the shortest

plane. This is often referred to as Errera’s rule. However, in parallel to the geometric rule,
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cell division planes have also been proposed to be determined by mechanical forces. Previ-

ous experimental studies have revealed a link between tension and division plane orientation

in plant cells [62, 61]. Before plant cells enter mitosis, cortical microtubules reorganize into

a ring called the preprophase band (PPB). This is a cytoskeletal structure that forms a

closed loop around the cell. The PPB is disassembled before the cell enters mitosis, but its

location predicts where the new cell plate will fuse with the previously existing cell wall [91].

There are many unanswered questions focusing on the mechanism cells use to determine

the position of the PPB.

Experimental observations of pre-mitotic cells have established that cytoplasmic

strands populated by microtubules and actin filaments span the space between the nucleus

and the cell surface (Wick,Backhuizen,Venverloo,Flanders). Laser ablation experiments

demonstrate that these strands are under tension (Goodbody, Hahne). When the cell

enters mitosis, the nucleus is pulled to the middle of the cell, so it is likely that these

strands are responsible for maintaining the nucleus in a central position. Such tensional

forces could explain the tendency of the strands to span the shortest distance between the

nucleus and the cell surface. Accumulating experimental evidence suggests that cortical

microtubules align along the direction of maximal tensile stress in cell walls, implying that

cortical microtubules may play an important role in cell interpretation of tension patterns

in cell walls to determine cell division plane orientation [45, 121, 101]. Additionally, RM-

localized CK may promote periclinal cell divisions.
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2.3 Physiological implications of morphogenetic events

Understanding SAM growth and how it relates to the regulation of stem cell home-

ostasis, requires the study of dynamic WUS protein regulation leading to its steady-state

accumulation, combined with a detailed study of how cells interpret WUS levels to spec-

ify cell identity, regulate growth patterns and determine division plane orientation. The

morphological features of the SAM that arise from individual cell behaviors have important

physiological implications. For example, curvature of the L1 layer of the SAM plays a role

in determining the distance of the PZ from the RM, and consequently, influences how WUS

accumulates in the PZ. Low WUS accumulation is necessary to allow differentiation and

induction of cell division which precede primordium development. In addition, the shape of

the SAM determines distribution of mechanical stress throughout the tissue which plays a

role in the establishment of the main axis of expansion of individual cells and subsequently

the determination of cell division plane orientation.

Therefore we developed a mathematical and computational model to study the

morphological implications of individual cell behaviors in the SAM by analyzing the com-

bined impact of WUS concentration of individual cells and mechanical properties of sub-

cellular components of individual cells and the cell wall on the shape of the SAM charac-

terized by curvature of the L1 layer. To do this, we use a novel, cell-based, sub-cellular

element (SCE) model. The general sub-cellular element (SCE) modeling approach has been

used before in different biological contexts. The main novelty of our model is the extension

of the general SCE modeling approach to develop a novel model that enables systematic

testing of new hypotheses about the underlying mechanisms driving SAM morphogenesis,
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as well as application of this model for making specific, biologically-relevant predictions.
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Chapter 3

Description of the Model

3.1 Novelty of multi-scale mathematical model components

In this work we have proposed using our novel computational model, a new mech-

anism for SAM growth which is based on WUS concentration of individual cells controlling

cell growth rates and layer dependent anisotropic mechanical properties of sub-cellular com-

ponents of individual cells determining anisotropic cell expansion directions across the L1,

L2 and deeper L3 SAM layers (See [5] for details). The first novel model component is the

detailed description of the modification and structural reorganization of the cell wall on a

sub-cellular scale. In simulations, the mechanical properties of the cell wall not only vary

across the different cell layers of the SAM, but mechanical properties of different sections

of the cell wall vary within each individual cell. We use calibrated model simulations to

quantify how layer dependent anisotropic cell wall properties representing changes in local

cell wall stiffness and extensibility determine the main axis expansion of individual cells and

curvature of the SAM characterized by the curvature of the L1 layer of the SAM.
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The second novel model component is the detailed description of increase in cyto-

plasmic pressure generating internal turgor pressure. Previous computational models of the

SAM growth have assumed equal turgor pressure across all cells. In our model, the internal

turgor pressure of a cell is the result of interactions between internal and cell wall nodes

whose displacement is affected by growth rate and anisotropic cell wall properties. As a

result, turgor pressure is non-uniform across the tissue and simulations predict a detailed

distribution of stresses in the growing tissue.

The third novel model component is that our model is the first model that predicts

how combined growth of the three cell layers contributes to the shape of the L1 surface layer

of the SAM. Other models are restricted to the L1 surface layer only. We model individual

cell behavior across all three layers and assign cells heterogeneous characteristics such as

anisotropic mechanical properties of the cell wall and different growth rates based on their

location in the tissue. Model simulations of interactions of cells across the L1, L2 and

deeper L3 layers that produce experimentally observed curvature of the L1 surface layer of

the SAM provides confirmation for the initially hypothesized mechanism. Our model also

contains a component for future study of the impact of division plane orientation on cell

growth direction as well as on the shape and size of the SAM.

Previous models assume a geometric division rule, i.e. cells divide along the short-

est plane [109, 98, 44, 9, 56, 99, 35]. However, a geometric division rule is oversimplified

and is not related to any biologically relevant mechanism cells might use to determine their

plane of division. In addition, there is experimental evidence that cells do not always follow

this rule, especially when large amounts of plant hormones are present. Thus, understand-
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ing how cells respond to chemical signals could lead to insight about what mechanisms

govern cell behaviors. It is unclear at this time which role plant hormones and other chem-

ical signals play in determining division plane orientation, as well as which role mechanical

properties of the cell wall play. We propose to test a new SAM growth mechanism based

on coordination of cell division.

Cell division is highly regulated in the meristem to arrive at the correct tissue

shape both spatially, i.e. in which layer do anticlinal versus periclinal divisions occur, and

temporally, i.e. heterogenous division rates amongst cells in different functional zones. Our

model tests how the transcription factor WUS and the plant hormone cytokinin compete

to determine division plane orientation of cells. Specifically, we test the hypothesis that

WUS stops periclinal division whereas cytokinin induces periclinal division. In addition, we

provide a detailed representation of the mechanical properties of the cell and the cell wall

during growth and division. This includes division plane orientation based on distribution of

stress on the cell wall, measuring variation of internal pressure of individual cells caused by

changes in mechanical properties of the new cell wall after division and relating this variation

of internal pressure to distribution of stress in the tissue, and testing the hypothesis that

WUS and CK affect mechanical properties of the cell wall, i.e. WUS makes cells expand

in horizontal direction and cytokinin makes cells expand in the horizontal direction, that

determine growth direction of individual cells and consequently influence stress on the cell

wall that leads to the choice of division plane orientation.
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Lastly, our model is the first attempt to test how WUS concentration across differ-

ent layers of the SAM could affect individual cell behavior leading to orderly layer formation

and experimentally observed shape of the L1 surface layer of the SAM. We hypothesized

that WUS concentration of individual cells controlling cell growth rate along with layer

dependent anisotropic mechanical properties of subcellular components of cells reproduces

cell expansion directions and shape of the L1 layer of the SAM seen in experiments. In

addition, model simulations validate hypothesized mechanism based on WUS concentration

of individual cells controlling cell growth rates in the deeper L3 layers, i.e. high WUS accu-

mulation being associated with slow growth and low WUS accumulation being associated

with faster growth, resulting in the experimentally observed shape of L1 layerF.

3.2 SCE computational model for stem cell maintenance and

growth of the SAM

Our model simulates a 2D longitudinal cross-section of the SAM (Figure 3.1). In

Reddy et al. [92] application of the live imaging techniques led to the development of a

spatial map of cell growth and division patterns. Cell division rates were found to vary

across the SAM surface and it was shown that cell cycle lengths are radially symmetric, i.e.

cells in the PZ divide at a faster rate than cells in the CZ (Figure 3.1 G-J). In addition,

the WUS signaling domain has been shown to be radially symmetric (Figure 3.1 A-C). It

is important to note that symmetry in growth rates and chemical signaling domains are

broken upon formation of organ primordia, but this happens outside of the domain our

model encompasses (Figure 3.1 D).
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Experimentally observed symmetry in distribution of growth rates and the WUS

signaling domain across SAM layers supports application of a 2D model since it suggests

that the apical half of the meristematic dome is radially symmetric, i.e. a longitudinal cut

at any angle through the center of the meristem will give the same profile, with respect to

both cell growth patterns and the WUS signaling domain within our domain of simulation.

In addition, a 2D model is sufficient to predict shape, quantified by curvature of the L1

layer, since the dome-like structure of the apical half of the meristem ensures curvature of

the L1 layer in longitudinal cross-sections of the SAM will be invariant under the choice of

angle of the cut within our simulation domain (Figure 3.1 E-F).

In what follows, the different types of sub-cellular nodes that are used to simulate

different components of each cell and the cell wall are described as well as the potential

functions used to represent interactions between them. Then the approach implemented to

model cell growth, cell wall elongation and cell division are described as well as the approach

implemented for determining anisotropic mechanical properties of the cell wall. Finally, the

equations of motion for each sub-cellular element are provided along with the numerical

method used to solve them to provide a complete model description.

3.2.1 Turgor Pressure

In our model, two groups of nodes are used to represent the cell wall and internal

cell domains separately (Figure 3.2). Collective interactions between pairs of internal nodes

(EII) represent the cytoplasmic pressure of the cell, and collective interactions between

pairs of internal nodes and primary cell wall nodes (EIW ) represent turgor pressure, the
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Figure 3.1: Experimental images demonstrating symmetry in distribution of growth rates

and the chemical signal WUS in SAM layers as well as dome-like structure of the apical half

of the meristem. (A-C) Images show individual top-down sections showing WUS protein

accumulation in the L1 (A), L2 (B), and L3 (C) layers (green). (D) Experimental side-view

image showing simulation domain in white. (E-F) 3D reconstructed image of the SAM

displaying dome shape of the meristem as well as radial symmetry of WUS signal across L1,

L2 and deeper L3 layers (green). (G-J) Spatial distribution of mitotic activity over time.

Images show individual top-down sections from the same plant, depicting cells located in

the L2 and deeper L3 layers at the same time point. Cells that have divided in each of the

12-hour intervals are color-coded. Red dots represent cells that divided in the first 12-hour

window, yellow dots the following 12 hours, and blue dots the final 12 hours. There is low

to no division in the CZ and rates increase as you move toward the PZ. The overlapping

dots indicate a second round of cell division (arrows) which are only present in outermost

edge of meristem. Image reprinted with permission from Reddy et al. [92].
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Elements of the SCE
model

Type of potential acting
on each element

Biological feature

Internal-internal node (EII) Morse potential Internal pressure

Internal-cell wall node
(EIW )

Morse potential Turgor pressure, the force
per unit surface applied on
the primary cell wall by the
protoplast

Cell wall-cell wall node in
the same cell wall region
(EWWS)

Linear and rotational spring
potential functions

Mechanical stiffness and ex-
tensibility of the primary
cell wall

Cell wall-cell wall node of
neighboring cells (EWWD)

Morse potential Volume exclusion of the cells
due to cell wall material
such as cellulose microfib-
rils and pectin that sit be-
tween neighboring cells and
keep adjacent cell mem-
branes from making contact

Cell wall-cell wall nodes of
neighboring cells (EAdh)

Linear spring potential func-
tion

Middle lamella

Table 3.1: Potential energy functions in the model

force per unit surface applied on the cell wall by the protoplast (Figure 3.2 A).

Plant cells are under high internal turgor pressure, generally in the range of 0.1−1

MPa [41], and are prevented from bursting by the presence of the cell wall. Turgor pressure

is generated when water crosses the cell membrane by osmosis, and causes the protoplast

(cell excluding the cell wall) to swell. Swelling of the protoplast is restricted by the cell wall

and this generates turgor pressure. These interactions between pairs of internal nodes, and

pairs of internal and primary cell wall nodes are modeled using Morse potential functions.
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Figure 3.2: Diagram of interactions of the SCE model components represented by different

types of nodes. (A) Intracellular interactions between cytoplasm and primary cell wall

nodes. (B) SCE model components of two neighboring cells. (C) Diagram of the intercellular

interactions between two neighboring cells involving middle lamella. Symbols and notations

are described in the figure itself.
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The Morse potential used in the model consists of two terms generating short-range

repulsive and long-range attractive forces. The following equation is a Morse potential which

models the interaction between internal node i and cell wall node j:

EIWij =

[
U IW exp

(
−|xi − xj |

ξIW

)
−W IW exp

(
−|xi − xj |

γIW

)]
(3.1)

where U IW ,W IW , ξIW , and γIW are Morse parameters. The same form of the potential

with different sets of parameters is used for EII and EWWD (Table 3.1 and Table 3.2).

3.2.2 Cell Wall and Middle Lamella

As described in (2), the primary cell wall in plants cells is composed of cellu-

lose microfibrils cross-linked by a network of polysaccharides, including hemicelluloses and

pectins [23, 25, 111, 59]. The plasma membrane of individual cells is tightly attached to

the adjacent primary cell wall region through transmembrane proteins and sensors on the

plasma membrane act as signals for to the cell to export new material and facilitate cell

wall remodeling [59]. The plasma membrane provides a physical barrier between the cell

and the primary cell wall but does not add additional mechanical strength [59]. As such,

primary cell wall nodes in our model represent mechanical properties of the primary cell

wall and plasma membrane together (Figure 3.2).

In our model, each region of the primary cell wall is represented with an individual

set of nodes surrounding each cell. Interactions between primary cell wall nodes of the same

cell (EWWS) are used to model cell wall mechanical stiffness and extensibility (Figure 3.2

and Table 3.1). There are two types of interactions between primary cell wall nodes of

neighboring cells (Figure 3.2C and Figure 3.3). (EWWD) is a repulsive force that is modeled
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Figure 3.3: Diagram of three cell wall regions between two neighboring cells: two primary

cell wall regions on either side of the middle lamella.

using a Morse potential function to prevent membranes of adjacent cells from overlapping.

This represents cell wall material present between neighboring cells which keeps adjacent

cells membranes from making contact. Pairwise linear spring interactions are used to model

cell-cell adhesion mediated through the middle lamella (Figure 3.2 C, 3.3 and Table 3.1).

Several modeling studies have investigated the importance of microtubule dy-

namics in cell growth [15, 3]. Since CMTs do not contribute directly to cell wall resis-

tance to stress [60], we developed a coarse-grained model that represents cellulose mi-

crofibrils and CMT dynamics through motion of nodes connected by linear and rotational

springs. Namely, interactions that lead to anisotropic expansion through modification and
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structural reorganization of the primary cell wall are represented by linear and rotational

springs (EWWS) (Figure 3.2A). Linear-spring interactions given by the following equation

Elinear = 1
2klinear(x − xeq)

2 are defined between adjacent nodes of the cell wall to main-

tain the length of cell wall segments and regulate cell wall extensibility (See section 3.2.3).

Rotational spring interactions defined between three successive nodes of the cell wall are

described by the following equation, Ebend = 1
2kbend(θ − θeq)

2 and are used to maintain a

prescribed degree of bending between cell wall segments [8]. The degree of bending be-

tween cell wall segments represents the level of alignment and coordinated orientation of

the cellulose microfibrils, and parameters of the bending equation were chosen to mimic cell

shape observed in experimental images. Bending stiffness in the model limits cell expansion

along the axis perpendicular to the preferred growth direction, similar to how cells lay down

microfibrils to limit expansion in the experimental observations. The parameters kbend and

klinear were calibrated using elastic modulus of cells measured in experiments (See section

3.2.8). In simulations, spring constants of primary cell wall nodes are varied based on cell

layer and prescribed growth direction of cells leading to anisotropic mechanical properties

of the cell wall.

In addition to providing mechanical strength, the cell wall also mediates cell-

cell adhesion through the pectin-rich middle lamella [25, 111, 59]. In our model, pairwise

interactions between cell wall nodes of adjacent cells (EAdh) function as a coarse-grained

model for cross-linking of pectin molecules in the middle lamella (Figure 3.2C, 3.3 and Table

3.1).
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3.2.3 Cell Growth and Anisotropic Cell Wall Expansion

Live imaging techniques were previously used to analyze cell cycle lengths in real-

time and generate a spatial and temporal map of cell growth and division patterns in the

SAMs of Arabidopsis [92]. In the current model, cell growth is represented by the addition

of new internal nodes at a constant rate (Figure 3.5 and section 3.2.8). When a new internal

node is added, the internal area of the cell increases as nodes readjust to achieve their new

equilibrium arrangement. As the internal area of a cell increases, the cell wall will stretch.

When the cell wall becomes stretched enough that the distance between two successive cell

wall nodes passes the membrane threshold length, Linearthresh (See Table 3.2), a new cell

wall node is added. This is how cell wall elongation is achieved.

The addition of new cell wall nodes in the model represents the addition of new

cell wall material in the biological system. When stretched above a certain threshold, the

pectin cross-links in the cell wall break and the insertion of new cell wall material results

in the irreversible expansion of the cell wall. The addition of new cell wall material and

formation of new pectin cross-links allows cells to increase their size without compromising

strength of the cell wall. Thus, modeling growth as elastic stretching combined with the

addition of new cell wall material is a biologically-relevant component of our model since

wall expansion due to turgor pressure is accompanied by the synthesis and integration of

new wall material [24, 25, 111, 59].

In addition, since nodes function as a coarse-grained representation of cell wall

material, new nodes are added in simulations to maintain the resolution scale (See section

3.2.7). Representation of the two primary cell wall regions on either side of the middle
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lamella is also a biologically relevant component of our model since contribution of new

cell wall material during expansion is carried out independently by neighboring cells, and

the orientation and rate of microfibril deposition can vary between adjacent cells [121].

Moreover, individual cell wall mechanical parameters including extensibility and mechanical

stiffness play an important role in determining the rate of cell expansion, the main axis of

expansion of a cell, and consequently the degree of growth anisotropy. How individual cells

regulate these parameters is fundamental to understanding how plants control global tissue

patterns [20, 34, 54].

In the SAMs of Arabidopsis, the main axis of expansion of cells varies between the

different cell layers likely due to differences in anisotropic cell wall properties. In our model,

rotational spring parameters, kbend and θeq regulate cell expansion directions by controlling

the degree of bending between cell wall segments along each axis. To do this, a growth

direction vector, dc, is defined for each cell upon creation and changes as a result of the cell

layer, concentration of WUS and concentration of CK. Then, a cell wall direction vector,

dw, is computed for each section of the wall. The cell wall direction vector is defined to be

the vector connecting two successive nodes.

Sensitivity analysis was performed for individual cell growth direction to determine

how cell shape should change as a function of the bending spring constant (kbend) and

equilibrium angle (θeq). After sensitivity analysis, the parameters for each section of the

cell wall is determined as a function of dc and dw in the following way

klinear = kminlinear + kmaxlinear(1− cos2 θ) (3.2)

where θ is the angle between the growth direction vector, dc, and the cell wall direction
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vector, dw, kminlinear is the minimum value for the linear spring constant of a cell wall section,

and kmaxlinear is the maximum linear spring constant of a cell wall section (See Table 3.2).

Cell wall segments assigned lower linear spring constants will stretch apart more easily,

facilitating faster expansion in the direction parallel the growth direction vector for that

cell.

3.2.4 Cell Division

Experimentally tracking division plane orientation along with maximal tensile

stress in cell walls and level of biochemical signaling is difficult, especially in cells that

are located in the deeper layers of the SAM. For this reason, we model several possible

mechanisms driving the positioning of the new cell wall during cell division. Cell division

in simulations occurs once the number of internal nodes has doubled. Two spots on op-

posite sides of the cell wall are chosen and the cell division plane is then determined as

the plane that goes through the cells’ center of mass and connects these two spots on the

wall. The cell is then divided by a straight line created from a set of new cell wall nodes.

After division, parameters for nodes of each individual daughter cell are inherited from the

divided cell, and each daughter cell starts with half the amount of cytoplasm that was in

the divided cell.

Division plane orientation in simulations is determined based on several possible

mechanisms. The cell will determine the position of the new cell wall according to tensile

stress in its cell wall, according to its concentration of CK signaling, or a combination of

both the mechanical and biochemical signals it’s experiencing. Division plane orientation

based on maximum tensile stress in the cell wall only is determined by choosing the two
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pairs of adjacent cell wall nodes that are furthest apart since these are the spots where the

cell wall is under highest tensile stress.

Alternatively, division plane orientation based on chemical signaling only is de-

termined by the level of CK concentration in the cell. Cells with CK concentration above

a certain threshold will divide periclinally regardless of mechanical stress on the cell wall.

Both mechanisms for division will be tested in future simulations to determine the relative

contribution of mechanical stress and CK concentration in determining division plane orien-

tation. The effect of division plane orientation on morphological features such as cell growth

direction and curvature of the L1 layer of the SAM will be compared against experimental

images and used to determine the contribution of each type of signal in determining division

plane orientation.

3.2.5 Equations of Motion

The potential functions described above are used in the model equations to cal-

culate the displacement of each internal or cell wall node at each time step based on their

interactions with neighboring nodes resulting in the deformation of cells within the tissue.

A complete list of all potential functions, parameters, and their biological relevance are

provided in Table 3.1 and Table 3.2. We assume that the nodes are in an overdamped

regime so that inertia forces acting on the nodes are neglected [36, 57, 80]. This leads to

the following two equations of motion describing the movement of internal nodes and cell

wall nodes respectively:

ηẋIi = −

∑
j

∇EIWij +
∑
m

∇EIIim

 (3.3)
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ηẋWj = −

(∑
i

∇EIWij +
∑
k

∇EWWS
kj +

∑
l

∇EWWD
lj +∇EAdhj

)
(3.4)

where i = 1, 2, ..., N I represent all internal nodes and j = 1, 2, ..., NW represent all cell

wall nodes. η is the damping coefficient, xIi and xWj are positions of internal nodes and

cell wall nodes indicated by indices i and j respectively, m is the index for any internal

node interacting with internal node i, k is the index for any cell wall node of the same cell

interacting with cell wall node j, and l is the index for any cell wall node of a different cell

interacting with the cell wall node j. The two equations above are solved at the same time

for all internal and cell wall nodes.

The two equations are discretized in time using the forward Euler method and

positions of nodes xIi and xWj are incremented at discrete times as follows:

xIi (t+ ∆t) = xIi (t)−

∑
j

∇EIWij (t) +
∑
m

∇EIIim(t)

 ∆t

η
(3.5)

where ∆t is the time step size. The same discretization technique is used for the equations

of motion of the cell wall nodes.

3.2.6 Model Components at Different Scales

Our model is multi-scale in space and combines four different scales for modeling

growth of the meristem. Molecular level descriptions include cell-cell adhesion achieved

through coarse-grained approximation of pectin cross-linking in the middle lamella and

growth rate determined by WUS concentration of each cell (See section 3.2.8). Sub-cellular

level descriptions include separate node representations of the mechanical properties of indi-

vidual sub-cellular components of the cell wall resulting in detailed simulation of cell growth
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Potential Function Parameter Value

EII

U II 75 nN.µm
W II 6.71 nN.µm
ξII 0.8 nN.µm
γII 1.34 nN.µm

EIW

U IW 45 nN.µm
W IW 0 nN.µm
ξIW 0.3 nN.µm
γIW 0 nN.µm

EWWD

UWWD 3.9 nN.µm
WWWD 0 nN.µm
ξWWD 0.5 nN.µm
γWWD 0 nN.µm

EAdh
kAdh 20 nN.µm
LAdh 0.8 µm

Adhthresh 2 µm

EWWS

klinear 150-800 nN.µm
kmin 150 nN.µm
kmax 500 nN.µm
xeq 0.07 µm
kbend 12 nN.µm
θeq circle

Linearthresh .15 µm

ηstem 3

ηnormal 1

Initial number of internal nodes 15

Initial number of cell wall nodes 150

Time step 0.003

Table 3.2: Parameter values used in simulations
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and anisotropic cell wall expansion and sub-cellular representation of increase in cytoplas-

mic pressure to generate turgor pressure resulting in detailed simulation of interaction of

cytoplasm and cell wall.

Cell level descriptions include detailed description of individual cell behavior in-

cluding determination of the cell growth direction and interactions of neighboring cells

modeled through modification and structural reorganization of the cell wall and cell-cell

adhesion. Descriptions of behavior at the multicellular, tissue level include response of the

tissue to non-homogeneous distribution of WUS protein, multicellular interactions between

the three different cell layers that lead to shape and size of the meristem (See section 5.2.1

and 5.2.2) and model provides a detailed description of stresses in tissue (See section 5.2.3).

3.2.7 Coarse Graining Approach

In our simulations, the number of nodes used to represent each cell is chosen based

on the desired level of coarse graining representation. Then, Morse potential parameters are

calibrated based on the average size of cells determined from experimental images (Figure

3.4). Next, the number of cell wall nodes is chosen to make sure volume exclusion is

satisfied. Finally, we wanted the minimum number of elements that met these criteria

for computational considerations. Cell wall nodes in the beginning of a simulation are

arranged in a circle for each cell, and internal nodes are randomly placed within each cell.

After initialization, internal nodes rearrange and cells attain biological shapes, similar to

the experimentally observed cell shapes in the SAM (Figure 5.1). Cells in a simulation

constantly grow and interact with each other resulting in a detailed dynamic representation
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Figure 3.4: Experimental images from wildtype and four alternative systems and application

of the image quantification methods. (A) Wildtype SAM showing WUS accumulation in

green. Reprinted with permission from [113]. (B) Meristem experiencing the ectopic over-

activation of CK signaling in the CZ for 12 hours. Increased WUS accumulation shown in

green. Reprinted with permission from [113].(C) clv3-2 null mutants obtained by our group.

(D) Ectopic activation of eGFP-WUS from the CZ-specific CLV3 promoter. Reprinted with

permission from [89]. (E) Misexpressed eGFP-WUS form, in the CZ, that is tagged with

a potent nuclear localization signal (nls-eGFP-WUS). Reprinted with permission from [89].

(F-G) Main axis of expansion of cells in wildtype SAM from experiments (F) and simula-

tions (G). Green bars depict the main axis of expansion calculated for each cell. Scale bars

are 20µm.
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Figure 3.5: Calibration of model parameters. (A-B) Calibration test to determine parame-

ters for cell elasticity. (A) Cell at equilibrium with no force applied. (B) Cell has deformed

after linearly increasing force is applied to nodes on both sides. (C) Stress versus strain

graph for single cell calibration of modulus of elasticity.

of the combined growth of the L1, L2 and deeper L3 layers of the SAM tissue.

3.2.8 Model Assumptions and Calibration

Mechanical Properties of Individual Cells

Model parameters representing cell wall mechanical properties were calibrated us-

ing biophysical measurements from a large body of literature [for reviews see 41, 97]. Model

parameters determining the spatial distribution of WUS in simulations were calibrated using

experimental data obtained by our group.

Cell wall mechanical stiffness was calibrated using experimentally measured mod-

ulus of elasticity (E) of a single cell. Several different experiments have been performed

to determine biological ranges for E in plants [97]. In model simulations, the modulus of
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elasticity is determined by applying a linearly increasing force to cell wall nodes on both

sides of a cell and calculating the cell’s deformation (Figure 3.5A-B). The slope of the graph

of the stress versus strain curve provides the elasticity of the cell (Figure 3.5C). We have

chosen values for kbend and klinear so that E lies within the biological range of (.1− 1) MPa

measured for plant cells [41].

Cell Growth Rates

The spatial confinement of WUS to an exact domain within the SAM was shown

to be crucial for maintaining a constant number of stem cells over time [131]. In the model,

the WUS density distribution is created by assigning each cell an average concentration of

WUS determined as follows. Experimental images of 13 different meristems were used to

derive a function for the average WUS concentration of each individual cell based on the

distance from its cell center to the RM where WUS is expressed (Figure 3.6A).

This data was fit to an exponential function because WUS quantification from ex-

periments suggests that the WUS protein distribution is exponentially distributed (Figure

3.6A). WUS is expressed in a few cells of the rib meristem (RM) called the niche/Organizing

Center (OC) located just beneath the CZ and migrates from the RM into adjacent cells.

Since the distribution of the WUS signal from experiments is exponential, and WUS signal-

ing dynamics have been previously modeled using reaction-diffusion equations [50, 130], we

chose to fit an exponential function to the experimental data. This resulted in the following

concentration of WUS for an individual cell:

WUS(x) = 109.6 ∗ exp(−0.1135 ∗ x) + 27.69 ∗ exp(−0.003414 ∗ x) (3.6)
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Figure 3.6: (A) Graph showing the levels of WUS protein distribution in space. The WUS

levels in different cells are plotted as a function of the distance from the RM. Blue dots

represent experimentally quantified WUS levels. Red line represents the fitted curve from

equation 3.6. (B) Graph showing the frequency of addition of internal nodes based on cell

cycle length. Cell growth rates are assumed to be directly correlated to the cell cycle length

derived from experimental observations in an earlier study (Reddy et al., 2004).
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WUS Intensity Cell Cycle Length

WUS ≤ 12 12-18 hours

12 < WUS ≤ 24 18-24 hours

24 < WUS ≤ 36 24-30 hours

36 < WUS ≤ 48 30-36 hours

48 < WUS ≤ 60 36-42 hours

60 < WUS ≤ 72 42-48 hours

72 < WUS ≤ 84 48-54 hours

84 < WUS ≤ 96 54-60 hours

96< WUS ≤ 108 60-66 hours

108< WUS ≤ 120 66-72 hours

120< WUS ≤ 132 72-78 hours

132 < WUS 90-96 hours

Table 3.3: Cell cycle length as a function of WUS intensity. Data taken with permission

from Reddy et al. [92].

where x is the distance from the cell center to the RM where WUS is expressed.

The growth rate of each cell is determined in the model by its WUS concentration

(See Table 3.3). Several experimental observations suggest that higher levels of WUS may

inhibit cell growth and lower levels promote cell growth [92]. These observations show that:

a) WUS protein accumulates at higher levels in the slow growing RM and the CZ, and at

lower levels in the fast growing PZ; b) ectopic activation of WUS outside the RM destabilizes

WUS leading to a lower accumulation and increased growth rates; c) ectopic overexpression

of a nuclear-enriched form of WUS leads to highly irregular SAMs which could be due to

local differences in WUS concentration that in turn inhibit or stimulate growth in adjacent

cells/regions [89, 113, 131]. Therefore, we assume in the model that cells with the lowest

concentration of WUS have the highest growth rate and cells with the highest concentration

of WUS have the lowest growth rate (Figure 3.6B and Table 3.3).
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Boundary Conditions

There is only one boundary condition imposed during simulations. The bottom

most layer of cells in the deeper L3 layers has a higher damping coefficient and subsequently

this layer of cells acts as a barrier the same way the cells of the stem would in the biological

system (Table 3.2). Other cells in the tissue move and fluctuate freely as cells grow and

interact. WUS concentration of each cell is initially determined by Eq. 3.6 (Figure 3.6A

and section 3.2.8) based on the location of the center of each cell. Since we assume a steady-

state distribution of WUS, once the WUS signaling domain is set up upon initiation of the

tissue, the WUS concentration of each cell is not updated and therefore the WUS signaling

domain will also move and fluctuate freely as cells grow and interact.

Timescale

In an unperturbed system, spatial domains of chemical signaling remain unchanged

and balanced by underlying feedback mechanisms [93]. Thus, in our model, we assume that

steady-state, spatial distribution of WUS is maintained over the simulation time period and

therefore we do not take into account transcription factor and protein movement explicitly.

In plants treated with ectopic activation of CK signaling, obvious changes in the size of the

WUS signaling domain and shape of the meristem occurred by 22 hours after treatment

[113]. For this reason, the time period of 20 hours for simulations was chosen because it

was long enough to observe the impact of signaling changes on cell growth rates as well as

determine how these changes translate into changes in tissue morphology.

Cell proliferation rates and division plane orientation affect both the shape and size
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of individual cells as well as topology of the tissue. Coordinated division plane orientation

and expansion of cells as a mechanism for determining shape of the tissue is especially

important in plants since cells do not rearrange. In addition, creation of new cell walls

leads to local reinforcement of the tissue altering mechanical properties of the tissue in a

preferential direction. However, the position of the new cell wall is ultimately determined

by the preprophase band (PPB), a ring structure formed by cortical microtubules before

the cell enters mitosis.

Previous experimental studies suggest that cortical microtubules orient according

to the maximal mechanical stress direction which is largely determined by tissue shape

[45, 102, 103, 121, 125]. This suggests that cortical microtubules serve as intermediates

between tension patterns in the tissue in cell walls and cell division plane orientation. Thus,

distribution of stress throughout the tissue provides supracellular cues that play a role in

determining division plane orientation of individual cells.

For this reason, simulations in this paper do not include division. Simulations

in this paper test mechanisms for SAM growth based on the combined contribution of

mechanical properties of sub-cellular components of individual cells via anisotropic cell

growth directions and varied cell growth rates based on WUS concentration and predict how

these specific mechanisms establish the distribution of stress throughout the tissue. In order

to run simulations that quantify the relative contributions of chemical versus mechanical

signaling in determining division plane orientation, it is necessary to first gain biological

insights about individual cell mechanisms for anisotropic cell expansion as well as mechanical

interactions between neighboring cells before new cells are added to the tissue.
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Future simulations will encompass a larger timescale and include cell division to

predict new mechanisms for SAM development that quantify relative contributions of chem-

ical versus mechanical signaling in determining division plane orientation. The extended

model will provide a platform for testing the feedback between mechanical properties of

the tissue that contribute to cell division orientation patterns and cell division orientation

patterns that affect mechanical properties of the tissue.
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Chapter 4

Sensitivity Analysis and

Computational Implementation of

the Model

4.1 Sensitivity Analysis

Mathematical and computational models of real-world biological systems are made

up of many different equations formulated based on a specific set of assumptions. Sensi-

tivity Analysis (SA) refers to a collection of mathematical techniques designed to quantify

how variation in model outputs may be attributed to model inputs (i.e., parameters, initial

conditions, etc.). For biological applications, parameters can be estimated using experi-

mental data if available, but a central question is what should be done when parameter

values cannot be properly estimated due to incomplete, ambiguous, contradictory exper-
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imental data or even a lack of current experimental techniques to measure the property

of interest. SA has a number of useful purposes including model corroboration, research

prioritization, model simplification, identifying critical or interesting regions in the space of

the input factors, and parameter estimation [100]. For example, sensitivity analysis can be

used to identify which input parameters are most important in contributing to the predic-

tion imprecision of the outcome variable. In addition, input parameters can be ranked by

their importance allowing for optimization procedures that produce better input parameter

estimates.

4.1.1 Local Sensitivity Analysis

One of the most straightforward methods for completing sensitivity analysis is to

vary each model input parameter one at a time (OAT) while other input parameters remain

fixed. OAT methods and the majority of other SA techniques found in the literature are

based on derivatives [100, 65]. In these methods, importance is assigned to input factors

by their impact on the approximate derivatives of outputs with respect to a change in the

input. For example, the mathematical definition of the sensitivity of an output Yj versus an

input Xi can be defined in terms of derivatives as ∂Yj/∂Xi. OAT and other derivative-based

methods have the advantage that they are very simple and can be computationally quick

if only a small number of input parameters are being tested. However, they only provide

information about the system that is inherently local since they do not study the impact of

varying multiple parameters at the same time and only a small region of parameter space

can be explored [100, 65]. Local approaches can be informative if there is little uncertainty

in model input parameters or if it is known that there is little interaction between input
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parameters [100].

4.1.2 Global Sensitivity Analysis

In biology, input factors are often very uncertain and therefore local SA techniques

are not appropriate for a quantitative analysis since the possibility of important factors be-

ing overlooked or critical combinations of input factors being neglected is high due to a lack

of thorough exploration of the space of input factors [37]. Global sensitivity analysis (GSA)

methods consider the change in model outputs as input parameters are varied simultane-

ously over specified ranges [100, 65]. GSA methods can require more computational work

than local methods, but they have the added advantage that they can uncover relation-

ships between multiple input parameters and highlight nonlinear variable responses. GSA

methods are often probabilistic in nature. More specifically, they consider the underlying

system output to be a random variable over a probability space of parameter inputs, and

quantify the sensitivity of a model output by its variance. In these approaches, the variance

in model output is decomposed to attribute fractions of the variance to individual model

inputs and also groups of model inputs.

One common approach to sensitivity analysis is to use a full factorial experimental

design [100]. This design consists of two or more factors that are set to k different levels

and all possible combinations are tested. This sampling design has the advantage that the

whole parameter space can be explored by generating factorial designs with many levels

for each parameter. In general, k parameters would require sk simulations to generate all

combinations for a k-level factorial design. However, because of the explosive growth of

the quantity sk, two-level designs are typically used where all combinations of the highest
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and lowest parameter values are tested. With only two levels there is no way to measure

changes in small variations of each parameter within the domain and as a result two-level

factorial designs often only pick up linear effects.

A more sophisticated and efficient sampling technique that allows for the simul-

taneous variation of all model input parameters is Latin Hypercube Sampling (LHS) [65].

The LHS scheme is an extremely efficient sampling design proposed by McKay, Conover and

Beckman [68]. LHS belongs to the Monte Carlo class of sampling methods. This method

produces an unbiased estimate of the average model output and requires fewer samples than

simple random sampling to achieve the same accuracy. More specifically, LHS is a strat-

ified sampling without replacement technique, where the random parameter distributions

are divided into N equal probability intervals, which are then sampled. N represents the

sample size. The choice for N should be at least k+1, where k is the number of parameters

varied, but usually the choice for N should be much larger to ensure accuracy. A sensitivity

analysis may then be performed by calculating partial rank correlation coefficients (PRCC)

for each input parameter and each outcome variable.

The sampling is done by randomly selecting values from the pdf of each parameter

of interest. Each interval for each parameter is sampled exactly once (without replacement),

so that the entire range for each parameter is explored. A matrix is generated that is

commonly called the LHS matrix that consists of N rows for the number of simulations

and of k columns corresponding to the number of varied parameters. N model solutions

are then simulated, using each combination of parameter values, ie.e each row of the LHS

matrix. The model output of interest is collected for each model simulation and different
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model outputs can be studied if more than one model output is of interest.

4.1.3 Methodology

The LHS followed by PRCC technique involves seven steps. They are as follows.

Step one. Identify parameters of interest and define probability distribution functions for

parameters.

In our model, linear-spring interactions given by the following equation Elinear =

1
2klinear(x−xeq)

2 are defined between adjacent nodes of the cell wall to maintain the length of

cell wall segments and regulate cell wall extensibility. Rotational spring interactions defined

between three successive nodes of the cell wall are described by the following equation,

Ebend = 1
2kbend(θ−θeq)

2 and are used to maintain a prescribed degree of bending between cell

wall segments (Bathe and Saunders 1984). The degree of bending between cell wall segments

represents the level of alignment and coordinated orientation of the cellulose microfibrils.

Bending stiffness in the model limits cell expansion along the axis perpendicular to

the preferred growth direction similar to how cells lay down microfibrils to limit expansion

in experimental observations. The way this is achieved is by assigning each node its θeq

value based on its location within the cell. Nodes whose location is within the region of the

cell wall perpendicular to the preferred growth direction are assigned an equilibrium angle

of 180 degrees. All other nodes are assigned a circular equilibrium angle. In this way the

parameter kbend is split into two separate parameters, kbendhigh and kbendlow . kbendhigh is the

bending spring coefficient for nodes in the region of the cell wall where θeq is set to 180

degrees, and kbendlow is the bending spring coefficient for all other nodes.

Ranges for the parameters kbend and klinear are determined using elastic modulus
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of cells measured in experiments. However, sensitivity analysis techniques are necessary

to determine the relationships between each of these parameters and three important cell

shape characteristics, area, ratio of longest axis to shortest axis and dynamic curvature. The

probability distribution function assigned for each parameter was the uniform distribution.

Step two. Calculate the number of simulations (N).

The LHS sampling technique involves sampling without replacement. This mean

that if K draws are to be made, where K equals the number of uncertain variables, the

Kth draw would be predetermined. This, the lower limit value of N , where N equals the

number of simulations, should be at least K + 1. There is no exact rule for determining

the adequate sample size for the LHS scheme. The appropriate sample size for a specific

analysis should also take into account the desired significance level for the partial rank

correlation coefficient. In the present analysis K is equal to 3 and N was set to 20.

Step three. Divide the range of each of theK parameters intoN equally probable intervals.

Step four. Create the LHS table.

The LHS scheme involves random sampling without replacement. Each equally

probable interval for each input parameter is sampled once. An LHS table is generated

as a matrix where N is the number of simulations and K is the number of sampled input

parameters. N sampling indices of the first variable are paired randomly with N sampling

indices of the second variable and the random pairing continues until all K input variables

are included and the N ×K matrix has been generated.
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Step five. Sample the values of the input parameters.

Step six. Analysis of model outcomes: Uncertainty analysis.

The results of the simulation runs consist of N observations of the three outcome

variables area, ratio of longest to shortest axis and dynamic curvature. Distribution func-

tions for each of the outcome variables can be directly derived and characterized by simple

descriptive statistics since the N observations correspond to a range of probable outcomes

rather than the absolute upper and lower bounds of the system. Descriptive statistics

provide a measurement of the variability in the outcome variable due to the estimated

parameters.

The LHS uncertainty technique was used to explore the effect of uncertainty in

kbendhigh , kbendlow and klinear on the prediction precision of two outcome variables: cell area

and ratio of shortest to longest axis. Descriptive statistics for these distributions are given

in Table 4.1.

Step seven. Analysis of model outcomes: Sensitivity analysis.

The N observations of each outcome variable from simulations can be used to

assess the sensitivity of the outcome variables to the estimation uncertainty in the input

parameters. In the LHS scheme all of the parameters are varied simultaneously. Since

the input parameters are often interdependent PRCC should be used to evaluate statistical

relationships. Calculation of PRCC enables the determination of the statistical relationships

between each input parameter and each outcome variable while keeping all of the other input

parameters constant at their expected value. This procedure enables the independent effects

of each parameter to be determined, even when the parameters are correlated. A PRCC
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AREA RATIO

MIN 119.635 0.5142

MAX 351.8957 0.9976

MEAN 202.2367 0.7461

MEDIAN 176.9506 0.6750

VARIANCE 4.99e+03 0.0384

Table 4.1: Descriptive statistics for uncertainty in two outcome variables, cell area and ratio

of shortest to longest axis of cells.

indicates the degree of monotonicity between a specific input variable and a particular

outcome variable. Therefore, only outcome variables that are monotonically related to

the input parameters should be chosen for this analysis. The sign of the PRCC indicates

the qualitative relationship between each input variable and each output variable. The

magnitude of the PRCC indicates the importance of the uncertainty in estimating the

value of the input variable in contributing to the imprecision in predicting the value of the

outcome variable. The relative importance of the input variables can be directly evaluated

by comparing the values of PRCC.

A suggested starting point in sensitivity analysis using sampling-based methods

is to examine scatter plots. Scatter plots enable graphic detection of nonlinearities, non-

monotonicities, and correlations between model inputs and outputs. Scatter plots (Figure

4.1) indicate there there is a linear relationship between Area and klinear and in addition

there is a linear relationship between Ratio and kbendhigh .

Next, the MATLAB function, stepwiselm, was used to perform stepwise regression

to remove insignificant terms from the model (See Table 4.2 and Table 4.3 for details).
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(a) kbendhigh
vs. Ratio (b) kbendlow

vs. Ratio (c) klinear vs. Ratio

(d) kbendhigh
vs. Area (e) kbendlow

vs. Area (f) klinear vs. Area

Figure 4.1: Scatterplot graphs for influence of input variables on two outcome variables,

cell area and ratio of shortest to longest axis.

Estimate SE tStat pValue

Intercept 296.61 24.704 12.006 5.0029e-10

k linear -0.23925 0.055581 -4.3044 4.2687e-4

R-squared: 0.507 Adjusted R-Squared: 0.48
F-statistic: 18.5 p-value: 4.27e-4

Table 4.2: Summary of reduced regression model for cell area

The term with the largest p-value was iteratively removed from the model, and the model

was refit. This was done until an F-test for change in the sum of squared error returned

a p-value below α, which was set to be determined based on the impact on the adjusted

R2 of the model (Table 4.2 and Table 4.3 for details). The term with the largest p-value

was iteratively removed from the model, and the model was refit. The outcome was the
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Estimate SE tStat pValue

Intercept 0.974 0.067 14.537 2.1755e-11

k bend high -0.00755 0.0019273 -3.9167 0.001011

R-squared: 0.46 Adjusted R-Squared: 0.43
F-statistic: 15.3 p-value: 0.00101

Table 4.3: Summary of reduced regression model for ratio of shortest to longest axis of cells

following two equations for area and ratio as a function of klinear and kbendhigh respectively.

Area = −23925 ∗ klinear + 296.61 (4.1)

Ratios = −0.00755 ∗ kbendhigh + 0.97444 (4.2)

4.2 Computational Implementation

The code for this work was implemented in C++ using OpenMP for paralleliza-

tion. A flowchart outlining the computational implementation of the model is given in the

Appendix 1.

1The code is available at https://github.com/mikahlbk in the folder ScePlantCells Parallel
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Chapter 5

Results

5.1 Experimental and Image Analysis Results

Experimental Methods

Side view experimental images of sectioned SAMs were obtained by confocal mi-

croscopy [113]. SAMs were imaged using a fusion protein of eGFP-WUS to track WUS

accumulation [113, 130]. In addition, plasma membrane staining was used to provide a

proxy for visualization of individual cell walls [113]. Wildtype plants used for model vali-

dation were grown under normal conditions. To study spatial manipulation of WUS levels,

four systems were employed:

1) A recent study has shown that CK signaling stabilizes the WUS protein in

the deeper L3 layers of the RM [113]. To induce cytokinin response in cells of the L1

and the L2 layers, active TypeB ARABIDOPSIS RESPONSE REGULATOR1 (ARR1),

a transcription factor that functions downstream of the CK receptors, was constitutively
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misexpressed in dexamethasone inducible fashion, by using the CLV3 promoter [For further

details see 113]. For this experiment, ectopic activation of CK signaling in the outer layers

leads to an increase in the diameter of the WUS signaling domain as well as increased WUS

accumulation in the meristem that spreads out into the deeper layers, and modestly into

the L1 or L2 layers (Figure 3.4B) [113].

2) Ectopic activation of eGFP-WUS from the CZ-specific CLV3 promoter leads

to uniformly lower WUS accumulation in all cell layers of highly enlarged and much taller

SAMs [131, 89] (Figure 3.4 D).

3) To achieve higher levels of nuclear WUS, we utilized data sets from an earlier

study which misexpressed an eGFP-WUS form, in the CZ, that is tagged with a potent

nuclear localization signal (nls-eGFP-WUS) (Figure 3.4 E). For further details see figure

5C and F in Perales et al. 2016. In this condition, higher nuclear WUS was detected in

patches of cells in highly irregularly shaped and much flatter SAMs.

4) WUS accumulation was followed in clv3-2 null mutants which accumulate WUS

at much higher levels in the nuclei of L2 and deeper L3 layers and extremely low levels in

the nuclei of the L1 layer (Figure 3.4 C) [89].

Image analysis

Analysis and quantification of the WUS signal was performed using a combination

of ImageJ and the HK-means and Active contour packages within the ICY bio-image analysis

software [113]. Plasma membrane staining makes it possible to distinguish between the cell

outlines of individual cells and thus measure the amount of signal in each
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cell as well as describe other cell characteristics such as cell center and the main axis of

expansion for each cell.

The main axis of expansion of cells in both experimental images and simulations

is quantified for comparison and model validation. For in vivo cells, the main axis of

expansion is inferred from cell shapes observed from single-time-point images. First, images

are segmented in ImageJ. Next, the EpiTools image processing software [47] is used to fit an

ellipse to each individual cell contour and extract the angle and magnitude of the longest

axis of the ellipse. The angle and magnitude pair are then used to define the main axis

of expansion for each cell in the modeling domain (Figure 3.4F). For simulated cells, the

expansion direction is calculated similarly to experimental images using resulting cell shapes

from the final time step of each simulation (Figure 3.4G).

Curvature of the L1 layer of the SAM in both experiments and simulations is

quantified for comparison and model validation. For both experimental and simulation

images, the center of each cell in the L1 layer is recorded and a circle is fit to the resulting

set of data points using the Circle Fit (Pratt method) in matlab [66] (See SI 1.1). The

radius of the fitted circle is used as a metric to compare curvature of the L1 layer of the

SAM in simulations versus experiments.

5.2 Model Simulation Results

5.2.1 Mechanisms Determining Overall Shape of the SAM

The computational model was used to study morphological implications of indi-

vidual cell behaviors in the SAM by simulating combined growth of the L1, L2, and deeper
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L3 layers (See [5] for details). Model simulations were run to determine whether layer

dependent mechanical anisotropy at the sub-cellular and cellular level combined with ex-

perimentally calibrated diameter of the WUS signaling domain were sufficient to reproduce

experimentally observed expansion directions of cells as well as experimentally observed

shape and size of the SAM characterized by curvature of the L1 layer (Figure 5.1). In addi-

tion, model predictive simulations were run to test the hypothesis that WUS concentration

of individual cells controls individual cell growth rates as a mechanism for generating SAM

shape and structure.

For simulations of wildtype SAM growth (Figure 5.1A-C), the following assump-

tions were made. The diameter of the CZ and resulting WUS signaling domain were cali-

brated using experimental data and described by Eq. 3.6 (Figure 3.6A and section 3.2.8).

Cell growth rates were determined based on the WUS concentration of individual cells (See

Table 3.3, Figure 3.6B and section 3.2.8). Lastly, cells in the L1 and L2 layers were assigned

growth direction vectors parallel to the surface of the SAM and all cells in the deeper layers

were assigned growth direction vectors perpendicular to the surface of the SAM.

Tissue shapes obtained in wildtype simulations were compared with tissue shapes

observed in experimental images. Namely, the distribution of the angles of the main axis of

expansion for all cells in the tissue (See section 5.1) obtained in simulations and experiments

were compared to quantify the impact of the expansion direction of individual cells on

overall tissue shape (Figure 5.2A-E). A kernel density estimation (KDE) plot for the angle

of the main axis of expansion of cells across 13 experimental images was compared to a

KDE plot for the angle of the main axis of expansion of cells across 5 simulations. KDE
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Figure 5.1: Time snapshots of simulations of the formation of the shape and structure

of the SAM of Arabidopsis and experimental images. (A-C) Simulation of wildtype SAM

growth with diameter of CZ equal to 15µm and resulting radius of curvature of the fitted

circle to the L1 layer equal to 51.27µm. (D) Experimental image of wildtype SAM obtained

by our group. (E-G) Simulation of SAM growth with diameter of CZ equal to 34µm and

radius of curvature of the fitted circle to the L1 layer equal to 39.38µm. (H) Experimental

image of meristem experiencing the ectopic overactivation of CK signaling in the CZ for

12 hours obtained by our group. (I-K) Simulation of SAM growth with diameter of CZ

equal to 56µm and radius of curvature of the fitted circle to the L1 layer equal to 86.42µm.

(L) Experimental image of meristem tagged with a potent nuclear localization signal (nls-

eGFP-WUS). In (D),(H) and (L) the simulation domain is shown in the enclosed ares in

white. Scale bars are 20µm
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Figure 5.2: Model validation for simulating wildtype tissue growth. (A) Distribution of the

angle of the main axis of expansion of cells in experiments versus simulations. Boxplots

showing average angle of the main axis of expansion of cells in wildtype experiments (B)

and simulations (C). Kernel density estimation (KDE) plots for the angle of the main axis of

expansion of cells across experiments (D) and computational simulations (E) respectively.

KDE plots demonstrate both data sets follow a bimodal distribution with one mode close

to 90 degrees and the other mode close to 0 degrees.

73



plots demonstrate that both data sets follow a bimodal distribution with one mode close

to 90 degrees and the other mode close to 0 degrees. These results are consistent with

experimental observations wherein cells in the deeper L3 layers expand perpendicular to

the surface of the SAM, i.e. the main axis of expansion is 90 degrees, and cells in the L1

and L2 layers expand parallel to the surface of the SAM, i.e. the main axis of expansion is

0 degrees. Comparison between KDE plots for experimental and simulation data indicate

that there was not a significant difference between the two groups. Thus, model assumptions

used in the wildtype simulations were enough to reproduce the average angle for the main

axis of expansion seen in experimental images.

Lastly, we demonstrated that model simulations reproduced experimentally ob-

served curvature of the L1 layer of the SAM (Figure 5.3). The average radius of curvature

of the fitted circle to the L1 layer of the SAM was computed from single-time-point exper-

imental images of 13 different wildtype plants as well as data output from the last time

step of 5 wildtype simulations. A t-test comparing the average radius of curvature from

wildtype experimental images (50.75 µm) to the average radius of curvature from wildtype

simulations (67.19µm) resulted in p = 0.0656 demonstrating that there was no significant

difference between simulations and experimental data (α = 0.05).

5.2.2 Impact of WUS Concentration on Overall Shape of SAM

In addition to quantifying wildtype SAM growth described above, the average

curvature of the L1 layer of the SAM was computed from experimental images from 26

ectopic activation of CK experimental meristems (avg = 28.06 µm), 7 ectopic activation of

eGFP-WUS experimental meristems (avg = 25.63 µm), 8 clv3-2 null mutant experimental
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meristems (avg = 32.17 µm) and 10 ectopic activation of nls-eGFP-WUS experimental

meristems (avg = 86.28µm) (Figure 5.3). A t-test comparing the average curvature of

the L1 layer of wildtype meristems to each of the four alternative systems resulted in

p = 3.0230e−08, (ectopic activation of CK), p = 0.0016 (ectopic activation of eGFP-WUS),

p = 0.0616 (ectopic activation of nls-eGFP-WUS) and p = 0.0060 (clv3-2 null mutants),

respectively. These results demonstrate that ectopic activation of CK meristems, ectopic

activation of eGFP-WUS meristems and clv3-2 null mutants all lead to significant increase

in the curvature of the L1 layer of the SAM and ectopic activation of nls-eGFP-WUS

meristems are not significantly more curved than wildtype meristems (α = 0.05).

To investigate the impact of WUS concentration of individual cells controlling

cell growth rates on curvature of the L1 layer, twenty simulations were run with different

diameters of the CZ (Figure 5.4). Values for the diameter of the CZ were chosen from

the range 15µm - 65µm. This range was used because the average diameter of the CZ in

wildtype experimental images is 15µm, and the maximum possible diameter of the CZ for

simulations is 65µm. For sampling, the range 15µm - 65µm was divided into twenty intervals

and each interval was sampled exactly once (without replacement), so that the entire range

for the parameter was explored. Each of the twenty samples was used to generate a different

WUS signaling domain for a new simulation (Figure 5.4).

Results demonstrate that the relationship between the diameter of the CZ and

radius of curvature of the fitted circle to the L1 layer of the SAM is not linear. Meristems

with diameter of the CZ between 32µm and 45µm have the smallest radius of curvature. In

addition, once the diameter of the CZ passes 45µm, meristem growth starts to flatten out
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and the radius of curvature of the fitted circle to the L1 layer increases. Model predictive

simulations demonstrating significant morphological changes due to WUS concentration of

individual cells controlling growth rates could be linked to WUS concentration-dependent

transcriptional regulation of CLV3 [89] (See section 6.1 for details). Results from each

of the twenty different simulations along with the WUS signaling domain used in each of

the twenty different simulations are provided in Figure 5.4. Individual cell growth rates

were assigned as before (See section 3.2.8 and Table 3.3) and layer dependent mechanical

properties of cells remain the same.

5.2.3 Impact of WUS Concentration on Internal Pressure Distribution

in Tissue

The average internal pressure of individual cells across the L1, L2 and deeper

L3 layers of the SAM was calculated after 20 hours of growth separately in simulations

representing wildtype (diameter of CZ equal to 15µm), increased diameter of CZ (34 µm

≤ diameter ≤ 44 µm), and uniform cell growth (diameter of CZ equal to 56µm) (Figure

5.5A) simulations. Next, the average internal pressure across the CZ was calculated for

each simulation (Figure 5.5B). Results show distinct patterns of pressure accumulation for

wildtype (avg = 70.32 kPa), increased diameter of CZ (avg = 72.77 kPa) and uniform

cell growth simulations (avg = 80.09 kPa) (Figure 5.5C-E). Stem cells in uniform growth

simulations experience higher pressure compared to wildtype and increased diameter of CZ

simulations. Model predictive simulation results suggest that distribution of pressure in the
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Figure 5.3: Comparison of radii of curvature for wildtype meristems from experiments and

simulations and radii of curvature for four alternative systems. Average radius of curvature

across 13 wildtype experimental meristems is 50.75 µm, average radius of curvature across 5

wildtype simulations is 67.19 µm, average radius of curvature across 26 ectopic activation of

CK experimental meristems is 28.06 µm, average radius of curvature across 7 ectopic activa-

tion of eGFP-WUS experimental meristems is 25.63 µm, average radius of curvature across

8 clv3-2 null mutant experimental meristems is 32.17 µm and average radius of curvature

across 10 ectopic activation of nls-eGFP-WUS experimental meristems is 86.28µm.
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Figure 5.4: Impact of WUS specified stem cell identity on overall tissue shape of SAM. (A)

The twenty different functions used as input for the WUS signaling domain in simulations

where diameter of CZ is varied. Red line is function used as input for WUS signaling domain

in wildtype simulations. Dashed line is WUS threshold for stem cell specification, i.e. cells

whose WUS concentration falls above the red line behave as stem cells in simulations. (B)

Resulting curvature of the L1 layer of the SAM for each choice of diameter of the CZ from

the twenty different simulations. First data point with diameter of the CZ equal to 15µm

is average curvature of the L1 layer over five wildtype simulations.
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Figure 5.5: Change in pattern of distribution of internal pressure across three different

simulations. (A) Distribution of internal pressure across L1, L2 and L3 layers from wildtype,

increased diameter of CZ (34 µm ≤ diameter ≤ 44 µm), and uniform cell growth (diameter

of CZ equal to 56µm) simulations. (B) Distribution of internal pressure across CZ from

wildtype (avg = 70.32 kPa), increased diameter of CZ (avg = 72.77 kPa), and uniform

growth simulations (avg = 80.09 kPa). (C) Distribution of internal pressure in wildtype

simulation. (D) Distribution of internal pressure in increased diameter of CZ simulation.

(E) Distribution of internal pressure in uniform growth simulation.
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tissue could play a role in controlling the rate of cell growth (See section 6.1 for details).
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Chapter 6

Conclusions and Future Work

6.1 Biological conclusions from the model simulation results

The growth and development of the SAM depend on spatial and temporal co-

ordination of cell growth patterns, anisotropic cell wall mechanical properties, as well as

chemical and mechanical signaling feedbacks controlling cell behavior. In this work, a novel

cell-based, SCE model is presented and used for studying morphological implications of indi-

vidual cell behaviors by analyzing the combined impact of WUS concentration of individual

cells controlling cell growth rates and mechanical properties of sub-cellular components of

individual cells and the cell wall on the shape of the SAM characterized by the curvature

of the L1 layer.

The main novelty of this work is the extension of the general SCE approach to

develop a detailed, biologically-calibrated model describing the dynamics of the three layers

of the SAM that tests impact of the combined chemical and mechanical effects on regulating

SAM growth and shape (See [5] for details). The model combines detailed representations
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of cell wall mechanical properties controlling anisotropic cell expansion, deformation of the

middle lamella of the cell wall, and increase in cytoplasmic pressure to generate turgor

pressure, as well as dynamic interactions between these different sub-cellular components.

In section 5.2.1, model simulations were shown to successfully reproduce emergent

properties of the multi-layered SAM tissue including the main axis of expansion of the

tissue and average curvature of L1 surface layer of the SAM that matched experiments

(Figure 5.2). This provides evidence in support of the hypothesized mechanism of SAM

shape formation based on combining layer dependent mechanical anisotropic distribution

at the sub-cellular and cellular level with experimentally calibrated diameter of the CZ

determining individual cell growth rates as a function of WUS concentration (See [5] for

details).

In section 5.2.2, the model was used to successfully test the new hypothesis that

WUS concentration of individual cells could impact SAM shape. One of the novel features

of the model is the separate representation of individual cells, including cells in the L3 and

deeper layers. This makes it possible to test hypotheses about the role of WUS concentration

in impacting cell behaviors directly or indirectly by specifying cell identity, especially in the

deeper layers where it is difficult to experimentally track cells over time (See [5] for details).

Model predictive simulations demonstrate that significant morphological changes

during SAM growth were associated with changes in the diameter of the CZ (Figure 5.4).

Moreover, the simulations of WUS concentration-dependent growth could also be linked

to its concentration-dependent transcriptional regulation of CLV3 [89]. This is because

earlier analysis revealed that WUS activates CLV3 transcription at lower concentrations and
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represses CLV3 transcription at higher concentrations [89]. In addition, CLV3 -mediated

signaling is required for nuclear accumulation of WUS in the CZ. Perhaps, CLV3 -mediated

signaling enriching WUS in the nuclei of CZ cells could restrict growth, while the cells in

the PZ that are displaced out of the CLV3 -signaling zone accumulate lower nuclear WUS

and divide faster (See [5] for details).

Predictive simulations reveal that meristems with a CZ diameter between 32µm-

45µm have a smaller radius of curvature than meristems with a higher CZ diameter (>

45µm) (Figure 5.4)(See [5] for details). These results are consistent with experimental ob-

servations wherein ectopic activation of eGFP-WUS in the CZ led to overall lower WUS and

an increase in CZ diameter along with an enlarged and pointy meristem (Figure 3.4D and

5.4). Whereas, patches of higher WUS accumulation observed in meristems experiencing

ectopic activation of nls-eGFP-WUS led to flatter and irregularly shaped SAMs which could

be due to heterogeneity in growth rates and may also be due to the loss of CZ identity in

patches (Figure 3.4E and 5.4) [For details see Figure 5C and F in Perales et al. 89]. Though

it is unclear whether high WUS concentration of individual cells restricts growth directly

or indirectly by specifying cell identity, simulation assumptions that WUS concentration

of individual cells controls growth rates are supported by an earlier study from our group

showing that direct misexpression of WUS in the PZ leads to retardation of growth [131].

Thus, future time-series data from experiments in combination with additional modeling

studies are required to uncouple the impact of cell identity and WUS concentration on

growth rates.

In section 5.2.3, predictive model simulations revealed that changes in the size of
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the diameter of the CZ resulted in distinct distributions of internal cell pressure across the

stem cell niche (Figure 5.5)(See [5] for details). Namely, increasing the diameter of the CZ

from 15µm observed in wildtype experiments to 65µm in uniform growth simulations where

every cell in the tissue behaves like a stem cell, increased pressure in the CZ by 10 kPa.

Model simulation results indicate that cell behavior in response to changes in internal cell

pressure could provide an additional mechanism for maintaining the correct ratio of slow

growing cells in the CZ to fast growing cells in the PZ resulting in a stable population of

stem cells and the correct shape and size of the meristem. More specifically, distribution of

pressure in the tissue could play a role in controlling the rate of cell growth and division, i.e.

stem cells under higher pressure in the CZ may divide less frequently than differentiated

cells under lower pressure in the PZ [124].

To summarize, this work demonstrated using a cell-based model how layer depen-

dent anisotropic mechanical properties of sub-cellular components of individual cells and

the cell wall and WUS concentration of individual cells control cell behavior and ultimately

determine the final size and shape of the meristem (See [5] for details). Many persisting

questions about interactions between chemical and mechanical signaling can be studied

using further extensions of the model.

6.2 Future work

6.2.1 Coupled mechanical and dynamic signaling model

In particular, we plan to extend the model by combining the mechanical sub-

model with a dynamic signaling model. Understanding how cell growth rates, cell size, cell

84



shape and cell division patterns facilitate signaling diffusion is crucial for gaining a better

understanding of the spatio-temporal regulation of the stem cell niche. For example, the

extended model can be used to test the hypothesis that division plane orientation impacts

diffusion by the creation of new plasmodesmata in a preferential direction when new cell

walls are laid down. If the majority of cells in the deeper L3 layers divide periclinally, the

creation of new plasmodesmata along the apical-basal axis of the meristem would create a

vertical path for diffusion.

Alternatively, there is evidence that cell wall stiffening may prevent diffusion

through plasmodesmata [26]. Performing in silico experiments that test the role of plasmodemata-

mediated regulation of WUS diffusion in controlling WUS levels could lead to new insights

into the plasmodesmata distribution and conductance properties which are otherwise chal-

lenging to determine experimentally.

In addition, combining the mechanical sub-model with a dynamic signaling model

would make it possible to link sub-cellular processes regulating intracellular WUS distribu-

tion to its spatial accumulation and the regulation of CLV3 transcription. It will also enable

us in the future to test the relative roles of WUS, CK and mechanical signals in determining

the growth rates and division plane orientation of individual cells. Moreover, new insights

as to how cells within a tissue determine the orientation of their plane of division would

make it possible to study the effect of division plane orientation on morphological features

such as cell growth direction and curvature of the L1 layer of the SAM.
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